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ABSTRACT
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October 2015
Major: Wireless Communications Circuits and Systems
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band based cooperative spectrum sensing, noise uncertainty.

Wireless communication technology with traditional rigid spectrum allocations and low
scalability is wasting lots of spectral resources. Spectral congestion is becoming criti-
cal with heavily increasing utilization of wireless communications technology. Cognitive
radio (CR) technology with dynamic spectrum management capabilities is widely ad-
vocated for utilizing effectively the unused spectrum resources. The main idea behind
CR technology is to trigger secondary communications to utilize the unused spectral re-
sources. However, CR technology heavily relies on spectrum sensing techniques which
are applied to estimate the presence of primary user (PU) signals.

The studies of this thesis focus on energy detection (ED) based semi-blind sensing
schemes. ED based sensing only requires the knowledge of noise variance, which can
be obtained according to the previous noise measurements. To counteract the practical
wireless channel effects, collaborative approach of PU signal estimation i.e., coopera-
tive spectrum sensing (CSS) techniques are investigated. CSS eliminates the problems
of both hidden nodes and fading multipath channels. Additionally, subband based CSS
scheme will be developed. Fast Fourier transform (FFT) and analysis filter bank (AFB)
based receiver side processing methods are used. Subband energies are then processed
for ED based CSS methods. The studies show that filter bank based multicarrier (FBMC)
waveform with better spectral containment improves the performance significantly. Ad-
ditionally, cooperative maximum-minimum energy detection (Max-Min ED) method is
proposed. The proposed method is immune to the noise uncertainty effects, which is a
critical issue in traditional ED based spectrum sensing. Cooperative maximum-minumum
energy detection (Max-Min ED) shows better spectrum sensing performance compared
with traditional CSS schemes under noise uncertainty conditions.

Overall, the thesis contributes to better understanding and handling of subband based
CSS in CR system. The proposed novel cooperative Max-Min ED greatly reduces the
complexity compared to existing techniques which are robust to the noise uncertainty
effects. These contributions are expected to provide a useful tool for the design and
implementation of flexible, efficient, and simple spectrum sensing mechanism for CR
technology.
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1. INTRODUCTION

1.1 Background and Motivation

With the growing attention in wireless communication, spectral scarcity is becoming mod-
ern days’ challenge. Higher demand of spectral bandwidth is pushing spectrum usage to
utmost limits. However, the limitations of traditional wireless technology leads to lots of
spectrum wastage, inviting opportunistic usages of those rare unused resources [1]. These
studies mainly focused on technologies that solve the problem of spectral scarcity by us-
ing opportunistically the frequency band to establish secondary communication. Such
technology is commonly known as cognitive radio (CR). CR technology defines new
dimension to the modern communication system advocating environment adaptive radio
transmission [2]. CR keeps track of the radio transmission environment continuously
while it dynamically varies its transmission parameters so as to adjust its operation to the
surroundings. Hence, managing of the secondary communication to the utmost perfection
depends on the following three CR functions:

• Radio-scene analysis,

• Estimation of channel state information (CSI) including predictive modeling,

• Transmit-power control and dynamic spectrum management.

Radio-scene analysis has two functions of estimating interference temperature and de-
tection of spectral holes. Spectral holes are the band of frequencies assigned to a primary
user, but, at a particular time and specific geographic location, the band is not being uti-
lized by that user. CSI estimation and predictive modeling is another step, where CSI is
estimated using either differential techniques or via the pilot transmission. Third and the
final step is the transmit-power control and the dynamic spectrum management that con-
trols the transmit power withing each frequency slot of the used frequency band in order to
manage spectrum dynamically. Here the power control mechanism is either cooperative
or non-cooperative [3] [4]. However, the most important step among the three is radio re-
source analysis, as CR technology heavily relies on the results of radio scene analysis. As
PU is solely authorized to spectrum usage, radio scene analysis is considered as a gateway
to the secondary communication. Hence, secondary communication heavily relies on the
number of spectral holes [3]-[6]. The mater of primary interest is that spectrum sensing
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predicts precisely the available holes so as to trigger secondary communication [7]. Our
studies mainly focused on the radio scene analysis i.e., spectrum sensing.

Spectrum sensing based CR technology is considered as highly interesting topic in
wireless communications. Spectrum sensing, in other words, involves tracking of the
PU activity so as to estimate the spectral holes. Different sensing algorithms find the
availability of spectral holes as an opportunity to enable the secondary communication.
Recent studies have suggested a wide variety of spectrum sensing techniques, but none of
them is fully satisfying in terms of all relevant metrics like implementation complexity,
reliability, and loss in secondary system throughput. Especially, spectrum sensing under
low signal to noise ratio (SNR) is widely covered in the literature, under conditions where
the noise dominates the weak PU signal. Under these conditions, the spectrum sensing
becomes very critical to imperfect knowledge of the power and characteristics of the noise
[8] [9] [10].

Spectrum that is originally assigned to the PU can be used by secondary user (SU)
if and only if PU becomes idle. Since SUs can only use spectrum as an opportunity,
spectrum sensing has a great role to play in CR technology. Regarding the importance
of the radio scene analysis function, basic spectrum sensing methods show numerous
limitations. Shadowing, hidden node problems, etc., always make spectrum sensing chal-
lenging. A PU transmission may be unobservable for a CR sensing station while its signal
is fully usable by a nearby PU receiver. In order to make the spectrum sensing function re-
liable, efficient, and to counteract both multipath and hidden node problems, cooperative
spectrum sensing (CSS) comes into the light. CSS involves two or more cooperative
radio receivers in decision making during spectrum sensing. Recent research [11] [12]
suggests possibility of collaboration among number of CR users to enhance the detection
performance. Our studies further exploiting the collaborative approach of spectrum sens-
ing commonly termed as CSS. The studies of this thesis mainly focus on those spectrum
sensing methods that add the collaboration among a number of CR receivers to enhance
the detection performance and to counteract practical wireless channel effects . CSS ex-
ploits the diversity among a number of CR receivers having different multipath channel
profiles and experience different large-scale fading (shadowing) characteristics towards
the PU transmissions [13] [14].

Additionally, the studies in this thesis considers the novel Max-Min ED based CSS.
Specifically, this thesis extends the earlier studies of our group on Max-Min ED [15] [16]
to cooperative spectrum sensing. The proposed novel method is expected to effectively
overcome the issue of noise uncertainty with remarkably lower implementation complex-
ity compared to existing methods. For the subband decomposition, both FFT and analysis
filter bank (AFB) techniques are considered and the resulting performance is compared.
The developed algorithm with reduced complexity, enhanced detection performance, and
improved reliability is presented as an attractive solution to counteract the practical wire-
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less channel effects under low SNR [17] [18].

1.2 Objectives and Scope of the Thesis

The objective of the studies is first to analyze the existing spectrum sensing techniques.
Then novel sensing schemes are proposed to solve practical challenges. The studies
mainly focus on cooperative sensing techniques. Hard decision based fusion rules, such
as "AND rule", "OR rule" and "Majority rule", are implemented to exploit collaboration
among CR users. Our studies do not cover soft decision based CSS, which remains as
an important topic for future work. Additionally, an effective subband based spectrum
sensing method is elaborated for the CSS application. MATLAB based simulation model
is developed for validating and evaluating the performance of the developed methods.

1.3 Outline of the Thesis

The thesis is organized into six chapters. It introduces the CR technology and its spectrum
sensing techniques. The study is this thesis is focused on the energy detection (ED) based
schemes, which are semi-blind methods. They need no prior PU information other than
noise variance. The main focus is on collaborative approach among a number of SUs and
termed as CSS. The thesis proposes subband based CSS approach as a novel scheme to
solve issues introduced by practical wireless channel effects.

The Structure of the thesis is as follows:

• Chapter 2 covers the CR technology and its functions. Additionally, the chapter
introduces spectrum sensing algorithms. Specifically, the chapter converges on ED
based techniques.

• Chapter 3 covers the traditional collaborative approach to counteract the practical
wireless channel effects. The chapter converges to cooperative strategies based on
ED based spectrum sensing techniques. Additionally, the chapter includes simula-
tion results for basic CSS schemes which are analyzed accordingly.

• Chapter 4 covers the subband based spectrum sensing techniques. The chapter
proposes novel FFT and AFB based cooperative sensing techniques. The chapter
also includes the simulation results and analysis of the proposed solution.

• Chapter 5 proposes a novel maximum-minimum ED based CSS. The novel scheme
reduces complexity and is robust to the noise uncertainty. Additionally, the chapter
includes simulation results and analysis of the proposed scheme.

• The final chapter summarizes the results and learning of this work.
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2. COGNITIVE RADIO AND TRADITIONAL
SPECTRUM SENSING

In this chapter, CR and its functions are discussed. Recalling the literature on CR tech-
nology, the studies are mainly centered on its radio scene analysis function i.e., spectrum
sensing techniques. Chapter considers three different functions of CR technology. After
completion of this chapter we aim to learn the following aspects:

• CR and different functions of CR technology.

• Radio scene analysis function and its importance in CR technology.

• Various spectrum sensing techniques with their advantages and drawbacks. The
methods are classified to blind, semi-blind and non-blind spectrum sensing tech-
niques.

• Working principle of ED based semi-blind techniques and subband based methods.

This chapter covers the CR and spectrum sensing techniques in general. Section 2.1
is an outline of CR technology and covers its evolution, advantages, and main functions.
Section 2.2 gives the description of selected important spectrum methods, with emphasis
on ED based techniques. Section 2.3 presents the system model for spectrum sensing
studies, including the PU signal model and channel models.

