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Graafien isomorfismi on laskennallinen ongelma missä tehtävänä on määrittää ovatko
kaksi graafia keskenään isomorfiset eli rakenteellisesti samat. Graafien isomorfian
kompleksisuus on avoin ongelma, ja se on yksi harvoista NP-ongelmista jonka ei
tiedetä olevan NP-täydellinen mutta jolle ei myöskään tunneta polynomista algorit-
mia. Tämä on yksi tietojenkäsittelytieteen tutkituimmista avoimista ongelmista.

Laskettavuuden teorian perusteet ovat rekursiivisissa funktioissa ja rekursioteori-
assa, jotka ovat vanhemmat laskennan mallit kuin Turingin koneet. Tässä diplomi-
työssä käydään läpi aluksi rekursioteorian perusteet ja keskeiset tulokset lähtien
aksioomista. Toisen luvun tavoitteena on käsitellä riittävästi rekursioteoriaa, jotta
voidaan määritellä eri reduktioiden välinen implikaatiohierarkia ja tärkeimmät T -
ja m-reduktiot.

Turingin koneelle voidaan määritellä erilaisia variantteja sekä aika- ja tilarajoituk-
sia. Näistä tärkeimmät eli epädeterministinen ja oraakkeli Turingin kone käsitellään
kolmannessa luvussa. Rajoittamalla käytettävissä olevia laskentaresursseja voidaan
rekursiivisten funktioiden sisälle luoda eri kompleksisuusluokista koostuva hierarkia,
jonka tunnetuimmat luokat ovat P ja NP. Kompleksisuusluokkia tunnetaan satoja
ja tässä työssä esitellään niistä graafien isomorfismin kannalta keskeisimmät.

Neljännessä luvussa käsitellään piirikompleksisuutta sekä siihen liittyviä tuloksia.
Tavoitteena on osoittaa, että graafien isomorfismi on DET-kova. Todistukseen
tarvittavat kompleksisuusluokat sekä niihin liittyvää teoriaa käydään läpi.

Graafien isomorfian tiedetään kuuluvan luokkiin coAM ja SPP. Nämä luokat esitel-
lään viidennessä luvussa, jossa käsitellään myös probabilistisia luokkia, polynominen
hierarkia, interaktiiviset todistukset ja niiden erikoistapaus Arthur-Merlin hierarkia.
Polynominen hierarkia romahtaa 2. tasolle jos GI on NP-täydellinen.
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The graph isomorphism problem is the computational problem of determining whether
two finite graphs are isomorphic, that is, structurally the same. The complexity of
graph isomorphism is an open problem and it is one of the few problems in NP

which is neither known to be solvable in polynomial time nor NP-complete. It is
one of the most researched open problems in theoretical computer science.

The foundations of computability theory are in recursion theory and in recursive
functions which are an older model of computation than Turing machines. In this
master’s thesis we discuss the basics of the recursion theory and the main theorems
starting from the axioms. The aim of the second chapter is to define the most im-
portant T - and m-reductions and the implication hierarchy between reductions.

Different variations of Turing machines include the nondeterministic and oracle Tur-
ing machines. They are discussed in the third chapter. A hierarchy of different
complexity classes can be created by reducing the available computational resources
of recursive functions. The members of this hierarchy include for instance P and
NP. There are hundreds of known complexity classes and in this work the most
important ones regarding graph isomorphism are introduced.

Boolean circuits are a different method for approaching computability. Some main
results and complexity classes of circuit complexity are discussed in the fourth chap-
ter. The aim is to show that graph isomorphism is hard for the class DET.

Graph isomorphism is known to belong to the classes coAM and SPP. These classes
are introduced in the fifth chapter by using theory of probabilistic classes, poly-
nomial hierarchy, interactive proof systems and Arthur-Merlin games. Polynomial
hierarchy collapses to its second level if GI is NP-complete.
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LIST OF SYMBOLS
¬,∧,∨,→,↔ — logical connectives in the evaluation order: negation not,

conjunction and, disjunction or, implication, equivalence
⊕ — exclusive or xor: p⊕ q = (p ∨ q) ∧ ¬(p ∧ q)
⇒,⇔ — implication, equivalence
=, 6= — equality, not equal
≤, < — less or equal, strictly less
∃,∀ — exists, for all
∅ — empty set
∈, /∈ — belongs to, does not belong to
⊆,⊂ — subset, proper subset
∪,∩ — union, intersection
Ā — complement of A
P(S) — set of all subsets of S
(a, b) — ordered pair {{a}, {a, b}}
× — cartesian product X × Y = {(x, y) : x ∈ X ∧ y ∈ Y }
N — set of natural numbers {0, 1, . . .}
' — equal as partial functions
↓, ↑ — converges, diverges
≤T ,≤m — T-reduction, m-reduction
|= — models
ε — empty string
Σ∗ — strings {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}
t — blank symbol
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1. INTRODUCTION

Figure 1.1: Three isomorphic Petersen’s graphs

Graph isomorphism is a structure preserving bijection between two graphs. In other
words, a graph G is isomorphic to a graph H if they have the same mathemati-
cal properties and differ only in naming of the nodes and edges. Three isomorphic
graphs are pictured in figure 1.1. The graph isomorphism is an equivalence relation
on graphs and as such it partitions the class of all graphs into equivalence classes.
In this text we only consider undirected non-weighted graphs.

Graph isomorphism is one of the very small number of problems belonging to NP

which is not known to be solvable in polynomial time or NP-complete. There is
evidence that graph isomorphism is not NP-complete as the polynomial hierarchy
would collapse to its second level if it were and it is commonly believed that the
polynomial hierarchy does not collapse. Graph isomorphism is contained in coAM

and SPP and the best known hardness result is that graph isomorphism is hard for
DET. [32]

The best known upper bound for graph isomorphism is currently 2
√
cn logn for graphs

with n vertices. [10] For many restricted classes of graphs like planar graphs, graphs
of bounded degree and graphs with bounded eigenvalue multiplicity polynomial time
algorithms are known. For trees and graphs with colored vertices and bounded color
classes even NC algorithms are known. On the other hand, many different subclasses
of graphs have been shown to be GI-complete including bipartite graphs, line graphs,
rooted acyclic digraphs, chordal graphs, transitively orientable graphs and regular
graphs. [16] [18]



8

Graph isomorphism has practical applications in chemistry where graphs represent
molecular links and a fast graph isomorphism algorithm would allow a fast classifica-
tion of different molecules with unique names. There are different implementations
for graph isomorphism which take different approaches for solving the problem, for
example Nauty [24], conauto [23] and vf2 [15].

1.1 Basic definitions

We start by defining some basic concepts.

Definition 1.1.

• A problem is a set X of ordered pairs (I, A) of strings in {0, 1}∗ where I is
called the instance. A is called an answer for that instance and every string
in {0, 1}∗ occurs as the first component of at least one pair.

• A decision problem is a function in which the only possible answers are "yes"
and "no".

• A counting problem is a function in which all answers x are natural numbers
x ∈ N.

• A function problem is a problem where a single output is expected for every
input, but the output is something more than that of a decision problem, that
is, not just "yes" or "no".

• A partial function from X to Y is a function f : X ′ → Y, X ′ ⊆ X. It
generalizes the concept of a function by not forcing f to map every element
of X to an element of Y . If X ′ = X, then f is called a total function and is
equivalent to a function. The set X is the domain or range of the function.

• The big O or asymptotic notation describes the limiting behaviour of a func-
tion: f(n) = O(g(n)) if there are fixed positive constants c and n0 for f , such
that f(n) ≤ cg(n) ∀n ≥ n0.

Next we define the concept of a language and some of its properties.

Definition 1.2. A language is any subset of {0, 1}∗. If L is a language, then the
decision problem RL corresponding to L is {(x, yes) : x ∈ L} ∪ {(x, no) : x /∈ L}.
Given a decision problem R, the language L(R) corresponding to it is

L(R) = {x ∈ {0, 1}∗ : (x, yes) ∈ R}.

If L is a language, then its complementary language is coL = {0, 1}∗ − L.
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The languages L(R) and coL(R) need not always belong to the same complexity
class. A common question is whether a given complexity class C is "closed under
complement", i.e., whether L ∈ C ⇒ coL ∈ C for all languages L. A complexity
class A is hard for a class of problems C if every problem in C can be reduced to A.
A problem is complete for a class C if it is C-hard and belongs to the class C. This
means that a solution to a complete problem yields a solution to all of the problems
in that class.

The graph isomorphism problem is formally defined in 1.3. It is the problem of
deciding whether two given graphs are isomorphic. In other words, the problem is
to test whether there is a bijective function mapping the vertices of the first graph
to the nodes of the second graph and preserving the adjacency relation. Three
isomorphic graphs are pictured in figure 1.1. [6]

Definition 1.3. Graph Isomorphism (GI)

An isomorphism between two graphs G and G′ is a bijective map f that preserves
the edge structure.

