
RIKU NIEMINEN
CLIENT-SIDE WEB APPLICATION MEMORY MANAGEMENT

Master of Science thesis

Examiner: Prof. Tommi Mikkonen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 9th December 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250161207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

ABSTRACT

RIKU NIEMINEN: Client-Side Web Application Memory Management
Tampere University of Technology
Master of Science thesis, 55 pages
December 2015
Master’s Degree Programme in Computer Technology
Major: Software Engineering
Examiner: Prof. Tommi Mikkonen
Keywords: Client-Side Web Application, Memory Management, Single Page Application,
SPA, JavaScript, Diagnostics

Today web browsers are used more and more as application runtime environment
in addition to their use and origins as document viewers. At the same time web
application’s architecture is undergoing changes. For instance functionality is be-
ing moved from the backend into the client, following the so-called Thick client
architecture.

Currently it is quite easy to create client side web applications that do not manage
their memory allocations. There has not been large focus in client side application’s
memory usage for various reasons. However, currently client side web applications
are widely being built and some of these applications are expected to be run for ex-
tended periods. Longevity of the application requires application’s succesful memory
management. From the performance point of view it is also beneficial that the appli-
cation manages its memory succesfully. The client-side behaviour of the application
is developed with JavaScript, which has automatically managed memory allocations.
However, like all abstractions, automatically managed memory is a leaky abstraction
to an undecidable problem.

In this thesis we aim at finding out what it takes to create client side applications
that succesfully manage their memory allocations. We will take a look at the tools
available for investigating memory issues during application development. We also
developed a memory diagnostics module, in order to be able to diagnose application
instance’s memory usage during its use.

The diagnostics module developed during this thesis was used succesfully to monitor
application’s memory usage over time. With the use of the data provided by the di-
agnostics module, we were able to identify memory issues from our demo application.
However, currently the Web platform does not enable the creation of cross-browser
standard relying solution for diagnosing web application’s memory usage.

III

TIIVISTELMÄ

RIKU NIEMINEN: Web Sovelluksen Asiakaspuolen Muistinkulutuksen Hallinta
Tampereen teknillinen yliopisto
Diplomityö, 55 sivua
Joulukuu 2015
Tietotekniikan koulutusohjelma
Pääaine: Ohjelmistotuotanto
Tarkastajat: Prof. Tommi Mikkonen
Avainsanat: Web Sovellus, Muistinhallinta, Diagnostiikka, Yhden Sivun Web-Sovellus

Web-selainten käyttö on viime vuosina laajentunut hyperlinkkejä sisältävien doku-
menttien esityksestä sovellusten suoritukseen. Samanaikaisesti web-sovellusten ark-
kitehtuuri on muutoksen alla: entistä enemmän toiminnallisuutta siirtyy palvelimel-
ta selaimeen, mukaillen niin kutsuttua paksu asiakas (Thick client) -arkkitehtuuria.

Tällä hetkellä muistivuotoja sisältävien web-sovellusten kehittäminen on melko help-
poa, johtuen osittain siitä, että web-selaimessa suoritettavien sovellusten muistinhal-
lintaan ei ole toistaiseksi kiinnitetty laajalti huomiota. Tilanne on kuitenkin muut-
tumassa, sillä nykyisin web-selaimessa suoritettavia sovelluksia kehitetään laajalti,
ja osan näistä sovelluksista odotetaan olevan käytössä pitkiä aikoja. Sovellusten pit-
käikäisyys edellyttää sovelluksen onnistunutta muistinhallintaa. Onnistunut muis-
tinhallinta myös mahdollistaa suorituskykyisten sovellusten kehittämisen.

Tässä työssä tutkitaan web-teknologioiden soveltuvuutta missiokriittisten, robustien
ja pitkään ajossa olevien web-sovellusten kehittämiseen. Tarkastelemme käytettävis-
sä olevia työkaluja muistiongelmien kehitysaikaiseen tutkimiseen. Kehitimme myös
diagnostiikka-modulin, jonka avulla sovellusinstanssin muistinkäyttöä on mahdollis-
ta tarkastella ajonaikaisesti.

Diagnostiikka-modulia käytettiin työn aikana onnistuneesti tunnistamaan sovelluk-
sen muistiinkäyttöön liittyviä ongelmia. Työn aikana kehitetty ratkaisu ei kuiten-
kaan valitettavasti ole standardien mukainen, mistä johtuen diagnostiikka toimii
tällä hetkellä ainoastaan Google Chromessa.

IV

PREFACE

This thesis was made for Valmet’s technology mapping needs. During the work on
this thesis I have been able to broaden my knowledge on the technologies that will be
important in the future of computing. At the same time gaining hands on experience
with the technologies, on which I am very grateful of.

Thanks to Valmet, Perttu Kotiluoto and Janne Kytölä for letting me work on such
an interesting and current problem. It has been really inspiring to be surrounded
by professionals from such multiple fields. I would also like to thank my professor
Tommi Mikkonen for guidance, and for the previous research on using the browser
as an application platform. In addition I would like to thank Saara for support and
proofreading.

Tampere, 15.11.2015

Riku Nieminen

V

TABLE OF CONTENTS

1. Introduction . 1

2. Web applications . 3

2.1 Background . 3

2.2 Web Browser Domain . 5

2.3 Technologies . 8

2.3.1 HyperText Markup Language (HTML) 8

2.3.2 Cascading Style Sheet (CSS) . 9

2.3.3 JavaScript . 10

2.3.4 Document Object Model (DOM) 13

2.3.5 HTML5 and friends . 14

2.4 Web-browser as an application platform 14

2.4.1 Motivation . 14

2.4.2 Browsers’ working principles . 16

2.4.3 JavaScript Engine . 20

2.4.4 Single Page Applications . 20

3. Web application’s memory consumption 23

3.1 Dynamically Managed Memory . 23

3.2 Garbage Collection . 24

3.2.1 Reference counting garbage collector 25

3.2.2 Tracing garbage collector . 27

3.2.3 Generational . 28

3.2.4 Incremental vs stop-the-world . 29

3.3 Memory Leaks in Web Applications 29

3.4 ECMAScript 2015, other standards and tools 32

3.4.1 ECMAScript 2015 and Memory Management 32

3.4.2 Other Standards and Tools . 33

4. Managing and diagnosing web application’s memory 34

VI

4.1 Diagnosing memory consumption with developer tools 34

4.2 Avoiding Memory issues with development practices 38

4.3 Runtime Memory diagnostics . 43

4.3.1 Browser extension . 43

4.3.2 performance.memory API . 44

5. Evaluation . 47

5.1 Results . 48

5.2 Open Issues . 49

5.3 Discussion . 51

6. Summary . 53

Bibliography . 54

1

1. INTRODUCTION

In the last two decades we have experienced the rise of the World Wide Web
(WWW). The Web (as it is usually called) is an information sharing platform run-
ning on top of the Internet. The Web is the most powerful information distribution
environment in the history of humankind. It has evolved from a system that was
used to share documents containing hyperlinks to other documents, into a general
purpose application and content distribution environment. [49]

We are still in the very early days of the Web, yet it has already become part
of our every day lives. Today web browsers are probably the most widely used
applications on desktop computers. In addition to this, browsers are run on diverse
computing platforms: PCs, Mobile Devices (phones, tablets), Game Stations and
TVs among others. Browsers are under continuous change and their role has been
evolving from a document viewer into a full runtime environment. More and more
tasks are shifting from the operating system into the browser and from the eyes of
the average computer user the browser will effectively become the de facto operating
system. [48]

Because the web browser provides such an accessible and ubiquitous platform, it is
also starting to gain attention from mission critical application developers. However,
using web browsers as an application runtime environment is quite a recent turnup,
thus leaving more to be desired. Currently it is very easy to create web applications
that contain memory leaks and quite difficult to diagnose such problems. This makes
it difficult to create mission critical web applications. The ECMAScript standard
does not define any interface for the developer to diagnose runtimes memory usage,
nor interact with the implementation’s garbage collector. This makes it impossible
for the application developers to diagnose the application’s memory usage with
standardized cross-browser solution, in order to identify memory leaks from live
applications.

In this thesis we focus on using the browser as an application platform for making
performant and mission critical single page applications. The web applications we
are interested in are expected to be running for extended periods of time, where

1. Introduction 2

the use is measured in months rather than minutes. In this use case the role of
succesful memory management becomes compulsory. These requirements have lead
us to further narrow our focus on web application’s memory management.

We will look into the current status and future of web application development
and web applications memory management. During the work on this thesis we have
implemented a memory diagnostics module that can be used to diagnose web applica-
tions memory consumption. During this thesis we implemented a demo application
that uses the aforementioned module to diagnose the applications memory con-
sumption in a real environment. Chapter 2 focuses on using the web browser as an
application platform. In chapter 3 we look at JavaScript’s memory management and
Garbage Collection. Chapter 4 focuses on creating memory leak free web applica-
tions, detecting memory leaks, and diagnosing memory consumption during runtime.
In chapter 5 we evaluate the memory diagnostics module’s usefulness, the status of
the web platform and tools, and look into possible ways for improving these. Chap-
ter 6 provides a summary in which we summarize the findings made during the work
on this thesis.

3

2. WEB APPLICATIONS

2.1 Background

During the last two decades it has been quite overlooked for web developers to ha-
ve an in depth understanding of underlying web technologies. Web developers and
designers have been relying heavily on tools to abstract away the details of making
web applications. While the use of tools has made many current web applications
possible, understanding of the underlying concepts should not be overlooked. Heavy
reliance on tools has been able to hide the gruesome details and for a long while not
enough pressure was put into improving the technological foundation [24]. Howe-
ver, in the past few years web technologies have matured remarkably: the current
advances include standards like, HTML5, CSS3 and ECMAScript edition 6, which
enable the development of more desktop-like applications, among other things.

When creating web software the division of work has been aligned with the architec-
ture of the applications. The architecture used to build traditional web applications
has been three-tier architecture. Three-tier architecture divides the application in-
to three parts: presentation logic, business logic and data logic (Figure 2.1). The
presentation layer consists of a user interface (UI) and it also controls the user’s in-
teractions. The business logic contains the application’s business logic and the data
tier provides access to data. In these architectures the presentation layer has resided
in the browser (user-agent, client) and the business logic and data tier have resided
in the server. [44]

When developing the above-mentioned systems, the work has been roughly divided,
so that web designers work on the front-end and web developers and database experts
work on the back end (server-side) [59]. The architecture and division of work partly
explains why there have been so many technologies, paradigms and programming
languages involved when creating web software, which again is part of the reason
why the portability of development experience has been quite poor. The division
of work has also influenced the dependence on tools especially in the presentation
layer.

2.1. Background 4

Figure 2.1 Architecture of web applications and taxonomy of web application technologies.
[44]

The current trend amongst web applications seems to be shifting parts of the logic
from the server into the client, with the wider use of RESTful APIs and the creation
of thicker clients and thinner server. This trend has been partly rationalized by
improving user experience. With thicker clients (enhanced with new technologies) it
is possible to create richer interactions, and applications that do not require as many
server round-trips as traditional web applications would. This shift and emerging
standards also make it possible to use the application, even when there’s no network
connection, once the application has been cached, and presuming the application
does not require network connection for its operation. The development of software
becomes easier when using single paradigm, rather than dividing it into multiple
languages and sites [44]. Probably the most widely known application for the end-
user that represents the shift into thick client and thin server architecture, is Google’s
GMail.

This trend can partly be confirmed by looking at the current popularity of JavaSc-
ript. Figure 2.2 presents JavaScript being the most popular programming language
over the fourth quarter of 2014, based on StackOverflow1 conversations and GitHub2

repositories [40].

The architecture of web application is undergoing changes and is transforming away
1stackoverflow.com
2github.com

stackoverflow.com
github.com

2.2. Web Browser Domain 5

Figure 2.2 Popularity of programming languages based on Stakcoverflow-tags and GitHub-
repositories [40]

from more traditional web applications. As parts of computing and also data-storage
are shifting from the back end into the client-side, more and more engineering-
work, or at least the established principles, need to shift from the back end to the
client-side. Computer engineering principles and design patterns (proven and tested
concepts) developed during the last thirty years should be taken advantage of when
creating web applications, in order to create applications with high quality in a
shorter timeframe.

2.2 Web Browser Domain

The main responsibility of the Web browser has been to present content the user has
requested. Briefly explained, the way the browser achieves this is that the browser
sends an HTTP GET-request to the web server (defined by the URL) after the server
receives the request, it processes it and returns the appropriate response (HTTP
Response, with appropriate status code and body). In turn, the browser receives
the HTTP Response, processes it, and hopefully receives an HTML document in
the response’s body. After receiving the document, the browser parses it, fetches
possible additional resources (for example images and stylesheets) and displays the

2.2. Web Browser Domain 6

content in the browser’s window. The resource is typically an HTML document,
but it may also be a PDF file, image, or other type of content. We will look at the
browser’s actions in more detail in section 2.4.2.

