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The complexity of physical systems in nature is an obstacle for human desire and
curiosity to explore new realms of knowledge. As we go further and further, more
powerful computers with higher capability both in processing and storing of infor-
mation are needed. According to Moore’s law, the computational power of devices
grows exponentially, meanwhile their size decreases at the same rate. But at this
very moment, this trend is getting saturated and a new jump into a new scale
cannot be avoided. Devices manufactured with smaller size exhibit quantum me-
chanical behaviour. Due to the intrinsic uncertainty which quantum mechanics has,

the behaviour of these systems must be controlled with great precision.

Deterministic logical computations cannot be done by these devices, since logical
operations need to have well-defined sets of input. This is a crucial concern espe-
cially if the set of inputs corresponds to the states of quantum mechanical systems.
Quantum optimal control theory lets us identify the constraints one has to consider

for the sake of the desired manipulation of quantum mechanical systems.

The aim of this project is to put the very first stone toward exploiting the control-
lability of quantum dot cellular automata which are among the candidates for the

next generation of transistors as building blocks of logical circuits.
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1. INTRODUCTION

Demands for more powerful hardware resources for computational purposes grow
exponentially. As a recent example, a hydrodynamic study of the galaxies properties
carried out by Vogelsberger et al. [1], costed 19 million CPU hours and 8192 CPUs.
The enormous amount of computational time spent for this simulation show the

need for urgent developments in hardware technology.

This observation and the trend which Gordon Moore predicted [2] cause an un-
avoidable transition in the designation of electrical circuits and fabrication of new
materials in order to provide a fast switching time and low energy consumption.
Besides, the volume which the device occupies is a critical consideration one has to

bear in mind.

Among many new developments in the construction of nano-electrical devices and
materials such as Josephson computers, graphene and nanotubes, one specific nan-
odevice called quantum dot cellular automaton, is of popular interest. An essential
reason that makes this device worth studying is the fact that cellular automata are
extensively used for the study of complex systems, and besides that, their presence

in the studies of logical circuits is indisputable.

Many studies have been carried out on quantum dot cellular automata, both on their
architectural structures and logical properties. Quantum dot cellular automata, al-
though they correspond to the classical interpretation of cellular automata, have
quantum mechanical behaviour within their nature. Hence, for deterministic compu-

tational purposes, the quantum mechanical nature of quantum dots must be tamed.

The objective of this thesis is to study and exploit whether a quantum dot cellular
automata can be controlled by an external agent, in this study by a local voltage
gate. Among many existing methods for control problems, the mathematical tool
used here is quantum optimal control theory. We seek for specific properties of an
electric field to transfer the initial state of the quantum dot cellular automata to a

final desirable one.

After providing some introductory concepts such as cellular automata and quantum
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dots, the mathematical framework of the study is explained. This is followed by the

main results and conclusions.



2. CELLULAR AUTOMATA

Cellular automata (CA) are tightly akin to the concept of complex systems. Gen-
erally speaking, a complex system is a dynamical system which exhibits non-linear
behaviour. CA are mathematically found to be the simplest representation of large
a class of complex systems. The concept was first coined out by Stanislaw Ulam
and John von Neumann. Historically, the automaton which von Neumann mod-
elled [3|, was the first discrete parallel computational model which has been shown
to be a universal computer [4]. CA are found to be powerful idealisations for a va-
riety of systems and phenomena ranging from fluid flow to processor architectures,

cryptography and also to pattern formation.

CA belong to the class of discrete and deterministic mathematical systems, both
spatially and temporally. CA are grid lattices where each cell evolves through dis-
crete time steps. In general, if a special modelling is not required, most CA have

five common characteristics:
e They have an underlying structure called a lattice. The lattice consists of cells
which are arranged according to specific symmetries of the lattice.
e CA are homogeneous, meaning that there is no preference between cells.
e Each cell has a state, which belongs to the set of allowed states.

e The cell can only interact with its neighbouring cells. At any instance the

state of the cell updates by the transition rule accordingly.

e The transition rule for a specific cell only depends on its state and the state

of its neighbouring cells.

CA with only these simple characteristics are capable of producing global order and

correlation, although the interactions are local.

Three specific properties which can be considered as crucial characteristics of such an

automaton are that firstly, they are spatially and temporally discrete: They consist
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of a denumerable units called cells, which at each time unit a cell can possess a
value belonging to the set of allowed states. At the next time step the cell interacts
with its neighbours and updates its state according to the set of rules. Secondly,
these machines are abstract. They have purely mathematical representations giving
them the ability to be implemented in fields ranging from mathematical logic to a
vast area of physical structures. And lastly, they are computational systems. With
a suitable choice transition rules, CA become universal Turing machines [5./6], and
therefore they are able to perform computations. Yet another feature of CA is their
capability of performing computations in a parallel fashion. As mentioned, the areas

of applicability of CA are broad, but they can be entitled under four main categories:

1. Powerful computational machines,
2. Discrete dynamical simulations,
3. Pattern formation and complexity behavioural studies,

4. Fundamental physics.

The first area emphasises the previously mentioned Turing-like machine capability.
The second area exploits the strength of CA in modelling and solving particular
problems. Successful and interesting examples are Ising models |7], neural networks
[8], and turbulence phenomena [9]. By imposing local interactions and conservation
laws of physics, this simple abstract modelling of CA exactly reproduces macroscale
behaviour of the continuum system. Even recently, cellular automata have been
used to study cancer growth, propagation of cracks in solid materials, or detection

of grain boundaries in inhomogeneous materials [10-13].

The last two areas enter into more philosophical aspects of the CA description.
One of the most prominent study in the realm of complexity was ignited by the
introduction to the famous Conway’s game of life |6], and later by the study of
Dennett on deterministic formation of patterns based on this automaton [14]. Also
a discrete representation of quantum field theory by the means of CA arouses the
idea that nature itself may be represented by CA (see Ref. [15]).

Through this chapter, a brief definition of complex systems, a mathematical defi-
nition of cellular automata, and their classification and applications are given. Al-
though the definition covers all the classes of the CA, the emphasis in the following

sections is particularly on two-dimensional CA and on their different variations.



2.1. Cellular automata description 5

2.1 Cellular automata description

Although there are many varieties of CA, each one is particularly defined to meet the

requirements of a specific model. They have four generic characteristics in common:

Discrete cellular state space denoted by L, is a discrete arrangement of cells attached
to the discrete lattice structure. The dynamics and the evolution of the system take
place in this space. £ has the dimension of the lattice structure which means that

it can be generally an n-dimensional space.

Local value space ¥ is the set of allowed states; each cell can possess at time step ¢

a certain state which belongs to X:

iee(t) €2 =10,1,2, .. k — 1}, (2.1)

Here o; is the value of the cell indexed with ¢, where indexing of the cells is typically
based on the symmetry groups of £. The restriction on the set ¥ is the fact that
it has to be a finite commutative ring (the binary operation has to be understood
from the context). Usually the choice of such a set is Zj, (integers modulo k). This
characteristic is among the properties which differentiates between the classical CA
and quantum CA (not to be confused with quantum-dot cellular automata). In the
classical CA, the state of the cell can be assigned only to one of the allowed states
in set X, while in quantum interpretation, the cell can be in a superposition state

of the allowed states.

Boundary conditions inevitably change the dynamics of the CA and, in consequence,
a pattern produced by the system. Typically a periodic boundary condition is a
common choice. Sometimes, to decouple the dynamics of the boundary cells from

the rest, they are set to predefined states.

Transitional rule, commonly denoted by ¢, is defined by any map from >" — X
where n denotes the number of nearest neighbours that affect the state of a given

cell (notation X" is equivalent to the Cartesian product ¥ x ¥ x ...X). Denoting
—_—

the set of all neighbour cells of the cell ¢ by N; (also i € N;), the transition rule is
defined as
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oift+1) = ¢(a5(t) | € ;). (2.2)

One time step iteration corresponds to the update of all the cells in £ after a

simultaneous application of the transition rule ¢.

2.1.1 One-dimensional cellular automata

In a one-dimensional CA, the set £ corresponds to a line of cells (finite or infinite
set). The radius of the neighbourhood determines the range of the interaction and
it is denoted by r. The range determines the index of the furthest cells which belong
to the set N;. Therefore, the index of the neighbours of the cell ¢ belongs to the
interval [i — 7,7 4 r] (it has to be noted that this interval is defined on the set of
integers) (Fig. [ 2.1]). Therefore for a range-r one-dimensional CA, the transitional

function ¢ has 2r + 1 inputs and it is written as follows:

Git+1) = G(Tir(t), ey O4(E), oy Oisr (1)), (2.3)

‘i—r‘...‘i—Z‘i-I‘i‘i+]‘i+2‘...‘i+r‘

Figure 2.1 One-dimensional range-r CA.

There are k> +1

possible inputs for the function ¢ where k is the cardinality of the
set of allowed states . The exponential growth in the number of possible inputs is
one of the most important features of CA in cryptography. This representation is
in a one-to-one correspondence with the string representation of the elements of the
set of all polynomials with degree 2r + 1 over a finite k-element field [16]. Hence,
the set of all one-dimensional CA, where the range belongs to the set of natural
numbers, form a ring of polynomials over a k-element field. Thus, by taking a
quotient set with respect to a prime element of the ring of polynomials, a new finite
field can be constructed in order to embed the key for cryptological purposes. For a
clarification of how a CA evolves, consider the case in which the underlying field is
a two-element field (X = {0, 1} with the binary operation addition modulo 2) and
r = 1. The possible local interactions depend on the states of the three adjacent
cells. Thus, there are eight different states and a possible transition is given in the

figure below.
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111 110 101 100 011 010 001 000
0 1 0 1 1 0 1 0

Figure 2.2 One-dimensional CA with two-element underlying field. The transition func-
tion ¢(oi—1,0i,0i41) = 0—1 D2 Ti41 governs the evolution of the CA.

One way of addressing the transition rule instead of providing its catalogue for k = 2
and r = 1, is to associate a number to each specific rule. There are eight possible
binary states in total for three adjacent cells (2 x 2 x 2 = 8). Therefore, there are
28 = 256 different elementary transition rules which can be represented by a binary
string of length eight. As an instance, for the table above, the second row shows
how the transition is done and can be represented by the string (010110105) which
equals 90 in decimal. In this way, one can search through the database (already
available online) for the pattern which is produced by a specific rule and the given
initial condition [17].

£

Figure 2.3 Chaotic pattern generated by the rule 90 CA. This rule belongs to the class
of chaotic CA. This pattern shows how, from a deterministic rule, global chaotic behaviour
emerges. This clearly demonstrates that global complex behaviour is not necessarily a con-
sequence of underlying complex interactions. In contrast, such emergent global patterns can
be generated by simple local interactions.

Since the underlying field resembles a Boolean ring, the above catalogue is commonly
called the truth table of the transition function ¢. The temporal state of the CA cells

is given by a simultaneous application of ¢ to each cell. The first five temporal states
of a CA with N = 10 and the cells initiated in the state o(t = 0) = (0100011010),
and periodic boundary conditions, is given in Fig. [ 2.4]

Depending on the properties of the transition rules, CA can be categorised based on
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time(step) o(t)
0 0100011010
1 1010111001
2 1000101111
— — — 3 1101001000
4
5

1100110101
0111110001

Figure 2.4 Left: it is convenient for r = 1 to represent the transition rules by T-
Polyominos [18]. Here, the states ’0’ and 1’ are shown by squares filled with grey and
white colours, respectively. Right: evolution of a CA with N = 10 and r = 1. The states
are updated at each iteration simultaneously by the application of the transition rule ¢.

their dynamics evolution. CA with simple rules usually have steady-state behaviour
or may have dynamics with limit cycles, but in case of complex transitional rule,
it may occur that the CA behave chaotically (there are two classes of automata
in which their transition is either deterministic or indeterministic. Here we do not
deal with indeterministic CA; therefore the chaotic behaviour is due to deterministic
rules). It is not possible to determine these classes analytically. The classification
is done based on extensive simulations on one-dimensional CA with different initial
conditions, neighbourhood ranges and transition rules. The simulations have showed
that the pattern generated by the evolution of a CA belongs to one of the four classes
listed below:

1. The pattern is homogeneous. All the cells attain either the state '0" or ’1’.
2. The pattern flows in a stable steady-state fashion or evolves periodically.
3. The behaviour of the CA becomes chaotic.

