

ANTTI EIVOLA

HOME ENTERTAINMENT DEVICE DETECTION USING MOBILE

PHONE

Master of Science Thesis

Examiner: professor Irek Defee
Topic and examiner approved in the
Computing and Electrical Engineer-
ing Faculty Council meeting on 3
November 2010.

 2

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma
EIVOLA, ANTTI: Kodin viihdelaitteiden tunnistaminen matkapuhelimella
Diplomityö, 52 sivua
Syyskuu 2012
Pääaine: Signaalinkäsittely
Tarkastaja: professori Irek Defee
Avainsanat: Konenäkö, hahmontunnistus, mobiilisovellus, avoin lähdekoodi

Mobiiliteknologian ja konenäön kehitys avaa uusia käyttökohteita niiden hyödyntämi-

selle. Avoimen lähdekoodin mobiililaitteiden sovelluskehitysalustat sekä konenäkökir-

jastot tarjoavat mahdollisuuden kehittää sovelluksia suhteellisen pienellä vaivalla. Tässä

diplomityössä esitellään muokattu versio tunnetusta hahmontunnistusprosessista sekä

kaksi sitä hyödyntävää mobiilisovellusta. Tämän työn tarkoituksena on selvittää, voi-

daanko avoimen lähdekoodin työkaluilla kehittää kiinnostavia mobiilisovelluksia ja

esittää menetelmä, jolla mahdollisia valmiiden kirjastojen puutteita voidaan korvata.

Työ jakaantuu neljään osaan. Ensimmäinen osa käsittelee alan kirjallisuudesta tunnettua

hahmontunnistusmenetelmää ja toinen esittää parannuksia tähän menetelmään. Kol-

mannessa osassa esitellään kaksi tätä työtä varten toteutettua mobiilisovellusta, jotka

hyödyntävät aiemmin kuvatun menetelmän muokattua versiota. Näiden sovellusten

avulla käyttäjä voi tunnistaa sekä ohjata kodin viihdelaitteita käyttäen kameralla varus-

tettua matkapuhelinta. Viimeisenä arvioidaan esitetyn menetelmän tarkkuutta ja työn

muita saavutuksia.

Työssä esitetyt muutokset käsiteltävään hahmotunnistusmenetelmään tuovat siihen lisää

tarkastuksia ja muokattu menetelmä suoriutuu testatuissa olosuhteissa valmiina saatavil-

la olevaa toteutusta paremmin. Työssä esiteltävät mobiilisovellukset tarjoavat esimerkin

siitä, mitä mobiililaitteen ja konenäön avulla voidaan saada aikaan. Molemmat sovel-

lukset täyttävät niille asetetut tavoitteet ja niiden avulla voidaan tunnistaa laitteita puhe-

limen kameran tuottamasta reaaliaikaisesta videosyötteestä. Toinen sovelluksista tarjoaa

myös rajapinnan, jolla tunnistettuja laitteita voidaan ohjata.

 3

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Signal Processing and Communications Engi-
neering
EIVOLA, ANTTI: Home Entertainment Device Detection Using Mobile Phone
Master of Science Thesis, 52 pages
September 2012
Major: Signal Processing
Examiner: Professor Irek Defee
Keywords: Computer vision, object recognition, mobile software, open source
software

Development in mobile technology and computer vision enables new usage scenarios

related to these technologies. Open source mobile application frameworks together with

open source software libraries for computer vision provide the means for developing

applications with relatively low effort. This thesis presents a modified version of a

popular object detection method and utilizes this in two separate mobile software im-

plementations. The main goals are to assess if interesting end-user applications can be

developed with these open source tools and to propose a possible solution for the parts

that are not adequately covered by the readily available software components.

The thesis is divided into four parts. The first part deals with a popular object detection

method from the literature and second part proposes improvements for this method.

Next the two implementations, using the proposed method, are presented that enable the

user to detect and control home entertainment devices using a mobile phone with a

camera. The thesis is concluded with an evaluation of the performance of the proposed

method and discussion.

The proposed method adds additional restrictive checks to the popular object detection

method and, for the concerned scenarios, performs better than the readily available im-

plementation. The two applications implemented for this thesis show an example of

what can be achieved with computer vision and a mobile phone. Both applications fulfil

the goals set for them and can be used to detect objects seen in the live video feed from

the mobile phones camera. One of the implementations also provides an interface to

interact with the devices once they are detected.

 4

PREFACE

The process which led to this thesis started from a Demola Innosummer project. In the

project we were set up to build a technical demo for a mobile application to detect and

control devices with. Even without much prior knowledge we managed to build one and

the summer was most educational and, above all, interesting. As I was offered premises

to work in and support from the same team which supported us during the summer, I

decided to continue the work in form of this thesis. I had just finished the second im-

plementation when I took another job from another city. After this, the thesis became

more of a hobby during random evenings after actual work and after our kids fell asleep.

Keeping a tight schedule for the thesis project was not something I did, but I would

strongly recommend others to do.

I wish to thank Mike Kapitonov for building all but the detection, device control and

network parts of the first implementation and also for his valuable expertise on Linux

and software development. Also thanks to professor Irek Defee for providing premises

where I could continue working with the topic after the Innosummer and to Adrian

Hornsby for his fine tips during the Innosummer concerning working methods and

available open source tools. Especially I wish to thank Rod Walsh, who provided the

initial idea to build a mobile application for device detection and was of big help to get

the process running smoothly. Rod´s contagious enthusiasm for the field and the always

so happy attitude was contagious. Cheers Rod.

Espoo 14.10.2012

Antti Eivola

 5

TABLE OF CONTENTS

Abstract ... 3

List of Figures ... 6

1 Introduction ... 7

2 Object Recognition.. 8

2.1 Object Recognition Process Overview ... 8

2.2 Interest Point Extraction .. 9

2.3 Interest Point Description .. 14

2.4 Matching Interest Points ... 17

3 Proposed method ... 19

3.1 Use-Case Scenarios and Background.. 19

3.2 Object Detection Process .. 21

3.3 Modified Nearest Neighbour Matching Method ... 23

4 Implementations .. 29

4.1 Objectives and Use-Case Scenarios .. 29

4.2 Client-Server Implementation ... 32

4.3 Standalone Mobile Implementation .. 34

5 Results ... 38

5.1 Test Arrangements .. 38

5.2 Test Results ... 42

5.3 Discussion ... 46

6 Conclusions ... 48

References ... 50

 6

LIST OF FIGURES

Figure 2.1. Overall object recognition process based on local image features. 8

Figure 2.2. Fast-Hessian detector used in SURF. ... 11

Figure 2.3. Integral image at location (x, y). .. 11

Figure 2.4. Example of integral image usage. .. 12

Figure 2.5. Box filters Dxx, Dyy and Dxy approximating Gaussian second order

derivatives. .. 13

Figure 2.6. Keypoint orientation assignment process in SURF. 15

Figure 2.7. Haar wavelets used in orientation assignment. .. 15

Figure 2.8. Calculation of a SURF descriptor for a single keypoint. 16

Figure 2.9. Nearest neighbour matching method. .. 17

Figure 3.1. Example scenario where the detected devices have been marked with icons

on top of them. .. 19

Figure 3.2. Proposed object detection process. ... 21

Figure 3.3. YUVY image format. ... 22

Figure 3.4. Proposed keypoint matching process. ... 24

Figure 3.5. The nearest neighbour ratio matching criteria. ... 25

Figure 3.6. Multiple matches for one point from a given live image. 26

Figure 3.7. Proposed keypoint elimination process. ... 27

Figure 4.1. Use-cases for the client-server OEW. .. 30

Figure 4.2. UI example from the client-server OEW. .. 30

Figure 4.3. Use-cases for the standalone mobile OEW. .. 31

Figure 4.4. UML deployment diagram for the client-server OEW. 33

Figure 4.5. UML class diagram for the pointing part of client-server OEW. 34

Figure 4.6. Deployment diagram for the standalone mobile OEW. 35

Figure 4.7. UML class diagram for the standalone mobile OEW. 36

Figure 4.8. Detection approach of the standalone mobile OEW. 37

Figure 5.1. Reference scenes used in the evaluation. ... 38

Figure 5.2. Viewpoint changes for accuracy evaluation. .. 40

Figure 5.3. Test images for viewing angle change. .. 41

Figure 5.4. Test images for panning angle change. .. 41

Figure 5.5. Test images for camera rotation change. .. 41

Figure 5.6. Average object displacement versus viewing angle. 43

Figure 5.7. Average object displacement versus viewing angle when using two

reference images. .. 44

Figure 5.8. Average object displacement versus panning angle. 45

Figure 5.9. Average object displacement versus camera rotation. 45

 7

1 INTRODUCTION

Modern mobile technology together with computer vision enables the creation of inter-

esting augmented reality solutions. Freely available open source alternatives are avail-

able for both mobile application development in general and computer vision software

libraries. Together these make it possible for anyone with little programming skills to

utilize computer vision in mobile solutions.

