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ABSTRACT 
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February 2016 
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Ultrasonic testing is the main tool to inspect and verify the structural integrity of the 

primary circuit components in nuclear power plants during in-service inspection. How-

ever, the in-service inspection is usually done in a short time during the outages in lim-

ited accessibility, which sets the need for efficient inspection procedure. Primary circuit 

components are made from austenitic stainless steel and designed mechanical integrity 

and corrosion resistance in mind. While material properties of austenitic stainless steel 

promote these aspects they reduce the capability of ultrasonic testing, due to scattering, 

diffraction and attenuation of ultrasound. 

In order to validate an inspection method and to train inspectors, reference points are 

needed. However, there are not enough real flaws available to be used for these purpos-

es. For this reason artificial flaws must be used. Artificial flaws must reflect same or 

similar reflection indication so it can be used as a reference point. Otherwise this could 

lead to a false indications or missing of real flaws during in-service inspection. Unfor-

tunately ultrasonic testing is highly dependent on the geometry of the component, the 

type of the flaw and the material in which ultrasound propagates; therefore numerous 

artificial flaws are needed to cover all probable flaw types and locations. 

The aim of this thesis is to study artificial flaws and acquire wider knowledge on ultra-

sonic indications of these flaws. Another objective is to conduct an experiment with an 

austenitic steel weld with electric-discharge machined (EDM) notches as artificial 

flaws. The results of the experiment are then compared to the results from CIVA simu-

lation. The focus is on mechanical and thermal fatigue type of flaws and also EDM 

notch for artificial flaws. Mechanical and thermal fatigue flaws were selected due to 

their occurrence during the service life of a primary circuit. These flaws can also be 

produced in well controlled manner as well as the EDM notches. 
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TIIVISTELMÄ 

TUOMAS KOSKINEN: Keinotekoisten vikojen havaitseminen ultraäänellä aus-
teniittisessa ruostumattomassa teräksessä 
Tampereen teknillinen yliopisto 
Diplomityö, 83 sivua, 5 liitesivua 
Helmikuu 2016 
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Ultraäänitarkastusta käytetään ydinvoimaloissa pääasiassa primääripiirin rakenteellisen 

eheyden varmistamisessa määräaikaistarkastuksissa. Määräaikaistarkastukselle on 

yleensä varattu tiukka aikaraja ja tietyissä tilanteissa luotaaminen voi olla hankalaa ti-

lanpuutteen takia. Tästä syystä tehokkaan tarkastussuunnitelman laatiminen on tärkeää. 

Primääripiirin komponentit on valmistettu austeniittisesta ruostumattomasta teräksestä 

ja suunnittelu on fokusoitu mekaaniseen ja korroosion kestävyyden optimointiin. Vaik-

ka austeniittisen ruostumattoman teräksen materiaaliominaisuudet edesauttavat edellä 

mainittuja ominaisuuksia, nämä materiaaliominaisuudet ja erityisesti austeniitin rakenne 

haittaavat ultraäänitarkastusta sironnan, diffraktion ja vaimenemisen johdosta. 

 

Jotta tarkastusmenetelmä voidaan pätevöidä ja kouluttaa tarkastajia, tarvitaan vertailu-

vikoja vertailukohteeksi. Ideaalissa tilanteessa vertailuvikoina käytettäisiin oikeita käy-

tön aikana muodostuneita vikoja. Näitä vikoja ei kuitenkaan ole riittävästi edellä mainit-

tuihin tarkoituksiin ja useimmissa tapauksissa komponentit voivat olla kontaminoitunei-

ta ja täten radioaktiivisia, jolloin komponentin puhdistus voi olla kallista tai jopa mah-

dotonta. Tästä syystä vertailuvikoina käytetään useimmiten keinovikoja. Keinovikojen 

tulee heijastaa ultraääntä samalla tai lähes samalla tavalla kuin todelliset viat, sillä vää-

ränlaista vertailuvikaa käytettäessä saatetaan jättää todellinen vika huomioimatta tai 

tulkita olematon vika todelliseksi viaksi. Ultraäänitarkastuksen haittapuolena on kuiten-

kin sen riippuvuus komponentin geometriasta, vian tyypistä ja materiaalista, jossa ultra-

ääniaalto etenee. Näistä riippuvuuksista johtuen keinovikoja tarvitaan paljon kattamaan 

laajasti eri vikatyypit ja niiden sijainnit komponentissa.  

 

Tämän diplomityön tarkoitus on tutkia keinovikoja austeniittisessä teräksessä ja hankkia 

laajempaa tietoa ultraäänen käyttäytymisestä näissä vioissa. Tutkimusosiossa tarkastel-

laan austeniittista hitsiä, johon on koneistettu kipinätyöstöuria. Hitsin tarkastustuloksia 

verrataan CIVA-simulaatioon. Vikatyypeistä keskityttiin mekaanisen ja termisen väsy-

misen vikoihin, sillä ne ovat yleisimpiä vikatyyppejä ydinvoimalan primääripiirin kom-

ponenttien elinkaaren ajalla ja niitä voidaan valmistaa kontrolloidusti myös keinotekoi-

sesti. Mitattavaksi keinoviaksi valittiin kipinätyöstöura sen helposti kontrolloitavan 

valmistuksen takia. 
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1. INTRODUCTION 

Austenitic stainless steel is used in wide range of applications in nuclear power plants. 

The main reason for its use originates from its physical properties and the ability to re-

sist different forms of corrosion. It also has good weldability thus allowing its very ver-

satile use in a vast range of applications. In nuclear power plants, structural integrity of 

the weld must be monitored during the lifetime of the component. For this in-service 

inspection, ultrasonic methods are applied. 

Unfortunately, the crystal structure of austenitic weld hinders the propagation of ultra-

sonic beam, causing deviation, attenuation and scattering. This is problematic, since it is 

often difficult to determine the size and the position of the possible flaw. In worst case 

scenarios flaws needed to be noticed may be completely undetected. This is why it is 

important to have mockups with known flaws, allowing the possibility to compare a 

possible flaw to a known flaw to estimate its size, shape and location. Real flaws are 

hard to come by and producing crack like artificial flaws may be difficult, time-

consuming and expensive in some scenarios. Electric-discharge machined (EDM) 

notches offer cheaper and simpler way to mimic real flaws to some degree. Also ultra-

sonic simulation can be used as a supporting tool to validate these flaws and justify the 

inspection methods technically. 

This thesis has been divided into a literature section and an experimental section. In the 

literature section, the focus was on austenitic stainless steel, ultrasonic inspection, simu-

lation and artificial flaws. The agenda was to clarify the phenomena behind the difficul-

ties of ultrasonic inspection in austenitic stainless steels and the simulation of ultra-

sound in these welds. In artificial flaws the focus was mainly on flaws which occur dur-

ing the service life of components in nuclear power plants. 

In experimental section, EDM notches of the same size were machined in and near the 

weld. The base material was AISI 316L stainless steel, which is widely used in nuclear 

power plants. The weld was scanned from both sides of the weld with two different lin-

ear phased array probes with shear wave probe, 2D matrix array TRL probe and two 

conventional shear wave probes. Lastly the weld was modelled in CIVA software and 

simulated with linear phased array scan and compared to the experimental results. 



2 

 

2. AUSTENITIC STAINLESS STEEL 

Stainless steel is an iron-based metal alloy, which has a wide range of different kinds of 

applications. The word stainless comes directly from its property to resist corrosion in 

environments where typical ferritic steel would corrode. This property comes from the 

adding of chromium, which forms a thin chromium oxide film on the surface of the 

steel. Stainless steel can be divided into three types according to their phase, martensit-

ic, ferritic and austenitic. There are also some special applications such as duplex stain-

less steel, which contains about 50% of austenite and 50% of ferrite. Precipitation har-

denable stainless steels are considered as their own group as well. This chapter concen-

trates on austenitic stainless steel, which is one of the most common types of stainless 

steels. [1–3] 

Austenitic stainless steel that contains at least 8 wt% of nickel and 18 wt% of chromium 

is also known as AISI300 series, which is the most widely used grade of stainless steel. 

It is known for its excellent resistance of corrosion, heat and creep. In addition, austenit-

ic stainless steel has good fabricability and cold working properties due to the defor-

mation induced martensitic transformation strengthening the steel. This type of stainless 

steel has an austenitic phase which has a face-centered cubic (FCC) crystal structure. It 

is also non-magnetic. [4–6]  

Since the combination of these properties, austenitic stainless steels are widely used in 

nuclear industry. These applications are, such as primary circuits and the internal struc-

tures supporting the nuclear core. The wide use of austenitic stainless steel in the critical 

components of nuclear power plants (NPP) sets the need for wider understanding of the 

materials in order to develop precise and effective non-destructive testing (NDT) meth-

ods to assure the safe operation of NPPs. [7] 

In the following chapters 2.1 – 2.5, austenitic stainless steel is discussed in more detail. 

First formation and crystal structure of austenite is explained and then the mechanical 

and chemical properties are discussed. Two steel grades, AISI 316 and AISI 321 are 

gone through in more detail and last welding and the flaws in the austenitic stainless 

steel welds are discussed. 

2.1 Formation and crystal structure of austenite 

Phase transformation of steel is a crucial process to understand when considering the 

following grain structure and the properties of the steel. Phase transformation usually 

takes place when sufficient heat is applied to the steel followed by cooling down in a 
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certain time, such as manufacturing and welding of the steel. Welding for instance, 

plays a vital role in joining austenitic stainless steel pipes in NPPs. [8] 

Typical steel in normal room temperature is in ferrite phase which is also called the α-

phase. This phase has a body-centered-cubic (BCC) crystal structure. On the other hand, 

austenitic stainless steel has an austenitic phase, referred as the γ-phase. This γ-phase 

has a FCC crystal structure and it is normally unstable in room temperature, leading to 

its phase transformation to ferrite. To prevent this phase transformation, alloying ele-

ments need to be added in order to retard the kinetics of the γ → α transformation thus 

making γ-phase stable or metastable in room temperature. [6,9] 

As mentioned above, austenite has a FCC structure, which can be seen in Figure 1. Fer-

rite’s crystal structure, BCC, can be seen in Figure 2. When comparing these two crystal 

structures it can be noted that in phase transformation, there needs to be a volumetric 

change. This change is about 1%, which can cause internal stresses during the γ to α 

transformation. [10]  

 

Figure 1 FCC [11] 

 

Figure 2 BCC [11]  

The BCC structure is more loosely packed compared to the FCC structure and largest 

cavities are tetrahedral cavities between the connecting corner atoms and the center at-

om. On the other hand, in the FCC structure largest cavity is shaped as an octahedron 

and it is slightly larger than the tetrahedral cavity in the BCC structure. These cavities 

can be seen in Figure 3. The size of the cavity determines the maximum size of the in-

terstitial atom that can fit into the lattice structure. Therefore these cavities limit the 

elements which can be used as alloying elements. [10] 
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Figure 3 Volumetric cavities [10]  

Since there are a number of alloying elements influencing the phase transformation, it is 

usually simplified to iron binary equilibrium diagram. This phase diagram plots temper-

ature against the relative concentration of carbon. This kind of phase diagram shows the 

threshold field in which certain phase is in stable condition. This leads to the observa-

tion that alloying elements can either expand or contract the γ-field. The elements ex-

panding the γ-field, hence favoring the austenitic phase, are called γ-stabilizers and the 

elements contracting this field by favoring the ferrite phase are called α-stabilizers. [9] 

The form of the field in the diagram is determined to some degree on the electronic 

structure of the alloying element. Nickel, manganese and cobalt initiate open form of 

the γ-field in the phase diagram. Especially both nickel and manganese added in high 

concentrations completely eliminate the BCC α-iron phase replacing it with the austenit-

ic γ-phase. These two elements change the kinetics of γ- to α-phase transformation 

enough for γ-phase to be stable in room temperature. Also obtaining metastable austen-

ite by quenching from γ-phase to room temperature is easier with nickel and manganese 

as alloying elements. The γ-field can also be expanded with carbon and nitrogen, where 

the γ-field has grown but is limited by compound formation. This effect is broadly used 

in heat treatments of steel to obtain a homogenous solid solution. [9] 

Closed and contracted γ-fields are caused by alloying elements restricting the formation 

of the γ-phase. These elements are usually strong carbide formers such as titanium va-

nadium, molybdenum and chromium. Silicon, aluminum, beryllium and phosphorous 

are ferrite formers, which function similarly to the strong carbide formers, closing the γ-

field as well. When the γ-field is contracted to a small closed area, it is usually referred 

as the gamma loop. This gamma loop can be seen in Figure 4. A3 is the temperature in 

which BCC ferrite transforms to FCC austenite and A4 is the temperature in which FCC 

austenite transforms back to BCC ferrite. [9,10] 
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Figure 4 Gamma loop [9] 

Thermodynamically this can be explained by calculating the enthalpy change ΔH, which 

describes the heat absorbed when a unit of solute is dissolving in γ-phase Hγ minus the 

heat absorbed when a unit of solute is dissolving in α-phase Hα. Thus ΔH = Hγ - Hα. 

This enthalpy change can be used with fractional concentrations of an alloying element 

when following relation holds: 

𝐶𝛼

𝐶𝛾
= 𝛽𝑒

𝛥𝐻

𝑅𝑇 ,      (1) 

where Cα and Cγ are the fractional concentrations and β is a constant. [9] 

2.2 Properties of austenitic stainless steel 

2.2.1 Mechanical properties 

Austenitic stainless steel has a wide variety of applications such as chemical processing, 

food processing and welding construction. Mechanical properties of austenitic, ferritic 

and martensitic stainless steel can be seen in Table 1. 

Table 1 Mechanical properties of stainless steels; 409 is ferritic, 410A is martensitic 

and 304 and 316L are austenitic [2] 

AISI number Tensile Strength (MPa) Yield Strength (MPa) Ductility (%EL in 50mm) 

409 380 205 20 

410A 725 415 20 

304 515 205 40 

316L 485 170 40 
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Compared to other stainless steels, austenitic is more ductile than martensitic and ferrit-

ic stainless steels. In yield and tensile strength, austenitic has better tensile strength but 

slightly lower yield strength on average than ferritic. Martensitic has the highest value 

for tensile and yield strength but it lacks in ductility. Because of these mechanical prop-

erties austenitic stainless steel is fairly easy to work, thus making it the most common 

type of stainless steel in use. [2] 

2.2.2 Chemical properties 

One of the main properties for austenitic stainless steel is its resistance to corrosion. 

This resistance comes from the thin chromium oxide layer on the surface of the steel. 

