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Stereo matching is a passive method for estimating depth of a scene from two views

from di�erent perspectives. Parallax creates a disparity between the relative posi-

tions of scene points on the imaging planes depending on the distance of the points.

The principle of stereo matching is to extract those disparities by �nding the corre-

sponding points between the images. Although stereo matching has been extensively

studied, the existing solutions are still compromises between computational load and

achieved quality. In this thesis, advances are made on both fronts.

At the core of the matching algorithm is the similarity measure, which directly

determines how well correspondences are found and how reliable they are. Tra-

ditionally, matching has been done in spatial domain using pixel di�erences such

as sum of absolute di�erences (SAD). In this thesis, a similarity measure is pro-

posed for use in stereo matching that is based on analysis of coe�cient signs of

transform domain representations. While originally formulated as an extension of

Fourier domain phase-only correlation to the discrete cosine transform (DCT), here

the method is developed further by applying it to a number of real-valued abstract

harmonic transforms, including type II DCT, integer DCT, Walsh-Hadamard and a

modi�ed version of Haar. Results are presented showing that the method in general

provides better quality than the reference algorithm SAD, while Haar is shown to

be the best performing transform, both in terms of quality and speed.

Furthermore, the approach is adapted to a mobile platform by replacing the trans-

form with an even simpler one, the census transform. An e�cient implementation

is developed, which utilizes the single instruction, multiple data (SIMD) enabled

NEON core included in many ARM processors currently dominating the mobile

market. Special attention is paid to the alternate methods of performing a popu-

lation count on a variable, which is a key component in computing the similarities.

Subjective testing along with numerical measurements set the census-based match-

ing slightly under the reference point SAD in terms of quality, but speed-wise SAD is

clearly out-performed by the census approach, thus establishing it as a competitive

candidate for stereo matching in mobile applications.
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Stereovastaavuuksien etsiminen on passiivinen menetelmä syvyyden estimointiin

kohteesta eri perspektiiveistä otettujen kuvien perusteella. Parallaksin takia koh-

teen pisteiden projektiot ovat kuvatasoilla suhteessa eri asemassa toisiinsa nähden

riippuen pisteiden etäisyydestä kuvatasosta. Etsimällä eri kuvista vastaavat pisteet

voidaan niiden sijaintien erotuksen perusteella määrittää pisteen etäisyys. Vaikka tä-

hän periaatteeseen perustuvia menetelmiä on tutkittu laajalti, olemassaolevat rat-

kaisut ovat kuitenkin kompromisseja laskennallisen kuorman ja saavutetun laadun

välillä. Tässä opinnäytetyössä parannusta esitetään molempiin osa-alueisiin.

Vastaavuuksien etsiminen perustuu oleellisesti samankaltaisuuden määritelmään. Se

määrittää, kuinka hyvin vastaavuuksia löydetään ja kuinka luotettavia ne ovat. Pe-

rinteisesti vastaavuushakua on tehty tilatasossa vertailemalla pikselien intensiteette-

jä, kuten absoluuttisten erotusten summa -tekniikassa. Vastaavuuksia voidaan kui-

tenkin etsiä tutkimalla kertoimien etumerkkejä muunnostasossa. Tekniikka perustuu

vaiheiden korrelaatioon Fourier-tasossa, ja tämän ominaisuuden ulottumiseen kos-

kemaan myös diskreettiä kosinimuunnosta (DCT). Tässä työssä tekniikkaa laajen-

netaan koskemaan useita realiarvoisia, abstrakteja, harmonisia muunnoksia, kuten

tyypin II DCT, kokonaisluku-DCT, Walsh-Hadamard ja muunneltu Haar. Kokeelli-

set tulokset osoittavat, että yleisesti ottaen menetelmä toimii paremmin kuin vertai-

lualgoritmina käytetty SAD. Kokeilluista muunnoksista Haar paitsi tuottaa parhaita

tuloksia, on myös yksinkertaisin laskea.