2.1 Cognitive Radio

With increasing spectral congestion of the radio spectrum, CR is now emerging as a
promising solution. According to the Federal Communications Commission (FCC) only
a few portions of the spectrum is being utilized effectively whereas the rest of the precious
spectrum is partially wasted [1]. According to the research reports [2] [5] some frequency
bands in the spectrum are largely unoccupied most of the time while some others are only
partially occupied and the rest are heavily used. The under utilization of the spectrum
leads us to think in terms of spectral holes which can be defined as bands of frequencies
assigned to a primary user, but, at a particular time and specific geographic location, the
band is not being utilized by that user [4]. CR technology is now emerging as a solution
to utilize that band which is mostly underutilized by licensed users. CR can automat-
ically detect available channels in the wireless spectrum so as to use the best wireless



2. Cognitive Radio and Traditional Spectrum Sensing 5

channels in its vicinity. Hence CR can accordingly change its transmission parameters by
estimating its current wireless channel conditions to manage more efficiently concurrent
wireless communications in a given spectrum band and location [6]. CR technology in-
volves three steps: The first one is radio-scene analysis which involves determination of
spectral holes, i.e., spectrum sensing. The second one is the channel identification which
involves the both CSI estimation and identification of channel capacity. The third and the
last step is the controlling of transmit power in different slots of the used frequency band
[3]. CR applies the concept of unused bandwidth utilization only when the licensed PU is
in idle mode [4]. CR is based on the concept of software defined radio (SDR) architecture,
which provides the possibility to adjust the radio parameters in real time with the aid of
radio scene analysis and transmit power control [4][20].

SU is allowed to utilize spectrum when PU is in idle mode. Spectrum sensing becomes
critical to determine the availability of particular spectrum. In other words, spectrum sens-
ing has pivotal role on CR network to ensure the good secondary communication for SU
usage. The reliability of CR networks highly depends on spectrum sensing accuracy, ir-
respective of the CR network architecture. With shadowing, hidden node problem and
multipath effects, a single CR receiver cannot predict reliably the actual spectrum avail-
ability. To mitigate those effects, the concept of collaborative approach i.e., CSS has
evolved. CSS introduces the cooperation among two or more CR receivers to determine
the availability of PU spectrum [4] [15] [16].

2.2 Spectrum Sensing Methods for Cognitive Radio

Identification of the underutilized spectrum is the main task of the spectrum sensing func-
tion. In sensing based CR system, secondary communication solely depends on the spec-
trum sensing function of CR technology. As channel conditions vary continuously, regular
monitoring is required for effective CR operation, including cooperation with other users
[4][15][16]. Frequency spectrum can be categorized into three different types according
to the activity on subbands: white space band, grey space band, and black space band
[19]. White space band refers to the band which is free and only contains noise. Grey
space band refers to the band with partial or uncertain occupancy. Black space band refers
to the band that is fully occupied. Spectrum sensing determines both the white space band
and grey space band to check the availability of the spectrum.

Various steps and challenges that are involved in spectrum sensing have been portrayed
in Figure 2.1. Challenges and the enabling algorithms of the spectrum sensing techniques
are covered in this figure. Additionally, the figure includes both the standards that employ
the spectrum sensing and the sensing approaches. Challenges have been classified as
follows:
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Challenges:

• hardware requirements,

• hidden PU problem,

• spread spectrum systems, and

• sensing frequency and duration.

Figure also portrays the enabling algorithms and further classified into as follows:
Enabling algorithms:

• matched filtering,

• ED,

• spectral correlation,

• radio identification based sensing, and

• waveform based sensing.

Since spectrum sensing is one of the critical functions in CR technology, it needs to
be efficient and effective. Time- and frequency-domain as well as space-domain sensing
techniques are in current practice. Spectrum sensing has to address the practical wireless
channel effects. In practical scenarios, signals are expected to be at very low SNR level
and the mobile channel also adds the challenges like frequency selectivity and temporal
variations of the signal strength i.e., fading. Regarding the implementation and reliability,
spectrum sensing techniques have to be simple and accurate.

Figure 2.2 depicts different methods of spectrum sensing. These sensing techniques
are categorized into blind, semi-blind and non-blind technique [6][16]. Blind techniques
does not require any knowledge of the PU signals. Both eigenvalue and co-variance based
methods are examples of blind spectrum sensing methods. Non-blind techniques require
prior PU information, which is generally not available in typical spectrum sensing sce-
narios, and are complex to implement. Semi-bind techniques require limited information
about the observed signal, like noise variance or some general PU characteristics. ED is
one of the commonly used semi-blind methods that predicts the availability of spectrum
with the help of noise variance and needs no other PU information. ED based sensing
algorithms will be described with details in a following section. The studies are mainly
focused on ED based semi-blind sensing techniques. The studies in this thesis are ex-
tended to cover the Max-Min ED based blind spectrum sensing techniques [4] [6] [15]
[16].
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2.2.1 Energy Detection based Spectrum Sensing

ED is one of the most commonly used spectrum sensing techniques. In addition to the tra-
ditional basic ED, various subband energy based schemes have been developed recently.
Subband based techniques involve division of the observed signal into a number of sub
bands to investigate spectrum availability with better frequency resolution and to utilize
information about the power spectrum variability for sensing purposes [4] [6].

Traditional Energy Detector

Traditionally, ED based sensing technique is one of the easiest forms to sense the spec-
trum. It uses signal energy to decide whether the spectrum is free or occupied by the PU.
There is one case where no PU signal is present, i.e., the observed signal consists only of
noise, and this is formulated as ’absent hypothesis’,H0. The other case where signal and
noise both present and hence formulated as ’present hypothesis’,H1.

When a primary signal, x(t), is transmitted through a wireless channel with channel
gain h, the observed signal at the receiver, y(t), which follows a binary hypothesis model,
can be given as:

y(t) =

w(t) H0

hx(t) + w(t) H1

(2.1)

where w(t) is the additive white Gaussian noise (AWGN). Complex basedband system
model is assumed, i.e., x(t), y(t) and w(t) are complex. The corresponding test statistics
can be obtained as T (y) = 1/N

∑N−1
n=0 |y[n]|2, where N represents observation sequence

length. With relatively high values of N , as commonly required in the spectrum sensing
applications, the probability distribution of the ED test statistics can be well approximated
by the Gaussian distribution, both under H0 and H1. This can be formally expressed as
follows:

T (y)|H0 ∼ N (σ2
w,
σ4
w

N
)) (2.2)

and,

T (y)|H0 ∼ N (σ2
x + σ2

w,
(σ2

x + σ2
w)2

N
), (2.3)

where σ2
w and σ2

x are the noise and signal variance, respectively.
The probability of false alarm (PFA) is calculated under H0 hypothesis and detec-

tion probability PD is calculated under H1 hypothesis where the signal and noise is both
present. PFA and PD are probabilities of getting test statistics T above predefined thresh-
old λ.

PFA = Pr(T (y) > λ|H0) = Q

(
(λ− σ2

w)

σ2
w/
√
N

)
(2.4)
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PD = Pr(T (y) > λ|H1) = Q

(
(λ− σ2

w(1 + γ))

σ2
w(1 + γ)/

√
N

)
, (2.5)

where Q(.) is the Gaussian Q function, γ represents the SNR level and λ is the threshold
value. The probability of detection depends on the value of predefined threshold which
is commonly set to reach the target false alarm probability. Consequently, the detection
probability is a function of SNR and PFA [9] [10] [15] [16].

With noise uncertainty, both detection and false alarm probabilities vary. Detection and
false alarm probabilities under noise uncertainty condition can be represented as follows:

PD = Pr(T (y) > λ|H1) = Q

(
(λ− σ2

w((1/ρ) + γ)

σ2
w((1/ρ) + γ)/

√
N

)
, (2.6)

PFA = Pr(T (y) > λ|H0) = Q

(
(λ− ρσ2

w)

ρσ2
w/
√
N

)
(2.7)

where, ρ is a noise uncertainty parameter and is equal to 10NUdB/10. NUdB is noise
uncertainty in dB scale.
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Figure 2.3: Traditional ED based spectrum sensing for QPSK signal with AWGN channel
and N = 1000.

Figure 2.3 shows a comparison of theoretical and simulated performance of ED for
AWGN channel as a function of SNR for PFA = 0.01. Close match of the simulated and
theoretical performance can be observed.
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Subband Energy Detector

Subband based ED methods have been used for the spectrum analysis of wideband sig-
nals. Such approaches help to identify spectral holes rapidly and allocate the most feasible
part of the bands for CR operation. In this thesis, FFT and AFB have been implemented
as main techniques to process spectrum into a number of subbands. Block-wise FFT
processing is one of the most commonly used approaches which measures the power in
each subband for further processing. However, FFT has serious limitations in this task
due to effects of spectrum leakage. AFB based method is the alternative subband based
approach found to be particularly interesting for CR communications [15] [17]. Specifi-
cally, AFB is found to be beneficial in high-dynamic range scenarios when performing the
sensing in the presence of strong transmissions at nearby frequencies. In subband based
ED approach, the subband signal Yk[m] can be is represented as follows:

Yk[m] =

Wk[m] H0

Sk[m]Hk +Wk[m] H1

(2.8)

where Sk[m] is the transmitted signal by PU as it appears at the mth FFT or AFB output
sample in subband k, and Wk[m] is the corresponding channel noise sample. As earlier,
H0 andH1 denote the absent and present hypothesis of the PU signal, respectively. When
the AWGN only is present, the white noise is modeled as a zero-mean Gaussian random
variable with variance σ2

w i.e.,Wk[m] = N (0, σ2
w). In many cases, the PU signal can also

be modeled as a zero-mean Gaussian variable Sk[m] = N (0, σ2
k) where, σ2

k is the variance
(power) at subband k. FFT or AFB based approach is one of the emerging subband based
approaches and is particularly interesting when orthogonal frequency division multiplex-
ing (OFDM) or filter bank based multicarrier (FBMC) waveform is used for secondary
transmission [15] [17][31]. FFT and AFB based CSS is the main topic of this study and
will be explained in details in Chapter 4.

2.2.2 Eigenvalue based Sensing

Eigenvalue based sensing is one of the sensing techniques, which does not require knowl-
edge of noise variance in the observation. It can be regarded as a potential solution to the
noise uncertainty issue. As noise variance has no use in the eigenvalue and covariance
based spectrum sensing methods, changes or uncertainty of noise variance have minor
effect on sensing performance. However, eigenvalue based techniques have the drawback
of high implementation complexity. In [15] [18] a subband ED based sensing method,
Max-Min ED, was proposed and demonstrated to provide similar sensing performance as
the best eigenvalue based methods, but with greatly reduced computational complexity.
In Chapter 5 of this thesis, the Max-Min ED concept is extended for cooperative spectrum
sensing scenarios [26]-[28].
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2.2.3 Other Sensing Methods

Besides ED and covariance based approaches, there exist a wide variety of spectrum sens-
ing methods. As depicted in the Figure 2.2, waveform based sensing, cyclo stationary
based sensing, matched filter based sensing and higher-order statistics based sensing are
few of them to be named. In waveform based sensing, correlation between the received
signal and a known copy of a PU waveform specific pattern is used for identifying the pos-
sible presence of PU signal. Cyclostationary based sensing exploits the cyclostationary
features of the PU signal. Matched filter based sensing is, in principle, the best available
non-blind sensing techniques when the receiver knows the transmitted signal. Matched fil-
ter based sensing can ensure short detection time but it cannot be implemented in practice
because sufficient information about the PU signal is not available in commonly consid-
ered CR scenarios [15].