However, this chemical process only happens in an atmosphere containing oxygen. Re-

gardless stainless steel can corrode depending on the circumstances and the types of 

corrosion. Typical ways for stainless steels to corrode are pitting, stress corrosion crack-

ing (SCC) and intergranular corrosion. [6] 

Pitting corrosion is caused by localized depletion of chromium in an environment con-

taining even small amounts of chloride. This forms a small pit which starts to corrode as 

an anode with significant rise in current density. This attracts chloride anions leading to 

acidifying the pit and formation of highly localized and corrosive environment. For first 

generation NPPs, the heat-transfer tubes in the steam generator were made from austen-

itic stainless steel. However, the environment was highly susceptible to pitting corrosion 

along with stress corrosion cracking, due to high temperature and pressure. The alloy of 

these components was changed to a nickel based Alloy 600. [12,13]  

SCC needs favourable environmental conditions and tensile stress to form. It is im-

portant to note that even the residual stresses and stresses from uneven contraction and 

expansion from thermal changes may be sufficient to trigger SCC. These can be pre-

vented with reduction of external loads or with heat treatments to remove residual 

stresses. Since either the environment or the tensile stresses can be controlled, SCC 

should be easily controlled. However, in NPPs it can cause problems in certain situa-

tions. In high neutron irradiation conditions, austenitic stainless steel is susceptible to 

irradiation-assisted stress corrosion cracking (IASSC), which is a special form of SCC 

in NPPs. Especially Si segregation from radiation induced segregation has been shown 

to contribute to IASCC. [7,14] 

Intergranular corrosion occurs along the grain boundaries of the alloy. Stainless steel 

becomes susceptible to intergranular corrosion when it is heated around 500 - 800 °C 

for a long enough time. For example, welding can cause this kind of heat input. This 

forms chromium carbides along the grain boundary thus preventing the distribution of 

chromium evenly and causing depletion of chromium in the vicinity of the grain bound-

aries. This phenomenon can be seen in Figure 5. When there is not enough chromium to 

form the CrO -layer, stainless steel becomes vulnerable to intergranular corrosion. Since 
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sensitizing can happen during welding, there are no specific places for this type of cor-

rosion to occur in an NPP. When the weld is done according to the appropriate proce-

dure, this process can be avoided. [14] 

 

Figure 5 Chromium depletion in a grain boundary [14] 

 

2.3 Specific austenitic stainless steel grades 

In AISI grades, the 300 series is specifically for austenitic stainless steel. Since austenit-

ic stainless steel is the most common type of stainless steels only the most relevant of its 

grades to this topic will be discussed. 

2.3.1 AISI grade 316 

Alloy AISI 316 (EN 1.4401) possesses a good corrosion resistance and can maintain its 

strength also in high-temperature environments such as in NPPs. These properties are 

due to the high amounts of alloying elements within the stainless steel. Alloy 316 also 

contains molybdenum which increases pitting corrosion resistance. Other versions of 

this grade are 316L (EN 1.4404), in which the L stands for lower carbon content and 

316N (EN 1.4406) where the N states that nitrogen is added as an interstitial to the al-

loy. For alloy 316L lower carbon content is especially advantageous in welding applica-

tions, since it lowers carbide precipitation during welding. Composition for 316 grade 

can be seen in Table 2, however it can vary slightly depending on the steel manufactur-

er. [15,16] 

Table 2 Composition of 316 in wt% [17] 

C Si Mn P S Ni Cr Mo 

≤ 0,08 ≤ 1,0 ≤ 2,0 ≤ 0,045 ≤ 0,03 10,0-14,0 16,0-18,0 2,0-3,0 
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2.3.2 AISI grade 321 

Grade 321 (EN 1.4541) has very similar properties to grade 316, but preventing car-

bides from precipitating is achieved with titanium instead of molybdenum. Titanium 

also improves the temperature properties of this alloy. Typical uses for this grade are 

high-temperature and corrosive environments like oil refinery components and welded 

pressure vessels. Composition of this alloy can be seen in Table 3, the titanium content 

is at least five times the carbon and nitrogen content but maximum of 0,7 wt%. [18] 

Table 3 Composition of 321 in wt% [17] 

C Si Mn P S Ni Cr Ti 

≤ 0,08 ≤ 1,0 ≤ 2,0 ≤0,045 ≤0,03 9,0-12,0 17,0-19,0 5(C + N) min., 0,7 max 

2.4 Welding of austenitic stainless steel 

Most common ways to weld austenitic stainless steels are fusion welding and resistance 

welding. In fusion welding heat is applied through the electrode and the welded metal. 

In resistance welding heat is applied through the electric current flowing through the 

welded parts and pressure is applied to the welded joint by the electrodes. Even though 

austenitic stainless steel can be readily welded with resistance welding, it is not very 

suitable for piping welds. Thus, fusion welding is discussed in more detail in this chap-

ter. [19] 

In fusion welding the idea is to deposit a small amount of molten steel between the parts 

to be joined. When it solidifies it welds the two parts together. There are a lot of varia-

bles affecting the weld result, which makes welding susceptible to different kinds of 

flaws and cracks when welding process is done incorrectly. Most austenitic stainless 

steels are considered to have a good weldability and it is also possible to use a wide 

range of different welding methods like with any stainless steel. Austenitic stainless 

steel has 50% greater thermal expansion rate than carbon steel, hence it may cause un-

wanted stresses if not taken account for when heat is applied during welding process. 

Compared to carbon steel, lower current can be applied, since the resistivity of stainless 

steel is higher. [8,20,21] 

2.4.1 Solidification and crystal structure of welds 

Weld area can be divided into three zones: fusion zone, heat affected zone (HAZ) and 

unaffected base material. Fusion zone is the area of the weld wherein actual melting, 

solidification and joining happens. HAZ is the zone where the heat from the fusion 

welding affects the microstructure. The size of the HAZ is affected by the heat from 
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welding process thus the size of the area is dependent on the welding speed and heat 

input in general. [22] 

The microstructure of the weld is dependent on the solidification behavior of the fusion 

zone and then it is influenced by solid-state transformations. The fusion zone can solidi-

fy in austenitic stainless steels by two ways, either primary ferrite or primary austenite. 

After solidifying the microstructure is heavily affected by cooling rate and composition 

which drive the phase transformation. [22] 

In primary austenite solidification, resulting microstructure can either be fully austenitic 

or austenitic with ferrite at cell and dendrite boundaries. In latter case, ferrite forms at 

the end of austenitic solidification process as a eutectoid reaction. However, this reac-

tion requires large enough quantity of elements such as Cr and Mo to promote the ferrite 

formation. Comparison between fully austenitic and primary austenite with ferrite in 

cell and dendrite boundaries can be seen in Figure 6 and Figure 7 respectively. [22] 

 

Figure 6 Fully austenitic fusion zone [22] 

 

Figure 7 Primary austenite, ferrite at cell and dendrite boundaries [22] 
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As the solidification occurs as primary ferrite, austenite forms at ferrite solidification 

boundaries via peritectic-eutectic reaction. The amount of austenite is defined by 

Creq/Nieq and the cooling rate of the weld. As the fusion zone cools down through the 

delta ferrite and austenite field, austenite consumes ferrite via diffusion-controlled reac-

tion. This can lead to formation of skeletal ferrite where ferrite to austenite transfor-

mation has driven ferrite-promoting elements to ferrite phase and the temperature is low 

enough to retard the diffusion of austenite-promoting elements. [22] 

Solidification as completely ferrite is fairly rare in austenitic stainless steels. Also the 

most of the filler metals are composed in a way to promote the primary ferrite and aus-

tenite formation. [22] 

2.5 Possible flaws in austenitic stainless steel welds 

To get a better understanding of the flaws present in austenitic stainless steel welds it is 

beneficial to comprehend the interfaces within these welds. Lippold and Damian divide 

these boundaries into three types: solidification subgrain boundaries (SSGB), solidifica-

tion grain boundaries (SGB) and migrated grain boundaries (MGB). SSGB has low dis-

location density due to solidification along the preferred crystallographic direction. SGB 

on the other hand has dissimilar growth direction and orientation. This leads to high 

angular misorientation, thus dislocation network develops along the SGB. In MGB, the 

high angular grain boundary has migrated away and it uses grain growth as its driving 

force. MGBs are most typical in fully austenitic welds since ferrite usually prevents 

migration away from original SGB. [22] 

Weldability of austenitic stainless steels is generally good. However, like any other 

steel, there exist a few problems which may occur during and after welding. These are 

solidification cracking, HAZ and weld metal liquation cracking, ductility dip cracking, 

reheat cracking and corrosion and contamination induced cracking. Although austenitic 

stainless steel has good corrosion resistance, welding may expose it to certain types of 

corrosion. [20] 

2.5.1 Weld solidification cracking 

For austenitic stainless steels, weld solidification cracking is one of the most typical 

types of flaw. According to generalized theory, this type of cracking occurs when con-

tinuous liquid films separate grains in combination with high enough tensile stresses. 

Welds that are primary austenite and contain no ferrite are the most prone to weld solid-

ification cracking. Also high impurity levels, such as S and P, increase the susceptibility 

for this kind of cracking. Welding process itself has an influence on cracking tendency. 

Heat input, travel speed and weld bead shape affect the susceptibility, since residual 

tensile stresses can cause cracking when weld metal contracts during cooling. For ex-

ample high heat, too fast travel speed and concave bead shape raise the probability to 
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weld solidification cracking. However composition and most importantly Creq/Nieq rela-

tion has the strongest influence on weld solidification cracking. This is related to the 

fact that Cr is ferrite promoting element and ferrite lowers the probability of solidifica-

tion cracking. Weld solidification crack in fully austenitic weld can be seen in Figure 8. 

Weld solidification cracks usually form in SGBs. Since there is no residual ferrite, these 

grain boundaries tend to be straight so there are no resisting factors for crack propaga-

tion. [20,23] 

 

Figure 8 Fully austenitic weld crack [20] 

Since solidification cracks form along SGBs or SSGBs fracture surface reminds more of 

a dendritic structure. Flat crack shape is possible in fully austenitic welds mainly due to 

the straight shape of the boundary. These cracks form in the temperature range between 

liquidus and solidus temperature, which is called brittle temperature range (BTR). [20] 

2.5.2 HAZ liquation cracking 

On the boundary between fusion zone and HAZ there is a partially melted zone. HAZ 

liquation cracking occurs when liquid films form along the grain boundaries in a partial-

ly melted zone. The reason for liquation is usually caused when impurities segregate to 

the grain boundary. Like weld solidification cracking, HAZ liquation cracking occurs 

also in the range of BTR. [20] 

2.5.3 Weld metal liquation cracking 

Weld metal liquation cracks are also called microfissures or microcracks. These cracks 

are hard to detect due to their small size. Microfissures are usually formed in fully aus-

tenitic multipass welds, during remelting and solidification of MGBs. Temperature 
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range is in BTR. The difference to solidification cracking is that in liquation cracking 

fracture surface does not form dendritic morphology. [20] 

2.5.4 Ductility-dip cracking 

Ductility-dip cracking (DDC) occurs along MGBs in alloys which have FCC crystal 

structure. In DDC there is sudden drop in ductility slightly above the half of the melting 

temperature of the material whereas in normal situation ductility would gradually in-

crease till solidus temperature. Highly restrained and thick welds are the most suscepti-

ble for DDC. Research made by Nissley et al. by using strain-to-fracture test pointed out 

that the susceptibility to DCC is related to temperature, strain and to some extent, stroke 

rate. Also recrystallization was previously proposed as a recovery mechanism for ductil-

ity at higher temperatures. However the mechanism behind DCC is not yet fully under-

stood. [20,24] 

2.5.5 Reheat cracking 

Reheat cracking takes place usually during stress-relief heat treatment. Fortunately this 

is not usually problematic for most of the austenitic steel grades but for steels that form 

carbides during the heat treatment. These are usually heat resisting steels with slightly 

higher carbon content. [20] 

Heat input from welding dissolves carbides into high temperature HAZ. When the weld 

is reheated in stress relieving, carbides precipitate into the grain. When stress is re-

lieved, but interior of the grain is still overly strengthened due to carbides, reheat crack 

occurs. [20] 

2.5.6 Corrosion induced cracking 

Corrosion resistance of austenitic stainless steel was discussed in chapter 2.2.2 Chemi-

cal properties. These same properties apply also to the welds of austenitic stainless steel. 

They are susceptible to intergranular corrosion, sensitization, stress corrosion cracking 

and pitting like the base metal [25]. Here the special cases in weld corrosion, knifeline 

attack and selective ferrite attack will be discussed in more detail.  

Knifeline attack is a special case of intergranular attack. The weld appears to be cut with 

a knife adjacent to fusion zone. This is due to carbides dissolving into the region. How-

ever, when temperature drops chromium carbides form faster than the other carbides, 

forming a sensitized region. [25] 

In selective ferrite attack, substance such as terephthalic acid, corrode the ferrite in 

stainless steel. This reaction corrodes ferrite network from the weld thus causing serious 

damage to structural integrity of the weld. [25] 
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2.5.7 Contamination induced cracking 

Contamination induced cracking occurs when contaminant enters the grain boundary of 

austenitic stainless steel. Lippold and Damian define three types of contamination 

cracking: copper contamination cracking (CCC), zinc contamination cracking (ZCC) 

and helium-induced cracking. [20] 

CCC occurs when molten copper penetrates into the grain structure from the surface of 

the stainless steel. However, copper as an alloying element does not cause this kind of 

cracking. Wetting of the grain boundaries is important for this phenomenon to happen, 

which is most effective close to 1100 °C. Thus CCC can be observed just next to the 

fusion boundary. [20] 

ZCC is similar to CCC but in contrast to CCC zinc penetrates the grains, according to 

Lippold and Damian, by evaporation or by condensation. Reason for this may be the 

melting temperature of the zinc which is only 419,5 °C and boiling temperature 906 °C, 

compared to the melting temperature of copper 1083 °C. [20] 

Helium-induced cracking is a special case. Helium forms inside the steel due to neutron-

irradiation. Helium is the emitted alpha particle from the resulting neutron capture and 

decay of 𝐵5
12  or 𝑁𝑖28

59  isotopes. Since helium cannot dissolve into steel very well, it 

forms bubbles and other impurities into the grain boundaries, which induce a crack 

when a proper amount of stress is applied. [20] 
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3. ULTRASONIC EXAMINATION 

A bat is most renowned for its ability to navigate with ultrasound. In nature ultrasound 

is used besides navigation also for communication. In both of these situations the ani-

mal has to take into account the same problems that are faced in the ultrasonic inspec-

tion as well; attenuation, scattering and distortion. However, using ultrasound is very 

advantageous in situations where normal sight is obstructed or there is high audible 

background noise. Ultrasonic examination is based on an idea to send ultrasonic sound 

waves to the material to examine the signal which has reflected or diffracted from a 

surface or a discontinuity. The other way is to examine the transmitted signal. [26,27] 

As an examination method, ultrasound has lots of options so it is fairly versatile. The 

inspector can use large variety of ultrasonic transducers depending on the desired appli-

cation. Also it is possible to use the shape of the part in advantage and to use reflections 

in a way that the ultrasound can reach the desired area in the right angle. There are a lot 

of options for the coupling medium and it is also possible to automatize the process in 

certain applications. Ultrasonic examination is a cost effective and fast method, howev-

er it requires skilled operator for qualified use and it is hard to interpret with high accu-

racy. [27,28] 

In the chapters 3.1 - 3.4 is discussed the theory behind ultrasonic testing, how ultra-

sound is generated in the ultrasonic transducers, how welds are inspected with ultra-

sound and how austenitic stainless steel is inspected with ultrasound. 

3.1 Theory behind ultrasonic testing 

Ultrasound is a mechanical wave like any other sound. The most classical way to de-

scribe the wave motion is a rock dropped in water. The surface of the water is disturbed 

and the waves move outwards from the disturbed point. This disturbance is transmitted 

from particle to particle so the wave propagates. However, the particle returns to its 

equilibrium position after transmitting, thus the net motion of particles is zero so only 

the energy is transmitted forward. Since the particles transfer the energy from one to 

another there needs to be a medium for this propagation to happen. [29,30] 

The velocity of the propagation depends on the density of the medium. In steels, the 

grain size affects the density, hence it affects the velocity of the sound wave as well. 