The focus of this thesis is on developing a mobile application that enables the user to

detect devices from the surrounding environment using a mobile phone with a camera.

Then the user would be able to interact with the real world using an augmented reality

user interface. For this purpose it was necessary to find a suitable computer vision

method for the device detection and to find necessary frameworks and tools to build the

actual application for a mobile phone.

The first approach for object detection was to gather data from images showing individ-

ual devices and then use this data to detect and recognize the devices from real world

images. This approach did not work as well as expected so image data from individual

devices was abandoned and the whole image, including the background, was taken into

use.

For the actual means for object detection local image features were the starting point for

the search for a suitable computer vision method because of the popularity of such

methods in the literature. Soon the decision came down to selecting either SIFT [1] or

SURF [2]. SIFT seemed to have gained more popularity but SURF was claimed to be

faster [2; 3]. As the thesis deals with a mobile application, the computational efficiency

was one of the most important aspects to consider. Others were sufficient accuracy and

tolerance to changing conditions and also availability of an open source implementation.

The open source implementation which was selected did not offer good enough per-

formance without any enhancements. Certain additions to the nearest neighbour match-

ing technique [4] were examined and implemented to improve the performance.

This thesis is structured in such a way that each chapter can be read independently. Each

chapter gives a short introduction on the topics covered. Chapter two gives an overview

on one method for object recognition from a theoretical point of view. Chapter three

presents the proposed object detection method and chapter four describes the implemen-

tations from design and implementation perspective. More detailed results along with

discussion are presented in chapter five and finally conclusions in chapter six.

 8

2 OBJECT RECOGNITION

This chapter gives an overview on object recognition and presents the theory related to

this work. First object recognition based on local image features is discussed briefly in

general. Next a similar approach as the one proposed in chapter 3 is presented in more

detail. The presentation is started by describing interest point detection, followed by

interest point description and finally matching of interest points.

2.1 Object Recognition Process Overview

Object recognition by computer vision can be considered generally as a process where:

1) information is extracted from a given image and; 2) the extracted information is

compared against prior knowledge, to; 3) produce meaningful information. This section

gives an overview on some approaches how this can be done.

This thesis focuses only on object recognition approaches based on local invariant de-

scriptors. This approach, adopted by Lowe [1], Matas et al. [5] and Bay et al. [2], relies

on local image features, where the aim is to first extract interesting points, edges or re-

gions from the image, describe them numerically and match the descriptions to those of

known objects, object classes or scenes.

The overall process is shown in the Figure 2.1.

Figure 2.1 Overall object recognition process based on local image features. The input

for the process is an image and the usage of matched points is application specific.

The process begins by extracting interest points from a given greyscale image, then

those point are described numerically and finally the produced descriptors are matched

 9

against descriptors extracted beforehand from another image or multiple images. How

the matching point pairs are utilized, depends on the application. They can be used, for

example, to determine the image that best matches the given image [6; 7], robot local-

ization [8] or automatically stitch panorama images [9].

The proposed method in chapter 3 is based on Speeded Up Robust Features (SURF)

presented Bay et al. in [2], thus SURF will be described in the following sections in

more detail than other alternatives. The following sections deal with interest point ex-

traction, description and matching separately.

2.2 Interest Point Extraction

The purpose of this phase is to produce interest points from images that are repeatable,

accurately localizable and in sufficient quantity. Here the terms interest point and key-

point both refer to a point and its local neighbourhood, since a single point in an image,

a pixel, has very little use for object detection in practice [10].

Repeatability means that the same points should be found under different viewing con-

ditions. Unless the interest points are repeatable, they are useless even if they would

fulfil the other two conditions, which makes this the most important property to evaluate

[2]. Interest points also need to be accurately localizable in an image to make them se-

mantically usable in later steps of the detection process. Even though quality goes be-

fore quantity for extracted interest points, the number of points should be sufficiently

large to enable extracting them also from small objects and to provide enough data for

subsequent steps of the process. Too high amount of points, on the other hand, can pose

high computational requirements for processing all of them. [1; 10]

In real world images, the objects are seen differently in different images because the

position of the camera or the illumination changes. In an optimal case, the used method

should be invariant, or at least robust, to these changes to make it usable in real world

conditions. Different viewing conditions include image translation, scaling, rotation,

illumination changes and affine or perspective projection [1]. In the following expres-

sions P presents the original image matrix and P the resulting image matrix after trans-

formation or projection. P (for picture) is used instead of I (for image) in order to avoid

confusion with the identity matrix. The matrices are presented in augmented form to

simplify notation for some of the operations. This is only a mathematical presentation

and the bottom rows have no significance in the real world.

Translation means moving each point in image by constant amount in a given direction.

Translation is a non-linear transformation and in matrix form the translation for images

can be expressed as

 (1)

 10

where Tv is the translation matrix, Px and Py the x and y components of a point P(x,y)

from the matrix P, and v the fixed vector containing the x and y values for the amount

of translation.

Scaling means enlarging or shrinking the image by constant factor. This linear trans-

formation can be presented in matrix form as

 (2)

where Sv is the scaling matrix and v contains the x and y factors for scaling in the corre-

sponding directions.

Rotation is a linear transformation and means rotating the image by constant angle

about the origin. In matrix format rotation of image clockwise about the origin can be

expressed as

 (3)

where Rθ is the transformation matrix and θ is the rotation angle.

Affine projection is a transformation that preserves straight lines and relative distances.

It is equivalent to translation followed by linear transformation. These linear transfor-

mations can be, but are not limited to, scaling or rotation. Affine projection for images

in matrix form is

 (4)

where A is the affine transformation matrix.

Perspective projection, as the analogy from viewing perspective indicates, points to im-

age plane along lines that emanate from a single point. Thus it is a mapping from three

dimensions into a two dimensional plane. [11; 12]

The interest point extraction process for SURF uses a method called Fast-Hessian detec-

tor to detect interest points from a given image. The interest points are here called key-

points. This process is shown in the figure 2.2.

 11

Figure 2.2 Fast-Hessian detector used in SURF. The detector receives an input image

and outputs the keypoint locations.

The first step is to calculate the integral image for the given image. The integral image

at location x=(x, y) contains the sum of the pixels above and to the left of x [13]. The

integral image at location x can be presented as

 (5)

where is the integral image at location x and I(i,j) is the input image pixel inten-

sity value at location (i,j). This is shown in the figure 2.3:

Figure 2.3. Integral image at location (x, y) is the sum of all pixels above and to the left

of it.

 12

Note that the calculation of integral image is performed on a single colour channel of an

image, not for all channels in case of a colour image. Usually a greyscale conversion is

performed before calculating the integral image.

The benefit of the integral image representation is that the sum of pixel intensities of

any rectangular area can be calculated by four additions, as shown in the figure Figure

2.4.

Figure 2.4 Example of integral image usage for calculating the sum of pixel intensities

of a rectangular image area.

Here the sum of the rectangular area ABCD is calculated using the integral image with

the formula

 (6)

where is the sum all pixel intensities within the rectangle ABCD. This enables

efficient calculation of the filter values in the next stage and the integral image itself can

be formed in one pass of the original image. [2; 13]

Once the integral image has been formed, Hessian matrices of second order Gaussian

derivatives are approximated at each point and on different scales. The Hessian matrix

describes the local curvature of a function of many variables and here it is used to detect

potential keypoint locations. In the Fast-Hessian detector the function to be described is

the second order derivative of the Gaussian function

 (7)

where x and y are the coordinates of the image, that is the distance from the origin in the

horizontal and vertical axis, and σ
2
 is the variance [14]. Thus the Hessian matrix to be

approximated is

 13

 (8)

where H(x,σ) is the Hessian matrix at location x=(x, y) and at scale σ. The approxima-

tions used for the Gaussian second order derivatives are done using box filters shown in

the figure 2.5. The approximations for

 ,

 and

 are de-

noted by Dxx, Dyy and Dxy.

Figure 2.5. 9x9 box filters Dxx, Dyy and Dxy approximating Gaussian second order de-

rivatives.

These box filters can be efficiently calculated using the integral image constructed in

the previous step. The determinants of the Hessian matrix are used to determine and

localize the keypoints. The determinant of the approximated Hessian matrix is calcu-

lated as

 (9)

where Happrox is the approximation of the Hessian matrix Here the value 0.9 is used to

balance the weights and is calculated based on filter size and scale. Once this determi-

nant has been calculated at each point on the initial scale, where the sizes the box filters

are 9x9, the filter sizes are increased and the determinants are calculated again. The

used filter sizes are grouped into octaves, each containing four filter sizes, and the filter

size increase is dependent on the octave. For the first octave the filter size increase is 6

and is doubled for the next octaves. The table 2.1 demonstrates the filter sizes.

