
HENRY LINJAMÄKI
INSTRUCTION MEMORY HIERARCHY GENERATION
FOR CUSTOMIZED PROCESSORS

Master of Science thesis

Examiner: D.Sc. Pekka Jääskeläinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 14th January 2015

i

ABSTRACT

HENRY LINJAMÄKI: Instruction Memory Hierarchy Generation
for Customized Processors
Tampere University of Technology
Master of Science thesis, 57 pages, 0 Appendix pages
November 2015
Master’s Degree Programme in Electrical Engineering
Major: Embedded systems
Examiner: D.Sc. Pekka Jääskeläinen
Keywords: memory hierarchy, loop buffer, cache, transport triggered architecture, pro-
cessor generation

Due to the performance gap between processor and memory, instruction memory
hierarchy design is a mandatory part of processor designs. Memory hierarchy does
not only help on keeping up performance, but it also affects the power consump-
tion of large memories. Designing for low power is important aspect for embedded
processors used in mobile devices, and well designed memory hierarchy can reduce
power consumption in memories considerably as it can mask high latencies. In this
thesis, generation of customized memory hierarchy was implemented and integrated
into processor generator of TTA-based Co-design Environment (TCE) developed at
Tampere University of Technology. The generator reads an description of instruction
memory hierarchy and produces a TTA-based processor that includes the specified
hierarchy. In addition, cache statistics collection was implemented to support the
exploration of suitable memory hierarchies. Implemented features were verified in
register transfer level simulation using TCE’s processor test benches. Area and
power estimations were produced using a synthesis tool, for three low power proces-
sor designs targeted to run at least at 1 GHz.

ii

TIIVISTELMÄ

HENRY LINJAMÄKI: Käskymuistihierarkian generointi räätälöidyille suorittimil-
le
Tampereen teknillinen yliopisto
Diplomityö, 57 sivua, 0 liitesivua
Marraskuu 2015
Sähkötekniikan koulutusohjelma
Pääaine: Sulautetut järjestelmät
Tarkastajat: TkT Pekka Jääskeläinen
Avainsanat: muistihierarkia, siirtoliipaisuarkkitehtuuri, silmukkapuskuri, välimuisti, pro-
sessorigenerointi

Prosessoriytimien ja muistien välisten suorituskykyvajeen vuoksi käskymuistihie-
rarkian suunnittelu on erottamaton osa prosessorien suunnittelua. Muistihierarkia
ei pelkästään pidä prosessorien suorituskykyä yllä, mutta se voi myös vaikuttaa
suurten muistien tehonkulutukseen. Sulautettujen prosessorien suunnittelu vähä-
virtakulutteisiksi mobiililaitteita varten on myös tärkeää, koska hyvin suunniteltu
muistihierarkia voi vähentää tuntuvasti tehonkulutusta eikä vain pelkästään no-
peuta muistien käyttöä. Tässä diplomityössä toteutettiin räätälöityjen muistihie-
rarkioiden generointi, joka integroitiin prosessorigeneraattoriin. Tämä generaattori
on osa Tampereen teknillisellä yliopistolla kehiteltyä TTA-based Co-design Environ-
ment (TCE)-kehitysympäristöä. Se lukee syötteenä muistihierarkiakuvauksen, jonka
perusteella se luo prosessorin, joka sisältää määritellyn hierarkian. Lisäksi tuotet-
tiin työkalu taltioimaan generoitujen muistihierarkioiden suorituskykytilastoa, jo-
ta käytetään sopivan hierarkiakonfiguraation etsimisessä. Toteutetut ominaisuudet
verifioitiin rekisterisiirtotason (register transfer level, RTL) simulaatiossa käyttäen
TCE:n luomia prosessoritestipenkkejä. Pinta-ala- ja tehoarvioita tuotettiin käyttäen
synteesityökalua kolmelle vähintään yhden gigahertsin kellontaajuutta käyttävälle
matalan tehonkulutuksen prosessorikonfiguraatiolle.

iii

PREFACE

The work in this M.Sc thesis was completed at the Department of Pervasive Com-
puting at Tampere University of Technology during 2014 and 2015.

I would like to thank Pekka Jääskeläinen, D.Sc., for the opportunity to work on this
thesis project. The thesis project has been interesting and challenging. Designing
and implementing automated tools is something I would like do in the future. I am
also grateful for Pekka Jääskeläinen for his guidance in the thesis work.

I would also thank all my coworkers in the Customized Parallel Computing (CPC)
group for creating a relaxed and interesting work atmosphere. Especially, I would
like to thank Joonas Multanen for his help on the power measurements, and Lasse
Lehtonen for his advices.

Finally, I would like to thank my family for their invaluable support on my studies
and life.

Tampere, November 23

Henry Linjamäki

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Customized Processors . 3

2.1 Transport Triggered Architecture . 3

2.1.1 Processor Organization . 4

2.1.2 Programming Model . 5

2.2 TTA-based Co-design Environment 5

3. Instruction Memory Hierarchies . 7

3.1 Instruction Cache . 8

3.2 Bus Arbiter . 11

4. Processor Generation in TCE . 12

4.1 Processor Generator . 12

4.1.1 Processor Generation Flow . 13

4.1.2 Instruction Pipeline . 14

4.2 Netlist Module . 15

5. Configurable Loop Buffer . 18

5.1 Setup Operation and Operation Principle 18

5.2 Usage in Program Code . 19

5.3 Using Loop Buffer in Design . 20

5.4 Hardware Implementation . 20

5.5 Integration . 23

6. Instruction Memory Hierarchy Generation 25

6.1 Instruction Memory Hierarchy Customization 25

6.2 Instruction Cache . 27

6.2.1 Implementation Details . 29

6.3 Instruction Arbiter . 31

6.4 Integration into ProGe . 33

6.5 Implementation of Cache Statistics Collection 36

v

7. Verification . 38

7.1 Automated Test Generator . 38

7.1.1 Usage . 39

7.1.2 Test Generation Framework . 42

7.2 TTA Processor Test Bench Improvements 43

7.3 Test Environment . 46

7.4 Loop Buffer Verification . 47

7.5 Memory Hierarchy Generation . 48

7.5.1 Instruction Cache Test Case Generation 48

7.5.2 Verification . 48

8. Future Work . 52

9. Related Work . 53

10. Conclusion . 54

Bibliography . 55

vi

LIST OF FIGURES

2.1 An example of a TTA architecture 4

3.1 A depiction of memory hierarchy . 8

3.2 A logical depiction of an instruction cache. 9

3.3 The cache associativity configurations 11

4.1 The processor generator tool . 12

4.2 The structure of default instruction pipeline 15

4.3 The RTL description of default instruction pipeline 15

4.4 The classes of Netlist module . 16

5.1 Execution template of lbufs operation 19

5.2 The Loop buffer placement within processor core 21

5.3 The loop buffer structure . 21

5.4 The finite state machine of loop buffer control 22

5.5 The loop buffer behavior . 22

5.6 HDL source instantiation with the HDL instatiator 24

6.1 The memory hierarchy structure definition concept 26

6.2 An example of a memory hierarchy definition 26

6.3 The structure of L1 instruction cache template 29

6.4 The control FSM of L1 instruction cache template 30

6.5 The structure of instruction bus arbiter 31

6.6 The structure of instruction bus guard block 32

vii

6.7 The processor netlist block composition hierarchy 34

6.8 The netlist block classes for instruction cache 34

6.9 The netlist block classes for instruction bus arbiter 35

7.1 The test generator tool . 38

7.2 The simplified view of test generator framework 42

7.3 The RTL-simulation time limit method 45

7.4 The verification process . 47

viii

LIST OF TABLES

4.1 Netlist classes and their rough correspondence to ones in HDL lan-
guages of Verilog and VHDL. 17

7.1 OSAL keywords and commands for operand input validation and test
vector generation. 41

7.2 The cycle counts and miss rates for MCP-L1-8-1-16. 49

7.3 The cycle counts and miss rates for MCP-L1-4-4-16. 49

7.4 The cycle counts and miss rates for MCP-L1-1-1-128. 49

7.5 The area figures from synthesis. 50

7.6 The power figures for MCP-L1-8-1-16. 50

7.7 The power figures for MCP-L1-4-4-16. 50

7.8 The power figures for MCP-L1-1-1-128. 51

ix

LIST OF ABBREVIATIONS AND SYMBOLS

ADF Architecture Definition File
AMAT Average Memory Access Time
ASIP Application-Specific Instruction Set Processor
CU Control Unit
DRAM Dynamic Random Access Memory
FU Function Unit
HDL Hardware Description Language
HLL High Level (programming) Language
IC Interconnect (Network)
ILP Instruction-Level Parallelism
IDF Implementation Definition File
IU Immediate Unit
LFSR Linear Feedback Shift Register
LRU Least Recently Used
MCP Micro-Controller Processor
MCU Micro-Controller Unit
NOP No-operation
PIG Program Image Generator
ProGe Processor Generator
RF Register File (Unit)
RTL Register Transfer Level
SRAM Static Random Access Memory
TeGe (Automated) Test Generator
TCE TTA-based Co-Design Environment
TCEASM TCE Assembly Code (File)
TPEF TTA Program Exchange Format
TTA Transport Triggered Architecture
XML Extensible Markup Language

1

1. INTRODUCTION

Energy-efficiency is an important design aspect for today’s electronic devices utiliz-
ing processors. It affects battery life in mobile devices, heat production and spending
on electricity. For example, modern devices, such as smart phones, have increasing
demand for more powerful processors and larger main memory for running more
advanced applications. Both of the demands increase power consumption.

One solution for preserving or improving energy-efficiency is to design processors
that are targeted for an application area. General purpose processors (GPP), as
they are called, are targeted for executing a wide range of applications. For specific
applications, fixed features in GPPs can be excessive and, hence, consume power
unnecessarily. Therefore, designing a processor just for a small application area
can save energy, as only the needed functionality is included - without performance
loss. Energy-efficiency can be further increased by adding right features. By adding
suitable accelerators, programs can be executed more efficiently in respect of power
consumption.

Power consumption of memories is caused by dynamic activity and leakage. Both of
them can be addressed by using memory blocks of low power design. Nevertheless,
there is room for improvements. It is well known, that most of the time programs run
in loops. This means that same sequences of code retrieved from memory multiple
times. Memory hierarchy designs exploit this property by caching data in smaller
memories. The smaller the memory is, the faster and less power consuming it is. In
high performance computing, caches are mainly used for masking high latencies of
memories [1], but in low power applications the power-saving is more pronounced.

There exists several ways to implement memory hierarchies. Designing a memory
hierarchy is a trade-off between chip area, performance, cost and power consump-
tion. For finding a suitable hierarchy design, several implementations with different
parameters and features may need to be tried out. Resulting candidates need to be
tested for correctness. This process can be iterative, laborious and time-consuming.

This thesis project addressed the inconveniences of implementing a memory hierar-

1. Introduction 2

chy by streamlining some parts of the process. This includes tool-assisted generation
of customized instruction memory hierarchy and tools to verify and to collect per-
formance statistics from it.

The implementations of the work are integrated into TTA-based Co-design Envi-
ronment (TCE) [2] where the memory hierarchy generation was requested. TCE,
developed at Tampere University of Technology, provides tools for developing ap-
plication specific instruction set processors (ASIP) based on transport triggered ar-
chitecture (TTA). The static nature of TTA suits well for low power applications.
TCE covers developing of datapath components aspect, but it lacked customization
of instruction memory hierarchies.

