
TANEL DETTENBORN
OPEN VIRTUAL TRUSTED EXECUTION ENVIRONMENT

Master of Science thesis

Examiner: Prof. Billy Brumley,
M.Sc. Brian McGillion
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 3st December 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250161099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

TANEL DETTENBORN: Open Virtual Trusted Execution Environment
Tampere University of Technology
Master of Science thesis, 48 pages, 16 Appendix pages
March 2016
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiner: Prof. Billy Brumley, M.Sc. Brian McGillion
Keywords: Trusted Execution Environments, TEE, Security, Open Source

Hardware-based Trusted Execution Environments (TEEs) are widely deployed in
mobile devices. Yet their use has been limited primarily to applications developed
by the device vendors. Recent standardization of TEE interfaces by GlobalPlatform
(GP) promises to partially address this problem by enabling GP-compliant trusted
applications to run on TEEs from different vendors. Nevertheless ordinary devel-
opers wishing to develop trusted applications face significant challenges. Access to
hardware TEE interfaces are difficult to obtain without support from vendors. Tools
and software needed to develop and debug trusted applications may be expensive or
non-existent.

This thesis describes Open-TEE, a virtual TEE implemented in software. Open-
TEE follows GP specifications. It allows developers to develop and debug trusted
applications with the same tools they use for developing software in general. Once
a trusted application is fully debugged, it can be compiled for any actual hard-
ware TEE. This thesis also describes the experience in getting trusted application
developers to try Open-TEE. Open-TEE is freely available as open source1.

1https://github.com/Open-TEE/project

https://github.com/Open-TEE/project

ii

TIIVISTELMÄ

TANEL DETTENBORN: Avoin Virtuaalinen Luotettu Ajoympäristö
Tampereen teknillinen yliopisto
Diplomityö, 48 sivua, 16 liitesivua
Maaliskuu 2016
Tietotekniikan koulutusohjelma
Pääaine: Ohjelmistotuotanto
Tarkastajat: Prof. Billy Brumley, DI. Brian McGillion
Avainsanat: Luotettava Ajoympäristö, Tietoturvallisuus, Avoin Lähdekoodi

Nykypäivänä lähes jokainen matkapuhelin sisältää laitteistoon pohjautuvan Luotet-
tavan Ajoympäristön (LA, engl. Trusted Execution Envrionment). Valitettavasti
ohjelmistojen kehittäminen on pääsääntöisesti rajoittunut LA laitteiston valmista-
jille. Asetelma on mahdollisesti muuttumassa GlobalPlatformin (GP) ponnistelun
tuloksena. He ovat määritellyt ja julkaissut LA standardin, jonka tarkoituksena on
standartisoida LA:n toiminnallisuus. Standartisoidin mahdollistaisi mm. kolmansien
osapuolien kehitettyjen Luotettujen Ohjelmistojen (LO, engl. Trusted Application)
suorittamisen eri laitteisto valmistajien LA:ssä, mutta se ei poista LO:n kehittämisen
vaikeutta. Sopivan laitteiston hankkiminen ilman laitteisto valmistajan tukea voi
olla hankalaa. Lisäksi LO:n kehityspakki (engl. Software Development Kit) voi olla
kallis, jos se on edes olemassa.

Opinnäytetyö esittelee Open-TEE:n, joka on ohjelmallinen LA. Open-TEE on im-
plementoitu GP standartin mukaisesti. Se tarjoaa kehittäjille hienostuneemman
kehitysympäristön LA ohjelmistojen kehittämiseksi. Kun LO on valmiiksi kehitetty,
se voidaan siirtää oikeaan LA:han vain kääntämällä kohde laitteistolle. Opinnäyte-
työ myös käsittelee tulokset, jotka on kerätty käyttäjätutkimuksella, missä kehit-
täjät käyttivät Open-TEE:tä LA ohjelmiston kehittämiseksi. Open-TEE on valmis
käytettäväksi ja sen on julkaistu avoimena lähdekoodina Github palvelussae2.

2https://github.com/Open-TEE/project

https://github.com/Open-TEE/project

iii

PREFACE

This thesis was done in collaboration with ICRI-SC Helsinki group and Intel Corpo-
ration. This work is a continuation and extension of previously published research
in TrustCom 2015 (McGillion, Dettenborn, Nyman, Asokan). Following people have
contributed to making this thesis:

N. Asokan (ICRI-SC)

Thomas Nyman (ICRI-SC)

Jiri Uitto (Intel)

Brian McGillion (Intel)

Billy Brumley (Tampere University of Technology)

I would like to express my gratitude to the people above for all the advice, comments
and materials that I received in the course of writing this thesis.

Tampere, March 2016

Tanel Dettenborn

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Background . 5

2.1 Trusted Execution Environment . 6

2.2 Use of TEE . 8

2.3 TEE Architectures . 10

2.3.1 Co-Processor . 10

2.3.2 Processor Secure Environment 11

2.3.3 Virtualization . 12

2.4 Standardizing TEE Functionality . 13

2.4.1 GlobalPlatform . 13

2.4.2 Benefits of TEE Standardization 14

3. Open-TEE . 16

3.1 Motivation . 16

3.2 Requirements . 18

3.3 Architecture . 19

3.4 Implementation and Tooling . 22

4. Evaluation . 28

4.1 Compliance . 28

4.2 Hardware-Independence . 29

4.3 Footprints and Performance . 30

4.3.1 Disk Consumption . 30

4.3.2 The Memory Consumption . 30

4.3.3 Build and Run Performance . 33

4.4 Ease of Use . 34

4.4.1 User Study . 34

v

4.4.2 User Study Result . 37

4.4.3 Ease of Use Conclusion . 38

5. Related Work . 40

6. Conclusion . 43

Bibliography . 45

A. Pre study questionnaire . 49

B. Post study questionnaire . 51

C. GP TEE Core API v1.1.0.26 public review 55

vi

LIST OF ABBREVIATIONS

AMD-V AMD Virtualization
API Application Programming Interface
CA Client Application
CI Continuous Integration
COW Copy-On-Write
CPU Central Processing Unit
DRM Digital Rights Management
eMMC embedded MultiMediaCard
GP GlobalPlatform
GPL General Public License
HMAC keyed-Hash Message Authentication Code
HSM Hardware Security Module
HW Hardware
ICRI-SC Intel Collaborative Research Institute for Secure Computing
IDE Integrated Development Environment
Intel VT-(x,d) Intel Virtualization
IOMMU Input/Output Memory Management Unit
iOS iPhone OS
IPC Inter-Process Communication
JNI Java Native Interface
JTAG Joint Test Action Group
LoC Lines of Code
NVM Non-Volatile Memory
OS Operating System
ObC On-board Credentials
ODM Original Design Manufacturer
OEM Original Equipment Manufacturer
Open-TEE Open Virtual Trusted Execution Environment
OS X Mac OS X
PC Personal Computers
PKCS Public-Key Cryptography Standards
PSS Proportional Set Size
RAM Random Access Memory

vii

REE Rich Execution Environment
ROM Read Only Memory
RPC Remote Procedure Call
RPMB Replay Protected Media Block
RSS Resident Set Size
SDK Software Development Kit
SGX Intel Software Guard Extensions
SMC Secure Monitor Call
SoC System on Chip
SUS System Usability Scale
TA Trusted Application
TCPA Trusted Computing Platform Alliance
TEE Trusted Execution Environment
TLK Trusted Little Kernel
TLS Transport Layer Security
TPM Trusted Platform Module
TUI Trusted User Interface
USB Universal Serial Bus
UUID Universally Unique Identifier
VMM Virtual Machine Manager

1

1. INTRODUCTION

Personal computing devices such as smartphones, tablets and laptops have become
pervasive. They are used to store sensitive data and access critical services across
a wide range of domains, such as banking, health care and safety, where privacy
and security are paramount. On the other hand, traditional operating systems and
the services that they provide are becoming so large and complex that the task of
securing them is becoming increasingly harder. Hardware-based Trusted Execution
Environments (TEEs) were developed to address this gap. A TEE on a device is
isolated from its main operating environment by using hardware security features.
It offers a smaller operating environment that provides just enough functionality so
that sensitive data and operations can be offloaded to it. There is generally no need
for large run-times and complex libraries with a myriad of inter-dependencies that
are derived from a series of potentially 3rd party vendors, as is the case in a standard
Operating Systems (OSs) such as Microsoft Windows. With the increased demand
for privacy and security among users, for banking, medical and safety critical devices
the need for the added security offered by the TEE is becoming paramount.

Hardware-based TEEs have been widely deployed in mobile devices for over a
decade [14]. TI M-Shield [5] and ARM TrustZone [4, 3] are early examples, followed
by newer architectures like the Intel SEP security co-processor [22] and Apple’s “Se-
cure Enclave” co-processor [2]. Business requirements such as the need to enforce
Digital Rights Management (DRM) and subsidy locks, as well as regulatory require-
ments like cloning and theft protection have been the driving forces behind such
large scale deployment [14]. Such requirements continue to appear: e.g. fingerprint
scanners with hardware protection, hardware-backed keystores, and the recent “kill
switch” [26] bill in California mandating that a mobile device must be capable of
being rendered inoperable if it is stolen.

Although the early Hardware Security Modules (HSMs) like the IBM cryptocards1

1http://www.ibm.com/security/cryptocards/

http://www.ibm.com/security/cryptocards/

1. Introduction 2

were programmable [11], the vast majority of HSMs used with personal comput-
ers and servers today are typically application-specific modules or fixed function
co-processors like the Trusted Platform Modules (TPMs) [39]. In contrast, TEEs
in mobile devices are programmable. However, despite widespread deployment of
hardware-based TEEs in mobile devices, application developers have lacked the in-
terfaces to use TEE functionality to protect their applications and services. Nor
have they been researched extensively in the academic community. Recent efforts
by GlobalPlatform (GP) [17] to specify standard interfaces for TEE functionality in
mobile devices [16] will partially address this problem. However, there are a number
of factors that stand in the way of widespread use of hardware-based TEEs in appli-
cation development and research. Chief among them is the difficulty of developing
applications for TEEs. Software development kits for TEE application development
are often proprietary or expensive. Debugging low-level TEE applications either re-
quires expensive hardware debugging tools, or leaves the developer with only prim-
itive debugging techniques like “print tracing” (e.g., using printf statements in C to
keep track of how values of variables change during program execution).

This thesis argues that a virtual, standards-compliant TEE implemented entirely in
software will allow developers to build TEE applications using tools and development
environments that they are already familiar with. It will also allow applications to
be tested and refined even when developers do not have access to devices where
hardware TEE functionality has been made accessible to them. Such a facility will
greatly ease TEE application development and can trigger new ways of using TEEs.
We make the following contributions:

• The design and implementation of such a virtual TEE, called Open-TEE,
which conforms to GlobalPlatform Specifications. Identifying requirements
that would make Open-TEE acceptable to developers and make specific design
choices informed by these requirements (Section 3). Open-TEE is publicly
available on GitHub.2

• Show that Open-TEE is efficient, hardware-independent and allows a de-
veloper to carry out much of the development life cycle of standard-compliant
TEE applications using popular application development environments they
are already familiar with. It demonstrate that Open-TEE significantly im-
proves the ease-of-use of TEE application development by conducting a

2http://open-tee.github.io/

http://open-tee.github.io/

1. Introduction 3

small-scale, yet rigorous, user study with experienced professional TEE devel-
opers (Section 4).

Given the demonstrable usability benefits, this thesis recommends that organiza-
tions that develop applications for TEEs should consider incorporating Open-TEE
into their development process. This thesis also hopes that this work will enable
more researchers to discover the power of TEEs and use Open-TEE to develop and
experiment with new TEE applications.

Note that Open-TEE is not intended to emulate a particular hardware TEE. The
goal of Open-TEE is that a TA (Trusted Application) developed successfully with
Open-TEE is guaranteed to compile and run on any target GlobalPlatform-compliant
TEE.

In order to support this demanding market chipset vendors have long supported
extensible TEEs in mobile devices; where implementations such as Intel’s SEP se-
curity co-processor [22] and ARM’s TrustZone security mode [3] are common exam-
ples. Traditionally, conventional operating environments relied on services offered
by TPMs and HSMs, however, extensible TEEs are starting to be employed in these
environments also.

Some sectors have been pushing forward the use cases for the TEE, most notably the
media industry’s requirement for DRM protected content, operators protecting their
money stream by protecting the simlock and device unlock functionality. Recently,
however, there have been a few requirements such as the hardware backed keystore,
fingerprint scanners that are starting to push the boundaries of the services that
have been traditionally offered.

The common criteria shared by all TEEs are the ability to perform some computation
in a environment independent of the main operating system. To ensure this, there
is generally the need for some form of hardware separation, e.g. a separate machine,
a dedicated co-processor or a special mode of operation in the core that restricts
access to resources depending on the state of the core. Traditionally TEEs have
come in varying formats generally designed to defend against a specific threat or fill
a specific niche e.g. application-specific co-processors are examples of such commonly
deployed environments.