Instance: Two undirected graphs G = (V,E) and G′ = (V ′, E ′) where V and V ′

are finite sets of vertices, and E and E ′ are finite sets of edges (unordered pairs
of vertices from V and V ′ respectively).

Answer: "Yes" if there is a bijective function f : V → V ′ such that for all pairs
{u, v} ⊆ V, {u, v} ∈ E ⇔ {f(u), f(v)} ∈ E ′. Otherwise, "no".

Graph isomorphism problem as a string relation: Let aY and aN be strings chosen
to represent "yes" and "no" respectively. The string relation would then be
{(x, aY ) : string x consists of two representations of the same graph G} ∪
{(x, aN) : string x does not consist of two representations of the same graph G}.
[22] p. 70.

An isomorphism is a structure preserving bijection from one set to another and
an automorphism is an isomorphism from a set to itself. A close relative to the
graph isomorphism problem is the graph automorphism (GA). It is the problem of
testing whether a graph has a nontrivial automorphism. Graph automorphism can
be reduced to the graph isomorphism using polynomial time many-one reductions
(GA ≤P

m GI) but the converse reduction is unknown.
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2. BASIC RECURSION THEORY

Recursion theory is the study of real numbers or, equivalently, functions over natural
numbers. It tries to isolate the functions over N that are computable. The aim of
this chapter is to introduce all the theory necessary to define different reducibilities
between sets. The proofs are mostly omitted but some fundamental results of re-
cursion theory are proven. The closely related foundational results of logic, Gödel’s
incompleteness theorems, are not treated here although the techniques which are
used to prove these theorems, arithmetization and diagonalization, are introduced.
This chapter is based mainly on the book "Classical Recursion Theory - The Theory
of Functions and Sets of Natural Numbers" by Piergiorgio Odifreddi [26].

We start by introducing the successor function and an iterative procedure which
generates the natural numbers. Arithmetical operations are axiomatized using the
successor function. With primitive recursion and µ-recursion we define the class
of recursive functions. A set is recursive if the membership in it is effectively com-
putable. This means that both membership and nonmembership can be determined.

The main advantage of using the class of µ-recursive functions to define compu-
tation is their mathematical elegance. Proofs about this class can be presented in a
rigorous and concise way, without long prose descriptions or complicated programs
that are hard to verify. These functions need and make no reference to any compu-
tational machine model and still characterize computability. [8] ch. 26.3.

The recursively enumerable sets are defined using the partial recursive functions.
A recursively enumerable set (r.e. set) is effectively generated; membership can
be determined by waiting long enough in the generation of the set until the given
element appears, but nonmembership requires waiting forever. In this chapter the
properties of r.e. sets are studied in detail. Using the Cantor’s diagonal argument
we can construct a r.e. nonrecursive set. From the existence of such set follows the
undecidability of r.e. sets. The halting problem is a reformulation of the undecid-
ability result.

The rest of this chapter deals with different notions of reducibility. The two most
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important ones, T - and m-reductions, are introduced. The foundations of reducing
one problem to another are in the theory of recursive functions. Other reductions
are also introduced: truth-table like reductions fall between the T - andm-reductions
in the implication hierarchy of different reductions.

2.1 Recursive functions

First we define the successor function S. With the successor function we can define
the natural numbers starting from the first element - the number 0 - and generate
them with an iteration procedure. Thus, the first three natural numbers are

0, S(0), S(S(0)), . . .

The axioms 2.1 define the basis of the recursion theory. They are introduced for the
sake of completeness and to give a starting point for our journey to the theory of
computation.

Axioms 2.1. (Grassman [1861], Dedekind [1888] cited in [26] pp. 19-20)

A1 S(x) = S(y)→ x = y

A2 0 6= S(y)

A3 x 6= 0→ (∃y)(x = S(y))

A4 x+ 0 = x

A5 x+ S(y) = S(x+ y)

A6 x · 0 = 0

A7 x · S(y) = x · y + x

If ϕ is a formula with one free variable then

A8 ϕ(0) ∧ (∀x)[ϕ(x)→ ϕ(S(x))]→ (∀y)ϕ(y).

The axioms from A1 to A7 above give us the natural properties of addition and
multiplication. The first axiom, A1, states that if the successor functions are the
same, then the predecessing numbers x and y are also the same. The axiom A2
states that the number zero is the predecessor of all other natural numbers. Axiom
A3 states that if the number is not equal to zero, there has to be another number
predecessing it. Axioms A4 to A7 define the addition and multiplication of natural
numbers.

The axiom A8 is called the axiom of induction. It can be equivalently expressed as
the Least Number Principle

(∃y)ψ(y)→ (∃z)[ψ(z) ∧ (∀x < z)¬ψ(x)].
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Based on the Least Number Principle, if we know that a number with a certain prop-
erty exists, then we also know that there is the least number satisfying that property.

The primitive recursive functions are defined in 2.2. They are equivalent in com-
puting power with ‘for’ programs defined in 3.4.

Definition 2.2. (Dedekind [1888] cited in [26] p. 20) A function f is defined from
g and h by primitive recursion if

f(~x, 0) = g(~x)

f(~x, y + 1) = h(~x, y, f(~x, y)).

Definition 2.3. (Kleene [1936] cited in [26] p. 21) A function f is defined from a
relation R by µ-recursion (minimum recursion) if

1. R is a regular predicate, i.e. (∀~x)(∃y)R(~x, y)

2. f(~x) = µyR(~x, y) is the least number y such that R(~x, y) holds.

Similarly, f is defined from g by µ-recursion if

1. (∀~x)(∃y)(g(~x, y) = 0)

2. f(~x) = µy(g(~x, y) = 0).

The Least Number Principle introduced earlier can be written in µ-notation as
(∃y)ψ(y)→ (∃z)(z = µyψ(y)).

Using the primitive recursive functions defined in 2.2 we can build the class of
primitive recursive funtions.

Definition 2.4. (Dedekind [1888], Skolem [1923], Gödel [1931] cited in [26] p. 22)
The class of primitive recursive functions is the smallest class of functions

1. containing the initial functions

O(x) = 0

S(x) = x+ 1

Ini (x1, . . . , xn) = xi (1 ≤ i ≤ n)

2. closed under composition, i.e. the schema that given g1, . . . , gm, h produces

f(~x) = h(g1(~x), . . . , gm(~x))
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3. closed under primitive recursion

A predicate is primitive recursive if its characteristic function is primitive recursive.

In the previous definition 2.4 the initial functions are the zero function O, the suc-
cessor function S and the identity (projection) Ini . By using the composition rule
and primitive recursion we can define the class of primite recursive functions.

Similarly, by using µ-recursion defined in 2.3 we can define the class of recursive
functions 2.5.

Definition 2.5. (Kleene [1936] cited in [26] p. 22) The class of recursive functions
is the smallest class of functions

1. containing the initial functions defined in 2.4

2. closed under composition, primitive recursion and µ-recursion.

A predicate is recursive if its characteristic function is recursive.

In the following theorem 2.6 the class of recursive functions is stated using sum,
product, identity Ini and equality δ as the initial functions.

δ(x, y) =

0 if x 6= y

1 otherwise

Theorem 2.6. (Gödel [1931], Kleene [1936] cited in [26] p. 28) The class of recursive
functions is the smallest class

1. containing sum, product, identities Ini and the characteristic function δ of
equality

2. closed under composition

3. closed under µ-recursion.

2.2 Partial recursive functions

Definition 2.7. A partial function is a function that may be undefined for some
and possibly all arguments. The extended relation symbol ' means that both sides
are equal as partial functions. This means that their respective values are either
both undefined, or both are defined and their value is the same. Also, ϕ(~x) ↓ means
that ϕ is defined or converges for the arguments ~x, while ϕ(~x) ↑ means that ϕ is
not defined, it diverges.
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The definition 2.5 (the class of recursive functions) is now adapted to partial func-
tions.

Definition 2.8. (Kleene [1938] cited in [26] p. 127) The class of partial recursive
functions is the smallest class of functions

1. containing the initial functions O, S and Ini

2. closed under composition i.e. the schema that given γ1, . . . , γm, ψ produces

ϕ(~x) ' ψ(γ1(~x), . . . , γm(~x)),

where the left-hand side is undefined when at least one of the values of γ1, . . . , γm, ψ

for the given arguments is undefined

3. closed under primitive recursion, i.e. the schema that given ψ, γ produces

ϕ(~x, 0) ' ψ(~x)

ϕ(~x, y + 1) ' γ(~x, y, ϕ(~x, y))

4. closed under unrestricted µ-recursion, i. e. the schema that given ψ produces

ϕ(~x) ' µy[(∀z ≤ y)(ψ(~x, z) ↓) ∧ ψ(~x, y) ' 0],

where ϕ(~x) is undefined if there is no such y.