This thesis is divided to chapters as follows: Chapter 2 gives background of cus-
tomized processors the part that is relevant for instruction memory hierarchies.
TCE is introduced in more detail. Chapter 3 is an introduction to common in-
struction memory hierarchy solutions and basic concepts. Chapter 4 introduces
processor generation, which is the target for integrating most of the thesis work
in TCE. Chapter 5 tells about a loop buffer implementation, its automatic gener-
ation in TTA processors and integration into TCE. Chapter 6 explains about how
instruction memory hierarchy generation is utilized in TCE, and implemented and
integrated in processor generation. This chapter also includes statistics collection
from memory hierarchy and its implementation. Chapter 7 tells about new tools
for verification. The verification of implementations and its process is explained.
Chapter 8 proposes extensions and improvements to the work made in this thesis.
Chapter 9 introduces and compares work of others regarding the memory hierarchy
customization and loop buffer implementation. Finally, in Chapter 10 the thesis is
concluded.

3

2. CUSTOMIZED PROCESSORS

Customized processors are tailored processor designs targeted at a specific applica-
tion area. An application area for customized processors is usually narrower than of
GPPs, and it can be even be just a couple of selected tasks. Reasons for deciding on
a customized processor, instead of a GPP, likely arise from the design constraints.
GPPs may have excessive features, inadequate performance, may not meet real-time
requirements and can be power-hungry for targeted application domain [3]. With
processor customization, considerable improvements over GPPs can be achieved in
terms of chip area, energy-efficiency, performance and cost.

There are abundant number of customization points in processor design to choose
from: number of computation units and registers, number of cores, processor archi-
tecture paradigm, pipeline design, design of instruction set, interconnect network
design and others. One an important aspect of processor design is the memory
system design. This is due to the large performance gap between the memory and
processor cores [4, p. 391].

Customization of processors have been unfeasible due to the enormous design effort
for the reasons listed in [1, p. 151]. Fortunately, recent tools are helping the case
by assisting in the design of customized processors and automating or streamlining
generation and verification of customized processors and, thus, making them more
accessible. Such tools are Tensilica Xtensa [5] and TCE [2], for example.

2.1 Transport Triggered Architecture

TTA is a statically scheduled architecture relative to very long instruction word
(VLIW). Modularity of both the architectures makes them scalable and can be
designed for instruction-level parallelism (ILP). Differences between TTA and VLIW
are that [6, 3]:

• VLIW processors have complex register file (RF) and bypass network, whereas
TTA can avoid it.

2.1. Transport Triggered Architecture 4

• Data paths of a TTA processor are visible and controllable; allowing program-
mers and compilers to utilize data bypasses and, thus, reducing RF usage.

• Instructions in VLIW specifies operations to be executed. In TTA, instructions
specify data transports between FUs and RFs and operations are performed
as side effects of the transports.

• As a downside, TTAs usually have wider instruction words than VLIW due to
increased control of the interconnect network (IC).

2.1.1 Processor Organization

IU: CU:

cu

Control UnitFunction Unit Register File Immediate UnitFunction Unit

Figure 2.1 An example diagram of a TTA architecture.

In the Figure 2.1 is an example TTA processor or “machine”. A TTA machine
consists of number of TTA units which are connected via IC.

Different types of TTA units are function unit (FU), register file RF, control unit
and Immediate Unit (IU). Function units are units for computations. Each has one
or more operations they can execute. For example, in the figure 2.1 arithmetic logic
unit (ALU) performs basic arithmetic operations and load store unit (LSU) accesses
data memory. Control unit (CU) is a special case of FU and controls the flow
of programs run in the TTA processor and is responsible for instruction fetching.
Example control flow operations are jump and call. Register Unit (RF) is unit for
temporary storage. Each RF has a number of register entries of specified width.
Immediate Unit (IU) holds values of long immediates. IUs are basically read-only
RFs whose values are loaded from instructions.

2.2. TTA-based Co-design Environment 5

The interconnect of a TTA machine consists of ports, sockets and transport buses.
The ports are the interfaces of TTA units. Values are transported between them and
sockets, which connects ports to transport buses, indicated by filled circles in the
figure, and arrow denotes the direction of the value transportation. Transport buses
move values between sockets in which they are connected. On a bus, a single value
can be transported at a time from single input socket to another output socket.

2.1.2 Programming Model

Programs in TTA are made of data transports between ports. In other word, pro-
grammers and compilers have control of the IC. This differs from traditional pro-
cessor architectures called operation triggered architecture (OTA), where program
specifies operations to be executed as in VLIW. For example, a snippet below adds
two values from registers R1 and R2 together and stores its result into register R3:

ADD R1, R2, R3

TTA instructions consists of moves where each one specifies a data transport. An
equivalent code of earlier example in two instructions of TTA assembly language is:

RF.1 -> ALU.in1t.add, RF.2 -> ALU.in2 ;
ALU.out1 -> RF.3 , ... ;

In the first instruction values are moved from registers to FU ALU port in1t and
in2. One of the ports, in1t, is a triggering port. the operation add is performed
when a move is made to this port. The other port, in2, is operand port that does
not trigger any operation in the ALU. In the later instruction result of the operation
from ALU’s result port is moved to register. The three dots “...” on a slot denotes
a no-operation (NOP or NOOP), where no transfer is made.

2.2 TTA-based Co-design Environment

TTA-based Co-design Environment (TCE) is a tool set for designing customized
TTA processors [2] and developing programs for them. The environment provides
tools for design exploration, a retargetable instruction set simulator supporting user
defined operations, processor generator, program image generator and retargetable
high level language compiler.

2.2. TTA-based Co-design Environment 6

TTA Processor Designer TTA Processor Designer or ProDe is a tool with
graphical user interface for designing TTA processors.

TCECC and TCE assembler TCECC is retargetable compiler for compiling
TTA programs from high level languages - such as C/C++. It uses Clang as its
front-end [7] and LLVM [8] as its middle-end. Retargetability of tool allows same
source code to be compiled to different TTA machines at ease. TCE assembler
compiler for handwritten TTA assembly code [9]. Both tools produce output file in
TTA Program Exchange Format (TPEF).

Processor Generator Processor Generator (ProGe) is tool that generates hard-
ware description of TTA processors from architecture and micro-architecture de-
scriptions [10]. This is the tool, where customized instruction memory hierarchy
generation is integrated in TCE.

Proram Image Generator Program Image Generator (PIG) is tool that takes
TPEF programs as input and creates bit-level program images of TPEF for proces-
sors generated by ProGe [10].

Retargetable TTA Instruction Set Simulator TTA Instruction Set Simu-
lator (TTAsim) is TTA instruction set-architecture simulator for simulating TTA
programs in TPEF format in a TTA machine [11]. The simulator is capable to
simulate any operation in the machine through Operation Set Abstraction Layer
(OSAL). OSAL is database for operations and it stores static and dynamic proper-
ties of operations. Users can define their own operations, which then can be used in
the TTA-simulations.

In this thesis data extracted from TTAsim is used in verification and for automated
test case generation.

7

3. INSTRUCTION MEMORY HIERARCHIES

For embedded processors, both the performance and energy efficiency is a concern.
Instructions of programs that processors executes resides in a memory system, that
is for example an off-chip dynamic random access memory (DRAM) or an on-chip
static random access memory (SRAM). Large memories are inherently slow [1] and
consume more power than smaller ones [12]. Therefore, instruction fetching becomes
a bottleneck due to slow and energy inefficient memories.

The issues of the large memories can be diminished by exploiting the nature of
program execution. Most of the time, instructions of programs are fetched in linear
sequence from memory. Programs have sections of instructions, loops and routines,
that are repeatedly executed. These properties lead to a behavior that is called the
principle of locality [1, 4]. It is divided to two forms: a temporal and spatial locality.
Temporal locality states that accessed memory location will be likely to be accessed
again in the near future. Spatial locality states that a subsequent memory access
will be nearby the previous one.

With the principle of locality, instead of fetching instructions from slow main mem-
ory, they are fetched most of the time from smaller specialized memories. These
specialized memories, caches, are in between the processor core and main mem-
ory. They stash data blocks from main memory requested by processor cores for a
later reuse. Caches can be divided into two types: transparent caches and software-
managed caches [13]. In the former, processor cores are not aware there is caches
in between it and a main memory. However, caches of the latter type are visible to
the cores and are controlled by them in some degree.

Processor core, caches and main memory forms a memory hierarchy (Figure 3.1).
Parts in between the processor core and the main memory of this organization are
called levels. Levels closer to processors have small caches, which are fast. Moving
closer to the main memory, the level increases in capacity at the cost of speed and
power consumption. [4]

It is common case that the main memory is shared along multiple processor cores and

3.1. Instruction Cache 8

Core
Smallest, Fastest

L0

L1

L2

Main Memory Largest, Slowest

Registers

DRAM, SRAM

Faster
More

Capacity

Figure 3.1 A depiction of memory hierarchy.

the memory is accessed via single memory bus. Therefore, a scheme for alternation
of shared bus access among multiple processor cores is needed - an arbitrator. It is
a unit that gets access requests to shared resources and assigns turns for the access
using some algorithm - an arbitration scheme. [14]

The performance of a memory hierarchy depends on properties of its components and
characteristics of programs executed in the processor core(s). Two useful metrics
to measure the performance of the memory hierarchy and its parts are miss rate
and average memory access time (AMAT). As processor cores request data from the
memory, it is handled first in first level cache. If the cache has the requested data,
it is a hit. On the contrary, it is a miss, and the cache forwards the request to the
next level. The miss rate tells the portion of the misses of all accesses made to a
cache [4]. When miss occurs in a cache, the requested data have to be fetched from
slower levels. The AMAT tells how long it takes the requested data to arrive to
processor cores on average [4].

The rest of this chapter discusses about components of the instruction memory
hierarchy, that are implemented and integrated in this thesis. They are instruction
cache, loop buffer and instruction bus arbiter.

3.1 Instruction Cache

Caches are transparent memories, which store copy of data fetched from lower cache
levels or the main memory for later reuse. In case of instruction caches, the fetched
data pieces are instructions of programs.

In the Figure 3.2 a logical structure of a instruction cache is depicted. A block
is a set of, at least one or more, sub-blocks or words. It is an unit that is fetched
at a time from the lower level. A block is associated with a tag and a valid bit
(’V’ in the figure). The tag is part of the highest address bits of memory location

3.1. Instruction Cache 9

Figure 3.2 A logical depiction of an instruction cache.

address, from where a processor core requests an instruction in main memory. The
valid bit, a boolean value, tells if a block represents a copy of data from the main
memory at some memory location. The tag and valid bit together determines if a
requested instruction is present in the cache. If the requested word is present, the
cache supplies it to the processor. Since a block may consist of multiple words, the
lowest bits of the address are used to select the requested word.

Basic cache data structure is formed from an array of entries of the block, a tag and
a valid bit. index part of the address is used to point an entry in the cache.

Whole process of retrieving an instruction through the cache is as follows: A pro-
cessor core fetches an instruction from some memory address. The request is first
handled in the cache. Index part is used to select an entry from the cache data
array. Next, presence is determined. If the valid bit in the entry indicates false,
then it is clear, that the requested word is not in the cache. On the contrary, if the
bit states true, the presence deduction is continued by comparing the tags. If the
tags do match, the requested word is in the cache, and otherwise it is not. After
the presence check, the process continues in one of two following cases. In the first
case, if a hit occurred, then the requested word is given to the processor core. In
the other case, cache fetches the missing requested word from the lower levels. The
fetched block is placed into the block data array at the indexed location, replacing
possible other block from a different memory location, and the tag data is updated.

The fetching process described above applies to so called direct-mapped caches. The
same process for associative caches works a bit differently. In Figure 3.3, the types

3.1. Instruction Cache 10

of cache associativity is laid out and their logical structure is depicted. When a block
is fetched to a direct-mapped cache, it has only one location in block data array,
where it can be placed, and the location is pointed by index part of the address.
In direct-mapped caches there is a chance that useful, most frequently referenced
block, gets replaced or “evicted”.