4. The evolution leads to the formation of complex localised structures propa-

gating through each iteration.

The behaviour of the fourth class lies between chaotic and periodic patterns. This
class is tightly connected to the phase transition phenomenon in physical systems.
Thus, it is vital to identify the rules for which the behaviour of the CA resembles
a phase transition. The rule 54 produces some patterns which flow through the
evolution of the CA and remain unchanged. They are called solitons. Although
there are some features which exhibit chaotic-like behaviour, they are not as chaotic
as patterns generated by the rule 105. The solitions are particle-like patterns which
encode the information inside themselves. Since their shape is persistent through the

evolution of the system, somehow it can be interpreted that these patterns are the
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Y

(a) Rule 234 CA  (b) Rule 139 CA

(c) Rule 105 CA  (d) Rule 54 CA

Figure 2.5 (a) Cellular automaton belongs to the homogeneous class. (b) Stable steady-
state cellular automaton with a periodic pattern. (c) A cellular automaton with chaotic
behaviour. In this class, there is no flow of information and it corresponds to the maximal
loss of information. (d) A cellular automaton with complex behaviour. The flow of local
structures (solitons) is evident in the figure; these kinds of cellular automata are capable to
encode information.

agents for the flow of information. This feature is important especially in coding and
information theory. The periodic behaviour in encoding of an arbitrary information
makes them vulnerable to be exploited by trivial decoding algorithms. Also periodic
patterns due to their simple nature are not capable to store a considerable amount

of information.

Therefore, based on the above statements, the capability of a CA on performing
computations depends on its ability to produce such solitons. This solely depends
on the underlying rule [19]. More interestingly, the rules which belong to the fourth
class are the only ones which can emulate the universal Turing machine and perform
universal computations [20]. The reason comes from a feature that for a given set of
inputs, it is not predictable whether the computation will halt or not for a universal
Turing machine [21,22], and this feature is implemented in the rules that belong to

the fourth class.

A well-known hypothesis called the edge of chaos is suggested to describe the tran-
sition phenomenon observed in CA patterns once a small perturbation is introduced
to fourth class rules. What we expect from the hypothesis is that the new obtained
rule due to the perturbation must either generate a simple pattern or a chaotic one
(Table . In order to quantitatively describe the transition, Packard and later
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Langton introduced a parameter (today known as Langton parameter) A which for
each ¢, A(¢) is the fraction of the non-zero maps in the transition rule table |23}24].
Langton showed that such a simple measure is connected to the system behaviour.
As X goes from 0 to 1, different patterns ranging from homogeneous patterns to
chaotic ones are produced. At A = 1/2 the statistical average over different be-
haviours shows chaos. Therefore, the rules which A ~ 1/2, are at the edge of chaos.
But later works of Mitchel and Crutchfield showed different results form Langton’s.
They have shown that even at lower A chaotic behaviour can be expected, but most
of the rules which are at the edge aggregate around A = 1/2 [25,26]. The differ-
ence between the results of Langton and Mitchel is due to the different statistical

averaging methods, which is extensively discussed in Ref. [25].

Table 2.1 Rightmost column (rule 110) is perturbed by changing one of its rows, for
example changing the first row from 0 to 1 yields the rule 111. Thus there are eight
perturbed rules. The last row is the Langton parameter calculated for each rule. The rule
110 belongs to the fourth class. Among the perturbed rules, three of them belong to the class
three, three of them belong to the class two, and the rest two belong to the first class. At
first glance, this table confirms the hypothesis and shows that the rule 110 is at the edge of
chaotic and steady-state periodic regimes, but as it has been mentioned this is not true for
all the cases.

Rule
o 111 | 108 | 106 | 102 | 126 | 78 | 46 | 228 || 110
Initial state
(000) 1 0 0 0 0 0 0 0 0
(001) 1 0 1 1 1 1 1 1 1
(010) 1 1 0 1 1 1 1 1 1
(011) 1 1 1 0 1 1 1 1 1
(100) 0 0 0 0 1 0 0 0 0
(101) 1 1 1 1 1 0 1 1 1
(110) 1 1 1 1 1 1 0 1 1
(111) 0 0 0 0 0 0 0 1 0
A 3/4|1/2 | 1/21/23/41/2|1/2]3/4| 5/8

So far only one-dimensional CA are discussed. Although the two-dimensional CA are
more relevant to this thesis work, one-dimensional CA give an overall picture of the
nature of these automata. In contrast with their elementary nature, complex pat-
terns are generated and a variety of rules can be constructed. Next, two-dimensional
CA are introduced, which are the underlying structure for charge control studies.
The reader is instructed to find more information on one-dimensional CA and deeper

analysis of the transitional rules and their classes in Refs. [19,20,27].
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von Neumann Moore Hexagonal

Figure 2.6 Different lattices with different neighbourhood sets. The hexagonal structure
is equivalent to the Moore lattice. Other lattices such as triangular or hexagonal lattices,
are an extension to the Moore lattice. The extension to the neighbourhood set increases the
complexity of the transitions and the number of possible rules.

2.1.2 Two-dimensional cellular automata

Historically, the CA first used by von Neumann was a two-dimensional CA capable
of self-producing characteristics [3|]. Depending on the lattice geometry and the
convention of the neighbouring cells on the lattice structure, a variety of CA can
be constructed. Among the many variations, there are two generic two-dimensional
CA which are known as von Neumann and Moore CA [19]. They have the same

lattice structure, a simple square lattice, but the set N is different for the i, cell.

Going from one-dimensional to two-dimensional CA brings more complexity into the
system and makes them more suitable for direct comparison with real-world physical
systems. Also different interface structures can be realised by employing different

lattice structures at the boundary. This not possible in one-dimensional CA.

Conway’s game of life

Conway, a British mathematician, was thinking of a rule which is simultaneously
simple in explanation and difficult in prediction. His work [6], was an attempt to
generalise the works of von Neumann, Fredkin and Ulam. Conway imposed a set
of criteria which the rule must satisfy. The first criterion is that a simple initial
pattern does not grow without a limit and, secondly, the pattern produced by the
rule does not yield a trivial final state. Besides, the initial pattern must evolve for

infinitely many iterations before it falls into either a stable or an oscillatory state.

The underlying structure Conway considered was a two-dimensional simple square
lattice with the Moore neighbourhood. The rule given by Conway is an elementary
two-dimensional rule. Its simplicity and its ability to produce sophisticated pat-

terns attracted many mathematicians and other scientists from different branches
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to consider this evolutionary automata for the realisation of real-world systems.

Definiton of life: The rule which Conway defined, associates to the cell with o =1
an attribute alive and to those with state 0 = 0 an attribute dead. Hence, each
cell represents a population which could either grow or decay. The three rules for

Conway’s CA are as follows:

e BIRTH: If a dead cell has exactly three alive neighbours, it becomes alive.

e DEATH: A living cell with either one living cell or no living cell in its neigh-
bourhood will die; also a living cell will die due to overcrowding if it has more

than three living neighbours.

e SURVIVAL: A living cell will continue its life if it has 2 or 3 living cells in its
neighbourhood.

This famous quote by Conway, "It is probable, given a large enough Life space,
wiatially in a random state, that after a long time, intelligent self-reproducing animals
will emerge and populate some parts of the space”, elucidates the potential of the
"Game of Life’ cellular automaton in describing a specific population growth. This
cellular automaton belongs to the fourth class (complex ordered patterns). More
interestingly, this cellular automaton is capable of universal computation. Its relation
to the Halting theorem implies that with an initial starting configuration, in general,
one cannot predict whether a population will grow or eventually die. In other words

it is impossible to predict the outcome of this machine.
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3. QUANTUM DOTS

Quantum dots (QDs) are essential systems considered throughout this thesis. Al-
though the technical concerns of their fabrication are not really necessary to under-
stand and follow the text, a brief introduction on how they are constructed, may be

beneficial for the reader.

QDs were first fabricated in 1980’s and soon after that they found their way to
many applications ranging from transistors to LEDs and diode lasers. QDs are
semiconductor nanostructures which exhibit discrete energy spectrum, like natural
atoms. Due to this property they are called artificial atoms [28]. In semiconductor
QDs, the motion of the conduction band electrons and valence band holes in space
is confined. This confinement is usually created by external electrostatic potentials
such as impurities, external electrodes, or by decreasing the spatial dimension to the
semiconductor surface [29,[30]. The size of a QD depends on the technique which is
used to construct them. Colloidal semiconductor nanocrystals have a size ranging
from two to ten nanometres, while self-assembled QDs can have a size between 10

an 50 nanometres. For larger sizes, lateral QDs exceed 100 nanometres [31].

The discrete energy spectrum in QDs has a different nature with respect to the spec-
trum in real atoms. In atoms, the spectrum is due to the potential of the positively
charged nucleus, meanwhile in QDs the electrons are trapped in a potential well.
The significant difference therefore becomes evident: in artificial atoms the electron-
electron interactions are more important, whereas in real atoms the electron-nucleus

interaction (for low atomic numbers) is dominant.

To understand the nature of QDs, their fabrication is elucidated in the following.
The next section is dedicated to the implementation of QDs in cellular automata

and to their role in computation.

As mentioned previously, there are various methods for the realisation of QDs with
different sizes. One of the most frequent method which is used to create QDs in
a semiconductor heterostructure is lithography, i.e. depositing metal electrodes on

the heterostructure surface. The deposition is carried out by beam epitaxy on het-
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erostructure materials which produces a gate pattern. By applying an electrostatic
voltage, the potential can be tuned, which leads to the confinement of the electrons

and holes on the surface.

Heterojunctions are an important class of junctions that two semiconductor materi-
als with the same lattice constant but different band gaps form. The discontinuity in
the energy band after the alignment of the Fermi levels of the two semiconductors,
is the key element of the 2DEG formation. In order to find the band gap bending,
it is necessary to consider the band discontinuity and solve the Poisson equation
across the junction and include the boundary conditions. The n-type AlGaAs has a
discontinuity in the conduction band and this allows the electrons to either tunnel
or overcome the barrier and gather in the potential well formed in GaAs. This will
shift the Fermi level above the conduction band in GaAs and bring it near to the
interface. This narrow well in the conduction band of GaAs confines the electrons
within a narrow region where 2DEG forms. The high mobility is due to the fact that
the electrons come from AlGaAs, where there are very few impurities to scatter the
electrons. The scattering process is dominated by the phonon-electron scattering.
Therefore, to reduce the scattering, low temperatures are required. GaAs/AlGaAs
heterostructure is an example of this class. After doping AlGaAs with Si, the ex-
cess electrons will fill the interface within a depth of the order of 10 nanometers.
Effectively, in such a thin layer, electrons are confined in the two-dimensional space

(z-direction is frozen) and form the two-dimensional electron gas (2DEG) (Fig. |

51).
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Figure 3.1 Formation of the 2DEG. Figure adopted from Ref. [30]

Due to the decrease in geometrical dimensions, and since the donor Si atoms share
relatively small number of electrons, which implies low density, the 2DEG possesses
a high mobility. By placing charged gate electrodes on top of the heterostructure
and applying an electric field by this means, the 2DEG can be locally depleted. The

electrode gates are made by epitaxial growth and their thickness is in the range of
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Figure 3.2 Schematic view of a double quantum dot. The ohmic contact point makes
1t possible to connect the substrate and the electrodes to the external electrostatic voltage.
The ’charge sensors’ are quantum point contacts to measure the electron flow the source
to drain. The depleted region is shown as the shadow of the electrodes. Figure is adopted
from Ref. . (b) Scanning electron microscope micrograph of a double quantum dot. In
the figure the surface of the AlGaAs/GaAs heterostructure is shown in dark grey. The light
grey regions show the gates (electrode connected to an electrostatic potential) made of gold.
The gate locally depletes the 2DEG and forms two tunnel-coupled quantum dots which are
shown with red circles. The two yellow arrows are called quantum point contacts which
are used to measure the electron flow from the source to the drain. Precise construction of
quantum point contact allows us to count the electrons with the precision of one electron.

Figure is adopted from Ref. .

the layer depth. This gives the ability to control the depletion locally. A suitable
geometrical formation of gates will produce QDs in such a way that a small domain

of the space will be partially isolated from the rest.