Table 2.1. Box filter sizes used in calculating the determinates of the approximated Hes-

sian matrix in different scales in case of 4 scales per octave

Octave Scale 1 Scale 2 Scale 3 Scale 4

1 9x9 15x15 21x21 27x27

2 15x15 27x27 39x39 51x51

3 27x27 51x51 75x75 99x99

 14

...

Once the determinant values have been calculated, the local maxima of the determinant

is searched by applying a non-maximum suppression, where a local maximum has

greater value than all its neighbours [15]. This produces the locations of the keypoints.

The suppression is applied to each point´s immediate neighbourhood and also to

neighbouring scales, that is in a 3x3x3 neighbourhood of the points. [2]

After the non-maximum suppression, 3-D quadratic interpolation is performed to pro-

vide keypoint locations with sub-pixel and sub-scale accuracy [16]. The method used is

the one proposed by Brown et al. in [17]. In this method, a 3D quadratic is fitted to the

approximation of the Gaussian. This is shown in the equation (10).

 (10)

Here is the approximation of the Gaussian and x=(x,y,σ)
T
 is the

scale-space coordinate. The location of the keypoint, , is taken as the extremum of

equation (x), which is calculated using the derivative

 (11)

and setting the derivative to zero. [12; 17]

2.3 Interest Point Description

The detected keypoints need to be described in a way that produces features which can

be used in the matching phase. The features should be distinctive, local and efficient to

calculate. Distinctiveness means that the intensity patterns of the keypoints should con-

tain a lot of variation so that features can be distinguished from one another and

matched. Local features can be used even in case of partial occlusion and allow model-

ling of geometric and photometric deformations between two images, which is impor-

tant in the method proposed in this thesis. The distinctiveness requirement however

poses restrictions on the locality of the features, since they need to contain enough

variation in order not to lose their distinctiveness. Efficient calculation is especially im-

portant when using the method in a mobile application. [3]

First the orientation of the keypoint is assigned. This is done because the same key-

points might be rotated differently in different images because either the camera or a

real world object has been rotated between images. This process is shown in the figure

2.6.

 15

Figure 2.6. Keypoint orientation assignment process in SURF. For each keypoint, an

angle representing keypoint orientation is assigned.

The orientation is assigned separately for each keypoint produced by the extraction

phase. The Haar-wavelet responses are calculated in x and y directions. The size of the

wavelet, sampling step and the neighbourhood of the keypoint to be searched are all

dependent on the scale the keypoint was found at. The wavelets used are shown in the

figure 2.7.

Figure 2.7. Haar wavelets used in orientation assignment. The response is a weighted

sum of pixels within an area.

The wavelet sizes as well as the sampling steps are s and the neighbourhood to be

evaluated is a circular region of size 6s around the keypoint. Here s is the scale where

the keypoint was extracted from. Once all the responses in the keypoint neighbourhood

are calculated, they are weighted with a Gaussian centered at the keypoint using value

2.5s for σ. Next step is to use a sliding orientation window covering an angle of 60° at a

time and sum up all the responses within the window. The window producing the larg-

est sum of responses determines the orientation of the keypoint. There is also an upright

 16

version of SURF called U-SURF, which skips the orientation calculation and always

assumes on upright orientation for all the keypoints. This saves computational resources

but is only suited for scenarios where camera rotates around vertical axis. U-SURF is

not used in this thesis. [2]

After the orientation has been determined for keypoints, they are given numerical de-

scriptions in form of SURF descriptors. The process of calculating the descriptor for a

single keypoint is presented in figure 2.8.

Figure 2.8. Calculation of a SURF descriptor for a single keypoint. The input is a key-

point having a location, scale an orientation determined in previous phases and the

output is a numerical feature vector.

First a square region of size 20s is constructed around the keypoint rotated according to

the orientation calculated in the previous step. This region is then divided into 4x4 sub-

regions. For each of the 16 sub-regions, Haar wavelet responses are calculated in x and

y directions and weighted with a Gaussian centered at the keypoint location using value

3.3 for σ. The responses are denoted dx and dy. Note that here x and y directions are

relative to the keypoint orientation, not the original image orientation. The sums of the

responses dx and dy and summed over the sub-region, along with the sums of the abso-

lute responses |dx| and |dy|. This produces four numerical values for each sub-region

(). The values from each sub-region are combined to form a

feature vector consisting of total of 16x4=64 numerical values. This vector is then

scaled into a unit vector to produce the final SURF descriptor for a keypoint. [2; 6].

 17

2.4 Matching Interest Points

The keypoint descriptions alone are of little use unless they can be used to match key-

points from different images or views. One approach is the nearest neighbour matching

method. The idea is to find the best match from a database of reference features for each

feature extracted from a given image while at the same time discard those features for

which a proper match is not found.

Figure 2.9 shows an overview of the nearest neighbour matching process.

Figure 2.9. Nearest neighbour matching method. Keypoint is matched with the closest

reference keypoint is the distance to the second closest big enough compared to the dis-

tance to the closest one.

The process begins by calculating the distance from the keypoint under consideration to

all the keypoints in the reference database in the 64-dimensional feature space. Each

keypoint represents a single point in the features space through its 64-dimensional

SURF descriptor vector. In this thesis the Euclidean distance

 (12)

is used as the distance metric, as done in [6; 12]. In the equation (12), p and q are the

64-dimensional SURF descriptors of the keypoint under consideration and one of the

keypoints from the reference database, respectively. Other metrics have also been used

with this method, like the Mahalanobis distance used by Baumberg in [4].

Once all the distances have been calculated, the two smallest ones are selected. The de-

cision on whether to accept or reject the closest reference keypoint as a match is based

on the relative distances of the two closest keypoints to the keypoint under considera-

tion. This is written as

 (13)

 18

where d1 is the distance to the closest reference keypoint, d2 the distance to the second

closest reference keypoint and α is a numerical constant. Value 0.8 is used for α in [6;

12]. However, a different value is used in this thesis. This is discussed in the next chap-

ter in more detail. Once all the keypoints from the given image are processed, the

matching phase results in a set of corresponding keypoints from another image or from

multiple other images. How this information is then utilized, depends on the application

[4; 6; 12].

 19

3 PROPOSED METHOD

In this chapter, a customized mixed-reality object selection method is presented. The

original intended purpose for the method was to enable a user to point at objects with a

mobile phone, select one of the objects and control it using the phone. For this, suitable

existing methods were examined, and after selecting one, it was modified to better fulfil

the requirements for the specific scenarios.

Here first the use-case scenarios are discussed in order to present the requirements from

object detection point of view and to explain the steps taken before selecting the used

approach. After that, the proposed method is described in more detail by presenting the

overall process and then focusing more on the details of the parts of the process that

were modified from the common process. The use-cases are further described from

more practical point of view in chapter 4.

3.1 Use-Case Scenarios and Background

The initial idea was to make a mobile phone recognize devices present in a home envi-

ronment, like in a living room. The devices considered were mainly TVs, DVD-players,

loudspeakers and such. After a successful recognition of devices, the devices were to be

marked with an icon to enable the user to select and control them. This is shown in fig-

ure 3.1.

Figure 3.1. Example scenario where the detected devices have been marked with icons

on top of them. These icons can be used to initiate interaction with the devices.

 20

This example image shows a case where the application has detected two devices for the

user and provides a means to interact with the devices. In a real scenario, a camera im-

age often contains much information on the background too and the devices themselves

are not so easily distinguished from the background.

When devices like these are viewed using a mobile phone´s camera from several metres

away, in most cases they can be described as small dark-coloured rectangular objects. A

TV and a DVD-player, for example, are still easily distinguished from one another. This

is however not the case between two DVD-players having the same brand but a differ-

ent model, or even the same model but only a different version number. This can be

difficult even for a human being. Very similar looking devices naturally pose a chal-

lenge for a method that aims to distinguish them from one another.

Controlling the devices at home can be done in various ways depending on the device at

hand and not all devices present at home can be controlled using one universal interface.

The way of transferring the commands to devices can include infra red (IR) or wireless

local area network (WLAN) among others. Even if commands to every device could be

transferred in an identical way, each device or device model can react differently to a

given control command and each device can have its own individual control interface.

For example pressing an “arrow right” button on a remote control might cause the TV to

increase volume, but the Blu-ray player might switch to the next scene of a movie.

Though devices from one manufacturer may have partly identical interface, the capabili-

ties of the devices can vary and thus the interfaces for controlling them will vary too. It

was assumed, that knowing the device´s properties as well as possible, it is most prob-

able that the device can also be controlled in a way the user wants to. Because of this,

recognizing the devices to a unique device identification code level became the goal for

the recognition.

The scenarios the method proposed in this chapter was designed for are described in

more detail in the implementations chapter. In this chapter, only the requirements from

the object detection and recognition points of view are discussed.

