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The goal of this thesis is to analyze the effect of projection angle errors on recon-
structing 3D electron tomography. Noise, missing wedge and miss alignment are
three main problems in electron tomography. This thesis focuses on how miss align-
ment affects the 3D reconstruction relative to the noise and missing wedge effects.

Fourier-based iterative method (FIRM) is the main reconstruction method in this
work. Instead of projecting the volume and back-projecting the tilt series in the
image domain, FIRM conducts those operations in Frequency domain. By using
non-uniform fast Fourier transform, FIRM avoids interpolation problem. Besides,
the conjugate gradient method is used as the iterative reconstruction process to find
the optimal solution.

With the simulations, the impacts of noise, missing wedge and miss alignment are
studied quantitatively. Missing wedge is the most influential factor among those
three factors, the lack of enough information causes the reconstruction volume to be
highly burred. Miss alignment has a similar effect as Gaussian noise. However, miss
alignment also introduces artifacts in the reconstruction. Normalized mean-square
error (NMSE) decreases and resolution increases when decreasing the level of miss
alignment. After the level of 0.2-degree variance of projection angle error, the results
does not show significant differences.
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1. INTRODUCTION

In this thesis, we focus on alignment problem in electron tomography (ET) and anal-
yse its effects on image reconstuction. In this chapter, we start with introducing the
background of electron tomography. Then we discuss two major issues in practice,
reconstruction of the 3D volume from limited number of projection images and the
miss-alignment of the projection images during image acquisition. Finally, we give
the outline of experiments conducted in this thesis.

1.1 Background

Electron tomography is a technique for obtaining a detailed 3D structure of an ob-
ject from its series of 2D projection images acquired using a transmission electron
microscope (TEM) [1]. In practice, electron tomography contains three different
procedures. In the first step, image acquisition, a transmission electron microscope
creates a beam of electrons that passes through a volume and collects the information
on the 2D plane. The resulting 2D projection images represent the information of
this object at different tilt angles. Secondly, the projection images have to be aligned
with respect to predefined tilt angles. Since the actual orientation may differ from
the predefined angle during image acquisition, the alignment will correct the effect
of those unavoidable displacements on reconstruction. At last, the original object
is reconstructed from its projection images by using algorithms, such as weighted
back projection (WBP) and simultaneous iterative reconstruction technique (SIRT)
[2, 3]. Figure 1.1 shows the complete procedure of electron tomography. In practice,

Figure 1.1 The procedure of electron tomography
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there are several challenges in obtaining high-quality reconstructions [4, 5]. To get a
high-resolution observation of object and to understand the highly complex details
in the object, researchers have to solve those challenges that appear in alignment
and reconstruction procedure [6]. In the next two sections, we describe the conven-
tional solutions for the difficulties and imperfections in reconstruction and alignment
process.

1.2 Reconstruction Problem in Electron Tomography

The first problem in the reconstruction process is the low signal-to-noise ratio (SNR),
which is a common difficulty in image processing. The noise is introduced during
image acquisition and reflected on projection images. However, the noise in electron
tomography cannot be easily removed as traditional denoising methods in image
processing. Since the reconstruction process transfers the 2D images into a 3D vol-
ume by back projection, the noise may be enlarged in the reconstructed volume. As
a consequence, the reconstruction will be badly impacted by noise and its resolution
will be low as well. As a solution to this problem, Radermacher introduced the
weighted back projection (WBP) algorithm [7]. WBP combines the back projection
method with a methodically designed filter so that it can alleviate the effect of noise
and the blur of back projection. However, the performance of the WBP algorithm
depends on the specific analytical forms of the weighting functions, which needs con-
scientious designs for different samples [8]. Another problem in reconstruction is the
missing wedge. Although the projection images contain the information about the
object at different tilt angles, the number of projection images is limited in practice.
In other words, there is always an unavoidable gap in the available tilt range, and
the reconstruction restores the original object with insufficient information. Since
WBP is sensitive to limited tilt range, it fails to reconstruct the object with the
acceptable quality [9]. As a consequence, the reconstruction quality will be signifi-
cantly affected without more powerful algorithm. One way to alleviate this problem
is the iterative algorithms, such as simultaneous iterative reconstruction technique
(SIRT) and discrete algebraic reconstruction technique (DART) [10, 11]. SIRT re-
projects reconstruction and back-projects projection images iteratively and updates
the reconstructed volume with their difference at each iteration. SIRT generates
reconstruction yielding good visual quality from fewer projections and even from
noisy data [12]. Whereas, DART combines SIRT with additional prior knowledge.
Based on the result of SIRT at each iteration, DART sets a threshold to segment
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the reconstruction and select a certain number of boundary pixels as prior infor-
mation. Only those boundary pixels are updated in each iteration step until the
method converges [12]. In this way, reconstruction becomes less-underdetermined.
Moreover, DART yields a reconstruction that contains fewer artifacts in comparison
to SIRT [13].

The total variation minimization (TVM) method is based on compressive sensing [14,
15]. Compressive sensing is specialized in finding a solution to a set of ill-posed linear
equations that has the sparse representation. In electron tomography, the boundaries
represent the interface between different compositions, which is sparse. In this way,
TVM uses the edge of the specimen as the prior knowledge, which is sparse in
the reconstruction. In this way, TVM reduces the elongation artifacts and noise
in the reconstruction, and also improves the sharpness of the edge. However, the
regularization parameter for the prior knowledge is essential for the reconstruction
quality, and is also a computational burden in this algorithm [12].

Due to the disadvantages of computational cost in SIRT and DART, researchers
try to find better algorithms for electron tomography. The Fourier-based Iterative
Reconstruction Method (FIRM) is faster than SIRT and DART while maintaining
comparable performance [16]. Besides, FIRM incorporates prior knowledge so that
the results of FIRM are quite accurate. Unlike previous methods, Sequential maxi-
mum a posterior expectation maximization (sMAP- EM) method does not use prior
knowledge about the specimen searches for the most likely cross-sectional images
given the measured projections from TEM [9]. The sMAP-EM algorithm uses a me-
dian filtered image of the previous iteration in a weighted one-step-late algorithm as
the prior information to control the noise in the reconstructed volume. As a result,
this algorithm reduces the noise in the reconstructed volume and estimates values
for the missing wedge during the iterations. Besides, the reconstruction process
runs sequentially. At each iteration, the previous result initializes the successive one
while the weight of the regularization is gradually decreased sequence by sequence
[9].