The next theorem 2.9 reduces the partial recursive functions to a normal form. There
is also a similar result for recursive functions. The reduction needs the concept of
arithmetization. It means translation into the language of arithmetic. The reasoning
of the logical-mathematical language is replaced by reasoning on natural numbers.

Theorem 2.9. Normal Form Theorem for partial recursive functions (Kleene [1938]
cited in [26] p. 129).
There is a primitive recursive function U and (for each n ≥ 1) primitive recursive
predicates In, such that for every partial recursive function ϕ of n variables there is
a number e called index of ϕ for which the following hold:

1. ϕ(x1, . . . , xn) ↓ ⇔ ∃ y In(e, x1, . . . , xn, y)

2. ϕ(x1, . . . , xn) ' U(µy In(e, x1, . . . , xn, y))

The Normal Form Theorem 2.9 states that every partial recursive function has an
index. The index is found by associating numbers to functions and computations
and putting them in a canonical form.
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The corollary 2.10 states that there can be no confusion when discussing total recur-
sive functions, meaning recursive functions as in definition 2.5, or partial recursive
functions which are total.

Corollary 2.10. The recursive functions are exactly the partial recursive functions
which happen to be total. [26] p. 129.

By introducing the partial functions every number e can be considered as the index
of one particular partial recursive function. We use the notation presented in 2.11

Definition 2.11. [26] p. 130

1. ϕn
e (or {e}n) is the e-th partial recursive function of n variables:

ϕn
e (~x) ' {e}n(~x) ' U(µy In(e, ~x, y))

2. ϕn
e,s (or {e}ns ) is the finite approximation of ϕn

e of level s:

ϕn
e,s(~x) ' {e}ns (~x) '

ϕn
e,s(~x) if (∃ y < s) In(e, ~x, y))

undefined otherwise

In the previous definition 2.11, regarding the computation ϕn
e , the finite approxima-

tion of calculation of level s is noted by ϕn
e,s. The step s is the cutting point of the

calculation.

The next theorem 2.12 is the Enumeration Theorem. It states that the numbers
have a double meaning in recursion theory. In addition to the natural meaning as a
number they also have a meaning as a code of a function.

Theorem 2.12. Enumeration Theorem (Post [1922], Turing [1936], Kleene [1938]
cited in [26] p. 130).
The sequence {ϕn

e}e∈N is a partial recursive enumeration of the n-ary partial recur-
sive functions, in the sense that:

1. for each e, ϕn
e is a partial recursive function of n variables

2. if ψ is a partial recursive function of n variables, then there is e such that

ψ ' ϕn
e

3. there is a partial recursive function ϕ of n+ 1 variables such that

ϕ(e, ~x) ' ϕn
e (~x).
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Given one index of a partial recursive function, we can effectively generate infinitely
many other indices of the same function by attaching redundant equations to the
description. This is also called the Padding Lemma.

The next theorem 2.13 proves the existence of computers.

Theorem 2.13. Universal Partial Function (Post [1922], Turing [1936], Kleene
[1938] cited in [26] p. 132).
There is a partial recursive function ϕ(e, x), called universal partial function, which
generates all the partial recursive functions of any number of variables, in the sense
that for every partial recursive function ψ of n variables there is e such that

ψ(x1, . . . , xn) ' ϕ(e, (x1, . . . , xn)).

Any machinery that computes the universal partial function is a computer in the
contemporary sense of the word. It works as an interpreter: it decodes the program
e given to it as data and simulates it.

The definition 2.14 associates partial functions with their domains.

Definition 2.14. (Post [1922], Kleene [1936] cited in [26] p. 134) An n-ary relation
is recursively enumerable (r.e.) if it is the domain of an n-ary partial recursive
function. Wn

e and Wn
e,s indicate the domains of ϕn

e and ϕn
e,s respectively.

From the previous definition 2.14 we get the following characterization of recursive
enumerable relations.

Theorem 2.15. Normal Form Theorem for r.e. relations (Kleene [1936], Rosser
[1936], Mostowski [1947] cited in [26] p. 134)
An n-ary relation P is r.e. if and only if there is an n + 1-ary recursive relation R
such that

P (~x)⇔ ∃y R(~x, y),

i.e. if and only if there is a number e, index of P , such that

P (~x)⇔Wn
e (~x)⇔ ∃y In(e, ~x, y).

The following proposition examines the close relationship between partial recursive
functions and r.e. relations.

Proposition 2.16. Uniformation Property (Kleene [1936] cited in [26] p. 137)

1. If P is r.e. relation, there is a partial recursive function ϕ such that

∃yP (~x, y)⇒ ϕ(~x) ↓ ∧ P (~x, ϕ(~x))
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2. If P is r.e. and regular (see definition 2.3) relation, there is a recursive function
f such that

∀~xP (~x, f(~x))

The next two theorems 2.17 and 2.18 establish the difference between recursive
enumerable and recursive sets.

Theorem 2.17. Characterization of the r.e. sets. (Kleene [1936] cited in [26] p.
138)
The following are equivalent:

1. A is r.e.

2. A is the range of a partial recursive function ϕ

3. A = ∅ or A is the range of a recursive function f .

Proposition 2.18. The following are equivalent [26] p. 139:

1. A is recursive

2. A = ∅ or A is the range of a nondecreasing, recursive function f .

The following theorem 2.19 is sometimes called Post’s Theorem.

Theorem 2.19. (Post [1943], Kleene [1943], Mostowski [1947] cited in [26] p. 140) A
set is recursive if and only if the set and its complement are recursively enumerable.

The proposition 2.20 follows from the proposition 2.18.

Proposition 2.20. (Post [1944] cited in [26] p. 141) Every infinite r.e. set has an
infinite recursive subset.

From the previous results we get the defining properties of recursively enumerable
and recursive sets.

Proposition 2.21. Set-theoretical properties of r.e. sets and recursive sets (Post
[1943], Mostowski [1947] cited in [26] pp. 141-142).

• With respect to set-theoretical inclusion, the r.e. sets form a distributive
lattice with smallest and greatest element, and with the recursive sets as the
only complemented elements.

• The property of being r.e. is preserved under images and inverse images via
partial recursive functions.

• With respect to set-theoretical inclusion, the recursive sets form a Boolean
algebra.
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• The property of being recursive is preserved under inverse images via recursive
functions.

If A and f are recursive, then f(A) is r.e. by the proposition 2.21, but it is not
necessarily recursive. Any nonempty r.e. set A is the range of a recursive function
f and therefore the image of N.

2.3 Diagonalization

Georg Cantor introduced the switching function d in 1874 and proved that the set
of subsets of N is not countable. The following theorem 2.22 introduces the often
used technique called diagonalization.

Theorem 2.22. Cantor’s Theorem
Given a set S, a function d : S → S, d(s) 6= s,∀s ∈ S and an infinite matrix of
elements on S

S =


s0,0 s0,1 s0,2 · · ·
s1,0 s1,1 s1,2 · · ·
s2,0 s2,1 s2,2 · · ·
...

...
... . . .


we get a transformed diagonal sequence of elements of S

d(s0,0) d(s1,1) d(s2,2) . . .

which is not equal to any row of the matrix, because it differs from the n-th row on
the n-th element by the hypothesis of d.

In the next proposition 2.23 we apply the Cantor’s Theorem to recursive functions.

Proposition 2.23. Recursive version of Cantor’s Theorem (Kleene [1936], Turing
[1936] cited in [26] p. 146).
There is no recursive function which enumerates (at least one index of) each recursive
(0, 1)-valued function.

Proof. Let f be a recursive function such that ϕf(x) is total for every x, and define

g(x) ' 1− ϕf(x)(x).

Then g is a 0, 1-valued function, which is partial by Enumeration Theorem 2.12 and
total by the hypothesis on f . Moreover, g is different from ϕf(x) for every x, and
thus no index of g is in the range of f .

We are now ready to prove one of the most important results of the Recursion
Theory.
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Theorem 2.24. Combinatorial core of the undecidability results (Post [1922], Gödel
[1931], Kleene [1936] cited in [26] p. 147).
There is an r.e. nonrecursive set. Explicitly, the following set is r.e. and nonrecur-
sive:

x ∈ K ⇔ x ∈ Wx ⇔ ϕx(x) ↓

Proof. By the Enumeration theorem 2.12, there is a partial recursive function ϕ

such that
ϕ(x) ' ϕx(x).

Then K is r.e., because

x ∈ K ⇔ ϕ(x) ↓ .

To show that K is not recursive we give two different proofs based on the two
equivalent definitions of K.

• if K were recursive, the following function would be partial recursive

ϕ(x) =

0 if x ∈ K

undefined otherwise.