Menetelmää sovelletaan myös mobiilialustalle, jolloin käytettyä muunnosta yksin-

kertaistetaan entisestään korvaamalla se ns. census-muunnoksella. Tätä varten työs-

sä kehitettiin tehokas toteutus, joka käyttää mobiilimarkkinoita hallitsevan ARM-

prosessorin rinnakkaissuorituslaajennusta, NEON-ydintä. Erityishuomiota kiinnite-

tään ns. population count -operaation toteutukseen, joka on oleellinen osa algoritmin

tehokasta suoritusta. Käyttäjäkokeiden ja objektiivisten mittausten mukaan censuk-

sen tuottama laatu jää jälkeen hieman SAD:n tuottamasta, mutta nopeuden suh-

teen census-pohjainen menetelmä on selkeästi kilpailijaansa parempi, ja näin ollen

kilpailukykyinen vaihtoehto vastaavuushakujen toteutukseen mobiilialustoilla.
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TERMS AND SYMBOLS

C,CA Cost volume, a 3-dimensional structure holding results

of evaluated similarity measures, the A marking that

aggregation has been performed on it

D Disparity map showing disparity for each point

dmin,dmax Minimum and maximum disparity values expected to be

in the scene, i.e. limits of the disparity search range

f ,g Real valued 2D arrays, i.e. images

FT,GT Representations of f and g in transform domain reached

by applying transform T

L,R Left and right source images

sT(f ,g) Similarity between f and g in the transform domain T

T Without ambiguity, denotes either the transformation

matrix or the 2-dimensional transform itself

Aggregation Performed on a cost volume to enforce spatial correlation

Bitstring A compressed representation of a transformed window

where each bit corresponds to a pixel

Cost Here, a measure of the di�erence between image blocks

Disparity Horizontal displacement between the projections of a

point in two images from di�erent viewpoints

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

MSE Mean Squared Error

NEON The SIMD core accompanying an ARM processor

Population count An operation that counts the bits set to one in a variable

PBP Percentage of bad pixels, i.e. those pixels that do not

match the ground truth

Reference A block for which a corresponding block is searched for

Similarity Conceptually the inverse of cost, here a measure for how

similar blocks of images are

SIMD Single instruction, multiple data - multiple inputs are

processed with the same operation in parallel

SAD Sum of Absolute Di�erences, the stereo matching algo-

rithm used as reference

Target A candidate block that is compared to the reference to

�nd the best match



1

1. INTRODUCTION

Extracting geometry from captured scenes has long been an area of interest for

machine vision [1] . More recent developments have made it relevant also for 3D

media applications [2]. A common format for this kind of geometric information

captured from a certain angle is the depth map. If interpreted as an image, each

pixel value of a depth map tells a distance between the capture device and a point

in the scene. Transparent objects aside, this is enough to contain all the information

that can practically be acquired from a certain viewpoint. A speci�c need in 3D

media is to create a presentation for 3D video called view+depth. It is used for

creating novel views to �t di�erent types and sizes of stereoscopic and multiview

displays. [3]

Di�erent methods exists for the extraction of scene geometry as a depth map.

Active methods include using time-of-�ight cameras, which measure the scene by

sending infrared pulses into it [4], and structured light approaches, such as the

Microsoft Kinect, which analyze the behavior of some known pattern projected

onto the scene [5]. Passive methods do not require anything to be projected or

transmitted separately, but they measure the re�ections of ambient conditions. One

such passive method is stereo matching, which is based on using some kind of a

similarity measure for �nding correspondences between several captures of a scene

from di�erent perspectives.

Given two images taken from the same scene, but from di�erent viewpoints,

stereo matching aims to extract a depth map. The key principle is that of parallax,

demonstrated in Figure 1.1 - objects further away are projected onto the imaging

planes of the two cameras relatively closer to each other than objects nearby. Ideally,

the distance between objects on the imaging planes (i.e. the stereo disparity between

the objects) de�nes exactly their distance from the cameras. While the human eye

is skilled in identifying similar points between the images, for a computer the task

is signi�cantly more di�cult. There is a number of problems from how to formulate

the concept of similarity to the machine, to how to deal with areas lacking enough

information to make a proper evaluation.