However, these systems can be very inflexible, being designed to perform only a

1. Introduction 4

particular task. In some areas such as mobile devices there has long existed the
need for more flexibility. Mobiles have a number of factors influencing their design
and usage. Chipset vendors, Original Equipment Manufacturers (OEMs), operators
(carriers) and end users each having their own set of requirements. These may be
defined by regional variation in regulations which mandate certain functionality in
order to achieve certification in that region. An example of such a regulation is the
recent “kill switch” bill [34] in California which mandates that a mobile device must
be capable of being rendered inoperable if it is stolen. Although this feature had
gained popular acceptance from a number of large OEMs before the bill was even
proposed, it now mandates that all manufactures wishing to sell devices in California
must offer this feature.

5

2. BACKGROUND

The concept of using device hardware for supporting operation system security is
by no means a new invention [25]. As early as in the 1970’s the Cambridge CAP
computer [32] was developed, which provided hardware support for this kind of fea-
ture. In the 1990’s the first standardization efforts took place for hardware-assisted
security, when Trusted Computing Platform Alliance (TCPA) defined a hardware-
based security element for Personal Computers (PCs). Almost simultaneously, the
first large scale deployment of hardware-assisted security took place in the mobile
field, when mobile device manufacturers added hardware-based integrity protection
of booted system software and the means for isolated execution of trusted programs.
With this technology it was possible to implement, for example, subsidy locks. Ex-
tensible hardware-assisted security is not widely deployed in PCs due to the nature
of the PC, which started as an open system and thus did not have the same revenue
streams that warrant the inclusion of a subsidy lock. In addition the end users did
not expect the same level of predictability and reliability, e.g. there has been no need
for the secure storage of the calibration data as is required for safe efficient running
of a mobile phone.

Today’s mobile phones provide us with many different kinds of services. For exam-
ple, we can browse the web and run third-party applications; actions which can be
achieved even on today’s feature phones. For this reason, mobile operating systems
have grown in size and therefore are increasingly susceptible to software vulnera-
bilities [14]. However, end users still expect a certain level of predictability and
reliability so there is a need for additional security. This is the reason why there is
a need to use hardware assisted TEE functionality. Today almost every smartphone
and tablet contains a TEE, such as ARM’s TrustZone [4].

Mobile devices equipped with TEEs have the potential to replace, amongst others,
wireless tokens for opening doors in buildings or cars, traditional credit and debit
cards for transactions and even report on a patient’s health to a medical center.

2.1. Trusted Execution Environment 6

Figure 2.1 A TEE in a Computing Device

Recent standardization efforts in GlobalPlatform could soon make it possible for
TEE functionality to be accessed in a standardized manner. GlobalPlatform has
announced a number of TEE specifications [17]. The introduction of these standards
have the potential to make it easier for different users to learn, practice and study
this domain in a safe and controlled manner.

2.1 Trusted Execution Environment

A TEE is a secure, integrity-protected processing environment, consisting of pro-
cessing, memory and storage capabilities. Figure 2.1 shows how a device can be
visualized as a series of distinct environments with their own set of features and
services. What follows, using the terminology introduced by GlobalPlatform [18],
describes the concepts illustrated in Figure 2.11.

Rich Execution Environment (REE)

The word “rich” here refers to an operating environment that is feature rich, as one
would expect from modern platforms such as Android, iOS, Windows, Linux or OS

1Figures, in this thesis, use a consistent color coding: Yellow hatched represents a TEE envi-
ronment, blue a TA and black with white text is GlobalPlatform API 2.4.1. The purpose is to
highlight how components are mapped to each other.

2.1. Trusted Execution Environment 7

X. In some literature this environment may be referred to as the “Normal World” in
reference to the fact that it is where the majority of applications are being developed
for and deployed to.

Trusted Execution Environment (TEE)

The TEE is a combination of features, both software and hardware, that isolate the
execution of tasks from the REE. These environments have a limited set of features
and services as they are intended to only address the security critical subset of an
application’s functionality such as offloading some cryptographic operations or key
management.

Trusted Application (TA)

An application encapsulating the security-critical functionality to be run within the
TEE. This may be a service style application that provides a general feature, such
as a generic cryptographic keystore, or it could be designed to offload a very specific
part of an application that is running in the REE, such as a portion of the client
state machine in a security protocol like TLS.

Client Application (CA)

CAs are ordinary applications (e.g. browser or e-mail client) running in the REE.
CAs are responsible for providing the majority of an application’s functionality but
can invoke TAs to offload sensitive operations.

Examining a typical TEE application workflow sequence, using GP terminology, let’s
consider a common use case for TEEs: the offloading of DRM protected content.
The CA would be responsible for the majority of the tasks associated with viewing
the content i.e. opening the media file, providing a region in the display into which
it can be rendered (the window) and providing a mechanism by which to start, stop
and rewind the media. A TA would be used to decrypt the protected media stream
and make the decrypted content available directly to the graphics hardware that is
responsible for rendering and displaying the stream.

2.2. Use of TEE 8

2.2 Use of TEE

Utilizing a TEE is not a silver bullet for securing a device. It provides defense
in depth and helps narrow down the attack vectors that an attacker can leverage
to compromise a device or user. Properly offloading tasks to TEE can efficiently
protect sensitive data from leaking, however, if we assume the following scenario: a
user has downloaded a new update for their device which contains malicious code.
If that malicious application can masquerade as a legitimate CA, then the attacker
could have free use of the sensitive data stored in the TEE. That is they would be
able to e.g. decrypt data or sign messages as a legitimate user, however, the TEE
would still ensure that the key was not revealed. Even with this limitation the
benefits of using a TEE far outweigh the risks of not using it and a TEE is critical
to the proper functioning of certain use cases that have become commonly available
in mobile devices, such as:

Keystore: Used for storing cryptographic tokens, keys or certificates, into a TEE
to make it more difficult to extract them from the device. When tokens are deployed
to a TEE, a CA can make use of them through a keystore Application Programming
Interface (API) and these tokens are thus not exposed to user space or Random
Access Memory (RAM).

Secure storage: This can serve as a multi-purpose facility which could allow an
application to store everyday information such as user identity, pictures or doc-
uments. Most implementations provide both confidentiality and integrity protec-
tions. In fact modern storage media such as embedded MultiMediaCard (eMMC)
may contain a special partition, called the Replay Protected Media Block (RPMB),
to assist with integrity protection. It relies on a keyed-Hash Message Authentication
Code (HMAC) for its operation and this key is protected by the TEE. Mobile phone
vendors have used secure storage for calibration data and firmware configurations
for many years to protect their assets and the safety of end users. For example
an attacker, in this case the legitimate owner of a device, may wish to alter the
modem configuration to allow them to have a greater share of the bandwidth or a
higher priority on the network. This can lead to poor service for other users or be
potentially harmful to the user as the new settings may pose a health risk. In order
to mitigate this risk the manufacturer would store these critical configurations in

2.2. Use of TEE 9

secure storage and would potentially disallow the device to boot if the calibration
data has been tampered with.

Secure boot is an extension to what has just been discussed, it provides the
ability to measure the integrity of certain code and data during the boot and can be
designed to disallow boot if any of the components have been altered. It does this
by storing a list of known good configurations, i.e. the signatures of firmware and
software components and comparing these to the components as they are prepared
for loading. Modern implementations of secure boot extend from the hardware all
the way to the user space. Non-Volatile Memory (NVM) such as the Read Only
Memory (ROM) code or key hashes stored in physical write once fuses can be used
to provide the basis of security. The systems can be thus designed that each verified
component can be relied upon to provide the verification of the layer(s) above it. A
simplified example would be that the ROM code verifies the bootloader, which in
turn verifies the main OS, which in turn verifies the overall REE before launching
the first user space application e.g. init. Secure boot does not guarantee that the
device is free of security issues; rather it can certify that the components that have
booted are the best known configuration as provided by a trusted source, e.g. the
OEM.

Digital Rights Managements (DRM): One of the driving forces behind the
wider adoption of TEEs has been the media industry. DRM content is becoming
ubiquitous, common examples are music files from iTunes2 or a video stream from
HBO3. In order to protect the media stream from piracy the data is encrypted with
a key that is generally device or session specific. The TEE is used to protect this
key, perform the decryption of the session and make the data available to other parts
of the system so it can be securely displayed.

Although the previous use cases are more prevalent on mobile devices they are
now seeing widespread deployment on a variety of devices ranging from desktops
to smart watches. This thesis hopes to outline that although these are some of the
most common uses of a TEE, it is by no means an exhaustive list and in fact TEE
technology is underutilized [14].

2https://apple.com/itunes/
3https://hbo.com

https://apple.com/itunes/
https://hbo.com

2.3. TEE Architectures 10

Figure 2.2 Three potential architectural options for realizing a TEE architecture (adapted
from [18])

2.3 TEE Architectures

A TEE can be realized in different ways, but the overall concept stays the same.
Figure 2.2 shows a number of ways in which these TEEs can be realized:

2.3.1 Co-Processor

A separate core, generally with its own peripherals, is used to offload the security
critical tasks from the main operating environment. The benefits of such a con-
figuration are that the operation can generally be completely isolated and it can
run simultaneously with the main core. The drawback is that there is an overhead
associated with transferring the data to and from the core. Also, the co-processor is
generally less powerful than the main core. The co-processor design can be further
separated into two alternatives:

External security co-processor is a discrete hardware module outside the phys-
ical chip (commonly referred to as “System on Chip” or SoC) containing the main
core, and is thus completely isolated from it, not sharing any resources with it.

2.3. TEE Architectures 11

Embedded security co-processor is embedded into the main SoC and thus has
the capability to share some of the resources of the main system. It is still isolated
from the main processor.

2.3.2 Processor Secure Environment

Many popular mobile TEE architectures follow a configuration where a single core
supports multiple virtual cores that are mutually exclusive of one another i.e. when
one is running the other is suspended. Generally there is some form of trigger to
allow the core to switch from one state to the other. This configuration is sometimes
referred to as the “processor secure environment” [12].

ARMTrustZone is an example of this configuration. In TrustZone, the processor
core can be in one of two “worlds”: a “secure world” (for the TEE) and a “normal
world” (for the REE). A special instruction called Secure Monitor Call (SMC) can be
executed to trigger the processor running in normal world to enter “monitor mode”
that marshals the transition to secure world [4]. The advantage of this configuration
is that there is no need to offload the data to and from the secure world. However,
there is a cost associated with having to store and restore the device state on entry
and exit from a given mode. On single core devices there is also an added security
benefit from having only one world running at a given time in that it ensures that the
normal world OS cannot interfere with the secure world directly or indirectly (e.g.,
software side-channel attacks). However, this also has the disadvantage that when
one world is active the other world must be completely halted, thus complicating
interrupt handling and potentially causing a transition back to handle the interrupt
before the task is complete.

Intel Software Guard Extensions (SGX) [29, 21] is another example of such
a variant, the core does not perform a full transition to and from a secure world.
Instead parts of a standard application, both code and data, are protected by mech-
anisms in the core. Parts of the application, called an Enclave, are encrypted by a
key that is only accessible to the Central Processing Unit (CPU). When an “enter
enclave (EENTER)” [23] instruction is received the code and data are decrypted
and operated upon in the core. They never leave the CPU package unencrypted,
thus protecting them against external access. The benefits are that there is no need

2.3. TEE Architectures 12

to transfer data back and forth between cores or to setup complicated transitions to
and from a secure world, and there is no additional need for a separate operating
environment as is required in other styles of TEE configuration. Most security use
cases related to normal world applications running can be supported in this fashion
by allowing small select parts of the application to be secured, thus enabling de-
velopers to move away from the paradigm of “Splitting Trust” [6] towards a model
that developers are more familiar with, where the application can be self-contained.
Obviously this does not remove the need for the developer to know which parts of an
application need to be secured and thus which parts to run in an enclave, however,
it does remove the need to develop a separate application that will run within a
different environment; which in the case of a co-processor may have a completely
different set of tools and requirements for the developer to learn in order to utilize
the facility.

2.3.3 Virtualization

Virtualization based on hardware features such as AMD Virtualization (AMD-V)
and Intel Virtualization (Intel VT-[x,d]) have existed for many years and are used
extensively to provide separation of resources between different operating environ-
ments especially in high density server configurations. They rely on processor sup-
port to allow virtualization of instructions and access to resources e.g. through the
use of an IOMMU (Input/Output Memory Management Unit) access to and from
peripheral devices can be restricted. Though in and of themselves they are not
designed solely to provide a TEE, there is recent research [9, 28] to see how these
can be used as an alternative to dedicated hardware based TEEs. When deployed
as TEE environments they generally rely on a Virtual Machine Manager (VMM) to
provide the marshaling of access to the resources. There has been extensive research
and security auditing of VMM technology in recent years 4, to the point where it is
now uncommon to hear of exploits against the VMM itself. Vulnerabilities such as
venom [10] highlight that there is still always the possibility of vulnerabilities in any
sufficiently large code base, however, in contrast to traditional hardware based TEEs
there is generally an open disclosure of the vulnerabilities and a software patch is,
in many cases, a sufficient remedy.

4The Invisible Things lab have been active in this field. http://blog.invisiblethings.org/papers/

2.4. Standardizing TEE Functionality 13

2.4 Standardizing TEE Functionality

The landscape for TEEs has been very diverse, with a variety of different architec-
tural options from multiple manufacturers.