The specific conditions the approach was designed for resemble conditions in a normal

living room at home. The objects are assumed to be rather permanently stationed. This

limits the types of objects the approach is suited for. TV and such devices do not tend to

move frequently, but remote controls, magazines or toys do. While the detectable ob-

jects themselves were assumed to be stationary, a fair amount of occlusion and other

changes in the environment was assumed. This was the main reason why a method

based on local image features was selected as the basis of the approach, and another

reason was that the approach utilizes background information in addition to the informa-

tion extractable from the devices themselves. This way a person or an object blocking

direct view to the object to be detected or controlled does not necessarily cause consid-

erable issues. Lightning was not given much consideration during the development.

Typical mobile phone cameras do not work very well in dark conditions and thus the

environments were assumed to be well lit to enable the use of the approach with off the

shelf camera phones.

 21

3.2 Object Detection Process

The proposed method is a modified combination of SURF feature detection and nearest

neighbour matching approach. Both of these were described in detail in the previous

chapter. The basic idea is to first extract features from a given image and then find

matching features from reference image or images. These matching features provide

corresponding points between images which can then be used to determine object loca-

tions based on the given image. For most parts, the proposed method follows the com-

monly used feature detection and matching process that is presented in chapter 2. The

modifications proposed in this thesis aim to eliminate incorrect matches both faster and

with smaller error rate than in the standard approach for the considered scenarios.

The proposed object detection process is shown in figure 3.2.

Figure 3.2. Proposed object detection process. The input for the process is captured

image data and it results in object locations, types and identification codes. The steps

marked with numbers 1 and 2 are presented in more detail in figures 3.4 and 3.6.

The process starts when a colour image is obtained from camera sensor. The image data

is first transformed into grayscale in order to reduce the amount of information needed

to process. No subsampling is used here. The actual transformation used depends on the

 22

exact format of the colour data. Two formats are considered in this work: RGB and

YUV. RGB data is converted into grayscale using the formula

BGRY *114.0*587.0*299.0  (14)

where Y is the intensity value of a pixel in the resulting grayscale image and R, G and B

are the red, green and blue component values of the corresponding pixel in the colour

image. The numeric values here are the ones that are used in the software implementa-

tion which was utilized in the thesis. The exact YUV format considered here is the

YUYV [18], where two horizontally adjacent pixels of the colour image are represented

by one macropixel, as shown in the figure 3.3.

Figure 3.3. YUVY image format [18]. Each macropixel represents two horizontally ad-

jacent image pixels. Y is the luminance component and U, V are the chrominance com-

ponents.

The conversion from this colour format to grayscale is done by using each luminance

value Y from the colour image as the intensity values of the grayscale image. The

chrominance components U and V are discarded.

After the colour transformation, SURF extraction is performed on the grayscale data.

This extraction process is described in the previous chapter and it is not modified in any

way for the proposed method. The approach here uses the normal 64 digit long SURF

descriptors.

The SURF keypoints from the live image are then matched against reference keypoints

obtained from a reference image with identical extraction process. Building a reference

database and an efficient way for retrieving data from one was not part of the scope of

this work. Instead, each reference image is processed one at a time in a loop, as shown

in the figure 3.2. After the matching keypoints are found, the weakest matches are

eliminated before proceeding further. The matching and elimination steps are described

in section 3.3.

Once the matching phase is concluded, the locations of the remaining matching key-

points are used to determine the objects that exist in the given image and their locations.

This is done by calculating a perspective transformation between the corresponding

locations from the reference image and the given live image. For this purpose the trans-

formation available in the OpenCV [23] was used. The points used in the transformation

are limited only by the steps described in section 3.3. The software implementation

would also enable the use of RANSAC [19], but this is not utilized here. This is because

 23

the tested RANSAC implementation on OpenCV [23] resulted in poor transformations

and decreased the speed of the matching.

Using the resulting transformation matrix the object locations from the reference image

are transformed into coordinates of the given image. The object is considered to be de-

tected from the given image, if the coordinates of it, obtained through the transforma-

tion, lie within the image boundaries. Before the object is accepted among the found

ones, a check is made whether the same object has been found from previous images or

not.

Due to the SURF limitations, which can be seen in the Results chapter, multiple refer-

ence images from one scene are often used to improve accuracy. This can lead to the

object being detected using more than one reference and thus a decision must be made

about which of these detections to use or should they be combined in some way. During

this work, several methods were tested for this purpose. One way was to use the detec-

tion that placed the object closest to the centre of the given image. Another was to use

the one that was produced by the smallest transformation; that is the one that was found

from the reference that was considered to be geometrically most similar with the given

image. Several methods that tried to calculate a goodness value for each detection based

on various properties of the corresponding keypoints were also tested. These properties

included the absolute and relative differences in keypoint strengths and average dis-

tances of keypoints in the feature space. These methods were compared against select-

ing a random detection and none of them proved to be usable in all situations. As the

added computational costs did not offer considerable improvements, they were aban-

doned and a more simple solution was adopted. If the same object has been detected

from a previous reference the new detection is discarded and the existing one kept.

After the current reference image has been processed, a check is made whether there are

more reference images available that should still be processed. If there are any, the same

steps are performed for each reference image. Once there are no more reference images

to process, we have obtained a list objects detected from the given live image and their

locations in the coordinates of the given live image.

3.3 Modified Nearest Neighbour Matching Method

The overall object detection process in this work is a commonly used one. The actual

modifications are related to the matching phase of the process. The reason for this was

originally that this was the area that lacked usable implementations. During the creation

of such implementations for this work, several issues were faced that required additional

algorithmic development. As the result of this development, the matching phase was

modified to be more suitable for the given scenarios.

The matching phase is divided into two separate tasks, which are marked by numbers

one and two in the figure 3.2. The first task, marked with number one in the figure, is to

find matching points between two images. The second one, marked with number two in

 24

the figure, is to refine the matching by eliminating some of the most probable incorrect

matches.

The first part of the matching phase is shown in more detail in the figure 3.4.

Figure 3.4. Proposed keypoint matching process. The input is the list of keypoints and

descriptors from a given live image and the output is a list matching keypoint pair can-

didates. The grey box shows the part that is added to the nearest neighbour matching

process [4].

The matching process starts after the keypoints have been extracted from the given live

image. The extracted information includes the keypoints and their corresponding de-

scriptors. More detailed explanation of these can be found from chapter 2. Each of these

keypoints are processed one at the time by comparing them against the keypoints ex-

tracted from a reference image. The first step is to find the two closest reference key-

points in the feature space of the keypoint descriptors. As the descriptors used in this

work were the 64 digit long descriptors, the two closest keypoints are the reference key-

points for which the descriptors are closest to the currently processed live keypoint de-

scriptor in the 64-dimensional feature space. Euclidean distance between the descriptors

in the feature space is used as the metric for determining the closest ones.

Once the two closest keypoints have been found, the distance from the currently proc-

essed live keypoint to the closest reference keypoint and the distance from the currently

processed live keypoint to the second closest reference keypoint are examined. The idea

here is to check if the closest reference keypoint is the correct match. At this stage it is

 25

considered to be one, if the second best candidate is far enough compared to the best

candidate. Equation (13) is used as the condition for determining if this is the case. If

the condition is true, then a new keypoint pair is formed out of the currently processed

live keypoint and the closest reference keypoint. The values used for α in this thesis are

0.2 and 0.25. These values are more strict than the value 0.7 used by Bay et. al. in [2] or

0.8 used by Fasel and Van Gool in [6] as the matched keypoint pairs have a higher

probability of being discarded. This is demonstrated in figure Figure 3.5

Figure 3.5. The nearest neighbour ratio matching criteria. The closest reference point

(R1) to the given keypoint (A) in feature space is considered as a match, if it is close

enough compared to the second closest reference keypoint (R2).

Figure 3.5 shows two cases for nearest neighbour ratio matching criteria. In the figure a

2-dimensional feature space is shown. The actual feature space is 64-dimensional. In

Figure 3.5 a) the distance from the given keypoint (A) to the closest reference keypoint

(R1) is 0.1 and the distance to the second closest (R2) 1.0. Thus the condition from

equation (13) is fulfilled using any value greater than 0.1 for α. R1 is considered a

match to A since it´s clearly the only close reference keypoint to A. In Figure 3.5 b) the

distance between A and R1 is again 0.1 but the distance from A to R2 is now 0.2. Now

any value for α which is greater than 0.5 would fulfil the equation (13). The values 0.2

and 0.25 used in this thesis would not produce a match in this case, since there is no

reference keypoint that would be clearly the correct match for A.

The commonly used nearest neighbour ratio matching method does not process the

newly formed pair any further but instead considers that a match was found [6]. The

modifications to the common method are additional checks that are performed on the

newly formed keypoint pair in order to determine if the match was actually a correct

one.

The first addition is to check if the reference keypoint of the new pair has already been

matched with another keypoint from the given live image. The assumption here is that

each point in the given live image has at most one matching point in any one reference

 26

image. More than one match can be correct from the algorithm point of view, for exam-

ple if the image contains two identical objects, like speakers. Even if the local areas of

the image would be identical, or almost identical, the possibly resulting in multiple

matches for one live image keypoint are not desired. This is demonstrated in the figure

3.6, where both matches are locally correct from algorithm point of view, but the match

with the left speaker from the reference image is not desirable.