Then, for some e, ϕ ' ϕe and ϕe(e) ↓ ⇔ e ∈ K. This contradicts the definition
of K.

• If K were recursive, then K would be r.e. But

x ∈ K ⇔ x /∈ Wx,

so K differs on the element x from the x-th r.e. set, and cannot itself be r.e.

In the previous proof K is the diagonal r.e. set. K is the set of numbers not belong-
ing to the r.e. sets they code.

In the next theorem 2.25 it is proved that there does not exist a recursive procedure
that decides whether a partial recursive function converges for given arguments.
This is a reformulation of the previous theorem 2.24.

Theorem 2.25. Unsolvability of the Halting Problem (Turing [1936] cited in [26] p.
150).
The following set is r.e. and nonrecursive

〈x, e〉 ∈ K0 ⇔ x ∈ We ⇔ ϕe(x) ↓ .
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Proof. K0 is shown to be r.e. by the Enumeration Theorem 2.12. If K0 were recursive
so would be K, because

x ∈ K ⇔ 〈x, x〉 ∈ K0

2.4 Oracle computations and reductions

The class of recursive functions 2.5 is defined as a set of initial functions and a set of
operations transforming given functions into new functions. In the next definition
2.26 a function g is added to the initial functions. If g is recursive, then the class
obtained is the same as in 2.5, but otherwise it is more comprehensive.

Definition 2.26. (Turing [1939] cited in [26] p. 175) If g is a total function, the
class of functions recursive in g is the smallest class of functions

1. containing the initial functions and g

2. closed under composition, primitive recursion and restricted µ-recursion.

If S is a set, the class of functions recursive in S is the class of functions recursive
in cS. A predicate is recursive in g or S if its characteristic function is recursive.

The functions recursive in g are not computable unless g itself is, but they are still
‘computable module g’. They are computable with the help of an oracle. The oracle
is an extrarecursive entity which helps the computation of any function recursive in
g when a call to g is made. The oracle supplies the answer to any such call for free.

Definition 2.27. Given two functions f and g, we say that [26] p. 176:

• f is T-reducible (Turing reducible) to g (f ≤T g) if f is recursive in g

• f is T-equivalent (Turing equivalent) to g (f ≡T g) if f ≤T g and g ≤T f .

The relation ≤T is both reflexive and transitive making ≡T an equivalence relation.
The relation ≡T partitions the class of total functions into equivalence classes, called
Turing degrees or degrees of unsolvability. The degrees can be partially ordered with
≤T . Two functions are Turing equivalent (in the same Turing degree) when they are
recursive in each other.

The definition 2.28 introduces the simplest special case of Turing reducibility.

Definition 2.28. (Post [1944] cited in [26] p. 257) A is m-reducible to B (A ≤m B)

if, for some recursive function f , the following equivalent conditions are satisfied:

1. ∀x (x ∈ A⇔ f(x) ∈ B)
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2. A = f−1(B)

3. f(A) ⊆ B ∧ f(A) ⊆ B.

A is m-equivalent to B (A ≡m B) if A ≤m B and B ≤m A.

Similarly, with ≤T , ≤m is reflexive and transitive so ≡m is an equivalence relation.

Proposition 2.29 clarifies the difference between Turing- and m-reductions with re-
gard to recursively enumerable sets.

Proposition 2.29. (Post [1944] cited in [26] p. 252 and p. 258)

1. If S is any r.e. set then S ≤T K

2. A set S is r.e. if and only if S ≤m K.

2.5 Other reductions

In m-reducibility only one positive query to the oracle was allowed. Next step is
to relax the requirements. We can allow a fixed bounded number or unboundedly
many queries to the oracle. The nature of questions asked may be modified to asking
whether some elements are in the oracle or not in the oracle. Also, we can restrict
the way the questions are combined with logical operations.

Let {σn}n∈N be an effective enumeration of all the propositional formulas built from
the atomic ones ‘m ∈ X’, for m ∈ N. These are the so called truth table conditions,
since they can be arranged in truth-tables. Given a set B, B |= σn means that
B satisfies σn, i.e. that the propositional formula σn becomes true when X in the
atomic formulas is interpreted as B.

Definition 2.30. (Post [1944] cited in [26] p. 268 and p. 331) A is tt-reducible
(truth table reducible) to B (A ≤tt B) if, for some recursive function f ,

x ∈ A⇔ B |= σf(x).

A is btt-reducible (bounded truth table reducible) to B (A ≤btt B) if σf(x) uses at
most m elements, where the number m is called the norm of the reduction. If m is
the norm, we write A ≤btt(m) B.

If we limit the nature of what kinds of questions we can ask the oracle we get the
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Figure 2.1: Implication hierarchy between reducibilities [19] p. 101, [26] p. 341.

following reductions:

≤tt = {¬,∧,∨} truth-table reducibility

≤p = {∧,∨} positive reducibility

≤c = {∧} conjunctive reducibility

≤d = {∨} disjunctive reducibility

≤btt(1) = {¬} bounded truth-table reducibility with norm 1

≤l = {⊕} linear reducibility

The previous six reductions together with ≤m are the only possible truth-table-
like reducibilities. On the non-trivial r.e. sets ≤m and ≤btt(1) coincide [19] p. 100.
Structures induced by conjunctive and disjunctive reductions are isomorphic because
[26] p. 591

A ≤c B ⇔ A ≤d B

In wtt-reduction (weak truth-table reduction) the reductions may diverge. In Q-
reduction the T-reduction is strengthened so that we ask the oracle only questions
about singletons. Figure 2.1 shows the hierarchy between reductions. There are also
many other reductions not mentioned here.
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3. TURING MACHINES AND THE MODELS

OF COMPUTATION

In this chapter some familiarity with Turing machines is presumed. Most of the def-
initions are from the book "Introduction to the Theory of Computation" by Michael
Sipser. [30]

A Turing machine can be tought of as a typewriter which has an infinite tape serving
as memory. Furthermore, there are instructions according to which the machine
operates. Turing machines are formally defined in 3.1. [30] p. 140.

Definition 3.1. Turing Machine (TM)
A Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q,Σ,Γ are all
finite sets.

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank symbol t

3. Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,

4. δ : Q× Γ→ Q× Γ× {L,R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state, where qaccept 6= qreject.

The following theorem 3.2 links the recursive functions and Turing machines to-
gether.

Theorem 3.2. (Turing [1936] cited in [26] p. 54) Every recursive function is Turing
machine computable.

To prove the theorem 3.2 we need to construct Turing machines that compute the
conditions that define class of recursive functions 2.5. The different properties of
recursive functions can be defined as separate Turing machines. The Turing machine
that computes O just takes the input and moves one step to the right in the tape
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and prints a tally. The machine computing S makes a copy of the input to the right
and then adds one more tally. Similarly, more complicated machines can be defined
to compute In, composition, primitive recursion and µ-recursion.

Theorem 3.3 combined with the previous theorem 3.2 proves that Turing machines
compute exactly the recursive functions.

Theorem 3.3. (Turing [1936], [1937]) cited in [26] p. 99) Every Turing machine
computable function is recursive.

Proof. By arithmetization we can define In(e, x1, . . . , xn, y) primitive recursive.

• y codes a computation carried out by the TM coded by e on inputs x1, . . . , xn.

Let U be a primitive recursive function such that

• if y codes a computation then U(y) is the value of the number written on the
tape to the left of the head, in the last configuration of the computation coded
by y.

If f is computed by the Turing machine coded by e then f is recursive, because

f(x1, . . . , xn) = U(µy In(e, x1, . . . , xn, y)).

Programming languages use the concepts of for and while which are introduced
formally in the next two definitions.

Definition 3.4. Consider the programming language whose statements are the fol-
lowing:

1. assignment statements (X := 0, X := X + 1 and X := X − 1)

2. ’for’ statements (’for Y do S’, with S arbitrary statement (meaning: iterate
S for Y times)

3. compound statements (begin S1, . . . , Sn end, with Si arbitrary statements).

A ’for’ program is any compound statement. A function is ’for’ computable if and
only if it is primitive recursive. [26] p. 70.

"While" programs are strictly more powerful than "for" programs as they compute
the recursive functions.

Definition 3.5. Consider the programming language whose statements are the fol-
lowing:
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1. assignment statements (X := 0, X := X + 1 and X := X − 1)

2. ’while’ statements (while X 6= Y do S, with S arbitrary statement)

3. compound statements (begin S1, . . . , Sn end, with Si arbitrary statements).

A ’while’ program is any compound statement and ’while’ programs generate all the
recursive functions. [26] p. 68.

There are numerous ways to define the recursive functions. Some of these are named
in the next theorem 3.6.

Theorem 3.6. Basic result. The following are equivalent:

1. f is recursive

2. f is Turing computable

3. f is flowchart (or ’while’) computable

4. f is finitely definable

5. f is Herbrand-Gödel computable

6. f is representable in a consistent formal system extending R

7. f is λ-definable.