Even platforms using the same type of TEE are often not interoperable. For exam-
ple, an application written for one TrustZone-based platform will generally not run
on a different TrustZone-based platform. They may be using different TEE OSs or
different REE OS drivers. On the other hand, developers and others who are higher
up in the software ecosystem are less concerned with intricacies of low-level software
or hardware but more concerned with their ability to use the capabilities of TEEs
easily and across different platforms. This calls for standardization.

2.4.1 GlobalPlatform

One initiative in TEE standardization has been undertaken by GlobalPlatform [17],
which “is a cross industry, non-profit association which identifies, develops and pub-
lishes specifications that promote the secure and inter-operable deployment and
management of multiple applications on secure chip technology” [15]. GP offers
specifications in three areas: smartcards, back-end support systems and devices.
This thesis is concerned with specifications from the device working group related
to the APIs for TAs.

Figure 2.3 shows the primary interfaces standardized by GP. The GP TEE Core
API provides an extensive set of features such as a crypto API and secure storage
that can be used to implement a TA, for example a DRM decoder. The GP TEE
Client API is a very generic and thin layer consisting of a small number of functions
and definitions that allow the transfer of data back and forth from the REE to a
TA. A CA, for example a DRM player, will implement all complex but non-critical
functionality by itself, but use the GP TEE Client API to invoke the corresponding
TA, such as the DRM decoder. Between the “GP TEE Client API” running on the
REE and “GP TEE core API” running on the TEE we have an effective Remote
Procedure Call (RPC) mechanism where a process running in the REE can invoke
tasks in the TEE.

2.4. Standardizing TEE Functionality 14

Figure 2.3 The main APIs specified by GlobalPlatform [18]

2.4.2 Benefits of TEE Standardization

These standardization efforts in GlobalPlatform could resolve the issue of inter-
operable TEEs. In other words, TEE application developers could re-use the same
application across different TEEs rather than developing for a specific TEE. For
example, a keystore service is already provided by Intel SEP and ARM TrustZone,
but unfortunately both define their own APIs, which forces the implementation of
tailored solutions on each platform.

If the TEE vendors were to agree on requirements and standards, in addition to
committing to deploy and use them in their products it may provide an incentive for
the developer community to utilize these features. A wider research and developer
community could be a valuable resource as they will help to drive the next revolution
in TEE use cases. It is already abundantly clear that there is a consumer need for
more security, privacy and identity protection being among their top concerns so
we can expect more demand for TEE functionality to come. Even taking existing
standards and enabling them, such as implementing the Public-Key Cryptography
Standard #11 (PKCS#11), in a readily accessible way can have a large immediate

2.4. Standardizing TEE Functionality 15

impact.

PKCS#11 defines a generic interface to cryptographic tokens e.g. how to sign data.
It is a well-known and used standard though it generally relies on 3rd party hardware,
such as smartcards, smartcard readers, Universal Serial Bus (USB) dongles etc.
Numerous languages provide wrappers for the API, many more applications are
PKCS#11 aware 5 and can be configured to offload cryptographic operations to a
PKCS#11 implementation. Providing this, integrated, as part of an existing device
will free the end user from having to know which hardware to carry around with
them and will enable application developers to tailor their applications knowing that
this feature is readily available.

However, given all the benefits that standardization brings it does not remove the
obstacle of gaining access to the requisite hardware nor does it simplify the task of
developing and testing TAs. The remainder of this thesis focuses on how to overcome
this lack of access and enable developers and researchers to gain valuable experience
with TEE technology and especially its concepts.

5http://en.wikipedia.org/wiki/List_of_applications_using_PKCS_11

16

3. OPEN-TEE

Hardware-assisted TEEs have been available in mobile devices for almost a decade,
but access to this technology has been granted only to privileged developers. For
example, developers working for chip vendors, OEMs and Original Design Manufac-
turers (ODMs). Limited access for third-party developers can be accounted for by
a variety of reasons, the technology is proprietary, lack of trust of the third party,
lack of an easily deployed Software Development Kit (SDK). In addition, there is
no unified means to access the resources and functionality of the TEEs.

In order to pave the way for the widespread use of TEE functionality by developers
and researchers this thesis defines an architecture and SDK. It is implemented as a
framework atop a set of tools that are familiar to the developer, thus removing the
need for specialized hardware and the overheads that it incurs.

3.1 Motivation

Chapter 1 alluded the difficulties in developing TEE applications. This section will
expand the four points which most influenced this thesis.

Enable developer access to TEE functionality

For a variety of reasons, access to TEEs is generally restricted to developers working
for chip manufacturers and for the OEMs that make devices based on these chips.
Usually, the technology is proprietary and easily deployable SDKs are not available.
Furthermore, TEEs may not have a security architecture within them to safely allow
complete outsiders access to the them without impairing overall security. However,
there have been attempts to address this problem [24].

3.1. Motivation 17

Provide a fast and efficient prototyping environment

The most common methods of debugging TAs are to either use expensive Joint Test
Action Group (JTAG1) debugging or resort to primitive “print tracing” by inserting
diagnostic output in the source code. The former generally allows for detailed in-
struction level debugging. However, the costs associated with these debuggers can
be prohibitively expensive, and the setup complex. Print tracing as a debugging
technique is cumbersome and clutters up the source code even to locate the source
of a problem. Another concern encountered by TEE developers is that if a TA run-
ning on actual device hardware crashes, a hard reset of the device maybe required
to recover, thereby significantly increasing the time and effort of debugging.

Promote research into TEE services

Ways to isolate TEEs from REEs are reasonably well understood as we saw in
Section 2. What is less well understood are the types of services that could benefit
from using TEEs. As the app store model2 has proven, given an opportunity, the
developer community at large is capable of pushing the boundaries and exploring
new and novel ways to use technology. Making it possible for researchers to easily
develop TAs could trigger the development of novel and innovative applications.

Promote community involvement

The prerequisite for involving the developer community and researchers at large is
to allow them access to a freely and easily available development environment, SDK
and a platform with which to experiment. The financial and technical aspects of
making hardware TEEs available for development on a large scale motivates the need
for a software framework for TA development which is not bound to any particular
hardware or vendor.

To get the community involved, application developers need development environ-
ments, SDKs and a platform with which to experiment. Although the GP standard
simplifies conceptualizing a TEE and the functionality that can be offered by it, there

1Joint Test Action Group standard addresses debugging of integrated circuits
2In this context the app store is digital distribution platform for mobile applications. An

example of this could be Google Play.

3.2. Requirements 18

are a number of obstacles that the developer must first overcome. The hardware is
complex and expensive to design and manufacture, by its nature it is complicated
to deploy, test with and there are no standard tools with which to work.

Safely exposing TEE functionality to application developers will enable them to
innovate these novel approaches to improve the security and privacy of their appli-
cations. Exposing TEE technology to a wider audience in no way guarantees that
all security threats will disappear, however, a community can provide more varied
research and ideas than a small group ever could. This is one of the few ways that
we can start to realize the potential of a TEE. The financial and technical aspects
of accessing a hardware TEE make this infeasible so we propose the creation of a
TEE framework, that is not bound to any hardware or any particular vendor, yet
tries to conform to one standardization effort, for which we have chosen GP.

3.2 Requirements

Motivated by the above discussion, our aim is to develop an SDK and framework
that allows for the development and testing of standard-compliant TEE applications.
The framework should allow development of GP-compliant CA and TA functionality
without having to rely on any particular hardware support. Open-TEE is intended
to be a fast prototyping and development environment that also provides a platform
from which to conduct further research into TEE functionality. Our fundamental
design principle is that it should require as little configuration and maintenance as
possible, allowing the developer to focus on the task at hand.

We identify the following criteria by which we can measure our TEE framework’s
usefulness and hence its potential success in addressing the issues that motivated it.

• Compliance: Our framework should comply with GP’s main interfaces, the
GP TEE Client and GP TEE Core APIs.

• Hardware-independence: As a software based solution our framework should
not be dependent on a particular TEE hardware environment. It should also
not be dependent on any particular hardware for the development system it-
self.

• Reasonable performance: To be readily deployed, our framework must not
suffer from code bloat that adds to the on-disk footprint nor to the memory

3.3. Architecture 19

consumption required to run it. In addition the start-up and restart times of
the environment, especially that of the CAs and TAs should not be excessive.
One of the perceived benefits of our framework is its ability to support fast
prototyping and as such, any time penalty that is incurred will diminish its
usability and the satisfaction of using it.

• Ease-of-use: The solution should be easily deployed and configured. It should
use tools that are widely available making it more attractive (e.g., there should
be no need for extra package/tool configuration on the development system).

Previous points are going to be walked through in Chapter 4 and evaluated based
on the success of the Open-TEE project.

3.3 Architecture

The following section describes our design and implementation of such a software
framework which we call Open-TEE. It will begin with an overview of the structure
of the Open-TEE environment. Figure 3.1 identifies the main components and their
relationships. The color code used in Figure 3.1 is the same as that used for Figure
2.3 to make the correspondence between the Open-TEE implementation architecture
and the GP conceptual architecture is clear. Each component is described in detail
below.

Base

Open-TEE is designed to function as a daemon process in user space. It starts
executing Base, a process that encapsulates the TEE functionality as a whole. Base
is responsible for loading the configuration and preparing the common parts of the
system. Once initialized Base will fork and create two independent but related
processes. One process becomes Manager and the other, Launcher which serves as
a prototype for TAs.

3.3. Architecture 20

Figure 3.1 Open-TEE architecture

Manager

Manager can be visualized as Open-TEE’s “operating system”. Its main respon-
sibilities are: managing connections between applications, monitoring TA state,
providing secure storage for a TA and controlling shared memory regions for the
connected applications. Centralizing this functionality into a control process can
also be seen as a wrapper abstracting the running environment (e.g. GNU/Linux)

3.3. Architecture 21

and reconciling it with the requirements imposed by the GP TEE standards. GP
requirements and the host environment’s functionality are not always aligned. For
example, GP requirements stipulate that if a TA/CA process crashes unexpectedly,
all shared resources of the connected processes must be released. In a typical running
environment, this requires additional steps beyond just terminating the process. For
example all shared memory must be unregistered – this needs to be a distinct action
from normal process termination.

Launcher

The sole purpose of Launcher is to create new TA processes efficiently. When it
is first created, Launcher will load a shared library implementing the GP TEE
Core API and will wait for further commands from Manager. Manager will signal
Launcher when there is a need to launch a new TA (for example, when there is a
request from a CA). Upon receiving the signal, Launcher will clone itself. The clone
will then load the shared library corresponding to the requested TA. The design of
Launcher follows the “zygote” design pattern (such as that used in Android [1]) of
preloading common components. This is intended to improve the perceived perfor-
mance of starting a new TA in Open-TEE: because shared libraries and configura-
tions common to all TAs are pre-loaded into Launcher, the time required to start
and configure the new process is minimal. A newly created TA process is then
re-parented onto Manager so that it is possible for it to control the TA (so that,
for example, it can enforce the type of GP requirements discussed in the paragraph
above).

TA Processes

The architecture of the TA processes is inspired by the multi-process architecture
utilized in the Chromium Project [38]. Each process has been divided into two
threads3. The first handles Inter-Process Communication (IPC) and the second is
the working thread, referred to respectively as the I/O and TA Logic threads. This
architectural model enables the process to be interrupted without halting it, as oc-
curs when changing status flags and adding new tasks to the task queue. Additional

3The architecture of Manager follows the same division

3.4. Implementation and Tooling 22

benefits of this model are that it allows greater separation and abstraction of the
TA functionality from the Open-TEE framework.

GP TEE APIs

The GP TEE Client API and GP TEE Core API are implemented as shared libraries
in order to reduce code and memory consumption. In addition loading the GP TEE
Core API into Launcher when it is created will help to reduce the startup times of
the TA process removing the need to load it for every TA; this is one of the key
benefits of the “zygote” design.

IPC

Open-TEE implements a communication protocol on top of Unix domain sockets
and inter-process signals as the means to both control the system and transfer the
messages between the CA and TA.

3.4 Implementation and Tooling

This section highlights interesting points and background of the design, implemen-
tation and tooling choices.

Utilizing existing functionality

To meet the hardware-independence requirement, we do not emulate specific TEE
hardware with software based emulators, such as QEMU [35]. Instead we rely on
existing technologies and the services offered by the mainstream OS in which Open-
TEE is running rather than developing a new TEE OS to deploy the GP APIs
in. In addition we reuse software from existing open source projects, such as the
OpenSSL4 crypto library and the GNU tool suite, thereby reducing the amount of
time required to develop and test the Open-TEE framework.

4http://openssl.org

3.4. Implementation and Tooling 23

This also contributes towards meeting the ease of use requirement in that developers
can easily set up Open-TEE and start developing TAs using a set of familiar tools,
editors, Integrated Development Environments (IDEs), compilers and debuggers.
For example, a developer utilizing Open-TEE can connect to a TA process with a
cheap reliable software debugger such as GDB [19] for detailed debugging tasks like
stepping through the code, inspecting variables and registers etc.