2.2.4 Cooperative Spectrum Sensing

The practical wireless channel behavior restricts critically the sensing performance and
makes reliable operation of spectrum sensing based CR a very challenging in many prac-
tical scenarios. In practical wireless channel there exists the multipath and shadowing
and as result, the PU signal cannot always be seen by the SU sensing process. This is
the so-called hidden node problem, which causes the sensing results to be unrealistic. To
counteract the practical wireless channel behavior and to enhance detection performance,
collaborative sensing approaches have been suggested in literature [4] [11]. Here, simple
solution to counteract the practical wireless channel effects is the CSS and it can be imple-
mented by simply exploiting cooperation among SUs. Particularly, cooperative strategies
can be adopted to counteract channel effects by exploiting the SUs spatial diversity. In
other words, CSS mitigates channel effects such as multipath fading and shadowing.

Our studies will mainly explore collaborative approaches i.e., CSS utilizing subband
ED techniques [15] [16] which have earlier been considered for single-station spectrum
sensing only. Details on CSS will be covered in Chapter 3.

2.3 System Model

In this section, the system model used in later Chapters will be briefly explained. This
includes the PU signal models and channel models.

2.3.1 PU Signal Models

Various PU signal models have been considered in these studies. The traditional approach
of spectrum sensing is tested with three different signal models, quadrature phase shift
keying (QPSK), 16-quadrature amplitude modulation (QAM) and 64-QAM. Additionally,
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OFDM and FBMC waveforms are included in the evaluation of subband based spectrum
sensing techniques as realistic signal models. Details of multicarrier based PU signal
models will be covered in Section 4.1.2

2.3.2 Channel Model and Pathloss

Various channel models will be applied in these studies, including different multipath de-
lay profiles, path loss models, and noise effects. Traditional spectrum sensing considered
in these studies is modeled with two channel configuration. Model 1 includes log-normal
path loss with AWGN whereas model 2 includes frequency selective multipath channel,
log-normal path loss and AWGN. Different channel models for the frequency selectiv-
ity includes Indoor, International Telecommunication Union (ITU)-R vehicular A and
Stanford University interim (SUI)-I channel model [30]. Effects of the different channel
scenarios are studied and analyzed in the following chapter.

The log-normal path loss can be modeled as follows:
Receiver signal strength can be written as:

PL = PLf ∗
(dj
d0

)a ∗ ϕ (2.9)

In dB scale this gives,

PLdB = PLfdB + 10 ∗ a ∗ log(dj/d0) + ϕdB (2.10)

where, PLf is path-loss at the reference distance d0, a represents path-loss exponent, dj
represents the distance of jth CR receiver where each station separated by dstep, and ϕ
represents the Gaussian random value with zero mean and standard deviation σ.
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3. TRADITIONAL COOPERATIVE SPECTRUM
SENSING

This chapter gives a layout of traditional CSS schemes which is a collaborative approach
among SUs to counteract practical wireless channel effects. Cooperation between CR
receivers to enhance the detection performance is the main objective of these studies.

This chapter introduces:

• General information on traditional CSS schemes,

• Different linear fusion rules and their characteristics,

• Comparison of linear fusion rule on different channel models, and

• Optimized fusion rules that enhances the performance.

The chapter consists of six sections. Section 3.1 introduces and gives the general
description of the traditional ED based CSS approach. Section 3.4 gives the layout of
CSS algorithms and presents the block diagram representation of CSS approach. Section
3.2 gives the general idea about cooperative strategies implemented at the fusion center
(FC). Section 3.3 gives the general idea about hard decision fusion and linear fusion rules
implemented at the FC. Section 3.5 presents the results and analysis. Finally, summary is
given in the last section.

3.1 Introduction

As already described earlier, CR technology provides a potential solution to the spectrum
scarcity by enabling opportunistic usage of the spectrum. Radio scene analysis is one
of the important functions of CR technology, which is however facing challenges with
practical wireless channel’s behavior. Practical wireless channel shows characteristics
like noise uncertainty, multipath fading, and shadowing. In order to mitigate the effects
of practical wireless channel, cooperation among many CR users i.e., CSS is considered.
CSS is regarded as the potential solution to mitigate effects of both multipath and shad-
owing which causes the hidden node problem. It also enhances the detection performance
and reliability [4]-[9].

As suggested in literature [11][12], the cooperative scheme can help to mitigate effects
of the hidden node problem. Spatial diversity among all receiver is achieved, as illustrated
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in Figure 3.1. The concept of exploiting SUs spatial diversity to counteract the hidden
node effects and enabling cooperation among SUs is coined as CSS and has reached
growing attention in recent years. Our studies consider the ED based CSS approach with
hard decision combining. Hard decision combining refers to the combination of binary
decisions from spatially separated CR receivers at the FC [14] [21].

Figure 3.1: CR topology including PU signals and M CR users

CSS uses two or more CRs to combine their sensing result so as to increase the re-
liability of the result. Combining of result from different CR receivers is performed at
FC. Different rules may be applied to combine the individual sensing results so as to
achieve highest accuracy at FC. With an increase in a number of CR users, CSS could go
through a complex procedure. Additionally, implementation cost increases with higher
number of CR receivers. On the other hand, sufficient number of sensing CR stations is
needed to reach sufficient sensing performance. So there is a trade-off between sensing
performance and complexity of the CSS system. With increased number of CR receiver
sensing performance enhances significantly. Performance parameters like sensing time
and reliability are improved.
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3.2 Cooperative Strategies

Cooperative networks can be classified on the basis of their data sharing methods among
SUs and the point of final decision. Cooperative strategies can be classified as centralized
cooperative sensing, distributed cooperative sensing, and mixed strategy. Centralized co-
operative sensing collects the SUs data and makes the collaborative decision at FC. This
approach of taking a collective decision at FC is called as centralized cooperative sensing.
In case of distributive cooperative strategy, SUs independently take their own decisions
and forward them to the FC. FC than combines the forwarded decision to make a collec-
tive decision. SUs can also coordinates the neighbor SUs to make their own decision on
presence of PU. Both strategies can also be mixed for better cooperation between SUs.
For SUs having weak signal strength at the FC, relay assisted cooperative scheme can be
implemented to compensate the weak channel effects and the rest of the SUs can send
their information directly to the FC. This type of mixed approach is called mixed strategy
in CSS. Additionally, cooperative schemes can also be classified as hard and soft fusion
schemes. When CRs provide binary information about the presence of PUs, FC applies
hard fusion rules CRs may provide reliability information about their sensing results in
the form of non-binary soft decisions, in which case FC applies soft fusion scheme [4].

3.3 Hard Decision Fusion with Linear Fusion Rules

Hard fusion can be implemented using linear rules such as "AND rule", "OR rule", "Ma-
jority rule". Hard decision fusion does not need to exchange the data among secondary
nodes. Soft schemes generally improve the sensing result by sending richer information
to the FC. Soft fusion techniques increase the complexity compared to hard fusion tech-
niques [21].

Linear fusion rules are applied by the FC to exploit the cooperation among CR re-
ceivers. Binary decision from independent CR receivers is forwarded to the FC. FC pro-
cesses the decisions from all CRs to make the collective decision. Linear fusion rules are
based on the general "k−out−of−M rule". When k is equal to one i.e., 1−out−of−N ,
the rule is equivalent to "OR rule". When k is equal to M i.e., M − out − of −M , the
rule is equivalent to "AND rule". Whereas M/2 − out − of −M is special case and is
known as "Majority rule". In "Majority rule" k equals to the half of the CRs. Different
linear rules have unique attributes, for example "OR rule" has high detection probabili-
ties and high false alarm, whereas "AND rule" has the lowest detection and false alarm
probabilities. However "Majority rule" has moderate performance compared to both "OR
rule" and "AND rule" FC [21][22].

Additionally, the three different rules have been studied in this work and the result will
be presented in Section 3.5.
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3.3.1 OR Rule

"OR rule" is one of the fusion rules which is applied at FC. When at least one SU detects
the PU signal, "OR rule" declares the presence of PU. With M number of SUs, the
cooperative detection probability PD,t and false alarm probability PFA,t at the FC are
computed as follows,

OR-Rule :

PD,t = 1− (1− PD)M

PFA,t = 1− (1− PFA)M
(3.1)

where, PD,t and PFA,t are collaborative detection and false alarm probabilities achieved
after implementation of "OR rule" at FC. PD and PFA are the detection and false alarm
probabilities of individual SUs reported to the FC.

"OR rule" has very high detection probability which is helpful to protect the primary
user. Additionally, the false alarm is relatively high which makes the opportunistic spec-
trum usage inefficient [13].

3.3.2 AND Rule

"AND rule" declares the presence of PU signal if and only if all SUs detect the PU signal
individually. WithM SUs at FC, the detection probability PD,t and false alarm probability
PFA,t at a FC are computed as follows,

AND Rule :

PD,t = PD
M ,

PFA,t = (PFA)M .
(3.2)

This results suggests that "AND rule" has very low false alarm which makes spectrum
usage efficient, on contrary it also has low detection probability hence it may not protect
the PU from strong interference from the SUs. As a result, the quality of services for PU
can not be guaranteed [13].

3.3.3 Majority-Rule

According to the studies, both "AND rule" and "OR rule" equally limited in terms of
detection and false alarm probabilities. Considering the limitation of both rule, from the
generalized k−out−of−M rule, half number of SUs are selected to decides the presence
of PU signals. The rule is named as "Majority rule" as most of the SUs involve on decision
making at FC. "Majority rule" shows moderate results compared to both "OR rule" and
"AND rule". It can be regarded as a trade-off between the low detection probability of
"AND rule" and high false alarm probability of "OR rule". Considering the M sensing
stations in the CSS, the detection and false alarm probabilities of the "Majority rule" can
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be written as follows:

M/2− out− of −MRule :


PD,t =

∑M
j=M/2

 M

j

P j
D.(1− PD)M−j

PFA,t =
∑M

j=M/2

 M

j

 (1− PFA)M−j.P j
FA.