To get a better understanding on how browsers have evolved, we will take a brief
look into the web’s origins. Tim Berners-Lee developed the first web browser in 1991,
called WorldWideWeb; the browser was text-only, and served also as an HTML edi-
tor [2]. Soon after that came another text-only browser called Lynx [64]. In 1993
Mosaic was released, Mosaic introduced features that are still used in modern brow-
sers, such as icons and bookmarks [38]. A company called Spyglass was created to
commercialize Mosaic’s technologies. Mosaic’s author left to co-found their own com-
pany, which created the commercially succesful browser: Netscape Navigator [65]. In
1994 Tim Berners-Lee founded W3C to steer the development of Web standards and
promote interoperability among web technologies. In 1995 Microsoft released Inter-
net Explorer [66], which was based on code licenced from Spyglass. This started the
era of the so-called Browser Wars, a period during which browser vendors compe-
ted over the domination of usage share in web browsers. During the mid 1990’s a
new closed source browser called Opera was introduced [67]. In 1998 Netscape open
sourced their browser under the name Mozilla [68]. A few years later an open source
browser called Konqueror was introduced [23], on which Apple’s web browser Safa-
ri is based on [69]. Apple open sourced WebKit, which is a rendering engine used
in Safari [90]. In 2008 Google announced the open source browser Chromium and
Chrome, which is largely based on Chromium, adding Google’s proprietary featu-
res to it, thus making it closed source [70]. Chromium and Chrome both have used
WebKit as their rendering engine, but in 2014 they forked WebKit to create their
own rendering engine Blink. In 2014 also Opera switched to use Blink [43]. Most of
these browsers are illustrated in the timeline Figure 2.3 below.

During the last years, the use of mobile devices to browse the web has risen remar-
kably. Today more people have access to the Web by a mobile device than from
a desktop computer connected to the Internet [55]. Currently there are five wide-
ly used browsers on desktop computers: Firefox, Internet Explorer, Chrome, Safari
and Opera. When it comes to mobile devices, the main browsers are the Android
Browser, iPhone (Safari), Opera Mini, Opera Mobile, UC Browser, Nokia S40/S60
Browsers and Chrome. Figure 2.4 presents the usage of different desktop browsers
over time. [16]

For web browsers to work similarly, they follow the standards set by World Wide
Web Consortium (W3C). The standardization process happens somewhat simul-
taneously with the browser’s implementations, which poses some challenges to the

2.2. Web Browser Domain 7

Figure 2.3 Timeline picture of browsers evolution. [15]

Figure 2.4 Usage share of web browsers.[53]

2.3. Technologies 8

process. The standardization bodies do not want the implementations to happen be-
fore the specification is finished, in order to avoid a situation where web developers
start relying on implementation details too early. Then again, W3C appreciates the
feedback from real users and does not want to make complete specifications before
the implementations and the author feedback. [56]

2.3 Technologies

In the previous sections we have described what browsers are made for and how they
have evolved. In this chapter we will describe the standard technologies that are used
when creating the client-side of the web applications. Since this thesis focuses on
web applications that have thick clients and using the browser as the platform, we
will not put large emphasis on the server-side of the application.

When developing client-side applications, there are mainly three different program-
ming languages to be aware of. These languages are HTML, CSS, and JavaScript,
which are designed in such a way that they have different responsibilities and goals,
and are a way of enforcing the separation of concerns -concept. HTML describes the
structure, CSS describes the presentation, and JavaScript the behaviour, as presen-
ted in Figure 2.5. In the following subsections we will go through them separately
and how they are connected through Document Object Model (DOM), in addition
to these we also take a brief look into HTML5.

Figure 2.5 Programming languages and their responsibilities in web applications

2.3.1 HyperText Markup Language (HTML)

HTML is the standard markup language used in the World Wide Web. It was origi-
nally designed as a language for semantically describing scientific documents. Howe-

2.3. Technologies 9

ver the design was very general, thus enabling it to be adopted over the last decades
to describe a wide variety of documents and applications. [83]

HTML is a declarative language, used to create structured documents. These docu-
ments are formed by HTML elements. Syntactically HTML elements consist of tags
enclosed in angle brackets. HTML elements are either paired, they have starting
and closing tags; for example <h1>Header</h1>, or empty . HTML-tags can
have attributes, which are usually attribute-value pairs separated by the equality
sign (=), and written in the start tag of the element, after the element’s name, eg.
. In the following example we see an example
of a simple HTML5 document, containing a separate stylesheet and a script file.

<!doctype html >
<html >

<head >
<title >Example </title >
<link rel=" stylesheet" href=" presentation.css">

</head >
<body >

<h1>Example </h1 >
<p>This is a paragraph </p>
<p>Another paragraph.</p>

</body >
<script src=" behaviour.js"></script >

</html >

2.3.2 Cascading Style Sheet (CSS)

Cascading Style Sheets (CSS) are used to define the presentation of the document
written in a markup language (typically HTML). CSS is used to separate content
from its represantation, a common design principle, and a specific instance of sepa-
ration of concerns. CSS, like HTML is also a declarative language. The separation
reduces complexity and repetition, improves content accessibility (by promoting se-
mantically structured documents), provides flexibility and control.

CSS can be written into HTML document inline, or it can be written into a separate
CSS file and referenced from a HTML-document. A Typical CSS file consists of a list
of rules, which each contain a selector and a declaration block. The declaration block
contains a collection of properties. Property is defined by specifying the property’s
name, followed by a semicolon and its value. The selector defines on which HTML
elements these properties should be applied to.

2.3. Technologies 10

CSS syntax is quite simple, using multiple English keywords to specify style pro-
perties. Here is a simple example of a CSS file, used to to define an outlook of the
previously presented HTML-document.

body {
margin -left: 15%;
font -family: "sans -serif ";
font -size: 16px;
color: rgb(40, 40, 40);
background -color: rgb(250, 250, 250);

}

p {
border: 1px solid rgb(40, 40, 40);

}

2.3.3 JavaScript

JavaScript programming language plays a large role in today’s web applications. Its
importance has been growing in the past years, as the browser has been transforming
from a document viewer into a runtime environment. Client-side web applications’
functionality is implemented with JavaScript. In order to analyse web application’s
memory consumption in the following chapters, we will take a brief look into the
JavaScript programming language. For more in depth references on JavaScript, see
the following books: D. Flanagan’s JavaScript The Definitive Guide [57], and D.
Crockford’s JavaScript The Good Parts [8].

JavaScript is a dynamic programming language, most widely known for its use in
client-side scripting. It was developed at Netscape by Brendan Eich, at the same
time as non standardized DOM (DOM Level 0, or Legacy DOM) was being deve-
loped. JavaScript was originally released in Netscape Navigator’s version 2.0B in
1995 to support simple client-side scripting. Later during the Browser Wars, Mic-
rosoft created their own scripting language called JScript. JavaScript and JScript
are implementations of ECMAScript, which is the standardized version by Ecma
International. A standardized version was defined by Ecma International, in order
for the different implementations of the standard to behave similarly. ECMAScript
was created to capture the common elements of JavaScript and JScript [42]. There
have been five editions of ECMAScript (allthough the 4th edition was abandoned),
the current edition is 5.1, and the next edition will be ECMASript edition 6 which
is already feature ready.

2.3. Technologies 11

JavaScript has had a reputation of being a “toy” language, the reasons largely stem-
ming from its use and beginnings in simple scripting [47]. JavaScript supports mul-
tiple programming-paradigms: object-oriented, imperative, and functional program-
ming styles. JavaScript’s use is not limited to client-side scripting, it is a general-
purpore programming language and lately the use of JavaScript has spread to other
areas. JavaScript’s usage growth has been especially significant on the server-side.
Currently a very popular runtime environment for server-side JavaScript applica-
tions is node.js [60]. During the work on this thesis we implemented our demo
application’s server-side with node.js as well.

JavaScript is known for its permissive nature: this design decision was made in or-
der to make the language easier for beginners. But actually in doing so, it makes it
extremely difficult in finding certain types of errors. One example of the permissi-
veness is that the developer does not have to declare variables explicitly. If the var
keyword is omitted, the variable will automatically be published to the global-scope.
This also means that if a developer mistypes a variable’s name while placing a value
to it, a new variable will be created into global scope (implicit global). The more
traditional way would be to throw an Error, which would make it easier for the
developer to find the root cause for other errors. Afterwards implied globals have
been criticized, for example by D. Crockford [8], and in terms of memory manage-
ment they are also very harmful. Fortunately later on this permissiveness has been
limited. Today these kinds of errors can be caught more easily with strict mode, int-
roduced in ECMAScript edition 5 [30]. The permissiveness of the language, its name
and its superficial syntactic resemblance to Java have contributed to the notion that
developers do not have to study JavaScript before its use. D. Crockford has written
that JavaScript is the “The World’s Most Misunderstood Programming Language”
[5], since JavaScript’s importance is growing and it has its share of characteristics,
it is important to really understand the language and its features.

JavaScript’s data types can be divided into primitive and non-primitive types. Pri-
mitive types are data types that are not Objects. There are six primitive data types
in JavaScript: String, Number, Boolean, Null, undefined and Symbol (which has
been introduced in ECMAScript 2015). Strings, Numbers, Booleans and Symbols
are object-like, since they have methods, but in comparison to non-primitive types
the main difference is that they are immutable. Objects in JavaScript are mutable
keyed collections. In JavaScript functions, arrays, regular expressions and of course
objects are objects.

JavaScript was designed to be a prototype-based scripting language. Therefore it did
not include the notion of Class, until the latest edition of the ECMA-262 standard,

2.3. Technologies 12

which we will have a closer look at in subsection 3.4.1. Before the introduction of
classes into JavaScript, inheritance was done by prototypal inheritance. Every object
is linked to a prototype object, from which it can inherit properties. If an object is
created from a so called object literal, it will be linked to Object.prototype, which
is an Object that comes standard with JavaScript.

Arrays are actually Objects that have numerical keys, arrays are inherited from
Array.prototype. The main difference with arrays and standard objects is that
arrays have a special connection with the integer keyed properties and the property
length. [31]

A very important design decision in JavaScript is that it has first-class functions.
Functions in JavaScript are actually callable objects and they can be manipulated
and passed around just like any other object. To be more specific Functions are
Function objects inherited from Function.prototype, which in turn is inherited
from Object.prototype. [8]

JavaScript has a function scope, which means that paramateres and variables defined
in a function are not visible outside of the function. A variable defined anywhere in
the function is visibile everywhere in the function. However ECMAScript edition 6
will introduce block scoped variables to JavaScript. The new edition of the standard
will add the let-keyword which makes it possible to declare block scoped variables.
Because of function scope D. Crockford has advised that variables and parameters
that will be used within a function are declared at the top of the function body [8].
This improves code’s readability by making the scope of the variable clear, and also
avoids confusion caused by feature in JavaScript called variable hoisting [32].

JavaScript makes it possible for functions to have nested functions. The function
defined within a function has not only access to its own variables and parameters,
but to the variables and parameters of the functions it is nested within. Function
object created by a function literal, contains a link to its outer context. These
inner functions are usually called closures, meaning that the inner function closes
the parents’ lexical environment, resulting in a closed expression. In the following
example a simple closure is presented:

function foo() {
var lrgString = new Array (10000000). join("z");
var baz = function () {

// here we have access to parent functions variables
return "result is: " + lrgString;

};
return baz;

2.3. Technologies 13

}

var bar = foo();
// bar contains a reference to baz
var resultString = bar ();
// resultString equals "result is: zzzzzzzzz"

Because JavaScript has first-class functions, it is possible for the closure to have
longer lifespan than its parent. In this thesis our focus is on JavaScript applica-
tions’ memory management and it should be noted that closures are an easy way of
obfuscating memory references. Since closures can obfuscate the references an ob-
ject maintains, references to unneeded JavaScript Objects or DOM elements may
be maintained unnecessarily.

2.3.4 Document Object Model (DOM)

Document Object Model is a platform- and language-independent convention for
representing and interacting with the content, structure and style of documents.
The DOM provides a programming API for documents. It provides a structured
presentation of the document it models. DOM is used to describe structured docu-
ments, like HTML, XML, and SVG. These structured document’s DOM nodes often
create a tree-like structure, which is sometimes called a DOM tree. In the following
Figure 2.6 is a presentation of the DOM tree, based on the document presented in
subsection 2.3.1.

Figure 2.6 DOM representation of a previously presented HTML-document

The objects in the tree can be manipulated and addressed by using the methods

2.4. Web-browser as an application platform 14

of the objects. DOM provides an Application Programming Interface (API) for in-
teracting with the document and its objects, thus enabling the modification of the
document with client-side scripting [88]. The document contains JavaScript, which
can perform complex modifications to it, through the Document Object Model. This
in turn means that the browser’s represantation of a document in memory is a cross-
language data structure between the low level native code (browser), and garbage
collected JavaScript [36].

2.3.5 HTML5 and friends

HTML5 is the final and complete fifth revision of the HTML standard of the W3C.
The standard includes, among other things, video-, audio- and canvas elements,
which enable richer multimedia experiences on the web. In addition to this standard,
HTML5 is also widely used as an umberella term (sometimes referred to as HTML5
and friends), including several technologies that allow more diverse and powerful
web sites and applications [33]. These other technologies often refer to technologies
such as CSS3, SVG, Web Workers, WebGL, Offline support, WebRTC and Device
API’s (Geolocation, Orientation, User Media). These new technologies provide the
basic building blocks for building desktop-like applications on the browser.

2.4 Web-browser as an application platform

2.4.1 Motivation

The motivation behind the shift from conventional binary programs into web applica-
tions has been discussed with greater detail in Mikkonen and Taivalsaari’s articles
The Death To Binary Software [47] and Reports Of Web’s Death Are Greatly Exag-
gerated [50]. In this section, the main motivators for this paradigm shift into web
based software are described briefly. In the article Reports Of Web’s Death Are Great-
ly Exaggerated, Taivalsaari and Mikkonen provide five motivators for the shift from
traditional binary programs into web applications.

1. No manual installation or manual upgrades.

2. Instant worldwide deployment.

3. Open application formats.

4. Platform independence.

2.4. Web-browser as an application platform 15

5. Ubiquitous seamless access to data.

These items may seem like quite obvious benefits that the web has to offer for
the end-user, yet each of them offer remarkable possibilities. For example, the first
item makes it possible to do continuous integration and A/B testing, which makes
it possible to improve the product continuosly and to deploy newer versions with
larger frequency. It becomes extremely difficult for conventional binary programs to
compete with web based applications, on which software distribution is effectively
free, and the effort of taking a new software system into use is almost nonexistent
[47].