An important phenomenon in QDs is the Coulomb blockade effect. This effect is the
key element of the electronic transport through QDs. In Fig. the ohmic
contact weakly connects the QD to the source and drain by tunnel barriers. These
barriers are thick, and the transport is dominated by the resonances due to quantum
confinement. An extra electron can be added to the QD if its energy overcomes the
expectation value of the repulsion energy between the electrons due to the Coulomb
repulsion. This electrostatic energy is estimated by N(N — 1)e?/2C, where N is
the number of the confined electrons and C' is the capacitance of the dot. As the
number of confined electron increases, the addition of an extra electron to the dot
requires more energy. The required energy is therefore Ne?/C. Division of this
energy by the number of the electrons is simply ¢?/C which is called the charging
energy (Fig. | 3.3). If this energy exceeds the thermal excitations which are of

the order of kgT', the electrons cannot tunnel through the barriers by the means of
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thermal excitations, and therefore the transport is blocked. This effect is known as

Coulomb blockade [34H37].

In Fig. [ 3.3 a schematic representation of this effect is given. In this figure, a QD
is connected through its ohmic contacts to the source and drain and to an external
voltage gate. The external voltage gate depletes the 2DEG and forms an electron
island. The aforementioned voltages are denoted by V;, Vg, and V,, respectively. V,
is set to a constant, and the voltages of the source and drain are varied. They are
initially set to values such that the Fermi level of the QD is below the source and
drain energy levels (note that we are in the zero temperature regime, therefore the
terminology of the Fermi energy is well-defined.). Due to the geometrical properties
of the QD, it has a capacitance, into which the presence of electrons gives a finite
contribution. Therefore, as the number of electrons increases in the QD, the Fermi
level of the dot will eventually reache the energy level of the drain, which leads to

escape of the electrons from the dot, and to a contribution to the electric flow.

IeZIC N

Figure 3.3 From left to right: The Fermi level of the dot is located below the source and
drain energy levels. If the height difference between the energies is higher than the thermal
energy, electrons cannot tunnel through the barrier and exit the dot. The letters S and D
denote the source and drain, respectively. The energy levels of the dot are illustrated by
solid red lines. Each of these levels is occupied by one electron. The dashed lines denote
the empty electron states of the dot and are called affinity states. In the middle figure, V,
is increased which leads to the lowering of the energy states of the dots. If the voltage gate
1s increased further, the energy of the first affinity state becomes equal to the energy level
of the source. Therefore, electrons can move from the source to the quantum dot. Since the
energy level of these electrons is higher than the energy level of the drain, the electron leaves
the dot, which leads to a current from the source to the drain (rightmost figure). After this
stage, if Vy is increased further, the highest energy level of the dot, which is aligned with
the source, will be lowered and the conductance will be blocked.

In finite temperatures, the Fermi level corresponds to the chemical energy of the QD,
that is, p = E(N) — E(N — 1), where £ is the energy of the QD in its ground state.
Based on the explanation above, it is clear that the conductance of a QD must show a
rapid jump. When the number of electron tends to infinity, the conductance becomes
linear. This can be observed in Fig. [ 3.3] When the number of electrons increases,
the energy gap between the states shrinks and becomes continuous, and the highest
energy level will reach the chemical energy of the drain (ug), and electrons can

freely enter the QD from the source and escape the dot. In the linear regime,
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s — g = —e(Vs — Vy) is much larger than the spacing between the energy states.
In finite temperatures, electrons may also have a chance to escape form the dot due
to thermal excitations; thus the conductance at high V;, does not have regions which
correspond to zero conductance (at zero temperatures the profile of the conductance
must still show fluctuations between finite and zero conductance. But an interesting
effect may be observed in a case where the number of electrons in the dot is infinite.
That is the observation of conductance due to the quantum fluctuations in the

vacuum. )

So far we have discussed the fabrication and transport mechanism of quantum dots.
When quantum dots are in contact with each other their behaviour becomes more
complex. In the following sections we consider two QDs in contact, namely double
quantum dots. But first, an introductory section about quantum computing and
information will be given, since there are some terminologies which are used for the
description of double quantum dots. The connection between quantum dots and

computation eventually becomes clear in Sec. 2.2.

3.1 Quantum computing and information

Before starting this section, it should be emphasised that this thesis focuses on
charge control in quantum dot cellular automata. Although the term quantum is
used, the computation with these devices is classical. This introduction is given only
to familiarise the reader with the concept, since quantum dots are related to both

classical and quantum computations.

The very fundamental element of information is a bit. The foundation of computa-
tion and information is based on the Boolean algebra and Boolean rings. The set
of variables of this algebra consists of only two elements, true and false, which are
denoted by 1 and 0, respectively [16}38]. A bit is therefore either 0 or 1. In classical
computation and information the realisation of these two variables may correspond
to receive a signal pulse or not. But at any instant it is either on or off. These two
states do not coexist even before any measurement. In the quantum counterpart the
situation is different. First of all, to distinguish the bits which are used in classical
computation and quantum computation, the name qubit is considered for the latter
case. In quantum computation, qubits coexist prior to the measurement. This is due
to the superposition principle in quantum mechanics. But after the measurement

the situation coincides with the classical regime.

Any physical system with a two-dimensional Hilbert space can be served as a qubit.
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Figure 3.4 Phase space of a quantum
system with a two-dimensional Hilbert
space with basis states |0) and |1) repre-
sented by the Bloch sphere. The bases
are aligned parallel with respect to each
other: one points to the positive direc-
tion of the z-axis (|0)) and the other to
the negative direction (|1)). The qubit
state given by Fq. can be rewritten
as |) = exp” (cos\O) + exp'® sing|1>),
where v is an arbitrary phase, and 6 and
¢ are polar and azimuthal angles, respec-
tively. Figure from Ref. [39]

Let us call these two basis stets |0) and |1) which are obviously orthonormal. There-
fore, any state of the system can be written in the form of a superposition of these

two states.

[¥) = al0) + B[1), | +[8]" = 1. (3.1)

For instance, a spin-1/2 system with two orthonormal basis states |—1/2) and [1/2),
which correspond to spin-down and spin-up states of an electron, or a photon with
orthonormal bases |L) and |R) (left and right circular polarisation), can be served
as a qubit. These bases are known as computational basis states, and « and [ are
complex numbers. Therefore, a qubit can possesses a continuum state between |0)
and |1). This is counter-intuitive to our common sense with respect to the definite
state of classical bits. In order to describe a qubit by classical bits, an infinite
sequence of classical bits is required. Once a measurement is carried out on a qubit,
its state will collapse into the state |0) with probability |a|? or into the state |1)
with probability |3]2. This the only information one can get from a qubit.

A qubit can be represented by a sphere called Bloch sphere named after the physicist
Felix Bloch. 1t is a geometrical representation for two basis quantum systems and it

is especially utilised for the representation of qubits (Fig. | 3.4)).

Although a qubit can store an infinite amount of classical information, it is impor-
tant to bear in mind that for quantum computing we need more than one qubit. In
order to have a quantum speed-up in the computation, another feature of quantum

mechanics is necessary; quantum entanglement. An exponential speed-up of quan-
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tum computers with respect to classical computers requires dynamics which cannot
be efficiently simulated on classical computers [40]. Very well-known states for un-
derstanding the role of entanglement are the Bell states. They are also commonly
called EPR pairs. They are the most simple two-qubit states which are maximally
entangled. The Bell states, which can be constructed from two successive two-qubit

gate operations [39], are listed below:

1 1
fon) = =5 (100) + [11)). ) = = (01) +[10)),
Bro) = —= (J00) — [11)), 1) = —= (j01) — [10)). (3.2)

2 2

S
S

It can be observed that, once a measurement is done on the first qubit, the state
of the second qubit will be known instantaneously. This property is important for
quantum algorithms such as Shor’s prime factorisation [41], superdense coding [42],
and also especially in the field of quantum cryptography such as BB84 encoding
scheme for public key distribution [43].

Entanglement is also important when one thinks of quantum simulations on classical
hardware. Generally, a many-body quantum system consisting of n particles requires
O(exp(n)) parameters to be fully described. Therefore, not all quantum dynamics
simulations can be carried out on classical computers. This consideration puts a
limit on the amount of entanglement. Vidal [40], has shown that quantum computing
with pure states of n interacting particles can be efficiently simulated on classical
computers, if the entanglement present in the simulation does not exceed a certain

level.

In order to manipulate bits or qubits we need logical operations. They are called logic
gates. Suppose an operation which transforms |0) — |1) and |1) — |0). Thus, the
action of such a logic gate on the qubit |1);,) = «|0)+5|1) yields |¢ou) = a|1)+5]0).
This is an example of single-qubit class of logic gates and corresponds to the classical

NOT gate. The NOT gate simply interchanges the bits. Its matrix representation

01
(01) 0

can be written as follows:

S
Il
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’ Input ‘ Output ‘ Table 3.1 Truth table of the CNOT gate; a

|00) 00) two-qubit gate which stands on controlled NOT.
01) 01) The state of the second qubit remains unchanged
10y | [i1y | !/ the value of the first qubil is truc ((0)), other-

wise its state would be flipped upon the action of
[11) [10) the gate.

In contrast to classical computation with NOT as the only non-trivial single-bit
logic gate, in quantum computation any operation that preserves the norm of the
qubit is a valid logic gate. In other words, the matrix that represents the gate must
satisfy the unitarity condition. Another interesting gate is called the Hadamard

gate. Its matrix representation is given by

(11
H:<1 _1>. (3.4)

Application of the Hadamard gate accompanied by the CNOT gate, which is a
two-qubit gate, on |00), [01), |10), and |11) yields the Bell states listed in Eq. (|

53).

Another issue worth of attention is the linearity of the action of the gates. This is
due to the fact that the Copenhagen interpretation of quantum mechanics is a linear
formalism (algebra of linear operators [44]). There are other interpretations with the
formalism beneath that are non-linear. It has been shown for instance by Gisin and
Polchinski that non-linearity would violate the causal property of physical events
(superluminal transport). Based on this result, they have predicted superluminal
communications in experiments concerning the EPR paradox [45-47] (EPR paradox,
after Einstein, Podolsky and Rosen, was introduced to address the incompleteness
of the physical reality described by quantum mechanics. For further reading we refer
to [48H54]).

This introductory section on quantum computing and information was given to
familiarise the reader with the concept, and to clarify any possible ambiguity that
may arise in the rest of the text. In this thesis, only one-electron systems have been
considered. Therefore, one should not expect to perform quantum computation with
these devices. Even in the case of many-body systems, which is not considered in
this thesis, a certain level of entanglement must exist for quantum computation and

information processing.
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3.2 Double quantum dots

Double quantum dots (DQDs) are systems that consist of two quantum dots which
are either weakly or strongly coupled to each other. These two classes are commonly
referred to ionic and covalent bondings [55]. In the former case, the electrons are
localised in only one QD. The excess or lack of the expectation number of electrons
in either dot causes an effective Coulomb attraction which itself leads to a stable
structure |35]. In the latter case, instead the wave function of the electrons is spread
over both QDs. Therefore the electrons can tunnel spontaneously between two dots

before a measurement on their spatial coordinates.

The two QDs can be coupled to each other in three different ways. They can be
coupled in series [56-60], parallel [61}-63|, or they can be coupled to each other
vertically [64-66]. Meanwhile in the first two cases the characteristics of the tunnel-
barrier depend on the voltage gate and the geometry, in the latter case the tunnel-

barrier properties are identified by the growth parameters of the material in use.

The difference between the serial and parallel DQDs is that in the former case the
dots, source, and drain are attached to each other in series (Fig. [ 3.5), while in
the latter case each dot is attached to the source and drain separately. Besides, the
profiles of the Coulomb blockade resonant peaks is totally different for the two cases.
In series coupled DQDs, the Coulomb blockade peaks initially the peaks correspond
to the two separate quantum dots is observed and eventually the peaks of a one large
unified quantum dot appear [67]. In parallel setting, there are also secondary peaks
in the Coulomb blockade spectrum profile due to quantum mechanical inter-dot

tunnelling [63].