1.3 Alignment Problem in Electron Tomography

For the reconstruction method we mention in previous section 1.2 we suppose to
get the projection images ideally at known tilt angles. However, the imaging geom-
etry may not be known or calibrated accurately in practice [17]. For example, the
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transmission electron microscope may not move exactly following the instructions,
and the object may not be steady during image acquisition. As a consequence, the
imaging geometry is always inaccurate, which may create low quality reconstruc-
tions. In electron tomography, estimation of the unknown motion parameters of an
imaging device or the object is called alignment problem.

Fiducial markers are pervasive tools for aligning projection images since the 1980s.
Until now, fiducial markers have been still useful in electron tomography due to
its simplicity and straight-forward implementation [18]. In 2007, Brandt proposed
a feature-based method that automatically extracts features from the projection
images as markers, and tries to use these features to solve the alignment problem
[19]. However, the efficiency of the process depends much more on projection images
and the projected volume. If those features are hard to detect or the contrast is low,
the method is not comparable to fiducial markers. In addition, feature extraction is a
computer vision method that identifies features among many projection images [20].
Another famous alignment method is the correlation-based method, which is also
called projection matching [21]. However, realignment of the projection images in
the real space does not guarantee the improvement of the volume in the object space
[22]. Besides, due to its sequential alignment procedure, the error may propagate
into subsequent alignment steps if miss-alignment is not fixed in previous steps.

All above alignment methods have one common aspect that they solve the align-
ment problem before the reconstruction process. Recently, researchers explore new
approaches that try to address the problem of alignment simultaneously with the
volume reconstruction [19, 23, 22]. These methods map the projection data into
spaces in which the data can be conveniently manipulated [24, 25]. In this way,
these methods combine the orientation determination and volume reconstruction
as a whole convergence process, which optimizes motion parameters and volume
estimation for projection images. With an appropriate searching algorithm, these
methods could solve the alignment problem in a refinement method. Ideally, the
searching algorithm should fulfill two main requirements, rapid convergence, and
low computational cost.

1.4 Outline of Experimental Research

In the rest of this thesis, we focus on the problems mentioned above. In Chapter 2,
we review various reconstruction methods used in electron tomography and discuss



1.4. Outline of Experimental Research 5

the reconstruction method utilized in this thesis. Chapter 3 gives more details about
alignment methods in electron tomography. Chapter 4 shows the results of the exper-
iments regarding projection acquisition and reconstruction. Chapter 5 summarizes
the experiments, analyzes the results, and explains the problems observed and how
the results can be improved in the future.
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2. 3D RECONSTRUCTION

Tomography is a classical technique deals with the reconstruction of a three-dimensional
(3D) object from its two-dimensional (2D) projections. In real life, the projections
are measurements of some physical, chemical or other property of the sample in-
tegrated over straight lines through the object by using transmission electron mi-
croscope. In this chapter, we give the principle of Radon transfom and Fourier
slice theorem, so that we could simulate projection process in computer and get
numerical samples for later use. The theory part begins with the 2D case for sim-
plicity, but we further analyse the procedures of projection and back-projection in
3D case in the remaining part. At last, we explain different approaches to solving
the reconstruction problem.

2.1 Radon Transform and Projections

Radon transform is the foundation of analytical reconstruction method, it relates to
the collections of the integrals of a function over straight line [26]. These collections
are called projection images, which is the integral over some function. Because
there is an extremely related correlation between the parameters of an object and
its projection images, we can simulate it using Radon transform. For simplicity, we
explain the theory of Radon transform in 2D cases, which represents a slice through
the 3D object.

The formulation of a line integral through an object, represented by the function
f(x, y), is given for the parameters ✓ and r [27]. These parameters define the line
`(✓, r) as

` : x cos(✓) + y sin(✓) = r, (2.1)

where ✓ is the rotation angle, r is the distance from the line to the center of the
object. This is illustrated in Figure 2.1. The line integral along such a line is the



2.1. Radon Transform and Projections 7

then defined as

p(✓, r) = p(✓, x cos(✓) + y sin(✓)) =

Z

`(✓,r)

f(x, y)d` = Rf(x, y). (2.2)

Here, we use R to represent the Radon transform function that maps 2D object
f(x, y) into its projection at rotation angle ✓ as p(✓, r) as shown in Figure 2.1.
In this way, the Radon transform maps data from its real space representation
in (x, y)-coordinates to its Radon transform in (✓, r)-coordinates. In the case of
electron tomography, we assume to use transmission electron microscope to provide
such parallel projections, which is a good approximation in the experiment. In
parallel projections, the source and detector have the same size, and each projection
consists of line integrals at a constant ✓ with several values for r. Several other types
of projections exist like fan-beam or cone-beam projections, but as they are of no
relevance for electron tomography, only parallel projections are considered [28].

Figure 2.1 The Radon Transform in 2D case

With the help of Radom transform, the projections are formed as by calculating the
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(a) The modified Shepp-Logan phantom

(b) The sinogram of modified Shepp-Logan phantom

Figure 2.2 The Radon transform for modified Shepp-Logan phantom

line integrals of object from certain angle range. By rotating the object or TEM,
we get a collection of several projections at different rotation angles. As we see
in Figure 2.2, Figure 2.2(a) shows the modified Shepp-Logan phantom in 2D and
Figure 2.2(b) is the sinogram that shows the projections along all projection angles.
Sinogram represents the raw data available for electron tomography reconstruction
[29]. Since ✓ and r are two arguments that represent projection at certain angle,
they are also vertical and horizontal axes respectively in the sinogram. Whereas, the
situation is different in 3D case. Since the projections are 2D images for a volume,
it is not eacy to observe all the projections in one figure like Figure 2.2(b). In Figure
2.3, we only show three projections out of M projections (M is the total number of
projections). To see inside the volume, the corss section figures are also given.
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Figure 2.3 The 3D projection in 3D case. The volume is Shepp-Logan phantom.