The class of recursive functions arises in different fields such as mathematics, logic,
computer science and linguistics which turn out to be equivalent. This has led to
the following thesis proposed by Alonzo Church and Alan Turing in 1936.

Thesis. Church-Turing Thesis. Every effectively computable function is recursive.

3.1 Variants

In this section some variations to Turing machines are introduced. They compute
the same functions as regular Turing machines but they are useful in classifying
different complexity classes.

Nondeterministic Turing machine is a Turing machine whose instructions are not
required to be consistent, so that more than one could be applicable in a given
situation. It is formally defined in 3.7.

Definition 3.7. Nondeterministic Turing machine differs from the deterministic
version (definition 3.1) in transition function which is the power set of the transition
function from the original definition: [30] p. 150.

δ : Q× Γ→ P(Q× Γ× {L,R})
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The nondeterministic Turing machine has a set of possible computations on a given
input. Every nondeterministic Turing machine has an equivalent deterministic Tur-
ing machine. If the use of resources is not considered, then nondeterministic ma-
chines have the same power as deterministic ones. [11] p. 28.

Definition 3.8. Oracle Turing machine
An oracle for a language A is an external device that is capable of telling whether
any string w is a member of A. An oracle Turing machine is a Turing machine
that has the additional capability of querying an oracle. Querying the oracle is
like invoking a subroutine for solving A without counting the time required by the
subroutine. [30] p. 232, [22] p. 74.

Complexity class of decision problems solvable by on algorithm in class A with an
oracle for language L is called AL. This can be extended to a set of languages or a
complexity class B:

AB =
⋃
L∈B

AL

A language or complexicity class A is low for a class C if CA = C meaning that A
is powerless as an oracle for C.

The following classes of languages are defined mostly for sake of completeness. For
a more detailed study see for example [30].

Definition 3.9.

• REG is the class of regular languages. There exists many equivalent definitions
for REG for example using finite automata or regular expressions.

parity ∈ REG⇒ REG 6= AC0

• CFL is the class of context-free languages. There exists different ways to define
them for example using context-free grammars or nondeterminic pushdown
automata. DCFL is the class of deterministic context-free languages. They
are defined using a deterministic pushdown automata. The following proper
inclusions between the languages are known:

REG ⊂ DCFL ⊂ CFL

3.2 Time and space hierarchies

Limiting the amount of time and space resources available to deterministic and non-
deterministic Turing machines new complexity classes can be defined. In this section
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some of these classes and their properties are introduced. The main definitions are
from Algorithms and Theory of Computation Handbook [8] ch. 27.2.

First we define the basic notions of deterministic and nondeterminic time and space.

Definition 3.10. Given functions t(n) and s(n)

• DTIME[t(n)] is the class of functions decided by a deterministic Turing ma-
chine of time complexity t(n).

• NTIME[t(n)] is the class of functions decided by a nondeterministic Turing
machine of time complexity t(n).

• DSPACE[s(n)] is the class of functions decided by a deterministic Turing ma-
chine of space complexity s(n).

• NSPACE[s(n)] is the class of functions decided by a nondeterministic Turing
machine of space complexity s(n).

Theorem 3.11 states that there is a relationship between deterministic and nonde-
terministic space.

Theorem 3.11. Savitch’s Theorem [28]
Let s(n) ≥ log2 n be a space-constructible function. Then,

NSPACE[s(n)] ⊆ DSPACE[s(n)2].

The complement of a nondeterministic space complexity class is the same as the
original class. This is formalized in theorem 3.12

Theorem 3.12. Immerman - Szelepcsényi Theorem [21] [31]
For any function s(n) ≥ log n

NSPACE[s(n)] = coNSPACE[s(n)]

Using different values for the function t(s) we can define time complexity classes.

Definition 3.13. Time complexity classes

• DLOGTIME is the complexity class of all computational problems solvable in
a logarithmic amount of computation time on a deterministic Turing machine.
It must be defined on a special Turing machine with direct access to its input,
since otherwise the machine does not have time to read the entire input tape.

• P =
⋃

k≥1 DTIME[nk] = DTIME[nO(1)] (polynomial time)
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• NP =
⋃

k≥1 NTIME[nk] = NTIME[nO(1)] (nondeterministic polynomial time)

It is obvious that GI ∈ NP, we just "guess" the isomorphism with an NP-machine
if it exists. The question whether or not P = NP is a famous one. It is commonly
believed that P ⊂ NP.

More time complexity classes above NP can be constructed by giving DTIME and
NTIME exponential arguments. It has been proved that those classes can never be
solved assuming Church-Turing thesis so they have been left out.

Space complexity classes are defined similarly.

Definition 3.14. Space complexity classes

• L =
⋃

c≥1 DSPACE[c log n] = DSPACE[O(log n)] (logarithmic space)

• NL =
⋃

c≥1 NSPACE[c log n] = NSPACE[O(log n)] (nondeterministic logarith-
mic space)
Using theorem 3.12 we can see that NL = coNL.

• polyL =
⋃

k>1 DSPACE[logk n] = DSPACE[logO(1) n] (polylogarithmic space)
polyL 6= P because polyL does not have complete problems under many-one
log-space reductions.

• LINSPACE =
⋃

c>0 DSPACE[cn] = DSPACE[O(n)] (linear space)

• NLINSPACE =
⋃

c>0 NSPACE[cn] = NSPACE[O(n)] (nondeterminstic linear
space)

• PSPACE =
⋃

k≥1 DSPACE[nk] = DSPACE[nO(1)] (polynomial space)

Savitch’s Theorem 3.11 states that nondeterministic polynomial space equals PSPACE.
Also, the same theorem can be applied to polyL to get the same result. L ⊆ NL but
it is not known whether they are different or not. L, NL and polyL are all proper
subclasses of PSPACE.

LINSPACE and NLINSPACE are both subclasses of PSPACE. Unlike PSPACE

however, they are not known to contain NP or even P. We do know that they
are not equal to P or NP since LINSPACE and NLINSPACE are not closed under
polynomial transformations whereas P and NP both are. [27]

Combining the m- and T -reductions defined in 2.28 and 2.27 with the time and
space limits we can define more restrictive reductions. Two of them have been given
a special name:
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• A problem A is Karp reducible to a problem B (A ≤P
m B) if the m-reduction

uses polynomial time resources.

• Similarly, a problem A is Cook reducible to a problem B (A ≤P
T B) if the

T-reduction uses polynomial time resources.

The following complexity classes are defined mostly for the sake of completeness.

Definition 3.15. Additional complexity classes

• The class SC named after Stephen Cook is the class of all decision problems
solvable by DTMs that simultaneously obey polynomial time bounds and poly-
logarithmic space bounds:

SC = DTIME[nO(1)] ∧DSPACE[logO(1) n]

SCk = DTIME[nO(1)] ∧DSPACE[logk n]

• The class LOGCFL consists of all those decision problems that are log-space
reducible to a context free language CFL defined in 3.9. It is closed under
complementation. [12]

CFL ⊂ LOGCFL ⊆ AC1

NL ⊆ LOGCFL

• Similarly, LOGDCFL consists of all those decision problems that are log-space
reducible to a deterministic context free language DCFL.

DCFL ⊂ LOGDCFL ⊆ LOGCFL

L ⊆ LOGDCFL ⊆ SC2 [13]

It is an open problem whether graph isomorphism is contained in the class LOGCFL.



30

4. BOOLEAN CIRCUITS AND CIRCUIT

COMPLEXITY

The best known hardness result for graph isomorphism is related to Boolean cir-
cuits and circuit complexity. In this chapter we define the basic theory of Boolean
functions and circuits and related complexity classes. The definitions used in this
chapter are mainly from the book "Introduction to Circuit Complexity" by Heribert
Vollmer. [33]

The basic properties of Boolean functions are defined in 4.1. A Boolean function is
a function, the input of which is a binary vector and output is a scalar 0 or 1. For
example the logical operations ∨ and ∧ are Boolean functions.

The family of Boolean functions is a sequence of functions in which the first function
takes 0 elements as its input, the second one takes 1 element and so on. Therefore
we get an infinite number of functions where every function takes a different number
of elements as its argument.

Definition 4.1.

• A Boolean function is a function f : {0, 1}m → {0, 1} for some m ∈ N.

• A family of Boolean functions is a sequence f = (fn)n∈N, where fn is an n-ary
Boolean function.

• A basis is a finite set consisting of Boolean functions and families of Boolean
functions.

The previous definition 4.1 is now used to define the concept of a circuit.