A strongly coupled DQD is quite similar to a case when two real atoms form a
covalent bond. Once the QDs are brought together, a hybrid energy state is formed
due to the overlap of their ground states, which causes the lowering the total ground
state energy of the whole system. It worth mentioning that in the ionic case, where
Coulomb interaction (classical interaction) forms the binding between the two dots,
in the covalent case the binding is due to the quantum mechanical properties of
the electrons and the consequence of the Pauli’s exclusion principle, that is the
key element of the formation of the bond. It is possible to observe a transition
between weakly coupled and strongly coupled QDs by modifying the tunnelling
barrier. The strength of the bond between the dots can be determined quantitatively
by microwaves. Irradiation of microwaves causes photon assisted tunnelling (PAT)
in coupled QDs. The mechanism is based on the inelastic tunnelling of the electron

between the two dots and exchange of energy with an applied external time-varying
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potential. Further theoretical explanations can be found in [68,69].

Regardless of the number of QDs in a system, a stability diagram, is a common tool
to study the transport properties of the system [70]. The dimension of the diagram
is simply the number of QDs which are coupled to each other. This makes it clear
that for a system which has four QDs or more, the method loses its advantages in
representing the stability diagram, since the visualisation of such a diagram becomes

complicated.

3.2.1 Stability diagram

The purpose of the stability diagram is to understand the equilibrium charge state
of the system. There are two regimes of transport phenomena: classical regime and
quantum mechanical regime. In the classical regime the effect of discrete quantum
states is not of concern |70]. In the latter case, shifts in the energy levels due to

addition or loss of electrons must be considered (explanation will be given later).

As depicted in Fig. [ 3.9(D)] a DQD can be modelled as a circuit with tunnel resistors
and capacitors (a schematic view is given in Fig. | 3.5))

Va1 V

IR SN

RL!CL Rm'Cm RR'CR

Figure 3.5 Double quantum dot in series modelled by tunnel resistors and capacitors.
The symbols are explained in the text. The schematic is simplified according to the inset.
The figure is adopted from Ref. [55].

In the figure above, each dot is represented by a circle with its corresponding number
of electrons /V; which is connected through the capacitor Cy, to the voltage gate V,,
where ¢ is the index of the dot and the index ¢ refers to the gate. The first dot is
connected to the source (S) through the tunnel resistor Ry, and the capacitor Cp
and the second dot is connected to the drain (D) through the tunnel resistor Rg
and the capacitor C'r. The coupling between the two dots is modelled by the tunnel
barrier represented by R,, and C,,. In the linear regime (the bias voltage V between
the source and drain is almost zero), the electrostatic energy of the system is given
by
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1 1
U(va NQ) = §N12EC'1 + §N22EC'2 + NlNZECm + f(‘/gn ‘/92) (35>

1
f(‘/;h’ ‘/;]2) = g C191‘/;71 (NlECl + NQECm) + 092%2<N1E07n + N * ECz)

1 1
_02 V2 ECI + _Cz V2 EC’2 + 691%1092‘/92E0m :

1
+€_2291g1 9 792" g2

E¢, is the charging energy of the iy dot. Since the two dots are coupled with
each other, the energy change in either dot due to the addition of one electron will
affect the energy of the other one; E¢, accounts for this energy change and is called
electrostatic coupling energy. These three energies can be be expressed solely in

terms of the capacitance of each dot and the coupling capacitance as follows:

The notation C; refers to the sum of all capacitances attached to the #;;, dot (01(2) =
C L(R) + Cg
above, the two limiting cases will be examined. First, consider the limiting case in

v T C)n). For the sake of consistency in the explanation of the equation
which the two dots are uncoupled, which implies that the coupling capacitance C,,
tends to zero. In this case, F¢; = 8—2 is the charging energy of a single uncoupled
quantum dot and FE¢,, — 0. Thus, the equation (| 3.5) reduces to

(Nle_'_cgl‘/m)Q + (N26+C V )2

g2 " g2

Ny N,) =
UMy, Vo) 20, 20, ’

(3.7)

which is simply the sum of the electrostatic energies of two uncoupled quantum dots.
The other limiting case is such that the two dots are tightly coupled to each other
and the coupling capacitance becomes dominant (C,, > (C,,,Cr(r))). Therefore

the electrostatic energy of the system becomes

[(Nl + NQ)G + 091‘/91 + 092%2]2

U(N17N2) = 2(01 "’Oé) )

(3.8)
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where C! = C; — C,,,. From the term (N; + Ns)e it can be deduced that the two
quantum dots are merged and form a single quantum dot with capacitance C{ + CY.
It can be also seen that in this case F,, — oo. This implies that the addition of one
electron to one quantum dot will change the energy of the other dot by an infinite
amount. This could be interpreted as the self-energy of the additional electron, since

the two dots are merged and form a single dot.

Since the number of electrons in QDs changes, the possible states of the system in
thermodynamic equilibrium are represented by the grand canonical ensemble |71].
Since the system (two QDs) is in the thermodynamic equilibrium (chemical equi-
librium) with the reservoir (source or drain), the electrochemical potential p is a
relevant quantity for the description of the system. The electrochemical potential
of the 74, dot is the energy required to add an extra electron to it while keeping the

number of the electrons of the other dot constant:

/Ll(Nl, Ng) EU(Nl,NQ) — U(Nl — ]., Ng)
1 1
= (Nl - 5) Eci + NoEcy, — E(Cgl‘/glEC’l + CyoVpoEem);  (3.9)
/,LQ(Nl, Ng) EU(Nl,NQ) — U(Nl, N2 — 1)

1 1
= (N2 — 5) Eco+ NiEcy, — E(Cgl‘/glECm + CpoVipEca).  (3.10)

By a simple arithmetic calculation (at constant gate voltage), pui(Ny + 1, Ny) —
t1(N1, No) = E¢q. This energy is called the addition energy of dot 1 and is simply
the charging energy. In a similar way, pa(Ny, No + 1) — g1 (N1, Na) = Eeo. It has
to be emphasised that this conclusion is true only in the classical treatment of the
system. In the quantised regime, once an extra electron enters the dot, discrete
energy levels of the dot also play a role in the electrochemical potential and the
addition energy is not equal to the charging energy and they differ by an amount
AFE, which is the difference between the energy state which will be occupied by the
extra electron and the highest energy level occupied before its addition (one has
to care about the change in the energy state levels after the addition of the extra
electron to the dot).

Now the charge stability diagram can be plotted by the means of Egs. (3.9 and
(3.10) (Fig. | 3.6). The diagram shows the change in the numbers of the electrons
in the dots if the gate voltages V,; and Vo are varied. Since we have considered

zero bias voltage, if either p;(Ny, No) or us(Ny, No) exceeds zero electrochemical
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Figure 3.6 (a) Two uncoupled quantum dots. The charge of the quantum dots is changed
independently of each other. (b) Two coupled quantum dots. The two triple points are
inside the dotted square. The transport due to the electron displacement is shown by filled
black circles. In this case the charge state of the system changes from (0,0) — (1,0) —
(0,1) = (0,0) (corresponds to the anticlockwise cycle shown in (d)). The conductance due
to the hole transport is shown by empty white circles which corresponds to a cyclic process
(1,1) — (0,1) — (1,0) — (1,1). This is the clockwise cycle shown in (d). In this type
of conductance, a hole enters the first dot and cancels the negative charge of the electron.
Then it moves to the second dot and after that leaves the dot. (c) The limiting case of
tightly coupled quantum dots. Since the two dots become a single dot, the line segment
connecting the two triple points becomes infinite. Therefore the states for which N1 + Na
1s the same become indistinguishable.

potential (the electrochemical potential of the leads is zero), an electron would
escape the dot. Therefore the number of electrons in the dots which determines
the charge equilibrium state would be the largest integers N; and N, such that both
electrochemical potentials are negative. The equilibrium constraint and the fact that
N;’s are integers form a hexagonal phase space. In Fig. | 3.6(a) the two dots are
decoupled (C,,, — 0). Therefore the change in V; only changes N; and leaves the
charge state of the second dot unaffected. In this case the charge stability diagram
is not a hexagonal phase space but rather a square. But if the dots are coupled
to each other (finite C),), the vertices of the squares are stretched and two distinct
points will be formed. Since these two points belong to three different regions (]
B-6/(b)), they are called triple points. At these points, the charge state of the system
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is not at equilibrium but rather in a steady state of charge flow between the three
distinct regions which share the triple points. At these points a measurable current
is formed due to the transfer of charge between the three degenerate charge states

of the system.

The two triple points refer to different types of charge transport. In Fig. [ 3.6{d), the
two different processes are represented by filled black circles and the other ones by
empty white circles. The filled black circles refer to processes where the electrons are
the carrier of the current in contrast to the empty white circles in which the charge
transport could be considered by the transport of the holes. The conductance in the

former case is a cyclic process described as follows:

(Nl,Ng) — (Nl + ]_,NQ) — (Nl,NQ + ]_) — (Nl,NQ). (311)

In the latter case the conductance is due to the following process:

(N1 + 1,N2 + ]_) — (Nl,NQ + 1) — (Nl + 1,N2) — (N1 + 1,N2 + 1) (312)

3.2.2 Double quantum dots and computation

It has been mentioned that polarisations of photons and spin degree of freedom of
electrons can be served as qubits, but they are not the only candidates. DQDs can
also be utilised for this purpose. Both spin and charge degrees of freedom have a

qubit realisation in DQs.

In a singly charged DQD, the presence of the electron in the left dot corresponds
to qubit |0) and if it is in the right dot, it corresponds to qubit |1) (the presence
of the electron corresponds to the occupation of the ground state energy level) [72).
Recall that the superposition principle is the key element of quantum computation.
In a weakly coupled DQD where the electron is localised in one dot, a transition
to classical computation occures. But also strong coupling of the QDs requires
an increase in the bias voltage, which is the source of decoherency and it is due
to the electron-phonon interaction. Besides this cause, there is another source of
decoherency which relates to the background electron scattering due to the presence
of impurities. The decoherecy times in charge based DQD qubit systems is of the

order of nanoseconds (for instance see Refs. |73,[74]. This time scale extends to
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Energy

Figure 3.7 Interplay between bonding and antibonding energy states. At e = 0 the
states |L) and |R) are degenerate, so that the state of the DQD is in a superposition
of the two eigenstates. The anticrossing energy A is the barrier coupling strength which
can be controlled by the bias voltage. The points (b) and (e) correspond to the states
% (IL) + |R)) and % (IL) — |R)), respectively. T is a measure of the relaxation time
between the transition from the antibonding state to the bonding state.

microseconds for spin-based qubit realisation of DQDs [75,(76]). Therefore, the
strength of the coupling must be such that the wave function of the electron spreads

through both dots, thus optimising the coherence of the system.

Suppressing the higher energy levels of each QD effectively decreases the dimension
of the Hilbert space to two dimensions, and it can be approximated by a two-level
system. These two states correspond to bonding and antibonding states (Fig. | 3.7)).

The Hamiltonian of a two-level system can be written as follows:

H = er|L)(L| + er|R)(R| + A(|L) (R[] + [R) (L)), (3.13)

where €, and e are the ground state energies of the left and right QDs, respec-
tively. A is the energy difference between the bonding and antibonding states. The
Hamiltonian above has a matrix representation based on Pauli matrices and can be

transformed according to the equation below [77]:

1 1
H= 560z + §AO'$. (3.14)

Here € is the energy difference between the ground state energies. This expression
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Figure 3.8 Schematic representation of the primary computational cell in its 0’ state
(left) and ’1’ state (right). The quantum dots are shown by red circles and the electron
density is shown by filled green circles. The rotational symmetry group of 5 plays an
important role for diagonal and anti-diagonal distribution of the electron density, which
will be explained in the last chapter. If these two cells are in contact with each other,
the Coulomb interaction makes the state of the whole system unfavourable. Therefore, the
ground state of the whole system will be either 00" or ’'11’.

coincides with the description of a spin-1/2 system in a presence of an external
magnetic field with components A and € along the z-axis and z-axis, respectively.
Thus, these two-level DQDs with charge degree of freedom are called pseudospin
qubit systems. The corresponding energies for the eigenstates of the system are
F1/2hQ, where Q = /A2 + €2/h. For this system both single and two-qubit gate
operations have already been demonstrated [724[78].

3.3 Quantum dot cellular automata

The aim of the previous sections was to introduce the reader with the concepts of
the CA and QDs. Although the fields are rich and more complicated to be fully
implemented in this work, the provided information was only given as a necessary
introductory for the rest of the material. This section is dedicated to present the

quantum dot CA (QCA) structure and its role in logical computation.