2.2 Plain Back-Projection

As we explain in section 2.1, the Radon transform maps a 2D object f(x, y) into
a sinogram p(✓, r) consisting of line integrals through the object. So that the re-
construction problem becomes how to reconstruct the object by using its raw data.
One approach, simple back-projection takes each sinogram value and smears it back
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into object space along the corresponding line,

f

b

(x, y) =

Z
⇡

0

p(✓, xcos(✓) + ysin(✓))d✓. (2.3)

Unfortunately in its simplest form this procedure does not recover the object f(x, y)
, but instead yields a blurred version of the object f

b

(x, y) [26]. This blurred version
f

b

(x, y) is called a layergram , as illustrated in Figure 2.4.

Figure 2.4 The process of plain back-projection

2.3 Fourier Slice Theorem

The Fourier slice theorem explores the principle of Radon transform in Frequency
domain, rather than image domain as shown in 2.3. It gives a relationship between
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the Radon transform and the Fourier transform of an object and has great impor-
tance for all reconstruction procedures [30, 31]. To explain Fourier slice theorem,
we employ two-dimensional Fourier transform to an object f(x, y),

F (u, v) =

Z 1

�1

Z 1

�1
f(x, y)e

�j2⇡(ux+uy)
dxdy. (2.4)

On the other hand, we take a look at the Fourier transform of projection p(✓, r),

P (✓, w) =

Z 1

�1
p(✓, r)e

�j2⇡wr

dr. (2.5)

Combining equation 2.1, 2.4 and 2.5, the Fourier-slice theorem that shows the
Fourier transform of a projection at an angle ✓ is equal to a central slice through
the 2D Fourier transform of the object. Its methermatical notation is

P (✓, w) = F (wcos✓, wsin✓). (2.6)

Figure 2.5 shows that, one projection at projection angle ✓ is one slice at Fourier
space after Fourier transform. If we take Fourier transform of all the projection
data, their samples in Fourier space is shown in the left side of Figure 2.6.

Figure 2.5 One project data in 2D corresponds to a slice in Fourier space

In this way, projections acquired at different tilt angles give information about the
Fourier transform of the object along central slices. If we have enough raw data, then
the full information about the object can be recovered. From these considerations,
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we could find a way of theoretically reconstructing the object by inverse Fourier
transform in two dimensions. Such method is known as direct Fourier reconstruction
method [32]. However, this method requires an interpolation in Fourier space to
transform the discrete data from polar coordinates to Cartesian coordinates, which
may introduce inaccuracy during reconstruction. It is therefore generally preferred
to reformulate the problem in a way that it requires an interpolation in real space
rather than in Fourier space.

Figure 2.6 The interpolation error from frequency domain to image domain

In Figure 2.6, we observe that the Fourier space filled by samples is denser at low
frequencies and sparser at high frequencies. It means that we should apply a scalable
operation to those data. Otherwise, the low-frequency information of the object is
overemphasized compared to the high-frequency information. Nowadays, the solu-
tion to the linear inverse problem is either computed by applying a carefully designed
weighted adjoint operator, such as weighted backprojection (WBP) that addresses
the non-uniform sampling, or by using an iterative approach for inversion [16].

2.4 Weighted Back-Projection

By using inverse Fourier transform and polar coordinates, the object f(x, y) can be
reconstructed as

f(x, y) =

Z 2⇡

0

Z 1

�1
F (✓, r)re

j2⇡wt

drd✓, (2.7)
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r has been defined previously in equation 2.1. This is the basic formula for the
weighted backprojection (WBP). To see how to equalize the impact of different
frequency components, we split this procedure into two parts. At first, the Fourier
transform of projection is filtered in Fourier space by a ramp filter |w| resulting the
filtered projection Q(✓, r):

Q(✓, r) =

Z 1

�1
P (✓, w)|w|ej2⇡wt

dt. (2.8)

Ramp-filer is a decent choice of the weighting function that correct this impact effec-
tively. Without this designed filter, the inverse procedure will directly transfer the
dense sampling in to the central part of the Fourier domain to the reconstruction [33].
Because of the overestimated low-frequency samples, the resulting reconstruction is
the blurred version of the ground truth.

After filtering, we back-project the filtered projection as

f(x, y) =

Z
⇡

0

Q(✓, xcos(✓) + ysin(✓))d✓ (2.9)

This operation is similar as 2.3, the main difference is that Q(✓, xcos(✓) + ysin(✓))

is the filtered version of projections in frequency domain, instead of original pro-
jections. In the back-projection operation, the filtered projections for all angles are
integrated to reconstruct an estimate of the original object f(x, y). Each filtered
projection will contribute equally to all points, which are on lines through the ob-
ject in the direction of projection. Although we get the mathematical expression

Figure 2.7 The process of weighted back-projection algorithm

of filtered back-projection for continuous signals, this expression should be adapted
for practical cases where discrete signals are customary. Besides, the projections
would not be noiseless in practice. To overcome the noisy problem in projections,
we should improve the filter to reduce high-frequency noise, which is a complicated
procedure.
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2.5 Simultaneous Iterative Reconstruction Method

Though the ground truth cannot be accurately constructed by merely using simple
back-projection (SBP) operation, we could combine it with iterative reconstruction
algorithms. Iterative algorithms are equilavent to algebraic reconstruction technique
(ART). Specifically, we get the initial reconstruction from back-projection operation,
which is a stronger weighting of low-frequency components. Then the initial recon-
struction will be improved iteratively by using high-frequency contributions up to
the amount of available data.