There are also other, somewhat more ideological motivators for the creation of a
universal application platform for the end-user. These motivators are however al-
so linked to the items listed above, including Open Application formats, Platform
independce and Instant worldwide deployment. These motivators should also be ta-
ken into account, since the Web is not only a technological invention, but also a
cultural phenomenon [21]. The Web has been built around egalitarian and decentra-
lized principles. These principles have been discussed with greater detail in Mozilla
Manifesto [37] and Tim Berners-Lee’s article Long Live The Web [1]. The use of
Open Standards as the basis of an application platform promotes a more scienti-
fic approach for the evolution of these standards, whereby new work can be based
on previous works. This standardization process is open to participants and inspec-
tors. The development of standards becomes an iterative process, which improves
gradually. Gradual improvement is not guaranteed to happen if the development is
solely dependent on a proprietary vendor [1]. Since iterative processes have been a
proven, largely used concept when creating software, they could be useful when crea-
ting standards as well. The use of open standards and various stakeholders makes
the implementation more future-proof compared to native applications. Therefore
with the use of Open Standards it is easier to avoid vendor-locks, which in turn
benefits the consumers and end-users.

The rise in the popularity of the Bring Your Own Device policy [73] can also be
seen to further promote the idea of the universal application platform. The same
application could be used on different platforms, even on currently non existent ones,
without having them to be explicitly built for the system at hand.

Another motivator is also the large number of platforms on which provokingly the
only shared feature is that most of these include, at least somewhat, a standard
compliant web browser. The ideal situation for an application developer, when crea-
ting applications, would be to create the application once and deploy it on every

2.4. Web-browser as an application platform 16

platform. Currently developers have to write source code for at least most of the
platforms they are targeting, be it Desktop (Windows, OS X, Linux), or Mobile
(iOS, Android, Windows Phone, Blackberry, Symbian, Meego, Baida, WebOS, Sail-
fish, Tizen, etc.). There are solutions like Phonegap3 and Adobe Air 4 that make it
possible to write the software once and run it on the supported platforms. Phonegap
relies on web technologies and therefore it does not provide a real solution to the
problem. Adobe Air, on the other hand, relies on Adobe’s proprietary technologies
including ActionScript programming language (a dialect of ECMAScript). Currently
there are multiple platforms that rely on web technologies, for example ChromeOS 5,
Tizen6 and WebOS 7.

The motivation for using the browser as a platform can also be seen by the use of
browser plugins from the late 1990’s onwards. Several different technologies, inclu-
ding JavaFX 8, Adobe Flash9 and Microsoft Silverlight 10, have been used to deve-
lop so called Rich Internet Applications (RIAs) [74]. These technologies share some
common characteristics, like addressing the issue that Web technologies were not, at
least at the time, well suited for rich application development. Another important
characteristic of these technologies was that their use required separate proprietary
browser Plug-In installation, which possibly contributed to their downfall.

2.4.2 Browsers’ working principles

To understand web applications’ memory consumption more thoroughly, we will take
a brief look into browser operations and how they manage their memory allocations.
T. Garsiel has written a book about Browsers’ operations, called How Browsers
Work [16], in which she describes a browsers operations with greater detail. This
subsection is largely based on that book.

Information about browsers’ operations is important for web developers in order for
them to make better decisions and know the justifications behind the development
best practices. We will now look at the browsers architecture, with a focus mostly
on performance and memory management in mind.

3http://phonegap.com/
4https://get.adobe.com/air/
5http://en.wikipedia.org/wiki/Chrome_OS
6https://www.tizen.org/
7https://www.openwebosproject.org/
8http://www.oracle.com/technetwork/java/javase/overview/

javafx-overview-2158620.html
9https://www.adobe.com/products/flashplayer.html

10http://www.microsoft.com/silverlight/

http://phonegap.com/
https://get.adobe.com/air/
http://en.wikipedia.org/wiki/Chrome_OS
https://www.tizen.org/
https://www.openwebosproject.org/
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
https://www.adobe.com/products/flashplayer.html
http://www.microsoft.com/silverlight/

2.4. Web-browser as an application platform 17

Even though Web browsers are developed by different companies with different ob-
jectives and goals, they share a number of features since they are designed to support
the same standards. The features of the browsers are not standardized, but instead
their features have been developed convergently. The interoperability between brow-
sers has improved greatly in comparison to the situation a decade ago.

A. Grosskurth and M. W. Godfrey have studied the implementations of two well
known open source browsers (Mozilla and Konqueror). They derived a reference
architecture based on these browsers implementations and documentations. They
then validated the reference architecture against two other browser implementations
(Safari, Lynx). During the research, they found that the browsers’ operations are
divided between different components. The high level components are presented in
the Figure 2.7. [15]

Figure 2.7 Web Browsers High Level Architecture. [15]

Browsers have similarities in their application flows. Here we take a brief look at
how the browser turns the resources into interactive application. The browser’s ren-
dering engine will first start parsing the HTML document. It turns the HTML tags
into DOM nodes and into a DOM tree, sometimes called a content tree. Then the
rendering engine parses the style data from CSS files and style elements. The sty-
ling information is turned into another tree called render tree. The Render tree
contains rectangles with visual attributes like dimensions and colour, in the correct
order to be displayed in the screen. Next a layout-process is done (sometimes called
reflow), during which each node is given the exact coordinates on where it should be
displayed on the screen. After layout painting is done, here render tree is traversed
and each node will be painted using the UI back end layer. This flow is presented in
Figure 2.8.

It should be mentioned that this is a gradual process in order to improve user

2.4. Web-browser as an application platform 18

Figure 2.8 Rendering engine basic flow [16]

experience. The building and layout of the rendering tree happens simultaneously
as the HTML document is being parsed. To have a better idea on how browsers parse
the documents and/or stylesheets, and then construct the trees, see T. Garsiel’s How
Browsers Work [16].

The rendering engine gives the scripts for the JavaScript engine to process in the
same order and at the exact moment as <script> tags appear in the document.
The rendering engine stops the parsing of the document in order to execute the
script. If the script was external it has to be fetched from the network. This is
also done synchronously, which explains why it is often proposed to put the scripts
at the bottom of the document. This was the way script processing was done for
many years and it is also specified in HTML 4 and HTML 5. It is possible to mark
the script as defer, which does not halt the document parsing and will execute the
script after the document has been parsed. HTML5 also makes it possible to mark
the script as asynchronous so it will be parsed and executed by a different thread.
[16]

The DOM tree is effectively a cross-language object, shared between the browser
(its native code) and JavaScript the document contains. It is important that the
browser does not remove DOM objects while they are still reachable from either
JavaScript or native code. This issue would cause use-after-free bugs, which often
produce exploitable security holes. In order for the browsers to solve such issues,
most existing browsers use reference counting (subsection 3.2.1) to track the refe-
rences to underlying low-level DOM objects. For example, when a JavaScript-code
fetches a DOM object via DOMs getElementById(), the browser creates a “reflec-
tor” object into the JavaScript engine’s heap (see Figure 2.9). After the JavaScript
engine’s garbage collector determines that this reflector has become garbage, it will
be destroyed and the reference count of the DOM object will be decreased. Once
the reference count reaches zero, the DOM object will be removed. [36]

This cross-language reflector scheme solves the use-after-free bugs, but at the same
time introduces a new problem, which is caused by cyclic references. In order for the
browsers’ memory footprint to stay as small as possible, browsers’ need to destroy the
objects as soon as they are no longer needed. When using naive reference counting,
it is trivial to create cross-language cyclic references from JavaScript. This kind of

2.4. Web-browser as an application platform 19

Figure 2.9 Reflector scheme

cyclic reference is being created when a DOM element has an eventListener, whose
execution adds a property to the event, which in turn references into the element.
This is illustrated in Figure 2.10 of the memory graph, which is based on the
following code example: [36]

element.addEventListener(’load ’, function (event) {
event.originalTarget = element;

}, false);

Figure 2.10 DOM Cyclic Reference example

These kinds of cyclic references cannot be cleared by naive reference counters and
JavaScript’s garbage collection does not trace through browsers’ pointers, so these
objects cannot be freed. Existing browsers have developed different ways to solve

2.4. Web-browser as an application platform 20

these issues. Some leak the memory, some try to manually break possible cycles and
some implement a cycle collection algorithm on top of reference counting. [36]

2.4.3 JavaScript Engine

Every current browser includes a piece of software called JavaScript engine. Brow-
sers’ JavaScript engine’s implementations have shifted from interpretation into Just
In Time (JIT) compilation, which has largely contributed to the JavaScript engi-
nes’ improved performance over the past years [58]. In this section we will look at
JavaScript engines only briefly to build a general understanding of how they ma-
nage JavaScript’s memory allocations and deallocations. Different browsers have
their own implementations of JavaScript engines. Table 2.1 provides the names of
JavaScript engines used by the most popular browsers.

Table 2.1 JavaScript Engines used by the most popular browsers

JavaScript engine Browsers
Spidermonkey Mozilla Firefox
v8 Google Chrome, Chromium, Opera
JavaScriptCore Safari
Chakra Internet Explorer

A reference architecture study for JavaScript engines’ implementations has not yet
been carried out, this would make it possible to refer to JavaScript engines in general
without going into implementation details. Therefore we will briefly discuss a specific
JavaScript engine implementation, v8. This was chosen, since it is widely used and
during this thesis we relied on a Chrome’s proprietary API (performance.memory),
which exposes v8’s heap usage data for the application developer.

As we described in subsection 2.3.3, JavaScript’s memory is automatically mana-
ged. This means that JavaScript engine implementation has to manage the memory
allocations and deallocations for the application. v8 allocates memory at a runtime
from the heap for JavaScript objects [18]. In v8, objects that require a large amount
of memory, like arrays and strings, only store a wrapper to the data in the heap,
and store their data in the renderer’s memory [19]. Garbage collection takes care of
deallocating the memory of the objects that will no longer be needed.

2.4.4 Single Page Applications

Over the past decades, interactions in the Web have revolved around forms and
documents, which have had many limitations, the most important being a lack of

2.4. Web-browser as an application platform 21

rich user interactions and excessive network round-trips. Transitioning into the so-
called Web 2.0 started a shift into more dynamic documents, where Asynchronous
JavaScript and XML (AJAX) was being used for fetching resources from the server,
without loading the whole document. Single Page Applications (SPA) can be seen
as expanding the same idea even further. In this section we will look at the Single
Page Applications, their characteristics, and a few Single Page Application Fra-
meworks. We will then describe how these characteristics, and JavaScript’s memory
management are related.

In recent years Single Page-Applications have been developed in order to develop
more native-like applications that can be used in the web browser. Single Page
Applications address the arcane navigation model of the Web, which has developed
from the Web’s document oriented origins. This is done in order to create richer
interactions and improve performance, thus providing better user experience. The
transformation from interlinked documents into more interactive web applications
has changed the architecture of web applications greatly. Navigation logic is imple-
mented with JavaScript, so that when the user navigates around the application,
browser does not fetch complete HTML documents from the server. Instead the re-
sources, for example needed to represent the user interface (UI), are already loaded
to the browser, and only the dynamic content has to be fetched. [46]

Single Page Applications share some common characteristics. They improve the
overall performance by loading most of the applications’ static resources (images,
CSS, and JavaScript files) during the initial load, to reduce the number of server
round trips. When most of the resources are loaded during the initialization phase,
the communication that happens with the server is mostly fetching dynamic content
by AJAX-requests and/or WebSockets.

Client-side rendering enables richer interactions compared to server-side rendering.
Server-side rendering will quickly become cumbersome when there are multiple com-
ponents on a page, and those components can have multiple intermediate states (eg.
menu open, menu clicked, menu item selected, menu item clicked). These small view
states cannot be mapped very well to URLs. Also retrieving all of these intermediate
views from the server would add unnecessary server round-trips, when compared to
client-side rendering. [46]

Single page application frameworks have been developed for a number of reasons,
but one of their shared reasons seems to be enforcing engineering principles, one
of these being separation of concerns. In the fast moving world of JavaScript fra-
meworks and libraries, the amount of frameworks can be overwhelming. Few mature

2.4. Web-browser as an application platform 22

frameworks for Single Page Application development include Google’s Angular.js11

and DocumentCloud’s Backbone.js12.

Memory management’s role increases when developing Single Page Applications,
compared to more traditional, document-based web applications. This is because
browser’s JavaScript engine’s global variables are flushed on page load and refresh
events, which by design happens less frequently in Single Page Applications, when
compared to more traditional web applications.

11Angular.js https://angularjs.org/
12Backbone.js http://backbonejs.org/

https://angularjs.org/
http://backbonejs.org/

23

3. WEB APPLICATION’S MEMORY

CONSUMPTION

3.1 Dynamically Managed Memory

As we have explained in the previous chapter, modern web applications behaviour
is implemented with JavaScript. Like many modern dynamic programming langua-
ges, JavaScript’s memory is automatically managed, therefore application developers
do not have to explicitly deallocate memory. Dynamically managed memory avoids
multiple memory-related problems, including, double frees, premature frees, memory
safety issues, and certain types of memory leaks. The rationale behind dynamically
managed memory is that, it frees the developer from investigating aforementioned
problems, increasing developers productivity [51]. In JavaScript’s case developers do
not have any control over how memory is managed, since the ECMAScript speci-
fication does not define any interface to the implementation’s garbage collector [58].