The experimental aspect of manufacturing such a system is itself an interesting
topic which is quite challenging and still far away from industrial production. Since
the topic of this thesis is the controllability of the system, we consciously avoid
entering this issue any further. Strictly speaking, QCA are physical realisations of
classical CA with an emphasis that they are used typically for classical computation.

However, there are studies on QCA tailored for quantum computation [79).

Designing CA based on QDs is originally a consequence of technological saturation
in the power and size of computational devices. The electronics technology of the
present devices is based on field-effect transistors (FETs) [80]. They have been
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improved over the past three decades exponentially as Moore has predicted in his
famous law |2|. Despite the fact that the size has decreased significantly, the density
of the transistors in electronic circuits doubles every two years so that there is an
exponential growth in the performance of these devices. It is not surprising that
this improvement has already begun to saturate, since the decrease in size exhibits
quantum mechanical behaviours. For this reason, changing the FET-paradigm nec-

essarily needs departure from microstructure size scale to the nanostructure regime.

Among the different paradigms, QCA are prominent candidates for very two specific
reasons. (QDs are essentially tunable traps for a defined number of electrons. This
gives the ability to control the size of the device, which is of absolute importance.
Moreover, utilising QDs in QCA drastically improves the energy consumption. As
Landauer’s principle [81] indicates, energy dissipation from a logically irreversible
binary operation is kgT log(2). In a response by Boechler et al., it has been ar-
gued that energy dissipation lower than this limit can be achieved for charge-based

computation [82}83].

QCA are QDs positioned on a square lattice structure. The mathematical represen-
tation attributes the QDs to the elements of the set £, while the quantum mechanical
states of a QD are elements of the set ¥ (the sets £ and 3 are defined in Ch. 2
Sec. 1). The primary computational cell consists of four quantum dots attached to
square lattice points. The global state of this cell is defined by the charge distribu-
tion (this cell has a experimental realisation [84]). To distinguish two possible states
to represent bits 0 and 1, conventionally the diagonal and anti-diagonal configura-
tions of the charge distribution correspond to bits 0 and 1, respectively (Fig. | 3.8)).
A collection of these primary cells positioned in an array forms a system in which
the state of each cell depends on the states of the other cells. Hence, the specific
architectural arrangement of the cells is an important issue one has to bear in mind

for the design for logical computation.

The fundamental QCA logic device consists of three input cells called majority logic
gates [Fig. . Besides, there is a central cell whose state depends on the value
of the input cells. The state of the output cell [the rightmost cell in Fig. | 3.9(c)| is
determined by the state of the central cell. This logical device can act as an OR or
an AND gate by fixing the state of one of the input cells A, B or C'. The majority
gates provide an advantage that any logical function has a realisation circuit based
on them [85].

The charge control of the OR gate is demonstrated in Fig. and the description

is given in the caption.



3.3. Quantum dot cellular automata 30

(b)

Figure 3.9 OR majority gate. The quantum dots are shown as empty hollow bulbs and
the electron density is shown with blue colour. (a) The initial state of the OR gate in which
all the primary cells are initiated to state ’1°. There are three input primary cells. One of
them is frozen and an anchor is shown above it (upper cell). Two remaining input cells are
denoted by A and B. (b) The state of the input cell B changes to '0°, but the output cell
does not change. These is due to the fact that the central cell in its current state minimises
the total Coulomb interaction of the whole system. But in (c), changing the state of A
to ’0’, increases the Coulomb interaction and therefore the central cell changes its state to
0’ and the output cell changes its state to 0°. A similar architecture can be used for an
AND gate with the difference that the upper cell must be fized in state ’0°. The figures are
snapshots from a short animation by J. C. Bean .
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4. QUANTUM OPTIMAL CONTROL THEORY

Variational calculus is the basis of many control theories such as optimal control
theory. Variational calculus can be used even to prove that the shortest distance
between two points in an Euclidean space is a straight line [87]. Even Egyptians
used this method to find the shortest distance, simply by stretching a rope between
two points [88]. The theory is based on the variational principle. It has roots in
philosophical ideas by many prominent philosophers and scientists of 17th century.
Leibniz considered the God as a perfect mathematician that as a supreme being,
has created this world in such a way that the occurrence of an event must be as
simple as possible and must minimise its action. Maupertuis, with a close opinion
to thoughts of Leibniz, announced the famous principle of least action [89]. This
work is considered as an extension to the work of Hero of Alexandria on geometrical
optics, which is formulated by Pierre de Fermat and is known as the principle of
least time [90].

Optimal control theory is a mixture of control theory and variational calculus. In
general in an optimal control problem, the dynamics of a system of concern is con-
strained in such a way that certain criteria must be minimised or maximised. Solving
the differential equation of motion of the system under the constraints leads to a
set of control equations satisfying the imposed criteria. Most probably, the oldest

problem which has been solved by this theory is Brachistochrone [91].

Optimal control theory has been expanded to quantum mechanics after the realisa-
tion of the first laser by Maiman in 1960 [92]. This brought up the idea of coherent
control of quantum mechanical systems in a tailored manner by means of electromag-
netic fields. For instance, lasers can be implemented for bond breaking in chemical
compounds or to control charge flow by selectively exciting certain molecules [93].
But designing an electromagnetic field to achieve optimised control over a system
was an absolute obstacle. This became evident when chemists tried to shine a
monochromatic light tuned on the resonance frequency of a chemical compound to
break a specific bond in the molecule. This naive idea only heated the molecule. It
became clear that the solution for this process is not trivial. Since microscopic sys-

tems do possess many quantum characteristics such as entanglement, their coherent
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characteristics should not be distorted [94].

There are many theoretical methods to find the optimised pulse such as pump-dump
control [95], Brumer-Shapiro control [96] and stimulated-Raman-adiabatic-passage
(STIRAP) [97]. One principle that these methods share is their intention to control
the evolution of the quantum system by controlling a single parameter. As the
degrees of freedom increase, single-parameter schemes fail in finding the optimal

pulse, and multi-parameter control methods become more vital.

Quantum optimal control theory (QOCT), first introduced and developed in 1980s
[98,99], is a powerful variational method capable to deal with problems underlined
above. In QOCT, at the first sight, the outcome could barely give a straightforward
understanding about the nature of the system, since QOCT utilises consecutive
quantum interferences by optimising both phase and amplitude of the pulse at the
same time under physical constraints. Therefore a great amount of outcome infor-

mation is required to be deeply analysed.

As it has been mentioned, traditionally laser fields in the dipole approximation
are used for controlling quantum systems and, as a consequence, the formulation
of QOCT needs to be justified for local gate pulses. In the following sections,
the general concepts of the scheme are introduced and modified equations for the

optimisation of local gates will be derived.

4.1 Theory of quantum optimal control

4.1.1 System description

Consider a quantum system with the total Hamiltonian

H = Ho + Hear. (4.1)

The wave function ¥(r,t) obeys the time-dependent Schiodinger equation (in atomic

units)

i0,0(x,t) = HU(r,1). (4.2)
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In Eq. , ‘H, consists of the kinetic energy operator T = V2 /2 plus the sta-
tionary potential ]A/o(r) that defines the system geometry. H..(f) is an external
potential introduced to control the system. Generally, the external Hamiltonian can
be any kind of energy source, specifically laser field. In this work an external voltage
gate is used for controlling the system [100]. Therefore, the external Hamiltonian
Hene is substituted with a local voltage gate U(r,t), that is, He,e = U(r,t). Since
the spatial and temporal parts of the voltage gate are independent, the separability

condition implies that

Ulr,t) = g(r)f(1), (4.3)

where ¢(r) is the static spatial component and f(¢) is the component which solely
depends on time. This time-dependent part f(¢) will be optimised within QOCT.

4.1.2 Lagrange functional

It has been previously mentioned that QOCT is a variational scheme subjected
to system constraints. The aim is to find a control pulse f(t) in such a way that
starting from a pre-defined initial state of the system, after the interaction time with
the field, the system is found in a well-defined desired final state. This means that
expectation value of a general operator O has to be found in its extremum under
the applied field f(t). Mathematically written:

max J; - with Jl[\lf]:<\I/(T)\O|\II(T)>. (4.4)

The functional J; is known as the yield.
Another intuitive constraint, especially when considering laser pulses of limited

power, is the minimisation of the fluence, i.e. the time-integrated intensity of

the pulse:

Jo[f] = —/ af?(t)dt. (4.5)

0

Here T is the field duration and the positive constant « is the penalty factor. o can

also be considered as a time-dependent function to dictate the pulse shape at any
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given instance of time. This issue has been addressed in Ref. [101].

As another constraint, the wave function has to satisfy the time-dependent Schrodinger

equation. The functional expression for this constraint is given by

Mﬁ%ﬂz—ﬂmﬁ<ﬂm@@—H@NWD% (4.6)

where x(t) is a time-dependent Lagrange multiplier. The choice of the imaginary
part of the functional is a matter of convention and consistency with previous works.

In this functional the field f is implicitly contained in the Hamiltonian H.

Finally, by summing the expressions (| 4.4)), ( 4.5)) and ( 4.6)) we obtain the Lagrange

functional of the system:

This functional represents the standard optimal control problem. By direct variation

of this functional, we find the so-called control equations.

4.1.3 Control equations

To find the optimal pulse, the total variation of the Lagrange functional with respect
to the independent variables ¥, f and y must be equal to zero. The solutions are
the extremums of the functional. We must note that the solutions of the problem

must have a meaningful physical interpretation [102].

T 5.J 5.J S
0J = /o dT/VdI' {—5@(1477_)5‘11(1', T)+ —5x(r,7-)5x<r’7-)} +/0 dT—(Sf(T)(;f(T)
=0y J + 0y J + 0. (4.8)

Variations with respect to the complex conjugates of ¥ and y have been discarded,

since they yield the complex conjugate set of equations.

The total variation must be equal to zero in order to find the maximum of functional
J. Since the variations with respect to the variables are linearly independent, each

individual term must be equal to zero:
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0J =0 =
dgJ =0 , 0, J=0 , 6;J=0 (4.9)

Variation with respect to the wave function

The variation of functionals J; and .J; with respect to ¥ can be taken in a straight-
forward fashion. But the variation of J3 needs more effort. For this reason we modify

the expression by using integration by parts:

/0 (X(t)| [i0, — H(t)] |W(t)) dt =
i (x ()W (t)) ’OT—Z/O (Oex ()| ¥) dt—/o (Hx ()| W (1)) dt =

T

ORI / (10, — H) x(8)|W) dt. (4.10)

0

After this modification, the variation of J with respect to W is readily found to be

Sud = <\I/(T)\ O |6\I/(T)> i [ dr (a0, — H(T)x ()]0 (7))

— (X(D)[0W(T)) + (x(0)|6¥(0)) . (4.11)
—_——

=0

The last term vanishes since the initial condition for the wave function is fixed.

Variation with respect to the Lagrange multiplier

The variations of the first two functional expressions vanish since only J3 depends

on Lagrange multiplier x. Therefore the variation yields

5. = —z'/o dr (i, — H()U(7)[5x(7)) (4.12)
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Variation with respect to the field

For the last independent variable, f, the first functional vanishes. The variations of

the two other functional expressions are obtained as follows:

5y = — / " oaf()s (e (4.13)
Jy = —2Im / OO0, — Ho + g(0) F() (1)) dt =

0.J3 = —21111/0 X(@)|g(r)of(t)[¥(t)) di. (4.14)

By summing up d.J; and §J3, the variation of the Lagrange functional with respect
to the field is found to be:

5fJ=/O dr [=21m (x(7)]g(r)[¥(7)) — 2af (T)] 6/ (7). (4.15)

Control equations

The criteria of finding the maximum of J correspond to setting (| 4.11), ( 4.12), and
( 4.15) must equal to zero. This leads to the following set of equations:

af(t) = —Im (x(t)|g(r) V(1)) ; (4.16)
(10, — H(t))¥(r,t) =0, ¥(r,0) = B(r); (4.17)
<()qu(T) — X(T)\(S\IJ(T)> = —i/o dr (10, — H(T))x(1)[6¥(7)) . (4.18)

The first equation, given the wave function and the Lagrange multiplier at a specific
instant of time, gives the value of the control field at the given time. The sec-
ond equation is simply the time-dependent Schodinger equation, where the initial
condition is fixed, that is, U(0) = ®.