Simultaneous iterative reconstruction technique (SIRT) is one of those iterative re-
construction methods based on simple back-projection (SBP) algorithm. At the
beginning, the sinogram is back-projected using SBP, resulting the experimental
layergram f

0
b

(x, y). At iteration k-1, the reconstructed image f

k�1
b

(x, y) is re-
projected and reconstructed as R

T

Rf

k�1
b

(x, y). By taking the difference between
R

T

Rf

k�1
b

(x, y) and layergram f

0
b

(x, y), this update value is added to the recon-
structed image f

k�1
b

(x, y) constitute a new image f

k

b

(x, y),

f

k

b

(x, y) = f

k�1
b

(x, y)� �(R

T

Rf

k�1
b

(x, y)� f

0
b

(x, y)), (2.10)

Recall R represents the Radon transform, RT is the SBP procedure and � is the
update parameter. With a suitable choice of �, this procedure is performed sequen-
tially until it reaches an adequate solution. A criterion for the optimal number of
iterations was proposed in [34].

Figure 2.8 The schematic overview of the SIRT algorithm
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2.6 Fourier-based Iterative Reconstruction Method

Fourier-based iterative reconstruction method (FIRM) is another iterative recon-
struction approach that implements both projection and backprojection in Fourier
space by using non-uniform fast Fourier transform (NUFFT). By exploiting the
Toeplitz structure of projection and backprojection operators, FIRM is consider-
ably faster than those of traditional iterative algebraic approaches [16].

2.6.1 Non-Uniform Fast Fourier Transform

Discrete Fourier transform (DFT) converts an image from image domain to the
frequency domain. Because the pixel values in the image domain are equally spaced,
so that those sample values in frequency domain are equally distributed as well.
Consider a square image f(x, y) with size N ⇥N , its two-dimensional DFT is

F (u, v) =

(N�1)
2X

x=�(N�1)
2

(N�1)
2X

y=�(N�1)
2

f(x, y)e

�j2⇡(ux+vy)/N
, (2.11)

where u and v are the coordinates in frequancy domain. In equation 2.11, both image
samples and frequency samples are uniform in the range from �(N�1)

2 to (N�1)
2 .

However, as we analyze in section 2.3, those frequency samples cannot be equally-
distributed. Instead of locating at (u, v) which defined in equation 2.11, the samples
in the frequency domain site at (t

x

, t

y

), where both t

x

and t

y

are arbitrary numbers.
As a result, the intervals of different samples are irregular,

F (u, v) =

(N�1)
2X

x=�(N�1)
2

(N�1)
2X

y=�(N�1)
2

f(x, y)e

�j2⇡(ut
x

+vt

y

)/N
. (2.12)

To process the non-uniformly distributed samples in the frequency domain, fast
Fourier transform (FFT) is not good enough. However, we could interpolate an
oversampled FFT that approximates the procedure of equation 2.12, this method is
called non-uniform fast Fourier transform (NUFFT). The widely used interpolation
method is the min-max interpolation [35], which is quite efficient.
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2.6.2 Reconstruction Approach

As the key procedure of Fourier-based reconstruction method, NUFFT solves the
problem of efficiently manipulating image data between the frequency domain and
the image domain. Given a volume of size N ⇥N ⇥N , one of its projection along
z�axis P

R

(x, y) is

P

R

(x, y) =

Z 1

�1
V

R

(x, y, z)dz, (2.13)

where V
R

is the volume rotated by using rotation matrix R. Recall the Fourier slice
theorem in section 2.3, the 2D Fourier transform of a projection image equals to one
center slice of the 3D Fourier transform of the volume. By using FFT on both sides
of equation 2.13, the Fourier slice theorem shows that [36]

FP

R

(u, v) = FV
R

(x, y, 0). (2.14)

Instead of the continuous signal, the volume V is sampled on a Cartesian grid
{n : n 2 Z

3
,�N/2  n < N/2} in practice. Assume there are M projection angles,

each of them corresponds to a rotation matrix R

m

, m 2 {1, ...,M}, so that there
will be M projection images as well. After taking the discrete Fourier transform of
equation 2.14, one central slice corresponding to m

th projection angle is [16]

S

m

= P (V

R

m

) =

X

n

Vexp(�j · hn, R�1
m

(w

u

, w

v

, 0)i). (2.15)

Here, we use symbol P to represent the forward-projection operator that maps the
volume to its projection image in Fourier domain defined by rotation matrix R

m

.
And (w

u

, w

v

) = 2⇡(u, v)/N , where u, v 2 Z, are the Cartesian coordinates of the
central slice. As we explained in section 2.6.1, equation 2.15 can be implemented
efficiently by using NUFFT. By individually taking the inverse FFT for each central
slice S

m

, the projection image U

m

is:

U

m

= F�1
S

m

. (2.16)

Since the operator P directly maps the volume to one of its central slice, part of the
volume can be reconstructed by the inverse operator P

�1 using inverse NUFFT,

P

�1
(S

m

) =

X

n

S

m

exp(j · hn, R�1
m

(w

u

, w

v

, 0)i). (2.17)



2.6. Fourier-based Iterative Reconstruction Method 17

So that the reconstructed volume is the sum of the result in equation 2.17 for every
rotation matrix R

m

,

V⇤
=

MX

m=1

P

�1
S

m

. = P

�1
S. (2.18)

Since the summation
P

does not affect the calculation of back-projection operation
and can be included into operation P

�1, we use S = {S1, S2, ..., SM

} to represent the
stack of Fourier slices. So that the inverse operator P�1 equals to the back-projection
operation in electron tomography, and the reconstruction process is simplified as

V⇤
= P

�1
PV (2.19)

So far, the reconstruction process is direct Fourier reconstruction[37, 32] using
NUFFT. Besides, the image acquisition part would not be so ideal in practice.
There are always errors in the projection images, that is

S = PV + e, (2.20)

where e could be noise or projection angle error. Thus the key problem is minimizing
the effect of error term e during the reconstruction process. This would be easily
expressed as traditional least squares function in signal processing [38]:

minimize " = kS � PVk2. (2.21)

If the cost function " converge to 0, the volume V⇤ reconstructed from the Fourier
slices S using equation 2.18 would be more similar to original volume V.