Figure 3.6. Multiple matches for one point from a given live image. The left image

represents a live image and the right image a reference image. The match with the left

speaker is semantically incorrect.

In most cases this issue should be taken care by different scales of the extracted SURF

features, but this is not always the case in practice. Thus the check is made to prevent

multiple matches, which would be disadvantageous for the geometrical transform later

on. If the reference keypoint of the new keypoint pair has been matched already with

another keypoint from the live image, then only one of the pairs is kept. The pair for

which the live keypoint strength is greater is kept and the other pair is discarded.

If the currently processed live keypoint has not been matched previously with any refer-

ence keypoint, the match might still be an incorrect one. In practice it was observed that

all matches that fulfilled equation (13) were rarely the correct ones, so additional condi-

tions were examined. The properties of the incorrectly matched pairs were compared

against those of the correctly matched pairs in order to create a new condition to elimi-

nate all the incorrect matches. Such a universal condition was not found in this work,

but there were few properties that did distinguish correct matches from incorrect ones in

most cases. The most promising out of these was the Euclidean distance of the live key-

point descriptor and the reference keypoint descriptor in the feature space. Since this

distance was already calculated for the first step of the matching phase, it did not require

much additional computational effort either. No fixed absolute value for this distance

was found that alone could be used as a threshold to distinguish correct matches from

incorrect ones, so selecting a certain amount of the best ones was the approach that was

used.

Here it is first checked if there are already enough matched keypoint pairs against the

currently processed reference image. The amount is defined as percentage of the total

 27

amount of keypoints extracted from the given live image. If the maximum amount has

not yet been reached, then the current pair is added to the list of matched keypoint pairs.

Otherwise another check is made if the current pair has smaller Euclidean distance of

the live keypoint descriptor and the reference keypoint descriptor in the feature space

than the pair that is currently ranked worst out of the accepted matching pairs. If the

distance is smaller than the distance for the worst pair, the worst pair is replaced by the

current pair.

Replacing the worst pairs in a loop can be considered as eliminating keypoint pairs us-

ing a dynamically set threshold which is dependent on the given image data through the

extracted keypoints and their descriptors.

If there are more live keypoints that have not been processed yet, the next one is se-

lected and the same matching process is performed. This is repeated until all the key-

points extracted from the live image have been processed. Once there are no more key-

points to process, the first part of the matching phase is concluded, resulting into a list

of matching keypoint pair candidates.

The second part of the matching phase is shown in the figure 3.7.

Figure 3.7. Proposed keypoint elimination process. The input is the list of matching

keypoint pair candidates from the first part of matching phase and the result is the final

list of matching keypoint pairs. The grey box shows the part that is added to the com-

mon nearest neighbour matching process [4].

This part of the matching phase is performed after the first part has produced the match-

ing keypoint pair candidates. The last steps of the first part of the matching phase dis-

carded a portion of the matched pairs by eliminating the weakest matches. While the

first part eliminated pairs by using a threshold value that was based on the given image

data, the second part of the matching phase eliminates pairs based on a predefined

threshold value. The threshold in the last steps of the first part was for Euclidian dis-

tance between the live keypoint descriptor and the reference keypoint descriptor in the

feature space; here a threshold is used for the ratio between live keypoint strength and

reference keypoint strength.

The assumption that led to this condition was that two keypoints for which the keypoint

strengths deviate from one another by a certain amount are unlikely matches. This as-

 28

sumption was tested by comparing correctly matched pairs to incorrectly matched ones

after the first part of the matching phase and the strength difference was in average

smaller for correct matches than for incorrect matches. The absolute values for keypoint

strengths depended on the images in question so the absolute difference did not offer a

good solution. Instead the relative difference of the keypoint strengths was used to dis-

card most probable incorrect matches.

Two different values for the maximum allowable deviation as a percentage are used in

the second part of the matching process. First the more strict β value, that is the smaller

percentage, is used to eliminate pairs that do not fulfil the condition

  11 R (15)

where β is the maximum allowable deviation as fraction and R is the ratio of the key-

point strengths. The ratio is calculated using the formula

reference

live

S

S
R  (16)

where R is the ratio, Slive is the strength of the live keypoint and Sreference is the strength

of the reference keypoint.

If less than 5 keypoint pairs fulfil the condition (15), the less strict value β is used and

the elimination is performed again on all of the keypoint pair candidates. If again less

than five keypoint candidate pairs fulfil the condition (15), the whole detection process

is aborted prematurely and no objects are considered to be found. If at least 5 keypoint

candidates remain after the elimination process, the detection process is continued as

described in the section 3.2. The more strict and the less strict values for β used in this

thesis are 0.1 and 0.5 respectively.

 29

4 IMPLEMENTATIONS

In this chapter two different implementations are presented, which make use of the ob-

ject detection method described in the previous chapter. While both implementations

have several common goals and design principles, both also have their own distinct ob-

jectives. This chapter only deals with the implementations from design and implementa-

tion points of view. Testing results are presented in the chapter Results.

First the objectives and use-cases for both implementations are presented including the

common ones. Here the implementations are described from a software design point of

view, more detailed object detection perspectives are described in the previous chapter.

Next each implementation is described in more detail including programming tools,

languages and physical devices used and any issues faced during the design and imple-

mentation phases.

4.1 Objectives and Use-Case Scenarios

The two implementations are both called the One-Eyed Wizard (OEW). The name

originates from the analogy of the mobile phone having a one eye, the camera, and prac-

ticing magic by enabling the user to control the environment through the phone. To dis-

tinguish between the two, we use the names „client-server OEW‟ and „standalone mo-

bile OEW‟ here. From the user´s point of view both implementations aim to provide the

user means to detect, select and control devices that exist in home-like environments.

The client-server OEW has a kind of client-server architecture and it consists of two

applications. There is a mobile application running on the mobile phone and a server

application running on an external computer. The mobile application offers the user

interface (UI) and some light-weight functionality. Computationally more expensive

functions are performed on the server application, which is also responsible for storing

image related data. The original purpose of the client-server OEW was to act as a tech-

nical demo for the object detection method described in the previous chapter and to

demonstrate some of the possibilities where this method could be used.

The standalone mobile OEW is a standalone mobile application. All functions described

in this section are performed on the mobile phone and all the data is stored on the mo-

bile phone. This application was created in order to investigate if some of the limitations

of the client-server OEW could be avoided with a different approach.

Both versions share some common design principles. The user was to be able to select

and control objects in a real world using a mobile phone utilizing computer vision. The

user was supposed to be able to control the devices that he or she sees or, more gener-

ally, interact with the surrounding environment. From the technical point of view, the

 30

applications were to be developed using open source software tools and components

freely available to anyone. Both versions were to be modular so that any component

could be replaced with a new one without a need to change the other parts of the soft-

ware. The applications were to use readily available building blocks as much as possi-

ble.

The client-server OEW was designed to enable the use-cases shown in the figure 4.1.

Figure 4.1. Use-cases for the client-server OEW. The user can view the scene through

the viewfinder, detect and control objects or add and remove reference scenes. The user

and the mobile application are involved in all the cases.

The user can view the scene through the camera viewfinder, which is displayed as a real

time video feed on the mobile phone´s display. When the user is pointing at the desired

location, the objects can be detected by clicking on the button at the centre of the screen.

The UI for the viewfinder and detection is shown on the figure 4.2.

Figure 4.2. UI example from the client-server OEW. The left side shows the viewfinder

with the detection button at the centre. The right side shows the detection results with

icons on top of the detected objects.

 31

Clicking on an icon on the detection results screen will show the available control op-

tions. These options can be directly related to a single device, if the icon represents a

real world device. An icon can represent a more abstract object also. Clicking on an

icon placed on top of a loud speaker for example could show options for controlling the

volume of a single device or a group of devices. The actual control interfaces were not

part of the scope of this work. For demoing purposes two interfaces were created. The

first allowed the user to control a media centre. The user was able to view a list of video

files on an external server and play them on the screen connected to the external server.

On the second interface the user was able to browse audio files on the mobile phone and

play them either from the mobile phone´s speakers or stream the audio to play from

speakers of an external device.

The detection requires reference scenes to be stored in advance. A reference scene com-

poses an image and the object locations information. Both versions of the OEW offer a

functionality to add new reference scenes and to remove all existing reference scenes.

For client-server OEW, these functions can be used with the buttons on the viewfinder

UI, as shown in the figure 4.2. Here the button with plus sign on the upper left corner of

the screen is used to create new reference scenes and the button on the upper right cor-

ner is used to delete all existing reference scenes.

The standalone mobile OEW includes most of the use-cases of the client-server OEW,

as shown in the figure 4.3.