Development process

The intended user base for Open-TEE consists of seasoned developers. To ensure
viability in such a demanding user base, we adopted a rigorous development process
for Open-TEE so that the end result will be perceived as robust and usable. Open-
TEE is developed as an open source project and as such there are a number of
powerful tools that are freely available for this type of project. GitHub5 is used
for hosting the code and GerritHub6 is used for performing peer-review of all code
before it is submitted to the code base. In addition to the manual review process
we leverage the power of Coverity7 to perform in depth static analysis scans. This
enforces secure coding practices and helps to find potential functional bugs that may
have been missed during the manual code review. In addition, we have deployed
a Continuous Integration (CI) server running Jenkins8, which we have connected
to GerritHub. Its main task is to perform a number of “smoke tests”9 on the new
patches. These tests ensure that the patches conform to the coding guidelines, build
successfully and that the basic system is usable after the patches are applied.

Open-TEE in use

Being designed as an open source framework upon which to build and test features
that will utilize a TEE, Open-TEE has been implemented to be as inconspicuous
as possible. The complexity of the system is hidden from the users of Open-TEE.
They are presented with an SDK that exposes the GP TEE Client and GP TEE
Core APIs without being required to have a deep understanding of how the overall

5http://github.com/
6http://gerrithub.io/
7https://scan.coverity.com/projects/3441
8http://jenkins-ci.org/
9A suite of tests intended to ensure that the basic functionality of a system are intact.

3.4. Implementation and Tooling 24

framework works, thereby allowing them to focus on the development of their own
TAs. However, Open-TEE is already being extended by the community. The ongo-
ing implementation of the GP TEE Trusted User Interface (TUI) [16] 10 specification
is an example.

Android and Open-TEE

During the Open-TEE specification phase it was recognized that there may be a
demand for Open-TEE on a mobile device, because in general, most of the TEE use
cases are associated with mobile devices and therefore it can be expected that most
of the developed TAs are designed for this domain. From a developer’s perspective
it would be valuable to test the application in the context of the device where it will
be deployed, to ensure that e.g. communication from upper level through CA to TA
is working correctly before deploying it to real hardware.

Android was a natural target on mobile platforms for many reasons: it is widely
deployed, open source and closely resembles GNU/Linux environment. Although
Android was not the primary target, the Android aspect greatly affected the design
of Open-TEE and implementation decisions, because the delta between the two
environments should stay as minimal as possible in order to reduce the porting
effort. To expand the example in the first paragraph, developers can test out their
Java Native Interface (JNI) implementation with Open-TEE.

In the course of writing this thesis the Open-TEE Android port was succesfully
completed with minimum effort.

SGX and Open-TEE

SGX provides a TEE service through a set of CPU instructions which can be used
for constructing an “enclav” to protect sensitive code and data. This has a number of
subtle side-effects, e.g. the “enclavised” code cannot make any system calls or invoke
services provided by the OS directly. In other words, the protected code cannot rely
on any service framework. The code must be self-contained. But as discussed in
Chapter 2, one of the benefits of having a standards compliant TEE is the possibility

10https://github.com/Open-TEE

3.4. Implementation and Tooling 25

of using existing services. Developers could rely on the service framework provided
by a TEE for e.g. accessing a keystore rather than maintaining the keystore by itself.

Using SGX within Open-TEE has been a consideration from the beginning of the
Open-TEE project. Utilizing SGX it should be possible to expand Open-TEE from
a development aid into a fully functional TEE. In the course of writing this thesis,
the efforts of hardening Open-TEE has been an ongoing effort, which has greatly
affected Open-TEE design and implementation decisions.

For example, one of the reasons for separating the TA processes into an I/O and a
logic thread is to enable the logic thread to be “enclavised” within SGX and offload
the OS interaction to the I/O thread.

Fall back TEE

In general, securing Open-TEE is an intriguing topic, because modern OSs are
equipped with various security mechanisms like Seccomp11 and LXC Containers12.
The future research work question might be formulated as: Could it be possible to
combine various OS security mechanisms into one product and what level of trust
could be achieved by using these existing techniques and technologies? The edge
of this approach is that the enabler technology is in place and it only needs to be
utilized. In addition experiments could be conducted to see if these mechanisms are
deployable in existing platforms and devices.

GlobalPlatform call for review

During our implementation of Open-TEE, GlobalPlatform announced an updated
version of the GP TEE Core API. The implementation started with GP TEE Core
version 1.0 and was nearly complete when GP announced a public review of the sub-
sequent version. Under review was a working draft 1.0.26 and it received comments
from all interested parties. This opportunity was utilized and the review of the
working draft C was created in GP format and submitted to GP for public review.

The review is based on the experience of implementing Open-TEE:
11http://man7.org/linux/man-pages/man2/seccomp.2.html
12https://help.ubuntu.com/lts/serverguide/lxc.html

3.4. Implementation and Tooling 26

• It raised the issue of some of the function descriptions. They may be diffi-
cult to understand or are ambiguous. For example the working draft function
TEE_PopulateTransientObject description was ambiguous of how the func-
tion parameters should be handled e.g. should they be deep or shallow copied13.

• Pointing out some of the unrealistic functional requirements. Some of the func-
tionality might be questionable after evaluating the feasibility of implementing
these requirements from the TEE vendor’s point-of-view. An example of this
is a static allocation of a cryptographic operation. The cryptographic oper-
ation is allocated with TEE_AllocateOperation function, which is the only
function the cryptographic API subsection of the GP TEE Core API that can
return the out of memory return code. Therefore if our implementation needs
to be fully GP compliant, it must ensure that cryptographic operations are
not failing due to allocation operations.

• Proposing new functionality. For example related to operation state; a new
constant was proposed for improving the TEE Core API readibility and us-
ability.

• Pointing out possible flaws in the working draft. For example Authenticated
encryption state was incorrect after TEE_AEinit function, which would block
subsequent calls e.g. TEE_AEUpdate.

• Suggested re-ordering the document layout with an aim to improve readability
of the document.

GP reviewed the proposals and provided feedback of the submitted review. They
made multiple changes on the suggestions in the review. For example the TEE_Popu-
lateTransientObject function description wording was improved. Because the sub-
sequent version of GP TEE Core API was a minor release, they did not accept any
major changes. They were strict about not breaking the backward compatibility and
therefore a couple of points from review are considered for the next major version.

GP Trusted User Interface (TUI)

TAs without the possibility to interact with the user severely limit the possible
TEE/TA use cases. For example exchanging sensitive information with the user,

13Data from A is actually copied to B rather than a referencing it.

3.4. Implementation and Tooling 27

i.e. when the user is entering authorization credentials (username, password) or the
TA may want to display a calculated One-Time code to the user to allow them to
log into a service. In such cases there is a need to interact with the TEE without
the possibility of the REE intercepting the sensitive content. GP recognized this
need and they have extended TEE specisification with TUI API [16].

As mentioned, there is an ongoing open source project14, which is implementing
the GP TEE TUI specification. The project builds on top of Open-TEE by imple-
menting an extension, which provides the TUI functionality for TAs. One benefit
of having a TUI framework with Open-TEE is that the developers are able to de-
velop and test their TUI based TAs on the different platforms where Open-TEE is
supported.

14https://github.com/Open-TEE

28

4. EVALUATION

This chapter assesses the requirements from Chapter 3 and evaluates how well Open-
TEE meets them. The requirements are being continually evaluated, even as this
thesis is being written, due to the ever evolving nature of Open-TEE. It is an active
open source project to which more features are being added and existing features
refined based upon the feedback that is received.

4.1 Compliance

Every effort has been made to comply with the GP standard. Whenever this has
not been feasible, due to time constraints or in the interest of providing a platform
upon which to build, the deviation has been documented and a debug message is
logged to inform the user of the non-compliance. The GP TEE Client API is fully
implemented. The GP TEE Core API implementation has 100% function coverage,
however, the algorithm coverage is currently 80% due to the use of existing libraries
that do not support the remaining algorithms.

Information related to other implementations of the GP specification are scarce and
most of the information related to it is proprietary and therefore it is not known if
some of the commercial TEE implementations are fully GP compliant. If this were
known, an idealistic validation of our implementation would be executing CAs and
TAs we have created in an independently implemented TEE to compare the results.

A compliance test suite is commercially available from GP, however it is not freely
available and needs to be purchased by non-affiliated members. Because Open-TEE
is an open source project, it lacks the funds to purchase the use of this tool.

4.2. Hardware-Independence 29

4.2 Hardware-Independence

By following the GP standard and not emulating any specific TEE hardware, Open-
TEE is independent of TEE hardware. TAs developed with Open-TEE can be
compiled to any target TEE hardware architecture. We have verified [13] that a
non-trivial TA developed using Open-TEE (284 Lines of Code (LoC), 19 GP TEE
Core API invocations (9 unique functions), 6 invokable TA commands) has been
successfully compiled and run on a hardware TEE based on ARM TrustZone running
the Trustonic <t-base environment [41].

Open-TEE can provide coverage reports to help highlight hot-spots in the code, gen-
erate call graphs etc. The GP TEE Core API includes memory management prim-
itives and allows configuration parameters (such as gpd.ta.dataSize and gpd.ta.
stackSize) to indicate how much heap and stack memory is available to a TA. A
developer can use these parameters to configure Open-TEE to reflect the memory
restrictions of a target hardware TEE environment.

However, as the actual TEE is potentially running a different environment than that
offered by Open-TEE– possibly utilizing hardware based cryptographic accelerators,
potentially having a different CPU, with different clock speed and throughput char-
acteristics – it will result in different timing characteristics. In this sense, as with
all virtual environments, Open-TEE cannot fully replace the actual hardware en-
vironment for the final stages of the development cycle. Instead developers using
Open-TEE can gain confidence that the hardware-independent parts of their trusted
applications have been optimally implemented by making judicious use of coverage
reports and other generic analysis techniques. Any hardware-specific optimization,
such as performance tuning, naturally needs to be done on the target hardware
environment.

Open-TEE has been deployed and used on various development environments rang-
ing from servers to desktops and laptops1. It has been tested on both ARM and x86
architectures. Open-TEE requires Linux but has been run successfully on virtual
machines hosted on other OSs. Having chosen not to emulate existing hardware to
create the framework helps to ensure that the TAs created using it are portable as
it is harder to create machine dependent code.

1Lenovo X1 carbon, MacBook pro, Samsung XE303C12, running Linux

4.3. Footprints and Performance 30

4.3 Footprints and Performance

To evaluate our performance we deployed Open-TEE on a desktop machine (Intel
i7-2600 CPU with 8GB RAM) running 64-bit Ubuntu 14.04. All performance tests
were run 40 times while the machine was under normal load e.g. having editors and
browsers open.

4.3.1 Disk Consumption

Open-TEE is written in ANSI C with a total of 12423 lines2 spread over 78 source
and header files. Table 4.1 shows the total size of the framework and highlights two
libraries from the framework that are of most interest to developers, being “libInter-
nalApi.so” against which the TAs are linked and “libtee.so” against which CAs are
linked. As is standard on operating systems that support shared libraries the “Text”
section, containing the program’s code, can be shared among the different processes
that link against it. The “Data” and “BSS” respectively refer to the initialized and
uninitialized data parts of the library that can be shared in a Copy-On-Write (COW)
basis. As the table highlights the vast majority of the libraries’ size can be shared,
thus reducing the required footprint.

Table 4.1 Binary sizes (bytes)

Text Data BSS overall
libInternalApi.so 117448 2248 160 119856
libtee.so 18617 880 152 19649
Total Framework 224948 7760 1664 234372

4.3.2 The Memory Consumption

Determining the absolute memory usage of Open-TEE is not feasible, because the
GP standard does not define limits for the maximum number of CA/TA connections.
It is an implementation defined property and Open-TEE is implemented in a way
that it depends on the running environment i.e. how many sockets can one process
acquire. But for having an overall indication of Open-TEE memory consumption,
the memory consumption is examined under three different scenarios. These are:

2gathered using sloccount: http://www.dwheeler.com/sloccount/

4.3. Footprints and Performance 31

Open-TEE framework itself, Open-TEE framework with one TA and Open-TEE
framework and multiple TAs. The following memory measurements were collected
and formatted into tables:

• Resident Set Size (RSS) shows how much memory has been allocated for
process, this includes all memory that a process shares with other processes.
As such it is a very naive measurement of a processes memory impact.

• Shared is the memory that a process shares with other processes, i.e. through
the use of shared libraries.

• Private is the memory that is private to a process and will be returned to
the system when the process terminates, however, Copy-On-Write semantics
after a process fork may complicate this calculation. The Private pages may
actually be shared until one or the other of the processes tries to write to the
page, at which time it will be given its own copy of the Private page.

• Proportional Set Size (PSS) is a realistic indicator of the actual memory
footprint of a process. It is calculated as the sum of the Private memory
used by a process and the average Shared memory use per process. E.g., if
a process has 100KB of Private memory and 1000KB of memory shared with
10 processes, its impact on system memory is 200KB3. Taking the example of
Launcher between runs 2 and 3 we see that while the RSS, Shared and Private
memory usage stay constant the PSS decreases as more pages are shared with
the new TA.

Following results were collected.

1. The first scenario is Open-TEE framework by itself. Table 4.2 shows the
memory consumption of Manager and Launcher immediately after they have
been initialized, i.e. before any TAs have been launched. Manager process
memory footprint could be reduced by removing all possible TAs binaries
from Open-TEE “TA”-folder, because Manager process stores each of the the
TA binary’s Universally Unique Identifier’s (UUID’s) and name to its own
data structures to enable loading of the TA when requested by a CA4 and

3100KB + (1000KB / 10) = 200KB
4TA binary format is ELF and TA UUID is stored as a section into binary

4.3. Footprints and Performance 32

binary name to its own data structures. During the memory measurement the
“TA”-folder contained two TAs.