2.6.3 Conjugate Gradient Method

Conjugate gradient (CG) is a numerical solution for minimazing equation 2.21. By
setting " = 0, the analytical solution to this least-squares cost function is known as
normal equation:

P

�1
PV = P

�1
S. (2.22)

Since P

�1
P = Q is symmetric positive-semidefinite [16], conjugate gradient could

be an useful tool to iteratively find the minimizer for equation 2.21. And the whole
process of conjugate gradient is shown in Figure 2.9. Specially, each step of iteration
loop is [39]:
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Figure 2.9 The process of conjugate gradient

1. Set initial residual r0 = V⇤ � P

�1
PV0 and initial search direction ↵0 = r0,

where V0 is the initial guess and could be all zero at the beginning of iteration.

2. For iteration k = 0 to K:

(a) Calculate the scalar p

k

=

rT
k

r
k

↵T

k

A↵
k

.

(b) Update reconstructed volume Vk+1
= Vk

+↵
k

p

k

.

(c) Update the residual for next iteration r
k+1 = r

k

� p

k

P

�1
P↵

k

.

(d) Get the scalar for search direction �
k

=

rT
k+1rk+1

rT
k

r
k

.

(e) Update search direction for next iteration ↵
k+1 = r

k+1 + �

k

↵
k

.

3. The iteration stops when maximum number of iteration is reached or no further
decrease of cost function is observed. The resulting volume Vk is the optimal
solution.
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Figure 2.10 The whole process of FIRM.

In Figure 2.10, we give the process of FIRM combining with conjugate gradient
method. For FIRM, the operation P

�1
P is the composition of the backward projec-

tion and forward projection in frequency domain. Unlike SIRT where the projection
and back-projection are applied to the result at each iteration, FIRM procomputes
P

�1
P using the non-uniform fast Fourier transform and efficiently applies it in con-

jugate gradient method. Due to the Toeplitz structure of P�1
P , the iteration speed

is faster than traditional iterative reconstruction method [16]. Figure 2.11 shows the
performance of FIRM on ideal projection data, we see the residual norm declines
sharply in early ten iterations and towards zero afterward.

Figure 2.11 The plot of residual norm vesus iteration count for FIRM. Except SNR =
100, any other types of errors are not introduced in projection images.
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3. 3D ALIGNMENT

This chapter introduces alignment methods that complete registration process for
the EM tilt-series. To align projection images, we need to compute the projection
geometry of the tilt series. After that, we rectify the deviations from the assumed
ideal projection geometry using simple 2D geometric transformations for the images
before computing a tomographic reconstruction. When acquiring the images at the
different tilt angles, the specimen is tracked into the field of view at each angle, which
results in possible local shifts between the various images. The alignment methods
we introduce in this chapter minimize the effect of such geometry shifts. At first, we
present an useful method of image alignment, marker-based alignment. This method
tracks the measured coordinates of fiducial markers in the series of images and then
fits them to equations that describe the image projection [40]. Then, we give the
principle of an alternative method that bases on cross-correlation of the successive
projection images. However, due to the inefficiency or inaccuracy in the previous
two methods, feature-based alignment method and refinement method are studied
since 2001. The feature-based alignment needs to explore embeded discriminable
features in the projection images by using computer vision algorithms and then use
these features for alignment. However, these features are treated as another form
of the marker in alignment problem. In addition to the computational inefficieny
in detect features, feature-based alignment method has the same disadvatanges in
marker-based alignment method. A more powerful way to solve alignment problem is
refinement method. the alignment problem can be seen as an optimization problem
that could be solved in a refinement way.

3.1 Marker-based Alignment Method

For marker-based alignment method, a certain number of high contrast fiducial
markers should be set in the projected 3D volume. With their high contrast, these
fiducial markers are assumed to be immobile with respect to the volume during
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tilt-series acquisition. In this way, the coordinates of those fiducial markers in the
projection images are used as the references. The position changes of those fiducial
markers also imply the orientation changes during projection.

The fiducial marker tracking alignment requires that markers are added to the sam-
ple. The alignment is then done by measuring the coordinates of the fiducial markers
through the entire tilt series.The commonly used markers are gold particles with high
contrast. The markers are assumed to be immobile with respect to the sample, and
thus a change in position of the markers implies movement of the sample. Figure
3.1 shows the usage of fiducial markers in tilt series. The geometric parameters
required to align the images are derived from the measured projected positions of
the markers using least squares method. For the ith fiducial marker m

i

= (x

i

, y

i

, z

i

),
where x

i

, y

i

, z

i

are the coordinates in the volume. Given the jth orientation param-
eter (�

j

, ✓

j

, 

j

) (defined in section 4.1.1), we define the measured coordinates of this
fiducial marker in the projection image.

p
ij

= (u

ij

, v

ij

) = A

j

m
i

, (3.1)

where A

j

is an affine mapping at orientation angle (�

j

, ✓

j

, 

j

) , which maps the
fiducial marker from 3D coordinate system (orginal volume) into 2D image plane
(the projection plane). However, if there are orientation errors during projection
acquisition, the noisy orientation parameter (�⇤

j

, ✓

⇤
j

, 

⇤
j

) cause the actually projected
coordinates of the fiducial markers change as well, the resulting noisy coordinates
are

p⇤
ij

= (u

⇤
ij

, v

⇤
ij

) = A

⇤
j

m
i

(3.2)

In this way, aligning the tilt-series is equivalent to find a solution that minimize the
error function, which is the sum of squares error between measured and projected
coordinates for all the fiducial markers:

minimize
X

i

X

j

((u

ij

� u

⇤
ij

)

2
+ (v

ij

� v

⇤
ij

)

2
). (3.3)

To find unique solution for equation 3.3, we need to constrain equation 3.1 and
equation 3.2 by setting all variables except the rotation angles after projection as
constant value on one view [41].

Besides the computational burden in finding unique solution for above equations,
marker-based method lacks an universal way to set appropriate distributed mark-
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Figure 3.1 (A) Two fiducial markers m1 and m2 in a volume of 3D coordinte system
(x, y, z). (B) Rotating the volume at certain angle (�, ✓, ). (C) The fiducial markers
in projection space (u, v). Black represents the predefined location for the markers. Red
markers are noisy locations resulting from miss-alignment.
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ers for different specimens. Setting appropriate distributed markers and tracking
their posistion accurately are labor-intensive steps. Meanwhile, those high contrast
markers may introduce artifacts during back-projection reconstruction.