Figure 4.3. Use-cases for the standalone mobile OEW. The user can view the scene

through viewfinder, detect objects or add and remove reference scenes. The standalone

mobile OEW does not involve an OEW server application placed on an external com-

puter.

One difference is that no control interfaces were implemented on the standalone mobile

OEW. The devices can be selected in a same way as in the client-server OEW, but no

control interface screen appears. This is because the standalone mobile OEW was fo-

 32

cused on improving the user experience related to the object selection process compared

to the client-server OEW. Another difference to notice is that the client-server OEW

uses an OEW server application for most of the functions. This server application is run

on an external computer. All of the functions of the standalone mobile OEW are per-

formed on the mobile phone itself.

4.2 Client-Server Implementation

The client-server OEW uses the mobile application for UI and communications with the

external devices to be controlled. The computationally heavy detection process is per-

formed on the server application running at an external server to speed up the detection.

Both the mobile and the server application are implemented using Python. Python is an

interpretable object-oriented programming language. It was selected because it was easy

to learn, is available for all major operating systems, has a wide variety of libraries

available and was free to use because of its open source license. It also provided a faster

way to develop small demo applications compared to the alternative, which was C++.

[20]

A mobile application required a suitable application framework for mobile application

development. Qt was selected for this purpose because it was open source, cross plat-

form, had good documentation and an active developer community. Since Qt did not

have an official application programming interface (API) in Python, PyQt was used to

counter this issue. PyQt is a set of Python bindings for the Qt framework. [21; 22]

The object selection using computer vision is a complex process involving various algo-

rithms. It was not practical to implement all the required algorithms from scratch, so a

suitable computer vision library was needed. For this purpose the OpenCV was selected.

It is an open source computer vision programming library for real time computer vision.

OpenCV has a wide range of computer vision related functions available, is constantly

being developed and also has a large active developer community. [23]

As OpenCV‟s Python API did not offer all the necessary functions, which were avail-

able on the OpenCV‟s C++ API though, another API was needed for Python.

PyOpenCv was selected for this purpose. It had the necessary functions that the official

OpenCV Python API lacked and was, like OpenCV itself, a freely available open source

project. [24]

For communication between the mobile application and the server application, a remote

procedure call (RPC) enabling library RPyC was chosen. It was simple to use and of-

fered all the necessary functionalities needed, like calling remote procedures and trans-

ferring data between the systems. [25]

The application required one more component for demoing the device controlling. VLC

multimedia framework was used to communicate with and to control an external media

server. It is free, supports many platforms and codecs and also has a Python API that

satisfied the needs of the client-server OEW for demo purposes. [26]

The overall structure of the application is shown in figure 4.4.

 33

Figure 4.4. UML deployment diagram for the client-server OEW. Mobile phone com-

municates with the external server using remote procedure calls and with 3
rd

 party de-

vices using UPnP.

The application consists of three main parts: the pointing module, the UI module and

the network module. The pointing module is in charge of transforming images into se-

mantically usable information. While this implementation only utilizes computer vision

for the pointing, the application could use other means too with a different pointing

module implementation. The UI module handles the user interaction and the network

module provides connections 3rd party devices and the pointing module.

Figure 4.5 shows the structure of the pointing part of the application.

 34

Figure 4.5. UML class diagram for the pointing part of client-server OEW. RPyCMul-

tiSceneDeviceDetection uses the MultiSceneDeviceDetector remotely, which performs

the actual detection by using the SURFExtractor and DistanceMatcher.

Here the MultiSceneDeviceDetector class is the main component of the pointing mod-

ule. Together with the class RPyCMultiSceneDeviceDetection it provides an interface

to program components outside the module. The data about the reference scenes is

stored in instances of the class ReferenceScene. This data is persisted in a text file when

the application is closed and reloaded once the application is started. SURF features are

extracted from images using the class SURFExtractor and feature matching is per-

formed using the class DistanceMatcher.

The test results for device detection using the above components are presented in the

chapter Results.

4.3 Standalone Mobile Implementation

The standalone mobile OEW was designed to work on the mobile phone without the

need for an external server application. For this implementation, Python was abandoned

as the implementation language and C++ was used instead. The reasons for this change

were potential improvement in processing speed, better support for the necessary API´s

and the possibility to use QML as the language for implementing the UI´s.

QML provided an easy way to create UI´s having good usability and customizability. It

also offered means to decouple the UI from the actual application logic, which was de-

sirable from software design point of view. It is a JavaScript and CSS like declarative

 35

UI language and is integrated into the Qt framework using Qt´s Meta-Object System.

[27]

The overall structure differs from that of the client-server OEW (see figure 4.4). The

structure of the standalone mobile OEW is shown in the figure 4.6.

Figure 4.6. Deployment diagram for the standalone mobile OEW. The application con-

sists of 3 components: user interface, camera control logic and the object detection

logic. All three parts are located in a mobile phone.

The above structure is simplified compared to the structure of the client-server OEW.

No external devices are required anymore and all communication between components

is performed using Qt signals. The three components are loosely coupled through the

use of signals instead of direct method calls. The user interface component is imple-

mented using QML. It provides the UI and notifies other parts of the application about

user actions using signals. It also receives certain signals in order to react to changes in

the application state. The other two components are implemented using C++ and use

signals to communicate with other parts of the program. Within the components them-

selves, normal method calls are used for communication between the classes.

The class structure of the standalone mobile OEW is presented in the figure 4.7.

 36

Figure 4.7. UML class diagram for the standalone mobile OEW. The controller class

initializes the camera control, computer vision and user interface parts of the applica-

tion.

The controller class acts as the main program of the application. It is in charge of creat-

ing and initializing the three parts of the application, that is the camera control, com-

puter vision and the UI. The controller itself has no role after the application is success-

fully initialized, since the application components do not require the controller class to

communicate with each other. The components are loosely coupled and communicate

through events. This mechanism in Qt is called the signals and slots mechanism. Signals

correspond to events that can be triggered explicitly and slots and methods of classes

that the signals can be bound to e.g. event handlers. The controller thus initializes the

classes and makes the necessary signal/slot bindings, after which the program flow is

controlled by signals.

The camera control and the computer vision based processing parts are places in their

separate threads to enable them to operate concurrently. This makes it possible to show

the camera feed on the UI without interruptions from the computationally heavy com-

puter vision processing.

The object detection part is similar to that of the client-server OEW in most aspects. The

biggest difference is due to aim for real-time detection from the camera feed. This was

not possible with the client-server OEW since the image acquisition, transfer to external

computer, actual detection process, getting the results back and showing them took

more than a second, sometimes several. For a real-time detection, this time needed to be

reduced by at least an order of magnitude. For this reason, a slightly different approach

was used.

Instead of detection object from every frame in an identical way, frames are processed

differently based on the results of the previous frames. The process is described in fig-

ure 4.8.

 37

Figure 4.8. Detection approach of the standalone mobile OEW. For most frames, the

detection is only performed for areas near previous matches and the areas that were not

present in the previous frame.

For the first frame and also for any frame after an unsuccessful detection, the whole

frame is used for the detection. After a successful detection, only parts of the successive

frames are used for detection. The areas used are the areas surrounding the keypoints

that were successfully matched in the previous frame and the areas that were not present

in the previous frame.

For determining the parts that were not present in the previous frame, a rough estimate

for the motion is calculated for each frame. This estimate is based on the location of a

single object found from two frames and thus requires that the same object is found

from two frames, frame n and frame n+1. If such an object exists, the estimate for the

motion is the difference of the calculated object location in x and y directions. The esti-

mate does not take into account any image transformations except for the simple trans-

lation.

Based on the estimate, certain areas next to the edges of the frame are included in the

detection. If the estimate cannot be calculated, then only the surrounding areas around

10 keypoint locations from frame n are used as the areas where keypoints are searched

in frame n+1.

 38

5 RESULTS

This chapter describes the results of tests for measuring the accuracy of the proposed

method. The results were obtained using the object detection component of the client-

server OEW implementation. The goal was to assess the accuracy of the detection algo-

rithm implementation in different environments and viewing conditions.

First the testing and evaluation arrangements are presented. This includes the measure-

ment arrangements and process. Then the actual results are presented and analyzed. The

discussion section includes an analysis of the results presented and also discussion on

the achievements and shortcomings of the work from method and software design

points of views.

5.1 Test Arrangements

The implementation was evaluated using image data gathered from four different living

room-like environments. Each of the environments contained a TV and varying other

devices and furniture. Example images from the used environments are shown in the

figure 5.1.

Figure 5.1. Reference scenes used in the evaluation. The locations are numbered 1-4,

from left to right, top to bottom.

 39

In each environment four artificial object positions were determined. The positions were

selected in such a way that the positions were accurately identifiable from each image

and that the positions were as far away from each other as possible but still visible in all

of the test images. In practice the positions were selected to be at the corners of real

objects in the images, since these positions could be most accurately identified from

different images. The positions were in no way correlated with the actual keypoint posi-

tions that the algorithm used.