The denser the medium the faster is the transmission. For example speed of sound in 

austenitic stainless steel is approximately 5672 m/s with 120 µm grain size. For compar-

ison, in the air the wave velocity is approximately 330 m/s. [30,31]  
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Wavelength λ can be defined as the distance between two corresponding points in the 

waves. Amplitude a is the maximum displacement from the equilibrium position and 

velocity ν determines how fast the energy propagates through the medium. Frequency f 

is the reciprocal of the period T, hence f = 1/T. These all are related together by the for-

mula below. [30] 

𝜆 =
𝑣

𝑓
      (2) 

Ultrasound is type of sound which has higher frequency than the hearing of the human 

ear. Hence all frequencies over 20 kHz are considered as ultrasounds. The intensity 

(amplitude) of a sound wave is determined by decibels (dB). Decibel is a logarithmic 

scale relative to human hearing threshold of 1 kHz. [30] 

3.1.1 Wave form 

Wave form can be categorized into longitudinal wave and transverse wave. In a longitu-

dinal wave (or compressional wave), the wave propagates parallel to the direction of the 

disturbance. The disturbance vibrates in a way it compresses the particles into the direc-

tion which the wave will propagate, resulting in compression and rarefaction regions. 

This is demonstrated in Figure 9. In this figure v is the wave velocity. [29,30] 

 

Figure 9 Longitudinal wave [29] 

Unlike in longitudinal wave, the disturbance from equilibrium in transverse wave (or 

shear wave) is perpendicular to the propagation direction. As seen in Figure 10 the dis-

turbance can be also negative from the equilibrium. This is different from longitudinal 

wave, since there is no compression or rarefaction in transverse wave. Sound velocity of 

a transverse wave is approximately half of the velocity of a longitudinal wave in the 

same material. This can be used as an advantage to increase resolution, since when ve-

locity slows down, but frequency stays the same, the wavelength shortens. This allows 

the detection of smaller flaws.[29,30,32] 
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Figure 10 Transverse wave [29] 

A special case for transverse wave is a surface wave (or Rayleigh wave). It is generated 

through a mode conversion when the waves reflect in a certain angle. [33] 

3.1.2 Reflection of sound waves 

According to Huygens’ principle: “each point on a wavefront can be considered as a 

point source which is responsible for the subsequent progress of the wave”. These point 

sources on the original wavefront generate secondary wavelets, which produce a new 

wavefront. Mansfield uses this principle to derive the laws of reflection and refraction. 

[29] 

In Figure 11 the reflection of sound waves in a surface is demonstrated. According to 

Mansfield, the law of reflection is: “The angles of incidence and reflection of waves 

which are incident on a plane surface are equal, with the reflected waves propagating in 

the plane which is defined by the incident wave and the normal to the reflection surface 

at the point of incidence.” This means that when a point from the wavefront BA reaches 

the plane surface AC it produces a secondary wavelet. These secondary wavelets pro-

duce a reflected wavefront CD. Since the waves are traveling in a same medium thus 

they have the same velocity, triangles BAC and DCA are congruent. This means that 

the incident wave angle θi and reflected wave angle θr are the same. [29] 

 

Figure 11 Reflection of a wave at a surface [29] 

As seen in Figure 12, the secondary wavelets are produced at the interface between two 

mediums. These secondary wavelets continue to propagate in the second medium. 

However, the velocity is different between the two mediums so the travel distance is 

shorter in the other medium in the given time. This causes the wave to refract according 

to Snell’s law: [29] 
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sin 𝜃1

𝑣1
=

𝑠𝑖𝑛 𝜃2

𝑣2
      (3) 

 

Figure 12 Refraction of a wave between two mediums [29] 

At the boundary of medium 1 and medium 2 a component of originally transmitted lon-

gitudinal is converted into a shear wave. It must also be taken into account that longitu-

dinal wave has greater velocity than shear wave. Therefore there is an angle in which 

longitudinal wave has a refraction angle of 90° and it does not penetrate into the materi-

al. However shear wave does, due to its lower velocity. This incident angle is called the 

first critical angle and it can be used when only shear wave is desired in the inspection. 

[32] 

The second critical angle is the incident wave angle for shear wave when its refraction 

angle is 90°. At this case no sound wave is penetrated into the material. When there are 

no critical angles, both shear wave and longitudinal wave refract into the second medi-

um as seen in Figure 13. [32] 

 

Figure 13 Wave mode conversion [32] 
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At the second critical angle mainly with solid-gas and solid-liquid interfaces Rayleigh 

waves are produced. These waves decay rapidly toward the interior of the material (z-

direction) as seen in equation 4.  

𝑢𝑧 = 𝐴3𝑒−∝𝑧 cos(𝑘𝑦 − 𝜔𝑡)    (4) 

In this equation, A3 is the amplitude of the displacement field, ∝ the attenuation factor, k 

the wave number and ω the angular frequency. However Rayleigh waves propagate 

along the surface of the body fairly easily. These surface waves are mainly transverse 

thus surface wave is rather a special case of shear wave, also the wave velocity is slower 

than the normal shear wave. These surface waves can be used in the NDT inspection to 

scan the surface. [32,33] 

3.1.3 Attenuation of ultrasound 

The intensity of ultrasound decreases with the distance from the transducer. This inten-

sity loss happens when the wave is absorbed, scattered or spread. Also the geometry and 

acoustic beam divergence affect the attenuation of ultrasound. [34–36] 

In monocrystalline structure absorption from internal friction and thermal conductivity 

is the most common reason for attenuation. However, in polycrystalline structure, scat-

tering is the major reason for attenuation. Unlike in the case of absorption, amplifying 

the signal in order to compensate the attenuation from scattering causes the increase in 

the noise levels. This is due to the fact that when amplifying the signal, the receiver 

picks up also the scattered waves. [35] 

Scattering occurs at different acoustic boundaries. These boundaries are formed mainly 

from the change of density or elastic moduli. Grain boundaries within the steel are a 

good example of these kinds of boundaries. Size relation between the grain and wave-

length affect the attenuation, thus probe frequency affects the attenuation as well. When 

the wave length is larger than the grain diameter attenuation is considerably lower. 

However, this also means that smaller flaws get missed since the sensitivity goes down 

as well. This can be compensated by using shear waves, so the wavelength lowers. [37] 

Anisotropic materials, such as austenitic welds, deform the acoustic beam due to the 

different direction of energy transfer versus the direction of wave propagation. This 

causes the deviation of the beam from the wave normal and attenuation of the ultra-

sound. Demonstration of this phenomenon can be seen in Figure 14. Unlike in the iso-

tropic case, refraction does not follow Snell’s law, which causes problems when in-

specting an anisotropic weld, since it is harder to predict at which point the ultrasonic 

beam is actually scanning. [35] 
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Figure 14 Ultrasonic ray pattern in inhomogeneous austenitic weld material [38]  

3.1.4 Interference 

There are two types of interference, constructive interference and destructive interfer-

ence. In constructive interference two waves in the same phase are added together. This 

does not change the frequency of the wave but the amplitude is increased. In destructive 

interference the waves are out of phase by half of a period. This causes the waves to 

cancel each other out. For example, pulse repetition rate may be setup in a way that the 

successive sound waves interfere with each other destructively by reflecting from a flaw 

or back wall. This may lead to a dead zone and missing of the flaw. [29,39] 

3.2 Generation of ultrasound 

There are several ways to generate ultrasonic waves. Piezoelectricity, electrostriction, 

magnetostriction, electromagnetic acoustic transducer (EMAT) and laser are several of 

them. Piezoelectricity is the most common way of producing ultrasound thus it is cov-

ered more in detail in the following chapter. [40] 

When stress is applied to piezoelectric component in addition to strain, also a difference 

of potential between opposing faces of the crystal is produced. This phenomenon is di-

rect piezoelectric effect. This effect is used when ultrasonic waves reach the piezoelec-

tric component causing stress to the surface. This stress produces potential difference, 

which can be detected with a flaw detector attached to the piezoelectric transducer. This 

phenomenon works also the other way around, meaning that potential difference to pie-

zoelectric crystal induces a strain. Strain causes disturbance to the molecules near the 

surface of the piezoelectric crystal, which in turn starts an ultrasonic wave. This process 

can work with really high frequency, enabling ultrasound generation. [40] 
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The sound pulse generated from the piezoelectric crystal is approximately 1 µs long. 

The pulse has different frequencies, which can be rectified or smoothed. The shape of 

the sound beam depends on the wavelength of the sound and the diameter of the trans-

ducer. Effect of the diameter Δ can be seen in Figure 15. When the wavelength is con-

siderably higher than the transducer diameter also diffraction increases. As the wave-

length goes down diffraction has lesser effect. L demonstrates longitudinal wave, T 

transverse wave and S surface wave. [32] 

 

Figure 15 Effect of transducer diameter Δ to beam distortion [32] 

Sound beam is divided into two zones, near field (Fresnel zone) and far field (Fraunho-

fer zone), which can be seen in Figure 16. This division is done since the beam intensity 

is not uniform. In addition to intensity fluctuations there is a dead zone right under the 

transducer. The reason and the length for this dead zone comes from the length of the 

pulse. When a transducer is emitting a pulse it cannot receive an echo pulse until the 

transmitted pulse has died down. Therefore also the damping property of the transducer 

crystal is important so that the crystal does not resonate for too long thus lengthening 

the size of the dead zone. [32] 
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Figure 16 Near field and far field of the sound beam [32] 

As seen in Figure 16, near field length N can be calculated using the relation between 

the transducer diameter and the wavelength. 

Since piezoelectricity is related to stress and strain, Cartz relates these piezoelectric 

constants α and β to Young’s Modulus with equation: 

𝐸 =
1

αβ
.      (5) 

For a good transmitter, β should be large and for receiver α should be large. However, 

relation to E prevents both of them to be large. This is why dual crystal transducers are 

used when good transmission and receiving is desired. [32] 

3.3 Weld inspection with ultrasound 

Ultrasonic testing is used to examine the structural integrity of a weld and the surround-

ing base material. The main purpose for ultrasonic testing is discontinuity detection; it 

can also be used to determine the thickness of a material, study elastic moduli or metal-

lurgical structure and process variable evaluation on a component. Ultrasonic testing has 

a high sensitivity to detect flaws and determine their size, good penetration power even 

in very thick components, quick to deploy as well as use and a need to access to only 

one surface of the component. However, there are some disadvantages such as too 

rough surface, unfavorable geometry and internal structure which cause distortion or 

attenuation of ultrasound. Ultrasound is not favorable detecting volumetric flaws, but 

excels in planar cases, when compared to radiography, which is another volumetric 

structural integrity evaluation method. [41,42] 

3.3.1 Conventional ultrasonic inspection 

The most common way to inspect welds with ultrasonic testing is the pulse-echo meth-

od with angled beam. Pulse-echo method was first used in World War I to locate objects 
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under water such as submarines. The idea is to send an ultrasonic pulse from the trans-

ducer into the material. The sound pulse propagates in the solid until it faces the back 

wall or a discontinuity, in which case it reflects back to the transducer. The time period 

between the transmitted pulse and received echo is measured. When the sound velocity 

for the material is known, the distance can be measured. This distance measured can be 

either the thickness of the material or the location of a discontinuity. In c section of Fig-

ure 17, a situation where a flaw is as large or larger as the sound beam diameter so the 

sound cannot propagate any further is demonstrated. In sections d and e the sound is 

completely or partially refracted from the flaw or the back wall so it does not reach back 

to the transducer. In section f the effect of attenuation where the structure of the material 

causes only noise also known as “grass” shown on the screen is demonstrated. [43] 

 

Figure 17 Screen pictures obtained by the pulse echo method [43] 

The angle of the wedge is usually chosen according to the first critical angle so that the 

longitudinal wave does not penetrate into the specimen but only the shear wave does. 

Shear wave can be generated also directly using EMAT. Shear wave can be used to in-

spect the weld directly (half skip) or it can be reflected from the back wall of the speci-

men (full skip) as seen in Figure 18. In order to reach the area near the weld root beam 

angels over 45 degrees are used. This is due to weld crown which usually prevents mov-

ing the transducer on top of it close enough. In some cases weld crown can be grind off, 

so that inspection directly on top of the weld is possible. [44–46] 
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Figure 18 Reflection from back wall [45] 

Since different wave modes have different propagation velocities it is necessary to take 

account these aspects when designing the inspection procedure. Otherwise these unac-

counted wave modes may cause confusion or even mislead to false flaw indications 

when these waves are reflecting from the walls. [45,46] 

There are also normal probes, which are not that common when inspecting welds. The 

sound beam is normal to the surface hence the name, normal probe. The problem with 

the normal probes in weld inspection is the angle the sound beam converges with the 

flaw. Cracks and lack of fusion in welding are more or less perpendicularly aligned to 

the inspection plane, thus the reflecting area for the normal sound beam is smaller than 

the cases with angled probes. Normal probe is used to scan near the weld in case of  

laminations in the base metal, which could interfere with angled beam.[43,47] 

3.3.2 Phased array ultrasonic technique 

In the conventional ultrasonic testing, only a single element or dual element (transmitter 

receiver) transducers are used. One element generates ultrasonic beam with one angle so 

multiple probes with different angles are needed to detect the flaws with different orien-

tations. In order to scan wider areas, the transducer must be moved for example by hand 

or by a robot carefully along to surface area to cover the whole weld volume. In the ul-

trasonic phased array testing there is an array of multiple elements which can be used 

separately to transmit and receive ultrasonic signal. When an element in an array is 

driven, it generates a spherical wave and combination of these waves from other ele-

ments form a traveling wave pulse, according to Huygens’ principle discussed in chap-

ter 3.1.2 Reflection of sound waves. The angle and focus of the traveling wave pulse 

can be controlled by delaying the single element wave pulse as seen in Figure 19. These 

delays are also called focal laws. The advantage compared to a conventional ultrasonic 

transducer is the possibility to utilize multiple angles and focusing depths with a single 

probe. In addition, there is a possibility to scan a group of elements electronically thus 

covering a larger area with a single scan. Since the scanning is done with multiple ele-

ments the amount of received data is substantially larger than with conventional A-scan. 