Table 4.2 Open-TEE framework memory usage

RSS Shared Private PSS
Manager 1024 764 260 305
Launcher 1624 1232 392 558

2. The next scenario is Open-TEE framework with one TA. CA/TA may affect
Manager process memory usage by registering shared memory regions. Every
region is registered in Manager process and it is done for controlling resource
usage and termination. The CA/TA, which was used in this measurement,
registers one shared memory region which is used for transferring data between
CA/TA. Table 4.3 shows how the memory consumption increases when one
TA is launched.

Table 4.3 Open-TEE memory consumption with one TA

RSS Shared Private PSS
Manager 1112 832 280 316
Launcher 1648 1548 100 397
Test TA15 1072 932 140 308

3. The last scenario is with multiple TAs. Table 4.4 shows the situation when two
TAs are running simultaneously. This measurement continues from previous
scenario. The first TA is not unloaded from Manager, because it has been
configured to be “kept alive”6.

Table 4.4 Open-TEE memory consumption with two TAs

RSS Shared Private PSS
Manager 1116 832 284 319
Launcher 1648 1548 100 337
Test TA1 1072 944 128 245
Test TA27 1236 1068 168 299

5ta_conn_test_app
6TA context shall be preserved, when there are no sessions connected to the TA
7example_digest_ta

4.3. Footprints and Performance 33

Overall, it can be concluded that (a) the memory footprint of Open-TEE is low and
(b) the extensive use of shared libraries implies that the marginal memory cost of
launching a new TA is small, as shown by the PSS figures. It can be also observed
that Manager and Launcher process memory consumption does not (c) significantly
increase, rather it starts to plateau. Table 4.5 highlights the delta between different
scenarios. The first TA launch causes a rather high memory consumption, because
i.e. data structures are getting initialized when they are first used.

Table 4.5 Memory consumption delta between different runs

RSS Shared Private PSS
Manager 1024 764 260 305
Launcher 1624 1232 392 558
Manager 88 68 20 11
Launcher 24 316 -292 -161
Manager 4 0 4 3
Launcher 0 0 0 -60

4.3.3 Build and Run Performance

One of the driving requirements of Open-TEE is the need to have short build and
deploy cycles to help reduce the overall development effort. Table 4.6 highlights
that Open-TEE does not pose a significant overhead to the developer, taking an
average of just 147 ms to perform an incremental build of a TA. The time required
for an incremental build was comparable to that of a clean build, falling within
the standard deviation of the former, this can be attributed to the source code
being confined to a single C file. Comparative results are not available for deployed
hardware-based development environments. However, considering that a full reset
of the target device and the subsequent boot of its OS may be required before the
CA can be launched, Open-TEE’s performance is likely to be perceived as being
superior.

Table 4.6 Average build and execute times of a TA, including standard deviations

Time
Build 147 ms ± 10.95
Execute 430.5 µs ± 32.6

4.4. Ease of Use 34

4.4 Ease of Use

Determing whether Open-TEE eases the burden of TA development, is particularly
challenging because until now, TA development has been limited to a very small
set of developer’s and further more ease of use is a loose definition, which is open
to interpretation. It depends on a developers current environment and how she/he
defines easy. A user study was conducted, for collecting a variety of user experi-
ences and feedback about Open-TEE usage. The results of the study were used for
evaluating, if Open-TEE meets the “Ease of use” requirement in Chapter 3.

4.4.1 User Study

The user study was conducted in conjunction with the Intel Collaborative Research
Institute for Secure Computing (ICRI-SC) Helsinki Team8.

Participants

Our user study was publicly available9. The user study itself did not need any
special background skills or knowledge. Anyone who was interested in this topic
was invited to participate in our study, but it was mainly aimed toward developers
who were acquainted with TEEs and have developed TAs.

As discussed above, suitable participants for user study are scattered, but fortu-
nately, we were able to recruit several experienced TA developers from multiple or-
ganizations to participate in a user study. Fourteen people participated in the study.
All had prior software experience (between 3 and 33 years, M = 13, SD = 8.2).
Eleven had prior experience developing/debugging TAs (between 1

2
and 15 years,

M = 5.1, SD = 4.2).

Materials

The standard System Usability Scale (SUS) [8, 7] questionnaire was used to elicit
the participants’ estimates of the ease of use in developing TAs. We used a pre-

8Intel Collaborative Research Institute for Secure Computing (ICRI-SC) http://www.icri-sc.
org/icri-sc/institute/

9The user study http://open-tee.github.io/userstudy/

http://www.icri-sc.org/icri-sc/institute/
http://www.icri-sc.org/icri-sc/institute/
http://open-tee.github.io/userstudy/

4.4. Ease of Use 35

Table 4.7 Mean, standard deviation and median for the pre- and post-study SUS scores

Mean Std.dev. Median
Pre-study SUS 51.82 24.70 62.50
Post-study SUS 74.09 15.01 77.50
Post-study SUS (all participants) 69.92 18.09 68.75

study A and a post-study questionnaire B. In addition to demographic information,
the pre-study questionnaire included free-form questions about the current software
development environment (if any) they use for TA development. It also contained a
SUS questionnaire which the participants were asked to complete with their current
TA development environment in mind. This was completed only by those partici-
pants who had prior TA development experience.

The material for the user study10 task was a sample CA/TA pair, provided as part of
the Open-TEE source tree. A software flaw had been introduced to the TA, which,
when executed, would result in a segmentation fault and subsequent premature
termination of the TA. The CA was free of error and was only used to interact with
the TA running in Open-TEE.

The post-study questionnaire consisted of a SUS form which the participants were
asked to complete with Open-TEE in mind. The questionnaire also had open ended
questions about specific difficulties they face in TA development.

Procedure

The user study was conducted in three steps. In the first step, participants were
first asked to complete the pre-study questionnaire. The pre-study questionnaire
purpose was to collect background information on the participants. After this they
were pointed to a web page containing brief instructions on how to install and use
Open-TEE. In the second step, once the participants completed the tutorial they
were told about the flawed TA. They were tasked to identify the reason for the TA
malfunction using Open-TEE and correct the flaw in the TA. Finally, in the third
step, after the participants had completed the debugging exercise, they were asked
to complete the post-study questionnaire.

10The user study materials can be found at http://open-tee.github.io/userstudy/

http://open-tee.github.io/userstudy/

4.4. Ease of Use 36

Figure 4.1 Pre- and post-study SUS score (for participants with prior TA development
experience)

Figure 4.2 General software and TA development experience by participant (for partici-
pants with prior TA development experience)

4.4. Ease of Use 37

4.4.2 User Study Result

The mean, standard deviation and median of the SUS scores for all participants,
including those without prior TA development experience are shown in Table 4.7.
With both sets of participants, the post-study questionnaire yields a mean score
above 68, which is considered the threshold value for an above average SUS score,
indicating an acceptable level of usability in Open-TEE.

Figure 4.1 shows the scores reported both before and after the use of Open-TEE by
participants with prior TA development experience. Nine out of the eleven partic-
ipants (82%) rated Open-TEE higher than the development environment they are
using currently. This suggests that the perceived usability of Open-TEE is higher
than that of the current tools used by the experienced TA developers. In five cases
(46 %), the difference in SUS scores was 35 or more. In the remaining six cases, the
difference in SUS scores was 10 or less. A Wilcoxon signed-rank test showed that the
difference in SUS scores is statistically significant (z = −2.50, p < .05, r = −0.53).

The difference in SUS scores divides the participants into two distinct groups. The
five participants for whom the difference was 35 or more had SUS scores below 60
in their pre-study questionnaire. The remaining six for whom the difference was 10
or less had pre-study SUS scores over 60. A natural question is whether we can dis-
cern any other difference between the two groups that might explain the difference
in SUS scores. One possible explanation was that experienced software developers
were comfortable with their current tools and hence did not perceive Open-TEE
as being easier to use. If this explanation is correct then one can hypothesize that
developers with many years of general software or TA development experience will
rate their current development tools higher than their counterparts with fewer years
of experience would. However, a Spearman’s rho correlation test indicated no sig-
nificant correlation between the years of general software development experience
and the SUS score in the pre-study questionnaire (rs = −.042, p > .05), nor be-
tween the years of TA development experience, and the SUS score in the pre-study
questionnaire (rs = −.204, p > .05).

Figure 4.2 shows the software development experience (both general and TA) re-
ported by each participant whose SUS scores are shown in Figure 4.1.

A majority of the experienced TA developers (7 out of 11, 64 %), reported using
hardware tools for debugging TAs under development. Four (36 %) used Lauter-

4.4. Ease of Use 38

bach11 hardware assisted debug tools. Three (27 %) used other development boards
such as Arndale12, Fido13 or DS-514 or actual mobile devices. Participant responses
highlighted different types of difficulties in debugging TAs using only hardware:

• workflow slowdown due to the need to (cross) compile, load and execute TAs on
separate hardware (“slow execution (flash, download, reboot, run)”, “debugging
TA is slow, you need to cross compile and push binary into target hardware”),

• problems due to the hardware itself being under development and hence ex-
hibiting flaws, (“TEE itself might not work without problems, because some
change have been made”),

• inconvenience caused by the restricted access to prototype hardware “Main
difficulty is that you need development hardware, which is problematic when
working outside the office.”).

Six participants (55 %) reported that their current development environment does
not support interactive debugging. But even the rest, who used tools like Lauterbach
tracing, reported that they found it easier to resort to print tracing, whenever they
needed to examine values of TA variables.

After having used Open-TEE, several participants commented “debugging is easy”
or “debugging is fast” in the post-study questionnaire. One participant characterized
how Open-TEE could be integrated into his existing workflow before cross compil-
ing to target hardware: “[Open-TEE] complements nicely my previous SDE - first
preliminary testing with Open-TEE & gdb & OT_LOG(..), and only after that ARM
cross compiler & FVP emulation”. The dominant suggestion for improvement was
a desire to see more extensive documentation for Open-TEE.

4.4.3 Ease of Use Conclusion

Our user study was conducted for the purpose of determing if Open-TEE meets the
ease of use requirement in Chapter 3. The study was successfully conducted. Given

11http://www.lauterbach.com/
12www.arndaleboard.org/
13http://www.liewenthal.ee/projects/fido/
14http://ds.arm.com/

http://www.lauterbach.com/
www.arndaleboard.org/
http://www.liewenthal.ee/projects/fido/
http://ds.arm.com/

4.4. Ease of Use 39

the sample size, the results should be taken as indicative rather than definitive.
However, it is reasonable to conclude that Open-TEE has the potential to improve
the ease of use of developing TEE applications. We also collected the improvement
ideas for Open-TEE.

40

5. RELATED WORK

Ekberg et al. [14] list several reasons for the underutilization of TEEs in devices:
e.g., lack of standard APIs and easily available SDKs and lack of trust between
the different stakeholders, with OEMs being unwilling to open up their security
environments to third parties. This section reviews a number of initiatives that
have been undertaken to address some of these issues and compare these efforts to
Open-TEE.

On-board Credentials (ObC) [24] was one of the first attempts to address the prob-
lem of opening the TEE to third party developers by challenging the prevailing
opinion that a credential system must be centralized and closed. ObC has been
implemented and deployed in experiments with New York’s public transport ticket
sales. ObC predates many standardization efforts and as such defines a proprietary
mechanism by which to enable the CA/TA communication and synchronization
while leveraging the TrustZone architecture to enforce the security. On the other
hand Open-TEE work aims to promote standards adoption in order to proliferate
TEE research and deployment.

Muthu [30] analyzes extending QEMU to support TrustZone, the feasibility of such a
solution, and tries to determine if it would be beneficial to the developer community.
In his other work Muthu (et al.) [31] addresses a similar problem by considering the
feasibility and benefits of emulating TrustZone in Android. Winter et al. [42] goes
one step further and implements a TrustZone emulator as an open source project.
However, the location of emulator source code is not included in the paper and
therefore is not to be found. Open-TEE addresses the issue of virtualizing the
TEE, however, in contrast Open-TEE is not tied to the emulation of a specific TEE
implementation. One issue with developing an emulator for the TEE is that it still
lacks an operating system to run. Section 2.4 highlights the lack of a standardized
OS even among the different TrustZone implementations.

To this end there have been a number of efforts to create an OS that is suitable to be

5. Related Work 41

deployed in TrustZone [33] [27] [40]. All of these are open source solutions which are
released under various licenses (see Table 5.1). In addition to providing an operating
system for the TEE both OP-TEE [27] and T6 [40] choose to rely on GP as their
RPC mechanism between the REE and TEE. Trusted Little Kernel (TLK) [33] on
the other hand chooses to provide a proprietary communication mechanism.

Sierraware’s Open Virtualization [36] provides a dual-licensed OS implementation1

that also supports the GP standards. The commercial products (sierraVisor, Sierra-
TEE) provide extended functionality which is not General Public License (GPL) and
there is no requirement for any changes to be made publicly available by the license
holders as is required with their open source offering. The downside of the Open
Virtualization open source product is that it offers only a subset of the features,
compared to the commercial product and it is licensed under GPL. Open-TEE is li-
censed under Apache-V2 giving users the flexibility of an open source license without
the strict copy left requirements.