Dynamically managed memory is an abstraction, and as with all abstractions, some-
times the implementation leaks through the abstraction. This leaking reveals imple-
mentation details the abstraction is not able to hide. J. Spolsky calls this the law of
leaky abstractions, “All non-trivial abstractions, to some degree are leaky.”. Because
of leaky abstractions, it is important to understand what is actually abstracted by
garbage collection and what to do when the abstraction leaks. [45]

Dynamically managed memory makes the language easier for the developer, but it
also obfuscates the developers need to think about memory; its management and
therefore consumption. Garbage Collection is by no means a substitute for effecti-
ve memory management at application level. Applications developed with Garbage
Collected languages, suffer from some of the same problems that applications de-
veloped with manually managed memory do, such as memory leaks. In addition
to this, Garbage Collection also pauses the application from time to time, in or-
der to collect the garbage. These are the moments when the application developer
experiences the leaky abstraction. The more memory an application consumes, the
more disruptive the Garbage Collection stops become. Thus creating longer and

3.2. Garbage Collection 24

more frequent pauses during the applications runtime. JavaScript engine stops the
application when doing garbage collection. This is unfavorable for application’s per-
formance, and it can also cause unresponsiveness in the application’s user interface.
Other symtomps in unsuccesful memory management include, failure, and holding
references to limited resources. [54]

During this thesis we are especially interested in avoiding failures caused by un-
successful memory management, and creating responsive user interfaces. These are
the interests because we are looking into developing robust, mission critical, long-
running applications with web technologies. These requirements map to memory
management’s requirements as presented in Table 3.1:

Table 3.1 Requirements For Memory Management

Application Requirement Application’s Memory Management
Robustness, Long-Running Application does not leak memory
Mission Criticality, Responsiveness Garbage Collection is not intrusive

From application developer’s point of view, the intrusiviness of the garbage collector,
means that the application should not allocate excessive amounts of memory conti-
nuously. These requirements are related to the objects allocated by the application,
and their lilfespans.

In the next section, we will address garbage collectors working principles, and imple-
mentations. Allthough in general, developers should not have to bother considering
the virtual machine’s implementation details, when building or designing applica-
tions on top of it, memory-related aspects cannot be ignored in mission critical;
robust, long-running, applications.

3.2 Garbage Collection

To effectively manage application’s memory, developers should understand how Ja-
vaScript engine manages memory allocations and deallocations. High level program-
ming languages’ runtime environment contains a piece of software called garbage
collector, and its job is to track memory allocation and use in order to find when al-
located memory is no longer used. Then the garbage collector will make the memory
available for future allocations, or release the memory back to the operating system.
The genaral problem of knowing when a certain piece of memory is no longer nee-
ded is undecidable (similar to the halting problem). Therefore the implementations
of Garbage Collectors make approximations when trying to solve the problem. [34]

3.2. Garbage Collection 25

Garbage collection algorithms usually rely on the notion of references when deci-
ding when memory is unused. Usefull way to conceptualize memory management in
JavaScript from developer’s point of view is to think of the memory as a graph, as
presented in Figure 3.1. Primitive types (Numbers, Boolean, Strings, Symbol) in
JavaScript are allways the terminating nodes (or leafs) in the graph. In JavaScript
references to primitive types are allways stored in objects, the references are repre-
sented by arrows in the following figure. The next subsections will explain briefly
two different Garbage Collection Algorithms and their limitations.

Figure 3.1 Memory Graph

It should be noted that the typical implementation of JavaScript engines garbage
collector, is such that garbage collection is instantiated by memory allocation, not
by dereferencing objects. So every time an application allocates new memory, the
closer the next garbage collection becomes.

3.2.1 Reference counting garbage collector

The most naive algorithm in deciding whether a certain object (or value) is no
longer used is Reference Counting Garbage Collector. This reduces the problem of
whether an object is no longer used, into whether an object has references to it.
Naive Reference Counting Garbage Collectors are known to be implemented for
DOM objects in IE6 and IE7. [34]

3.2. Garbage Collection 26

The implementations have limitations when it comes to cyclic references, which
makes it quite simple to create memory leaks. In the following example we present a
way of leaking memory in IE6 and IE7. This memory can only be reclaimed once the
browser is restarted. The cyclic reference that is presented in the following example
is the work of a closure, which has been created between the anonymous function
(event handler callback, more precicely its lexical scope), and the DOM element.
[28]

function addHandler () {
var el = document.getElementById(’el ’);
el.addEventListener(’click ’, function () {

el.style.backgroundColor = ’red ’;
}, false);

}

Even if the DOM element is removed from the DOM tree, IE6 or IE7 cannot deal-
locate it, since it still remains referenced from the function object’s lexical scope.
The previous example also demonstrates the complexities that are hidden between
DOM’s and JavaScript engines mutual memory management.

We can also take a look at the previously presented example’s memory graph from
reference counting garbage collector’s point of view. In Figure 3.2, the garbage is
outlined in red dotted line. There are detached nodes, but since both of them have
references, even though from each other, they are not considered garbage. It should
be noted that this is not quite accurate in the IE6 and IE7 memory leak situation,
since IE’s DOM elements are not managed by JScript engine’s garbage collector,
but instead they have their own memory manager [7].

Because of their simplicity reference counting garbage collectors are easy to imple-
ment and cause less overhead when compared to the alternative, tracing garbage
collector. Naive reference counting garbage collectors are widely used for example
in, Objective-C, Perl, Delphi, PHP, and Swift [77]. It should be noted that some of
the previous (including Objective-C, Swift (which use ARC1)) insert the memory
deallocations during compilation, and therefore do not perform garbage collection
at runtime per se.

1Automatic Reference Counting http://en.wikipedia.org/wiki/Automatic_Reference_
Counting

http://en.wikipedia.org/wiki/Automatic_Reference_Counting
http://en.wikipedia.org/wiki/Automatic_Reference_Counting

3.2. Garbage Collection 27

Figure 3.2 Memory Graph Reference Counting Garbage Collector

3.2.2 Tracing garbage collector

Tracing Garbage Collectors also uses references to detect when object is no longer
needed, its rationale is as follows; if an object cannot be reached, it becomes gar-
bage. Most implementations of Tracing Garbage Collectors use Mark And Sweep
Algorithm for going through the references. Mark And Sweep Algorithm reduces
the problem of whether an object is no longer used into whether an object is reac-
hable (Figure 3.3). Mark And Sweep Algorithm assumes the knowledge of a root
object. When we are addressing client-side JavaScript, the root object is the global
object (DOM window [29]).

Mark And Sweep Collector has one limitation: objects should be explicitly declared
unreachable, in order to make them eligble for garbage collection. This can be done
by dereferencing variables, or by controlling variables lifetime by its scope.

Every browser released later than 2012, ships with Mark and Sweep garbage collector
[34]. Therefore currently memory leaks definition in Web applications client-side can
be reduced to, holding references to unneeded objects.

When addressing client-side web applications, the root node is the window-object.
Therefore JavaScript’s global variables are actually properties of the window object.

3.2. Garbage Collection 28

Figure 3.3 Memory Graph Tracing Garbage Collector

The root-node’s memory management is out of application developers control, since
it is handled by the browser. Root node is created when the page is loaded, and
removed when the page is unloaded.

3.2.3 Generational

Some Garbage Collectors are known to divide values based on their age into two
groups. These kind of Garbage Collectors are called Generational Garbage Collec-
tors, and they are known to be implemented in Spidermonkey (Firefox) [35] and
v8 (Chrome, Opera) [18]. There is currently work under way in building JavaSc-
riptCore (Safari, WebKit) a generational garbage collector [62]. The terms used to
describe the groups vary between the implementations, but they are quite self expla-
tory: Young (v8) / Nursery (Spidermonkey) and Old (v8) / Tenured (Spidermon-
key). The division is done, to use the information of how long value has survived to
deduce how long it will survive. This is empirical approach, which has been ratio-
nalized by analyzing many JavaScript applications and finding out that it is most
likely for the recently allocated objects to become unreachable quickly (also known
as generational hypothesis, or infant mortality). Values that have retained over few
garbage collections, will be promoted to Old/Tenured generation.

3.3. Memory Leaks in Web Applications 29

The differences between the two generations are that garbage collection is faster and
more frequent for the young generation. The collection of young generation is faster,
because the cost of garbage collection is proportional to the number of live objects.
This is lower in young generation, when generational hypothesis holds. Garbage
Collector is able to free larger percent of memory from the young generation (death
rate 80%). [41]

JavaScript engines also have to manage heap’s fragmentation. This is done by pe-
riodically ordering Old generations objects. For this task v8 uses Mark-compact
algorithm [54].

3.2.4 Incremental vs stop-the-world

Garbage collectors can be further categorized based on whether they divide the
garbage collection cycle into discrete phases or not. A garbage collector that halts
the execution of the program completely to run a garbage collection cycle, is called
stop-the-world garbage collector. This method guarantees that new objects are not
created during the garbage collection process. As the name suggests the program is
not able to do anything during the garbage collection, this can cause problems with
interactive programs, since unresponsiveness has a negative effect on user experience.

In comparison to stop-the-world garbage collectors, there are incremental, and concur-
rent garbage collectors that execute their garbage collection cycle in discrete phases.
This makes the stops shorter, but more frequent, however the sum of the incremen-
tal phases takes longer than stop-the-world garabge collections pause. Concurrent
garbage collectors may run simultaneously as the program is being executed. They
only need to stop the execution for analyzing the program’s heap.

3.3 Memory Leaks in Web Applications

We have now concluded that JavaScript’s memory is automatically managed, the-
refore JavaScript applications do not have memory leaks in the same sense that
C/C++ programs may have. In current JavaScript engines implementations where
tracing garbage collectors are being used, JavaScript’s memory leaks definition can
be reduced into; holding references to unneeded resources. Apple’s Advanced Memory
Management Programming Guide, describes a memory leak as follows: “A memo-
ry leak is where allocated memory is not freed, eventhough it is never used again.
Leaks cause your application to use ever-increasing amounts of memory, which in
turn may result in poor system performance or your application being terminated.”

3.3. Memory Leaks in Web Applications 30

[78] This guide is not about JavaScript per se, but however it accurately describes
memory leaks in automatically managed languages. That being said, memory leaks
in web applications are actually logical programming errors. Here is an example
regarding how to leak memory in web application:

lightController.view = document.createElement(’div ’);
// add the element to the DOM tree
lightControllerCollection.appendChild(lightController.view);

....

// remove child elements from the DOM tree
lightControllerCollection.removeAllChildren ();

Even though we have removed all the children from the collection, we still have a
live reference to the DOM node from the lightController object’s view property,
which prevents the DOM node from being removed, even though it has been detac-
hed from the DOM tree. Uncleared references are the reason that memory is being
leaked in JavaScript. These references may be pointing to pure JavaScript objects
/ variables, or to DOM node’s wrappers (which are also JavaScript objects), as in
the previous example. Leaks that are caused by references to DOM nodes, which are
not part of the DOM tree are called DOM leaks, during this thesis. If there is a live
DOM node wrapper in JavaScript heap, the browser does not remove the corres-
ponding DOM object from the browser’s memory, (as described in section 2.4.2). If
the DOM object has its own subtree, this also cannot be removed. DOM nodes can
also have indirect references from other DOM nodes. Few examples of indirect refe-
rences from the DOM node’s properties, such as nextSibling, previousSibling,
parentNode, firstChild [89]. For this reason it is advised to not hold refences to
DOM nodes for extended periods.

As the browser is transforming into a runtime environment, it is becoming ever more
important to have the required tools and standards in place, to enable the develop-
ment of applications that manage their memory allocations succesfully. Also today
applications made with web technologies are run on various platforms, including
memory critical mobile devices. On these devices succesful memory management is
even more important in order to improve performance, and to use the limited me-
mory effectively. In this thesis we are interested in mission critical web applications,
that are expected to be running for long periods of time, (where the use is mea-
sured in months rather than hours). In this use case the role of succesful memory
management becomes compulsory.

3.3. Memory Leaks in Web Applications 31

Web application’s memory leaks have been around from the the introduction of
DOM and JavaScript. Previously there has not been large interest in these issues,
for possibly the following of reasons:

• Web applications with thick clients have not been around for very long time.

• The lack of established web engineering dicipline.

• Traditional web applications are not usually mission critical.

• Small Memory leaks may not cause major problems.

– PC’s used to browse the web have quite large memories.

– The typical use of web application does not last very long.

The current situation is making many of the previously listed reasons obsolete, thus
further underlining the importance of the problem at hand.

• Web applications with thick clients are currently widely built and used.

• Web engineering is maturing.

• Web is such an interesting platform, that it is gaining interest also from mission
critical application developers.

• Web applications are run on diverse platforms, on which some are memory
critical.

Web applications with thick clients are currently being widely used and developed. A
concrete example of this trend is the rise of Chromebooks. During 2014’s third quar-
ter, Chromebooks outsold iPads in the US for education purposes [9]. Chromebooks
operating system is Chrome OS, on which applications are actually web applica-
tions. The maturing of web engineering can be seen by looking at the adoption of
the technology (for example node.js gaining popularity), and improvements in the
tools which embrace the technological foundations of the web, for example: build
tools (gulp2, grunt3), linting tools (jsLint4, jsHint5, eslint6, jscs7), package managers

2http://gulpjs.com/
3http://gruntjs.com/
4http://www.jslint.com/
5http://jshint.com/
6http://eslint.org/
7http://jscs.info/

http://gulpjs.com/
http://gruntjs.com/
http://www.jslint.com/
http://jshint.com/
http://eslint.org/
http://jscs.info/

3.4. ECMAScript 2015, other standards and tools 32

(npm8, jspm9), and test tools (mocha10 , phantomjs11).

3.4 ECMAScript 2015, other standards and tools

In this section we will look at the newest edition of the ECMA-262 standard, which
is ECMAScript 2015 [10], we also take a look at other standards, including Web
Components [84] and also few tools. We take a look at these, focusing especially on
the features related to the development of mission critical, memory leak free web
applications.