The third equation needs further modification as it is quite complicated in its current
form. Rewriting the left-hand side of Eq. ((4.18) in an integral form yields
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/OT dr <(5(T -T) (OT\D<T) - X(T)) ‘(NJ(T)> _ /OT 0 H )
/OT dr <7L5(T ~-T) (OT\II(T) - X(T)) — (10, — /H(T))X(T)’(S\II(T)> —0.  (4.19)

Splitting the integral into two intervals yields

T—¢

iy [ ar (id(r = 7) (0'9() = x(7)) = (10, = HOI(]5¥() +

¢—0

/ T <¢5(T Y (OTW(T) - X(T)) — (i0, — H(T))X(T)|5\p(7)> — 0. (4.20)

T—¢

In the first line of Eq. (| 4.20)), the first integrand vanishes due to the presence of the
Dirac delta function. In the second line, the second term of the integrand vanishes

since it is a continuous function. This leads to a set of two equations:

(10, = H(1))Ix(t)) =0, (4.21)
X(T)) = O[¥(T)). (4.22)

It is worth mentioning that in the derivation the Eq. (| 4.22)), the continuity of the
Lagrange multiplier is implicitly assumed. Otherwise the integral in Eq. ([ 4.19) has

to be solved with special care.

The expressions|4.16| [ 4.17, [ 4.21], and | 4.22| together form a set of equations known

as control equations.

4.2 Algorithm

To solve the control equations, there are many algorithms such as those proposed
by Zhu-Botina-Rabitz [103] and Zhu-Rabitz [104]. In those schemes the equations

are solved iteratively in a forward-backward manner.

The overall view of such algorithms is such that first, with an initial guess for the
field, the wave function is propagated. Afterwards, the Lagrange multiplier is found

at the end of the interaction. Thereafter, the Lagrange multiplier is propagated
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backward with the updated field by an infinitesimal time step. In this way, the total
profile of the updated field is achieved once the Lagrange multiplier reaches the
initial time step. This procedure is done once the yield reaches a certain threshold
with respect to the desired final state.

Splitting this general description properly into three main parts reveals a clear pic-
ture of the procedure. Consider the first iteration, and the initial guessed field is
denoted by f(©(t) (correspondingly f*)(t) for the ky, iteration). The wave function
of the initial state ® = W) (0) is propagated with the proposed field:

(0)
v (0) LY g O (), (4.23)

By the means of Eq. (4.22), the Lagrange multiplier is found at time 7'

In order to find the updated field f ©)(¢), the Lagrange multiplier has to be propa-
gated backward in time using Eq. . The updated field can be found through
Eq. (4.16). The immediate observation is the fact that Eqgs. (4.16]) and (4.21) are
coupled, since the Hamiltonian contains the field in itself. Therefore, the Lagrange

multiplier is propagated backward in time by an infinitesimal step At with the field
fO (T') which is found through Eq. (4.16). The backward propagation is carried
out by the Dyson operator in the interaction representation of the Hamiltonian.

This operator satisfies the properties below:

Ut t) =1,
Ut tg) = U, t1)U(t, o),
Ut to) = Ulty, 1), (4.24)

where 1 is the identity operator. In the interaction picture, the Schrédinger equa-
tion is transformed to the Schwinger-Tomonaga equation [105|, which yields the

expression below for the Dyson operator [106]:

t

Ut t)=1-— Z/ drU (v, T)U(T, ). (4.25)

The Dyson operator U(T, T — AT) is obtained by the current field at ¢t = T'. Then its
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action upon x(7T) yields x (T — At). Then, by the means of Eq. (4.16)), f© (T — At)
is found immediately. Thereafter, the Dyson operator is updated, and this procedure
goes on until the whole profile of the updated field is achieved. These steps can be

summarised as follows:

step 0 0@ (0) 20y GO
(k)
step k : TR (T) EASUN o™ (0)
(k) (¢
O (T) =y (1) L ¥ (0)

IO
xXP(0) —= x(T)

(k+1)
ERCNESIGR (4.26)

This algorithm converges monotonically and has a fast convergence to the maximum

of the Lagrange functional J [103].

4.3 Target operator

So far the target operator O has been considered to be a general operator. In this
section, two common target operators are introduced: projection operator and local

operator.

4.3.1 Projection operator

The projection operator O = |®5)(Pp| is of common use to define the Frobenius
distance between the wave function W(7') and the target wave function ®r. The

minimisation of this distance leads to the maximisation of functional Ji:

IJIcl(igl |U(T) — @p||* = max.J, = (U(T)|®r)|* (4.27)
t

Note that maximising .J; is independent of an arbitrary choice of the phase of &,
since the Frobenius norm remains invariant under the gauge transformation ®p —

e”<I>F.
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4.3.2 Local operator

Localisation of the wave function within a certain region of space is another common
choice for the target operator. Among many special functions for localisation, Dirac
delta function is prevalent. Although the precise localisation is an ideal, choosing

the d-function gives rise to the desired spatial density distribution.

Similarly to the previous case, maximising the functional J; is equivalent to the

minimization of the Frobenius norm of the target density py and density distribution
p(T):

win Vo)~ rl? = min {22 [arfomp f. was)

4.4 Control field constraints

In the previous section it has been mentioned that sometimes extra constraints are
required to be imposed on the field, e.g., constant fluence or frequency filtering. The
Werschnik-Gross algorithm [931|107] allows us to implement such constraints on the
control field. This algorithm in contrast to the Zhu-Rabitz scheme, since it does
not converge monotonically, but its convergence is guaranteed if the features of the

pulse are consistent.

Spectral constraints are crucial for the experimental realisation of the simulations.
Restrictions on the pulse shaping in real life experiments makes it necessary to
consider frequency constraints on the control field. The gigahertz regime has already
been achieved and demonstrated for a conducting tip [108,109]. Meanwhile, laser
fields can reach the terahertz regime [110]. Therefore one has to bear in mind the

properties which the control field has to satisfy.

The fluence of a pulse is a measure of the energy contained in it. This measure is
added to the functional J, and the expression (| 4.5|) is substituted by the following

functional:

ALl = —a [ /0 " P - FO] | (4.29)

The first observation of this substitution is the fact that the penalty factor « is no
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longer an arbitrary choice, rather a Lagrange multiplier which has to be identified
through the variation of the total functional J. The predefined value Fy keeps
the fluence of the pulse constant during the iterative procedure. Therefore, another
independent parameter « is introduced to the Eq. . The variation with respect

to a leads to the following condition:

/ ' fA(t)dt = Fy. (4.30)

Inserting the control equation (| 4.16]) into the equation above yields:

5 | (ool o= F = o= [ 2E0E g

where the square root of the integrand is substituted by W(¢). The rest of the
Lagrange functional remains unchanged. This equation can be straightforwardly
inserted in the iterative procedure of Eq. . However, at the k;h step the field,
F(H® and f¥(t) are obtained according to:

F6) = IO Olg e (), (1.32)
P (D) = 2 ). (4.39

At each iteration the Lagrange multiplier a*+1) is given by
S (a7 0)) an
o) = : (4.34)
Fy

where the initial conditions are the same as mentioned within the previous algorithm.

For the zeroth iteration a? is defined as
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o = . (4.35)

The difference between the Werschnik-Gross algorithm and the Zhu-Rabitz algo-
rithm is that in the latter one, the control equation is applied to control
pulses f(t) and f(t) interchangeably after each forward-backward propagation, while
in the former one, the control equation is only applied to f (t) once in each forward-
backward propagation. Therefore the monotonic convergence is not guaranteed in
the Werschnik-Gross algorithm.

The theoretical framework developed in this chapter is used through the rest of
this text to find the optimised pulse. QOCT based on the variational principle at
first sight seems to be too complicated. This could easily imply confusion to catch
the essentials of the dynamical behaviour of a quantum system. This is true up
to some degree, but it should not be underestimated that this method contains
the full dynamics of the system. Hence, the whole information of the dynamics
can be extracted. Another rich advantage of this approach is that the variational
method is robust against infinitesimal fluctuations introduced to the parameters of
the system. In other words, one does not expect large variations on the outcomes if

the parameters are slightly changed.

It is believed by the author that there exists an algorithm which could be utilised
in a general optimal control problem. The method is known as the matriz-product
state representation, and it is widely used in quantum information and computing
community. In that method, the ground state of a many-body system, represented
by a pure state, can be written as a hierarchy of matrix multiplications. The matrices
contain the whole information of the system which is carried by the wave function
of the system. After rewriting the state of the system in a matrix-product state
representation, one observes that not all the matrices are full rank (this is valid
if the system is not in a maximally entangled state). Therefore, by removing the
unnecessary information, the essential parts of the dynamics can be captured which
saves considerable amount of memory. This is the essential difference between the
method and the methods already discussed in this chapter. A full description of the

matrix-product state representation is given in Appendix B.
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5. MODELLING AND RESULTS

The aim of this thesis is to study the controllability of QCA. For the very first step,
only one electron is considered, although in the literature QCA cells consisting of
two electrons have been considered [111,/112]. To pave the way for the study of
QCA cells, two different cases are considered. The first one is an array of QDs
positioned on a straight line, corresponding to a chain of QDs (1 x N cell). This is
the simplest case, mostly considered for understanding the behaviour of the system
upon the action of an external local voltage gate. The second case corresponds to
an arrangement of QDs on a 2 x N simple square lattice. These two cases give an
overall view about the size limit of the system, which the local voltage gate(s) with
specific pulse parameters could bring into the system under control. In the latter
case, in the presence of the horizontal symmetry axis, two local voltage gates are

considered whilst in the former case only one local voltage gate is used.

In the following sections each case is explained separately with their properties. In
advance, the modelling of the system and the methodology under consideration are
described. The very last section is dedicated to the case of QCA cells as a special case
of a 2 x N cell. For this specific cell, it will be explained how symmetry properties

reduce the number of the voltage gates required for controlling the cell.

5.1 System and methodology

Generally, the Hamiltonian of an electron in a QCA structure under the action
of a local voltage gate, in effective atomic units (a.u.), is given by the following

expression:

N2
H(z,y,t) = 5t Ve(z,y) +Ul(x,y,1), (5.1)

where V, is the confinement potential of the QD lattice and U is the local voltage
gate potential. The lattice consists of (M x N) QDs, where M and N are natural
numbers. The shape of the QDs is a 2D cavity potential which is described by the
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Figure 5.1 Schematic view of 2x 2 (primary unit cell) QCA. The QCA is coupled to an
external voltage gate which acts locally upon the cell (here on the upper right quantum dot
(QD1). The green blobs do not correspond to the quantum dot geometry but represent the
electron charge density distribution.

Fermi function. Thus the confinement potential is given as follows:

1
[V/(@=ia)>+(y—ja)*~R| /¢

Vc(:c,y):—max{ :OSiSM,OSjSN}. (5.2)

e +1
In this expression, a = 6 a.u. is the lattice constant (the distance between the
centres of the two neighbour QDs), R = 2 a.u. is the effective radius of the QDs,
and ¢ is the softness parameter of the well boundary. The choice of this parameter
depends on the radius of the quantum dots and the lattice constant in such a way
that the effective region of each quantum dot does not overlap with its neighbours.
Hence, regarding the chosen values for R and a, the softness parameter is set to
¢ = 0.21 a.u. The material considered in this study is GaAs with the effective mass
m* = 0.067mg and the dielectric constant € = 12.7¢y. Therefore the energy, length,

and time scale as

E; = (m*/mg)/(e/e0)*E), =~ 11 meV,
ag = (€/€)/(m”/mo)ag ~ 10 nm,

ty = h/E; ~ 58 fs, (5.3)

respectively. Consequently, with this set of units, the radii of the quantum dots are
around 20 nm and the lattice constant is about 60 nm. The schematic view of the

system configuration for a 2 x 2 QCA cell is given in Fig. [ 5.1
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The external control agent, the local voltage gate, has to satisfy the condition that

its spatial and time-dependent parts are separable. Therefore the last term in the

Hamiltonian is written as follows:

Ulz,y,t) = g(z,y) f(t), (5.4)

where the spatial part is modelled by a Gaussian distribution below:

s

oV 21

exp { [~(z = 20)* = (v~ 0)?] /(20%)}. (55)

g(r,y) =

We set 0 = 1.6 a.u. to cover the area of a single QD at the maximum amplitude of
the field and the parameter 3 is set to 16.04 a.u.. The proposed Gaussian shape of
the conducting tip has an experimental realisation which has been already reported
in Refs. [108/109].