Definition 4.2. Let B be a basis. A Boolean circuit over B with n inputs and m
outputs is a 5-tuple

C = (V,E, α, β, ω),

where

• (V,E) is a finite directed acyclic graph,

• α : E → N is an injective function,
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• β : V → B ∪ {x1, . . . , xn}, and

• ω : V → {y1, . . . , ym} ∪ {∗}

such that the following conditions hold:

1. If v ∈ V has in-degree 0, then β(v) ∈ {x1, . . . , xn} or β(v) is a 0-ary Boolean
function (i.e. Boolean constant) from B.

2. If v ∈ V has in-degree k > 0, then β(v) is a k-ary Boolean function from B or
a family of Boolean functions from B.

3. ∀i ∈ {1, . . . , n}, there is at most one node v ∈ V such that β(v) = xi.

4. ∀i ∈ {1, . . . ,m}, there is exactly one node v ∈ V such that ω(v) = yi.

A gate v ∈ C is a node v ∈ V which has an in-degree (fan-in) k0 and an out-degree
(fan-out) k1. A wire is an edge e = (u, v) ∈ E. The function β tells us whether
the gate is an input node or a computation node. The function ω designates certain
nodes ω(v) 6= ∗ as output nodes.

The definition 4.2 can be intuitively understood as a collection of gates and in-
puts that are connected by wires [30] p. 352. A circuit C = (V,E, α, β, ω) with n
inputs and m outputs computes a function

fC : {0, 1}n → {0, 1}m.

An example circuit computing the parity function is pictured in figure 4.1.

The definition 4.3 expands the definition of a circuit by allowing additional oracle
gates which do not have to calculate a Boolean function. Additional complexity
classes can be defined using the oracle circuits.

Definition 4.3. An oracle-augmented Boolean circuit is a Boolean circuit with an
additional class of "oracle" gates allowed, where the latter can have any number of
inputs and outputs. The input string for such a gate is the sequence of the values
on its input gates. The output string is the sequence of values on its output gates.
Given a search problem X as oracle, the output string of an oracle gate with input
string x is any y that is an answer for x in X. If no answer exists, the circuit
containing the gate fails. [22] p. 136.

In order to consider infinite functions we have to build an infinite family of circuits.
One circuit is given for each input length. This is formalized in the definition 4.4.
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x1 x2 x3 x4

¬ ¬ ¬ ¬

∧ ∧ ∧ ∧

∨ ∨

¬ ¬

∧ ∧

∨

Figure 4.1: A Boolean circuit computing the parity function ⊕ on four variables x1, . . . , x4.

Definition 4.4. Let B be a basis. A circuit family over B is a sequence C =

(C0, C1, C2, . . .), where ∀n ∈ N, Cn is a circuit over B with n inputs. Let fn be the
function computed by Cn. Then we say that C computes function f : {0, 1}∗ →
{0, 1}∗, defined by

∀s ∈ {0, 1}∗ : f(s) = f |s|(s).

To be able to define complexity classes using circuit families we have to define the
size and the depth of circuits. In addition, we need to be able to construct the
circuits using Turing machines. These are defined in 4.5.

Definition 4.5. Let C = (V,E, α, β, ω) be a circuit over B. The size of C is defined
to be the number of non-input gates in V , and the depth of C is defined to be the
length of the longest directed path in the graph (V,E).

• Let C = (Cn)n∈N be a circuit family, and let s, d : N → N. C has size s and
depth d if ∀n, Cn has size s(n) and depth d(n).

• A family C = (Cn)n∈N of Boolean circuits is log-space uniform if there is a
DTM M that, given n, constructs Cn using space O(log n).

Next, in 4.6, we define the class NC named after Nicholas Pippinger. It is the same
class as AC. The only difference between the two classes is that in AC we accept
unbounded fan-in whereas in NC the fan-in for every gate is 2.

Definition 4.6.

• For each k ≥ 1 the class NCk consists of all languages recognizable by log-
space uniform family of Boolean circuits having polynomial size O(nO(1)) and
depth O(logk n).
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• In the class ACk the Boolean circuits have unbounded fan-in.

∀ k ≥ 0, ACk ⊆ NCk+1 ⊆ ACk+1

AC =
∞⋃
k=0

ACk =
∞⋃
k=0

NCk = NC

The following classes in 4.7 are defined mostly for the sake of completeness. Their
relationships are pictured in figure 1.

Definition 4.7.

1. AC0 is the class of problems solvable by polynomial-size, constant-depth cir-
cuits of and, or and not gates of unbounded fan-in. AC0 corresponds to
O(1)-time computation on a parallel computer, and it also consists exactly of
the languages that can be specified in first-order logic. AC0-circuits are pow-
erful enough to add and subtract n-bit numbers. The xor function is not in
AC0. [17]

2. NC1 is the class of problems solvable by circuits of and, or and not gates of
fan-in two, size O(nO(1)) and depth O(log n).

3. TC0 is the class of problems solvable by polynomial-size, constant-depth thresh-
old circuits. TC0 captures exactly the complexity of integer multiplication,
division and sorting. Also, TC0 is a good complexity-theoretical model for
neural net computation.

4. AC0(m) is the class of problems solvable by polynomial-size, constant-depth
circuits of and, or, not and modm gates of unbounded fan-in. A modm

gate takes inputs x1, . . . , xn and determines if the number of 1’s among these
inputs is a multiple of m. If p is a prime number, then

AC0 ⊂ AC0[p] ⊂ TC0 ⊆ NC1.

parity ⊕ is contained in AC0[p]. [33]

5. The class ACC0 (AC with circuits) is defined as: ACC0 =
⋃

m AC0(m), where
ACC0 corresponds to computation in any solvable monoid. Computing the
permanent is not possible for logspace-uniform ACC0 circuits, thus ACC0 ⊂
PP.

6. The majority-function is defined as follows:
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majority: {0, 1}n → {0, 1}

majority(x1, . . . , xn) =

0
∑

xi <
n
2

1
∑

xi ≥ n
2

MAC0 is the class of polynomial-size, constant-depth circuits of and, or, not
and a single majority gate at the root. MAC0 ⊂ TC0 [7]. It is conjegured
that ACC0 can not compute the majority. [1]

4.1 Graph Isomorphism is hard for DET

The main result of this chapter is that graph isomorphism is hard for the class DET

of integer determinant. In this section we introduce the basic elements needed for
the proof. A reader interested in the details of the proof is referred to the original
publication by Jacobo Toran. [32]

To define the necessary complexity classes we have the following definition 4.8.

Definition 4.8. The st-connectivity is a decision problem asking, for vertices s and
t in a directed graph, if t is reachable from s. It is known to be complete for NL, the
class of languages accepted by nondeterministic Turing machines using logarithmic
space. [28]

By using the previous definition 4.8 we can now define three different complexity
classes. The definition uses the fact that a computation of a Turing machine can be
understood as a directed graph of different computation paths.

Definition 4.9. #L defined in [3] is the class of functions f : Σ∗ → N that count
the number of accepting paths of a log-space nondeterministic Turing machineM on
input x. See definition 5.15 for the details of counting Turing machines. The com-
putation of #L function on input x can be reduced to the st-connectivity problem
defined in 4.8. Using the #L functions we can define the classes PL (probabilistic
logarithmic space), C=L (exact threshold in logarithmic space) and ModkL (modular
counting in logarithmic space, k ≥ 2):

PL = {A : ∃p ∈ Poly, f ∈ #L, x ∈ A⇔ f(x) ≥ 2p(|x|)}
C=L = {A : ∃p ∈ Poly, f ∈ #L, x ∈ A⇔ f(x) = 2p(|x|)}

ModkL = {A : ∃f ∈ #L, x ∈ A⇔ f(x) = 1 mod k}

Modk circuits k ≥ 2 are circuits where the input variables can take values in Zk,
and the gates compute addition in Zk. [32]
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The class PL can be alternatively defined using probabilistic Turing machines de-
fined in 5.4. PL is the class of languages A for which there exists a probabilistic
Turing machine such that on input x the machine never uses more than log |x| space,
and x ∈ A if and only if the probability that the machine reaches an accepting con-
figuration is > 1

2
. [2]

Definition 4.10. DET is a class of problems NC1 Turing reducible to the integer
determinant, the problem of computing the determinant of an n by n matrix of n-bit
integers. In other words, the class of problems that can be solved by NC1 circuits
with additional oracle gates defined in 4.3 that can compute the determinant of
integer matrices. It was first defined by Cook. [14]

The known relationships of the classes from defitions 4.9 and 4.10 are the following:

ModkL ⊆ DET,

NL ⊆ C=L ⊆ PL ⊆ DET ⊆ NC2

The AC0 many-one reductions are used in the proofs.

Definition 4.11. A set A is DLOGTIME uniform AC0 many-one reducible (≤AC0

m )
to another set B if there is a family of AC0 circuits {Cn| n ∈ N} and

∀x, |x| = n, x ∈ A ⇔ Cn(x) ∈ B.