(3.3)

here number of sensing stations are equal to M and is assumed even.
"Majority rule" is a special case of "k − out − of −M rule" when k = M/2. If at

least half of the SUs report the presence of PU, FC declares the presence of PU otherwise
it declares that the spectrum is free to use for CR transmission [13] [14].

3.3.4 Generalized Rule of k-out-of-M

The generalized form of the linear rule can be defined by requiring k SUs to decide the
presence of PU signal out of M SUs. Here number k can be any value between 1 to M ,
based on the requirements. As discussed earlier, the special cases k = 1, k = M/2,
and k = M are equivalent to "OR rule", "Majority rule" and "AND rule", respectively.
Nevertheless, the number k can be optimized according to the targeted detection and false
alarm performances [14][22].

K − out− of −NRule :


PD,t =

∑M
j=K

 M

j

P j
D.(1− PD)M−j

PFA,t =
∑M

j=K

 M

j

 (1− PFA)M−j.P j
FA.

(3.4)

3.3.5 Optimized k-out-of-M Rule

The "k−out−of−M rule" estimates the presence of PU when k or more SUs report the
presence of PU. Values of k can be set according to the system requirements. Optimized
k for specified PD and PFA can be evaluated from equation as follows:

Kopt =

ln

(
P
(
H1

)(
1−PD

)M
P
(
H0

)(
1−PFA

)M)
ln

(
PFA

(
1−PD

)(
1−PFA

)
PD

) . (3.5)
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where P (H1) and P (H0) represents present and absent hypothesis probability. Table 3.1
shows the optimized value of k for different parameters [14][22].

Table 3.1: Optimized K for different M , PD and targeted PFA. Here hypothesis proba-
bility is assumed as P (H1) = P (H0) = 0.5.

M PD=0.8 PD=0.9 PD=0.95 PD=0.9
PFA= 0.2 PFA= 0.1 PFA= 0.05 PFA= 0.01

8 4 4 5 2
15 8 10 11 5
19 10 13 14 6
23 12 15 17 7
35 13 16 18 8

3.4 Traditional CSS Algorithms

Figure 3.2: Block diagram of traditional cooperative spectrum sensing techniques

Traditional CSS starts with the receiver front end as depicted in Figure 3.2. SU after
receiving PU signal does the channel filtering. The digital conversion of the analog signal
is done through analog-to-digital converter (ADC). The test statistics are obtained by
taking the average of the squared magnitude values over the observation interval of N
samples. The decision device of each SU estimates the presence of the PU. Here the
signal energy is compared against a predefined threshold. When the energy statistic is
higher than the threshold, the presence of the PU is decided, otherwise it is assumed to be
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absent. Decisions from all individual CR receivers are forwarded to the FC. FC applies
linear fusion rules to combine the decisions from individual CR receivers. As seen in
Figure 3.2, three different linear fusion rules have been implemented at the FC.

CSS exploits the spatial diversity among CR receivers. CSS can counteract the prac-
tical wireless channel effects, both the hidden node problem and the multipath effects.
Additionally, the reliability of spectrum sensing is also increased with the increasing of
number of CR receivers. Traditional CSS algorithms have been analyzed with the help of
receiver operating characteristics (ROC) curves under different false alarm probabilities.
A ROC curve gives the detection probability as a function of the false alarm probability.
Plots of detection probability over different SNR levels have also been considered in these
studies.

3.5 Simulation Results

The section presents simulation results for traditional CSS techniques with linear fusion
rules. Simulations carried out for two different scenarios, both including log-normal
shadow-fading but with or without frequency selective channel model. The following
section presents the detail analysis.

3.5.1 Log-Normal Pathloss with AWGN

The performance of traditional ED based CSS for frequency-flat lognormal fading is pre-
sented in this section. In test scenario, the number of sensing stations equal to M = 8, the
sample complexity N = 10240. For flat-fading log-normal path loss model, only Gaus-
sian random variable is considered. PFA for each sensing station is equals to 0.01. For
the PU signal simplified model of QPSK, 16-QAM and 64-QAM constellations is con-
sidered. For non-oversampling PU signal model no filtering and modulation are used.
For 2x-oversampling PU model, root-raised cosine filtering is considered with 22 % of
roll-off factor.

Figure 3.3 shows the detection probabilities with three different fusion rules for differ-
ent PU signal models: QPSK, 16-QAM and 64-QAM. The figure shows, 90 % detection
probability for "OR rule" is achieved at γ = -21 whereas for "Majority rule" and "AND
rule" 90 % detection probability are achieved at γ = -15 and -3 dB, respectively. Figures
show, detection performance is same irrespective of PU signal model cases.

ROC curve for 16-QAM PU signal model at γ = -15 dB with three different linear
fusion rules are presented in Figure 3.4. AWGN noise without frequency selective channel
with frequency-flat log-normal fading with 6 dB standard deviation is considered. ROC
curve gives the trade off between detection probability PD and false alarm probability
PFA. The figure shows, "OR rule" has detection probability very close to 1 even with
very small false alarm probabilities, much less than 0.1 and outperform both Majority and
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Figure 3.3: CSS detection probabilities against SNR with basic ED and three different
linear fusion rules for a channel with frequency-flat log-normal fading with 6 dB standard
deviation. The sample complexity is N = 10240, the number of sensing stations M = 8,
PFA = 0.01 for each station. a) QPSK, b) 16-QAM and c) 64-QAM.

AND rules. "Majority rule" shows better detection probabilities compared to "AND rule"
and 90 % PD is achieved at PFA = 0.01.
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Figure 3.4: ROC curve at γ = -15 dB with basic ED and three different linear fusion rules
for a channel with frequency-flat log-normal fading with 6 dB standard deviation. PU
signal model is 16-QAM, the sample complexity is N = 10240, the number of sensing
stations M = 8.

Detection probabilities with three different fusion rules for 16-QAM PU signal model
for frequency-flat log-normal fading with standard deviation of 9 dB is presented in Figure
3.5. 90 % detection probability is achieved at SNR equals to -23 dB, -14 dB and 7 dB
respectively for "OR rule", "Majority rule" and "AND rule".

ROC curve for 16-QAM PU signal model at γ = -13 dB for frequency-flat log-normal
fading with standard deviation of 9 dB is presented in Figure 3.6. It shows that "OR rule"
has detection probability very close to 1 even with very small false alarm probabilities,
much less than 0.01. On other hand, "AND rule" has very low detection probability even
with higher false alarm probabilities.
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Figure 3.5: CSS detection probabilities against SNR with basic ED and three different
linear fusion rules for a channel with frequency-flat log-normal fading with 9 dB standard
deviation. PU signal model is 16-QAM, the sample complexity is N=10240, the number
of sensing stations M=8, and PFA = 0.01 for each station.
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Figure 3.6: ROC curve at γ = -13 dB with basic ED and three different linear fusion
rules for a channel with frequency-flat log-normal fading with 9 dB standard deviation.
PU signal model is 16-QAM, the sample complexity is N = 10240, and the number of
sensing stations M = 8.
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3.5.2 Frequency Selective Channel

Traditional CSS techniques have been simulated for highly frequency-selective channels
and log-normal path loss condition including AWGN. A practical wireless channel in-
cludes multipath propagation, which introduces frequency selectivity. In our second test
scenario, Indoor, ITU-R Vehicular A, and SUI-1 [15] channel models are considered. PU
signal is modeled as single-carrier transmission with 64-QAM modulation with the sam-
ple complexity N = 10240. In test scenario, 0 dB or no noise uncertainty is considered.
The number of sensing stations equal to M = 8. Three different linear fusion rules are
applied to exploit cooperation among different sensing station. Detection probabilities
and ROC curves have been observed for the three different channel models.
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Figure 3.7: CSS detection probabilities with basic ED and three different linear fusion
rules for frequency-flat log-normal fading with standard deviation 9 dB. PU signal model
is 64-QAM, the sample complexityN = 10240, the number of sensing stationsM = 8, and
PFA = 0.01 for each sensing station. a) Indoor channel, b) ITU-R vehicular A channel,
and c) SUI-I channel.

Figure 3.7 shows the CSS detection probabilities with three different fusion rules for
frequency-flat log-normal fading with 9 dB standard deviation for different frequency se-
lective channels: a) Indoor channel, b) ITU-R vehicular A channel, and c) SUI-I channel.



3. Traditional Cooperative Spectrum Sensing 25

Table 3.2: SNR values for 90 and 99% detection probability with three different fusion
rules for frequency selective channels: a) Indoor, b) ITU-R vehicular A, and c) SUI-I
channel.

Fusion rule Indoor
channel

ITU-R vehicluar
A channel

SUI channel

PD = 0.9
"OR rule" -23 dB -23.5 dB -21 dB

"Majority rule" -12.5 dB -11.5 -11 dB
"AND rule" 5 dB 6 dB 8 dB

PD = 0.99
"OR rule" - 18 dB -17 dB -16 dB

"Majority rule" -7 dB -7 dB -5 dB
"AND rule" 13 dB 13 dB 17 dB

With frequency selective channel, the detection performance of the traditional ED based
spectrum sensing is improved. Indoor channel with high selectivity, shows better detec-
tion performances compared to both ITU-R vehicular A and SUI-I channel. 90 and 99%
detection probabilities for three different channels with three fusion rules are presented in
Table 3.2.
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Figure 3.8: ROC curve at γ = -14 dB with basic ED and three different linear fusion rules
for the Indoor channel with frequency-flat log-normal fading with standard deviation 9
dB. PU signal model is 64-QAM, the sample complexity N = 10240, and the number of
sensing stations M = 8.

CSS ROC curves with basic ED with three different linear fusion rules for Indoor,
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Figure 3.9: ROC curve at γ =-13 dB with basic ED and four different linear fusion rules
for the ITU-R vehicular A channel with frequency-flat log-normal fading with standard
deviation 9 dB. PU signal model is 64-QAM, the sample complexity N = 10240, and the
number of sensing stations M = 8.