The initial guess of the time-dependent part of the voltage gate is a simple sinusoidal
pulse given by f(t) = Asin(wt) with a frequency of w = 0.001 a.u. and an amplitude
of A =1 a.u. The pulse duration is set to 400 a.u., which corresponds to about
23 ps. The penalty factor is independent of time, and the fluence is kept constant

during the simulation.

Since the goal is to localise the charge distribution within a specific QD, the control
equations need to be rewritten in a way to suit with the proposed model. The
only control equation which needs to be modified is Eq. due to the explicit
definition of the target operator. To obtain the desired output, the target operator
is defined as a Heaviside distribution function multiplied by the position projection
operator. Through this choice we can localise the electron in a certain region of

space. Consequently, the control equations become

IOU() = H(r, O[T, [2(0) = [@5). (5.62)
D x(1)) = H(r, DIx (1)), (5.6b)
X(T)) = O(|r — rol)[x) (x| W(T)), (5.60)
F(1) = —— (D) lg() (). (5.64)



5.2. Results 46

Here T is the duration of the pulse and ®; is the initial state. The initial state is
always considered to be the ground state. The expression for the two-dimensional
circular Heaviside function is given by ©{ — [(z — z7)* + (y — yr)*]'* + (R + 1)}
where the tuple {z7,yr} is the centre of the target quantum dot. The radius of the
target is 1 a.u. larger than the radius of the quantum dot defined in Eq. .

Since a frequency filtering on the pulse is used during the optimisation, the Werschnik-
Gross [107] algorithm is used for iterative forward-backward propagation of the time-
dependent Schrodinger equation. The increments for real-space and time steps are
Az = 0.25 and At = 0.0075 a.u., respectively. The choice of these values is based on
the results of the priori convergence tests. For the Dyson operator (previously intro-
duced in Ch. 4 Sec. 2), for the infinitesimal propagation, the exponential midpoint
approximation is used [113|. This explains the reason of such a small time step as
the error for this approximation is of the order of O(At?). For the expansion of the
infinitesimal time generator, the standard approach known as symmetric splitting
(Strang splitting, Marchuk splitting or Trotter splitting are the other naming con-
ventions) is used. For further details of the algorithm, Ref. [114] is recommended
for interested readers. The size of the computational box varies depending on the
number of QDs. For the 1 x N case, along the z-axis, a step function boundary is
located at a distance a from the nearest QD centre. Along the y-axis the boundary
is located at the distance 2a/3. In the 2 x N case the boundary is set along the
both axes at a distance a from the centre of the nearest QD. All the calculations has
been done with the OCTOPUS code published under the GPL license |[115-H117].

5.2 Results

5.2.1 1 x N cells

This structure corresponds to a chain of quantum dots [118,[119]. Without loss of
generality, the 1 x 6 cell structure is considered and demonstrated in Fig. [ 5.2] In
Fig. the dependence of the yield on the number of QDs is illustrated. After the
initiation of the system in its ground state, the system is subjected to a local voltage
gate U, positioned on the leftmost QD, to localise the electron density distribution
within the rightmost target QD denoted by ’7T". The initial field is given by Egs.
and with parameters § , w, o, and A; The fluence is 18.763 a.u. with
the given parameters. The initial yield is found to be only 10%. Whilst keeping the
fluenec constant as a constraint, the yield increases gradually (not monotonically)
to a remarkable yield of 91.4% in the QOCT process. This is yet satisfactory for
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@ ‘ ‘ ‘ ‘ Figure 5.2 (a) Ground state charge
)(T) 1 density distribution of the 1 x 6 cell.
R LSS 5== ‘ The approzimated position of QDs is
shown by black dashed circles. The
4 B ‘ ‘ : : local woltage gate acts on the left-
/‘\ | most quantum dot denoted by U and
the pulse is optimised iteratively by
-4 = ‘ ‘ ‘ ‘ the QOCT procedure. (b) The opti-
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sity distribution within the rightmost
QD. The profile of the optimised pulse
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order to avoid high frequency excita-
0 100 200 300 400 lions, a threshold frequency of wy, =
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such a number of QDs. The localised electron density distribution can be clearly

seen in Fig. [ 5.2)(b).

As one could expect, the pulse shape which leads to such a high yield, possesses
a rather complicated pattern. This a is a consequence of the role of transitions
to excited states which gives rise to many high peak frequencies in the Fourier
transform of the pulse |Fig. [ 5.2(d)]. The pulse clearly surpasses the experimental
limits in pulse shaping. Also producing such high frequencies for a voltage gate is
a technical challenge yet to be reached. In order to decrease the complexity of the
pulse, a frequency filter constraint is imposed on the pulse. A frequency threshold
wy, = 0.5 a.u. is set to remove the higher frequencies from the frequency spectrum.
This constraint decreases the yield to 84.7%, which is still considerable. However,

the threshold frequency corresponds to 8.6 THz, which is still quite high.

The controllability is not restricted only to the rightmost QD. The calculations show
that the localisation can be achieved within any QD regardless of its position on the
lattice. This implies that the electron can be moved through the lattice in a desired

fashion.

The convergence performance of the OCT procedure is depicted in Fig. [ 5.3
The non-monotonic behaviour of the convergence curve is related to the nature of
the Werschnick-Gross algorithm which has already been discussed in the previous

chapter. The benefit of this algorithm is the fact that in several cases it is much
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Figure 5.3 Convergence of a quantum optimal control procedure for a 1 x 6 QCA. It can
be observed that the convergence is not monotonic.

faster in comparison with the procedure of Zhu and Rabitz.

5.2.2 2x N cells

These cells form a realistic class of QCA structures. Especially the 2 x 2 cell coincides
with the primary QCA cell. This cell will be explored in more detail in a separate
section. A 2 x 2 cell owns extra symmetry properties which decrease the degrees of
the freedom of the system. All these cells carry the mirror symmetry along the x-
axis. The consequence of this property is the fact that that in favour of controlling
the system, using two voltage gates is necessary. Furthermore, as the size of the
lattice increases, the outcome of the yield is not satisfactory with only one voltage
gate. Therefore, two voltage gates U; and Us, positioned on the left top and left
bottom QDs, are utilised and the target QD is the rightmost top one (Fig. | 5.4).
Again without any loss of generality, a 2 x 5 cell structure can be considered. The
initial guess for the pulses of the two voltage gates is the same as in the previous case.
Initially the yield is found to be only 2.5%, and after the optimisation procedure
it increases to 94.2%. The fluence of the pulse is kept constant and corresponds to
18.763 a.u. Similarly to the previous case, a threshold frequency filter is applied on
the both voltage gates, which decreases the yield to 87.6%. The corresponding pulse
shapes and their Fourier spectra are illustrated in Figs[5.4|(c-f).
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Figure 5.4 (a) Ground state charge density distribution and (b) the localised charge
density. Due to the presence of a horizontal symmetry azis, two voltage gates Uy and Us
are used. The target T is set on the upper-right QD. The profile of the optimised pulse
and the filtered pulse (wg, = 0.5a.u.) for both voltage gates are illustrated in (c) and (d)
respectively. The Fourier spectra are shown in (d) and (e). Regardless of the position of
the target quantum dot, the yield was found to be as high as in the case considered here.
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5.2.3 Yield dependence on the lattice size and threshold fre-

quency

Intuitively, by increasing the size of the lattice the yield would decrease monoton-
ically. This could be justified by the calculations carried out for different lattice
sizes. In Fig. | 5.5(a), for N > 6, the yields drops faster in both cases. But one has
to bear in mind that the system under study consists of only one electron. It could
be expected that for more electrons, the presence of correlation and entanglement
between the electrons and the underlying geometry of the lattice may produce an

irregular trend in Fig. | 5.5(a).

100 100
(a) (b)
80 80
S
ko)
(0]
=
60 60
—o— 1xN —o— 1x6
—&— 2xN - 2x5
40 40
3 4 5 6 7 8 01 02 03 04 05 06
N Wy,

Figure 5.5 (a) Dependence of the mazimum yield for different cell sizes for both cases
1x N (circles) and 2 x N (squares) systems. (b) The dependence of the mazimum yield on
the mazimum allowed frequency (wy,) for the optimised pulse in cases 1 x 6 (circles) and
2 x 5 (squares).

The dependence of the yield on the threshold frequency wy, on the other hand,
even in these simple cases, could behave irregularly. The reason is due to the fact
that the OCT procedure is a local maximisation solution. Therefore correlation
between different frequencies is quite important for a global optimisation solution.
Nevertheless, in Fig. | 5.5(b) the trend ends at a saturation level and the best yield

can be found by removing the frequency filtering completely.

5.2.4 Special case of the 2 x 2 cell

The case of a 2 x N structure is the building block of QCA. The symmetrical
properties of such a cell makes it suitable for the realisation of digits 0 and 1. For
the purpose of logical computation, it is necessary to have a correspondence between
the two binary digits 0 and 1 with the two distinguishable states of the QCA cell.
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Due to the presence of the 7/2 symmetry of the cell, it is a proper choice to make
the diagonal and antidiagonal charge distributions correspond to digits 0 and 1,

respectively.

The system is prepared in its ground state charge distribution. The QCA cell is
acted by only one gate positioned on the upper-left QD. Two different target QDs
are considered, one is the lower-right corner and the other one is the upper-right
corner. In the first case, since the target QD is distinguishable from its upper and
left QDs, the localisation would be achieved successfully [Fig. [ 5.6(a)]. In the latter
case, the charge localisation in the upper-right QD, on the other hand, would yield
an equal charge distribution in aforementioned QDs [Fig. (b)] These two QDs
are rotationally indistinguishable with respect to the point where the voltage gate is
positioned. This leads to an anti-diagonal charge distribution which corresponds to
the bit 1. The same procedure can be done by changing the position of the voltage
gate to the upper-right QD and set the target on the upper left QD. In this situation
the charge distribution will be equally distributed in diagonal QDs, corresponding
to bit 0. Although these two states are the degenerate excited states of the QCA
cell, introducing an offset to the diagonal QDs initialises the ground state of the
system in a state corresponding to bit 0. The yield of the transition from bit 0 to 1

is found to be >98% with the same field parameters introduced earlier.

One has to note that the transition from the excited state to the ground state for

only one QCA cell is not of importance but rather the global ground state of the
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system of QCA cells. For clarification, being in an excited state of a QCA cell does
not imply a global excited state of a system that consists of many QCA cells, see
Fig. [ 3.9(c)} This is a critical architectural design when we think of the construction
of a logical gate.
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6. CONCLUSIONS

What has been shown above, is the controllability of the charge distribution in single-
electron quantum dot lattices. This is achieved within the framework of quantum
optimal control theory and utilising a local voltage gate as an external agent. The
iterative scheme for optimising the control field improves the yield significantly to
as high as >90% in both cases of a chain of quantum dots (1 x N) and a quantum

dot cellular automaton with two coupled parallel chains of quantum dots (2 x N).

Although the limit of the lattice size and the field strength are tightly related,
a reasonable controllability is reachable for the pulse parameters mentioned in the
text. Also, the frequency filtering constraint potentially decreases the yield. But this
constraint is non-avoidable since the complex pulse shaping still is a technological
challenge. Even with the laboratory tools nowadays, a terahertz regime has barely

been touched.

The critical parameters which have to be considered are the frequency, pulse dura-
tions, and the amplitude of the field. Also the focusing of the conducting tip is as
crucial as the other parameters. What can be concluded from the results is that a
pulse with a duration of picoseconds and a remarkably high focus is still on a path to
be discovered. In Refs. [108,/109] a moveable voltage gate operating in the gigahertz
regime has already been demonstrated as a real experimental setup. Besides this
obstacle, progress in the fabrication of quantum dot lattices is still to be expected

in near future.

This study, however, sheds light on the controllability of quantum dot cellular au-
tomata cells, which is important for their future implementation in nanoscale logical
gates. As it has already been mentioned, from the computational point of view, any
logical gate has a realisation based on majority gates. Universal majority gates of
NAND makes it possible to construct any other logical gate based on the universal
gate of NAND [120]/121].