3.2 Cross-Correlation Alginment Method

Cross-correlation-based method computes the translational alignment for successive
tilt series. For electron tomography, the projection images of a tilt series represent
different aspects of the 3D structure. The successive projection images do not differ
too much in an ideal situation. This method defines a discrete 2D cross-correlation
function f(m,n) between two neighboring projections images U1 and U2:

f(m,n) =

1

MN

M�1X

i

N�1X

j

U1(i, j)U2(i+m, j + n), (3.4)

where M and N denote the number of pixels in horizontal and vertical direction
for these projection images. In this way, the alignment procedure is finding a shift
(m0, n0), so that function f(m0, n0) reaches its maximum value among all available
shifts. Since the two projection images are acquired at different tilt angles, the
correlation will not coincide entirely. However, finding the peak correlation value is
equivalent to estimate the relative shift parameters. Once we get the estimations
of relative shift for a sufficient number of tilt series, we could align the images by
translating the images with those negative shift values. Moreover, the calculation
of correlation function would be more efficient in frequency domain by using FFT
and IFFT:

f(m,n) = F�1
[FU1(i, j) · FU2(i+m, j + n)] (3.5)

From the above analysis, the cross-correlation is straightforward to implement as
shown in Figure 3.2. However, a commonly used way to find such peak correlation
value is through exhausive searching, which is computationally expensive. Besides,
only two successive projection images are considered in calculating the shift param-
eter at each time. Although this procedure will continue sequentially for all the
projection images, the error will accumulate for each pair of projection images, this
phenomenon is called error propagation. Besides, cross-correlation focuses on 2D
plane alignment rather than 3D motion that may occur in practice.
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Figure 3.2 The process of cross-correlation alignment

3.3 Refinement Method

Traditional alignment methods mentioned in previous sections try to solve the mo-
tion parameters before the reconstruction procedure. In this section, we discuss a
more novel approach that considers alignment together with reconstruction as an
optimization problem and then solve them simultaneously by using gradient-based
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optimization methods. Recall projection procedure defined in equation 2.15, which
maps 3D volume into 2D projection image at the predefined tilt angle (represented
as rotation matrix R). To emphasize the relation between orientation angle and
miss-alignment, we simplify this equation as

U

m

= T (�

m

, ✓

m

, 

m

)V + e, (3.6)

where T (�

m

, ✓

m

, 

m

) is the transformation matrix that characterizes how to acquire
projection image U

m

from the 3D volume V at m

th tilt angle (�

m

, ✓

m

, 

m

), and e
is the error variable that is introduced when miss alignment happens. In such case,
alignment problem is equivalent to minimizing the effect of error variable e. By
employing least-squares error rule, the alignment problem becomes an optimization
problem for M projection images U

i

, i = 1, 2, ...,M :

min

Vn,�
i

,✓

i
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i

⇢(Vn,�i
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i

) =
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MX

i=1

kT (�
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, ✓

i
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i

)V � U

i

k2. (3.7)

This equation is prevalent in signal processing, and a commonly used way to solve it
is the gradient-based algorithm. In this case, the explicit equations for the gradient
are hard to derive because of the complexity of transformation matrix T . However,
we could use the numerical method to approximate the gradient of this objective
function. Recall the differential algebra for a function f(x) is

df(x) =

f(x+�x)� f(x)

�x

. (3.8)

Similarily, the partial dericative of ⇢(V,�, ✓, )) with repect to �
i
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��

(T (�
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�

i
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i

). (3.9)

By changing the variable in equation 3.9, we could get all the partial derivative
of the objective function with respect to the remaining variables V, ✓, in the
same way. Once the gradients are calculated, we get the search direction ↵ for
the gradient-based algorithm. If we choose steepest gradient descent, we search for
a local minimum of equation 3.7 with the help of the negative of the gradient and
some choice of step length ⌘. This procedure fulfills the inequality

⇢(x

(0)
+ ⌘ ·↵) < ⇢(x

(0)
), (3.10)
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where x = (V,�1, ...,�M

, ✓1, ..., ✓M , 1, ..., M

) is the compound of all the unknown
variables contained in objective function 3.7. To avoid finding the local minimum,
we could use predefined tilt angles and treat miss-aligned reconstructed volume as
a good initial guess of x(0). Following the rule defined in inequality 3.10, new search
direction ↵(k) and step length ⌘

(k) are computed at k

th iteration until there is no
further reduction in ⇢(x(k)

). The whole process of refinement is shown in Figure 3.3.

Figure 3.3 The process of refinement method

Instead of steepest descent direction, the quasi-Newton scheme can be used to accel-
erate the convergence of a gradient-based algorithm [22]. Besides, additional prior
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information is very helpful in this optimization problem. The other alternative
method adds Tikhonov regularizer in the objective function 3.7, which is equivalent
to having a Gaussian prior for reconstructed volume V [19].
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4. EXPERIMENTS AND RESULTS

The quality of a 3D reconstruction of an electron tomography experiment relies
upon several experimental parameters, such as the maximum achievable tilt range,
the number of 2D projections, the alignment of the acquired projections and of
course the reconstruction algorithm.

In projection simulation part, 2D projection images are obtained by using NUFFT.
During image acquisition, several noise levels and different tilt ranges are introduced.
Due to the lack of projection images, the weighted back projection (WBP) recon-
struction methods introduce significant artifacts to the reconstruction, which is why
they are not applied in this work. Although simultaneous iterative reconstruction
technique (SIRT) suffers less in the presence of missing wedge artifacts than the
weighted back projection method, it is computationally expensive and hard to get
ideal convergence result. So the primary reconstruction method we used in experi-
ment is Fourier-based Iterative reconstruction method (FIRM).

In the quantitative comparison part, we used mean square error (MSE) to measure
the quality of reconstruction method under different parameters. Besides, we applied
Fourier shell correlation (FSC) to evaluate the resolution of the reconstruction.