Trustonic’s <t-dev developers program [41] was created to support Trustonic part-
ners who have deployed the <t-base TEE implementation. This program provides
an SDK, tools and consulting with the aim of easing the development and testing
of TEE applications in deployed hardware solutions.

Table 5.1 compares available solutions to Open-TEE. “Compliance” column indi-
cates, if the solution is implemented according to GP TEE specification. If the
solution requires specific hardware, information about this is collected into the “HW-
independence” column. Table 5.1 uses question marks, if credible information cannot
be found.

Regarding to GlobalPlatform compliance, a compliance test suite is commercially
available from GP, thus, it is not freely available and needs to be purchased by non-
affiliated members. In fact, GP test suit is the only test suite for compliance testing
at the time of writing this thesis. Due to lack of a uniform method of confirming GP
compliance, there is no coherent information about how well existing TEE hardware
conform to the GP specifications.

All of the OS based solutions have to be ported to support the various hardware
environments, increasing the effort of maintaining the OS and reducing the user’s
available options. Many of them also require that the hardware be configured in a

1GPL [20], proprietary

5. Related Work 42

Table 5.1 Comparison of available alternatives to Open-TEE

Compliance HW-independence License
Open-TEE yes yes Apache-V2
Open Virtualization [36] yes no proprietary, GPL
OP-TEE [27] yes no BSD-2,BSD-3
T6 [40] ? no ?
TLK [33] no no MIT,FreeBSD
TrustZone Emulator [42] ? no ?

developer mode, without this setting it is generally not possible to deploy custom
software to the TEE, for obvious reasons, further restricting the developer’s options.
Open-TEE in contrast does not have this hardware dependency, thus enabling the
users to start developing with the framework once they have cloned the repositories2.
Based on the references listed above, it can be concluded that no other project fills
the niche of a fast prototyping SDK framework that is described in this thesis.

2http://open-tee.github.io/

http://open-tee.github.io/

43

6. CONCLUSION

This thesis has demonstrated that Open-TEE meets the objective of an easy-to-
use, hardware-independent software framework that allows developers to write and
debug GP-compliant TEE applications. Open-TEE has been made deliberately open
source under Apache-V2 license [37]. The Apache license was selected because it is a
recognized open source license and it provides additional flexibility for those wishing
to use the framework. All third party components have been carefully selected –
the project has used only components that have been properly licensed and do not
set any restrictions for future use. This has made it possible for a community to
contribute to Open-TEE easily. Currently a number of extensions are being worked
on including support for other GP APIs like GP TEE TUI API and supporting TEE
Client API bindings in Java (for Android applications).

Although the sample in the user study is small, participants were drawn from several
different organizations with track records of TA development. Thus it could be said
with confidence, that the results of this user study are valid. It is very difficult at this
time to conduct larger-scale user study of TA development because the community
of TA developers is tiny. It could be said that expanding the size of the TA developer
base is the motivation for Open-TEE in the first place.

Open-TEE was initially intended to be a developer tool. However, an alternative
use has become evident in our discussions with service providers. Although use of
TEEs can improve the security and usability of their service, not all their clients
may have TEE-equipped devices. Yet the service provider would like to present a
consistent user experience for their entire client base. A possible approach for them
is to ship their application (CA and TA) with Open-TEE and arrange for the CA to
use Open-TEE if it cannot detect a real hardware TEE on the device. This would
allow the service provider to have a common provisioning mechanism and offer a
consistent user experience for all their clients. However, once Open-TEE has been
cast as a potential fall-back TEE in this manner, there emerges the need to address

6. Conclusion 44

the question of how it would be best to isolate it from the REE in the absence of
any hardware support.

Reiterating that Open-TEE is not intended to emulate any specific TEE hardware.
Open-TEE meets its goal of guaranteeing that trusted applications developed using
it will compile and run on any GP-compliant TEE hardware. Hardware-specific
aspects, such as performance tuning are outside the scope of Open-TEE.

During the course of writing this thesis, GlobalPlatform announced a public review
of the next version working draft of GP TEE Core API. Based on Open-TEE imple-
mentation experience detailed feedback was provided to GlobalPlatform in response
to their solicitation of public comments. Feedback included errors and ambiguities in
the specifications. Several items in our feedback have been addressed in the released
version 1.1.

The hope in writing this thesis is to make the research community aware of Open-
TEE and encourage researchers to use it and contribute to its development. It is
also believed that organizations and developers who already develop TA applications
will benefit from incorporating Open-TEE into their development process.

45

BIBLIOGRAPHY

[1] Android Open Source Project, “Managing your app’s memory,” https://
developer.android.com/training/articles/memory.html.

[2] Apple, “iOS security,” https://www.apple.com/ca/iphone/business/docs/iOS_
Security_Feb14.pdf.

[3] ARM, “Technical reference manual: ARM 1176jzf-s (trustzone-enabled proces-
sor),” http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf.

[4] ARM, “ARM security technology — Building a secure system using Trust-
Zone technology,” http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.prd29-genc-009492c/index.html, April 2009.

[5] J. Azema and G. Fayad, “M-Shield mobile security technology,” 2008, TI White
paper. http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf.

[6] D. Balfanz and E. W. Felten, “Hand-held computers can be better
smart cards,” in Proceedings of the 8th USENIX Security Sympo-
sium, Washington, D.C., August 23-26, 1999, 1999. [Online]. Avail-
able: https://www.usenix.org/conference/8th-usenix-security-symposium/
hand-held-computers-can-be-better-smart-cards

[7] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the
system usability,” International Journal of Human-Computer Interaction, pp.
574–594, 2008, http://dx.doi.org/10.1080%2F10447310802205776.

[8] J. Brooke, Usability evaluation in industry. Taylor & Francis, London, 1996,
ch. SUS: A "quick and dirty" usability scale, pp. 189–194.

[9] Y. Cheng, X. Ding, and R. Deng, “Appshield: Protecting applications against
untrusted operating system,” Singaport Management University Technical Re-
port, SMU-SIS-13, vol. 101, 2013.

[10] Common Vulnerabilities and Exposures (CVE), “Cve-2015-3456,” https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456.

[11] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.
Smith, and S. Weingart, “Building the IBM 4758 secure coprocessor,”

https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/articles/memory.html
https://www.apple.com/ca/iphone/business/docs/iOS_Security_Feb14.pdf
https://www.apple.com/ca/iphone/business/docs/iOS_Security_Feb14.pdf
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
https://www.usenix.org/conference/8th-usenix-security-symposium/hand-held-computers-can-be-better-smart-cards
https://www.usenix.org/conference/8th-usenix-security-symposium/hand-held-computers-can-be-better-smart-cards
http://dx.doi.org/10.1080%2F10447310802205776
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456

BIBLIOGRAPHY 46

IEEE Computer, vol. 34, no. 10, pp. 57–66, 2001. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/2.955100

[12] J.-E. Ekberg, “Securing software architectures for trusted processor environ-
ments,” Doctoral dissertation, Aalto University, May 2013, http://urn.fi/URN:
ISBN:978-952-60-3632-8.

[13] J.-E. Ekberg, “Personal communication,” 2015, Trustonic.

[14] J. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential
of trusted execution environments on mobile devices,” IEEE Security
& Privacy, vol. 12, no. 4, pp. 29–37, 2014. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2014.38

[15] GlobalPlatform, “About.” http://www.globalplatform.org/aboutus.

[16] GlobalPlatform, “Device specifications for trusted execution environment.”
http://www.globalplatform.org/specificationsdevice.asp.

[17] GlobalPlatform, “Home page.” http://www.globalplatform.org.

[18] GlobalPlatform, “TEE System Architecture,” http://www.globalplatform.org/
specificationsdevice.asp.

[19] GNU, “GDB: The GNU project debugger,” http://www.gnu.org/software/
gdb/.

[20] GNU, “General public license,” https://gnu.org/licenses/gpl.html.

[21] Intel, “Intel software guard extensions (intel sgx),” https://software.intel.com/
en-us/intel-isa-extensions#pid-19539-1495.

[22] Intel, “SEP driver,” https://git.kernel.org/cgit/linux/kernel/git/stable/
linux-stable.git/tree/drivers/staging/sep?id=refs/tags/v3.14.32.

[23] Intel, “Software guard extensions programming reference,” https://software.
intel.com/sites/default/files/329298-001.pdf.

[24] K. Kostiainen, J. Ekberg, N. Asokan, and A. Rantala, “On-board credentials
with open provisioning,” in Proceedings of the 2009 ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2009,
Sydney, Australia, March 10-12, 2009, 2009, pp. 104–115. [Online]. Available:
http://doi.acm.org/10.1145/1533057.1533074

http://doi.ieeecomputersociety.org/10.1109/2.955100
http://urn.fi/URN:ISBN:978-952-60-3632-8
http://urn.fi/URN:ISBN:978-952-60-3632-8
http://dx.doi.org/10.1109/MSP.2014.38
http://www.globalplatform.org/aboutus.
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
https://gnu.org/licenses/gpl.html
https://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495
https://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/drivers/staging/sep?id=refs/tags/v3.14.32
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/drivers/staging/sep?id=refs/tags/v3.14.32
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
http://doi.acm.org/10.1145/1533057.1533074

BIBLIOGRAPHY 47

[25] K. Kostiainen, E. Reshetova, J.-E. Ekberg, and N. Asokan, “Old, new, bor-
rowed, blue–: a perspective on the evolution of mobile platform security archi-
tectures,” in Proceedings of the first ACM conference on Data and application
security and privacy. ACM, 2011, pp. 13–24.

[26] M. Leno, “Senate bill 962, leno. smartphones.” http://leginfo.legislature.ca.gov/
faces/billNavClient.xhtml?bill_id=201320140SB962.

[27] Linaro, “OP-TEE,” https://wiki.linaro.org/WorkingGroups/Security/
OP-TEE.

[28] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker:
an execution infrastructure for TCB minimization,” in Proceedings of the
2008 EuroSys Conference, Glasgow, Scotland, UK, April 1-4, 2008, 2008, pp.
315–328. [Online]. Available: http://doi.acm.org/10.1145/1352592.1352625

[29] F. McKeen et al., “Innovative instructions and software model for isolated
execution,” in Proceedings of the 2Nd International Workshop on Hardware
and Architectural Support for Security and Privacy, ser. HASP ’13.
New York, NY, USA: ACM, 2013, pp. 10:1–10:1. [Online]. Available:
http://doi.acm.org/10.1145/2487726.2488368

[30] A. Muthu, “Emulating trust zone feature in android emulator by extending
qemu,” Master’s thesis, KTH Royal Institute of Technology, 2013.

[31] A. Muthu, R. Rahmani, and D. Rajaram, “Emulating trust zone in android
emulator with secure channeling,” International Journal of Computer Science
Issues, vol. 10, no. 5, pp. 40–51, 2013.

[32] R. Needham and A. Herbert, “The cambridge cap computer and its operating
system,” 1982.

[33] NVIDIA, “Trusted little kernel (tlk),” http://nv-tegra.nvidia.com/gitweb/?p=
3rdparty/ote_partner/tlk.git;a=summary.

[34] Official California Legislative Information, “Senate bill no. 962,” http://leginfo.
legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962.

[35] QEMU, “Open source processor emulator,” http://wiki.qemu.org/Main_Page.

[36] Sierraware, “Open virtualization’s SierraVisor and SierraTEE,” http://www.
openvirtualization.org/.

http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
http://doi.acm.org/10.1145/1352592.1352625
http://doi.acm.org/10.1145/2487726.2488368
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962
http://wiki.qemu.org/Main_Page
http://www.openvirtualization.org/
http://www.openvirtualization.org/

Bibliography 48

[37] The Apache Software Foundation, “Apache license, version 2.0,” http://www.
apache.org/licenses/LICENSE-2.0.

[38] The Chromium Projects, “Multi-process architecture,” http://www.chromium.
org/developers/design-documents/multi-process-architecture.

[39] “Trusted Platform Module (TPM) Specifications,” https://www.
trustedcomputinggroup.org/specs/TPM/.

[40] TrustKernel, “T6,” http://trustkernel.org/.

[41] Trustonic, “<t-dev developer program,” https://www.trustonic.com/
products-services/developer-program/.

[42] J. Winter, P. Wiegele, M. Pirker, and R. Tögl, “A flexible software
development and emulation framework for ARM TrustZone,” in Trusted
Systems - Third International Conference, INTRUST 2011, Beijing, China,
November 27-29, 2011, Revised Selected Papers, 2011, pp. 1–15. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-32298-3_1

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.chromium.org/developers/design-documents/multi-process-architecture
http://www.chromium.org/developers/design-documents/multi-process-architecture
https://www.trustedcomputinggroup.org/specs/TPM/
https://www.trustedcomputinggroup.org/specs/TPM/
http://trustkernel.org/
https://www.trustonic.com/products-services/developer-program/
https://www.trustonic.com/products-services/developer-program/
http://dx.doi.org/10.1007/978-3-642-32298-3_1

Thank you for agreeing to participate in our study. Our goal is to understand the difficulties
encountered by developers of Trusted Applications (TAs) for Trusted Execution Environments
(TEEs). First we would like to learn about yourself and the TA development environment you
customarily use.