ITU-R vehicular A and SUI-I channels with frequency-flat lognormal fading with stan-
dard deviation 9 dB are shown in Figure 3.8, 3.9 and 3.10, respectively. These Figures
reflect fundamental tradeoff between PD and PFA. Figures show, "OR rule" has detection
probability very close to 1 even with very small false alarm probabilities, much less than
0.1. On other hand, "AND rule" has the lowest detection probabilities even with high
false alarm probabilities.

Hard decision combining for three different linear fusion rules are presented in this
thesis. Results presented in this thesis might not give the fair comparisons for the coop-
erative sensing algorithms. However, the fair comparison can be done with fusion center
PFA for each linear fusion rule. In the fair comparison, results may vary as presented in
this thesis.
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Figure 3.10: ROC curve at γ = -12 dB with basic ED and three different linear fusion
rules for the SUI-1 channel with frequency-flat log-normal fading with standard deviation
9 dB. PU signal model is 64-QAM, the sample complexity N = 10240, and the number
of sensing stations M = 8.

3.6 Chapter Summary

In this chapter ED based traditional CSS methods were presented. The idea behind the
traditional CSS was to exploit the collaboration among the number of spatially separated
CR receivers. CSS helped to eliminate the both hidden node and multipath problems. The
frequency-flat log-normal fading effect was considered for different frequency selective
channel models: Indoor, ITU-R vehicular A and SUI-I channels. Cooperation among the
number of sensing stations were done with different linear fusion rules such as: "OR rule",
"AND rule", and Majority rule. Performances of traditional CSS algorithm with different
linear fusion rule on frequency selective channel was presented in this chapter. With
high selectivity, Indoor channel has the better performance compared to other frequency
selective channels. With the increasing number of CR the detection performance can be
enhanced. Linear fusion rule for different channel and fading condition were presented.
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4. PROPOSED FFT AND AFB BASED
COOPERATIVE SPECTRUM SENSING

In this chapter, efficient subband based ED methods are proposed for spectrum sensing.
The aim of the study is to investigate the effects of practical wireless channels on the ED
performance and quantify the corresponding deviations from the ideal model. Specifi-
cally, the following topics will be covered:

• Basics of FFT/AFB and multicarrier systems,

• Effects of practical wireless channels on the subband based ED,

• Application of subband based sensing in CSS is proposed.

The chapter consists of four different sections. Section 4.1 covers the basics of FFT
and AFB, including also short introduction of the related multcarrier transmission sys-
tems. Section 4.2 covers the FFT/AFB based sensing algorithms. Section 4.3 proposes
the FFT/AFB based CSS algorithm. Section 4.4 presents the result and analysis of the
proposed algorithm. At last, conclusion are presented in the section 4.5.

4.1 Introduction

Efficient spectrum sensing is the most important step in CR to maintain its proper op-
eration. To address issues like channel effects in traditional spectrum sensing, efficient
subband based technique has been emerged in the field of CR technology. In recent years,
the OFDM multicarrier modulation technique has been widely adopted for broadband
wireless services. However, alternative technique, FBMC waveform shows greater per-
formance in terms of spectral efficiency compared to that of cyclic prefix based orthogonal
frequency division multiplexing (CP-OFDM). FBMC is one of the promising multicarrier
techniques in CR based technology. Consequently, FBMC is regarded as an alternative
multicarrier techniques for next-generation wireless communications, 5G. The concept of
FBMC includes synthesis filter bank (SFB) as core elements on the transmitter and AFB
on the receiver side. In CR based transmission, the FFT processing in OFDM or the AFB
processing in FBMC on the receiver side can be used for spectrum sensing purposes. AFB
has significant benefits in spectrum sensing due to the much better spectral containment
of the subbands.
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Figure 4.1: System model for spectrum sharing in CR.

The non-cooperative CR system model is depicted in Figure 4.1, where the PU and
CR systems are working in the same band of frequencies. In this figure PU and CR trans-
mitters are represented as PRTX and CRTX, respectively. The receivers are represented
as PRRX and CRRX, accordingly. Frequency-selective channels between the PU and
CR stations are denoted as H0, H1, H2 and H3. As seen in the figure, the CR system
is operating in a spectrum gap next to relatively strong on-going primary communica-
tions on either or both sides of the gap. This led us to the conclusion that interference is
unavoidable between different PUs and CRs. Spectrum sensing hence has the main func-
tion of detection of possible other transmissions or reappearing PUs within the spectrum
gap. Furthermore, the stations of the CR system are assumed to have means to exchange
control information with each other, e.g., using a cognitive control channel [15].

Additionally, interference model between PUs is covered in this section. Figure 4.2
indicates the gap in between two PU signal models and the exploiting SUs in between
the gap. B represents the available bandwidth for the secondary communication under the
number of holes between two PU signals. However, there exist the interference leakage
effects and the interference can be modeled as Ik(Pk) = PkΩk. Here Pk is sub-carrier
power and Ωk is combined interference factor for kth sub-carrier [15].
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Figure 4.2: Interference model between primary and secondary users

−60

−40

−20

0

P
ow

er
 s

pe
ct

ru
m

 m
ag

ni
tu

de
 (

dB
)

 

 
Ideal
No DPD
With DPD

2400 2410 2420 2430 2440 2450 2460 2470 2480

−60

−40

−20

0

Frequency (MHz)

 

 

(b)

(a)

Figure 4.3: Effects of the power amplifier model on (a) OFDM and (b) FBMC based PUs
spectra.

4.1.1 FFT and AFB Basics

Fourier transform is a mathematical transformation and is widely used for transforming
signals between time and frequency domain and vice-versa in communication signal pro-
cessing. The discrete Fourier transform (DFT) is used for the finite sequences of equally
spaced samples and FFT is an efficient algorithm to compute the DFT and its inverse.
In spectrum sensing, FFT is used to split a wideband signal into a number of equally
spaced subbands and to use them for further processes within the sensing algorithm. In
communication signal processing, an array of band-pass filters is commonly known as
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filter bank. In the spectrum sensing context, AFB is used to separate the input signal sam-
ples into subbands each carrying different frequency components. SFB can be used for
constructing a time-domain signal from the subbands [16] [33].

4.1.2 Multicarrier Systems

OFDM with cyclic prefix i.e., CP-OFDM is the dominating multicarrier technology in
the field of wireless communication. Additionally, discrete wavelet multitone (DWMT),
cosine modulated multitone (CMT), filtered multitone (FMT), and OFDM with offset
QAM are commonly used alternative forms of multicarrier techniques [23] [24]. OFDM
based multicarrier is primarily considered in the study of this thesis. Recently FBMC
based model is emerging as a promising multicarrier model that is applicable to CR based
technology. FBMC shows the better spectral efficiency compare to the CP-OFDM. Un-
like the CP-OFDM, FBMC avoids the cyclic prefix overhead. Additionally, the frequency
overhead due to guard-bands is reduced. However, FBMC based model is computation-
ally more complex comparing with CP-OFDM models [25].

Both inverse fast Fourier transform (IFFT) and SFB are considered as transmitter side
elements whereas FFT and AFB are considered as receiver side elements. In this study,
FFT processing of OFDM based multicarrier and AFB processing of FBMC based mul-
ticarrier is considered. Subband based ED can be used in wideband spectrum sensing
which covers the multiple frequency bands or the whole service band in multicarrier based
cases. AFB with better spectral containment is an efficient receiver side processing tech-
nique compared to FFT based receiver side processing technique. Here in this study, filter
banks with 50 dB stop band attenuation are considered [15]. FBMC hence can be used
efficiently in CR system with narrow spectral gaps [25] [24].

4.2 FFT and AFB based Energy Detector Algorithms

Figure 4.4: Block diagram of alternative filter bank (AFB) and fast Fourier transform
(FFT) based spectrum analysis methods for subband energy based cooperative sensing
schemes.
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FFT and AFB techniques are applied to the wideband signal to generate equally spaced
subband signal. Subband energies are calculated by the subband energy detector (SED).
Subband energies are processed accordingly to apply the ED based sensing algorithms.
The entire procedure is represented in Figure 4.4. The receiver front end collects the PU
signals which is followed by channel filter. The channel filter output is fed to the ADC
to convert into discrete sequence so as to generate equally spaced subbands as described
earlier. subbands can be obtained either via FFT or AFB and then processed accordingly
[17].

A subband signal can be represented as follows,

Yk[m] =

Wk[m] H0,

Sk[m]Hk +Wk[m] H1.
(4.1)

Here Sk[m] is the transmitted signal by PUs as it appears at the mth FFT or AFB output
sample in subband k andWk[m] is the corresponding channel noise sample. H1 illustrates
the present hypothesis of a PU signal whereas H0 illustrates the absent hypothesis of a
PU signal. When the AWGN only is present, the white noise is modeled as a zero-mean
Gaussian random variable with variance σ2

w i.e., Wk[m] = N (0, σ2
w). The OFDM and

FBMC signals can also be modeled as a zero-mean Gaussian variables Sk[m] = N (0, σ2
k)

where, σ2
k is the variance (power) at subband K. The subband energy is calculated from

the subband signal in Equation 4.1. Subband energy is sent to a threshold block to de-
tect the possible occupancy of the corresponding frequency band at that time interval.
Integrated test statistics can be calculated as follows,

T (ym0, k0) =
1

NtNf

k0+[Nf/2]−1∑
k=k0−[Nf/2]

m0∑
m=m0+Nt+1

|yk[m]|2. (4.2)

here Nf and Nt are the averaging filter lengths in the frequency and time domain, re-
spectively. Test statistic over subband is calculated by integrating over the time. Spectral
components are entirely captured within the subband integration range. Assuming flat PU
spectrum over the sensing band, the probability distribution of the test statistics can be
expressed as,

T (ym0, k0)|H0 ∼ N

(
σ2
w,k,

σ4
w,k

NtNf

)

T (ym0, k0)|H1 ∼ N

(
σ2
x,k + σ2

w,k,

(
σ2
x,k + σ2

w,k

)2
NtNf

) (4.3)

which yields,
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PFA = Pr(T (y) > λ|H0) = Q

(
λ− σ2

w,k

σ2
w,k/

√
NfNt

)

PD = Pr(T (y) > λ|H1) = Q

(
λ− σ2

w,k(1 + γk)

σ2
w,k(1 + γk)/

√
NfNt

) (4.4)

where λ is calculated as,

λ = σ2
w,k

(
1 +

Q−1(PFA)√
NfNt

)
. (4.5)

Here, γk = σ2
x,k/σ

2
w,k is the SNR of subband k. With FFT/AFB based processing it is

possible to tune the sensing frequency band to the expected band of the PU signal and
sensing multiple PU bands simultaneously.