Another achievement of this study is to show that a QCA cell can be constructed

with only one electron [122] in contrast to the previous convention of a two-electron
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QCA cell. This decreases the physical complexity of the system considerably as we

omit the electron-electron interactions in the QCA cell.

Further steps to be taken in the future are to consider a quantum dot cellular au-
tomata logical gate and the study of the controllability and its logical operation. In
such systems, also controlling the coupling strength between the quantum dot cellu-
lar automata cells has to be considered as control parameters in control equations.
This control parameter will set a criterion on the tunnelling phenomena which, is

crucial in designing a suitable architecture for logical gates.
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A. APPENDIX A. MATRIX-PRODUCT STATE
REPRESENTATION

In this thesis the mathematical framework which has been used for the study of
the controllability of a quantum system is based on the variational principle. This
method alone is not powerful enough for the study of a general system with quantum
mechanical behaviour. The reason is that in a general case, the wave function of a
many-body quantum system is hard to find. Therefore an approach to the control
problem is to mix the variational method with other theoretical frameworks such as

density-functional theory.

The number of problems which can be solved only by applying the variational
method is limited to the cases where the wave function of the system can be repre-
sented by a pure state, or to systems where the entanglement of the sub-systems is
weak (weakly interacting systems). Besides that, the information the wave function
of the system carries exponentially grows with the increase of the degrees of freedom.
This explains why some other theoretical methods such as density-functional theory

is utilised to reduce the complexity of the problem.

Pérez-Garcia, Verstraete, Wolf and Cirac have shown that a multipartite entan-
gled state of a many-body quantum system, where the correlations between its
subsystems are local, can be characterised in matrix-product states (MPS) repre-
sentation [123]. It has first been proposed in a spin-chain model [124] and later on
became a unified framework for the description of strongly correlated systems, where
renormalisation group techniques are extensively in use [125-127]. The importance
of local interactions is the fact that the ground states of such systems are not uni-
formly distributed over the whole Hilbert space. Therefore the MPS of such a state
captures the essential properties of the system (The local and non-local paradigms
have already been discussed when Bell’s inequality was introduced in Ch. 3 Sec.
2). Another benefit of the MPS representation is that it is based on the already
well-developed algebraic structures of the matrices, and it is tightly related to the
concept of the singular value decomposition (SVD), which will be discussed later.

Also, a p-norm can be naturally used as tool to measure the distance (representative
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of correlations in the system) between the matrices.

Matrix-product states are widely used in quantum information and computation. It
has been mentioned that in order to achieve an exponential speed-up in quantum
computing, entanglement is an essential ingredient. Preparing an entangled multi-
qubit by a single unitary operation is practically impossible due to the infinite num-
ber of degrees of freedom. An approach to overcome this obstacle is to sequentially
couple the qubits. This procedure is accompanied by an external agent called ancilla
(explanation will be given later). This class of qubits is found to be fully described
by a hierarchy product of matrices [128-130]. This evidently implies a full control
over all degrees of freedom. In real life, there are restrictions due to experimental
limitations and not all the degrees of the freedom can be manipulated easily. There-
fore the best prepared entangled state is always an approximation as a consequence
of second law of thermodynamics. In order to include these restrictions, constrained

optimisation has been used by introduction to Lagrange multipliers |131},132].

Density-matrix renormalisation group simply leads to MPS. In order to clarify the

relation, assume a spin-chain of n-1 sites and each site has m, possible states. The

n—1

7~ and therefore for a large n the amount

exact treatment of the system needs m
of information will explode exponentially. Thus an approximation to the number

of bases is made, and we further assume the existence of a basis set {|3),_1} with

n—1

h By adding a new single site, the number

cardinality m such that m < m
of total sites becomes n with m, X m states. The new basis set is generated by
{|$n) ® |8)n_1}, where ® denotes the tensor product and |s,) is the eigenstate that
corresponds to the newly added state s,. A projection operator A, is introduced
to produce a new truncated basis set with m states. The new basis set is related to

the n-1 basis set through the relation below:

o) =Y AP P 5 @ |B)n. (A1)
B,sn

Matrices A, are variational parameters of the matrix-product representation. They
can be identified by the algebraic approach of SVD. The basis set {|8,-1)} can
be constructed recursively from |5y) by fixing the boundary condition. Thus the

recursive application of the renormalisation procedure for a chain of length n yields
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= Y (An[sn]An_l[sn_l]...Al[31])aﬁ|snsn_1...sl>®|5)0, (A.2)

SnySn—1;---,51

where A%8[s,] = A2 Tt is obvious that the state given by the equation above
is in its matrix-product representation. It is important to note that although the
state «,, is the sum of the tensor product of local Hilbert spaces, the correlation

information between the sites is carried by the products of the A-matrices [133].

MPS form a class of states which can be written in a matrix-product representation
as in Eq. (A.2). Assume a general pure state |¥) € C®4". This state is the charac-
teristic wave function of a system with N sites, each belonging to a d-dimensional
Hilbert space. This dimension is also called the local dimension of the system. Each
site is virtually attached to two auxiliary sites with dimension D,. Further we can
assume that the pair states of these two auxiliary sites are initiated in a maximally
entangled state [I); = Y°7* |a,a), where k enumerates the site. This state is
commonly referred to as a entangled bond [123]. Thereafter, the application of the

map

d Dy,
AR =373 AL, s i) (o, Bl (A.3)

=1 ay,Br=1

on each of the N sites, leads to the finding the state |¥) will be identified conse-

quently by its matrix-product representation given below:

d
o) = >t Al AR AN iy o, i), (A.4)

N
11,825, EN

Here A, is a rank-3 tensor with elements A;, ,, 3., and AZ] is a Dy X Dy matrix.

This state is called a matriz-product state [134].

If D= max D), the MPS is said to have the bond dimension D. It has already
been mentioned that any pure state of a many-body quantum system can be effi-
ciently simulated on a classical computer, if the measure of the entanglement does
not exceed a certain level. Vidal [40], has shown that these states have a MPS

representation if the bond dimensions Dj are sufficiently large.
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> A“J A[zj A[ﬂ*” A[HJ I

i
Figure A.1 Schematic representation of the products of the A-matrices known as a
valence-bond diagram. It illustrates how the contraction is carried out between the dif-
ferent sites [123,|135]. The reason that the indices k and k+1 are used for D is the fact that

the bond dimensions of different auziliary sites are not necessarily the same. The figure is

adopted from Ref. [150].

123 | L | b

A MPS has an open boundary condition (OBC) if the first and last matrices (AE]
and AZ[]]\VI]) are vectors. Thus, Eq. ( A.4]) can be simplified as follows:

Z AN AR AN, g ). (A.5)

11,02,000

In this equation Dy = Dy, = 1. Furthermore, this representation is canonical for
any pure state | ) € C®*" and D < dl%? if the conditions below are fulfilled [40]:

o S AMAMT — g, for all m
o 3, AMTAIm=1 Al — Al for all m

o A = ANl = 1 where Al™ is a full rank Dy X Dy matrix. It is positive

definite and its trace is 1.

These conditions, known as gauge conditions, imply the uniqueness of the representa-
tion up to permutations and degeneracies in the Schmidt decomposition. Obtaining
the A-matrices is the main objective in constructing the MPS representation of an
arbitrary pure state. The whole information of the system and the interactions
between the sub-systems are stored in these matrices. A general N qubit system
is considered for the rest of the explanation. Now the number of local degrees of
freedom is d = 2. The procedure is the same for systems with general local degrees
of freedom d. Assume that the system consists of N sub-systems and is partitioned

into two partites A and B. The whole system is described by the state given below:

(W) = Cirig,in Z Z |11) ® ...|in). (A.6)

i1=0 in=0
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The Schmidt decomposition (SD) of the state |U) reads as follows:

XA
T) =" Aof0l) @ |@F). (A7)

a=1

Here |(I>,[1A]> and |<I>,[fg ]> are eigenvectors of the reduced density matrices pl4l and pl?!
with corresponding eigenvalues [A\,|*> > 0. The coefficients ), satisfy the relation
(<I>([1A ]|\I/) = )\a]@gg ]). Here x, is the rank of the decomposition and it is a natural

measurement of the entanglement between the two partites A and B.

The entanglement is quantified by y = max x4 over different bipartite decompo-
sitions. The focus is on systems which are weakly entangled and y may grow as
fast as a polynomial of degree N. The entanglement is at maximum when a half of
the qubits is in partite A and the other half of the qubits is in B, and the upper
limit is bounded by 2/2. Also during the time-evolution of the system the entan-
glement remains small and has a upper bound of the order of a polynomial degree
n. These systems belong to the class of slightly entangled systems. By a consecutive
application of SD on each partite, the coefficients ¢;, _;, can be written in terms
of N tensors {T!, ... . TI"} and (n — 1) vectors {A\M ..., A2} [40]. The coefficients

rewritten in terms of I' and \ are given as follows:

Ci17---,iN = Z F 1]11)\ I]F[2}12 )\[2] F[ 1]11\7 1 (A8>

apt arog’ o2’ aN-—1
Now the 2V coefficients ¢;, _;, can be expressed by 2(N —2)x?+ (N +3)y parameters.
This decomposition is commonly known as the Vidal decomposition |137].

To interpret the A-matrices in Eq. (| A.4) in terms of the Vidal decomposition, let
us introduce the Kronecker delta with a dummy primed index and rewrite:

rnlin )\[n] [n+1)iny1 Zr[n]zn )\[n S ol F[”Jrl}lnﬂ_ (Ag)

An—1Qn " Qn ana7L+1 an—10an” ok, o) g1

The vector A" and the Kronecker delta define a new diagonal matrix Azﬂa, =
dana, Aar, . Hence, the Eq. (A.8) is rewritten as follows:
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Ciyynin

Z Z Pl Al pl2lia AR plBlis  pIN=lino \IN=1] R[N

[e7o1e5 ] ala aag a2a2 aag QN _oON—1" ON—_10x_4 oaN_laN’
Q1,0 0QN—1 O,y

(A.10)

and the summation over the common indices (matrix multiplication) between I'l"
and A" yields

o 1]z [2]1 [N=1]in— [N]z
Covin = ) Aggmi Aui Ay T AL (A.11)
O 5oy

where substitutions are made according to

A= n=n (A.12)
>, TAR - otherwise. .

We take another step further by summing over the primed indices, so that the
original MPS representation (| A.4) is achieved:

Cipy iy = ALTAPT AN A (A.13a)
0y = > AYAZ AN AN iy i), (A.13D)

U1y IN

The Schmidt decomposition is essentially a singular value decomposition. It can be
clearly seen that \’s are the singular values of SVD and I'’s are unitary matrices of

the decomposition.

The most important advantage of such a representation is the fact that the speed of
the computation would drastically increase since it is obvious from the representation
that the multiplication of the matrices can be carried out in a parallel fashion. Yet
another advantage of this method is that the small singular values could be neglected
and only the essential part of the information can be kept by removing them. This
could save a considerable amount of memory in the computation. Not surprisingly,
SVD is widely used in image and audio compression such as in JPEG and MP3 file
formats. The method is exactly the same as removing the non-essential singular

values of the matrix representing graphical data [138].
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Also the present method could be fully integrated with the variational method in
order to optimise the interaction of the system with an external agent (ancilla).
Ancilla systems are external agents which couple the qubits through some specific
interaction in order to introduce entanglement between the qubits. This interac-
tion could be especially the Heisenberg interaction (exchange interaction between
spins). It has been shown that a universal quantum gate for a universal quantum

computation can be constructed by the means of the Heisenberg interaction |139)]).

After the interaction of the ancill, it decouples from the system and the system is
found in an entangled state. But this condition is an ideal one and thus one cannot
expect that the ancilla system necessarily decouples from the qubits. Hence, an op-
timised procedure must be used to minimise the distortion of the system meanwhile

produce the necessary entanglement required for the computation [132,140].

In this thesis we have considered only one-electron QCA, but for the next step with
QCA consisting of many electrons, we could potentially use the MPS representation.
One has to bear in mind that the MPS method is only applicable to one-dimensional
systems such as a one-dimensional array of spins or atoms, or as in this thesis, a
chain of QDs. The extent of the formalism to a general case in which the sub-systems

form a network is known as the projected entangled pair state |141H143].
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