1. Name:

2. E-mail address:

3. How long have you been developing TAs?

4. How long have you been doing software development in general?

5. What software development environment do you use for developing TAs?

If you use a particular IDE, give its name (e.g., “Eclipse”)
Otherwise, give names of tools you use for developing TAs (e.g, “gcc, gdb, make, lint)

6. Do you use any hardware tools for developing/debugging TAs? If so, please list them.

7. Compared to ordinary software development, what challenges/difficulties do you face
in developing TAs? List up to 5 items in descending order of priority (most important
first)

A. PRE STUDY QUESTIONNAIRE

The following set of statements is a standard form used to estimate usability of a
system. The “system” in this case is the software development environment (SDE) you
use (i.e., your response to Question #5 in the previous page).

Think about this SDE you have been using so far to develop your TAs and for each of the
following statements, mark one box that best describes your experience with it so far.
The scale is increasing agreement from left to right:
1 = “Strongly Disagree”
5 = “Strongly Agree
 1 2 3 4 5

1. I think that I would like to use this SDE frequently.

2. I found this SDE unnecessarily complex.

3. I thought this SDE was easy to use.

4. I think that I would need assistance to be able to use this SDE.

5. I found the various functions in this SDE were well integrated.

6. I thought there was too much inconsistency in this SDE.

7. I would imagine that most people would learn to use this SDE

very quickly.

8. I found the SDE very cumbersome to use.

9. I felt very confident using the SDE.

10. I needed to learn a lot of things before I could get going with this

SDE.

Strongly
Disagree

Strongly
Agree

Thank you for using Open-TEE. Our goal in this study is to understand to what extent Open-TEE
addresses the difficulties encountered by developers of Trusted Applications (TAs) for Trusted
Execution Environments (TEEs).

1. Name:

2. E-mail address:

B. POST STUDY QUESTIONNAIRE

The following set of statements is a standard form used to estimate usability of a
system. The “system” in this case is Open-TEE

For each of the following statements, mark one box that best describes your experience
with Open-TEE so far.
The scale is increasing agreement from left to right:
1 = “Strongly Disagree”
5 = “Strongly Agree

1 2 3 4 5

1. I think that I would like to use Open-TEE frequently.
□ □ □ □ □

2. I found Open-TEE unnecessarily complex.
□ □ □ □ □

3. I thought Open-TEE was easy to use.
□ □ □ □ □

4. I think that I would need assistance to be able to use this Open-TEE.
□ □ □ □ □

5. I found the various functions in Open-TEE were well integrated.
□ □ □ □ □

6. I thought there was too much inconsistency in this Open-TEE.
□ □ □ □ □

7. I would imagine that most people would learn to use this Open-TEE
very quickly.

□ □ □ □ □

8. I found Open-TEE very cumbersome to use.
□ □ □ □ □

9. I felt very confident using the Open-TEE.
□ □ □ □ □

10. I needed to learn a lot of things before I could get going with Open-
TEE.

□ □ □ □ □

Strongly
Disagree

Strongly
Agree

1) Name up to three positive things about your experience using Open-TEE.

2) Name up to three negative things about your experience using Open-TEE.

3) Do you have any suggestions for improving Open-TEE to make it more useful in easing TA
development?

4) Tell us about your current practices in developing and debugging TAs using your current
software development environment (SDE):

a) Does your SDE allow interactive debugging?

b) Suppose you need to check the values of a variable at different points during TA
execution. How do you do this in your current SDE?

c) What does your SDE cost? (e.g., price of a single developer license / hardware unit)

07 April 2014
GlobalPlatform Device Technology
TEE Internal Core API Specification

Version 1.1.0.26 – Public Review
Please send to: tee-int-core-api-review@globalplatform.org

COMPANY: Open-TEE project (https://github.com/Open-TEE)
Name: Tanel Dettenborn, Brian McGillion
Date: 22.05.2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

1

80

4.11 T

New function. If TA maximum memory is defined, there
should be a function for querying how much free memory
there is available for a TA. When a TA knows the available
memory, it could determine next available action.

Add new function:
- uint32_t TEE_GetMemoryAvailable(); Return
value is available memory as bytes.

2
89

5.1 § 2 – line 2 T
Unnecessary complexity. Persistent object 0-byte identifier
length is a special case (perspective of TEE implementation)
and gaining benefits over 0-byte length is arguable.

Persistent object identifier length is from 1 to 64
bytes.

3

90

5.1 § 7 – line 4 T

Unnecessary functionality. When
TEE_ERROR_CORRUPT_OBJECT(_2) return code is
returned; any attempt at continuing to use the corrupted
object handle will cause a panic. This should not happen if
the closed object handle is set to null. Use of a null handle
might cause panic, but that panic is not related to corrupted
handle. Related also #21.

Remove sentence “subsequent use of the
handle SHALL cause a panic.”

4

90

5.1 T

Useful functionality. Persistent object might not be corrupt,
when TEE_ERROR_CORRUPT_OBJECT is returned. For
example the object handle might get corrupted yet the
persistent object in storage is unaffected. The same could
also occur with a reading error.

Introduce new return code
TEE_ERROR_CORRUPT_HANDLE. Return
code is only used with persistent object and only
if persistent object data at storage is not corrupt.
In such a case the handle is not closed nor
persistent object deleted from storage. It would
then be at the callers discretion as to how best
to proceed, e.g. the user could close the object
and re-open it. A new return code could be
defined, for example, TEE_GetObjectInfo
function (#6).

5 96 5.5.1 § 2 T Ambiguous definition. The KeySize variable needs a more
precise definition. If object size is terminated by object
attributes, the size can be greater than maxKeySize variable.
For example RSA-key consists of multiple components and
lets assume that RSA modulo is equal to maxKeySize.

Guessing. KeySize variable is representing
current key strength and is determined for
example by RSA modulo length? Add
clarification: keySize: Representing current key
strength.

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

C. GP TEE CORE API V1.1.0.26 PUBLIC

REVIEW

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

Which leads inevitably to keySize > maxKeySize.

6
96

5.5.1 § 3 E
Deprecated naming. Variable maxKeySize name is not self
explaining.

Add further clarification for example: (bullet)
maxKeySize: Representing object cryptographic
key maximal strength.

7

99

5.5.3 § 1 T

Uniform and useful functionality.
TEE_GetObjectValueAttribute allows for parameters a and b
to be null, TEE_GetObjectBufferAttribute buffer and size
should also be allowed to be null.

It is a security risk, if
TEE_GetObjectBufferAttribute size parameter is
null and buffer parameter is not (possibility of
buffer overflow). If the caller wishes to check
whether the object contains an attribute both
buffer and size could be null. If buffer parameter
is null and the size is not, the size could contain
the required length of the buffer on return, to
allow the caller to allocate the required space for
the buffer (if attributes are found). Also useful for
just checking the attribute length.

8

99

5.5.3 T

Ambiguous definition. If the object is not initialized, the TA
panics. This panic reason overlaps the return code
TEE_ERROR_ITEM_NOT_FOUND, because if the object is
not initialized then nothing is not be found either.

If object is not initialized, function could return
code TEE_ERROR_ITEM_NOT_FOUND. Thus
improving usability.

9
100

5.5.4 T Ambiguous definition. Apply same conclusion as point #8. Apply same proposition as point #8.

10
102

5.6.1 T General functionality. Apply same conclusion as point #12. Apply same proposition as point #12.

11

101

5.5.5 T

Unrealistic requirements. TEE_CloseObject is a void
function, it is unreasonable to assume that the close
operation can always complete without incident. This leads
to the persistent object always being in “closed” state. Most
close operations also flush any remaining buffers but this
function as defined would only allow for the freeing of the
object handle from the TA's memory.

Function should have return values:
-TEE_SUCCESS: In case of success.
-TEE_ERROR_CORRUPT_OBJECT: If the
persistent object is corrupt.

12 102 5.6 T General functionality. Requirement for allocating all
resources in TEE_AllocateTransientObject function is setting
up unfeasible and resource wasting transient objects.
- Infeasible: Apparently you should allocate all your
resources here and in effect this means that it should also,

Transient object allocation should be divided.
TEE_AllocateTransientObject function should
allocate a new object handler and meta
structures for the expected attributes.
TEE_PopulateTransientObject and

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

for example, allocate all temporary buffers which would be
needed by other functions.
- Infeasible: You cannot use third party solution. Because this
solution could use, for example, temporary buffers.
- Resource wasting: If an object is not initialized, it is only
wasting resources.
- Resource wasting: If object is initialized with weaker key
and this generally means less space for key, but object is
allocated according to it maxKeySize → Resource waste
- Resource wasting: Attribute size can not be predicted
exactly (can not be assumed it is used in “standardized”
way). For example if one is calculating RSA modulo from
different sized prime numbers. One of the used primes could
be smaller than that other but both are allocated according to
maxKeySize.
- Generally: The benefits gained by have a single allocation
point and the complexity of implementation are questionable.
There is no guarantee that the operation will not fail due to
lack of resources.
- Generally: This approach is inflexible going forward. The
allocating function will become large and overly complex,
and it still requires special functionality in other functions

TEE_GenerateKey functions should allocate
reference attribute buffers and populate them
according to the received parameters or
generated key. TEE_PopulateTransientObject
and TEE_GenerateKey functions need to have a
new return code
TEE_ERROR_OUT_OF_MEMORY added to
support this added functionality.

Also it should be noted that
TEE_CopyObjectAttributes will also need to be
able to return
TEE_ERROR_OUT_OF_MEMORY if the
situation arises.

Note: This is only an overview of the problem. If
you required, we can draft a more detailed
version that is in line with the overall
specification.

13

102

5.6 T
Useful functionality. See first #14. This point is only valid if
TEE_PopulateTransientObject attributes are copied.

Proposing new object handle flag:
TEE_HANDLE_FLAG_REFERENCE. Flag can
only be set to transient object and only prior
initialization. If flag is set, the object attributes
are not copied during a call to
TEE_PopulateTransientObject, instead the
ownership of the attributres is transferred to the
transient object. This prevents a double
allocation for the same object. Of course
attribute length should be consistent with object
maxKeysize.

14 107 5.6.4 T Undefined behavior. TEE_PopulateTransientObject does not
define how parameters should be handled. Should
parameters in attrs-arrays be deep copied (including the
reference attribute buffer) or should a shallow reference be
created? If taking only a reference, should the ownership be

In the function specification precise language
e.g. “deep copy” / “transfer ownership” should be
used.

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

transferred?

15

107

6.6.4 T
Unnecessary functionality. If parameter attr contains an
unexpected parameter, this will force a panic.

Remove panic reason and allow extra attributes
in the attribute array. Additional benefit of
proposition is that the caller could use the same
attribute array in different populate/generate
calls. TEE_PopulateTransientObject could then
only copy necessary parameters thus aiding
usability and efficiency.

16

111

5.6.6 T General functionality. Apply same conclusion as point #12.

If destination object is consistent with source
object, destination object attributes are copied
(reference attribute buffers are allocated prior to
copy). The function will require the possibility to
return TEE_ERROR_OUT_OF_MEMORY.

17
111

5.6.6 E
Clarification. The specification should point out the curiosity
that the destination object key strength should only be equal
to or less than source object. Never greater.

Note or warning that copied object is weaker.

18
113

5.6.7 T General functionality. Apply same conclusion as point #12. Apply same proposition as point #12.

19
118

5.7.2 E (T)
Unnecessary complexity. See also #2. What could be
practical use case for 0-byte ID length?

Apply same proposition as point #2.

20
124

5.7.5 E (T)
Unnecessary complexity. Apply same conclusion as point
#19.

Apply same proposition as point #19.

21

125

5.8 T

Useful error. It is not known beforehand what is the size
requirement when allocating an enumerator. Because
enumeration is not started during the allocation. It would be
more appropriate for a TEE implementation if you can
allocate memory in TEE_StartPersistentObjectEnumeration.
This could allow optimization of the TEE implementation.

Should allow
TEE_ERROR_OUT_OF_MEMORY in
TEE_StartPersistentObjectEnumerationfunction.
Function specification should point out that extra
resource allocation is not recommended.

22 125 5.8 T New functionality. Removing a persistent object from storage
is wasting resources. To remove a persistent object user
must allocate/open persistent object and then remove
persistent object. Removing object from storage in a more
efficiency way should be available, if for example TA is
cleaning up its storage.

New function:
- TEE_DeletePersistentObject(
void *objectID, uint32_t objectIDLen); Function
to remove persistent object from storage. Prior
to deletion this function MUST check object
access rights and MUST be “granted” meta

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

access right.
- Return TEE_SUCCESS if meta access right
was granted and object deleted from storage.
- Return TEE_ERROR_ACCESS_CONFLICT if
access right conflict was detected.
- TEE_ERROR_ITEM_NOT_FOUND if
persistent object not found.

23

132

5.9.2 T

Useful requirement. Function specifies that a write operation
should be atomic and that is a justifiable requirement. But it
is hard to leverage in a TEE implementation if arbitrary block
writing is not required to be atomic.