3.4.1 ECMAScript 2015 and Memory Management

The newest edition of the ECMA-262 standard is ECMAScript 2015 (ES6, Harmo-
ny, ES.next), the standard is currently under development, but it is allready feature
complete [27]. From JavaScript’s memory management point of view, the standard
contains some interesting features. The standard also takes into account the langua-
ges misunderstood features, namely prototypal inheritance. In this subsection we
go through the updates in the standard, related to languages memory management
capabilities.

JavaScript has had only function scoped variables, but the edition 6 introduces the
keyword let, which makes it possible to declare block scoped variables. Eventually
let will replace var’s.

As we have concluded in the earlier sections, JavaScript’s memory leaks are logical
programming errors, caused by uncleared references. The new edition includes a pos-
sibility of creating weak references, with the addition of WeakMap and WeakSet.
WeakMaps contain key value pairs, on which the keys of the map are of the type
Object only [25]. WeakSet objects are a collection of weakly held objects [26]. Weak
references mean that if an object has only one reference, and the reference is weak,
the object referenced by it, is eligible for garbage collection.

Previously JavaScript has not had a built-in support for modules. Allthough the
JavaScript community has developed elaborate workarounds, which have progressed
into two separate standards. These module standards for JavaScript are; CommonJS
(CJS) [80], and Asynchronous Module Definition (AMD) [81]. Unfortunately these

8https://www.npmjs.com/
9http://jspm.io/

10http://mochajs.org/
11http://phantomjs.org/

https://www.npmjs.com/
http://jspm.io/
http://mochajs.org/
http://phantomjs.org/

3.4. ECMAScript 2015, other standards and tools 33

two standards are incompatible. CommonJS modules are widely used on the server-
side, i.e. in node.js. Asynchronous Module Definition’s most popular implementation
is RequireJS module loader [82]. The newest edition of ECMAScript adds a native
support for modules. Modules improve JavaScript in general greatly, and they are
related to memory safety.

JavaScript’s prototypal inheritance has been largely misunderstood by developers
coming from other more “traditional” object-oriented languages, like C++, C#, and
Java [8]. The newest edition of ECMAScript brings classes, and inheritance via
extends into JavaScript, making the language easier for developers coming from
these kinds of programming languages.

3.4.2 Other Standards and Tools

Many current browsers support some features of the ECMAScript 2015 already,
but in addition there are transpilers, like babel12 and compilers, such as traceur 13

which make it possible to currently take advantage of even more ECMAScript 2015’s
features.

Dynamically typed languages have been claimed to be unreliable, since errors can
be caught at runtime instead of during compilation. Currently there are tools for
developing JavaScript with support for static typing. One such tool being TypeScript,
which is a typed superset of JavaScript, that compiles into plain JavaScript [76].
There is also another tool called Flow, which takes a different approach to static
typing, bringing static type checking into JavaScript [13]. Static type checking warns
the developer, when the program modifies objects structure during the runtime.

Web Components are a set of technologies, trying to improve the modularity of web
applications. Shadow DOM is an upcoming standard, related to Web Components.
The Shadow DOM standard makes it possible to encapsulate parts of the DOM [85].
Improving the modularity is in general a good idea, and DOM has been previously
criticized by basically being a global variable.

12https://babeljs.io/
13https://github.com/google/traceur-compiler

https://babeljs.io/
https://github.com/google/traceur-compiler

34

4. MANAGING AND DIAGNOSING WEB

APPLICATION’S MEMORY

In this chapter we consider what it takes to develop applications that do not contain
memory leaks. As application’s complexity grows, their tendency to contain logical
programming errors grows with it. This is the reason why debugging and diagnosis
are needed. Detecting memory leaks can be very difficult and may require deep in-
sight of the application, since the problem of deciding after what point an object is
no longer used is undecidable [34]. To identify the objects that will not be needed,
requires knowledge of the application’s flow and structure. Processes have been pro-
posed to be used, when identifying leaks from web applications, these are usually
carried out in the development phase, with the use of browser’s developer tools.

4.1 Diagnosing memory consumption with developer tools

Nowadays the most popular desktop web browsers are shipped with built-in De-
veloper Tools. These are the front-end developer’s main tools for inspecting the
application instances behaviour in a live environment. They enable the developer to
work with the client-side technologies (described in section 2.3). Developer Tools,
like browsers in general, have evolved convergently. Their features are not standar-
dized in any way, and the features can be seen to have evolved (more or less) around
developers needs.

In this section we’ll look into analysing web applications memory usage with the use
of Google Chrome’s Developer Tools. Google Chrome’s Developer Tools are actual-
ly based n WebKit/Safari’s Web Inspector. Chrome’s Developer Tools were selected
since they currently provide the most advanced features regarding web application’s
memory usage debugging. The most important features Chrome’s Developer Tools
have, considering memory usage are: timeline recording, heap snapshots, forced gar-
bage collection, and object allocation tracker. Google provides quite a comprehen-
sive guide on profiling web application’s memory usage with the Chrome’s Deve-
loper Tools [19]. This article explains how these these tools can be used, here we
will discuss on the usefull features these tools have, regarding application’s memory

4.1. Diagnosing memory consumption with developer tools 35

analysis.

A. Osmani suggests the following process for identifying memory leaks from web
applications, with the use of Google Chrome’s Developer Tools, in his presentation
Memory Management Masterclass: [41]

1. Check Chrome Task Manager, if applications memory usage is growing.

2. Identify the Sequence that is suspected to be leaking.

3. Do a Timeline recording and perform those actions.

4. Before performing the actions, force Garbage Collection.

5. Analyze the timeline data, sawtooth curve implicates that lots of short lived
objects is allocated.

6. Use the object allocation tracker to narrow down the cause of leak.

In the 1st step a Google Chrome’s tool called Task Manager is used, it has simi-
lar characteristics when compared to for example Windows’ Task Manager. Task
Manager can be used to inspect browser tabs; memory usage, JavaScript memory
usage, GPU’s memory usage, CPU usage, and more. Figure 4.1 shows a screenshot
of Google Chrome’s Task Manager.

In Figure 4.2 is presented Google Chrome’s (version 41.0) Developer Tools’ Ti-
meline view. The Timeline view makes it possible to record runtime environment’s
behaviour during its use, and afterwards to inspect the recording. It does not only
show the heap’s size, but at what moment garbage was collected, and how much of
it was found and released. This view is used during 3rd, 4th and 5 steps in the afo-
rementioned process. Regarding memory analysis the most interesting information
the timeline presentation has to offer are: JavaScript engine’s heap’s size, amount
of DOM nodes, DOM event listeners, and the Garbage Collection Events.

It is also possible to force garbage collection from timeline view, which is usefull
before starting and ending the recording. Timeline also makes it possible to export
the timeline data in JSON format. This makes it possible for example tester to do
timeline recording, and send the timeline recording JSON file for the developer who
can then analyse it. This JSON could also be further analyzed automatically.

Google’s Developer Tools also have a Profile-view, which enables the analysis of
heap’s contents by enabling Heap Snapshots to be taken and analysed. Before Chro-
me takes the Heap Snapshot, it automatically does garbage collection, which makes

4.1. Diagnosing memory consumption with developer tools 36

Figure 4.1 Google Chrome’s Task Manager

Figure 4.2 Google Chrome’s Developer Tools Timeline view

the snapshot’s contents more easily interpreted. The Profile-view also enables Heap

4.1. Diagnosing memory consumption with developer tools 37

allocations to be recorded, with a tool called Object Allocation Tracker. The Profile-
view is presented in screenshot in Figure 4.3. This is a valuable tool for isolating
memory leaks.

Figure 4.3 Google Chrome’s Developer Tools Object Allocation Tracker

The Profile view gives the user four possible views for inspecting the heap’s contents:
Statistics, Summary, Containment and Comparison. The Statistics view provides a
quick overview, on what are stored in the heap: Code, Strings, JS Arrays, Typed
Arrays, System Objects.

Summary view shows heap’s content categorized by the objects’ constructors. It
also shows the amount of allocated objects, their retained size, and shallow size.
The Profiler’s window’s lower part shows what is the retaining path of the selected
object, therefore illustrating what is preventing the object from being removed.
Heap Snapshots and the way they are presented in Developer Tools are useful when
identifying possible DOM leaks. Profiler highlights the DOM nodes that are currently
detached from the DOM tree with red colour. The profiler highlights the DOM nodes
that have direct references from JavaScript objects with yellow. So the way to find
the cause of the detached DOM tree leak is to: identify the red node, look for the
yellow node on its retaining path, and then identify the JavaScript reference.

Comparison view lets the user to compare snapshots content with each other. Making
it possible to analyze what objects have been removed, and what have been allocated

4.2. Avoiding Memory issues with development practices 38

between snapshots. This enables the user to confirm that memory was correctly
released, or what causes the memory not to be released (retaining path).

Containment view shows the JavaScript engine’s Heap’s contents, in a hierarchical
fashion. Letting the user to inspect the Heap’s and objects’ structure. The Figure
4.4 illustrates how Containment view presents a situation where, an HTML button’s
reflector’s (btn) lexical scope contains a reference into largeString variable.

var returnEventHandlerAndDoStuff = (function () {
var largeString = new Array (1000000). join("x");
var doSomethingWithString = function () {

largeString += "x";
}

var evHandler = function () {
console.log("hi , from evHandler ");

}

return evHandler;
}());

function init() {
var btn = document.getElementById ("btn");
btn.addEventListener (" click",

returnEventHandlerAndDoStuff , false);
}

init ();

4.2 Avoiding Memory issues with development practices

So as we have concluded, there is no fundamental reason why web applications
should contain memory leaks. Therefore it is perfectly feasible to create memory
leak free web applications. This can, and should be tackled by using and enforcing
good development practices, since memory leaks are allways caused by logical pro-
gramming errors. In this section we describe good development practices in using
memory in such manner that Garbage Collector can do its job effectively.

The most important development practices in avoiding memory leaks, are very well
known and widely used, in all the major programming languages. Here we list some
development practices that are related to memory management. For more compre-
hensive JavaScript coding convention guide, see D. Crockford’s Code Conventions
for the JavaScript Programming Language [4].

4.2. Avoiding Memory issues with development practices 39

Figure 4.4 Google Chrome’s Developer Tools Profiler, Heap Snapshot Containment-View

Be carefull when declaring variables. Declare variables explictly as otherwise
JavaScript will create implied global, when strict mode [30] is not used. Declare
variables using appropriate variable scope, making sure the scope of the variable
is as minimal as possible. This can also be seen as enforcing the principle of least
priviledged. ECMAScript 2015 will make defining block scoped variables possible,
with the let-keyword. Block scoped variables should be taken into use as soon as
possible. Aventually they should be used instead of var’s altogether.

Global variables should be avoided for multiple reasons, and memory management
is one of these. Browser’s JavaScript engine usually cleans the global variables when

4.2. Avoiding Memory issues with development practices 40

new page is loaded, or current page is refreshed. In Single Page Applications, the
interval between page loads has been reduced by design. This makes it possible for
global variables to accumulate over time.

Application’s JavaScript code should not hold references to DOM nodes
for extended periods of time. Long lasting references to DOM nodes can lead
to leaking memory in such a way that after the node is removed from the DOM
tree it cannot be removed from the memory, since it has a live reference to it. In
Section 3.3, we described such a leak, and in the following example we show how it
could be avoided by explicitly setting the DOM object’s reference to null.

lightController.view = document.createElement(’div ’);
lightControllerCollection.appendChild(lightController.view);

....

lightControllerCollection.removeAllChildren ();
lightController = null;

So if a variable will not go out of its scope, after its intended use, the variable
should be dereferenced/nullified) to enable its garbage collection. When dealing with
references to DOM nodes, the developer should be carefull, in order to enable DOM
tree’s effective garbage collection. In a similar fashion as variables that are not going
to be used, eventListeners and setIntervals that are no longer needed should be
removed and/or cleared. Thus every setInterval and addEventListener should
have corresponding clearInterval or removeEventListener.

Events are also widely used within SPA Frameworks, for example to synchronize
models with views. SPA Frameworks have different approaches to memory mana-
gement. In Subsection 2.4.4 we mentioned SPA frameworks AngularJS and Bac-
boneJS. AngularJS takes a more holistic approach to applications architecture and
structure, Backbone on the other hand gives the developer more freedom. This means
that Backbone for example does not have view-lifecycle management, which makes
Backbone’s state changes prone to memory leaks. The developer has to clean the
views and unbind their events explicitly. This can lead to memory leaks, for example
if the developer removes a view, which has registered to be notified about models
changes. This means that the model has a reference to the view’s callback function,
preventing the view to be removed from the memory, until the developer explicitly
unregisters the event listener, even though it has been detached from the DOM. This
is infact an instance of the Observer pattern’s lapsed listener problem [72]. These
could be solved by weak references, as we will discuss in Section 5.2.