In associative caches a block can be placed in one of the multiple locations (or
“ways”) at the same index depending on the degree of associativity. Such a construct
increases the chance to keep the most frequently used blocks in the cache. This is
achieved by increasing cache’s associativity at the cost of search complexity [1].

Replacement Policy As cache gets filled, at some point the cache will run out
of available slots, where a block can be placed (at index location) freely. Therefore,
an algorithm, which decides what block is evicted to make room for another one,
is needed. replacement policy is an algorithm that selects a block to be replaced in
cache set. In this thesis two replacement policies are presented.

Random replacement policy pseudo-randomly selects a block to be evicted. This
policy is simple to implement and does not take much area. Disadvantage of the
policy is that it may evict useful blocks from the cache, but on average the policy
has good performance [1].

In least recently used (LRU) replacement policy a block to be evicted from the set
is the one that has been referenced the least recently. LRU outperforms random
policy in small caches [4]. LRU is usually implemented in small caches since keeping
track of the “staleness” of the blocks takes up area [4].

Selection of replacement policy affects to the total size of the cache. The Random
policy, being simpler to implement, takes less area than the LRU. Area requirement
with LRU policy depends on the degree of associativity.

Loop buffer

Loop buffers or loop caches are used as level 0 caches and optimized for program
loops [12]. They are useful in programs utilizing tight loops. Reusing instructions
from the loop buffer reduces the amount of accesses made to the cache and memory,
which may lead to a considerable power saving as programs tend to execute loops
most of the time.

3.2. Bus Arbiter 11

Figure 3.3 Cache associativity. The figure shows cache configuration each having total
of eight blocks in them with (a) direct-mapped, (b) semi-associative (2-way) and (c) full-
associative associativity.

3.2 Bus Arbiter

An arbiter is a hardware unit that prevents simultaneous access to a shared bus and
decides, which master or requestor (a master that is requesting), gets access to it
at a time. Masters, who need the access to the shared bus, sends a request signal
to the arbiter. The arbiter then decides on one of the requestors using so called
arbitration scheme and signals it a permission by sending a grant signal. [14]

Round Robin Arbitration Scheme One of the used arbitration schemes is
round-robin and it is fair and pre-emptive scheme that guarantees that no requestor
will ever starve [14]. That is, every requestor receives access to a shared bus even-
tually. In the scheme, every requestor is granted a access sequentially for predefined
amount of time. When the time runs out or the access is no longer needed, the
control of the bus is transferred to a next requestor in the line. While the scheme
look for the next requestor, it skips over non-requesting masters.

12

4. PROCESSOR GENERATION IN TCE

In this thesis, most of the implementations are integrated into the processor genera-
tor (ProGe) tool. In this chapter, processor generator is introduced, its generations
flow and internal hardware modeling explained briefly to clarify the integration con-
text and, finally, changes made to internals of the ProGe.

4.1 Processor Generator

Figure 4.1 The processor generator tool that takes in description files and produces HDL
source files of the processor.

In the Figure 4.1 is tool, processor generator (ProGe) for creating synhtesizable
hardware description of TTA processor. The ProGe takes as input a set of archi-
tectural and micro-architectural description files: architecture definition file (ADF),
implementation definition file (IDF) and optionally binary encoding map (BEM).
All input files are in human-readable extensible markup language (XML) format.
The processor is constructed using these description files. Resulting output of the
ProGe is synthesizable hardware description of the processor in hardware description
language (HDL) of choice - for example VHDL or Verilog.

Additionally, the ProGe can create a processor test bench, which allow simulation
of program images in the created processor in RTL-simulation. The processor test
bench instantiates the generated TTA processor and memory blocks for instruction
and data memories. The RTL-simulation of the test bench is controlled by tool

4.1. Processor Generator 13

specific compilation and simulation scripts, where the former prepares the test bench
for the simulations and the latter runs a simulation with program images currently
loaded by PIG.

ADF Architecture definition file is a file that describes the TTA processor archi-
tecture as in Figure 2.1. It only includes semantics about the architecture that
programmers and processor implementers need to know for programming valid pro-
grams and implementing a processor that can run the programs. What is excluded
from the ADF is the actual implementation details of the processor - the micro-
architecture.

IDF Implementation definition file contains the implementation details of the TTA
processor. The IDF refers to static implementations of TTA units, that are stored
in hardware databases (HDB). Creation of the IC and instruction decoding unit is
delegated to the Interconnect and decoder generator plug-in (ICDG). IDF point to
the plug-in that is used in processor generation.

BEM Binary encoding map is a file that defines how the instructions in a TTA
machine are encoded. This is optional for ProGe and is implicitly generated from
ADF if it is not provided.

4.1.1 Processor Generation Flow

Processor is built in ProGe as follows: The flow starts with reading the input descrip-
tion files, which are deserialized into object model counterparts. Using the model,
ProGe then does validation to check if the processor is feasible to be generated.

If the target machine is feasible to implement the ProGe continues to build a pro-
cessor core template in the HDL-independent structure object model provided by
the Netlist module. The template is a preliminary model, that includes TTA unit
implementations loaded from HDB(s) and instruction pipeline structure. In this
phase the implementations of instruction pipeline are not yet selected.

The ProGe calls ICDG-plug-in, which finishes the processor core template by adding
dynamically generated IC, and instruction decoder unit and selecting implementa-
tion for the instruction fetch unit.

4.1. Processor Generator 14

After the ICDG call, the processor core is completed. In case of multi-core TTA
processors the ProGe generates a wrapper that instantiates the earlier built TTA
core multiple times. In this phase, entities or features shared across the cores are
generated too.

In final phase of the flow, the HDL sources of the processor are generated. HDL
sources of TTA unit implementations are copied from the HDB(s) and processor
structure model is converted to the target HDL using a writer module. Also, pro-
cessor wide files are written and copied. The files includes packages holding processor
wide parameters and some common HDL utilities.

4.1.2 Instruction Pipeline

Relevant to this thesis is instruction pipeline used in TTA processors. Parts of the
instruction memory hierarchy are placed within and around of it. In the Figure 4.2
is structure of instruction pipeline that is generated by default in ProGe.

Instruction fetch unit fetches instructions from the memory via the memory inter-
face. There is a couple types fetch units provided by TCE: normal fetch unit that
fetches fixed sized instructions and another that fetches variable length instructions
[15]. In both types the width of the fetch block is fixed, but in latter fetch unit type,
a single fetch block may have zero or more instructions. The fetch unit expects
that the instruction memory supplies data from the given address when memory
enable signal is active. If the memory can not response (in time) to the request,
it can stall the instruction fetching by asserting busy signal. The fetch unit is the
control unit in TTA machines and therefore handles control-operations bound to it.
If instruction decompression is used in the processor, then a instruction decompres-
sor unit implemented by the program image generator. In instruction decoder the
instruction words are decoded into control signals of data transports.

The process of fetching data from the instruction memory and converting it into
control signals takes some cycles. Each unit in the Figure 4.2 takes zero or more
cycles to transfer data. In the Figure 4.3 is shown a register transfer diagram of
default four cycle delay instruction pipeline that is generated by ProGe. The latency
of the pipeline visible in ADF and in TTA program code it appears as delay slots
after control-flow operations. For example, if a machine has n delay slots, then a
control-flow operation does not take place until n cycles and during those cycles
instruction are executed.

The global lock and global lock request signals are for processor stalling. They are

4.2. Netlist Module 15

Figure 4.2

used in cases, where a FU can not handle operations in time, or the instruction
memory is busy. The active global lock signal halts all activity in the processor and
it is kept that way until the lock issuer is ready to continue.

Figure 4.3 The default four delay instruction pipeline and its stages. the acronyms in
the diagram stands as NE for Next, IF for Instruction Fetch, DC for Decode and EX for
Execution. Note that the EX stage at right spans to the left side as Instruction fetch unit
is part of the CU.

4.2 Netlist Module

Netlist module provides a way to model hardware blocks HDL independently. The
ProGe internally constructs processors by creating building blocks, from the imple-

4.2. Netlist Module 16

mentation units from HDB and internal library, and connecting them together. The
building blocks have enough information so that HDL sources can be written out.

In the Figure 4.4 is presented basic classes that are used to model the hardware
structures. A Processor is constructed by using these classes as follows. Netlist
blocks are created to model the implementation source files - the ones that are
stored in HDB and internal library. The blocks have same interface, formed by
netlist ports and parameters, as what they model after. The blocks are empty
inside as their realization is provided by the source files.

Next, another block can include the above blocks and define connections between
their ports and own like in figure 4.4. For example, a TTA processor is formed
like this in the ProGe. The HDL source codes of these combining netlist blocks are
created by netlist writers. A netlist writer reads the netlist structure at block level
and produces a HDL source file after it. The netlist classes provides enough infor-
mation, so netlist writers can write valid HDL sources that instantiate successfully
other blocks and make connections. For example a netlist port has information of
its name, direction and port width. In the table 4.1 shows how classes module maps
to language features of Verilog and VHDL.

Figure 4.4 The classes of the Netlist module and their correspondence to logically de-
picted hardware structure, and a writer class that generates HDL source from netlist block
structure.

More about the Netlist module is explained in master thesis of [10]. However,
the module have been extended. The additions and changes are explained in the
following:

Isolated netlist blocks Objects of NetlistBlock class are freely modifiable - ports,
parameters, sub-blocks and internal connections may be added, changed and re-

4.2. Netlist Module 17

Table 4.1 Netlist classes and their rough correspondence to ones in HDL languages of
Verilog and VHDL.

Netlist module Verilog VHDL
NetlistBlock Module Entity
NetlistPort Input/Output Port
Parameter Parameter Generic
Package Include Package

PortConnectionProperty Wire Signal

moved. This makes the class unsuitable to derive specialized netlist block classes
that would need restricted capabilities. Netlist module was changed so all netlist
block classes are derived from BaseNetlistBlock class that do not public modification
methods.

Overriding netlist writer Old way of producing HDL sources was to give a
netlist writer a reference to a block for which source file is written. In the new way,
the netlist block classes have overridable write() function, which allows specialized
netlist blocks to write HDL sources by their own.

Hierarchical netlist structure In principle the old Netlist module could model
hierarchical block structures - blocks that have sub-blocks that have sub-blocks and
so on. However, the bookkeeping of connections between ports in design wide Netlist
object was complicated for netlist writers. To support hierarchical block structures
in minimal changes, each netlist block has its own Netlist object for bookkeeping its
internal connections.

Signal semantics Netlist ports can have a Signal object, which gives the signal
semantics of the port. The Signal object attaches additional information to the port
such as its type and active state. This is used, for example, to automatically connect
clock and reset ports in netlist blocks.

Port groups A feature for grouping netlist ports were added to compose bus
interfaces. The grouping is done with NetlistPortGroup class, which has methods
for adding ports into the group. Like netlist ports, the netlist port groups can also
have semantics through a SignalGroup class. This can be used to define rules how
two port groups, that are either same or different types, are connected together.

18

5. CONFIGURABLE LOOP BUFFER

A configurable loop buffer is implementation of software-managed, level 0 instruction
cache. The loop buffer allows TTA machine to store sequence of instructions in its
internal buffer and repeat them as many times as required.

The loop buffer is part of instruction memory hierarchy customization. However,
the loop buffer is separated to its own chapter, because it is instantiated differently
than the rest.

First, in this chapter, operation principle of loop buffer is explained followed by its
utilization in a TTA processor design and program code. Finally, implementation
details are discussed.