Define block size that must be atomically written
to storage. For example TEE must guarantee
that up to 4k block is written atomically and
blocks over 4k is written non atomically.
Non-atomically written data must be monitored
to detect if the write operation failed and return
code TEE_ERROR_OBJECT_CORRUPTED.

24

137

6.1 T

Useful constant. It could be useful if there would be a
constant for operation state. Defining constant would make
specification more readable. TEE implementation does not
have to be aware, is 1 or 0 active state.

Make a subsection 6.2 Constant to chapter 6.1
and define TEE_OPERATION_STATE_ACTIVE
= 1, TEE_OPERATION_STATE_INITIAL = 0

Change explanation at page 146, chapter 6.2.4
bulletin 7: operationState: Filled with operation
state

25

138

6.1.3 T

Possible error. The size of KeyInformation-array is hard
coded to one, but if an algorithm requires multiple keys, for
example AES-XTS the array would not be large enough to
support this requirement.

Hard code array size according to its biggest
size. The biggest size is determined by which
algorithm requires most keys. Currently this is
the two key requirement of AES-XTS.

26 139 6.2 T Unfeasible requirements. Apply same conclusion as point
#12.

Operation allocation should be divided.
TEE_AllocateOperation should allocate a new
operation handler and meta structures for
expected attributes. TEE_SetOperationKey(2)
should allocate reference attribute buffers and
copy attributes according to received
parameters. The TEE_SetOperationKey(2)
functions would require the ability to return
TEE_ERROR_OUT_OF_MEMORY if such a
situation is encountered..

It should also be noted that TEE_CopyOperation
will also need the ability to return

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

TEE_ERROR_OUT_OF_MEMORY.

27

146

6.2.4 E(T)

Undefined behavior. Function specification does not specify
how operation size should be calculated (uint32_t
*operationSize as function parameter). Should operation size
be determined by Attributes? Attributes + operation handle?
Else?

Specify exactly what is the required behavior.

28

144-147

6.2.3– 6.2.4 T

Redundancy. TEE_GetOperationInfo is subset (almost) from
TEE_GetOperationInfoMultiple function. There is no point of
two functions that fulfill the same task. In addition to this
useful variables are scattered between both functions.
Operation state could be useful at TEE_GetOperationInfo.

As a naming convention TEE_GetOperationInfo
is more descriptive name than
TEE_GetOperationInfoMultiple. Therefore
TEE_GetOperationInfoMultiple functionality
should be merged into TEE_GetOperationInfo.
TEE_OperationInfo struct should be supplement
with missing fields that existin the current
TEE_OperationMultiple struct.

29

148

6.2.5 E

Helpful specification. If operation is only meaningful in a
multistage operation, it should list operations. It would make
it more clear for the TEE implementation and of course for
user also, when there are exact definitions.

List operation types DIGEST, CIPHER and MAC
→ other types will be ignored and cause a panic.

30

148

6.2.5 T

Unnecessary panic reason. If key is not set for operation,
response is panic. It seems like an excessive response? It
would be more usable if TA would not panic. It does not
reveal sensitive information about operation.

Remove panic, if key is not set and function
returns to doing nothing.

31

149

6.2.6 T

Unexpected functionality. It should not be possible to set a
new key without clearing the operation key first. This will
make the interface more dynamic, but it would expose
uncontrolled behavior to the user. The user should keep
track of the operation state. This additional functionality adds
complexity to the function and benefit is outweighed but the
potential undesired behavior.

A new key can not be set for and operation if a
key is already set. This should cause panic
reason.

32

149

6.2.6 T
Hidden functionality. The clearing of a function key should be
separated out into its own function as it is a distinctly
separate operation.

Introduce new function
TEE_ClearOperationKeys, which clear functions
key. Function will set operation handle to state
immediately after operation handle allocation.

If TEE_SetOperationKey function is called when
key is set → panic reason

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

33
151

6.2.7 T
Unexpected functionality. Apply same conclusion as point
#39 and #40

Apply same proposition as point #39 and 40.

34
153

6.3 T
Uniform definition. It would allow more flexibility in the TEE
implementation if there would be an initializion function for
digest initialization.

Introduce TEE_DigestInit function that will
initialize a digest operation.

35
154

6.3.2 T Clarification. Apply same conclusion as point #38. Apply same proposition as point #38.

36

155

6.4.1 T

Unexpected functionality. It should not be possible to
initialize an operation if it is in active or initialized states. This
will make the interface more dynamic, but it could raise
uncontrolled behavior for the user. User should keep track of
the operation state. Additional functionality adds complexity
to function and the gained benefits are questionable.

If operation is active or initialized → panic. User
should use TEE_ResetOperation function.

37

156

6.4.2 T

Clarification or unnecessary functionality. What is the
meaning of no output is generated unless sufficient input is
not supplied? For example should no pad algorithm source
data be buffered if it is not block sized? If that is the case,
this is unnecessary functionality. It is user responsibility to
supply a correct size source buffer. At the end, user still must
provide correct source buffer, before operation can be
finalized. This adds complexity, which might be left “unsaid”.

Source buffer should be correct size. If not, it is
a panic reason. Cryptographic failure.

38

157

6.4.3 T

Clarification. Function definition should instruct exactly what
should happen in operation handler if operation is completed
successfully. Loose definition leaves too much room for
interpretation.

A good practice would be to instruct call
TEE_ResetOperation function. Change to
specification: “The operation handle can be
reused or re-initialized” should be replaced with
“If operation return code is TEE_SUCCESS,
TEE_ResetOperation function is called.” This
would make the statement “and is set to initial
state afterward” obsolete and it could be
removed.

39
158

6.5.1 T
Unexpected functionality. Apply same conclusion as point
#36.

Apply same proposition as point #36.

40
158

6.5.2 T
Clarification or unnecessary functionality. Apply same
conclusion as point #37.

Apply same proposition as point #37.

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

41 162 6.6 T Security flaw. Authenticated encryption function is leaking
plain text at decryption phase. A user may call
TEE_AEUpdate multiple times in TEE_MODE_DECRYPT
and this might pass back plain text prior to the MAC being
verified.

The flaw is pointed out in paper Authenticated Encryption
Primitives for Size-Constrained Trusted Computing by
Jan-Erik Ekberg, Alexandra Afanasyeva, and N. Asokan
(http://dx.doi.org/10.1007/978-3-642-30921-2_1)

Proposal 1: Remove TEE_AEUpdate function
and enforce use only secure
TEE_AEDecryptFinal function. Function is
secure, because you can only decrypt one piece
cipher text (function accepting src data) and
MAC can be checked prior to it's passing back.
Notice: This force also at encryption phase use
only TEE_AEEncrpytFinal.

Proposal 2: Decryption is done in two stages
(use decrypt-encrypt-decrypt strategy).
TEE_AEUpdate function is decrypting source
data, but does not pass plain text back to caller.
It will encrypt plain text. When user calls
TEE_DecryptFinal function, MAC will be verified.
If MAC is okay, TEE_DecryptFinal function will
reveal temporary key as one of the out
parameters. With this key user can decrypt data
to plain. Proposal 2 does not need big changes
for API. It would be TEE implementation
specification, how temporary key is generated
and what algorithm is used to encrypt-decrypt,
because this would be completely opaque to
user. Changes to API:
- Add return code TEE_AEDecryptFinal
TEE_ERROR_OUT_OF_MEMORY,
- Add out parameter to TEE_AEDecryptFinal
function TEE_OperationHandle
*decryptOperation. Operation handle is allocated
and initialized according to encrypt operation.
With this operation handler, user is able to
decrypt data that he received at TEE_AEUpdate
function.
- Add explanation 6.6 chapter about
decrypt-encrypt-decrypt strategy.

Note: This is only a grandiose example. If you
are interested about my idea, I can draft a more

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

detailed version. My draft would follow this
specification style.

42
162

6.6.1 T
Error. Subsequent calls are not possible, if operation state
stays initial after TEE_AEInit function.

Afterward operation state should move to active
state.

43

173

6.8.1 T

Undefined behavior. Object type is defined, but attribute type
is not. If derived secret is used with symmetric operations, it
can be guessed to TEE_ATTR_SECRET_VALUE. By placing
the calculated value in TEE_ATTR_SECRET_VALUE it
restricts the solution because the attribute is not extractable.
This is constraining if you do not use the value in
cryptographic operation.

Replace returned object handler with void
pointer and 32-bit unsigned integer which is
representing buffer length. Buffer is allocated by
function and therefore function will be needing
return code TEE_ERROR_OUT_OF_MEMORY.

44
173

6.8.1 T
Unnecessary complexity. Returning derived value in object
handler is clumsy. See #43

See #43

45
188

7.2.4 T
Obsolete return codes. TA can have only one persistent time,
it is feasible to suggest that the time variable is initialized
when TA is loaded.

Remove all return codes and change function
return value to void.

46

190

8 T

General. Big integer operation might require inner state. For
example big integer negation. Having an opaque handler for
Big integers allows for more flexibility in the TEE
implementation. The granularity gained by allowing the user
to managing memory directly is small, because it still
requires the use of TEE_BigInt with defined function.

TEE_BigInt should handled in opaque way. API
should define: typedef struct __TEE_BigInt
*TEE_BigInt.

47

190

8 T
New subsection and functionality. TEE_BigInt will be needing
allocation, initialization and free functions, if point 46 is
agreed.

Add new subsection 8.5 Generic functions.
- TEE_Result TEE_AllocateBigInt(TEE_BigInit
*BigInt, uint32_t size): Allocated resources for
TEE_BigInt and initializes meta structures.
- Void TEE_BigInitInit(TEE_BigInt, bigInt, Void
*bigInit, uint32_t length): Populate big init.
-Void TEE_FreeBigInit(TEE_BigInit bigInt): Free
resources
-Return codes and panics: Same style as for
example object handler or operation handler.

48 190 8 T General. The inability for almost all of these functions to
return a valid error is far too restrictive. There are numerous
cases where an error could occur and this information should

Functions, which return type is void, should be
replaced with TEE_Result. In case of success
the return code is TEE_SUCCESS and in case

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

07 April 2014

Page#
Chapter /

Paragraph (*)
Type(**) Comment (Problem & Reason) Proposed Resolution

be conveyed to the caller of the function. An operation can
fail due to a number of reasons including, out of memory, if
temporary buffer is needed.

of any error the return code is
TEE_ERROR_GENERIC or a set of error codes
defined that match the possible fault conditions.

49

201

8.7 T Useful function. No bit set function.

Introduce functionality for setting a bit in a Big
Integer:
- Void TEE_BigIntSetBit(TEE_BigInt *op,
uint32_t bitPos, uint32_t setBit);

50

-

- T

New concept. If object allocation could be made more
dynamic it would be possible to review the
maxKeySize-concept. From security point of view it is
arguable if you handle max key strength rather than min key
strength. In min strength enforcing you always use “secure”
key.

Change key maxKeysize to minKeySize and
definitions at functions where value is used.

51

-

- T

Good practice. TEE_FreeTransientObject,
TEE_ObjectClose, TEE_CloseAndDeletePersistentObject,
TEE_FreePersistentObjectEnumerator and
TEE_FreeOperation should always set
operation/object/enumeration to NULL.

Add “The value pointed to by
object/operation/enumeration is set to
TEE_HANDLE_NULL” to the function
specification.

52

-

6.1 E

Reordering document. If new subsection (6.2 Constant) is
defined, it could also contain chapter 5.4 operation related
constants. By this operation constant finds its own chapter ->
more readable.

Move table 5-6 to new subsection 6.2

(*)(e.g. 5.3 §2 – line 6)
(**)T=Technical, E=Editorial
Each member is bound by the terms of the current GlobalPlatform IPR Policy, a copy of which is available on both the
Public and Member websites and is available upon request from the Secretariat. In addition, all non-members submitting
Comments acknowledge and agree to ad999here to the current GlobalPlatform IPR Policy.

Copyright 2012 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license
agreement and any use inconsistent with that agreement is strictly prohibited

	Introduction
	Background
	Trusted Execution Environment
	Rich Execution Environment (REE)
	Trusted Execution Environment (TEE)
	Trusted Application (TA)
	Client Application (CA)

	Use of TEE
	TEE Architectures
	Co-Processor
	Processor Secure Environment
	Virtualization

	Standardizing TEE Functionality
	GlobalPlatform
	Benefits of TEE Standardization

	Open-TEE
	Motivation
	Enable developer access to TEE functionality
	Provide a fast and efficient prototyping environment
	Promote research into TEE services
	Promote community involvement

	Requirements
	Architecture
	Base
	Manager
	Launcher
	TA Processes
	GP TEE APIs
	IPC

	Implementation and Tooling
	Utilizing existing functionality
	Development process
	Open-TEE in use
	Android and Open-TEE
	SGX and Open-TEE
	Fall back TEE
	GlobalPlatform call for review
	GP Trusted User Interface (TUI)

	Evaluation
	Compliance
	Hardware-Independence
	Footprints and Performance
	Disk Consumption
	The Memory Consumption
	Build and Run Performance

	Ease of Use
	User Study
	Participants
	Materials
	Procedure

	User Study Result
	Ease of Use Conclusion

	Related Work
	Conclusion
	Bibliography
	Pre study questionnaire
	Post study questionnaire
	GP TEE Core API v1.1.0.26 public review