The proof of the hardness results starts by showing that the graph isomorphism
problem has enough structure to encode a modular addition gate. For any (k ∈ N)

circuit value problem for addition mod k gates is ModkL-complete. This problem is
then reduced to graph isomorphism via AC0 many-one reductions.

The idea is to simulate a modular gate with a graph gadget and then combine
the gadgets for the different gates into a graph. Any certain automorphism maps a
special vertex encoding output gate to a vertex encoding the output of the circuit.
This simulates the behaviour of the modular circuit. See [32] for details of the graph
gadget.

The Chinese representation theorem 4.12 is used in the reduction of graph iso-
morphism to the class NL.

Theorem 4.12. A Chinese remainder representation base is a set m1, . . . ,mn of
pairwise coprime integers. LetM =

∏m
i=1 mn. By the CRT, every integer 0 ≤ x < M
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is uniquely represented by its Chinese remainder representation (x1, . . . , xn), where
0 ≤ xi < mi and xi = x mod mi.

NL is closed under complementation and the graph accessibilty problem 4.8 is com-
plete for NL. The complement of the theorem 4.8 is reduced to graph isomorphism
via ≤AC0

m -reductions using the Chinese remainder theorem 4.12.

The next step is to show that any logarithmic space counting function f ∈ #L

can be reduced to graph isomorphism. This implies that GI is hard for C=L and
PL. The proof uses the result that division can be computed by uniform TC0 cir-
cuits [20]. Also, the fact that NC1 circuit with fixed values in the input nodes can
be encoded as a graph isomorphism question is needed.

DET can be alternative defined as NC1(#L) the class of problems computed by
an AC0-uniform family of polynomial size and logarithmic depth circuits with or-
acle gates to a function f ∈ #L. Using this alternative definition we get the best
known hardness result for graph isomorphism. [2] [32]

Theorem 4.13. Graph isomorphism is hard for the class DET under≤AC0

m -reductions.
[32]
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5. POLYNOMIAL HIERARCHY AND

PROBABILISTIC CLASSES

In the previous chapter we introduced the best known hardness results for graph
isomorphism. In this chapter we introduce the complexity classes which are known
to contain GI and also argue why it is not believed that the GI is NP-complete.

We start by introducing the polynomial hierarchy which is an infinite hierarchy
of classes defined with oracles. The infinite hierarchy would collapse to its second
level if GI were NP-complete.

To prove other known containment results for GI we first need to define machine
models for probabilistic computation. Using these models and Arthur-Merlin hi-
erarchies - a restricted version of interactive proof systems - it can be shown that
GI ∈ coAM.

Finally, we define the complexity class SPP and introduce the concepts needed
for proving that GI ∈ SPP.

5.1 Polynomial hierarchy

The polynomial hierarchy PH generilizes P, NP and coNP using oracles. It is for-
mally defined as an infinite hierarchy in 5.1. [25]

Definition 5.1. Polynomial hierarchy (PH) is defined as follows. It is pictured in
figure 5.1.

∆P
0 = ΣP

0 = ΠP
0 = P

∀k ≥ 0 : ∆P
k+1 = PΣP

k , ΣP
k+1 = NPΣP

k , ΠP
k+1 = coΣP

k+1

In particular

ΣP
1 = NP, ΠP

1 = coNP and ∆P
k ⊆ ΣP

k ∩ ΠP
k , ΣP

k ∪ ΠP
k ⊆ ∆P

k+1.
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The polynomial hierarchy is equal to the union:

PH =
∞⋃
k=0

ΣP
k .

∆P
0 = P = ∆P

1

NP = ΣP
1 ΠP

1 = coNP

∆P
2 = PNP

NPNP = ΣP
2 ΠP

2 = coNPNP

∆P
3 = PNPNP

NPNPNP
= ΣP

3 ΠP
3 = coNPNPNP

PH

Figure 5.1: Polynomial hierarchy

The polynomial hierarchy gives a more detailed way of classifying NP-hard deci-
sion problems which are not as "easy" as NP-complete problems. Every element in
PH can be solved by exhaustive search in DTIME[O(2p(n)], where p is a polynomial.
The following inclusions are known:

PH ⊆ PPP ⊆ PSPACE.

For any k > 0, ΣP
k = ΣP

k+1 implies PH = ΣP
k . Graph isomorphism is contained

in the polynomial hierarchy (section 5.4.1) and if GI were NP-complete then the
polynomial hierarchy would collapse to ΣP

2 . It is commonly believed that PH does
not collapse so there is strong evidence that GI is not NP-complete. GI is also low
for ΣP

2 meaning that it is powerless as an oracle for ΣP
2 . [8]
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5.2 Probabilistic classes

In this section two different models for random and probabilistic computation are
introduced. Without the loss of generality it is assumed that the underlying nonde-
terministic Turing machine is normalized so that all computations are finite, have
the same length and that every internal node in the computation tree has either one
or two successors. We first define the random Turing machine in 5.2.

Definition 5.2. A random Turing machine (RTM) is a nondeterministic Turing
machine such that, for each possible input string, either there are no accepting
computations or else at least half of all computations are accepting.

Starting from the initial configuration the random Turing machine proceeds deter-
ministically until it reaches a branch point. At each branch point it randomly picks
one of the two alternatives for the next move and then proceeds. The probability
that the computation ends up in an accept state is the ratio of the number of ac-
cepting computations to the total computations. The probability that the machine
answers "yes" when the answer is "no" is 0 and the probability of correctness can
be arbitrarily increased by repeating the experiment. [22] p. 114.

By limiting the resources available to a random Turing machine we can define new
complexity classes.

Definition 5.3.

• The class R or random polynomial time consist of all decision problems solved
by polynomial-time RTMs. It is a natural formulation of Monte Carlo algo-
rithms since the output 1 is absolutely correct while an output 0 is correct only
with the probability of at least 1

2
. R is not obviously closed under complement

due to its asymmetric definition.

• The class ZPP or zero-error probability polynomial time is defined as an inter-
section of R and coR

ZPP = R ∩ coR.

ZPP consists of all those problems solved by polynomial-time Las Vegas algo-
rithms, feasible randomized algorithms that never lie, but may not answer less
than half the time.

A randomized machine uses different acceptance criteria for "yes" and "no". By
relaxing this we can define the probabilistic Turing machines with the similar as-
sumptions as with the random Turing machines.
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Definition 5.4. Probabilistic Turing machine (PTM) is a nondeterministic Turing
machine whose output for a given input string x is "yes" if more than half of the
computations terminate in "yes" states and is "no" if more than half of the com-
putations terminate in "no" states. If the number of yes-computations equals the
number of no-computations, the output is "don’t know". A PTM solves a prob-
lem X if and only if the PTM outputs the correct answer for each instance of the
problem.

New complexity classes can be defined using the PTMs. In addition to the ones
below we have already defined the class PL in 4.9. [22] p. 119.

Definition 5.5.

• The Class PP is the set of all decision problems that can be solved by polynomial-
time PTMs.

• BPP is the class of languages recognized by polynomial time probabilistic
Turing machines whose error probability is bounded above by some positive
constant ε < 1

2
.

The inclusions between the different classes can be found in figure 1.

5.3 Interactive proof systems

In this section interarctive proof systems are briefly defined. An interactive proof
system is a machine that models computation as the exchange of messages between
two parties. The two different parties are called the verifier and the prover. They
interact by exchanging messages in order to ascertain whether a given string x be-
longs to a language L or not. The complexity class NP can be viewed as a simple
proof system where a P-machine checks a certificate produced by the prover in de-
terministic polynomial time.

We first define formally the interaction between the two parties.

Definition 5.6. Interaction of deterministic functions [4] p. 128.
Let f, g : {0, 1}∗ → {0, 1}∗ be functions and k ≥ 0 be an integer which can depend
upon the input size. A k-round interaction of f and g on input x ∈ {0, 1}∗, denoted
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by 〈f, g〉(x) is the sequence of strings a1, . . . ak ∈ {0, 1}∗ defined as follows:

a1 = f(x)

a2 = g(x, a1)

. . .

ai+1 = f(x, a1, . . . , a2i) for 2i < k

ai+2 = g(x, a1, . . . , a2i+1) for 2i+ 1 < k

The class IP of interactive proof systems uses probabilistic polynomial-time Turing
machine as its machine model.

Definition 5.7. Interactive proof systems [4] p. 130.
For an integer k ≥ 1 that may depend on the input length, we say that a language
L is in IP[k] if there is a probabilistic polynomial-time Turing machine V that can
have a k-round interaction with a function P : {0, 1}∗ → {0, 1}∗ such that

x ∈ L⇒ ∃P Prob[outV 〈V, P 〉(x) = 1] ≥ 2

3
(Completeness)

x /∈ L⇒ ∀P Prob[outV 〈V, P 〉(x) = 1] ≤ 1

3
(Soundness)

The probabilities 1
3
and 2

3
can be amplified arbitrary close to 0 or 1.