5.1 Setup Operation and Operation Principle

The implemented loop buffer is software-managed and it does not act by its own. A
control mechanism is provided to use the loop buffer. In programs the loop buffer is
invoked by a control-flow operation called lbufs which stands for loop buf fer setup
and it is included in OSAL module base. The operation takes two input operands: a
loop body size and iteration count. The loop body size tells the size of the instruction
block included in looping and the iteration count tells how many times the block is
repeatedly executed (Figure 5.1, a). All input values of zero or above are valid.

Execution of the lbufs operation starts looping a block of instructions using the loop
buffer. The instructions accounted into loop body are instructions next after the
operation. However, if a TTA design has delay slots, then the accounted loop body
is after them. When execution reaches the defined loop body, the loop buffer starts
caching the instructions in the first iteration. After that, the cached instruction are
repeated from the buffer until iteration limit is met. While lbufs operation is acti-
vated no control-flow operations affecting program counter may be executed either
in delay slots or loop body. Doing so causes undefined behavior. This restriction
lasts until looping is done.

5.2. Usage in Program Code 19

Figure 5.1 Execution template of lbufs operation (a) and looping using jump operation
for comparison (b).

There exists a special case, where the lbufs operates differently. If iteration count
is zero, then the case is interpreted as no instruction are going to be executed in a
loop body. In this case the program execution jumps over the loop body.

Using lbufs operation for looping saves from executing delay slots that jump oper-
ation would have (Figure 5.1, b). A loop using jump operation have to execute
delay slots for each iteration and this is wasteful for very small loops in size. On
the other hand, lbufs only needs to execute delay slots once prior entering the loop.
Therefore, it can save from lots of NOP instructions in some cases.

5.2 Usage in Program Code

In assembly code the loop buffer is invoked using the lbufs operation. In the program
listing 5.1 is an example snippet of TCE assembly code utilizing the loop buffer. In
the example, the TTA architecture has three delay slots and operands iteration
count and loop body size are supplied via ports iter and pc of the CU. Port pc is the
port that triggers the operations in CU.

Program 5.1 The example invocation of loop buffer operation in TCE assembly code.
The loop computes Fibonacci numbers; two numbers per one iteration.
1 10 -> cu.iter , 2 -> cu.pc.lbufs ; # lbufs trigger
2 ... , ... ; # delay slot 1
3 0 -> RF.0 , ... ; # delay slot 2
4 1 -> ALU.in2 , ... ; # delay slot 3
5 ALU.out1 -> ALU.in2 , RF.0 -> ALU.in1t.add ; # loop body 1
6 ALU.out1 -> RF.0 , ALU.out1 -> ALU.in1t.add ; # loop body 2
7 ... , ... ; # After loop

5.3. Using Loop Buffer in Design 20

In the code listing on first instruction the machine is instructed to loop two instruc-
tions after delay slots for ten times. The iteration count (10) is carried in the first
move slot and the loop body size (2) in the second move slot. The move to pc port
triggers the lbufs operation.

5.3 Using Loop Buffer in Design

The loop buffer is enabled and included into a TTA processor design by adding
lbufs operation in CU and setting appropriate loop buffer bounds. The settable
bounds are loop-buffer-min-instructions and loop-buffer-max-instructions, which are
defined in ADF or alternatively in ProDe’s CU dialog. The bound loop-buffer-min-
instructions tells TCE compiler a minimum loop body size it can spawn the lbufs
operation for. This bound does not affect handcrafted assembly code. The bound
loop-buffer-max-instructions setting tells the maximum amount of instructions the
buffer can hold at once. This directly translates into the depth of the buffer. Setting
this to a higher value allows larger loops to be fitted, but in the same time increases
power consumption.

5.4 Hardware Implementation

In a TTA processor core, the loop buffer is placed in the instruction pipeline between
an instruction decompression and an instruction decoder unit as in Figure 5.2. The
loop buffer receives control signals from instruction fetch unit. The whole behavior
of loop buffer operation is divided among the fetch unit and loop buffer unit. The
fetch unit makes checks if the operand values of iteration count and loop body size
are reasonable to be used in the loop buffer unit. For example, behavior is the same
as not invoking the loop buffer at all, if iteration count is one or loop body size is
zero. Also, the fetch unit implements the behavior for the special case: iteration
count of zero. Rest of the behavior of loop buffer operation is implemented in the
loop buffer unit.

The implementation of the loop buffer unit was written in VHDL. The structure of
the design is depicted in Figure 5.3. It consists of buffer registers that hold the
instructions to be looped, multiplexers to control global lock and global lock request
signals and a buffer control that controls the behavior of the loop buffer. Control
interface consists of loop length, iterations and start. The start signal initates the
loop buffer using the other two as arguments for looping.

The behavior is controlled by look-ahead finite state machine (FSM) [16, p. 344]

5.4. Hardware Implementation 21

Figure 5.2 The Loop buffer placement within processor core.

Figure 5.3 The structure of the loop buffer.

presented in Figure 5.4 and two counter registers - one for iteration count and
another for indexing the buffer. In the FSM there are three distinctive (bolded state
labels in the figure) states and other two minor states that are active during stall
situations. The event buffer filled occurs when amount of stored instructions in the
buffer matches loop length. The event buffer filled occurs after requested block of
instructions have been stored and done looping occurs after all loop iterations have
been executed.

While no looping is requested the loop buffer is inactive (idle state) and instructions

5.4. Hardware Implementation 22

Figure 5.4 The finite state machine of loop buffer control. The conditions in the tran-
sition edges are expressed in boolean algebra.

Figure 5.5 The loop buffer behavior. (a) The loop buffer is in inactive state (idle state).
(b) The first iteration of the loop occurs. The instructions are passed through and saved
(gray filled boxes) for next iterations (fill state). (c) The saved instructions are repeated
from the buffer. The upper part of the pipeline is locked (playback state).

are passed through it (Figure 5.5: a). Also, global lock and global lock request signals
are passed through and does not affect the loop buffer.

The request to loop block of instructions is initiated by asserting the control signal
start with two values - loop length and iterations for duration of a clock cycle.
The loop length signal controls the range of instructions to be looped starting from
the instruction on the cycle, when the start was asserted. The iterations signal
signifies loop count. The loop buffer may also be initiated by supplying either
zero as loop length or zero or one as iterations, but the buffer will treat them as
NOP. After the initiation, the control signals are ignored until the looping process
is completed.

After initiation the loop buffer executes first iteration of the loop (Figure 5.5:
b). During this the instruction received from the upper stages of the instruction
pipeline are both passed through the loop buffer and stored in its internal buffer for

5.5. Integration 23

subsequent loop iterations. This continues until whole body of a loop has been seen.

After first iteration of the loop, the loop buffer locks up the upper part of the
instruction pipeline by asserting global lock request signal (Figure 5.5: c). This
signal leads to instruction fetch units enable port. The signal causes instruction
fetch to cease fetching from instruction memory and hence consumes less power.
The global lock request from the lower part of the pipeline is looped back as global
lock signal to preserve global lock functionality. On completion, after all iterations
have been elapsed, the buffer resumes into its idle state and awaits for new initiation.

As the instruction pipeline is stalled either by a FU or the instruction memory, the
loop buffer is needed to be stalled, too. Otherwise, the buffer stores duplicates of
the same instructions during stall. The signals global lock and global lock request
affects the loop buffer only when it is activated.

5.5 Integration

The loop buffer is automatically generated if an ADF describes a loop buffer op-
eration within the CU. The process of the inclusion is carried out within default
IC/Decoder generator plug-in.

The default ICDG plug-in makes netlist block model of the loop buffer instatiated
within TTA core netlist block and rewires pipeline connections. Actual HDL source
file of the loop buffer is copied to the target directory of the processor. Parameters
of the loop buffer (buffer depth and iteration port width) are appended to TTA
processor globals package.

The loop buffer is controlled by instruction fetch unit which is forefront actor of CU.
The unit is also based on template file and by default does not have any control
logic for loop buffer. Instead the logic is injected into the file using “placeholders”
in template file.

In the Figure 5.6 is the idea of the placeholders. In a template file there is place-
holders marked in pattern of <<placeholder, key, default>> or <<placeholder, key>>.
A class HDLInstantiator ’s function initiateTemplateFile() reads the file and seeks
for the placeholders. For each found placeholder pattern in a file, the instantiator
looks up for a entry by key. The placeholder pattern is replaced by the entry. If
there is no entry for a placeholder, it is replaced with empty string or with a string
in an optional field default.

Control logic of the loop buffer is injected into the instruction fetch unit like this.

5.5. Integration 24

Figure 5.6 An example of HDL source template file instantiation with HDLInstatiator
object.

Interface of the unit is altered by adding new ports for the operand port added in
the CU and for control signals of the loop buffer. The netlist block representation
of the unit is updated according to this.

The lbufs operation is defined in OSAL’s base module. Operands of lbufs operation
are mapped as followed: operand 1 is used for iteration count and operand 2 is for
loop body size.

25

6. INSTRUCTION MEMORY HIERARCHY
GENERATION

The loop buffer is automatically generated in TTA designs. However, the customiza-
tion of instruction memory hierarchy, its structure and its parameters, are defined
by the user

The chapter is divided as follows: First is explained how instruction memory hi-
erarchy is customized for a TTA processor and how processor generator proceeds
to create it. Next, available parts of the hierarchy, a level 1 instruction cache and
an instruction bus arbiter, are introduced followed by their implementation and in-
tegration details. Finally, a method of cache performance statistics collection is
introduced for the generated hierarchies, including the loop buffer.

6.1 Instruction Memory Hierarchy Customization

The instruction memory hierarchy is described in IDF. The idea of hierarchy de-
scription is depicted in Figure 6.1. The memory hierarchy structure is defined
inside of memory-hierarchy element and it consists of n hierarchy elements. The
bottom-most element connects to processor and to upper element. The top-most
element connects to the ports of the processor.

Interfaces between the elements are not defined in the hierarchy elements. Instead,
they are implicitly inferred by their type and parameters. For example an arbiter
element would combine interfaces from a below element and reveal a single interface
to an upper element.

In Figure 6.2 is a concrete example of the memory hierarchy description. In the
example, a TTA processor has four cores and in IDF of the processor is memory
hierarchy definition consisting of level 1 instruction caches and an arbiter. Since
there are multiple cores in the processor, an own level 1 instruction cache is instan-
tiated for each core. If another element, like a cache, has been added on the top of
an arbiter, it would be shared, since the arbiter reveals single interface. However,

6.1. Instruction Memory Hierarchy Customization 26

Figure 6.1 The concept of memory hierarchy definition in IDF. In the right is the IDF
having a memory hierarchy description and in the left is depicted logical structure modeled
by it.

Figure 6.2 An example of a memory hierarchy definition.

the initial implementation of hierarchy generation is limited to three configurations:
one depicted in the figure, only L1 caches for each core and arbiter solely.

The two elements that can be included in instruction memory hierarchy are level 1
instruction cache and instruction bus arbiter. Each one of them are customizable.
Parameters for the instruction cache and their use are listed below:

• block-size. The value defines how many instructions can be fit into a block
at minimum.

• set-size. This sets associativity of cache.

• number-of-sets. This is number of blocks in each set.

• replacement-policy. Selects the replacement policy to be used in the cache.
Parameter is effective only if set-size is more than one. Available policies are

6.2. Instruction Cache 27

random and LRU.

All the parameters are mandatory except the replacement-policy. The replacement
policy can be omitted for associative caches, in which case the policy is inferred
automatically. Values set for block-size and set-size parameters must be in power-
of-two (2n). There can be additional restrictions due to underlying implementation
of a cache. In such case, the ProGe informs, if a parameter setting is not valid or
feasible. Total size of the cache in terms of the data storage depends on parameters
block-size, set-size, number-of-sets and it is calculated as in equation 6.1.

total-cache-size = instruction-size · block-size · set-size · number-of-sets (6.1)

Parameters of the instruction bus arbiter are listed below:

• arbitration-scheme defines arbitration scheme.