Often this received data from inspection is stored digitally, allowing later review and 

processing of data. [28] 
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Figure 19 Element delays used to steer (a) and to focus (b) the sound beam [28] 

The arrays can be either linear arrays or 2D matrix arrays. The main difference between 

these two is that the 2D gives more options to steer the sound beam path. Linear array 

can change the steering angle or focus the beam cylindrically while 2D array can change 

the steering, tilt, and skew angles as well as focus of the beam. [28] 

Special case of phased array is the sampling phased array. This new technique reduces 

the dead zone and enhances the inspection of anisotropic materials such as stainless 

steel. In this method one element is transmitting sound pulse at a time and all the other 

elements act as receiver elements. [48] 

3.3.3 Time-of-Flight Diffraction Technique 

The Time-of-Flight Diffraction (TOFD) uses a set of two angle probes arranged in a V-

shaped transmission. One probe is a transmitter and the other is a receiver. Since these 

two transducers are separated from each other they don’t need sound dampening like 

normal transducers, hence TOFD transducers are cheaper to manufacture. When meas-

uring the size of a flaw or a discontinuity, TOFD uses the time-of-flight of the diffracted 

signals from the tips of discontinuities instead of the signal amplitude. When the veloci-

ty of the sound in the material is known, distance between these two points can be cal-

culated. The TOFD setup and signal are demonstrated in Figure 20. As seen on the fig-

ure, wave on the surface travels first to the receiver, which causes the first spike to be 

plotted. Second amplitude spikes are from diffractions from the flaw tips and the latter 

is the bottom echo. The plotting is done with high frequency RF-signal, which is not 

generally used in conventional ultrasonic testing. Also in contrast to conventional angle 

inspection, TOFD uses longitudinal waves instead of shear waves. Longitudinal waves 

propagate faster than shear waves thus they have shorter time of flight, reducing the 

interfering signals. [49,39] 

Scanning can be done manually by hand or automated with a robot. The scanning rig 

needs to be designed in a way so that the probes maintain a constant distance and 

alignment to each other during the scanning procedure. In order to generate a position 
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related B-scan, information on probe location can be provided by using encoders to 

track probe movement along the inspection surface. [39] 

 

Figure 20 TOFD  techinque [49] 

By changing center frequency, transducer size and nominal probe angle TOFD is able to 

inspect thicknesses up to 70 mm effectively. When thickness is greater than 70 mm, 

wall thickness needs to be divided into more than one inspection zones to cover the va-

riety of different depth regions. Orientation of the flaw has a little effect on the detecta-

bility since compared to pulse echo method the amplitude drops significantly less when 

tilt and skew angle of the flaw increase. TOFD saves and digitalizes the inspection data 

for later use, which can also be considered as an advantage. [39,50,51] 

3.3.4 Flaw evaluation 

Not every flaw found in a weld leads to an automatic rejection of the weld. There are 

procedures and standards which determine which size of a flaw is within the acceptance 

limits. To measure the size of a flaw the ultrasonic device needs to be calibrated in order 

for the results to be consistent. The used probe has an effect on the flaw detection as 

well. The probe frequency determines the wavelength of ultrasound and general rule in 

ultrasonic inspection is that the flaw size should be at least one half the wavelength in 

order to be easily detected.  Cracks are usually propagating into the material so in order 

to measure the height of the flaw an angular wedge needs to be used. This allows ultra-

sonic beam to scan the flaw from its side and allowing larger reflecting area than with 

normal probe. [46,52,53] 

The flaw acceptance limits depend on the application of the specimen and in the most 

cases the combination of the size of the flaw and the echo amplitude. In the highest 
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quality standards high enough echo amplitude alone can lead to the rejection of the 

weld. The shape of discontinuities can be most simply classified as point, elongated or 

complex. Point has no significant extent in any direction whereas elongated extends in 

one direction. Complex discontinuity can be divided into two sub-classifications, the 

planar -classification, where it has extent in two directions and the volumetric classifica-

tion where it extends in the third direction as well. [46] 

When evaluating the structural integrity of a material, accurate sizing of the flaw be-

comes important. To comprehend the whole situation both the height and the length of 

the discontinuity can be measured by using maximum echo height techniques, probe 

movement sizing techniques, tip diffraction techniques or synthetic aperture focusing 

technique (SAFT). These techniques can also be used alongside with each other to ac-

quire the most accurate result for both the height and the length. [54] 

Maximum echo height techniques are distance-gain-size (DGS) and distance-amplitude-

correction (DAC). In DGS the maximum echo height is determined by using a reference 

reflector perpendicular to beam axis and the same sound path range as the discontinuity 

being measured. The acquired DGS curve is determined theoretically for certain probe 

type, transducer diameter and frequency. Accuracy can be improved by using smaller 

and smoother reference reflector. Like DGS, DAC is set up by using a standardized ref-

erence block. The idea is that the same reflector produces different amplitudes at differ-

ent distances from the transducer. Echo amplitude can then be compared to the DAC 

curve to evaluate if the found flaw is bigger or smaller than the reference from the cali-

bration block. DGS has an advantage over DAC when testing at long ranges, since DGS 

does not require calibration block the size of the testing distance. Since the accuracy of 

maximum echo height sizing is related to the discontinuity perpendicularity to the sound 

beam axis, length sizing is more accurate than height sizing with this method. [46,54] 

For probe movement sizing techniques, 6 dB drop from maximum is fairly common 

method. Probe location is documented when the maximum echo amplitude from the 

discontinuity has dropped approximately 6 dBs, correlating to 50% of the maximum 

amplitude. This indicates that at this point the tip of discontinuity would be approxi-

mately in the middle of the sound beam. This method is relatively accurate, but if the 

discontinuity shows irregularities sizing errors may be significant. [54] 

Tip diffraction techniques such as TOFD and single probe diffraction technique are con-

sidered special sizing techniques alongside synthetic aperture focusing technique 

(SAFT). In single probe diffraction, crack height can be measured by measuring the 

diffracted signal from a crack tip and a bottom corner of a crack. When bottom corner 

of a flaw is detected the probe is moved to find the crack tip, which causes the signal to 

peak and flaw height can be measured by trigonometric calculation. Tip diffraction 

techniques are fairly accurate. However, when using TOFD for size measurement, ge-

ometry, attenuation and sensitivity must be taken accounted for. In SAFT it is possible 
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to superimpose signals from the flaw thus improving signal/noise ratio. This on the oth-

er hand, increases the accuracy to measure the position of the flaw. [54,55] 

As stated before, there is also interfering noise from microstructure grains and other 

sources which cause coming ultrasonic wave to scatter at the interface. This structural 

noise can lead to missing an existing flaw. Signal-to-noise ratio (SNR) is often used to 

measure the detectability of a flaw. Anderson et al. state in their report a reliable signal 

response should usually be twice the noise, hence the SNR should be at least 2 to 1 [56]. 

However, the report also states that standards ASTM E213-09 (2009), Standard Prac-

tice for Ultrasonic Testing of Metal Pipe and Tubing and ASTM E2192-13 (2013) 

Standard Guide for Planar Flaw Height Sizing by Ultrasonics considering dual-element 

probes determine SNR of 3 to 1 as a minimum requirement for flaw to be considered as 

detectable. On the other hand, according to the report, standard ASTM E273-10 (2010), 

Ultrasonic Testing of the Weld Zone of Welded Pipe and Tubing determines SNR as 2,5. 

Therefore, there is no clear statement which would be the absolute limit for “good” 

SNR. [56,57] 

SNR calculation can be seen in equation 6. 

𝑆𝑁𝑅 = √
16

𝜌𝜈𝑚𝑒𝑡𝑎𝑙𝑤𝑥𝑤𝑦𝛥𝑡

𝐴𝑓𝑙𝑎𝑤(𝑓0)

𝐹𝑂𝑀(𝑓0)
    (6) 

Where 𝜈𝑚𝑒𝑡𝑎𝑙 is the speed of sound in metal, 𝑤𝑥𝑤𝑦 are lateral beam widths at the flaw 

depth, 𝛥𝑡 the pulse duration, 𝐴𝑓𝑙𝑎𝑤(𝑓0) the scattered amplitude of a flaw at center fre-

quency (peak frequency) and 𝐹𝑂𝑀(𝑓0) the noise of figure of merit at center frequency 

(noise peak amplitude). SNR increases when the flaw size increases, beam is more fo-

cused or the pulse shortens, usually by increasing frequency. SNR decreases in materi-

als with high density and/or high acoustic velocity. [57] 

3.4 Ultrasonic testing of austenitic stainless steel 

Austenitic welds are transversely isotropic. This means that the elastic properties are 

independent on direction on one plane as in Figure 21 the XY-plane. The elastic proper-

ties are dependent on the plane perpendicular to it. In austenitic welds the isotropic XY-

plane is along the welding direction. Because of this inhomogeneous anisotropic co-

lumnar grain structure, it is difficult to detect flaws in or in the vicinity of the weld, 

since this structure affects the propagation of the ultrasound. For example, shear wave 

may be reflected from the fusion line. Also it can be reflected due to grain structure of 

austenite, causing a false flaw indication and excess attenuation. Longitudinal wave is 

more favorable in these situations even though it also suffers from attenuation. Mode 

conversions on the fusion line and columnar grains from longitudinal to shear waves 

cause problems in evaluating the weld. It is possible to use mode conversion as an ad-

vantage in inspection. When shear wave probe is set to first critical angle, longitudinal 
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wave is also produced into the material. This refracted longitudinal wave can be used to 

inspect the weld. This procedure requires experienced operator, since it is important to 

distinguish the shear wave and the lateral wave from each other. [46,58]

 

Figure 21 Transverse isotropic symmetry of austenitic weld [58] 

Creeping wave is a special case of refracted longitudinal wave, used to detect surface 

and near-surface flaws. These waves can provide high sensitivity even with anisotropic 

welds. Flaws located near or on the surface of the back wall can be detected with sec-

ondary creeping wave, which is generated by shear waves from the primary creeping 

wave. This phenomenon is demonstrated in Figure 22. Since creeping waves are con-

stantly generating shear waves, causing energy loss as they propagate, they cannot be 

used over large distances. [59] 

 

Figure 22 Generation of creeping waves and secondary creeping waves. 1 longitudi-

nal wave, 2 shear wave, 3 primary creeping wave, 4 secondary creeping wave [59] 

The procedure to inspect welds in austenitic stainless steel is the same as for any steel. 

Most commonly angled probes are used. To calibrate the range setting correctly with 
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angled probes, a calibration block must be used as for ferritic steel. However, for stain-

less steel welds also the calibration block needs to be austenitic for accurate measure-

ment result. This is due to the fact that austenite has different crystal structure besides 

different sound propagation as well. [59] 

When calibrating the sensitivity of a probe to austenitic steel welds a proper reference 

block must be used. Weld parameters have significant impact on the ultrasonic proper-

ties in the weld so the weld in the reference block should be as identical as possible in 

welding procedure to ensure right heat input, deposition rate and the number of weld 

runs made. Artificial reflectors can be side-drilled holes or flat-bottomed holes to repre-

sent reflectors inside the weld. Surface notches can be used to represent surface defects 

on the scanning and the opposite surface. When drilling holes, it should be noted that 

when adjacent holes are too close to each other, they may cause interfering signals due 

to beam spread. An example of a reference block for austenitic welds can be seen in 

Figure 23, the weld crown and root can be grinded off, if necessary. [59] 

Same methods can be used to inspect austenitic welds as for ferritic welds. However, 

attenuation, skewing and scattering of ultrasound in austenitic stainless steel must be 

taken accounted for as well as the lower SNR. In worst cases, austenitic weld might be 

impossible to inspect properly with a conventional method. To compensate these fac-

tors, preferably dual element probes are used. In this set up there are two elements from 

which one is acting as a transmitter and the other as a receiver and the idea is to focus 

the sound beam to a certain depth. These elements need to be acoustically and electroni-

cally isolated from each other. In order to increase SNR even further, longitudinal wave 

is used instead of the conventional shear wave in angle inspections. This type of probe 

is called transmit-receive longitudinal (TRL) probe. For the shear wave the probe is 

simply called transmit-receive shear (TRS) probe. The frequency of a probe is normally 

around 2 MHz and when the depth exceeds 20 mm, a probe with frequency around 1 

MHz is used. The TRL/TRS probe can be either conventional ultrasound or phased ar-

ray application. The more sophisticated method is to use dual matrix array probes 

(DMA), which uses matrix phased array probes with one transmitting and another re-

ceiving. Lowering the frequency is also one of the methods to lessen the scattering from 

the crystal structure, thus lessening the noise. [59–61] 
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Figure 23 Reference block with machined holes and notches [59] 

Kolkoori lists in his thesis properties which cause the difficulties to inspect austenitic 

welds. First of all elastic properties affects the energy flow. Dimensions and anisotropy 

of columnar grains affects when wave length corresponds to the grain size causing 

noise, which then hinders the flaw detection. Also inhomogeneous columnar grain 

structure curves the ultrasound path. Since the ultrasound path is curved and not linear, 

measuring the flaw position has been proven difficult. For shear crack the sound path 

deviation compared to isotropic case can be seen in Figure 24. [58] 

 

 

Figure 24 Ultrasound wave path in anisotropic weld [58] 
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4. SIMULATION 

The use of simulation tools in ultrasonic non-destructive testing has been on the rise. 

There are also commercial software products to simulate ultrasound and its propagation. 

The most common are CIVA, which evaluates the ultrasonic beam using semi analytical 

solutions and a finite element simulation tool ATHENA with the combination of MINA 

model. [62,63] 

The simulation tools are useful when determining parameters for ultrasonic probes and 

scan plans for the components. Simulation can also be used to aid analyzing the results. 

Probe evaluation is especially useful with phased array probes. For example CIVA can 

be used to calculate focal laws or to verify the setup to minimize unwanted lobe genera-

tion. Simulation also saves money and time in situations where a weld should be used to 

verify a certain probe or method. This is especially important when calculating proba-

bility of detection (POD) curves, which need a lot of reference points. POD will be dis-

cussed later on in chapter 5.5. Simulation methods can also be used to develop inspec-

tion procedures and for technical justification. Simulation calculations are based on 

elastic stiffness matrix of the solid which has been transformed from crystallographic 

coordinate system to calculated coordinate system. Computational simulation of ultra-

sonic testing is based on mathematical models, which are not discussed in depth in this 

thesis. [62–64] 

 

Figure 25 CIVA simulation tool [64] 

Simulation can be used to determine ray path, ultrasonic field computation and compu-

tation of response from flaws. There are few different methods to carry out the calcula-

tions for the simulation, by numerical methods, approximated methods or analytical 
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methods. Numerical methods consist of Elastodynamic Finite Integration Technique 

(EFIT), Finite Element Model (FEM), Finite Difference Model (FDM) or Boundary 

Element Method (BEM). Gaussian Beam Superposition (GBS) is considered approxi-

mation method and ray tracing as an analytical method. [58,62] 

Numerical methods require a lot of computing power and a high amount of memory. 

EFIT is used to model ultrasonic wave propagation thus it is time domain modeling 

tool. In FEM the geometry is discretized into a mesh of elements. The finer the mesh is 

the more accurate the result, however computational time increases as there are more 

elements to be calculated. In FDM the elastodynamic wave propagation is calculated by 

solving differential equations. Thus it is the most complicated numerical method and it 

is usually carried out by using a supercomputer, however the advantage of this model is 

its ability to calculate the scattering of ultrasound in the near field. FDM is usually used 

to study inhomogeneous anisotropic cases. BEM uses boundary integral equations, in 

which the elements are either line or surface types depending on the dimension of the 

problem. [58] 

GBS as an approximated approach uses computation time less than the numerical ap-

proaches. It is based on Gaussian wave packets which are superposition of different 

wave vectors. It has been used to calculate focused beam fields of phased array ultra-

sonic transducers. [58] 

Ray tracing is originally a numerical method in which complete wave propagation phe-

nomena is taken into account. However, calculations are only carried out at the interfac-

es which effect the wave propagation. This saves computational time needed and makes 

it an analytical method. [63] 

CIVA uses ray tracing in displaying the results. However, the computation is based on 

so called “pencil method”. In this method ultrasonic beam is described as a cone of rays 

from a single point source, as a tip of a pencil. These rays can be described as a four 

component pencil vector. The vector itself does not take the loss of amplitude into ac-

count, so it is applied later into the final divergence factor. This allows CIVA simula-

tion to be used with complex structures and with arbitrary transducers, thus widening 

the possible uses for this software. [65] 

To model flaws in a test specimen, CIVA uses different defect response models. These 

models are called Kirchoff, Geometrical Theory of Diffraction (GTD), Born and Sepa-

ration of Variables (SOV). These different models are used to calculate different prob-

lems more efficiently, thus saving computational time. [66] 

Kirchoff model is valid when the size of the flaw is greater than the wavelength. This 

model is used to calculate the response from specular reflections of crack-like flaws and 

volumetric cavities, such as semi-elliptical and multi-facetted flaws. When using two 

separate probes, such in tandem or TOFD inspection, the flaw orientation is important 
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for Kirchoff model to work. The transmitter and the receiver need to be in the same 

half-space determined by the orientation of the flaw. If the flaw is in too steep an angle 

and the probes are too far apart from each other, the model is not applicable. The exam-

ple of this situation can be seen in Figure 26. CIVA version 11 upgraded the Kirchoff 

model to approximate flaws embedded in the anisotropic material, before the upgrade, 

the approximation was fairly strong and un-accurate. However, this problem still exists 

with the GTD and SOV models. [66] 