4.2. Avoiding Memory issues with development practices 41

As we mentioned earlier JavaScript’s prototypal inheritance is different than what
developers coming from class-based languages are used to. When doing inheritance
Appending object’s methods to the prototype, instead of the object in con-
structors can help to reduce applications memory footprint considerably. If the ob-
jects methods were assigned to the object (not the prototype), new copy of the
function would be allocated every time, new object would be created. Since the du-
ration of garbage collection cycle is related to the memory footprint, this is beneficial
also for application’s performance.

function Fellow (name) {
this.name = name;

}

Fellow.prototype.changeName = function (newname) {
this.name = newname;

}

var f = new Fellow ("fry ");
f.changeName (" zoidberg ");

As described in Subsection 2.3.3, closures make it easy for developers to obfuscate
reclaimed memory. Google’s article Optimizing JavaScript claims that closures are
“the most common source of memory leaks” [17]. In the following example we show an
example how to leak memory with closures. As long as there is a reference to inner-
function, the largeString in the following example cannot be Garbage Collected.

function outer () {
var largeString = new Array (1000000). join("x");
// do something with the largeString

function inner () {
// do not do anything with largeString

}

return inner;
}

If largeString is only used in the outer function, it should be nullified after its use,
to make it possible for the garbage collector to deallocate its memory (or rather the
use of a closure should be re-considered in this use case). However the current imple-
mentations of v8 and Spidermonkey identify the above example’s closure variable
(largeString) as garbage. These are however JavaScript engine optimizations, and

4.2. Avoiding Memory issues with development practices 42

developers should not start to rely on these optimizations to provide functionali-
ty. Instead developers should understand the language’s important features, such as
closures in order to be able to use them apropriately. For example these optimiza-
tions do not recognize largeString variable as garbage in the following example.
Similar issue was discovered from the Meteor framework’s source code [14].

function outer() {
var largeString = new Array (1000000). join("x");

(function () {
largeString += "x";

}());

function inner() {
// does not use largeString

}

return inner;
}

Callbacks, closures, and anonymous functions are JavaScript’s characteristic features
and it is important to understand their relation to memory management. Developers
should pay attention at what scope functions are declared in. For example,
when the code uses the same anonymous function multiple times, JavaScript engine
creates new instance of the function every time. Instead of using an instance of
a function. This has negative effect on memory usage and thus performance. The
following example demonstrates, a closure being created (possibly accidentally), and
an instance of anonymous function being created for every eventListener.

function addEventListeners () {
var els = document.getElementsByTagName ("td");
for (var i = 0; i < els.length; i += 1) {

els[i]. addEventListener(’click ’, function () {
this.style.color = ’red ’;

}, false);
}

}

The anonymous function’s lexical scope, maintains references to the scope’s variables
(in this case for example variable i and list els). This in turn also creates circular
references, between the DOM element’s td event handler’s lexical scope, which re-
ferences into the Element list (els), which references into the DOM Element. This
does not however itself leak any memory on current browsers, but it rather under-
lines the point of understanding and using anonymous functions, and closures for

4.3. Runtime Memory diagnostics 43

what they are really usefull for. A better way to achieve the same functionality
would be the following.

function changeToRed () {
this.style.color = ’red ’;

}

function addEventListeners () {
var els = document.getElementsByTagName ("td");
for (var i = 0; i < els.length; ++i) {

els[i]. addEventListener(’click ’, changeToRed , false);
}

}

It has been already stated, that JavaScript engines’ Garbage Collection is triggered
by memory allocation. However JavaScript does have delete keyword, which might
be confusing: it does not deallocate the memory used by entire objects, but it is
intended for modifying object’s structure by removing properties during runtime.
However with current JavaScript engines implementations (at least in v8), delete-
keyword’s usage is not advised. [41]

4.3 Runtime Memory diagnostics

If web technologies were to be used in creating large mission critical web applica-
tions, the use of best practices can become quite difficult to oversee. Therefore safety
nets should be put in place. This section studies two alternatives on programmical-
ly diagnosing applications memory usage in the runtime environment, in order to
diagnose applications memory usage and to regognize and isolate memory leaks.

4.3.1 Browser extension

One way for diagnosing web applications memory consumption would be to build
browser extension. Browser Extensions have lower level APIs when communicating
with the browser’s runtime environment. For example browser extensions can have
special bindings for the browser’s developer tools, thus enabling for example heap
snapshots to be taken programmitically.

There are advantages and downsides in using browser extensions for doing runti-
me diagnostics of the web application. The advantages are the additional features
enabled by closer integration to the web browser. The downsides of this approach, go

4.3. Runtime Memory diagnostics 44

against the motivators that were listed in Section 2.4.1 regarding why the web plat-
form has been considered so intriguing. One disadvantage is that browser extensions
are not standardized (Open Application Formats), which means that the extensions
should be built separately on different browsers. Platform independecy was listed
earlier as one of the advantages of building web applications, and building browser
specific extensions to extend web applications features would be going against that
notion. Another downside of building a browser extension for diagnosing purposes is
that the extensions have to be explicitly installed, the lack of installation step, was
also considered as one of the advantages of building native web applications. The
separation of diagnostics from the application adds maintenance work and a new
paradigm to the application as a whole.

4.3.2 performance.memory API

Google’s GMail team have had experiences in debugging their Single Page Applica-
tion’s memory issues with runtime diagnostics. When doing so Google Chrome int-
roduced an API for the web applications to read JavaScript engine’s memory usage
data from the running client-side application. It should be noted that the perfor-
mance.memory API, that was introduced into Chrome, is not currently part of any
official standard or a candidate into becoming a standard. However it has been
used successfully when diagnosing GMail’s memory issues. This API was also used
succesfully during the work on this thesis when creating our demo application.[54]

With the use of this API, application developer has the ability to inspect how their
application is using memory during its use. For example in comparison to Heap
Snapshots the implementation does not provide very specific data. Google Chrome’s
API exposes new values of JavaScript Engines memory usage every 20 minutes,
however in the default mode the values are not accurate. The values exposed by this
API are quantized to specific buckets, so that the values are not as refined when the
values are large. This is done in order to reduce the risk of the information’s misuse,
as it has been speculated if the data could be for example used in Side Channel
Attacks. However when starting Google Chrome with a flag –enable-precise-memory-
info, this API provides real values in real time. Which make the API more useful
when diagnosing memory issues. [61]

The performance.memory API returns three byte values about applications memory
consumption:

1. jsHeapSizeLimit - JavaScript engine’s heap’s size-limit.

4.3. Runtime Memory diagnostics 45

2. totalJSHeapSize - Allocated memory for JavaScript engine’s heap (including
free space).

3. usedJSHeapSize - Memory currently being used.

During the work on this thesis we developed a JavaScript module, which we used
in our demo application’s memory usage diagnostics. The module can be configured
to read performance.memory’s values at a given interval. Choosing the appropriate
interval is a trade-off between causing overhead for the application and getting
usefull data. In runtime diagnostics we are actually most interested in detecting the
frequency of garbage collecions, how much memory was collected and what is the
heap’s size after the collection. In order to ensure that the heap’s size is not growing
unnecessarily and that the garbage collector is not impeding with the application’s
interactivity.

During this thesis we used the performance.memory API to deduce approximations
of garbage collection stops, how much was collected, and what is the heap’s size after
the collection. In order to do this, we read samples from the memory usage values.
And calculated the change between the heap’s size, in order to find out garbage col-
lection stops. Necessarily not all garbage collection stops can be identified, only by
observing the JavaScript engine’s heap’s size: garbage collection is usually triggered
by memory allocation, so in case when the newly allocated memory is larger than
the amount of garbage, there is no way of knowing that garbage collection took
place. The following code example shows the basic functionality of sampling per-
formance.memory’s usedJSHeapSize, to detect garbage collection stops and their
characteristics.

var diagnoseMemory = (function () {
var prevHeapSize

= window.performance.memory.usedJSHeapSize;
var prevGCTimeStamp = Date.now();

return function () {
var mem , delta , cycle;
mem = window.performance.memory;
delta = mem.usedJSHeapSize - prevHeapSize;

if (delta < 0) {
console.log("GC: " +

Math.abs(delta) / 1000000 + " MB");
console.log("Heap: " +

mem.usedJSHeapSize / 1000000 + " MB");
cycle = Date.now() - prevGCTimeStamp;

4.3. Runtime Memory diagnostics 46

console.log("Cycle Length: "
+ (cycle / 1000) + " seconds ");

prevGCTimeStamp = Date.now ();
}

prevHeapSize = mem.usedJSHeapSize;
}

}());

setInterval(diagnoseMemory , 50);

In this example, we use an interval of 50 milliseconds, which did not cause noticable
overhead on our test environment. It should be noted that the delta and cycle
values are approximations, since memory allocation has taken place in between the
samples. The previously presented function provides the basic functionality, but in
order to do something usefull with the information the data needs to be stored for
further analysis.

If web workers are used, it should be noted that browsers may spawn new process
for web workers. There are two types of web workers: Dedicated and Shared. In
Chrome / Chromium, dedicated workers run in the same process as its parent render
process, but in their own thread. Shared worker runs in its own separate process
called worker process, and its connected to multiple render processes via the browser
process (hence the name). So if dedicated workers are used, their memory footprint
is included in the performance.memory APIs results.

Node.js has process.memoryUsage() API [39], which returns similar object as
performance.memory. Thus this API can be used similarly in server side runti-
me memory diagnosis. The memoryUsage method returns an object containing the
following values:

• rss - Resident Set Size, the portion of the process’s memory held in RAM [75].

• heapTotal - Allocated memory for JavaScript engine’s heap, including free
space.

• heapUsed - Memory currently being used.

These two values, heapTotal and heapUsed are similar to performance.memory’s
totalJSHeapSize and usedJSHeapSize. When comparing these API’s together the
value that is missing is jsHeapSizeLimit, which has been replaced by the rss value.

47

5. EVALUATION

Understanding application’s memory consumption during runtime can be very dif-
ficult, especially when considering rich SPA applications that may have very complex
state.

Memory leaks are logical programming errors in the applications, therefore many
memory leaks could be tackled by using development practices listed in the Sec-
tion 4.2. The first step we recommend during the development phase is to use a
linting tool. Linter should be used to enforce good coding conventions, and to warn
about possible programming errors that could cause memory issues. Code reviews
are a valid practice for multiple reasons, including identifying logical programming
errors such as dangling references.

By code reviews and testing we can currently confirm possible memory issues, we
cannot however be certain that the application is free of such issues. This being the
reason why it can be useful to continuously diagnose applications memory consump-
tion in the runtime, in order to fix occuring problems quicker. When applications
have complex states’, complex sequence of actions can lead the application into sta-
te where some of its memory will not be released, even though it was supposed
to. Those logical errors in the application could be located and fixed more easily if
proper diagnostics where to be at place.

If the performance.memory API were a standard, and by default gave real values,
runtime memory diagnostics could be used to catch possible memory issues as soon
as they arise on client’s application instance. Enabling identifying of memory issues
that did not arise on explicitly defined test cases, or during experimental testing. As
that is not currently the situation, more feasible solution would be to run diagnostics
as part of release candidate environment, where testers and developers are told to
run their browsers with the –enable-precise-memory-info flag. This would enable
centralized collection of memory diagnostics data during development and testing.
In the following sections we evaluate the usefulness diagnostics module’s developed
during the work on this thesis.

5.1. Results 48

5.1 Results

Our criteria for accepting our diagnostics is to confirm that with our runtime diag-
nostics we are able to identify possible memory issues. We confirmed its function
by diagnosing our demo application’s memory usage for over a day, exported the
diagnostics data, analyzed it and used it to identify possible memory issues.

During the work on this thesis we used the performance.memory API with Chrome
started with –enable-precise-memory-info -flag to perform JavaScript runtime’s
memory diagnostics. Our demo application included the diagnostics, which perfor-
med diagnosis on the background of the application. We left the application running
for over a day, and collected diagnostics data of this session. After that we inspected
the data to confirm possible memory issues.

We modified the previously presented diagnostics code, so that, instead of logging
the values into console, they are stored in the browser’s indexedDB [63]. From which
we exported the JSON data after the test period. We then analyzed the data and
calcucated memory usage’s characteristic values of the analysis session.

After recording diagnosis data of our demo application for the given period, we
exported the data. Then we calculated characteristic values for the session’s memo-
ry usage. These characteristic values include garbage collection frequency, garbage
collection amounts, garbage collection rate and heap’s size (see Table 5.1).

Table 5.1 Heap usage characteristics

We plotted a graph of the application’s heap size after garbage collection over time
(see Figure 5.1). In this graph is also presented the garbage collection amount and
JavaScript engines heap’s total size over time. From this graph we noticed that the
application’s heap size is not constantly growing. However it indicates that many
short lived objects are constantly being allocated, generating lots of garbage, making
the garbage collection stops frequent.

5.2. Open Issues 49

Figure 5.1 Heap usage and garbage collection over time

This information can be compared to the information what could have been gotten
with Developer Tools’ Timeline view. However Timeline view contains more infor-
mation that we would also find usefull, for example the amount of DOM nodes and
documents. However implementing diagnostics as part of the application has several
benefits. The main difference being, that the diagnosis happens on the background.
Another advantage is that timeline recordings are not feasible for diagnosing applica-
tion’s usage on extended periods.

5.2 Open Issues

The performance.memory API is not very capable in isolating possible DOM leaks,
since only the DOM nodes wrappers are stored in the JavaScript engine’s heap, not
the DOM nodes themselves. Therefore leaked DOM nodes reflect on the heap’s size
only deliberately. For diagnosing DOM leaks, it would be helpful to diagnose the
amount of DOM nodes, even more so how many of these are part of the DOM tree.
If a DOM node is not part of the DOM tree and is still stored in browsers memory,
it has not been removed from browser’s memory because, either JavaScript code is
still holding references to this object, or the browser has not yet had the time to
remove it. More profound question underlying might be, should the DOM nodes and
JavaScript objects be managed by the same garbage collector. Mozilla’s Servo web
browser engine has taken this stance [36].

5.2. Open Issues 50

WeakMaps and WeakSets cover some use cases for weak references, but not all of
them, most importantly the use case that cannot be covered by them, is possible
memory leaks caused by the Observer pattern [71] [12]. The Observer pattern is
a software design patterns, in which a Subject holds references to its observers,
notifying them automatically of state changes. Memory leaks caused by the Observer
pattern are also called Lapsed listener problem [72]. These kinds of leaks happen
when the listener (observer) forgets to unsubscribe from the subject, after it is
done listening. The subject maintains a reference to the observer, preventing the
observer’s garbage collection. Observer patterns are widely used in Model View
Controllers (MVC), in synchronizing the views with the models. In this use case the
views being the listeners and models the subjects.