• maximum-time-slice defines how long a requestor can keep control to the bus
at maximum. This parameter is effective only for arbitration schemes having
time slots.

HDL description of the instruction memory hierarchy is generated by ProGe using
the description in IDF. The validity of the hierarchy structure and parameters of its
elements are checked. After that, the processor generator proceeds to construct the
defined memory hierarchy by forming netlist models of the hierarchy elements, which
are placed to appropriate locations in the processor netlist model. For example, level
1 cache is placed into a processor core block and bus arbiter is placed into a block,
which wraps all processor cores in a TTA design.

6.2 Instruction Cache

The ProGe instantiate level 1 instruction cache within TTA core based on description
in IDF. The cache implementation used in this thesis project is modified Level 1
Instruction Cache made by VLSI Research Group [17]. The cache source files are
written in VHDL and they are available at [18]. The instruction cache is widely
configurable through its parameters. Configuration parameters in the cache are:

6.2. Instruction Cache 28

• instruction size in bits,

• block size in number of instructions,

• associativity,

• numbers of sets,

• replacement policy available with pseudo-random and LRU policy,

• width of block data memories and

• data width separately for processor core and instruction memory bus.

Parameter values for setting block size and numbers of sets may only be in power-of-
two. Using any other value may lead to erroneous design that may not cause error in
a HDL compiler. However, the ProGe prevents if one attempts to set invalid values
for the parameter in IDF.

Parameter set size defines the associativity of the cache. Setting this to one makes
it direct-mapped and higher than one makes it associative. The set size is limited
up to four when using LRU policy. However, using pseudo-random policy the degree
of associativity can be set to higher value.

Blocks in the cache are divided and stored among one or more memory blocks
depending on the set block size and width of the memory blocks. In the ProGe, the
width is set automatically.

The cache has memory bus interfaces - one towards the processor and another
towards the memory. Both the interfaces have parametrizable address and data
widths, which can be set separately at each side of the interfaces. This means, that
the instruction bus to the memory can be width of the block or can be smaller than
the instruction size. However, the widths of data signals for the processor and the
instruction memory may not be arbitrary, but instead they must be in power-of-two
in relation to each other. Also, the protocol of the processor and memory interfaces
are similar to each other meaning, that multiple cache instances could be stacked
for making multi-level cache hierarchies. However, the cache model is meant to be
used as level 1 cache. In the ProGe, all caches are configured to have same address
and data signal widths in both interfaces.

6.2. Instruction Cache 29

6.2.1 Implementation Details

Top-level structure of instruction cache is depicted in Figure 6.3. Tag and block data
are stored and tag matching is done in cache memory units. There is as many units as
there is sets in the cache. Cache controller handles misses, block fetching from mem-
ory and invalidation. Replacement policy unit, included in associative cache config-
urations, points a cache memory unit, where a block (re)placement occurs. All con-
figuration parameters of the cache are placed in a package file. ProGe generates this
file form IDF and names it as <processor-entity-name>_l1_parameters_pkg.vhd.

Instruction memory bus interfaces are at the bottom and top of the module. On
the side there are control and status signals. The ports beside the invalidate port
are not used in the caches instantiated by the ProGe.

Figure 6.3 The structure of L1 instruction cache template

In cache memory module there is separate memory block, which is solely for storing
tag data. One entry in it holds a tag part of the address and a valid bit for a block
it is associated. The Block data is divided among one or more of memory blocks.
All the memory blocks have single port memory interface. Also, data that is written
into a memory is visible at output port in the same cycle for reading. All memory
blocks in the cache are implemented as register-array by default but they can be
replaced with other implementation easily.

6.2. Instruction Cache 30

The Cache Controller manages writing to cache memories and block fetching during
cache misses. A FSM of the controller is depicted in Figure 6.4. Initially after
reset lift-off the controller initializes the cache memories by deasserting all valid bits
(invalidate state in 6.4). This process takes as many cycles as there is indexable
entries in the cache, so it is O(number-of-sets).

Figure 6.4 The modified control FSM of level-1 instruction cache template. The dashed
arrow line is new addition to the original FSM of the cache [17].

After initialization the controller stays idle in compare tag state until a miss occurs
or is commanded to invalidate entries. On miss the controller generates memory ac-
cesses to retrieve a block from memory. The memory access addresses are calculated
as in equation 6.2.

Addrimem = Addrproc

offset-bits ·
⌊

block-size
imem-width

⌋
+ i | i ∈

[
0,

⌊
block-size

imem-width

⌋]
(6.2)

where addrproc is the address from the processor and addrimem is the memory ad-
dress for instruction memory. i is counter value in controller for generating enough
memory accesses to cover a block.

The controller only generates lower part of the addresses (i in the equation) and
they are combined with block start address calculated in the top-level. During a
cache miss the last processor address is held until block is retrieved from memory.

An externally controllable cache invalidation feature, which was not in the original
cache design, was added. A use case of the feature is in the program loading, where
the cache invalidation is needed for discarding blocks that belongs to a old program.
The FSM diagram 6.4 shows that cache can be invalidated at any time. The
invalidation is triggered by having the invalidation signal (on side in Figure 6.3)
asserted for at least one clock cycle. Additionally, the cache can be kept locked and
in the invalidated state as long the signal is held asserted.

In associative cache configurations the replacement policy unit selects a cache mem-

6.3. Instruction Arbiter 31

ory unit, in where a retrieved block is placed during miss. Effectively this directs
write control signal, from the cache controller, to selected unit. Of the two available
replacement policies, pseudo-random policy is implemented using linear-feedback
shift register (LFSR) that changes its state in every clock cycle, and the other LRU ’s
functionality is based on look-up tables. When using LRU replacement policy, the
set size parameter is restricted to maximum of four due to predefined tables that
only covers set sizes ranged from 1 to 4. Higher set configurations can be supported
by adding new tables. Inspecting cache’s sources reveals that the order of growth
in area for LRU tables is O(n!) where n is set size. The pseudo-random policy does
not have the restriction on the set size.

6.3 Instruction Arbiter

In the Figure 6.5 is the top-level structure of the implemented instruction bus
arbiter. It consists of a single arbitration scheduler, instruction bus guard for each
processor core and a network called as merge. The arbitration scheduler defines
arbitration scheme of the arbiter.

Figure 6.5 The structure of instruction bus arbiter.

Arbitration Scheme Instantiation

Arbitration scheme is determined by the selected implementation of the arbitration
scheduler. Currently only one arbitration scheme is available and that is a sim-
ple round-robin. The arbitration scheduler ’s responsibility is to assign control to a
shared bus among the requesting processor cores.

The scheduler receives access requests indirectly through so called instruction bus
guard and decides who to give the control. The one given the control is signaled via

6.3. Instruction Arbiter 32

grant signal through the guard. The scheduler assumes that the master currently
having the control keeps the request line active as long it needs a shared resource.

The available, implemented round-robin scheme is simple by its design. However,
some cycles may be wasted while switching the bus control to a next requestor.
Switching the control to next requestor is carried by iterating over the requestors in
order starting from next after current in control. At every clock cycle, the scheduler
checks, if a master is requesting, and then moves on to next one. This is repeated
at every clock cycle until a next requestor is met, in which case the control is given
to it. In worst case, the number of cycles wasted is O(n) where n is number of
requestors.

Instruction Bus Guard

Figure 6.6 The structure of instruction bus guard block.

The instruction bus guard acts as a gate between the requestor and the shared
resource or bus. It lets signals to be passed through only when the requestor is given
control, signaled by the arbitration scheduler. In opposite case, where a requestor
does not have control, its guard signals core telling the bus is in busy state and seals
off the signals from the core towards the shared bus. In the sealed state the guard
sets signals toward shared bus in inactive or neutral state. That is, in example a
active-low signal is set to high and signals of a address is set to all zero (neutral
state). This is done due to merge network which is explained later.

Actual implementation of the instruction bus guard is presented in Figure 6.6.
This implementation is non-restarting: A memory read access made by a requestor
is not needed to be repeated later, if the control switch occurs in the middle of an
access. For example, assuming a situation, where requester has made a memory

6.4. Integration into ProGe 33

read access to a non-busy memory at a cycle, and then the control is switched to
another requestor at the next cycle. The memory responds to the read access in
a cycle, but since control was switched, the original requestor can not receive it.
Instead, the bus guard will temporarily hold the read data for the requestor until
the control is granted again.

Merge Network

The merge network combines all bus signals from each guard into one bus. The
merge network can be thought as a multiplexer, but where all buses are selected,
and the actual implementation is simply a mixture of straight wires and or- and and-
reduce networks. However, only one bus guard is active at a time and the others
do not cause interference because they have their signals set to inactive or neutral
state. The shared bus signals coming inward are routed directly to each guard and,
thus, each guard can listen activity of the shared bus even when a guard does not
have a control on the bus.

6.4 Integration into ProGe

In the Figure 6.7 is a partial diagram of netlist block hierarchy of a TTA processor
that is in this case a multi-core design. The Figure shows the placements of instruc-
tion memory elements in the netlist model of a TTA processor. The highlighted
blocks mark the hierarchy elements and a test bench for multi-core processor which
is discussed later in Chapter 7.

As in the Figure 6.7 the loop buffer and level 1 instruction cache is instantiated in
TTA core netlist block. The instruction bus arbiter is instantiated within multi-core
netlist block.

Integration of Instruction Cache

In the Figure 6.8 is Netlist Block FlexSoCCache class presentation of the level 1
instruction cache model introduced earlier in section (6.2). The class is derived
from abstract base class called ICacheBlock that is base for all instruction cache
implementations.

Derived classes are required to implement functions that provide interfaces of the
cache. Functions coreSideInterface() and memorySideInterface() provide references

6.4. Integration into ProGe 34

Figure 6.7 The partially visualized NetlistBlock composition hierarchy of multicore TTA
processor with testbench generation. Netlist blocks related to memory hierarchy and test
bench are highlighted. Netlist blocks for TTA Units are left out.

Figure 6.8 The NetlistBlock class presentation of instruction cache consisting of one
abstract class for all instruction caches and one concrete implementation of it

to port groups for instruction and memory buses. A function invalidationPort()
returns port for controlling invalidation of cache entries if a cache implementation
has one.

The FlexSoCCache instance is built from ProGeContext that holds implementation
parameters for the cache. The L1 cache parameters itself are packed in L1CacheParameters
object that is a presentation of the level 1 instruction cache parameters defined in

6.4. Integration into ProGe 35

IDF.

The FlexSoCCache overrides function write() of its base class. The function writes a
file called <processor-entity-name>_l1_parameters_pkg.vhd holding cache config-
uration parameters and copies HDL source files of the cache to the output directory
of the processor.

Integration of Instruction Bus Arbiter

A netlist model representation of instruction bus arbiter is depicted in Figure 6.9.
Class IBusArbiter represents top-level netlist block of the arbiter. Its constructor
takes interface of a shared resource, a number of devices accessing the shared resource
and arbitration scheme as parameters. Based on the interface of the shared resource
the IBusArbiter instantiates proper sub-instances that can handle the protocol of
it. However, currently only one interface is supported.

Classes ArbiterSchedulerBlock and IBusGuardBlock correspond to arbiter scheduler
and instruction bus guard concepts mentioned in section 6.3. Instances of classes
BitAndReduceBlock and VectorOrReduceBlock are used to construct the merge net-
work. Upon construction of the blocks they have no ports. Ports are dynamically
created as needed and connected when functions hookInput() and hookOutput() are
called.