 

Figure 26 Example of the situation where Kirchoff model is not applicable [66] 

GTD is based on the geometrical ray theory aiming at predicting the diffracted echoes 

from the flaws. Hence, GTD is designed especially TOFD and tandem inspection in 

mind. It is more accurate in prediction of diffraction from the flaw edges and inspection 

setups using shear waves. [66] 

CIVA offers the possibility to combine Kirchoff and GTD modes to utilize the benefits 

of the two models. This gives the possibility to account the diffraction and specular re-

flections in the same simulation for planar and multi-facetted flaws. [66] 

Born model simulates echoes scattered by a solid inclusion. It models the interactions 

between the ultrasonic beam and the flaw, which has similar material properties as the 

base material. This model is limited by the size of the flaw. The model does not allow 

calculations for flaws which have higher ka (wavenumber times the largest dimension 

of a flaw) ratio than 5. [66] 

SOV model is specially designed to model scattering from a cylindrical cavity, such as 

side drilled holes or spherical solid inclusions. This model takes creeping waves formed 

from the cylindrical cavity into account unlike the Kirchoff model. However, the validi-

ty of this model has not been proved for 3D configuration or anisotropic material. [66] 

Even though simulation has its advantages with speed, cost and versatility it should not 

be used only as a measure to validate a procedure. When used in combination with real 

specimens the model can fill the gaps in the experimental results, thus lessening the 

required amount of test specimens. Simulation can also be used to extrapolate the exper-
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iment data in order to cover wider range of parameters. Beside from testing purposes 

using simulation is a valid method to train personnel and study the behavior of ultra-

sound in various cases. [67] 

4.1 Simulation of austenitic stainless steel welds 

As stated before, austenitic welds have anisotropic and a dendritic structure. Since the 

computer is a finite machine, it has difficulties to simulate irregular and random prob-

lems. However, these structures can be made with proper input data. [68] 

The crystallographic texture of a weld can be characterized by using X-ray diffraction 

or electron back scattering diffraction (EBSD). This data can be used to model the weld 

accurately in the simulation. However, this is not a necessity to go through since the 

simulation software can approximate the weld fairly well. Especially MINA model, 

which was developed to describe the structural heterogeneity of a multipass shielded 

metal arc weld. This MINA model requires precise information on welding process in 

order to produce accurate results. Other way to roughly describe the anisotropic weld is 

to give the weld’s elastic properties to an anisotropic matrix in CIVA. [68,69] 

In order to describe this inhomogeneous structure, the weld is divided into finite number 

of anisotropic but homogeneous zones. These zones have their own elastic constants 

and orientation of columnar grains. The Figure 27 demonstrates the possible weld mod-

elling of a K-chamfer weld and the black arrows in the figure stand for the orientation of 

the columnar grains. [68] 

 

Figure 27 Austenitic weld described for ultrasonic modelling [68] 

Ogilvy developed a formula to describe the grain structure of an austenitic weld mathe-

matically. The equation can be seen below. 
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tan 𝛳 = {

−𝑇(𝐷+𝑧 tan 𝛼)

𝑥𝜂
, 𝑥 ≥ 0

𝑇(𝐷+𝑧 tan 𝛼)

−𝑥𝜂 , 𝑥 < 0
    (7) 

The orientation ϴ with respect to x-axis can be calculated where T is the slope of the 

columnar grain axis at the fusion faces, D is the half of the width of the gap between the 

weld root, α is the angle of weld preparation and η is a parameter set between 0 and 1 

modeling the change of grain orientation as a function of the distance x from the weld 

center line. The resulting model can be seen in Figure 28. [65] 

 

Figure 28 Approximated model of an inhomogeneous austenitic weld [65] 

Structural noise is one of the main things, which cause problems when inspecting aus-

tenitic stainless steel welds. However, at this point simulation software is not fully ca-

pable to take this into account, despite the fact that CIVA can calculate attenuation and 

scattering. The problem is that coarse grain structure has too many initiation sites for 

scattering that the model cannot be used efficiently in austenitic stainless steel cases. 

[68,70] 

The density and the crystal symmetry are the required parameters for CIVA to simulate 

anisotropic material. The crystal symmetry can be isotropic, cubic, transversely iso-

tropic, orthotropic, monoclinic or triclinic. The symmetry determines how many differ-

ent elasticity constant values must be entered. There is no separate model for anisotropic 

attenuation in CIVA, therefore the attenuation is treated the same for isotropic and ani-

sotropic materials. [66] 

Anisotropy of the austenitic weld also limits the possible use of defect response models 

in CIVA. Also simulating attenuation is a difficult and time consuming task, since there 

are a lot of factors contributing the overall loss of energy with austenitic stainless steels’ 

grain structure one of the main factors. Attenuation due to grain scattering is not usually 

simulated on the grain scale, but it can be implemented as a model within the code in 

order to save computational time or treated as an isotropic attenuation. Despite all these 

limitations, modeling of an austenitic weld can be considered fairly reliable. [66] 
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5. DETECTION OF DIFFERENT KIND OF FLAWS 

The main purpose for an NDT method is to find flaws e.g. for condition monitoring 

purposes. In order to evaluate the effectiveness of a certain method there needs to be 

enough knowledge of the searched flaw in order to evaluate and measure it properly. 

Since flaws are numerous in type, this thesis focuses mainly on cracks caused by in-

service operation environment of an NPP. These types are: intergranular stress corro-

sion cracking, thermal and mechanical fatigue. [52] 

To measure the size of cracks with ultrasound accurately has been proven difficult. 

Cracks have a variety of characteristics which include location, orientation, size, open-

ing of a crack tip, residual stresses and fracture surface roughness among others. These 

have an effect on the propagation, reflection, diffraction, transmission, attenuation and 

diffusion of ultrasound which may hinder the detectability of a flaw. [71] 

5.1 Influence of surface roughness, shape and size on flaw 

detection 

In natural flaws the surface is never exactly planar caused by irregularities, which is 

why the production of artificial flaws which resemble real flaws is difficult. The crack 

surface roughness has a significant effect on the detectability of a crack. When the sur-

face is rough, it decreases the scattered amplitude. As a smooth surface reflects a strong 

coherent field, a rough surface destroys the summation of the waves as the phase varies 

with the flaw surface. Effect of a crack surface roughness to an amplitude distribution 

can be seen in Figure 29. [71] 

The surface roughness of a crack may influence positively to flaw detection in some 

situations. Due to a rough surface there are corners and smooth sections in numerous 

directions. In a case of misorientation, the angle is not that effective as for a smooth 

flaw surface. Unlike in a smooth flaw, where the pulse may be continuous the rough 

surface may cause scattering of the pulse. The rough surface of a flaw may also cause 

loss of diffracted pulses. Even though the flaw may be noticeable it is hard to determine 

its actual size. [71] 
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Figure 29 Polar plots of scattered amplitude distributions. 2MHz monochromatic 

wave is incident at 30°, σ represents different roughness values. [71] 

Wåle divides cracks according to their macroscopic shape to five types: straight, wind-

ing, bend, bilinear and branched. Illustration of these types can be seen in Figure 30. As 

seen from the figure, manufacturing defects is not a straight forward process, especially 

if the result is needed to represent an actual flaw as much as possible. The more the 

branched shape, the harder it is to control the manufacturing process. [52] 

 

Figure 30 Different crack shapes [52] 

5.2 Influence of crack opening and loading on flaw detection 

Crack opening means the characteristic whether the crack is open from its tip to the 

opening corner of a crack or closed partially or through its whole length. If the crack is 

totally open the whole crack surface is free to oscillate the ultrasonic reflection, thus the 

echo amplitude is high. If the crack is partially or fully closed this oscillation is restrict-

ed lowering the surface area of reflection thus lowering the echo amplitude. So the 

crack exists, but in an ultrasonic inspection the structural integrity of a specimen may 
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not seem flawed. In situations where crack is partially open, sizing of the crack may 

prove difficult since signal amplitude varies along the crack. [71] 

As stated above, studies have shown that increase in crack opening causes the rise of 

echo amplitude as well. Moreover, the crack depth increases the echo amplitude. This is 

reasonable indication since the surface area of the crack increases. To conclude, larger 

cracks with large opening are easier to detect. [71] 

Loading conditions have an effect on the peak amplitude received from the reflection of 

the ultrasound from the crack. When crack is under compressive stress the amplitude is 

lowered. On the other hand, under tension the echo amplitude rises, this phenomenon 

can be seen in Figure 31. This is due to the fact that under compression the flaw faces 

come closer to each other. On tensile case, these faces are pulled apart thus widening 

and opening the existing flaw. In a case where crack is already tight and has a rough 

surface, change in the loading conditions has a more significant effect. Due to high 

points of crack surface already touching each other makes it a closed or partially closed 

crack. Of course when the crack is fully opened, reflected echo cannot gain more ampli-

tude. [71] 

 

Figure 31 Different loading conditions affecting the obtained echo amplitude [71] 

In in-service inspection (ISI) there are residual stresses present. These have to be con-

sidered since compressive stresses close the flaw and make it hard or impossible to de-

tect. Cracks formed due to fatigue (mechanical or thermal) are the most susceptible on 

the effect of compressive stresses. Especially crack tips of thermal fatigue cracks are 

considered the most challenging since the crack tip is surrounded by a plastic zone 
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which is under compression. On the other hand tensile stresses open the flaw and might 

even lead to false rejection of the inspected component. [71] 

5.3 Positional and orientation influence on flaw detection 

Since the austenitic weld causes attenuation and scattering of ultrasonic beams the posi-

tion of the flaw is also important. If the inspection is done through the weld the attenua-

tion and scattering may cause the flaw to be missed. This is why it is strongly advised to 

inspect the weld from both sides to ensure the structural integrity of the specimen. Un-

fortunately, this is not always possible due to limited access caused by nearby compo-

nents such as supports or difficult geometry [72]. In the cases where the flaw resides in 

the middle of the weld or the specimen is very thick, the detection of a flaw may prove 

difficult or even impossible. This is why various techniques, such as a set of different 

dual-element angle beam probes, longitudinal waves and creeping waves, should be 

considered. The idea is to focus the ultrasonic beam to a certain point of the weld to 

maximize the sensitivity. The amount of different probes can be reduced by using a 

phased array probe with different set of focus depths and wave angels. [35,59] 

When the tilt of the flaw in relation to the sound beam increases the field is changed to 

an off-specular field. The effect of the crack surface roughness is also increased with the 

tilt angle. In order to get an ultrasonic response from a flaw, a large enough surface area 

for the reflection is needed. For example, if the ultrasound hits the crack tip, the reflec-

tion is very small regardless of the actual size of the flaw. An ultrasonic echo ampli-

tudes related to the angle of incidence can be seen in Figure 32. Thus higher echo am-

plitudes are achieved in combination with higher tilt angles and when the opening cor-

ner is in more favorable position. [71]  

 

Figure 32 Pulse-echo response and the angle of incidence a) 5Mhz longitudinal b) 

Horizontally polarized 2,25MHz transverse and c) 2,25 transverse waves [71] 
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When a rough flaw is tilted to a certain point it may lead to self-shadowing phenomena. 

In this case a section of the surface is not directly covered by the incoming wave but the 

roughness of other parts from the surface shades the area. This effect diminishes the 

overall amplitude of the scattered field. [71] 

5.4 Artificial flaws in evaluation of ultrasonic inspection 

It is important to know the parameters of an artificial flaw precisely, due to application 

in which it is used. Artificial flaws can be used to validate certain inspection methods, 

for example ISIs for NPPs or to train inspectors to detect and evaluate flaws. Therefore 

it is necessary to manufacture artificial flaws to resemble real service-induced flaws as 

much as possible, so the ultrasonic indication would be similar to a real service-induced 

flaw. Since flaws are usually undesirable in welding it is not straightforward to produce 

these defects in a way that they have correct and required parameters. Using real flaws 

would be the ideal situation, but especially in NPP cases these parts are usually contam-

inated radioactively so the cleaning of these parts from radioactive substances is expen-

sive and sometimes impossible. [73–75] 

Ultrasonic testing can be used to find following flaws: Cracks, lack of fusion, lack of 

penetration, cavities, inclusions, pores, excess penetration, undercut, concavity, burn-

trough, mismatch and lamination. Therefore artificial flaws are required to resemble 

these types of defects in order to validate a procedure. In this thesis the focus is on crack 

types which are found in ISI, excluding stress corrosion cracking. These types of cracks 

are artificially produced by mechanical or thermal fatigue and electric discharge ma-

chining (EDM). Although these cracks can be identified with surface inspection meth-

ods such as liquid penetrant testing, cracks usually form in places where only one sur-

face is accessible. Such an example is the ISI of pipe welds in NPPs where a crack usu-

ally forms on the inside surface of the pipe. [73,74] 

Cracks form as linear ruptures when a material is under stress. In most cases they are 

narrow separations, located in the weld or in the HAZ area. The types and locations of 

cracks vary a lot according to the welding parameters. Figure 33 shows different crack 

types and areas where cracks can appear in the weld. In an NPP environment, cracks 

can form in numerous places. These include straight pipe sections, valve bodies, pipe 

elbows and weld joint as well as base material. Crack growth direction is highly de-

pendent on the component and the location, as well as the loading conditions and the 

local shape effect. In pipes the direction is usually either circumferential or axial. In 

HAZ crack growth direction is usually parallel to the weld and in the weld the direction 

is usually transverse. [74,75] 
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Figure 33 Crack types and possible locations [74] 

5.4.1 Mechanical fatigue flaw 

Cracks caused by mechanical fatigue are usually straight, with little or no branching. 