The complexity class IP characterizes the set of languages that have interactive
proofs. It is known that IP = PSPACE.

5.4 Arthur-Merlin games

Babai was first to introduce the Arthur-Merlin games in [9]. They are a restricted
version of interactive proof systems. The coin tosses are constrained to be public
meaning that they are known also to the prover.

King Arthur recognizes the supernatural intellectual abilities of Merlin but does
not trust him. How should Merlin convince the intelligent but impatient king that
a string x belongs to a given language L?

Arthur (A = BPP) has the polynomial-time bounded computational resources and
the ability to flip unbiased coins. Merlin’s (M = NP) goal is to convince Arthur that
a given string x is a yes-instance of decision problem L. When Arthur speaks, he is
limited to simply telling Merlin the outcome of some number of coin flips polynomial
in |x|. When Merlin speaks, his message (also polynomial in |x|) can depend on x
and all the previous messages. This is an interactive proof system which uses public
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coins instead of private.

If L ∈ NP, Merlin will be able to present a witness which Arthur can check in
polynomial time. The complexity class MA is the set of decision problems that can
be decided in polynomial-time by an Arthur-Merlin protocol where Merlin’s only
move precedes any computation by Arthur. [9]

Definition 5.8. A language L is in MA if there exists a polynomial-time determin-
istic Turing machine M and polynomials p and q such that for every input string x,
|x| = n:

x ∈ L⇒ ∃z ∈ Σp(n) Prob [ M(x, y, z) = 1 ] ≥ 2

3

x /∈ L⇒ ∀z ∈ Σp(n) Prob [ M(x, y, z) = 1 ] ≤ 1

3

where y is chosen uniformly at random from Σq(n).

In other words, z is the alleged proof from Merlin and y is the random string Arthur
uses.

Definition 5.9. A language L is in AM if there exists a polynomial-time determin-
istic Turing machine M and polynomials p and q such that for every input string x,
|x| = n:

x ∈ L⇒ Prob [ ∃z ∈ Σp(n) M(x, y, z) = 1 ] ≥ 2

3

x /∈ L⇒ Prob [ ∀z ∈ Σp(n) M(x, y, z) = 1 ] ≤ 1

3

where y is chosen uniformly at random from Σq(n).

The Arthur-Merlin hierarchy collapses to AM if we add more interaction. That is,
MA[k] = AM[k] = AM ∀k > 2. The relationships between Arthur-Merlin and
other classes are as follows. See figure 1 for a bigger picture.

NP ⊆ MA ⊆ AM ⊆ ΠP
2

coNP ⊆ coMA ⊆ coAM ⊆ ΣP
2

BPP ⊆ MA ⊆ ΠP
2 ∩ ΣP

2

BPP ⊆ coMA

5.4.1 Graph isomorphism is in coAM

There are different ways of proving that GI ∈ coAM. This text follows the one by
Uwe Schöning that does not use the interactive proof systems. [29]
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The following combinatorial definition and theorem are needed for the proof.

Definition 5.10. For two graphs with n vertices define num(G1, G2) to be the
number of different triples of the form (H, p, i) where H is an isomorphic graph to
either G1 or G2, and p is an automorphism for Gi, i ∈ {1, 2}.

Theorem 5.11. If G1 and G2 are isomorphic, then num(G1, G2) = 2n!, otherwise
num(G1, G2) ≥ 4n! .

The objects (H, p, i) that are counted in num(G1, G2) can be nondeterministically
generated in polynomial time.

Next we define the random hash function.

Definition 5.12. A random hash function H : Σt → Σm is given by a Boolean
(t,m)-matrix whose elements hij ∈ {0, 1} are picked uniformly random and inde-
pendently. Then the j:th bit of H(a1, a2, . . . , at) ∈ Σm is calculated by

(h1j ∧ a1)⊕ (h2j ∧ a2)⊕ . . .⊕ (htj ∧ at),

ie. matrix multiplication modulo 2.

A collision in a hash function means that

∃x ∀Hi : (x 6= y) ∧ (Hi(x) = Hi(y))

The next theorem 5.13 states that on every fixed "small" subset of Σt a randomly
selected collection of hash functions {Hi} is likely to be collision free.

Theorem 5.13. Hashing Lemma

• If X ⊆ Σt has cardinality at most 2m−1, then for randomly selected hash
functions H1, . . . , Hm+1 : Σt → Σm, with probability at most 1

3
,

(∃ x ∈ X) (∀ i ≤ m+ 1) (∃ y ∈ X) [ y 6= x ∧ Hi(x) = Hi(y) ]. (∗)

• If X has more than (m+ 1)2m elements, the probability for (∗) is 1.

The set X = {(H, p, i)} is defined as in the definition 5.10. Now we apply the
hashing lemma 5.13 to the set Y = Xk. In this case |Y | = (2n!)k for isomorphic
graphs and |Y | = (4n!)k for non-isomorphic graphs.
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Theorem 5.14. There is a set B ∈ NP and a polynomial p such that for every pair
of graphs G1, G2 with n vertices,

Prob [ (G1, G2, w) ∈ B ] ≤ 1

3

if G1, G2 are isomorphic, and

Prob [ (G1, G2, w) ∈ B ] = 1

if G1, G2 are non-isomorphic, where w is chosen uniformly at random from Σp(n).
Hence, Graph isomorhism GI ∈ coAM.

The set B is essentially the collision predicate from theorem 5.13 with w being an
encoding of the collection of random hash functions. The fact that B ∈ NP follows
from the observation that the elements in X = Y k can be nondeterministically gen-
erated. [29]

The best known location of graph isomorphism is pictured in figure 5.2.

P

NP ∩ coNP

NP coNP

NP-
complete

coNP-
complete

coAM

GI

Figure 5.2: GI ∈ NP ∩ coAM
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5.5 Graph Isomorphism is in SPP

In this section the complexity class SPP is defined. The graph isomorphism is known
to be in this class and a rough sketch of the definitions and theorems needed to prove
this are introduced. This text follows the original proof by Arvind and Kurur. [5]

First we introduce a new machine model, the counting Turing machine.

Definition 5.15. A non-deterministic Turing Machine is called a counting Turing
machine (CTM) if its acceptance criterion is based on the number of accepting
and/or rejecting paths. Let M be a CTM. The function #M : Σ∗ → Z+ is defined
such that ∀x ∈ Σ∗, #M(x) is the number of accepting computation paths of M
on input x. The machine M is the machine identical to M but with the accepting
and rejecting states interchanged. #M(x) is the number of rejecting paths of M on
input x.

By adding restrictions to the counting Turing machine we can define new complexity
classes. To do that we need the following definition.

Definition 5.16. If M is a CTM, define the function gapM : Σ∗ → Z as follows:

gapM = #M −#M

A class C of languages is gap-definable if there exists disjoint sets A,R ⊂ Σ∗ × Z
such that, for any language L, L ∈ C if and only if there exists a CTM M with

x ∈ L⇒ (x, gapM(x)) ∈ A
x /∈ L⇒ (x, gapM(x)) ∈ R

The sets A and R are called the accepting and rejecting sets.

The complexity class SPP is now defined using the counting Turing machine and
gap-definability. It is the smallest reasonable gap-definable class.

Definition 5.17. SPP is the class of all languages L such that there exists M such
that ∀x,

x ∈ L⇒ gapM(x) = 1

x /∈ L⇒ gapM(x) = 0.

In other words, if x ∈ L there is one more accepting than rejecting paths. If x /∈ L
there are the same number of each.
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The graph isomorphism problem can be reduced to a related functional problem
AUTO: given a graph X as an input, the problem is to output a strong generator
set Aut(X). The Aut(X) means the underlying automorphism group of the graph
X. The automorphisms are permutations on the vertex set and they form a group
under permutation composition.

Finding the symmetric group that is essential in solving the AUTO can be reduced
to a more general problem FIND-GROUP. To each instance (x, 0n) there is associ-
ated an unknown subgroup Gx ≤ Sn for which there is a polynomial time test. That
is, the polynomial time membership function is given and it takes x and g ∈ Sn as
input and evaluates "true" if and only if g ∈ Gx. The FIND-GROUP problem is to
compute a strong generator set for Gx given (x, 0n) as input.

In order to prove that GI ∈ SPP, it suffices to show that AUTO ∈ FPSPP. To
prove this we need to show that there exists a deterministic Turing machine M ,
with oracle A ∈ SPP which takes a graph X as an input and which outputs a
strong generator set for Aut(X). This is done by showing that the generic problem
FIND-GROUP has an FPSPP algorithm.

Theorem 5.18. Graph isomorphism is in SPP. [5]
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C=L, 34
CFL, 26
Church-Turing thesis, 25
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Turing, 20
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partial, 8, 13
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