Figure 6.9 The Netlist block class representation of instruction bus arbiter.

6.5. Implementation of Cache Statistics Collection 36

6.5 Implementation of Cache Statistics Collection

It is essential to know how well the generated instruction memory hierarchies per-
forms. Therefore, a method and a tool is provided to collect cache statistics from
RTL-simulations.

The tool to report cache statistics along with other information is a terminal appli-
cation called rtlstats. In the listing below is an example report of rtlstats tool. It
lists all cache units in a processor and, for each of them, reports the total of han-
dled memory accesses, miss-rate and AMAT. The tool also shows the total number
of the final instruction memory accesses making out of the processor. To get the
report out with rtlstats, first, a program is run in RTL-simulation using processor
test bench. Then the report is printed on terminal screen by running the rtlstats in
the directory, where the processor test bench was ran, or specifying the directory
with -x <directory> option.

Run statistics (Core id| Total cycles |Exec cycles |Lock cycles |Lock Rate):
core 0 | 26713 | 23845 | 2868 | 10.7 % |

Cache statistics :
core 0 level 1: Total accesses : 23848 Miss rate: 1.32 % AMAT: 1.12022

Memory statistics :
core 0: Total accesses : 2520

The other information the rtlstats tool reports are total simulated cycles, executed
instructions and stall cycles for each processor core.

The reports produced by rtlstats are compiled from event data, which are generated
during RTL-simulation. The event data are written in so called “dump files”. Some
of the dump files, for cache statistics, are access traces, which tell about memory
access events made in caches and memories in the processor. The access traces are
written for each instruction cache and memory unit in the processor for a single
simulation run. The access trace files are named as:

• core<id>_l<level>_access_trace.dump for instruction caches

• core<id>_imem_access_trace.dump for instruction memories

The id denotes core-id and level denotes cache level.
0 | 0000 | 0 | 38 |

38 | 0000 | 1 | 1 |
39 | 0001 | 1 | 1 |
40 | 0002 | 1 | 1 |

6.5. Implementation of Cache Statistics Collection 37

41 | 0003 | 1 | 1 |
42 | 0004 | 0 | 6 |
48 | 0005 | 1 | 1 |
49 | 0006 | 1 | 1 |
50 | 0007 | 1 | 1 |
51 | 0008 | 0 | 6 |

In the listing above is a snippet of access trace produced from RTL-simulation.
From left to right are columns for cycle number, memory address, presence and
access delay. The cycle number tells a cycle when a cache or memory unit accepts
to commit a memory access. The memory address of the access is displayed in
hexadecimal.

The presence column tells with a number if a accessed data is present in a device.
The number in the column is either zero or one which, respectively, means a hit or
a miss in a cache. For non-caching units value is always expected to be one.

The access delay tells how many cycles it takes for retrieving an accessed data. The
time is measured in cycles where value n ∈ N says that accessed data is available after
n cycles. A zero delay is also valid and it would mean that data is asynchronously
available at the same clock cycle as the memory access is made.

38

7. VERIFICATION

In this chapter, an automated test program generator for verification purposes is
introduced. Then, the improvements made to the TTA processor test bench are
discussed. After that, common testing methods and test environment used for veri-
fication are explained. Finally, the verification of the loop buffer and the instruction
memory hierarchy is carried out and the results are presented.

7.1 Automated Test Generator

Automated test generator (TeGe) is a TCE tool that automatically generates test
cases to stress various parts of TTA processors. A case of the TeGe is to generate
a set of test cases, which are ran in the RTL-simulation of the processor. Finally,
theresults from the simulation are compared to TeGe’s verification reference data to
see if test cases did pass.

Figure 7.1 The Test Generator tool.

In the Figure 7.1, the TeGe tool takes at least an ADF as input and optionally other
files such as an IDF and additional user created programs in the TPEF format. Using
solely the ADF, the TeGe can generate test cases that only cover the architectural
aspects of the processor and, thereby, excludes test cases that could stress micro-
architecture features. The test case generation for micro-architectures is enabled by
passing the IDF to the TeGe. Optionally, user created test programs can be fed to

7.1. Automated Test Generator 39

the TeGe for generating verification reference data automatically on behalf of the
user.

With the given input files, TeGe produces test cases, which consist of test programs in
different formats and verification reference data. The test program format includes
TCEASM (TCE assembly code), TPEF and program images. The program images
are used to run test cases in RTL-simulation. The TCEASM is for inspecting the
generated test programs visually. The TPEF is for debugging in the TTA-simulator
in case a test case fails in a RTL-simulation. For example, if a test case fails, user
can load the failed test case (the file in the TPEF format) into the TTA-simulator
and run the test case program until to the point, where the RTL-simulation failed.

Many of the tests, created in the TeGe, are pseudo-random, but the generation is
deterministic. That is, giving the same inputs to the TeGe, it should always produce
the identical test case set. However, the test cases can be varied by defining a seed
value for the pseudo-random generation.

The test runner (testrunner.py) script is an utility, which runs all the created test
cases (in program image format) in the RTL-simulation and reports whether the
test cases do pass or not. The current script is made for the processor test bench
generated by the ProGe.

7.1.1 Usage

An sample usage of the TeGe tool is shown below.
$ generateprocessor -t -i foo.idf foo.adf -o proge -out
$ generatebits -d -w4 -x proge -out/
$ generatetests -s someseed -a foo.adf -i foo.idf -o tests
$./ tests/ testrunner .py -i tests/ -x proge -out

OK ALU -operation -tests
OK icache -test
OK mul -operation -tests

With a ProGe, a TTA processor is generated with processor test bench, which is
needed for test runner script. The PIG is ran once to create necessary files for
the freshly generated processor. Test cases are created by running test generator
by giving ADF and IDF of the processor. The created test cases and test runner
script are outputted under tests/ directory. Executing the test runner script run
the test cases in RTL-simulation and their success is reported in terminal screen.
The options -i and -x specifies directory locations of the test cases and the processor

7.1. Automated Test Generator 40

respectively. The option -s defines the seed value used in pseudo-random generation
and it can be numeric value or string. There are more options in TeGe, which can
be listed by giving -h option.

The TeGe creates test cases for FU operations found in the processor and, by de-
fault, it creates tests for the operations by generating random inputs. However, this
procedure is not suitable for all operations. For example, a division operation may
not have zero value as divisor. Situations like this can be prevented by specifying in-
put validation for operations in OSAL behavior model. In the listing 7.1 is example,
where input validation is defined for modulo operation, which takes two operands.

Program 7.1 A example of input validation definition in OSAL for MOD operation
1 OPERATION (MOD)
2 ...
3 INPUT_VALIDATION
4 i f (UINT (2) != 0) {
5 DECLARE_VALID ;
6 }
7 END_INPUT_VALIDATION
8
9 END_OPERATION (MOD)

In the listing, within an operation behavior definition, is an input validation clause.
The TeGe suggests for the operation input values, which are inspected using OSAL’s
operation input accessor macros (for example the UINT in the listing). For the
modulo operation, only the divisor value is needed to be validated and any value
for dividend is applicable. If the suggested values are valid, the TeGe is informed
by using DECLARE_VALID macro. If the macro is not executed, then the TeGe
treats the suggested values as invalid and discards them.

TeGe’s input generation can be overrode in OSAL by defining custom input values
that are suitable for an operation. The beneficial example cases for using this feature
are:

• input values that test corner cases of the operation and

• input values that contributes to improve HDL code coverage.

In the listing 7.2 is an example of custom generation of sets of input values (or
test vectors) for an operation. The test vector, which holds all input values for an
operation, is formed by setting the input values using accessor IO macros and then

7.1. Automated Test Generator 41

accepting them by using ADD_TESTVECTOR macro. In the example, TESTVEC-
TORCOUNT and SEED are optional macros. The former tells the amount of test
vectors asked by TeGe. The latter macro provides a seed value for random number
generator, so the TeGe can generate the same set of test vectors again between two
launches.

Program 7.2 An example about test vector generation in OSAL for SHR operation.
1 OPERATION (SHR)
2 ...
3 DEFINE_TESTVECTORS
4 RandomNumberGenerator rng(SEED);
5 UIntWord bitwidth = MIN(
6 static_cast <SIntWord >(BWIDTH (1)) ,
7 static_cast <SIntWord >(OSAL_WORD_WIDTH));
8 for (int i = 0; i < TESTVECTORCOUNT ; i++) {
9 IO (1) = rng ();

10 IO (2) = rng () % bitwidth ;
11 ADD_TESTVECTOR ;
12 }
13 END_DEFINE_TESTVECTORS
14 ...
15 END_OPERATION (SHR)

In the table 7.1 is listed TeGe related macros and their usage and effect. Other
OSAL’s macros and overall usage of OSAL are explained in TCE-manual [19].

Table 7.1 OSAL keywords and commands for operand input validation and test vector
generation.

Keyword Description
INPUT_VALIDATION Starts input validation clause for a operation.

DECLARE_VALID Using the keywords accepts the current operand
inputs valid. Usable only in input validation
clause.

END_INPUT_VALIDATION Ends input validation clause. If DE-
CLARE_VALID has not met the inputs
are treated as invalid.

DEFINE_TESTVECTORS Starts test vector generation clause for a opera-
tion.

SEED Seed value for random number generator. Usable
in test vector generation clause.

TESTVECTORCOUNT Optional. Tells the amount of test vectors re-
quested by TeGe. However, it does not need to
be exact.

ADD_TESTVECTOR Appends a test vector using current IO input
operands in it. Usable only in test vector gen-
eration clause.

END_DEFINE_TESTVECTOR Ends test vector generation clause.

7.1. Automated Test Generator 42

7.1.2 Test Generation Framework

The inner work of test generator is depicted in the Figure 7.2 that is a class diagram
of the TeGe’s framework. The classes can be roughly divided into three responsi-
bilities: test case generation, test input generation and validation and test case file
generation.

Figure 7.2 The simplified class diagram of the Test Generator Framework. The high-
lighted classes are new additions or modified in TCE.

The test generation process goes as followed: The main function (GenerateTests in
the diagram) controls, which test generators are used via TestGeneratorCollection.
Next, also via TestGeneratorCollection, the enabled test generators are invoked to
create test cases. Each generator creates zero or more emphTestCase object, which
includes a test program. The test case objects are passed to TestFileWriter, where,
finally, the output files produced. The generation of verification reference data is
delegated toVerificationDataGenerator.

New test generators are implemented by inheriting a base abstract class TestGen-
eratorBase and overriding its only pure virtual function generateTestcasesImpl().
The generateTestcasesImpl() is function that creates the actual test cases. In the

7.2. TTA Processor Test Bench Improvements 43

base class, the generateTestcases() function does some preliminary checks and then
calls generateTestcasesImpl() in template method design pattern fashion. The new
created test generators are added to TestGeneratorCollection.

The diagram 7.2 shows two implemented test generators: FUOperationTestGenera-
tor and ICacheTestGenerator. The former tests operations of each FU in a machine
and the latter generates instruction references that touches each block in an instruc-
tion cache at least once.

The test generators may need to know details about operations in a machine in
order to generate correct test programs. For example FUOperationTestGenerator
creates test cases for stressing operations in a machine by trying various inputs on
the operations. However, the generator does not know what inputs are valid for any
operations.

In OSAL module, Operation is a class that provides information about properties
of operations and their behavior. Two new functions were added: areValid() and
makeTestVectors(). Actual implementations of the functions are in a class Opera-
tionBehavior and its derived classes. The OperationBehavior provides base imple-
mentation of the functions and the derived ones overrides these when necessary.

The function areValid() tells if input operands for a operation are valid. However, the
base implementation of the function in OperationBehavior always returns true. The
concrete operation behavior objects in OSAL overrides the function, when needed,
to provide an actual input validation.