The surface roughness is the smoothest of the crack types, the correlation length is the 

highest. Cyclic loading of a specimen causes mechanical fatigue, for example vibration 

of steam pipes in NPPs. Residual stresses within the material, which are caused for ex-

ample forming at a room temperature, makes the surface even more susceptible to 

cracking in combination with external cyclic tensile load. Welding causes often residual 

stresses, which leads to mechanical fatigue to occur near the weld fusion lines. These 

stresses are often parallel to the weld. In addition, geometrical stresses are higher than 

normal near the fusion lines. The crack parameters and comparison to other cracks can 

be seen in Table 4. Data for service-induced cracks are from Wåle, who collected the 

data from failure analysis pictures. Especially for the part for crack tip radius for me-

chanical fatigue is expected to be small; however statistic may have suffered from cor-

rosion, hence the larger value. [52,76] 

Mechanical fatigue cracks are produced in the same principle as the service-induced 

cracks by cyclic mechanical loading. The produced crack can be controlled with the 

number of cycles and it resembles the service-induced crack well. However, when these 

flaws need to be implemented to a large mock-up, doing these mechanical cycles may 

prove difficult. [76] 
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5.4.2 Thermal fatigue flaw 

Thermal fatigue cracks are caused by sequential temperature changes and it is one of 

fatigue mechanisms in NPPs. The most typical component susceptible to thermal fa-

tigue cracks are components in which cold and hot water mix together. Typically these 

are T-joints in a steam line. Turbulent mixing of the hot and cold fluid causes rapid 

temperature changes to the inner pipe wall. These rapid changes cause thermal expan-

sion and contraction, leading to thermal stresses. Unlike mechanical fatigue, thermal 

fatigue is seldom seen near welds. In principle the mechanism for crack initiation and 

growth is the same as in a mechanical fatigue case, the crack is exposed to cyclic stress-

es. When the stresses exceed the yield strength of the material, thermally induced resid-

ual stresses are formed. [52,77] 

Artificial thermal fatigue flaws are produced in the same manner as the real thermal 

fatigue cracks are formed. Material is exposed to rapid heating and cooling cycle, by 

high frequency induction heating and water or air cooling. This method causes thermal 

stresses to form and initiates crack growth, however thousands of heating and cooling 

cycles are needed in order to produce a crack. Figure 34 compares a real service-

induced crack to an artificially produced thermal fatigue crack with 6500 cycles. As 

seen from the figure, the artificial crack is similar to the service-induced crack; both 

show minor branching, propagation transgranularly, small crack tip radius and narrow 

cracks. Largest deviation is from the larger opening of service-induced crack near the 

surface. Comparison of the parameters can be seen in Table 4, which shows that artifi-

cially produced crack in Figure 34 is within the parameters to be used as a reference 

flaw. [77] 

 

Figure 34 Comparison of (a) service-induced crack and (b)artificially produced 

thermal fatigue crack (6500 cycles) [77] 
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Table 4 Parameter comparison of service-induced thermal fatigue, mechanical fa-

tigue and artificially produced thermal fatigue cracks.*Median value used from the 

data (Wåle). [52,77] 

 Crack 

width, sur-

face (µm) 

Crack 

width, 

middle 

(µm) 

Crack 

width, tip 

(µm) 

Crack tip 

radius 

(µm) 

Surface 

roughness RZ 

(µm) 

Artificial thermal 

fatigue 

70 40 2  35-125 

Service-induced 

thermal fatigue* 

28,5 20 7 0,1 45 

Service-induced 

mechanical fa-

tigue* 

28 20 7,5 3 13 

 

5.4.3 EDM notch 

Electric-discharge machined (EDM) notches are usually produced to a reference mock-

up. Manufacturing process is nonconventional machining process, in which the material 

is removed very accurately in a controlled environment. Cutting is done with an elec-

trode, which is shaped to resemble the desired flaw, only a bit shorter than the flaw de-

sired. The electrode can either cut or burn the material in order to achieve the desired 

flaw shape and size. The parameters of a resulted flaw can be easily inspected with cast 

replica method to ensure that the desired flaw has been achieved. A typical cross-section 

of an EDM notch can be seen in Figure 35. [78] 

Unlike thermal fatigue crack tip, EDM notch tip does not have any stresses, which af-

fects the detection by ultrasound as stated above. When compared to thermal fatigue 

crack in Figure 34 it can be seen how different and multiform the shape of the crack is 

compared to EDM notch. Due to lack of versatility, EDM notches are normally used as 

robust artificial flaws, which are used when mechanical or thermal fatigue crack would 

be hard to produce on a certain place or the cost of producing other types of flaws is an 

issue. [77] 
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Figure 35 EDM notch [77] 

According to a report from Koskinen and Leskelä was concluded that the height sizing 

of mechanical fatigue flaw reliably from the far side was not possible with ultrasonic 

methods. On the other hand EDM notch and thermal fatigue crack could be sized accu-

rately enough from far side. They proposed that attenuation of ultrasound through the 

weld and properties of the mechanical fatigue crack diminished the tip diffraction signal 

below noticeable limit. This is uniform with the theory since the thermal fatigue crack 

and EDM notch had rougher surface and wider opening to the surface. In this case, the 

rougher surface of the thermal fatigue crack allowed amplitude from the reflection to be 

noticeable instead of giving interfering noise. [73] 

5.5 Probability of Detection (POD) 

The idea in probability of detection (POD) is to statistically represent the ability of a 

technique to detect a specific flaw size. For example for a flaw height of 3 mm probabil-

ity of detection could be 90%, depending on the conditions. This is needed for compara-

tive analysis of different NDT methods and flaw sizes, also to predict is it feasible to 

search a certain type of a flaw with certain a NDT method. A demonstration of a POD 

curve is seen in Figure 36. These curves are specified for a certain type of a flaw in a 

certain material. Also in order to establish a POD curve, numerous data points are re-

quired, hence numerous artificial flaws are required to achieve a large enough amount 

of data.[79] 
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Figure 36 Example of a POD curve [79] 

Detecting flaws with ultrasound or any other NDT method is not a straight forward pro-

cess. Smallest detectable flaw does not mean it would be detected every time, due to 

numerous flaw parameters, attenuation and scattering discussed earlier affecting the 

detectability of the flaw. Flaws of the same size get missed and detected. This is the 

reason why statistics are used to describe how probable the detection of a certain size of 

a flaw will be. [80] 

5.5.1 Calculating probability of detection 

Originally NDT statistics were recorded whether the flaw was detected or not. Numer-

ous artificial flaws were sent around to be tested for numerous NDT inspectors. The 

acquired data is called as a hit/miss data. POD curve can be calculated by using log-

logistic distribution with the function below. [81] 

𝑃𝑂𝐷(𝑎) =
𝑒

𝜋

√3
(
ln 𝑎−𝑚

𝜎
)

1+𝑒

𝜋

√3
(
ln 𝑎−𝑚

𝜎
)
     (8) 

where a is the size of the flaw, m the median deviation and σ standard deviation. Varia-

bles to m and σ can also be written as:  

𝑚 = −
𝛼

𝛽
     (9) 

And 

𝜎 =
𝜋

𝛽√3
     (10) 

When they are adjusted to the previous equation, the result is as follows: 
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𝑃𝑂𝐷(𝑎) =
𝑒(𝛼+𝛽 ln 𝑎)

1+𝑒(𝛼+𝛽 ln 𝑎)     (11) 

The equation is further explained in appendix A. Linearly this can be expressed as: 

ln (
𝑃𝑂𝐷(𝑎)

1−𝑃𝑂𝐷(𝑎)
) = α + β ln 𝑎     (12) 

Where the term on the left hand side is the logarithm of the probability of success or 

failure of detection, hence the odds to find the flaw are related to the size of the flaw. 

Detailed calculation is shown in appendix A. The model is called log-odds model. [81] 

ln(𝑜𝑑𝑑𝑠) ∝ ln 𝑎     (13) 

The hit/miss data gives an absolute value while the signal response from the ultrasonic 

testing is not absolute. The signal spike can be from structural noise or diminished due 

to the flaw geometry. Therefore using the signal response data to produce POD curves 

is recommended. In the signal response, a flaw is detected when â exceeds a pre-defined 

threshold âth. Demonstration of this threshold can be seen in Figure 37, a represents the 

linear dimension of a defect while â represents the response from an inspection stimu-

lus. [81,82] 

 

Figure 37 The decision threshold for a signal response data [82] 

For the signal response approach POD function is derived from the correlation between 

â and a. There exists the following linear relationship between (ln (a)) and (ln (â)): 

ln( â) = ∝1+ 𝛽1 ln( 𝑎) + 𝛾    (14) 

where γ represents an error distributed with a zero mean and standard deviation σγ. This 

means ln (â) is normally distributed as N(µ(a), σγ
2
), that is with mean µ(a)=α+β ln (a) 

and a constant standard deviation σγ. Since the signal response data is related to chance 

it can be expressed as below. [81,82] 

𝑃𝑂𝐷(𝑎) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (ln(â) > ln(â𝑡ℎ))     (15) 
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This represents the shaded area in Figure 37. When F is a continuous cumulative distri-

bution function and using the symmetric properties of a normal distribution, POD func-

tion for the signal response can be written as below. This function is further explained 

in appendix A. [81,82] 

𝑃𝑂𝐷(𝑎) = 𝐹 [
ln(𝑎)−µ

𝜎
]     (16) 

To compute POD curves, sufficient amount of data points are needed. The data should 

also be relevant. Therefore it should represent the flaw sizes evenly. Figure 38 shows a 

typical distribution of found and missed flaws. As can be seen from the figure, there is a 

large group of flaws in between the smallest flaw detected asmallest and the largest flaw 

missed alargest. [81] 

 

Figure 38 Hit/miss data, detected and missed flaws [81] 

The flaw size distribution should focus on between these sizes, since otherwise the 

probability to find a very large flaw would be 100% and 0% for a very small flaw. For 

the hit/miss data best results are achieved with evenly distributed flaws between the 

smallest and the largest flaw detected. The minimum recommended amount of these 

flaws for this method is 60. Naturally more accurate results are achieved with increasing 

the amount of data points. [81] 

Compared to the hit/miss data, signal response data is more forgiving in this matter. 

Due to higher amount of information this method provides, range of flaw sizes is not in 

such a large role as in the hit/miss situation. This lowers the need for a sample size to a 

minimum of 30 flaws. [81] 

When a POD curve is derived, it can be estimated which size of flaws is feasible to 

search. When the crack growth rate is added to the equation, an economic inspection 

interval can be calculated. The ideal situation would be that flaw could be easily detect-
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ed i.e. the size would be large enough for the most probable detection. However, this 

should be done at a point in time before the flaw size reaches the critical size, thus en-

dangering the structural integrity. [82] 

5.5.2 Confidence limit in probability of detection 

The confidence limit in a POD means the approximation where the true POD curve 

might lie. For example a90 would mean the flaw size at probability of detection of 90%, 

a90/95 means the flaw size with confidence level of 95%. This means that a flaw with a 

size of a will be detected with probability of 90% and if this experiment is repeated, 

95% of the results will fall inside this confidence limit. [81,83] 

POD with confidence limit can be used in combination when planning an inspection 

protocol. For example, if the maximum allowed flaw size amax is known, then undetect-

ed flaws should be smaller than amax in order to maintain structural integrity. This would 

mean that amax≤a90/95. However, since POD is based on statistics, reasonable deviation 

of results is expected, hence the 95% confidence level is considered a reasonable level. 

[83] 

5.5.3 Master probability of detection curves 

Typically for flaw size a, the length or depth of the flaw is measured. Master probability 

of detection curves focus on the reflecting area of the flaw, thus Â vs. A instead of â vs. 

a. Using the area relates to the fact that during the life of a fatigue crack it may have 

various shapes, but evolves to a semi-elliptical shape. This is advantageous especially 

when using ultrasound, since the reflecting echo indication is directly related to the re-

flecting area of the flaw. Considering the reflecting area, it is a fairly robust method. 

However, a fatigue crack can change its shape during the life of the component. Accord-

ingly to Carboni and Cantini, studies have shown that a crack shape subjected to fatigue 

evolves towards a semi-elliptical shape. This enhances the viability of reflecting area to 

POD curves. Master POD curves are independent from the crack shape, thus they are 

characterized as general and versatile POD curves for evolving crack shapes so these 

curves can be used to estimate the flaw shapes with no experimental data. [82] 
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6. TESTING PROCEDURES 

The agenda of the work was to scan the specimen which had same kind of an artificial 

flaw but within different locations around the weld. Experiments were conducted with 

phased array and conventional ultrasonic methods. Second phase was to compare these 

results with each other and also with the result from CIVA simulation. 

6.1 Parameters for the test piece 

The test piece was 200 mm wide and 299 mm long. Two plates were welded together so 

that the weld was placed in the middle of the specimen. The base material was rolled 

AISI 316L. The weld crown and the root were completely ground off and the whole 

surface of the test plate was ground evenly to a thickness of 22,1 mm. The weld itself 

was a 60° V-groove butt weld done with MAG welding. The width on top of the weld 

was measured with a ruler as 26 mm. The schematics of the specimen can be seen in 

Figure 39. The image of the bottom of the specimen and the EDM notches can be seen 

in Figure 40. The dashed line in the figure represents a surface flaw on top of the sur-

face of the specimen. The unintended flaw is also marked as an s on the figure. This 

visible flaw could not be detected with ultrasound when the specimen was inspected for 

unintended flaws before the machining of the EDM notches, thus it is not presumed to 

affect the testing result either.  

The idea was to scan the specimen from both sides of the weld, on top side of the plate 

and approximately from the same distance from the weld. In this thesis these sides are 

referred as a- and b-side, of which the a-side is the one closer to the origin. EDM notch-

es were placed on the back side of the plate on four different locations near or in the 

weld. The flaw number 2 was placed in the vicinity of the weld in a way it would not be 

in direct contact with the weld metal. The fifth EDM notch was placed on the base ma-

terial as a reference. The depths and the locations of the EDM notches were measured 

during the machining of the flaws approximately 5 mm, with exception of flaw number 

1 with depth of 5,3 mm. The length of the flaws was 15 mm. The results were con-

firmed by measuring the flaw depths and locations again with a ruler. 
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Figure 39 the test specimen described from the bottom. Letters a and b represent the 

side from the scan was made and s the position of the unintended surface flaw. Num-

bers 1-4 are the EDM notches inside the weld and number 5 in the base material. 

 

 

Figure 40 Test specimen and the EDM-notches from the bottom 
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For phased array ultrasonic inspection Zetec Omniscan MX 16/128PR flaw detector 

was used, which was linked to a laptop PC for data acquisition and evaluation. Manual-

ly used Zetec Manual Pipe Scanner was used to measure the probe position during 

scanning of the specimen. Since the scanner was operated manually, larger variations 

may have been caused by this factor. The scanning arrangement can be seen in Figure 

41. 

 

Figure 41 Scanner with a linear phased array probe attached and the specimen 

6.2 Ultrasonic testing procedures 

The summary of the used probes, their frequencies and wavelengths can be seen in Ta-

ble 5. Longitudinal and transverse wave velocity was set to 5770 m/s and 3150 m/s [84] 

respectively. 

Table 5 Summary of the probes, their frequencies and wavelengths 

 

2,25 MHz PA 
40-75° 

5 MHz PA 40-
75° 

2 MHz MWB 
45° N2  

2 MHz MWB 
60° N2  

1,5 MHz TRL 
40-70° 

f (MHz) 2,25 5 2 2 1,5 

λ (mm) 1,37 0,61 1,54 1,54 3,83 

 

For linear phased array inspection, a 16 element 5 MHz 5L16A10 and a 16 element 2,25 

MHz 2.25L16A10 probes with SA10-N55 Rexolite wedge and shear wave were used. 

The focal laws were set according to an azimuthal scan between angles 40° and 75° 

with a step of 1° and to a true depth focus to 22 mm. Water was used as couplant and it 
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was applied to the surface of the specimen via spraying from a spray bottle with con-

stant intervals. The calibration of the probes was done with calibration block  for range 

setting according to SFS-EN ISO 22825 [59]  (V2) before conducting the inspection 

with the probe. 

For dual matrix phased array inspection, two 1,5 MHz probes with TRL Rexolite wedge 

and scan angles between 40° - 70° with step of 1° were used with focus to true depth of 

22 mm. In addition, skew angles of -15° and 15° were applied. The calibration proce-

dure and the couplant were the same as for linear phased array probes.  

For comparison, two conventional 2 MHz MWB 45° N2 and MWB 60° N2 shear wave 

probes were used. The calibration was made also with the V2 block. These angles were 

chosen, since they are in the range of the angles of the phased array inspection and the 

ultrasonic beam from 60° probe would scan the weld groove perpendicularly with full 

skip inspection. 

Maximum amplitudes were extracted from the acquired data in the positions of the 

flaws. The noise of the weld was measured between the flaws 1 and 2 for both a- and b-

side. The noise was determined from the maximum amplitude between these two flaws, 

with an average of three measurements. The maximum amplitude was determined by 

inspecting the echo dynamics of the peak to assure it is not a random amplitude peak. 

When the noise for a specific technique had been determined SNR was calculated for 

each individual flaw and technique. 

6.2.1 Scan plan 

The inspection area for phased array probes and the TRL probe from the a-side was 

along the X-axis in between 109-139 mm and from the b-side in between 160-190 mm. 