4.3 FFT/AFB based cooperative spectrum sensing

Figure 4.5: Block diagram of fast Fourier transform (FFT) and analysis filter bank (AFB)
based cooperative spectrum technique.

Cooperation among number of sensing stations with FFT and AFB based spectrum sens-
ing is covered in this section. Cooperative process is depicted in Figure 4.5. As described
earlier in the study of this thesis, three linear fusion rules have been proposed for combin-
ing the binary decisions that are forwarded to the FC. Here, three different fusion rules,
"OR rule", "Majority rule" and "AND rule", are considered for the false alarm probabil-
ities. False alarm probabilities with three different linear fusion rules are calculated as
follows,

PFA,t :



= 1− (1− PFA)M "OR rule"

= PM
FA "AND rule"

=
∑M

j=M/2

 M

j

P j
FA.(1− PFA)M−j "Majority rule"

(4.6)
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Here PFA,t is cooperative false alarm probability and PFA is non-cooperative false alarm
probability.

4.4 Simulation Results

In this study, the potential spectral hole between two relatively strong PUs is determined
by the spectrum sensing function of CR, as indicated in Figure 4.3. Additionally, it is
assumed that there is no additional signal in the spectral hole. However, the spectrum
sensing gives false alarm probabilities due to the spectral leakage of power amplifier non
linearity on PU. Such an effect is found to be dependent on the SNR values of the PUs.
Furthermore, smaller subband spacing of 81.5 kHz for the spectrum sensing and the CR
transmissions is assumed, instead of the 325 kHz sub-carrier spacing of wireless local
area network (WLAN), in an attempt to reduce the effects of frequency selective channels.
The time averaging lengths of 50 and frequency averaging length of 5 have been chosen
in this scenario. The power amplifier non-linearity introduces interference leakage to the
spectrum gap between the PUs, as illustrated in Figure 4.3, and the width of the spectral
hole is reduced.
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Figure 4.6: Comparison of CSS false alarm probabilities between FFT processing of
OFDM based PU and AFB processing of FBMC based PU with three different linear
fusion rules under ideal mode ( no PA effects) for NFFT = 250, the time record length Nt

= 50, the frequency block length Nf = 5, and the number of sensing stations M = 8.
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Figure 4.7: Comparison of CSS false alarm probabilities between FFT processing of
OFDM based PU and AFB processing of FBMC based PU with three different linear
fusion rules under power amplifier effects for NFFT = 250, the time record length Nt =
50, the frequency block length Nf = 5, and the number of sensing stations M = 8.

Both ideal and practical power amplifier cases have been considered in these studies.
Results from both ideal and practical power amplifier case have been depicted in Fig-
ure 4.6 and 4.7, respectively. With linear power amplifier, the interference from the PU
signals is low and the spectral hole is wider. Since 802.11g like FBMC based WLAN
signal model shows the best performance as FBMC has the better spectral containment
compared to OFDM based WLAN. AFB processing of FBMC based WLAN shows sig-
nificant enhancement over FFT processing of OFDM based WLAN model. "OR rule"
shows higher false alarm probabilities compared to other fusion rules. On the other hand,
"AND rule" shows lowest false alarm and "Majority rule" shows moderate false alarm
probabilities for fixed set of SNR values.
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Figure 4.8: CSS false alarm probabilities for FFT processing of a) OFDM and b) FBMC
based PU with three different linear fusion rules under power amplifier effects for the
number of FFT length is NFFT = 250, the time record length Nt = 50, the frequency
block length Nf = 5, and the number of sensing stations M = 8.

FFT processing of FBMC can also be possible and simulation results have been com-
pared with the FFT processing of OFDM as in Figure 4.8. FFT processing of FBMC
shows better results compared to FFT processing of OFDM. However, AFB processing
of FBMC has optimum performance compared to all other techniques.

4.5 Chapter Summary

In this chapter, subband based CSS was presented. FFT and AFB processing of wide-
band multicarrier based PU model were proposed to investigate spectral hole between
two 802.11g standard OFDM and 802.11g like FBMC based WLAN signals. Effects of
an interference on the spectral gap was investigated. FBMC based multicarrier with better
spectral containment showed the optimum performance compare to OFDM based multi-
carrier. Proposed AFB based CSS methods with FBMC based PU model, outperformed
other sensing methods. It fitted well even for CR system with narrow spectral gap. Inter-
ference in SU band was also modeled in this study. In simulation results, AFB processing
of 802.11g like FBMC based WLAN signal showed the optimum performance.
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5. MAXIMUM-MINIMUM SUBBAND ENERGY
BASED COOPERATIVE SPECTRUM SENSING

In this chapter, the novel maximum-minimum energy detection based CSS method is pro-
posed. This sensing technique is robust to the noise uncertainty and yet reduces the com-
plexity in comparison to existing methods with such robustness. The proposed sensing
techniques outperform the other advance spectrum sensing methods under noise uncer-
tainty condition. Specifically, the chapter contributes to the following issues:

• Novel spectrum sensing techniques are proposed and they are simpler to implement,
including robust to noise uncertainty.

• Number of CR receivers are proposed to make the collaborative decision so as to
enhance the detection performance and to counteract the practical wireless channel
effects.

• A novel analytical method is proposed and the results are compared to simulations.

• Novel Max-Min ED based CSS is proposed with improved performance over tradi-
tional CSS.

Section 5.1 gives a brief overview of the Max-Min ED based proposed CSS which is
described in more details in Section 5.2. Section 5.3 presents the analytical model for
cooperative Max-Min ED based spectrum sensing. Section 5.4 presents the analysis of
the results obtained from the computer based simulation. Comparison of the results with
other spectrum sensing techniques is presented in the same section. At last, conclusions
are presented.

5.1 Introduction

A matter of primary interest is to design algorithms that can deliver acceptable spectrum
sensing performance with reduced complexity and reliability in terms of detection and
false alarm performance. Existing spectrum sensing techniques are not satisfying in this
respect. Particularly, sensing in low SNR range, i.e. (-25 dB, -10 dB) is challenging due
to the noise susceptibility issues and the hidden node problem also exists. To counteract
these issue, the spectrum sensing technique has to be more robust to noise uncertainty,
while exhibiting realistic computational complexity for practical implementation. This
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study is motivated to solve the problem of complexity and noise uncertainty. In this chap-
ter, novel cooperative Max-Min ED scheme is proposed which reduces complexity and
noise uncertainty. Literature in [18] covers the idea of the frequency diversity gain ex-
ploitation with the help of the statistics of the energy spectral density (ESD). Differential
stage is suggested in the literature as a solution to the noise uncertainty. However, studies
in our group have proposed a solution without the differential stage, while maintaining
the robustness to noise and reduced computational complexity. Results show that the
proposed solution outperform the performances the traditional ED and other detection
algorithms. Figure 5.1 shows the steps implemented in Max-Min ED algorithm.

Figure 5.1: Block diagram of Max-Min ED based CSS method.

5.2 Proposed Max-Min ED based CSS Method

In this section, a novel Max-Min ED method is considered, which is less complex than
existing methods which are robust to noise uncertainty. Illustration of the methods is
in Figure 5.1. The maximum and minimum energies of the subbands are utilized for
constructing the decision statistics. These statistics are used to estimate the presence and
absence of PU. Actually, we consider here three alternative schemes, which are utilizing
the subband energies in a different manner [15]. These methods consists of following
steps:

• SED to calculate subband energies,

• Ordering of the determined subband energies,

• Differentiation of the ordered subband energy sequence,

• Quantification of the maximum and minimum energies level,

• Calculation of a threshold and the implementation of decision device.

The proposed method removes the ordering and differentiation blocks from the Fig-
ure 5.1. Hence, the proposed method is less complex yet outperforms the other sensing
methods.
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5.2.1 Suband Energy Detector

The FFT operation on blocks of NFFT input samples is applied. Alternatively, AFB
with NFFT subbands can be used and this choice is preferred in high dynamic range
scenarios. The subband signals are formulated as in Equation 2.8. Frequency variability
of an ESD process is featured in Max-Min ED algorithms as depicted in the Figure 5.1 and
the process is summarize as, Uk = 1

Lt

∑Lt
m=1 |Yk[m]|2, where Lt = N/NFFT represents

length of the window. From the central limit theorem, Uk for bothH0 andH1 hypotheses
is expressed as,

Uk =


N
(
σ2
w,k,

2
Lt
σ4
w,k

)
, H0

N
(
|Hk|2σ2

k + σ2
w,k,

2
Lt

(
|Hk|2, σ2

k + σ2
w,k

)2)
. H1

(5.1)

Maximum and minimum energies are estimated as depicted in Figure 5.1 and the test
statistics is calculated from the energy values. Test statistic is then compared with a
predetermined threshold that is obtained from the target PFA with the aid of Gumbel
distribution. Presence and absence status of the PU signal is determined by comparing
the threshold and test statistics. Analytical approach to calculate the thresholds will be
given later in Section 5.3 [15] [18].

5.2.2 Cooperative Maximum-Minimum Energy Detection

The proposed cooperative Max-Min ED uses the linear fusion rules at the FC to combine
the sensing results from each sensing station, each of which applies the Max-Min ED.
A number of CR receivers is used for collaboration to estimate the presence of PU sig-
nal in more reliable manner. Our study assumes 8 cooperating CRs. Linear fusion rules
are applied to estimate cooperative detection and false alarm probabilities. Different de-
tection probabilities are achieved at FC depending on the fusion rule applied. Similarly,
false alarm probability varies in accordance to the fusion rule applied at the FC. Both,
cooperative detection and false alarm probabilities are calculated as follows,

PD,t :



= 1− (1− PD)M "OR rule"

= PM
D "AND rule"

=
∑M

j=M/2

 M

j

P j
D.(1− PD)M−j "Majority rule"

(5.2)
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PFA,t :



= 1− (1− PFA)M "OR rule"

= PM
FA "AND rule"

=
∑M

j=M/2

 M

j

P j
FA.(1− PFA)M−j "Majority rule"

(5.3)

Here PD,t and PFA,t are the detection and false alarm probabilities, respectively under
CSS. PD and PFA are detection and false alarm probabilities of the individual CR user,
respectively.