The function makeTestVectors() provides a way to generate test inputs for a opera-
tion. The function takes two parameters: a seed value for pseudo-random generation
and a requested amount of test vectors. The created test vectors, returned by refer-
ence, are appended to the given test vector list. Also, some operations may have side
effect, thus the argument OperationContext is provided in both the functions. The
OperationContext is class where the state of side effects for a operation are stored for
subsequent use of it. A base implementation of the makeTestVectors() function in
OperationBehavior creates set of test vectors pseudo-randomly. All the created test
vector are validated with the areValid() and invalid vectors are discarded. Classes
derived from OperationBehavior can override the base function.

7.2 TTA Processor Test Bench Improvements

Most of the testing of memory hierarchy design units were made in RTL-simulations.
For verification purposes and statistics collection new additions to the existing pro-

7.2. TTA Processor Test Bench Improvements 44

cessor test bench generation were made:

• A separate test bench generation for multi-core TTA processors,

• Improved RTL-simulation run controls and

• HDL code coverage measurement option.

Multi-core test bench

The preceding test bench generation only accommodated single core processors using
static test bench source files. Especially, the test bench generation expects a TTA
processor to have specific interface in order to instantiate it successfully. In a multi-
core TTA processor there are number of interfaces depending on the number of cores
in the processor and the micro-architectural features such as instruction bus arbiter.
The interfaces usually are data memory and instruction memory interfaces.

The new test bench, made for the multi-core designs, recognizes the memory in-
terfaces, using the new signal semantics feature of the ports and port groups. The
test bench is implemented as netlist block, which dynamically instantiates memory
block needed by the processor.

RTL-simulation controls

RTL-simulations are used to extract cache and power usage statistics by running
various test programs in the generated processors. For this purpose RTL-simulation
time is needed to be limited to cover the duration of the test program. Simulating
the program too long or short leads to misleading statistics.

One way to limit simulation time is to use instruction cycle count, which is acquired
from TTA-simulation. However, the TTA-simulation does not cover stall cycles that
stems from the micro-architecture. Different memory hierarchy settings and the kind
of programs run in the simulation causes different stalling behavior. Due to this,
the actual simulation time needed to cover just the program length is complex to
predict.

A solution was to make the processor test bench to track program execution in
the TTA processor and dynamically stop the simulation when the instruction count
limit is met.

7.2. TTA Processor Test Bench Improvements 45

The simulation time limitation by execution tracking is depicted in Figure 7.3. A
TTA core has a port that signals the stall status. Whenever - indicated by the
signal - the core is not locked, it is executing instructions. This way the test bench
knows how many instruction have been executed at any moment. The executed
instruction count is compared to execution limit read from a file. When the counter
matches with the limit, the test bench ceases simulation by disabling the clock signal
generation. Stopping the clock starves the event based RTL-simulators from events
and therefore causes simulation to stop.

Figure 7.3 The method of limitation of RTL-simulation time just to cover instruction
count.

The simulation stop by clock disabling is cleaner way than using for example VHDL’s
assertion, which would show as a simulation error.

The simulation controls are available with processor test benches generated by
ProGe and are used through options of the simulation script. The options are -
i <instruction-count> and -r <simulation-time>. The former option sets up the
simulation to the given instruction execution count. The latter option overrides
script’s absolute simulation time, which is by default 52,390 nanoseconds.

HDL Code Coverage

The HDL code coverage is employed to give feedback on the extent of the tests.
The feature is enabled by giving -c option to both the compilation and simulation
scripts, which are generated by ProGe with processor test bench option. This option
is only functional with ModelSim compilation and simulation scripts.

When code coverage option is enabled, the RTL-simulations in ModelSim produces
two databases (.ucdb), where the code coverage measurements are collected. One of
the databases temporarily stores measurements from a single run and another one

7.3. Test Environment 46

(accumulated_coverage.ucdb) collects and merges all the coverage measurements
from all the previous simulation runs.

The types of code coverage measured with ModelSim [20] are listed below:

• Statement coverage: Measures the executed statements in the code.

• Branch coverage: Measures the choices taken in the branches.

• Focused Expression Coverage (FEC): It is extension to the branch coverage and
checks if all inputs combinations contributing to outcome of branch expression
are taken.

• Toggle coverage: measures the bit changes in bit-based data types.

• Finite state machine coverage: Measures covered states in FSMs.

The code coverage data is inspected by using either using ModelSim vcover report
command or alternatively using report script (modsim_report.sh). The latter cre-
ates a directory reports/ where coverage data is outputted in text files. The files
consists of a summary file and detailed report file for each design unit in the pro-
cessor.

7.3 Test Environment

The implementations were tested using a process depicted in the Figure 7.4. Dif-
ferent TTA processor configurations were tested by running various test programs
in both the TTA simulator and RTL simulation. Both the simulations produce data
that can be compared together: bus trace and output file. The bus trace contains
values that are moved in the buses of the IC. Output is print out from the test
program. If these files from the both simulations matches, the behavior is verified
successfully.

The test programs used in verifications were handmade assembly programs, C bench-
mark programs from CHStone suite [21] and test programs generated by TeGe. Test
programs were run in RTL-simulation in two modes: in a normal mode and in lock
generation. In the former programs are run in a processor without any additional
test options. In the latter mode processor is forced to stall heavily. This effectively
tests that interlocking in implemented designs do work correctly.

7.4. Loop Buffer Verification 47

Figure 7.4 The verification process.

RTL-simulations were ran and HDL code coverage measured using ModelSim SE
10.1d [20]. Many of the RTL-simulations were ran in parallel with GCU Parallel
command line tool [22].

For selected TTA processor configurations, Synopsys’ Design Compiler was used to
test that implementations of memory hierarchy were synthesizable, and to gather
area and power estimations. All the selected processor configurations were syn-
thesized using a 28 nm fully depleted silicon on insulator standard cell technology
library and power optimizations that includes leakage and dynamic power optimiza-
tion and clock gating. All synthesized processors were targeted to run at clock
frequency of 1 GHz with added margin of 10 %.

One of the TTA architectures used in testing and synthesis was a typical scalar
microcontroller processor (MCP) with limited parallelism. The processor has a LSU,
a ALU, a separate unit for integer multiplication (MUL), 16x32bit RF, a boolean
register and a IU. Interconnect consists of three buses with limited connectivity.
Width of both the instruction word and fetch block is 40 bits.

7.4 Loop Buffer Verification

The loop buffer was verified by running handwritten TCE assembly programs in a
minimal TTA processor with only a single bus, LSU, ALU and 5x32bit RF. The
programs tested basic cases and corner cases that includes executing:

• a loop of non-zero instructions and iterations,

• a loop of zero instructions and zero iterations,

7.5. Memory Hierarchy Generation 48

• a loop of more than one instruction and zero iteration,

• a loop of one instructions and more than one iteration,

• back-to-back loops and

• a nested loop, where inner loop uses the loop buffer.

Code coverage for loop buffer were 94.1%, which is satisfactory.

A MCP using a loop buffer of depth of 128 instruction were synthesized successfully.
The critical path was formed from ALU’s trigger port register to instruction fetch
unit’s (forefront of CU) program counter register.

Power consumption of the loop buffer design were studied in master thesis of [23].
In the study, power estimations from Synopsys Design Compiler were compared to
a small 1-kilobyte SRAM and a level 1 cache model provided by Cacti [24]. The
comparison indicated that the improvement in read energy was 5 and 42.9 times
in favor of the loop buffer. A case in, where loop buffer reduced cycle count in a
program by 20%, reduced total power consumption by 1 : 4.3 times than without
the loop buffer.

7.5 Memory Hierarchy Generation

Memory hierarchy generation was tested by generating variety of TTA processor
configurations. For cache customization and synthesis testing, the processor config-
urations comprised of one TTA architecture and three selected memory hierarchy
configurations.

7.5.1 Instruction Cache Test Case Generation

TeGe’s instruction cache test generator creates a test case where all cache sub-block
are accessed at least once and have some of the blocks evicted. The generated test
case program consists of pseudo-randomly generated jumps.

7.5.2 Verification

Three different processor configuration featuring MCP each having different level 1
instruction cache configuration were verified and synthesized. The cache configura-
tions are:

7.5. Memory Hierarchy Generation 49

• direct-mapped, 8 instructions in a block and 32 sets (MCP-L1-8-1-32),

• 4-way, semi-associative with 4 instructions in block and 32 sets. LRU is used
as replacement policy and

• direct-mapped, 1 instruction in a block and 128 sets.

Two first cache configurations fit in 256 instructions, which is total of 1280 bytes with
MCP’s 40 bit wide instructions, and last cache configuration fits in 128 instructions.

In the Table 7.2, 7.3 and Table 7.4, is the test programs used in synthesis testing
and their statistics about cycle count and miss-rate from level 1 cache. The programs
in the table are from CHStone suite [21].

Table 7.2 The cycle counts and miss rates for MCP-L1-8-1-16.

Program Cycle Count Miss Rate (%)
adpcm 204,182 11.70

gsm 25,451 1.29
jpeg 13,227,531 0.89
sha 1,021,320 2.31

Table 7.3 The cycle counts and miss rates for MCP-L1-4-4-16.

Program Cycle Count Miss Rate (%)
adpcm 211,461 22.50

gsm 25,943 2.76
jpeg 13,226,175 1.60
sha 1,038,274 4.56

Table 7.4 The cycle counts and miss rates for MCP-L1-1-1-128.

Program Cycle Count Miss Rate (%)
adpcm 280,851 90.90

gsm 29,788 15.10
jpeg 15,501,508 13.30
sha 1,151,290 18.10

The area results from synthesis for all the configurations are presented in Table 7.5.
From the table, it can be observed that overhead from control logic is small for the
caches.

In the tables 7.6, 7.7 and 7.8 are presented average power and total energy
consumption estimations of the processor. From the figures, it can be observed that
the caches do not generate unreasonable amount of heat. Also, it can be observed

7.5. Memory Hierarchy Generation 50

Table 7.5 The area figures from synthesis.

MCP-L1-8-1-32 MCP-L1-4-4-16-LRU MCP-L1-1-1-128
µm2 % µm2 % µm2 %

Total 39,037.22 100 41,989.95 100 25,606.62 100
ICache 32,809.73 84.0 35,833.28 85.3 19,298.18 75.4

Storage 32,350.59 82.9 34,571.96 82.3 18,997.13 74.2
Control 459.14 1.1 1,261.32 3.0 301.05 1.2

Core 6,227.49 16.0 6,156.67 14.7 6,308.44 24.6

that power consumption seems to correlate with miss-rates. In caches the power
consumption increases as the miss-rate grows, which is probably because of the
fetching process. On the contrary, the power consumption is decreased, but this is
because of stalling caused by misses in the cache. During the stalls the cores do have
only little activity and, hence, consumes less power on average. Especially, with the
adpcm program, the processor core is stalled half of the time. Observing tables 7.7
and 7.8, can be seen that power and energy consumption is nearly the same, even
if the cache storage in the latter is just half of the former in bits. This is most likely
due to address logic for the latter, as there is more indexable locations in the cache
storage.

Synthesis of both the MCP configurations was targeted at one gigahertz clock fre-
quency successfully. Critical paths were formed in the MUL unit between trigger
port and output port registers (MCP–L1-4-4-16-LRU), and in the cache between
controller unit’s FSM state register and a block data array (MCP-L1-8-1-32).

Table 7.6 The power figures for MCP-L1-8-1-16.