By holding weak references to the observers, the lapsed listener problem could be
avoided. There is an unaproved, preliminary, proposal of weak references, in the
ES-Harmony’s wiki page (language beyond ES6) [12]. However there has been some
opposition to the idea, mainly because it ties weak reference’s behaviour to garbage
collectors non-deterministic behaviour.

Fortunately Chrome’s Developer Tools are quite usefull when detecting DOM leaks.
As it happens, in client side application’s lapsed listener problems are quite often
related to DOM leaks, because the views in web applications (listener) are presented
through the DOM. If the view does not unsubscribe from model’s updates, the model
maintains a reference to the view, which prevents the view from being removed. This
results in leaked DOM nodes, presuming that the view has removed itself from the
DOM tree.

Memory profiling tools have improved lately in all the major browsers: Internet
Explorer 11 and Firefox also have the ability to do timeline recordings and to take
Heap Snapshots [20] [3].

In this thesis we presented the diagnostics part of the memory profiling. Further
actions would be to investigate into the analytics. The values provided by our diag-
nostics could be send to the server, and they could be bind to the user session. We
could for example analyze how much memory does the application use on average.
This in turn could be used to catch regression in application’s memory usage, and
make the memory usage visible for the developers. Data collected from individual
sessions could be used to analyze applications usage in more detail, for example
does the applications memory usage grow signifigantly over the session. If the data
is bind to certain context (open view/components, etc.), the data can be used in
isolating memory leaks.

5.3. Discussion 51

During this thesis we confirmed some memory issues in our demo application, that
require further investigation. The next step would be to investigate what is genera-
ting the garbage, this can be done by profiling the application’s code and by identi-
fying frequently executed functions. After that, these functions should be examined
more closely: does these functions allocate large amounts of memory unnecessarily,
for example, do they contain many function or object definitions.

Diagnostics could be used for example so that, we enable diagnostics during experi-
mental testing, and make sure that the testers start their browsers with the proper
flag. This would make it possible to automatically gather the clients memory usa-
ge characteristics during experimental testing period. This API can also be used in
automatic testing, for example to catch regression in application’s memory usage.

Some kind of heuristics could also be implemented on top of the diagnostics, for
example, to identify situations where applications heap’s size is constantly growing
as memory leaks.

5.3 Discussion

Garbage Collection and memory management are very intricate tasks, and we think
that in general the current runtimes are performing well, but improving the visibi-
lity to runtime environment would be helpful. Mainly because currently it is quite
easy to create applications that do not handle their memory allocations. ECMASc-
ript standard does not take a stand about the implementation’s garbage collection.
However developers usually have certain expectations about garbage collection, when
they are developing applications. Causing an impedance mismatch, between the web
platform and the expectations of developers.

Currently the garbage collector has been fully transparent, meaning that it is trying
to provide full abstraction to an underlying undecidable problem. From application
developer’s point of view currently garbage collectors have been fully abstracted,
and their task has been to prevent out of memory situations. Exposing parts of
the garbage collector for the application developer would force to rethink garbage
collector’s semantics. However trying to provide full abstraction to an undecidable
problem is deemed to fail.

If some API’s would expose garbage collectors behaviour to the application develo-
per, their role could shift towards resource management framework. Which in turn
could possibly constrain the development of the garbage collectors. Possible upco-
ming features regarding to JavaScript engine’s memory management, should most

5.3. Discussion 52

likely be designed in such a way that complexity is not added to the garbage collec-
tors itself.

The dialog about Garbage Collector’s role is timely, as there is allready discussion
going on about the upcoming ECMAScript 7’s proposed introduction of weak refe-
rences into the language, which has also started the conversation about the role of
Garbage Collector and its semantics [11].

When comparing browsers to other runtime environments, like Apache Flex, and
Java Virtual Machine (JVM), browsers’ JavaScript runtime gives the application
developer the least control and visibility over managing and diagnosing the runti-
mes memory. Apache Flex has an API for forcing garbage collection
(System.pauseForGCIfCollectionImminent), which is intended for interactive applica-
tions (in avoiding the embarassing stops, eg. during audio / video). Java has an API’s
for suggesting the virtual machine to do garbage collection (System.gc()). These
could possibly be useful when developing interactive applications on the browser.
But in the scope of this thesis we are not as much interested as those, as we are
in diagnosing the applications memory usage; heap’s size, amount of DOM nodes,
and garbage collection cycles. The Java Virtual Machine (JVM) has an API, that
would be usefull for our use case; JVM’s GarbageCollectionNotificationInfo.
This API provides an event when Garbage Collection happens and provides basic
information on the heap’s usage. This helps in diagnosing the memory usage of the
application with an appropriate abstraction, investigate applications memory usage
and to identify possible memory issues. During this thesis we went around the web
platforms limitations to achieve similar functionality provided by this API. If there
were this kind of API, it would remove the need to continuously sample the heap’s
usage in order to identify garbage collection stops. Which would in turn reduce the
overhead caused by our runtime memory diagnostics.

W3C has formed a Web Performance Working Group [86], which is part of the Rich
Web Client Activity [87]. Its mission is to provide methods to measure aspects of
application performance of user agent features and APIs. That being said, W3C is
commited to enabling the development of performant web applications. This could
mean that if the security concerns of exposing the memory usage data, are eva-
luated to be non existent, then performance.memory API could possibly become
a standard. Further analysis will be needed on possible disadvantages of exposing
runtime’s memory usage diagnostics to the client.

53

6. SUMMARY

The problem of deciding when memory will no longer be used is undecidable, there-
fore there will allways remain cases where in the object’s lifecycle, a developer needs
to explicitly make the object eligble for garbage collection. It might be complicated
to identify such issues, which is where proper diagnostics could help to steer the
developers into the right direction.

Another reason being that as the browser is turning into ever more capable runtime
environment, ever more complex applications are going to be built on top of it. The
probability of logical programming errors is growing along with client side applica-
tions’ complexity. Improved visibility into the runtime would help developers to be
informed about such issues and fix occuring problems as they arise.

By using the diagnostics module developed during this thesis, we received results
that enable us to diagnose the application’s memory usage over the user session. This
data can then be used to define characteristic values of the application’s memory
usage. These characteristic values are: garbage collection rate, garbage collection
cycle’s length and amount of garbage collected. These values improve the unders-
tanding of application’s memory usage. With the use of our diagnostics module, we
were able to establish a baseline for our demo application’s memory usage. Based on
this it would be easy to detect applications regression in memory usage during the
development. The method the diagnostics was achieved is far from perfect. Because
it relies on Chrome’s proprietary API, which in turn is constantly being polled in
order to detect garbage collection stops. But currently this is the only way for the
application to read any information about browsers memory usage and to recognize
the garbage collection stops.

Web applications are often compared to native binary applications, and often times
they are called in being inferior in performance. As we have concluded memory ma-
nagement and application’s performance are closely related, and in order to improve
web application’s performance, improved visibility to the runtime would be helpfull
in understanding and fixing these problems.

54

BIBLIOGRAPHY

[1] T. Berners-Lee, Long Live The Web, Scientific American

[2] T. Berners-Lee, The WorldWideWeb browser, [WWW], Available: http://
www.w3.org/People/Berners-Lee/WorldWideWeb.html Accessed 10-January-
2015.

[3] D. Camp, D. Callahan, Developer Edition 44: New visual editing and memory
management tools, [WWW], Available, https://hacks.mozilla.org/2015/
11/developer-edition-44-creative-tools-and-more/ Accessed 15-March-
2015.

[4] D. Crockford, Code Conventions for the JavaScript Programming Langua-
ge, Mar 2015, [WWW], Available: http://javascript.crockford.com/code.
html Accessed 10-January-2015.

[5] D. Crockford, The World’s Most Misunderstood Programming Language, Mar
2015, [WWW], Available: http://javascript.crockford.com/javascript.
html Accessed 10-January-2015.

[6] JSLint, The JavaScript Code Quality Tool Mar 2015, [WWW], Available: http:
//jslint.com/ Accessed 10-January-2015.

[7] D. Crockford, JScript Memory Leaks, [WWW], Available: http://
javascript.crockford.com/memory/leak.html Accessed 10-January-2015.

[8] D. Crockford, JavaScript: The Good Parts, 2008

[9] L. Eadicicco, Business Journal, Google’s Chromebook Is Killing The iPad
In One Key Market, [WWW], Available: http://uk.businessinsider.
com/google-chromebooks-outsell-ipads-education-2014-12?r=US Acces-
sed 10-January-2015.

[10] ECMAScript® 2015 Language Specification, [WWW], Available, http://www.
ecma-international.org/ecma-262/6.0/ Accessed 20-October-2015.

[11] Thoughts on Specifying Garbage Collection Semantics, [WWW], Avai-
lable: http://wiki.ecmascript.org/doku.php?id=strawman:gc_semantics
Accessed 31-March-2015.

[12] strawman weak refs, [WWW], Available: http://wiki.ecmascript.org/
doku.php?id=strawman:weak_refs Accessed 31-March-2015.

http://www.w3.org/People/Berners-Lee/WorldWideWeb.html
http://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://hacks.mozilla.org/2015/11/developer-edition-44-creative-tools-and-more/
https://hacks.mozilla.org/2015/11/developer-edition-44-creative-tools-and-more/
http://javascript.crockford.com/code.html
http://javascript.crockford.com/code.html
http://javascript.crockford.com/javascript.html
http://javascript.crockford.com/javascript.html
http://jslint.com/
http://jslint.com/
http://javascript.crockford.com/memory/leak.html
http://javascript.crockford.com/memory/leak.html
http://uk.businessinsider.com/google-chromebooks-outsell-ipads-education-2014-12?r=US
http://uk.businessinsider.com/google-chromebooks-outsell-ipads-education-2014-12?r=US
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
http://wiki.ecmascript.org/doku.php?id=strawman:gc_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:weak_refs
http://wiki.ecmascript.org/doku.php?id=strawman:weak_refs

55

[13] Facebook, Flow, a new static type checker for JavaScript, [WWW], Avai-
lable: https://code.prod.facebook.com/posts/1505962329687926/
flow-a-new-static-type-checker-for-javascript/ Accessed 10-January-
2015.

[14] D. Glasser, A surprising JavaScript memory leak found at Meteor,
[WWW], Available: http://point.davidglasser.net/2013/06/27/
surprising-javascript-memory-leak.html Accessed 10-January-2015.

[15] A. Grosskurth, M. Godfrey, A Reference Architecture for Web Browsers

[16] T. Garsiel, How Browsers Work: Behind the scenes of modern web
browsers, [WWW], Available: http://taligarsiel.com/Projects/
howbrowserswork1.htm Accessed 10-January-2015.

[17] Google Developers, Optimizing JavaScript, [WWW], Available: https://
developers.google.com/speed/articles/optimizing-javascript Acces-
sed 31-Mar-2015.

[18] Google Developers, Chrome v8 Design Elements, [WWW], Available: https:
//developers.google.com/v8/design Accessed 10-January-2015.

[19] Google Chrome, JavaScript Memory Profiling, [WWW], Available: https:
//developer.chrome.com/devtools/docs/javascript-memory-profiling
Accessed 10-March-2015.

[20] PJ Hough, Debugging and Tuning Web Sites and Apps
with F12 Developer Tools in IE11, [WWW], Avai-
lable: http://blogs.msdn.com/b/ie/archive/2013/07/29/
debugging-and-tuning-web-sites-and-apps-with-f12-developer-tools-in-ie11.
aspx Accessed 10-January-2015.