The displacement between the ground truth and the object locations found by the im-

plementation was used as the indicator of accuracy. Euclidian distance between the ac-

tual object position and the position produced by the implementation in pixels was used

as the measure. Thus the smaller the distance, the better the accuracy.

The purpose was to evaluate the general accuracy of the implementation and the effect

of environment and viewpoint changes on the accuracy. These viewpoint changes in-

clude viewing angle, camera rotation, panning angle and viewing distance.

Lightning was kept as constant as possible during the tests. This was because subjective

tests did not show noticeable decrease in accuracy due to lightning changes as long as

the lightning was comparable to normal indoor lightning or daylight. Dark environments

were not in the scope of this work. Also it proved to be difficult to adjust the lightning

of the tested environments to more than one level in a way that would have been mea-

rurable or even repeatable.

The effect of environment was assessed by comparing the results from the above four

environments to each other. The viewpoint changes are shown in figure 5.2.

 40

Figure 5.2. Viewpoint changes for accuracy evaluation. a) shows the setup for viewing

angle changes, b) for panning angle, c) for camera rotation and d) for viewing distance

changes.

Ten different viewing angles were used in the measurements ranging from zero to 45

degrees in steps of 5 degrees. The angle was measured from the line perpendicular to

the TV screen. The viewing angle setup is shown in the figure 5.2 a).

Six values for camera panning angle were used between zero and 25 degrees in steps of

5 degrees. The angles were again measured from the line perpendicular to the TV

screen. Bigger angles were not used since for those the camera view did not contain all

of the defined object positions. The panning angle setup is shown in the figure 5.2 b).

Seven angles were used for camera rotation around the camera lens axis. The values

used were between zero and 90 degrees in steps of 15 degrees. The zero degree position

was set to be the normal horizontal camera position. The setup for rotation is shown

figure 5.2 c).

Each of the above three viewpoint changes was tested from two different viewing dis-

tances measured from the TV screen. The distances used were two and four meters, as

shown in the figure 5.2 d).

Each viewpoint change was applied one at a time. For each environment this resulted in

46 test images plus one additional image that was used as the reference image for the

implementation. This reference image was taken from distance of three meters from the

 41

TV with no rotation, viewing angle and panning angle. In addition to these images, six

other images were taken from environment number two to evaluate the maximum dis-

tance where the implementation would still be usable. Thus the total number of test im-

ages was 190 plus 4 reference images.

Figure 5.3. Test images for viewing angle change. Images are taken from environment

number two from distance of 4 meters.

Figure 5.4. Test images for panning angle change. Images are taken from environment

number two from distance of 4 meters.

Figure 5.5. Test images for camera rotation change. Images are taken from environ-

ment number two from distance of 4 meters.

Figure 5.3 shows the ten different viewing angles used in testing for one distance from

one environment. The angle values are shown in the figure 5.2 a). Figure 5.4 shows the

 42

6 panning angles used in testing for one distance from one environment. The angle val-

ues are shown in the figure 5.2 b). Figure 5.5 shows the seven camera rotation angles

for one distance from one location. The values for the angles are shown in the figure 5.2

c).

Each image was taken using the same mobile phone that was used to develop and run

both of the implementations. The resolution of the images was 2560x1440 pixels. From

the original size, the images were reduced to quarter size in both horizontal and vertical

directions to produce images of size 640x360 pixels. This size was similar to the one the

actual implementation uses (640x480).

For every image, each object position was determined manually to obtain the ground

truth that was used in comparison with the results that the implementation produced. As

the positions were selected to be in clearly identifiable locations, like corners, it was

possible to determine the positions accurately by zooming the image into level of sev-

eral individual pixels. The manual position identification process was repeated twice to

minimize the effects of this manual process on the accuracy results. Thus the x and y

coordinates each of the three objects in each of the 190 test images were identified to

create the data to compare the implementation results to.

5.2 Test Results

Results from the test arrangements from the previous section are described by dealing

with each type of viewing condition change from Figure 5.2 separately. The figures here

present the average displacement between the ground truth object locations and the lo-

cations produced by the used algorithm.

The results in case of changes in the viewing angle, described in the Figure 5.2 a), are

shown in the Figure 5.6.

 43

Figure 5.6. Average object displacement versus viewing angle.

Here each point represents the average displacement of eight objects: each image con-

tained four objects and each viewing angle was measured from two distances for each

location. It can be seen that the accuracy of the algorithm starts to decline rapidly after

20°-25°. When the camera is rotated less than twenty degrees, the average displacement

remains below 10 pixels. With bigger angles however, the error starts to show to the

user, which hinders the user experience.

As SURF is not affine invariant and changing the viewing angle by rotating the camera

around the objects causes affine deformations to the image, the above results are ex-

pected. As a workaround to this SURF limitation, the used method provided the option

to use more than one reference image. Figure 5.7 shows the results for changing view-

point angle when using two reference images instead of one as in Figure 5.6.

 44

Figure 5.7. Average object displacement versus viewing angle when using two reference

images.

Here the second reference image was one of the test images for each location, the one

taken from distance of four meters and viewing angle of 25 degrees. It was up to the

algorithm to decide which reference image to use in each case.

Compared to the results shown in Figure 5.6, the average displacement was decreased

considerably, particularly for the largest angles. Note the change in the scale of the y-

axis between the two figures. The improved accuracy comes with a cost however. The

computational effort is doubled when the reference database is built from separate im-

ages and there is not efficient means for comparing except to compare to each reference

image one at a time. This is the case with the proposed method in the thesis. Also in

practice each additional reference image requires additional effort from the user since

the reference locations for objects need to be set for each reference.

The method is more robust to camera panning angle described in the Figure 5.2 b). The

results for panning angle are shown in the Figure 5.8.

 45

Figure 5.8. Average object displacement versus panning angle.

The average displacement in this case remains below five pixels. The differences be-

tween different locations are more significant than differences between panning angles.

The effects of camera rotation, as shown in the Figure 5.2 c), are shown in the Figure

5.9.

Figure 5.9. Average object displacement versus camera rotation.

 46

Camera rotation has some effect on the accuracy, but again the environment seems to

have a bigger effect. This is expected, as SURF is rotation invariant. The rotation does

however somewhat change the area of the environment visible in an image. For example

areas visible near horizontal edges are not visible anymore when the camera is rotated

90 degrees. This can also be seen by comparing the areas the image covers in the 0° and

90° cases in Figure 5.2 c). If the original image contains distinctive keypoints in these

areas, the accuracy might decline when the camera is rotated.

Viewing distance has some effect on the accuracy. The average error for all the meas-

ured displacements from distance of two meters was 23 pixels while the corresponding

value for four meters was 12.5 pixels. If the values for viewing angle above 20 degrees

are discarded, then the average errors for two meter distance and four meter distance are

6.7 and 1,7 pixels, respectively. The median displacements were 3.4 and 1.1 pixels and

standard deviations 9.5 and 1.9 pixels. All these results indicate that the method does

not work well when used too close to the desired objects. Larger distance offers more

background data which enhances the accuracy of the method. Particularly well this can

be seen in the results from the environment 1, which contains a lot of plain white wall

having little distinctive features. There many images from the two meter distance suffer

from lack sufficiently distinctive keypoints.

The maximum usable distance was searched by measuring the accuracy by moving the

camera as far from the TV as possible. Due to spatial constrains in the environments,

only environment number 2 had enough room to make such measurements from more

than 5 meters away and even there no other changes in the image could be used simul-

taneously. No increase in average displacement was observed up to 7 meters away,

which was the maximum distance possible as the room was not long enough for longer

distances.

5.3 Discussion

The results show that the method is accurate under restricted conditions, but suffers

greatly from big changes in the viewing angle compared to the reference images. This is

in line with the SURF´s abilities and limitations described in the literature. These can be

partly overcome with certain workarounds like using more than one reference for a sin-

gle environment. The accuracy of the method is good enough to enable it to be used in

real world applications. However, very low lightning or big changes in viewing angle

can produce errors which severely hinder the user experience.

The images used in the testing were very similar to the live images used by the actual

application, but not identical. This is one possible source of error in the results. Also the

test images were taken while the camera was firmly attached to a tripod, so the tests do

not take into account possibly poorer image quality caused by the user‟s movement with

the camera. The subjective tests with live images in various environments do support

the test results. This indicates that the difference between the test setup and real world

usage scenarios is not significant.

 47

The tedious reference addition process is a mandatory requirement for this approach. At

the same time it makes the whole detection process simple, but also requires additional

effort from the user before the application could be used. Also considerable changes,

like redecoration, would require that the reference images are added anew.

The method is not sensitive to small occlusions since it utilizes local image features

from the whole image instead just from the objects themselves. Obviously this does

increase computational requirements as the amount of information to process is larger.