Total ICache Core
Program mW nJ mW nJ % mW nJ %
adpcm 7.946 1,460 6.377 1,172 80.3 1.569 288.33 19.7

gsm 7.207 165 3.850 88 53.4 3.357 76.90 46.6
jpeg 6.558 78,072 3.674 43,738 56.0 2.884 34,333.38 44.0
sha 7.605 6,990 4.411 4,055 58.0 3.194 2,935.89 42.0

Table 7.7 The power figures for MCP-L1-4-4-16.

Total ICache Core
Program mW nJ mW nJ % mW nJ %
adpcm 10.141 1,930 8.590 1,635 84.7 1.551 295.18 15.3

gsm 8.36 195 5.335 125 63.8 3.025 70.63 36.2
jpeg 7.49 89,158 4.897 58,292 65.4 2.593 30,865.92 34.6
sha 8.882 8,300 5.958 5,567 67.1 2.924 2,732.32 32.9

HDL coverage results for the caches were 76.96% for MCP-L1-8-1-16 and 88.17%
for MCP-L1-4-4-16. The results are mediocre and could be better. The most lack

7.5. Memory Hierarchy Generation 51

Table 7.8 The power figures for MCP-L1-1-1-128.

Total ICache Core
Program mW nJ mW nJ % mW nJ %
adpcm 10.248 1,954 8.674 1,654 84.6 1.574 300.19 15.4

gsm 8.785 204 5.691 132 64.8 3.094 71.87 35.2
jpeg 8.043 95,662 5.414 64,393 67.3 2.629 31,268.70 32.7
sha 9.216 8,562 6.241 5,798 67.7 2.975 27,63.93 32.3

in coverage came from bit toggling and FEC.

The instruction bus arbiter were verified in RTL-simulation on another MCP-like
processor. The verification was conducted by changing core count of the processor
and forcing processor stalling. Also, the arbiter was tested using along L1 instruction
caches and without them.

52

8. FUTURE WORK

Improved L1 Instruction Cache Integrated level one instruction cache lacks
features that could be useful. Especially, cache features such as early restart and
critical word first. The early restart feature lets the processor retrieve the requested
instruction when it arrives instead of waiting until the whole block is fetched and
thus reducing stall cycles. The critical word first improves this by making cache to
fetch words of a block having the requested instruction first. Other features such as
burst interface and new replacement policies are reasonably easy to implement.

Graphical User Interface Syntax and tag names for defining instruction mem-
ory hierarchy in IDF is not easy to remember. Therefore, time is spent for looking
up the manual or an example from another IDF. There is already a dialog in ProDe
for defining implementations for TTA units, so new TCE users does not need to even
look into IDF. This dialog should be extended to cover customization of instruction
memory hierarchy too.

53

9. RELATED WORK

Few patents in US related to loop buffers have been granted [25], [26], [27] and [28].
The first three are still active and the last one is elapsed. Patent in [25] claims a
processor, which has a loop buffer and a cache, and a method to determine, from
which of the caches instruction is to be fetched, and does not have technical details
about a particular loop buffer. The loop buffer invention in patent [26] is software-
managed cache, which has capability for nested loops and option to exit the buffer
managed loops earlier. The patent of [27] claims processors that use a loop buffer
to reduce power consumption. Their description of the loop buffer covers three
embodiments: two of them are transparently operating and the third one software-
managed. The last patent [28] describes a transparently operating loop buffer, which
allows invalidation of instructions stored in the loop storage.

Cadence’s Tensilica Xtensa [5] is similar to TCE for designing customized processors.
Their processor generator can utilize instruction cache and also a loop buffer. Their
loop buffer is configurable up to 256 bytes where as our loop buffer does not have
hard limits on this. Design of their loop buffer is not explained publicly. [29]

The implemented automated test generation in the TCE is not an unique feature.
For example, both Cadence’s Tensilica Xtensa [29] and Synopsys’s ASIP Designer
[30] already have means for automated test program generation for verifying pro-
cessor correctness.

54

10. CONCLUSION

The customization and generation of the instruction memory hierarchies was imple-
mented and integrated into the processor generator of the TCE. Prior this, several
changes were made in TCE’s processor generator. The generation includes a loop
buffer, a level 1 instruction cache and an instruction bus arbiter. The loop buffer
is automatically instantiated in a TTA processor design by the inclusion of a loop
setup operation. The other parts, transparent to programmers, of the instruction
memory hierarchy customization is carried out by explicitly defining the structure.
The structure is described in IDF along parameters and feature setting of each parts
in it.

Cache statistics collection was implemented. The tool rtlstats, made for reporting
the statistics from RTL-simulation, shows miss rates and average memory access
time for each core in the processor along other statistics such as stall cycles and
total simulated cycles.

As side product, a framework for automated test generation or TeGe was imple-
mented along with two test case generators. The TeGe reads ADF and optionally
IDF and produces test cases that are run in RTL-simulation. A test runner script
takes the test cases, runs them in TTA processor RTL-simulation and reports results.

Several improvements were made to the processor generator’s test bench generation.
More accurate simulation controls were added to address unpredictable stalling sit-
uations. The accurate simulation time limitation is needed for HDL code coverage
and power measurements.

Implementations, memory hierarchy generation and its design units, were verified.
A processor design with several different instruction memory hierarchy were selected
for synthesis area and power measurement.

The accomplishments in this thesis are passable and there is room for improvements.
Currently, the memory hierarchy customization options are quite limited and many
indented features to be added did not make it to the thesis. Also, the verification
of the designs was not too high of quality, which appears on the code coverage.

55

BIBLIOGRAPHY

[1] Jari Nurmi, editor. Processor Design: System-On-Chip Computing for ASICs
and FPGA. Springer, 2007.

[2] Tampere University of Technology. TTA-Based Co-design Environment
Home Page. Available: http://tce.cs.tut.fi/index.html, referenced
11/20/2015.

[3] Jari Heikkinen. Program compression in long instruction word application-
specific instruction-set processors. PhD thesis, Tampere University of Tampere,
2007.

[4] John L. Hennessy and David A. Patterson. Computer Architecture - A Quan-
titative Approach. Morgan Kaufmann Publishers, 3rd edition, 2003.

[5] Xtensa customizable processors. http://ip.cadence.com/ipportfolio/
tensilica-ip/xtensa-customizable, referenced 11/18/2015.

[6] Henk Corporaal. Microprocessor Architectures: From VLIW to TTA. John
Wiley & Sons, Ltd., Chichester, England, 1998.

[7] clang: a c language family frontend for llvm. Available: http://clang.llvm.
org/, referenced: 11/24/2015.

[8] The llvm compiler infrastructure: Llvm overview. Available: http://llvm.
org/, referenced: 11/18/2015.

[9] Mikael Lepistö. Assembly compiler for parametrizable parallel processor. Mas-
ter’s thesis, Tampere University of Tampere, 2006.

[10] Lasse Laasonen. Program image and processor generator for transport triggered
architectures. Master’s thesis, Tampere University of Technology, 2007.

[11] Pekka Jääskeläinen. Instruction set simulator for transport triggered architec-
tures. Master’s thesis, Tampere University of Technology, 2005.

[12] Luca Benini, Alberto Macii, and Massimo Poncino. Energy-aware design of
embedded memories: A survey of technologies, architectures, and optimization
techniques. ACM Trans. Embed. Comput. Syst., 2(1):5–32, February 2003.

[13] Bruce Jacob, David T. Wang, and Spencer W. Ng. Memory Systems. Morgan
Kaufmann, San Francisco, 2008.

http://tce.cs.tut.fi/index.html
http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://clang.llvm.org/
http://clang.llvm.org/
http://llvm.org/
http://llvm.org/

BIBLIOGRAPHY 56

[14] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architectures. Sys-
tems on Silicon. Morgan Kaufmann, Burlington, 2008.

[15] Janne Helkala. Variable length instruction compression on transport triggered
architectures. Master’s thesis, Tampere University of Tampere, 2015.

[16] Pong P. Chu. RTL Hardware Design Using VHDL: Coding for Efficiency,
Portability and Scalability. Wiley Interscience, 2006.

[17] V. Saljooghi, A. Bardizbanyan, M. Sjalander, and P. Larsson-Edefors. Con-
figurable rtl model for level-1 caches. In NORCHIP, 2012, pages 1–4, Nov
2012.

[18] L1 cache vhdl code. Available at: http://www.flexsoc.org/, referenced:
11/18/2015.

[19] Customized Parallel Computing group. TTA Codesign Environment 2.0 (trunk)
User Manual.

[20] Mentor Graphics. ModelSim SE User’s Manual, Software Version 10.1d, 2012.

[21] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. Proposal
and quantitative analysis of the chstone benchmark program suite for practical
c-based high-level synthesis. Journal of Information Processing, 17:242–254,
2009.

[22] O. Tange. Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 36(1):42–47, Feb 2011. Available: http://www.gnu.org/
s/parallel, referenced: 11/23/2015.

[23] Joona Multanen. Hardware optimizations for low-power processors. Master’s
thesis, Tampere University of Tampere, 2015.

[24] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman
Jouppi. CACTI: An integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model. HP Labs. Available: http://www.hpl.hp.
com/research/cacti/, referenced: 11/18/2015.

[25] Lawrence A. Booth. Apparatus having a cache and a loop buffer. U.S. Patent
6 757 817 B1, Jun 2004.

[26] Kumar Ganapathy, Ruban Kanapathipillai, and Kenneth Malich. Method and
apparatus for loop buffering digital signal processing instructions. U.S. Patent
US 6 598 155 B1, Jul 2003.

http://www.flexsoc.org/
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/

Bibliography 57

[27] Matthias Knoth. Processor utilizing a loop buffer to reduce power consumption.
U.S. Patent 7 873 820 B2, Jan 2011.

[28] Steven L. George. Instruction fetch look-aside buffer with loop mode control.
U.S. Patent 4 626 988, Dec 1986.

[29] Tensilica’s (now cadence’s) xtensa 10: Process capabilities, application needs
drive core evolution trends. BDTi, 2013. available: http://www.bdti.com/
InsideDSP/2013/12/11/Cadence, referenced: 11/18/2015.

[30] Dhanendra Jani and Steve Leibson. How tensilica verifies processor cores.
EE Times, 2003. available: http://www.eetimes.com/document.asp?doc_
id=1202143, referenced: 11/18/2015.

http://www.bdti.com/InsideDSP/2013/12/11/Cadence
http://www.bdti.com/InsideDSP/2013/12/11/Cadence
http://www.eetimes.com/document.asp?doc_id=1202143
http://www.eetimes.com/document.asp?doc_id=1202143

	Introduction
	Customized Processors
	Transport Triggered Architecture
	Processor Organization
	Programming Model

	TTA-based Co-design Environment

	Instruction Memory Hierarchies
	Instruction Cache
	Loop buffer

	Bus Arbiter

	Processor Generation in TCE
	Processor Generator
	Processor Generation Flow
	Instruction Pipeline

	Netlist Module

	Configurable Loop Buffer
	Setup Operation and Operation Principle
	Usage in Program Code
	Using Loop Buffer in Design
	Hardware Implementation
	Integration

	Instruction Memory Hierarchy Generation
	Instruction Memory Hierarchy Customization
	Instruction Cache
	Implementation Details

	Instruction Arbiter
	Arbitration Scheme Instantiation
	Instruction Bus Guard
	Merge Network

	Integration into ProGe
	Integration of Instruction Cache
	Integration of Instruction Bus Arbiter

	Implementation of Cache Statistics Collection

	Verification
	Automated Test Generator
	Usage
	Test Generation Framework

	TTA Processor Test Bench Improvements
	Multi-core test bench
	RTL-simulation controls
	HDL Code Coverage

	Test Environment
	Loop Buffer Verification
	Memory Hierarchy Generation
	Instruction Cache Test Case Generation
	Verification

	Future Work
	Related Work
	Conclusion
	Bibliography