[21] M. Jazayeri Trends In Web Applications

[22] T. Kadlec, Setting a Performance Budget, [WWW], Available: http://
timkadlec.com/2013/01/setting-a-performance-budget/

[23] Konqueror, Web Browser, [WWW], Available: https://konqueror.org/
features/browser.php

[24] T. Mikkonen, A. Taivalsaari, Web Applications - Spaghetti Code for the 21st
century

https://code.prod.facebook.com/posts/1505962329687926/flow-a-new-static-type-checker-for-javascript/
https://code.prod.facebook.com/posts/1505962329687926/flow-a-new-static-type-checker-for-javascript/
http://point.davidglasser.net/2013/06/27/surprising-javascript-memory-leak.html
http://point.davidglasser.net/2013/06/27/surprising-javascript-memory-leak.html
http://taligarsiel.com/Projects/howbrowserswork1.htm
http://taligarsiel.com/Projects/howbrowserswork1.htm
https://developers.google.com/speed/articles/optimizing-javascript
https://developers.google.com/speed/articles/optimizing-javascript
https://developers.google.com/v8/design
https://developers.google.com/v8/design
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
http://blogs.msdn.com/b/ie/archive/2013/07/29/debugging-and-tuning-web-sites-and-apps-with-f12-developer-tools-in-ie11.aspx
http://blogs.msdn.com/b/ie/archive/2013/07/29/debugging-and-tuning-web-sites-and-apps-with-f12-developer-tools-in-ie11.aspx
http://blogs.msdn.com/b/ie/archive/2013/07/29/debugging-and-tuning-web-sites-and-apps-with-f12-developer-tools-in-ie11.aspx
http://timkadlec.com/2013/01/setting-a-performance-budget/
http://timkadlec.com/2013/01/setting-a-performance-budget/
https://konqueror.org/features/browser.php
https://konqueror.org/features/browser.php

56

[25] . Mozilla Developer Network, WeakMap, [WWW], Available: https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/WeakMap

[26] . Mozilla Developer Network, WeakSet, [WWW], Availble: https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/WeakSet

[27] Mozilla Developer Network, ECMAScript 6 support in Mozilla, [WWW], Avai-
lable: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_
in_JavaScript/ECMAScript_6_support_in_Mozilla

[28] Mozilla Developer Network, A re-introduction to JavaScript (JS tuto-
rial), [WWW], Available: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/A_re-introduction_to_JavaScript

[29] Mozilla Developer Network, Window, [WWW], Available: https:
//developer.mozilla.org/en-US/docs/Web/API/Window

[30] Mozilla Developer Network (MDN), Strict Mode, [WWW], Avai-
lable: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Strict_mode

[31] Mozilla Developer Network (MDN), Data Structures [WWW], Available:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_
structures

[32] Mozilla Developer Network, Statements and Declarations, var hois-
ting, [WWW], Available: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Statements/var#var_hoisting

[33] Mozilla Developer Network, HTML5, [WWW], Available: https://developer.
mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

[34] Mozilla Developer Network (MDN), Memory Management [WWW], Available:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_
Management

[35] Generational Garbage Collection in Firefox [WWW],
Available: https://hacks.mozilla.org/2014/09/
generational-garbage-collection-in-firefox/

[36] Mozilla Research, K. McAllister, JavaScript: Servo’s only garbage collec-
tor, [WWW], Available: https://blog.mozilla.org/research/2014/08/26/
javascript-servos-only-garbage-collector/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var#var_hoisting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var#var_hoisting
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://hacks.mozilla.org/2014/09/generational-garbage-collection-in-firefox/
https://hacks.mozilla.org/2014/09/generational-garbage-collection-in-firefox/
https://blog.mozilla.org/research/2014/08/26/javascript-servos-only-garbage-collector/
https://blog.mozilla.org/research/2014/08/26/javascript-servos-only-garbage-collector/

57

[37] Mozilla Manifesto [WWW], Available: https://www.mozilla.org/en-US/
about/manifesto/

[38] National Center for Supercomputing Applications, NCSA Mosaic, [WWW],
Available: http://www.ncsa.illinois.edu/enabling/mosaic

[39] Node.js, process, [WWWW], Available: https://nodejs.org/api/process.
html

[40] S. O’Grady, The RedMonk Programming Language Rankings: Janua-
ry 2015, [WWW], Available: http://redmonk.com/sogrady/2015/01/14/
language-rankings-1-15/

[41] A. Osmani, Memory Management Masterclass [WWW],
Available: https://speakerdeck.com/addyosmani/
javascript-memory-management-masterclass

[42] L. Paulson, Developers shift to dynamic programming languages

[43] E. Protalinski, Opera confirms it will follow Google and ditch
WebKit for Blink, as part of its commitment to Chromium,
[WWW], Available: http://thenextweb.com/insider/2013/04/04/
opera-confirms-it-will-follow-google-and-ditch-webkit-for-blink-as-part-of-its-commitment-to-chromium/

[44] M. Pohja, Web Applications User Interface Technologies

[45] J. Spolsky, The Law of Leaky Abstractions, [WWW], Available: http://www.
joelonsoftware.com/articles/LeakyAbstractions.html

[46] M. Takada, Single page apps in depth, [WWW], Available: http://
singlepageappbook.com/single-page.html

[47] A. Taivalsaari, T. Mikkonen, M. Anttonen, A. Salminen, The Death Of Binary
Software - End User Software Moves to the Web,

[48] A. Taivalsaari, T. Mikkonen, D. Ingalls, K. Palacz, Web Browser as an Applica-
tion Platform

[49] A. Taivalsaari, T. Mikkonen, Apps Vs. Open Web - The Battle of the Decade

[50] A. Taivalsaari, T. Mikkonen, Reports of Web’s Death Are Greatly Exaggerated

[51] Memory Management Glossary [WWW], Available: http://www.
memoryManagement.org/glossary/g.html#term-garbage-collection

https://www.mozilla.org/en-US/about/manifesto/
https://www.mozilla.org/en-US/about/manifesto/
http://www.ncsa.illinois.edu/enabling/mosaic
https://nodejs.org/api/process.html
https://nodejs.org/api/process.html
http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
https://speakerdeck.com/addyosmani/javascript-memory-management-masterclass
https://speakerdeck.com/addyosmani/javascript-memory-management-masterclass
http://thenextweb.com/insider/2013/04/04/opera-confirms-it-will-follow-google-and-ditch-webkit-for-blink-as-part-of-its-commitment-to-chromium/
http://thenextweb.com/insider/2013/04/04/opera-confirms-it-will-follow-google-and-ditch-webkit-for-blink-as-part-of-its-commitment-to-chromium/
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://singlepageappbook.com/single-page.html
http://singlepageappbook.com/single-page.html
http://www.memoryManagement.org/glossary/g.html#term-garbage-collection
http://www.memoryManagement.org/glossary/g.html#term-garbage-collection

58

[52] ESLint - The pluggable linting utility for JavaScript, [WWW], Available: http:
//eslint.org/

[53] Browser Usage, StatCounter [WWW], Available: https://en.wikipedia.org/
wiki/File:Usage_share_of_web_browsers_(Source_StatCounter).svg

[54] Effectively Managing Memory at Gmail scale Available: http://www.
html5rocks.com/en/tutorials/memory/effectivemanagement/

[55] Fling, B. Mobile Design and Development: Practical Techniques for Creating
Mobile Sites and Web Apps. O’Reilly Media, Inc., 2009.

[56] Re: Browser implementations, prior to rec, used for justification, [WWW],
Available: http://lists.w3.org/Archives/Public/public-html/2010Jan/
0107.html

[57] D. Flanagan, JavaScript: The Definitive Guide

[58] J. Conrod, A Tour Of v8, [WWW], Available: http://www.jayconrod.com/
posts/51/a-tour-of-v8-full-compiler

[59] M. Laine, D. Shestakov, E. Litvinova, P. Vuorimaa, Towards Unified Web
Application Development

[60] Node.js, About Node.js [WWW], Available: http://nodejs.org/about/

[61] Source/WebCore/ChangeLog [WWW], Available: https://bugs.webkit.org/
attachment.cgi?id=154876&action=prettypatch

[62] WebKit Bugzilla, JSC should have a generational garbage collector, [WWW],
Available: https://bugs.webkit.org/show_bug.cgi?id=121074

[63] W3C Recommendation 08 January 2015, Indexed Database API, [WWW],
Available: http://www.w3.org/TR/IndexedDB/

[64] Lynx (web browser), Wikipedia, [WWW], Available: http://en.wikipedia.
org/wiki/Lynx_(web_browser)

[65] Netscape Navigator, Wikipedia, [WWW], Available: https://en.wikipedia.
org/wiki/Netscape_Navigator

[66] Internet Explorer, Wikipedia, [WWW], Available: https://en.wikipedia.
org/wiki/Internet_Explorer

[67] Opera (web browser), Wikipedia, [WWW], Available: https://en.wikipedia.
org/wiki/Opera_%28web_browser%29

http://eslint.org/
http://eslint.org/
https://en.wikipedia.org/wiki/File:Usage_share_of_web_browsers_(Source_StatCounter).svg
https://en.wikipedia.org/wiki/File:Usage_share_of_web_browsers_(Source_StatCounter).svg
http://www.html5rocks.com/en/tutorials/memory/effectivemanagement/
http://www.html5rocks.com/en/tutorials/memory/effectivemanagement/
http://lists.w3.org/Archives/Public/public-html/2010Jan/0107.html
http://lists.w3.org/Archives/Public/public-html/2010Jan/0107.html
http://www.jayconrod.com/posts/51/a-tour-of-v8-full-compiler
http://www.jayconrod.com/posts/51/a-tour-of-v8-full-compiler
http://nodejs.org/about/
https://bugs.webkit.org/attachment.cgi?id=154876&action=prettypatch
https://bugs.webkit.org/attachment.cgi?id=154876&action=prettypatch
https://bugs.webkit.org/show_bug.cgi?id=121074
http://www.w3.org/TR/IndexedDB/
http://en.wikipedia.org/wiki/Lynx_(web_browser)
http://en.wikipedia.org/wiki/Lynx_(web_browser)
https://en.wikipedia.org/wiki/Netscape_Navigator
https://en.wikipedia.org/wiki/Netscape_Navigator
https://en.wikipedia.org/wiki/Internet_Explorer
https://en.wikipedia.org/wiki/Internet_Explorer
https://en.wikipedia.org/wiki/Opera_%28web_browser%29
https://en.wikipedia.org/wiki/Opera_%28web_browser%29

59

[68] Mozilla, Wikipedia, [WWW], Available: https://en.wikipedia.org/wiki/
Mozilla

[69] Safari (web browser), Wikipedia, [WWW], Available: http://en.wikipedia.
org/wiki/Safari_%28web_browser%29

[70] Chromium (web browser), Wikipedia, [WWW], Available: http://en.
wikipedia.org/wiki/Chromium_%28web_browser%29

[71] Observer Pattern, Wikipedia, [WWW], Available: http://en.wikipedia.org/
wiki/Observer_pattern

[72] Lapsed listener problem, Wikipedia, [WWW], Available: http://en.
wikipedia.org/wiki/Lapsed_listener_problem

[73] Bring Your Own Device, Wikipedia, [WWW], Available: https://en.
wikipedia.org/wiki/Bring_your_own_device

[74] Rich Internet Application, Wikipedia, [WWW] Available: https://en.
wikipedia.org/wiki/Rich_Internet_application

[75] Resident Set Size, Wikipedia, [WWW], Available: http://en.wikipedia.org/
wiki/Resident_set_size

[76] TypeScript, [WWW], Available: http://www.typescriptlang.org/

[77] R. Shahriyar, S. M. Blackburn, K. M. McKinley, Fast Concervative Garbage
Collection,

[78] Advanced Memory Management Programming Guide, Apple

[79] JSLint, [WWW], Available: http://www.jslint.com/lint.html

[80] Common JS, [WWW], Available: http://www.commonjs.org/

[81] AMD, [WWW], Available: https://github.com/amdjs/amdjs-api/wiki/AMD

[82] RequireJs, [WWW], Available: http://requirejs.org/

[83] HTML, Living Standard - Last Updated 29 January 2015 [WWW], Avai-
lable: https://html.spec.whatwg.org/multipage/introduction.html#
introduction

[84] Web Components Current Status, [WWW], Available, http://www.w3.org/
standards/techs/components#w3c_all

https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/Mozilla
http://en.wikipedia.org/wiki/Safari_%28web_browser%29
http://en.wikipedia.org/wiki/Safari_%28web_browser%29
http://en.wikipedia.org/wiki/Chromium_%28web_browser%29
http://en.wikipedia.org/wiki/Chromium_%28web_browser%29
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Lapsed_listener_problem
http://en.wikipedia.org/wiki/Lapsed_listener_problem
https://en.wikipedia.org/wiki/Bring_your_own_device
https://en.wikipedia.org/wiki/Bring_your_own_device
https://en.wikipedia.org/wiki/Rich_Internet_application
https://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Resident_set_size
http://en.wikipedia.org/wiki/Resident_set_size
http://www.typescriptlang.org/
http://www.jslint.com/lint.html
http://www.commonjs.org/
https://github.com/amdjs/amdjs-api/wiki/AMD
http://requirejs.org/
https://html.spec.whatwg.org/multipage/introduction.html#introduction
https://html.spec.whatwg.org/multipage/introduction.html#introduction
http://www.w3.org/standards/techs/components#w3c_all
http://www.w3.org/standards/techs/components#w3c_all

60

[85] Shadow DOM, W3C Editor’s Draft 23 January 2015, [WWW], Available, http:
//w3c.github.io/webcomponents/spec/shadow/

[86] Web Performance Working Group, [WWW], Available: http://www.w3.org/
2010/webperf/

[87] Rich Web Client Activity Statement, [WWW], Available: http://www.w3.org/
2006/rwc/Activity.html

[88] Document Object Model, [WWW], Available: http://www.w3.org/DOM/

[89] Document Object Model Core, Fundamental Interfaces, Node, [WWW],
Available: http://www.w3.org/TR/DOM-Level-2-Core/core.html#
ID-1950641247

[90] The WebKit Open Source Project [WWW], Available: http://www.webkit.
org/

http://w3c.github.io/webcomponents/spec/shadow/
http://w3c.github.io/webcomponents/spec/shadow/
http://www.w3.org/2010/webperf/
http://www.w3.org/2010/webperf/
http://www.w3.org/2006/rwc/Activity.html
http://www.w3.org/2006/rwc/Activity.html
http://www.w3.org/DOM/
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1950641247
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1950641247
http://www.webkit.org/
http://www.webkit.org/

	Introduction
	Web applications
	Background
	Web Browser Domain
	Technologies
	HyperText Markup Language (HTML)
	Cascading Style Sheet (CSS)
	JavaScript
	Document Object Model (DOM)
	HTML5 and friends

	Web-browser as an application platform
	Motivation
	Browsers' working principles
	JavaScript Engine
	Single Page Applications

	Web application's memory consumption
	Dynamically Managed Memory
	Garbage Collection
	Reference counting garbage collector
	Tracing garbage collector
	Generational
	Incremental vs stop-the-world

	Memory Leaks in Web Applications
	ECMAScript 2015, other standards and tools
	ECMAScript 2015 and Memory Management
	Other Standards and Tools

	Managing and diagnosing web application's memory
	Diagnosing memory consumption with developer tools
	Avoiding Memory issues with development practices
	Runtime Memory diagnostics
	Browser extension
	performance.memory API

	Evaluation
	Results
	Open Issues
	Discussion

	Summary
	Bibliography