4.1 3D Projection Simulation

In this section, the way of obtaining simulated projection images is introduced. The
traditional 2D Radom transform is computationally expensive in 3D case. In 3D
simulation, a more accurate and scientific projection acquisition method was used.
The volume used in this work is the 3D Modified Shepp-Logan phantom. Since
Figure2.2(a) shows the 2D Modified Shepp-Logan phantom, Figureonly shows its
four slices in 3D case for simplicity.
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Figure 4.1 The four slices of 3D Modified Shepp-Logan phantom

4.1.1 Euler Angle Convention

Euler angle convention is one of the basic concepts in 3D image processing. It uses
three parameters that describe orientations in three-dimensional Euclidean space.
In electron tomography, Euler angles represent the rotation angles of detected three-
dimensional volume during projection acquisition.

Traditionally, the Euler angles in the XY Z convention represent the rotation pa-
rameters with respect to the three planes: yz, zx, xy. In electron tomography, ZY Z

convention (rotation around the z-axis, followed by a rotation around y, and another
around z) is convenient when considering 2D projections of a 3D object [43]. If the
Euler angles are (�, ✓,  ), the description of the rotation of a volume would be the



4.1. 3D Projection Simulation 30

Figure 4.2 The Euler angles of ZY Z convention [42]

product of three matrices:

R
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75 . (4.1)

As we can see from the equation and figure above, the rightmost matrix is applied
first and matrices appear in the order from right to left as clockwise rotations around
z, y and z respectively. So that, if a volume V is rotated according to certain Euler
angles (�, ✓,  ), the rotated volume V

R

is expressed as:

V
R

= R

Z

( )R

Y

(✓)R

Z

(�)V. (4.2)

4.1.2 Quaternion and Rotation Matrices

Quaternions are useful in calculating three-dimensional rotations in computer graph-
ics. In practical electronic tomography, they can be used alongside Euler angles and
rotation matrices,which are needed in projection acquisition and volume reconstruc-
tion.

The quaternions H is a four-dimensional vector space over the real numbers. The
unique representation of H is a linear combination of four basis elements (1, i, j, k),
that is, as q

r

+q

i

i+q

j

j+q

k

k, where q

r

, q
i

, q
j

, and q

k

are real numbers. As a rotation
quaternion, H is an unit quaternion that has unit norm (kHk = 1), which provides



4.2. 3D Reconstruction Experiments 31

a convenient mathematical notation for representing orientations and rotations of
objects in three dimensions [44]. According to Euler’s rotation theorem [45], the
rotation matrix can be represented using the elements of quaternion,
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4.1.3 Parameter Setting

In this work, we introduce three main parameters, the noise level, the tilt range and
the variance of projection angle error (VPE) during projection data acquisition.

The Gaussian noise is added into projection images with three different level. We
represent nosie level as signal-to-noise (SNR) in images. To see the effect of missing
wedge size on the reconstructed image quality, we use four groups of different tilt
ranges (±90

�, ±70

�, ±65

�, ±60

�).

Besides, there is always certain projection angle error during image acquisition. In
this experiment, we treat this error as Gaussian distrubuted and use its variance as
the quantitive level of the error.

4.2 3D Reconstruction Experiments

We implement both of projection and reconstruction process using MATLAB pro-
gramming language. In the projection part, the NUFFT package [35] is used to
calculate the projection images in frequency domain. After inverse FFT the ob-
tained projection images are shown in Figure 4.3, and the noisy projections are
generated by adding white Gaussian noise to these images.

The mainly used reconstruction method in this work is Fourier-based iterative re-
construction method (FIRM). To give a first look at this method, we evaluate its
perfromance by using normalized mean-square error (NMSE):

NMSE = (

P
(V

b

� V)

2

P
V2 )

1
2
, (4.4)

where V is the ground truth and V
b

is the reconstructed volume. Given the param-
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(a) The projection images at four different projection angles without noise

(b) The projection images at four different projection angles when SNR = 50

Figure 4.3 The projection data with and without noise
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Figure 4.4 The NMSE of FIRM with different parameter settings

eter settings in section 4.1.3, the NMSE curve is shown in Figure 4.4.As we see from
the figure, the tilt range is the main factor that effects the reconstruction perfor-
mance. That is, as the tilt range decreasing, the NMSE is increasing regardless of
SNR and projection angle error. Besides, another common sense is that, the more
noise in the projection the more NMSE for reconstructed volume within same tilt
range. However, Figure 4.4 shows an interesting discovery. Althogh the NMSE is
increasing when the variance of projection angle error in the range of 0.5 to 2.0, the
NMSE does not change obviously when the variance is below 0.3.

To observe the most realistic case where title range is (�60

�
, 60

�
), we take a deep

look at the last subplot figure in Figure 4.5. Since we already know the NMSE will
keep increasing when VPE is large than 1.4, we only show the VPE in the range of
(0.0, 1.4) to focus the effect of low VPE. Specifically, the NMSE is nearly unchange
when VPE is below 0.4 and SNR equals to 100. However, the NMSE starts to
increase when VPE equals to 0.2 if SNR equals to 75 or 100. Although the tilt
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range is the primary factor that effects the NMSE, the reconstruction performance
will further affected by VPE when VPE is large than 0.4. Moreover, even if the
VPE is low, the NMSE also increases when the noise level is high.

Figure 4.5 The NMSE of FIRM in most realistic case, tilt range = (�60�, 60�)

4.3 3D Alignment Experiments

In this work, we also use 3D Fourier Shell Correlation (FSC) to evaluate the re-
construction performance and alignment problem. FSC measures the normalized
cross-correlation coefficient between two 3D volumes over corresponding spherical
shells in Fourier space [46], i.e.,

FSC(j) =

P
i2Shell

j

F (V
b

)(i) · F (V)(i)
qP

i2Shell
j

|F (V
b

)(i)|2 ·
P

i2Shell
j

|F (V)(i)|2
, (4.5)

where F is the operation of Fourier transform, the spatial frequency j ranges from 1
to N/2�1 time the unit frequency 1/(N ·pixelsize), and Shell

j

:= i : 0.5 + (j � 1) + ✏ 
kik  0.5 + j + ✏ where ✏ = 1e� 4.