Measurement was taken from the origin to the front side of the wedge. The scan covered 

the whole width of the weld, except for the flaw number 5 in which the width was 75 

mm from the origin and the X-axis coordinates were for a-side 194-224 mm and for the 

b-side 226-256 mm. The probe was set perpendicular to the weld and scanned along the 

weld with 5 mm steps in the X-axis direction between the scan lines demonstrated in 

Figure 42. For each probe and each side the inspection was repeated three times. The 

starting position of a scan was calibrated for each separate scan with a ruler. The posi-

tional measurement for X-axis was determined from the front of the wedge and for Y-

axis from the middle of the wedge. The starting point of the ultrasound was measured 

and taken account in the experiments. 

The inspection area for the 60° probe was kept the same, only the perpendicular resolu-

tion was changed from 5 mm to 2 mm. However, for 45° probe the inspection area was 

changed to 125-145 mm and 155-175 mm for a-side and b-side respectively. These 

changes were made in order to achieve better coverage since the path of the ultrasound 
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is considerably steeper compared to the linear phased array, conventional 60° and TRL 

setup. 

 

Figure 42 Visualized scan plan from the top side for a-side. Grey dot represents the 

origin and the purple line the probe movement along the surface 

The gain was set for according to amplitude response from the flaw number 5. Aim was 

to set the maximum amplitude around 80%. For linear phased array probes, 8 dB was 

chosen for this test. For conventional and the TRL probes, the same procedure was used 

and the gain was set to 35 dB and for TRL probe 33 dB was chosen. 

6.3 Simulation procedures 

For simulation a simulation software CIVA version 11.1 was used. Simulation was 

made for 2,25 MHz linear phased array probe similar to the one in the conducted test. 

The specimen was modelled into the simulation software and the anisotropic matrix for 

the weld was set from an average of two 316L welds from the literature [85]. The in-

spection area was narrowed for y direction to the highest points of the elliptical flaws. 

The x-coordinates were the same as in the test specimen, with 5 mm steps. Structural 

noise and mode conversion were not taken into account in the computation of the mod-

el. For flaw response calculation Kirchoff & GTD model was used. The setup is demon-

strated in Figure 43. 

The flaw number 5 was only modeled from the one side, since the material was iso-

tropic and the results would not be expected to change. The computation of the results 
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for each sample was only done once, since CIVA software does not calculate separate 

random seed for each ultrasonic testing so computation of the results would not have 

varied. 

 

Figure 43 Civa simulation setup. Red lines represent the ray path from the delay laws 
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7. RESULTS AND ANALYSIS 

This chapter presents the results acquired from the conducted tests. First the maximum 

amplitudes from the flaws are listed and compared with each other. Secondly signal-to-

noise ratio was calculated from the measured noise for each flaw and compared against 

each technique. Letter labeling after the flaw number means the side the flaw was 

scanned e.g. flaw number 1a represents the average result for flaw number 1 scanned 

from the a side. 

7.1 Maximum amplitudes 

Maximum amplitude is the maximum signal response from a flaw. The lower the ampli-

tude response is the more the ultrasonic wave has attenuated between the flaw and the 

ultrasonic transducer. In these tests flaw number 5 in the base material was chosen as a 

reference point so maximum signal response from this flaw would be approximately 

80%. The scanning was repeated three times, so the represented values are the average 

maximum amplitudes of these results. The average maximum amplitudes from the tests 

can be seen summarized in Table 6 in Appendix B.  

7.1.1 Linear phased array 

For 2,25 MHz phased array probe there appeared slight variance in the measured data of 

the flaw number 5 from the a-side. It is probable that one scanning run may have suf-

fered from the loss of couplant or the probe might not have been completely perpen-

dicularly to the flaw. However the difference between the average of the results for 

sides a- and b-side is minimal. There is a large difference between the results for flaw 

number 2 from the a- and the b-side. This is due to the fact that on the case of 2b the 

scanning of the flaw is done through the weld whereas 2a is directly in front of the weld 

during the a-side scan, thus it is not affected by noise and attenuation from the weld. 

This occurrence can be observed for other probes as well with exception to the TRL 

probe. The results are shown in Figure 44, where also the average noise level of the two 

sides is represented as a line. 

For 5 MHz linear phased array probe, the average of the results are shown in Figure 45. 

Larger deviation between the results was observed on the flaw number two from the a-

side. The most probable reason for this deviation is the loss of couplant or misalignment 

of the probe in one of the three scanning runs in the vicinity of the flaw number two. 



56 

 

The assumed flawed scan was removed from the results, so for this probe on flaw num-

ber 2a is the average of only two results. 

 

Figure 44 Average maximum amplitude with 2,25MHz probe 

 

 

Figure 45 Maximum amplitude with 5MHz probe 
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When comparing the linear phased array probes together in Figure 46, the results for 

both linear phased array probes were consistent. The flaws closer to the probe and in 

front of the weld gave stronger amplitude response than the flaws further and behind the 

weld center.  

 

Figure 46 Summary of the two linear phased array probes 

2,25 MHz probe gives overall the best maximum amplitudes of the two. This is reason-

able, since according to theory, lowering the frequency lengthens the wavelength, thus 

the grain structure has smaller effect on the beam propagation. 

7.1.2 Conventional ultrasound 

The results for 2 MHz 45° conventional probe are presented in Figure 47. Stronger am-

plitude response was observed for flaw number 1 than for flaw number 4 from the b-

side. Also, the flaw number 1 shows stronger amplitude response from the b-side than 

from the a-side. This contradicts the results from linear phased array inspections. Also 

the flaw number 4 is closer to the probe than the flaw number 1 on the b-side, so strong-

er maximum amplitude would be expected from the flaw number 4. The flaw number 2 

on the other hand, shows stronger amplitude response than the reference flaw number 5.  

Flaw number 1 was located almost in the middle of the weld (0,15 mm from the center), 

which would indicate that the maximum response should be roughly the same from ei-
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for flaw number 1 would indicate that probe may have been misaligned during the setup 

for the scan of the a-side or the probe used may not have been in working order. 

Overall the results for 45° conventional probe do not deviate a lot from the expected 

results, thus the data can still be considered valid. 

 

Figure 47 Maximum amplitude with conventional 45° probe 

For 2 MHz MWB 60° probe, 1,5 dB soft gain was required to be added to 35 dB hard-

ware gain in order to achieve the similar amplitude response for flaw number 5 as for 

45° probe. This attenuation seems reasonable, since ultrasonic beam has to travel a 

longer distance from the transmitter to the flaw and back to the receiver for 60° probe 

than for 45° probe. 

The results for 60° probe can be seen in Figure 48. Standard deviation is the strongest 

for flaw number 3 from the b-side. This is probably caused from the loss of couplant or 

slight misalignment of the probe in the vicinity of the flaw. 

The flaws 3 and 1 existing roughly in the middle of the weld gave similar maximum 

amplitude response from the both measured sides, with b-side giving a lower response. 

This indication is as expected. There is not much difference between the scans from 

both sides for the reference flaw number 5. Hence, the results for conventional 60° 

probe can be considered accurate. 

0

10

20

30

40

50

60

70

80

90

100

M
ax

. a
m

p
lit

u
d

e
 (

%
) 

2 MHz MWB 45° N2 

4a

4b

3a

3b

2a

2b

1a

1b

5a

5b

Noise



59 

 

 

Figure 48 Maximum amplitude with conventional 60° probe 

Summary of the results between conventional ultrasonic probes can be seen in Figure 

49. 
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Figure 49 Summary of the two conventional probes 

60° conventional probe gave roughly better amplitude responses than the 45° probe. 

With exception to flaw number 2 where 45° probe excelled over the 60° one from the a-

side. This might be the cause of the shorter distance the ultrasonic beam from 45° probe 

has to travel compared to 60° probe. Also the flaw number 2 is not in the weld, but in 

front of it in the HAZ. Meaning ultrasonic beam does not suffer from excess attenuation 

at this location compared to the weld metal. From the b-side however the responses 

were roughly the same, with 60° probe slightly higher. For 60° the ultrasonic beam en-

counters the flaw in a more favorable angle than the 45° probe in this specimen, leading 

to stronger maximum amplitude indications. 
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7.1.3 Separate Transmit-Receive Longitudinal (TRL) dual-

matrix phased array probe 

The results from the TRL probe can be seen in Figure 50. 

 

Figure 50 Maximum amplitude with TRL probe 

The deviation between the results for the TRL probe seems average. Only unexpected 

result was from flaw number 3 having lower amplitude response from b-side than flaw 

number 2 from the b-side. There is not much deviation between the results acquired 

from flaw number 3, indicating there was no loss of couplant. It is possible that stronger 

amplitude response might be caused from the more favorable position of the flaw num-

ber 2 or the anisotropic structure of the weld might have been favorable at this location 

of the weld. For example the focus might have deviated from the weld structure straight 

to the flaw. Unlike the other probes, TRL gave three echo responses. First echo re-

sponse was from direct longitudinal wave, because part the longitudinal wave mode 

converted to ~30° shear wave propagating slowly generates also the indirect longitudi-

nal wave, which is the second echo response. The third echo response comes from the 

mode conversion from the shear wave to the back wall surface creeping wave. Due to 

mode conversions, the direct longitudinal wave has attenuated a lot thus maximum am-

plitude from the direct longitudinal wave is considerable low. However, the creeping 

wave gives really high maximum amplitudes regardless of the location of the flaw. 

Overall, the results can be considered reliable. 
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7.1.4 2,25 MHz linear phased array simulation 

The results from the CIVA simulation can be seen in Figure 51. 

 

Figure 51 2,25 MHz PA 40-75° CIVA simulation 

The results are consistent with the expected results. However, the difference between 

the a- and b-side of the simulated amplitude responses is smaller than expected. The 

used model might attenuate the ultrasound more than required. On the other hand, flaw 

number 2 and 5 gave almost the same amplitude responses. The reason for this kind of 

result could be that CIVA does not take into account the slight changes of the crystal 

structure in the HAZ and treats it as a normal base metal. 

7.1.5 Summary of maximum amplitudes 

The results for all the techniques for flaw numbers 1-4 can be seen in the Figure 52. In 

this figure the amplitude response was changed to decibels, where the acquired maxi-

mum amplitude in % was compared to a 100 % amplitude response as in equation be-

low. 

𝑑𝐵 = 20 log10
𝑎𝑚𝑎𝑥%

100 %
    (17) 

Weld center was chosen as a point of origin. The figure represents the distance from the 
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on the other side than the probe of the weld center, the flaw would be on the far side. If 

the flaw was located on the same side as the probe, the flaw would be on the near side. 

Near side and far side are shown in more detail in Figure 53 and Figure 54 respectively. 

The figures show how the austenitic weld attenuates the propagating ultrasonic wave, 

thus lowering the amplitude response. 

 

 

Figure 52 Comparison of all used techniques. 0 represents the weld center and the 

flaws are plotted along the X-axis according to their distance from the weld center. – 

represents the near side and + the far side 

For the flaws within and in the vicinity of the weld, the flaw number 2 gave the highest 

amplitude response from the a-side for all probes and the lowest for the b-side, with 

exception of TRL probe where the flaw number 3 gave the lowest amplitude response 

from the b-side. This might be a consequence of a better deviation of sound beam to the 

flaw number 2 than flaw number 3 from the b-side. The probe had a skew angle of 15° 

so the deviation of the probe does not seem plausible.  

When comparing all the techniques together, excluding these previous observations, the 

results seem consistent. TRL probe suffers the least from attenuation and the 5 MHz 

phased array probe the most, as expected. The reason for TRL probe to attenuate less 

than the other probes is due to the fact that TRL probe uses longitudinal waves whereas 

the other probes use shear waves. Also the frequency is lower than that of the other 
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probes, however this lowers the resolution and accuracy of the probe compared to other 

probes. The smallest detectable flaw is ~λ/2, leading to missing of smaller flaws by 

probes with lower frequency. The wavelengths can be seen in Table 5 in the previous 

chapter. 

 

Figure 53 Results for the near side, 0 represents the weld center. Flaws 1a, 2a, 3a and 

4b are considered as on the near side of the weld 
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Figure 54 Results for the far side. 0 represents the weld center. Flaws 1b, 2b, 3b and 

4a are considered as on the far side of the weld 

The conventional 60° probe gave better amplitude response than the conventional 45° 

probe. The 60° probe excelled against the phased array probes while the 45° probe got 

roughly the same or slightly higher amplitude response as the 2,25 MHz linear phased 

array probe. Conventional probes had slightly lower nominal frequency than the linear 

phased array probes, however the difference between the results was higher than ex-

pected. 

7.2 Signal-to-noise ratio (SNR) 

A good SNR was determined as 3 to 1 according to the literature. It has been described 

as a line in the following figures. Since good SNR is usually determined 2 to 1 or 3 to 1, 

ratio of 3 to 1 was chosen for the most secure result. SNR is used to determine how well 

the flaw is distinguished from the noise, the higher the SNR the better the flaw stands 

out from the noise. SNR was calculated using simplified version of equation 6 with the 

acquired maximum amplitude response and maximum noise from the weld according to 

equation 18. 

𝑆𝑁𝑅 =
𝐴𝑓𝑙𝑎𝑤

𝐴𝑛𝑜𝑖𝑠𝑒
      (18) 

Where Aflaw is the average maximum amplitude response for a flaw and Anoise is the av-

erage maximum noise level measured for the technique. 

2b 4a 3b 1b 

R² = 0,9062 

-25

-20

-15

-10

-5

0

0 1 2 3 4

A
m

p
lit

u
d

e
 (

d
B

) 

Distance from the weld center 

Far side 

Average (Shear waves)

2,25 MHz PA 40-75°

5 MHz PA 40-75°

2 MWB 45° N2

2 MWB 60° N2

1,5 MHz TRL 40-70°

CIVA 2,25 MHz PA 40-75°

Linear (Average (Shear
waves))



66 

 

7.2.1 Linear phased array 

SNR of the linear phased array probes 2,25 MHz and 5 MHz can be seen in Figure 55 

and Figure 56 respectively. 

 

Figure 55 2.25L16A10 signal-to-noise ratio 

 

 

Figure 56 5L16A10 signal-to-noise ratio 
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difficult to be certain whether the flaw numbers 4 and 1 are flaws or just noise. From 

the b-side the flaw number 3 is barely visible and the flaw number 2 cannot be noticed 

at all. Even though the SNR for the flaws number 4 and 1 is less than 3, it is possible to 

recognize them as real flaws from the noise. 

One way to enhance the scan image is to increase the soft gain. The effect is almost the 

same as increasing gain, but this can be done after scanning with the analysis software. 

In Figure 59 and Figure 60, 12 dB soft gain has been applied, rising the overall gain to 

30 dB. In these figures all flaws are clearly visible from both sides in exception to flaw 

number 2 from b side. Soft gain raises the noise level as well, thus the flaw number 2 

from the b-side cannot stand out from the noise even with the applied extra gain.  

 

Figure 57 2L16A10 a-side volume corrected top and side image. The flaws are 4-1 

from left to right respectively. 
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Figure 58 2L16A10 b-side volume corrected top and side image. The flaws are 4-1 

from left to right respectively. 

 

 

Figure 59 2L16A10 a-side volume corrected top and side image. The flaws are 4-1 

from left to right respectively. 12dB soft gain 
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Figure 60 2L16A10 b-side volume corrected top and side image. The flaws are 4-1 

from left to right respectively. 12dB soft gain 

7.2.2 Conventional ultrasound 

SNR for conventional 2 MHz 45° and 60° probes can be seen in Figure 61 and Figure 

62 respectively 

 

Figure 61 2 MHz MWB 45° N2 Signal-to-noise ratio 
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Figure 62 2 MHz MWB 60° N2 Signal-to-noise ratio 

Noise was a disturbing factor for conventional probes and a good SNR was achieved 

only for flaw number 2 for a-side for both probes and flaw number 4 on b-side for 60° 

probe. It can be seen from the figures that the more there is distance between the probe 

and the flaw, the more the SNR seems to deteriorate. 