5.3 Analytical Models for Max-Min based Energy Detector

In this section, novel analytic expressions for the Max-Min ED based CSS are formulated.
Later, the derived analytical results are compared to simulation results, and a very good
match is found between them [18].

5.3.1 Probability of False Alarm and Energy Threshold

Recalling earlier studies, the test statistics depend on the maximum and minimum values
of Uk. The statistics of maximum and minimum distribution is characterized by the Von
Mises theorem [18]. Following these statistics, the Gumbel distribution [15] is used for
efficient representation of the extreme values of an arbitrary distribution namely,

fmin(x) =
1

β
e
x−α
β e−e

x−α
β (5.4)

and,

fmax(x) =
1

β
e−

x−α
β e−e

−x−α
β (5.5)

here α and β represent the location and scale parameters of the distribution. The ex-
pected value and standard deviation of the difference of maximum and minimum values
are derived from the equations 5.4 and 5.5, respectively. Based on the above equation
and earlier studies of our group [15] both detection and false alarm probabilities for each
sensing station are formulated as Equations 5.9 and 5.7, respectively.

Using Gumbel distribution with mean and variance, values of Uk in 5.1 for hypothesis
H0, one obtains

Umax−min|H0 ∼ QG(α|H0, β|H0)

∼ QG
(
σ2
w,k

2
+ C

√
6

Lt

σ2
w,k

π
,

√
6

Lt

σ2
w,k

π

) (5.6)

here,QG(α, β) denotes the Gumbel distribution, and standard complementary function is
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represented by, G
(
x−α
β

)
= 1− e−e

−x−α
β .

In the practical environment, both expressions PFA and PD have to consider the noise
uncertainty. It is recalled that the noise distribution is summarized in the range by σ2

w,k ∈
[1
ρ
σ2
n,k, ρσ

2
n,k] where ρ is the corresponding noise uncertainty parameter. Hence, the worst-

case false alarm probability is expressed as follows:

PFA = max
σ2
w,k∈[

1
ρ
σ2
n,k,ρσ

2
n,k]
G

(γ − (σ2
w,k

2
+ C

√
6
Lt

σ2
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π

)
(

6
Lt

)1/4 σw,k√
π

)

= G

(γ − (ρσ2
n,k

2
+ C

√
6
Lt

ρσ2
n,k

π

)
(

6
Lt

)1/4√ ρ
π
σn,k

)
.

(5.7)

here, ρ is corresponding uncertainty parameter, Based on 5.7 threshold is formulated as,

γ = G−1
(
PFA

)( 6

Lt

)1/4√
ρ

π
σn,k +

ρσ2
n,k

2
+ C

√
6

Lt

ρσ2
n,k

π
. (5.8)

5.3.2 Probability of Detection

Similarly, detection probability is derived for H1 hypothesis from the equation 5.1 as
follows,

PD = min
σ2
w,k∈[

1
ρ
σ2
n,k,ρσ

2
n,k]
G

(γ − (κ
2

+ C
√

6
Lt

κ
π

)
(

6
Lt

)1/4 κ√
π

)

= G

(γ − ( κ̂
2

+ C
√

6
Lt

κ̂
π

)
(

6
Lt

)1/4√ ρ
π
κ̂

)
.

(5.9)

here κ = Emax − Emin + σ2
w,k and κ̂ = EMax − EMin + σ2

n,k/ρ. Emax and Emin are
evaluated as Emax = m

k
ax
(
|H|2Hk

)
and Emin = m

k
in
(
|Hk|2Ek

)
. Hk and Ek are PU

channel gain and PU signal energy in subband k.
Noise uncertainty introduces severe effects in ED based spectrum sensing methods.

The proposed method efficiently removes the noise floor. Since the observed primary
signal power spectral density (PSD) is frequency dependent and the noise is additive white
Gaussian noise, the proposed maximum-minimum approach eliminates the noise floor.
Removal of the noise floor minimizes the uncertainty effects and hence the proposed
Max-Min based CSS method is robust is to noise uncertainty.
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5.3.3 Analysis of Cooperative Maximum-Minimum Energy De-
tection

Analytical detection and false alarm probabilities with Max-Min ED are obtained from the
Equations 5.9 and 5.7, respectively. Linear fusion rules are applied to combine the sensing
results from the each station. Here, linear fusion rules for hard decision combining are
applied at FC using "AND rule", "OR rule" and "Majority rule". Details of these linear
fusion rules have been covered in Section 3.3.

From Equations 5.9 and 5.7, PD and PFA for individual sensing station with Max-Min ED
is calculated. Cooperative probabilities after implementation of linear fusion rules are ob-
tained from the different fusion rules as per Equation 5.2 and 5.3, respectively.

5.4 Simulation Results

The performance of proposed novel Max-Min ED based CSS and the comparison with
traditional ED based CSS are shown in this section. Proposed Max-Min ED based CSS
methods are realized for non-oversampled, small-oversampled and 2x-oversampled signal
cases. In our test scenario, proposed CSS are analyzed with different channel models:
Indoor, ITU-R and SUI-1 frequency selective channels [30]. With worst-case scenario of
1-dB noise uncertainty, desired false alarm probability is chosen as PFA = 0.01 for each
station in all cases. The time record length is 10240 samples is selected. 1000 Monte
Carlo simulations applied to ensure the reliability of the simulation. In this study, two
FFT length were set as NFFT = 8,32. Number of sensing stations M = 8 was selected.
System bandwidth for the test scenario was set to 20 MHz.

Three different approaches, maximum-minimum ED, maximum/minimum ED and
differential Max-Min ED based CSS approach have been presented in Figure 5.2 - 5.5.
Cooperative Max-Min ED based algorithm has better performance over the differential
Max-Min ED and Max/Min ED based algorithms. Hence, cooperative Max-Min ED is
proposed for the spectrum sensing purposes. Furthermore, the algorithm is simpler to
implement and yet eliminates the noise floor thus reduces the uncertainty effects. CSS
offers the reliability and the solution to the potential hidden node problem as described in
the earlier chapter.
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5.4.1 Comparison of Max-Min ED, Max/Min ED, and differential
Max-Min ED based CSS
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Figure 5.2: CSS detection probabilities with a) Max-Min ED, b) Max/Min ED and c)
Diff. Max-Min ED and three different linear fusion rules for non-oversampled QPSK PU
signal under Indoor channel, the length of FFT NFFT = 8, the number of sensing stations
M = 8, the sample complexity N = 10240, and 1 dB noise uncertainty.

Figure 5.2 gives the comparison between proposed novel Max-Min ED, Max/Min ED,
and differential Max-Min ED with three different linear fusion rules. Detection probabil-
ities of three different techniques were compared for frequency selective Indoor channel.
Length of FFT is selected NFFT = 8, the number of sample complexity is equals to N
= 10240 for non-oversampled QPSK PU signal. Figure shows Max-Min ED with better
detection probabilities compared to Max/Min ED, and differential Max-Min ED based
CSS.
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Figure 5.3: CSS detection probabilities with a) Max-Min ED, b) Max/Min ED and c)
Diff. Max-Min ED and three different linear fusion rules for small-oversampled QPSK
PU signal under Indoor channel, the length of FFT NFFT = 8, number of sensing stations
M = 8, the sample complexity N = 10240, and 1 dB noise uncertainty

Figure 5.3 gives the comparison between proposed novel Max-Min ED, Max/Min ED,
and differential Max-Min ED with three different linear fusion rules. Detection probabil-
ities of three different techniques were compared for frequency selective Indoor channel.
Length of FFT is selected NFFT = 8. With small oversampling, the number of sample
complexity is equals to N = 12480 for QPSK PU signal. Here, small oversampling is se-
lected to cover the transition band near the signal spectra. Figure shows Max-Min ED with
better detection probabilities compared to Max/Min ED, and differential Max-Min ED
based CSS.
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Figure 5.4: CSS detection probabilities with a) Max-Min ED, b) Max/Min ED and c)
Diff. Max-Min ED and three different linear fusion rules for 2x-oversampled QPSK PU
signal under Indoor channel, the length of FFT NFFT = 8, number of sensing stations M
= 8, the sample complexity N = 10240, and 1 dB noise uncertainty.

Figure 5.4 gives the comparison between proposed novel Max-Min ED, Max/Min
ED, and differential Max-Min ED with three different linear fusion rules. Detection
probabilities of three different techniques were compared for frequency selective In-
door channel. Length of FFT is selected NFFT = 8 for QPSK PU signal. Here, 2x-
oversampling is selected with root raised cosine filter and 22% roll off factor. Figure
shows Max-Min ED with better detection probabilities compared to Max/Min ED, and
differential Max-Min ED based CSS.
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Figure 5.5: CSS detection probabilities with a) Max-Min ED, b) Max/Min ED and c) Diff.
Max-Min ED and three different linear fusion rules for 2x-oversampled QPSK PU signal
under Indoor channel, the length of FFT NFFT = 32, the number of sensing stations M =
8, the sample complexity N = 10240, and 1 dB noise uncertainty.

Here, number of FFT length is selected as NFFT = 32 ind Figure 5.5. Max-Min ED
shows better detection probabilities compared to Max/Min ED, and differential Max-Min ED
based CSS.

Novel Max-Min ED based CSS shows better detection probabilities compared to Max/Min
ED, and differential Max-Min ED based CSS in all non-oversampled, small-oversampled
and 2x-oversampled signal cases for NFFT = 8,32.