The FSC curves for the tilt ranges ±90

� and ±60

� are shown in Figure 4.7(a) and
Figure 4.7(b) respectively. As a result we observe the spatial resolution is smaller
with less VPE. The red line in each figure is the FSC threshold line. This line is
used for equally compare the resolution of each reconstructed volume with different
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Figure 4.6 The resolution curve with FSC threshold = 0.5

parameters. As we see from Figure 4.7, the FSC threshold has to change in order
to make a clear comparison for different tilt ranges.

In Figure 4.6, we show the resolution regarding to four groups of tilt ranges. First
of all, the obvious thing is that the resolution is smaller as the SNR is higher. So
that, the reconstructed volume is more unambiguous. Second, as the VPE increase,
the resolution is higher as well. However, when the tilt range is small (±60

� and
±65

�), the resolution does not change very much with little VPE, this discovery is
similar as we have seen in Figure 4.4.
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(a) The FSC curve under different SNR and VPE with tilt range from �90� to 90�

(b) The FSC curve under different SNR and VPE with tilt range from �60� to 60�

Figure 4.7 The FSC curves with different parameters, FSC threshold lines are shown with
red. In the each figure, the color of different line represent different variance of projection
angle error (VPE), and the VPE increases as the color from yellow to dark. (In each curve,
the resolution curve is calculated when the spatial frequency larger than 0.15)
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4.4 Experiments Summary

In previous sections, we give the numercal results with different parameter settings.
In this section, we give the reconstructions in different cases to observe the impact
of those three different factors, noise, missing wedge and projection angle error. To
simplify the layout and make a clear observastion, only four slices of reconstruction
are shown in each case.

At first, the impact of noise is given in Figure 4.8. The Gaussian noise is added
in tilt series, so that the resulting reconstrcution contains noise points compared
to the ideal case. Then, the impact of missing wedge and projection angle error
is shown in Figure 4.9. In the missing wedge case, there are artifacts in the 17

th

slice. Moreover, the 33

th and 41

th are totally blurred, the objects in the phantom
are hardly to observe compared to the same slices in Figure 4.8(a). The reason is
that, there is less information about the phantom for reconstruction algorithm to
fully reconstruct the ground truth. Whereas, the impact of miss alignment is less
than missing wedge. However, there are still certain number of wave shape artifacts
in the upper and lower side in each slice. Based on these figures, we find that the
miss alignment has less effect than missing wedge when VPE = 2.5 and tilt range
is [�60

�,60�].

Considering the reconstruction is much more unclear in missing wedge case in Fig-
ure 4.9(a), and FIRM cannot solve the miss wedge problem. Thus, we show the
effect of miss alignment within full tilt range in Figure 4.10. By comparing Fig-
ure 4.10(a) and Figure 4.10(b), we find that increasing VPE from 0.2 to 2.5 has
slight differences that human eye can recognize on the recontructions. Only in 33

th

slice, we find more noise in the circular object.
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(a) The reconstruction in ideal case

(b) The reconstruction with SNR = 50

Figure 4.8 The comparison of reconstuctions between two cases: (a) Ideal case: full tilt
ranges without noise and projection angle error; (b) Noise case: only noise are introduced
in projection images, SNR = 50.
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(a) The reconstruction with tilt range from �60� to 60�

(b) The reconstruction with VPE = 2.5

Figure 4.9 The comparison of reconstuctions between two cases: (a) Missing wedge case:
only the tilt range is limited from �60� to 60�; (b) Projection angle error case: only variance
of projetion angle error is set to be 2.5.
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(a) The reconstruction with low VPE

(b) The reconstruction with high VPE

Figure 4.10 The comparison of reconstuctions between two different VPE settings: (a)
Low VPE case: full tilt range, SNR = 100, VPE = 0.2; (b) High VPE case: full tilt range,
SNR = 100, VPE = 2.5.
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5. CONCLUSION

The aim of this thesis is to characterize alignment problem in 3D eletron tomography.
In order to complete this work, the whole experiment can be divided into three parts:

1. In data acquisition, we use min-max interpolated NUFFT to get simulated
projection images;

2. In practical simulation, we introduce and analyze alignment problem in 3D
electron tomography;

3. In reconstrcution experiment, Fourier-based iterative reconstruction method
is the mainly used way to get 3D volume from noisy and miss aligned data.

We have seen how to get projection images in 3D electron tomography. Unlike
traditional digitalized Radon transform in 3D casde, NUFFT with min-max is a
faster and more accurate way to simulate projection data in frequency domain.
However, there are still challenges in finding more optimal interpolator, so that the
projection data may not be exactly the same as projection images in practice.

During data acquisition, the volume is projected with ill-posed projection angles in
limited tilt range. However, the ratotation matrix used in reconstruction is calcu-
lated with predefined projection angles. In such way, the reconstruction method
needs to align data during reconstruction in a refinement way.

Fourier-based iterative method (FIRM) reconstructs 3D volume in frequency domain
by using NUFFT. By using conjugate gradient (CG), FIRM is converged fast in 100
iterations. However, as the tilt range decreases the missing wedge effect enlarges,
more iterations are needed to get optimal reconstructions. When the projection
angle error does not vary too much (within 0.2 variance change), the reconstructed
3D volume has little changes which was measured both with normalized mean square
error (NMSE) and Fouirer shell correlation (FSC).
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In current situation, we found missing wedge is the main factor that affects the
reconstruction performance. Without powerful reconstruction methods to compen-
sate the missing gaps, the reconstruction volume is sharply blurred. Whereas, miss
alignment has less effect compared to missing wedge. Although increasing VPE
causes error in reconstructions, less differences are found by human eyes.

In the further work, more precise method that collects projection data is needed in
simulation part. In severe situations when there are certain gaps in Fourier space
(the missing wedge effect), regularization can alleviate the ill-conditioning of the
problem. If prior knowledge about the 3D volume is avaible during reconstruction,
this method may works better.
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