7.2.3 Separate Transmit-Receive Longitudinal (TRL) dual-

matrix phased array probe 

SNR for the TRL probe can be seen in Figure 63. 

 

Figure 63 1,5 MHz TRL 40-70° Signal-to-noise ratio 
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To get a clearer view of the ultrasonic image created from the TRL measurement data, 

data cursor adjustments had to be made. Unadjusted result can be seen in  

Figure 64 and the adjusted results can be seen in Figure 65. The depth was set to 22,1 

mm in order to remove un-necessary echoes from the image. However, this still left a 

geometric echo from the middle of the weld groove as noise. This noise was determined 

as geometrical echo, since it was consistent along the weld almost completely. 

Even though all the flaws can be seen clearly from the both sides with TRL probe, a 

good SNR cannot be achieved with any of the flaws. This is due to the noise from the 

middle of the weld groove, which was measured an average of over 37%. Meaning no 

signal response from the flaws could achieve a good SNR. This high noise level might 

lead to missing of smaller flaws during an inspection. 

It has to be taken into account that since the exact number and the location of the flaws 

is known, it is easier to determine the flaw from the noise. For this reason SNR is a 

good measure to determine how well the flaw actually distinguishes from the structural 

noise. 

 

 

Figure 64 1,5 MHz TRL 40-70° b-side volume corrected top and side image. The 

flaws are 4-1 from left to right respectively. Unadjusted data 
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Figure 65 1,5 MHz TRL 40-70° b-side volume corrected top and side image. The 

flaws are 4-1 from left to right respectively. Adjusted data 

 

7.2.4 Summary of signal-to-noise ratios 

Signal-to-noise ratio (SNR) results are summarized in Figure 66.  

 

Figure 66 Comparison of signal-to-noise ratios of all techniques for a- and b-side 
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For linear phased array probes, flaw numbers 1-3 gave a good SNR from the a-side. 

However, when scanning through the weld, shear wave probes were unable to reach 

good SNR in any of the artificial flaws with only exception of 60° conventional probe, 

which was the only probe achieving a good SNR from flaw number 4. 

Despite having the worst overall results for SNR, the SNR of TRL does not improve or 

reduce much depending on the location of the flaw. TRL actually gave the best SNR for 

the flaw number 2 from the b-side.  

The probes are compared to each other in Table 9 in Appendix B: Results. The best 

SNR for each flaw was given 4 points and 0 to the worst SNR. The points were summed 

together and 2,25 MHz linear phased array probe achieved the best overall score. 5 

MHz linear phased array probe had the best SNR when scanning the flaw number 2 

from the a-side. This is expected, since there is not much noise for 5 MHz noise and the 

ultrasonic wave has not yet attenuated by the anisotropic weld at all since the flaw was 

located outside the weld. 

 

 



74 

 

8. DISCUSSION 

8.1 Observations 

The test piece was an austenitic stainless steel weld and it was scanned with linear 

phased array, conventional and TRL 2D matrix phased array techniques. The test piece 

was also modelled into CIVA software and tested with linear phased array. Maximum 

amplitudes from the flaws were recorded and SNR was calculated from the achieved 

results. 

Linear phased array probes had an excellent signal-to-noise ratio compared to other 

probes. Furthermore, attenuation was so strong that the flaws scanned through the weld 

were not recognizable.  

Conventional probes fared surprisingly well in the conducted experiments. However, 

when compared to other techniques scanning with conventional probes was significant-

ly slower than for the phased array probes. This was due to that the beam angle stayed 

the same, covering a narrower area compared to the phased array sectorial scan of 40-

75°. So in order to get the best possible result, the step size along the X-axis had to be 

changed to 2 mm. Also the conventional probes were more susceptible to amplitude loss 

from misalignment or loss of couplant. 

TRL probe gave the strongest amplitude responses from the flaws. Its advantages were 

the utilization of longitudinal waves and by mode conversion creeping waves, lower 

frequency and separate elements transmitting and receiving. The 15° skew angle did not 

give much of an advantage. However it may have reduced possible amplitude loss if the 

probe was not completely perpendicular to the flaw. The downside of the TRL probe is 

also the longitudinal waves. Since longitudinal waves also mode convert to shear waves 

and creeping wave during the inspection at the interfaces, analysis is not as straight for-

ward as for only shear wave probes. It was important to set the data cursors to right 

depth in order to prevent excess noise from mode converted signals. Still the noise level 

was a limiting factor for this technique. 

It must be noted that the gain in the experiment was set according to the maximum am-

plitude response from flaw number 5. It is possible to detect the flaws 4, 3 and 1 

through the weld as well with linear phased array probes and conventional probes by 

increasing the soft gain or normal gain. However, comparing the maximum amplitude 

responses with each other would be impossible since most of the flaws would have 

100% amplitude response with high gain setting. One plausible way would be to record 
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the gain for each flaw with a constant amplitude response and compare the difference. 

However, this experiment method would take a lot of time to conduct.  

CIVA simulation software proved to be a useful tool in simulating ultrasonic probes and 

welds. However, setting the parameters of the weld, probe and the specimen geometry is 

not a straightforward process. In order to achieve the best possible result, there is a re-

quirement for accurate information on the microstructure of the weld. Also the HAZ 

needs to be taken into account separately for more accurate results. Without these values 

CIVA can only give indicative results. 

Testing setup was not an ideal one, since the scanner was moved manually, causing 

some possible deviation of the results. Also the attachment point for the probes seemed 

to move a bit during the scanning, causing the slight misalignment of the probe during 

scanning. Water acted as a good couplant between the probe and the specimen. Howev-

er it was applied also manually, which may have caused loss of couplant during some 

parts of the scan. 

EDM notches performed well as artificial flaws. The flaws were hard to detect through 

the weld and gave strong amplitude response in front of the weld as expected. Even 

though they are just rough estimates of a real flaw they give an excellent and cheap op-

tion to study ultrasonic attenuation in different locations of the weld. 

8.2 Improvements 

8.3 Testing arrangement 

The manually moved scanner could be changed to automated scanner equipment in or-

der to remove the human factor from the moving of the probe. Also the probe should be 

mounted solidly and constantly perpendicular to the weld during the inspection. 

Water could be applied constantly in order to assure maximum contact. Other option 

would be to immerse the specimen completely in water. It would be possible to immerse 

the specimen completely in the water, but in a way so the probe would not be complete-

ly immersed, preventing the need for specialized immersion probes. 

These improvements would reduce the deviation between the results and also give as 

reliable results as possible. 

8.4 Use of simulation to probe development 

It is feasible to use simulation tools in designing probe parameters. Simulation software 

could be used to determine the best possible probe angle, frequency and other parame-
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ters depending on the structure and the geometry of the austenitic stainless steel compo-

nent. This would save costs of producing multiple test probes and wedges and also time. 

8.5 3D-printing as flaw production mechanism 

It might be possible to use 3D printing to produce artificial flaws more easily or more 

accurately. This would give the possibility to produce embedded flaws with no surface 

contact or cracks similar to thermal or mechanical fatigue cracks with precise values 

and parameters. In this case, there would be no need to destroy the test piece in order to 

analyze the flaws accurately or thoroughly conducting non-destructive test with various 

methods aka fingerprinting the test pieces since there would be an accurate CAD draw-

ing of the flaw. However the crack tip would not be as sharp as for a mechanical or 

thermal fatigue flaw and there might not be stresses around the crack tip either. Also it 

has to be noted that the 3D-printer should also fabricate the austenitic weld structure in 

order to create similar propagation conditions for ultrasound. Unfortunately there is lit-

tle or no research regarding the subject. [86] 
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9. CONCLUSIONS 

Ultrasonic inspection of austenitic stainless steel welds is difficult due to the anisotropic 

and dendritic structure of the weld. This causes scattering, distortion, deviation and at-

tenuation of the ultrasonic wave, complicating the conducted inspection. 

Artificial flaws are used to study the capability of an ultrasonic method to detect flaws 

of different sizes and locations. The electric discharge machining (EDM) notches used 

in this thesis proved to be a reasonable way to produce rough estimates of a crack. The 

artificial flaws gave expected amplitude responses from different locations of the weld 

metal. The responses varied also with different ultrasonic techniques used in the exper-

iments.  

Maximum amplitudes were the strongest for the 1,5 MHz separate transmit-receive lon-

gitudinal wave (TRL) 40-70° matrix probe and the lowest for 5 MHz linear phased ar-

ray probe. However, signal-to-noise ratio (SNR) was the best for 2,25 MHz linear 

phased array probe and the worst for the TRL probe. CIVA simulation represented the 

ultrasonic propagation of 2,25 MHz phased array probe fairly well, so it can be assumed 

that with more accurate modeled structure of the weld there can be reliable results from 

the simulation as well. When scanning through the weld, only TRL probe could detect 

the furthest flaw with creeping waves. This would indicate that it would be advisable to 

use this technique when inspection from both sides of the weld is not possible.  

The results were congruent with the theory and the literature search. When frequency of 

the probe was lowered, the amplitude response was stronger. Also creeping wave 

proved to give an excellent amplitude response for TRL probe and it did not suffer from 

attenuation as much as the shear waves. 

The aim of this thesis was to study artificial flaws in austenitic stainless steel. It can be 

concluded that it is feasible to study the propagation of ultrasound in austenitic stainless 

steel with artificial flaws and also to use simulation tools to support the achieved results 

from experimental tests. 
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APPENDIX A: EQUATION CLARIFICATION 

Log-logistic hit/miss 

𝑃𝑂𝐷(𝑎) =
𝑒

𝜋

√3
(
ln 𝑎−𝑚

𝜎
)

1+𝑒

𝜋

√3
(
ln 𝑎−𝑚

𝜎
)
    (A.1) 

Where: 

𝑚 = −
𝛼

𝛽
     (A.2) 

And 

𝜎 =
𝜋

𝛽√3
     (A.3) 

Which leads to: 

𝜋(ln 𝑎+
𝛼

𝛽
)

√3
𝜋

𝛽√3

=
(ln 𝑎+

𝛼

𝛽
)

1

𝛽

= 𝛽 ln 𝑎 + 𝛼   (A.4) 

Thus: 

𝑃𝑂𝐷(𝑎) =
𝑒(𝛼+𝛽 ln 𝑎)

1+𝑒(𝛼+𝛽 ln 𝑎)    (A.5) 

Probability related to size of the flaw 

p=POD(a) 

𝑝(1 + 𝑒𝛼+𝛽 ln 𝑎) = 𝑒𝛼+𝛽 ln 𝑎 

∴ 𝑝 = 𝑒𝛼+𝛽 ln 𝑎(1 − 𝑝) 

∴
𝑝

1 − 𝑝
= 𝑒𝛼+𝛽 ln 𝑎 

∴ ln(
𝑝

1 − 𝑝
) = 𝛼 + 𝛽 ln 𝑎 

∴ ln(𝑜𝑑𝑑𝑠) ∝ ln 𝑎    (A.6) 
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Signal response approach: 

F is the cumulative log-normal distribution 

𝑃𝑂𝐷(𝑎) = 1 − 𝐹 {
ln(𝑎𝑡ℎ) − [𝛼 + 𝛽 ln(𝑎)]

σγ
} 

= 𝐹 {
ln(𝑎) −[

𝑙𝑛 𝑎𝑡ℎ−𝛼

𝛽
]

σγ

𝛽

}    (A.7) 

Where: 

µ =
ln(𝑎𝑡ℎ)−𝛼

𝛽
     (A.8) 

and 

σ =
σγ

𝛽
     (A.9) 

thus  

 

𝑃𝑂𝐷(𝑎) = 𝐹 [
ln(𝑎)−µ

𝜎
]    (A.10) 
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 APPENDIX B: RESULTS 

Table 6 Summary of the results, gain and maximum amplitude (%) 

Probe 
2,25 MHz PA 
40-75° 

5 MHz PA 
40-75° 

2 MHz MWB 
45° N2 

2 MHz MWB 
60° N2 

1,5 MHz TRL PA 
40-70° 

Gain (dB) 8 8 35 35 33 

Soft Gain 
(dB) 0 0 0 1,5 0 

Tot. Gain 
(dB) 8 8 35 36,5 33 

1a ampli-
tude (%) 27,93 13,20 27,20 35,83 75,03 

2a ampli-
tude (%) 75,27 67,05 85,10 59,37 75,13 

3a ampli-
tude (%) 34,67 19,20 34,10 33,20 74,50 

4a ampli-
tude (%) 18,67 10,47 19,50 35,03 61,03 

5a ampli-
tude (%) 82,10 78,33 78,43 71,37 81,03 

1b ampli-
tude (%) 21,30 13,17 33,73 35,70 67,43 

2b ampli-
tude (%) 11,53 6,83 15,83 18,17 59,87 

3b ampli-
tude (%) 16,23 11,00 16,33 30,43 55,93 

4b ampli-
tude (%) 23,23 13,03 30,73 47,20 72,40 

5b ampli-
tude (%) 81,33 73,83 75,30 77,50 75,53 
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Table 7 Summary of the results, Signal-to-Noise ratio (SNR) 

Prob
e 

2,25 MHz PA 
40-75° 

5 MHz PA 40-
75° 

2 MHz MWB 
45° N2 

2 MHz MWB 
60° N2 

1,5 MHz TRL PA 
40-70° 

1a 
SNR 3,88 3,07 2,00 2,38 1,99 

2a 
SNR 10,45 15,59 6,27 3,95 2,00 

3a 
SNR 4,81 4,47 2,51 2,21 1,98 

4a 
SNR 2,59 2,43 1,44 2,33 1,62 

1b 
SNR 2,12 1,58 2,39 2,37 1,79 

2b 
SNR 1,15 0,82 1,12 1,21 1,59 

3b 
SNR 1,61 1,32 1,16 2,02 1,49 

4b 
SNR 2,31 1,56 2,17 3,14 1,92 

 

Average noise level was measured between the flaws number 1 and 2. Maximum ampli-

tude between the flaws was considered noise if the echo dynamics of the amplitude 

proved the amplitude as noise and not a random amplitude peak. As for the maximum 

amplitudes the average noise level is the average of three measurements. The average 

noise levels are in Table 8. 

Table 8 Average noise levels 

Probe 
2,25 MHz PA 
40-75° 

5 MHz PA 
40-75° 

2 MHz MWB 
45° N2 

2 MHz MWB 
60° N2 

1,5 MHz TRL PA 
40-70° 

Average 
noise (%) 8,63 6,32 13,85 15,03 37,63 

 

In Table 9 there is a comparison matrix between the techniques used in this thesis. The 

signal-to-noise ratios (SNR) of the probes were compared to each other for each flaw. 

The highest SNR for a flaw was evaluated to 4 points and the lowest was evaluated as 0 

points. Then the points were summed together and the highest score would represent the 

highest overall SNR between the used techniques. 
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Table 9 SNR comparison matrix 

 

2,25 MHz PA 
40-75° 

5 MHz PA 40-
75° 

2 MHz MWB 45° 
N2 

2 MHz MWB 60° 
N2 

1,5 MHz TRL PA 
40-70° 

4a 4 3 0 2 1 

3a 4 3 2 1 0 

2a 3 4 2 1 0 

1a 4 3 1 2 0 

4b 3 0 2 4 1 

3b 3 1 0 4 2 

2b 2 0 1 3 4 

1b 2 0 4 3 1 

tot. 25 14 12 20 9 

 