5.4.2 Comparison of Analytical and Simulated Results of Max-
Min ED and Traditional Cooperative ED

Proposed cooperative Max-Min ED have been compared with the traditional coopera-
tive ED under 1 dB noise uncertainty condition. Simulations have been carried out for
NFFT = 8 and 32 as portrayed by Figures 5.6 and 5.7 respectively. Both figures show
that proposed cooperative Max-Min ED clearly edge the performances of traditional co-
operative ED. Additionally, analytical results of proposed cooperative Max-Min ED have
been compared with simulation results. Results in both Figures 5.6 and 5.7 match quite
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Figure 5.6: Comparison of CSS detection probabilities between traditional ED and Max-
Min ED with three different linear fusion rules for 2x-oversampled QPSK PU signal under
Indoor channel model, the length of FFT NFFT = 8, the number of sensing stations M =
8, the sample complexity N =10240, and 1 dB noise uncertainty.

well. Proposed cooperative Max-Min ED has approximately 10 dB better detection per-
formance compared to traditional cooperative ED under 1 dB noise uncertainty condition.
Few spikes have been observed in the simulation results for the "OR rule", number of
Monte-Carlo simulation is increased to minimize the spikes. "Majority rule" has mod-
erate value of both detection and false alarm probabilities. Hence, "Majority rule" with
k=M/2 is proposed for the collaborative decision fusion. Additionally, results show that
the proposed Max-Min ED is better than that of conventional ED algorithms for both
number of subband 8 and 32.

Figure 5.6 shows the detection probabilities for traditional ED and Max-Min ED with
three different linear fusion rules applied at the FC. Length of FFT is selected to NFFT

= 8. 2x-oversampled QPSK signal was selected with 1-dB noise uncertainty. Frequency
selective Indoor channel with AWGN noise is selected. On comparison Max-Min ED
with three different fusion rules shows better performance over traditional ED with three
different fusion rules. For Max-Min ED, 90 % detection probabilities for "OR rule",
"Majority rule", and "AND rule" is achieved at -16 dB, -14 dB and -12 dB, respectively.
On other hand, traditional ED shows 90 % detection probabilities for "OR rule", "Majority
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rule", and "AND rule" are achieved at -4 dB, 0 dB and 5 dB, respectively. Figure shows
the PFA,t for "OR rule" is higher compare to "Majority rule" and "AND rule".
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Figure 5.7: Comparison of detection probabilities between traditional ED and Max-Min
ED with three different linear fusion rules for 2x-oversampled QPSK PU signal under
Indoor channel model, the length of FFT NFFT = 32, the number of sensing stations M
= 8, and the number of sampling complexity N =10240, and 1 dB noise uncertainty.

Figure 5.7 shows the detection probabilities for traditional ED and Max-Min ED with
three different linear fusion rules applied at the FC. Length of FFT is selected to NFFT =
32. 2x-oversampled QPSK PU signal was selected with 1-dB noise uncertainty. Max-Min ED
shows 90 % detection probabilities for "OR rule", "Majority rule", and "AND rule" are
achieved at -15 dB, -13 dB and -12 dB, respectively. On other hand, traditional ED shows
90 % detection probabilities for "OR rule", "Majority rule", and "AND rule" are achieved
at -4 dB, 0 dB and 5 dB, respectively.

Figure 5.8 and 5.9 show comparison of ROC curves with both Max-Min ED and tra-
ditional æed based CSS with three different linear fusion rules. In test scenario, number
of sensing stations are selected M = 8, the number of sample complexity is selected N
= 10240. 2x-oversampled PU signal with noise uncertainty parameter equals to 0 , 0.1
and 1 dB are selected. Result shows that even with small noise uncertainty traditional ED
performances decreases significantly. On other hand, proposed novel Max-Min ED based
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CSS are immune to the noise uncertainty.
ROC curves for the proposed Max-Min ED and the traditional ED with/without noise

uncertainty under -16 dB SNR value are shown in Figure 5.8 -5.9. These results reflect
a fundamental tradeoff between PFA and PD. Small noise uncertainty, such as 0.1 dB
effects the detection performance significantly in the traditional ED, whereas the pro-
posed Max-Min ED based approach provides robust detection performance even under
high noise uncertainty values, such as 1 dB.
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Figure 5.8: Comparison of CSS ROC curve with both basic ED and Max-Min ED and
three different fusion rules at γ = -14 dB for 2x-oversampled PU signal without frequency
selective channel and fading effects, the number of sensing stations M = 8, the length of
FFT NFFT = 8, and the sample complexity N = 10240.



5. Maximum-Minimum subband energy based Cooperative Spectrum Sensing 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of false alarm (P
FA

)

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n 

(P
D

)

 

 

CSS using Max−Min ED using OR Ana.
CSS using Max−Min ED using Majority Ana.
CSS using Max−Min ED using AND Ana.
CSS with basic ED using OR rule
CSS with basic ED using Majority rule
CSS with basic ED using AND rule

Figure 5.9: Comparison of CSS ROC curve with both basic ED and Max-Min ED and
three different fusion rules at γ = -14 dB for 2x-oversampled PU signal without frequency
selective channel and fading effects, the number of sensing stations M = 8, the length of
FFT NFFT = 8, the sample complexity N = 10240, and 0.1 dB noise uncertainty.
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Figure 5.10: Comparison of CSS ROC curve with both basic ED and Max-Min ED and
three different fusion rules at γ = -14 dB for 2x-oversampled PU signal, the channel model
is SUI-I with frequency flat lognormal fading with standard deviation 9 dB, the number of
sensing stations M = 8, the length of FFT NFFT = 8, the sample complexity N = 10240,
and noise uncertainty parameter [0,1] dB.

ROC curves for CSS based on both Max-Min ED and basic ED are simulated and
compared in Figure 5.10 for γ = -14 dB and noise uncertainty parameter [0,1] dB. SUI-I
channel with frequency-flat lognormal fading with standard deviation of 9 dB is consid-
ered. Figure shows, Max-Min ED algorithms is immune to the noise uncertainty even
on high noise uncertainty, like 1 dB. However, performance of the basic ED based CSS
algorithm is decreases significantly even with small noise uncertainty, like 0.1 dB . Fig-
ure 5.11 shows performance of basic ED based CSS algorithm is decreases significantly
under 0.1 dB noise uncertainty.
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Figure 5.11: Comparison of CSS ROC curve with both basic ED and Max-Min ED and
three different fusion rules at γ = -14 dB for 2x-oversampled PU signal, the channel model
is SUI-I with frequency flat lognormal fading with standard deviation 9 dB, the number of
sensing stations M = 8, the length of FFT NFFT = 8, the sample complexity N = 10240,
and 0.1 dB noise uncertainty.

5.5 Chapter Summary

In this chapter, novel cooperative Max-Min ED based sensing algorithms were presented.
The proposed novel technique is robust to noise uncertainty. The chapter presented three
different approaches: Max-Min ED, differential Max-Min ED, and Maximum/Minimum
ED based CSS. Max-Min ED outperformed the other approaches under various condi-
tions, like no oversampling, small oversampling, and 2x-oversampling. Compared to the
advanced spectrum sensing techniques which are immune to the noise uncertainty ef-
fect, like eigenvalue based methods, the proposed Max-Min ED has significantly reduced
complexity.

The basic idea behind the proposed Max-Min ED is to use the frequency variability of
SED outputs and to determine the maximum and minimum statistics. Maximum and min-
imum statistics are utilized to construct the decision statistics. Detection and false alarm
probabilities are calculated according to the present and absent hypothesis by comparing
predetermined threshold to the decision statistics. Cooperation among a number of sens-
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ing stations were exploited with different linear fusion rules. CSS with different fusion
rules were presented as a solution to the practical wireless channel issues like hidden node
problem. Additionally, analytical results were presented and compared to the simulation
result and they were found to match very well.
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6. CONCLUSION

This study principally focused on the spectrum sensing function in the CR systems. The
study resulted in better understanding and handling of ED based semi-blind spectrum
sensing approaches. Specifically, the study focused on the subband based CSS methods.
Additionally, the studies have covered the traditional ED based cooperative techniques,
FFT/AFB based cooperative method, and Max-Min ED based novel cooperative tech-
niques. These contributions are shortly summarized below.

Chapter 3 covered the collaborative approach exploited between CR receivers to coun-
teract the practical wireless channel effects. Detection performance was enhanced with
the collaboration among the CR receivers. Linear fusion rules were implemented to com-
bine the decisions from the individual CR receivers. Reliability of the spectrum sensing
increased with the involvement of more CR receivers and the hidden node problem was
eliminated. Different fusion rule performance was investigated and "Majority rule" with
moderate metrics i.e., PD and PFA was found to be the best rule. Cooperation was em-
ployed that enabled the sensing algorithms to detect the PU signals even at low SNR
level.

Chapter 4 contributed on better understanding of subband based spectrum sensing ap-
proaches and proposed FFT/AFB based CSS method. Studies considered wideband spec-
trum sensing that divided the received signal into a number of subband and each subband
was processed based of ED algorithms. Subband based spectrum sensing ensured the
smallest sensing time and increased detection performances for the wideband signal. For
subband based studies, 802.11g standard OFDM based WLAN and 802.11g like FBMC
based WLAN were considered. With better spectral containment, FBMC showed the best
performances. In these studies, a spectral hole in between two multicarrier was under
sensing. The width of the spectral holes was determined to find out the possibility of SU
communication. AFB processing of FBMC signal showed significant enhancement, i.e.,
lowest false alarm probabilities.

Chapter 5 contributed on understanding and handling of a novel maximum-minimum
based CSS method. The study proposed novel cooperative Max-Min ED which is immune
to noise uncertainty effect and reduces the implementation complexity. The proposed
spectrum sensing method that utilizes the frequency variability of SED. Maximum and
minimum statistics were used to decide the presence or absence of PU signals with the
help of predefined threshold. The Max-Min ED approach removes the noise floor from the
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signal that is additive in nature, which makes the algorithm stable to the noise uncertainty
effects. Numerical results were presented in these studies. The proposed algorithm has
reduced complexity compared to the eigenvalue based approach. The proposed method
exhibited around 10 dB sensitivity enhancement for 1 dB noise uncertainty condition in
contrast to the traditional cooperative ED. Analytical performance analysis was presented
for the proposed algorithm and it matched well with the simulation results.

The overall contributions of the thesis can be summarized as better understanding and
handling of CSS in CR system. The proposed novel cooperative Max-Min ED is simple
to implement and immune to the noise uncertainty effects. Contributions of these studies
are expected to provide useful tools for the design and implementation of simple, flexible
and efficient spectrum sensing mechanisms.
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