From the software design point of view, the results show that an implementation using

freely available open source components can be made into a working object detection

application. Aside from the modified keypoint matching process, the object detection

parts of both implementations utilize OpenCV´s APIs without modifications to them.

The keypoint matching process needed additional functionality that was not available

from OpenCV or did not work as expected. Here the proposed additions to the com-

monly used method offer better accuracy and performance than the implementations

from OpenCV. This might be due to errors in the OpenCV implementation at the time

or because the implementation did not work as desired with the scenario used in this

thesis.

The standalone mobile implementation shows that the whole detection process is possi-

ble to perform on the mobile phone. This does slow the process down however and the

detection times for the first frames for the standalone mobile application are too slow

for a commercially viable application. In subjective tests the time taken to detect objects

from the first frame was several seconds, usually at least 4, and for the successive

frames around 0.25 to 0.5 seconds. The client-server implementation fares better in this

sense. The detection times in subjective tests were 1-3 seconds, but it requires a good

network connection to a server with sufficient computational resources at all times and

the network has a big effect on the overall detection time. This limits the possible usage

scenarios for such an application.

There was no reliable way to compare the computational performance of the used PC

and the mobile phone. The exact hardware was not known for either and comparing

only processor clock rates was not sufficient. Also the software packages used were not

built for a mobile device and this adds another unknown factor to the performance com-

parison considerations. Thus comparing the detection speeds of the two implementa-

tions was not sensible or even possible.

 48

6 CONCLUSIONS

The open source tools can be used for building computer vision applications for mobile

devices. What most of them lack in documentation and support they compensate with an

active developer community, which also improves the chances that the tools are devel-

oped further. The developer community activeness proved to be a good criterion for

selecting the tools to be used.

The readily available software components alone did not fulfil the requirements for the

implemented applications. The proposed and implemented enhancements improved the

performance of the selected object detection approach for the concerned scenarios. The

results show that the used method is accurate enough for a commercial end-user appli-

cation in most cases, but it has certain restrictions which limit the potential usage sce-

narios. Also the time taken to produce the detection results is too high for a pleasant

user experience, particularly for the standalone mobile implementation.

As the thesis mainly focused on testing if the target scenario is achievable using the

readily available tools, it left a lot of room for further investigation related to optimizing

speed and accuracy as well as the user experience. The program code followed good

programming practices in most cases but it was in no way optimized for performance,

which leaves an open question whether a significant performance improvement could be

gained by software optimization only.

The accuracy of the method depends on the image conditions, but the used parameters

for the computer vision algorithm also play a big role. For the client-server implementa-

tion a good amount of time was spent on finding parameter values that perform well

enough under various conditions. The parameter optimization was not done for the

standalone mobile implementation which shows as poorer accuracy. One option would

be not to try to find one set of universal parameters but instead try to find the connection

between environment conditions, like lightning or image complexity, and working pa-

rameter values. This kind of a dynamic parameter setting would be an interesting topic

to examine and could very well improve the performance of the approach. More opti-

mized parameters would also provide better grounds for evaluating the potential of the

proposed method for the used and other scenarios.

Even though the thesis focuses on computer vision and its usage in mobile software,

considerable amount of time was also spent on designing a good user interface. The

application to detect and interact with devices is not a simple one from the user interface

point of view and improving the usability would be needed if a similar end user applica-

tion would be built. The user interfaces in the implementations are based on the subjec-

 49

tive views of the developers only, but for a good usability a much larger group of poten-

tial end users would need to be consulted.

The thesis shows that accurate computer vision based device detection can be imple-

mented using readily available tools with certain additions. Open software components

provided all the necessary tools for it. The accuracy of the proposed method is sufficient

for end user applications and the accuracy increases when the physical area visible in

the camera image increases. Computer vision and open source libraries provide the

means for anyone with basic software development skills to build interesting and im-

pressive new applications.

 50

REFERENCES

[1] Lowe, D.G., Object recognition from local scale-invariant features. Proceedings

of the Seventh IEEE International Conference on computer vision volume 2, Corfu,

Greece, September 20-27, 1999. IEEE. pp. 1150-1157.

[2] Bay, H., Tuytelaars, T., Van Gool, L., SURF: Speeded Up Robust Features.

Computer Vision–ECCV 3951(2006)2, pp. 404-417.

[3] Tuytelaars, T., Mikolajczyk, K., Local invariant feature detectors: a survey.

Foundations and Trends in Computer Graphics and Vision 3(2008)3, pp. 177-280.

[4] Baumberg, A., Reliable Feature Matching Across Widely Separated Views. Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton

Head, USA, June 13-15, 2000, IEEE. pp. 774-781.

[5] Matas J., Chum, O., Urban, M., Pajdla. T. Robust Wide Baseline Stereo from

Maximally Stable Extremal Regions. Image and Vision Computing 22(2004)11, pp.

761-767.

 [6] Fasel, B., Van Gool, L., Interactive Museum Guide: Accurate Retrieval of Ob-

ject Descriptions. Proceedings of the 4th international conference on Adaptive multime-

dia retrieval: user, context, and feedback, Geneva, Switzerland, July 27-28, 2007,

Springer. pp. 179-191.

[7] Lee, S.H., Choi, J., Park, J., Interactive e-learning system using pattern recogni-

tion and augmented reality. IEEE Transaction on Consumer Electronics 55(2009)2, pp.

883-890.

[8] Se, S., Lowe, D., Little, J., Mobile Robot Localization and Mapping with Uncer-

tainty using Scale-Invariant Visual Landmarks. The International Journal of Robotics

Research 21(2002)8, pp. 735-758.

[9] Brown, M., Lowe, D., Recognizing Panoramas. Proceedins of the Ninth IEEE

International Conference on Computer Vision volume 2, Nicce, France, October 13-16,

2003. IEEE Press. pp. 1218-1225.

[10] Mikolajczyk, K., Shmid, C., Scale & Affine Invariant Interest Point Detectors.

International Journal of Computer Vision 60(2004)1, pp. 63-86.

[11] Szeliski, R., Computer Vision: Algorithms and Applications. 2011, Springer.

832 p.

 51

[12] Lowe, D.G., Distinctive Image Features from Scale-Invariant Keypoints. Inter-

national Journal on Computer Vision 60(2004)1, pp. 91-110.

[13] Viola, P, Jones M.J., Robust Real-Time Face Detection. International Journal of

Computer Vision 57(2004)2, pp. 137-154.

[14] Nixon, M., Aguado, A.S. Feature Extraction & Image Processing. 2nd edition.

2008, Academic Press. 424 p.

[15] Neubeck, A., Van Gool, L., Efficient Non-Maximum Suppression. Proceedings

of the 18th International Conference on pattern recognition, volume 4, Hong Kong,

China, August 20-24, 2006. Los Alamitos, CA, USA, IEEE Computer Society. pp. 850-

855.

[16] Eshan, S., Kanwal, N., Bonstanci, E., Clark, A.F., McDonald-Maier, K.D,

Analysis of Interest Point Distribution in SURF Octaves. 3rd International Conference

on Machine Vision, 2010, pp. 411-415.

[17] Brown, M., Lowe, D.G., Invariant Features from Interest Point Groups. Elec-

tronic Proceedings of the 13th British Machine Vision Conference, Cardiff, UK, Sep-

tember 2-5, 2002, BMVA. pp. 253-262.

[18] YUV Image Formats [WWW]. [Referenced 27.5.2012]. Available at

http://www.fourcc.org/yuv.php.

[19] Fischler, M.A., Bolles, R.C., Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography. Com-

munications of the ACM, 24(1981)6, pp. 381-395.

[20] Python Programming Language [WWW]. [Referenced 28.5.2012]. Available at

http://www.python.org/.

[21] Qt – Cross-platform application and UI framework [WWW]. [Referenced

28.5.2012]. Available at http://qt.nokia.com/.

[22] What is PyQt? [WWW]. [Referenced 28.5.2012]. Available at

http://www.riverbankcomputing.co.uk/software/pyqt/intro.

[23] OpenCV [WWW]. [Referenced 28.5.2012]. Available at

http://opencv.willowgarage.com/wiki/.

http://www.fourcc.org/yuv.php
http://www.python.org/
http://qt.nokia.com/
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://opencv.willowgarage.com/wiki/

 52

[24] pyopencv [WWW]. [Referenced 28.5.2012]. Available at

http://code.google.com/p/pyopencv/.

[25] RPyC [WWW]. [Referenced 28.5.2012]. Available at

http://rpyc.sourceforge.net/.

[26] VLC multimedia player and framework [WWW]. [Referenced 28.5.2012].

Available at http://www.videolan.org/vlc/index.html.

[27] Qt Quick – including QML, Qt Creator and the Qt Quick UI runtime [WWW].

[Referenced 28.5.2012]. Available at http://qt.nokia.com/qtquick/.

http://code.google.com/p/pyopencv/
http://rpyc.sourceforge.net/
http://www.videolan.org/vlc/index.html
http://qt.nokia.com/qtquick/