While stereo matching has been the target of extensive research over the years,

a general solution has not yet been found. The approaches can be divided into two

parts. Local matching is based on �nding similarities between the spatial neighbor-
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Left view 

Right view 

Disparity 

Figure 1.1: A stereo pair of a a scene consisting of three objects, a triangle in the front, a
box in the middle and a sphere in the back. Due to parallax, the triangle has a disparity
between the two images, whereas the sphere is too far for any signi�cant di�erence to be
detected. Stereo matching aims to discover this disparity in order to determine the distance
of the objects to the camera.

hoods of given points in a stereo pair. In contrast, global methods aim to optimize

the disparity map in relation to constraints stemming from assumptions on the char-

acteristics of smoothness and discontinuities of disparity maps. Roughly speaking,

local methods are faster, but provide worse quality, whereas global methods tend to

be slower and give better results. [6]

The focus of this thesis is to study and develop faster and more robust methods of

making similarity comparisons. These methods are applied for local stereo matching

in two complementary paths - a general approach for stereo matching in di�erent

transform domains, and a more practical implementation for a mobile device. The

common principle for both is to extract a small memory footprint presentation

of windowed image segments centered on the pixels of the images by applying a

suitable transform, and the way the information is e�ciently stored and processed

internally by the algorithm. This presentation is then used for computing similarity

between the segments, i.e. blocks. For the mobile implementation, the technique

is in adapted from an existing matching method utilizing the census transform [7]

to accommodate the stringent performance limitations of the implementation plat-

form. The similar idea is used in a more generalized setting without any speci�c

performance constraints by experimenting with di�erent transforms.

The rest of the thesis is structured in the following way. The general principles and

practices of stereo matching are described in chapter 2 together with the theoretical



1. Introduction 3

background of the transform-based methods proposed for this application. The

implementations for both the generalized and the mobile oriented approaches are

described in detail in chapter 3. Experimental results on quality and computational

performance for both are presented in chapter 4, including the results of a small

scale subjective study. Finally, conclusions based on the results and on observations

made during the implementation stage are done in chapter 5.
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2. THEORETICAL BACKGROUND

Local stereo matching methods rely on comparing windowed sections of both stereo

pairs in order to �nd the best match for each window, and therefore the displace-

ment(i.e disparity), of those blocks in relation to the corresponding pair. The dis-

parity values then correspond to the distances of those points from the camera. The

actual disparity to depth mapping is dependent on the distance between the cam-

eras and their intrinsic parameters. In 3D media applications, the depth is usually

represented as 8-bit integer values, 255 marking objects close by and 0 objects far

away from the camera, i.e. a depth map.

2.1 Stereo matching pipeline

Most modern stereo matching applications follow the structure described in [8] (Fig-

ure 2.1). Some similarity measure is �rst used to determine the similarity of a point

in the other image to multiple candidate points in the other one. Cost volume aggre-

gation is applied to leverage the assumption that points in the same neighborhood

likely have similar disparities. The disparity estimate is then the disparity candidate

which yields the highest similarity. However, the speci�c contents of each step varies

between algorithms.

Matching cost 
computation 

Cost 
aggregation 

Disparity 
computation 

Disparity 
refinement 

Cost volume Cost volume 
Rectified 
stereo pair 

Disparity map Disparity map 

Figure 2.1: A common stereo matching pipeline

2.1.1 Recti�cation of stereo images

The majority of stereo matching algorithms assumes that the input stereo pair is

recti�ed. A recti�ed stereo pair means that the normals of the image planes of both

cameras are parallel and point towards the scene, and that a scene point is located

on the same horizontal line in both images , i.e. an epipolar line[9]. This allows

for the algorithm to search for stereo correspondences in one dimension, along the

epipolar line. This drastically reduces the area that has to be covered in order to
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perform an exhaustive search by removing one degree of freedom. It also helps in

making correct matches as the similarity measure does not have to have scale- or

orientation-invariant properties.

In order to perform recti�cation on a stereo pair, two sets of parameters, intrinsic

and extrinsic, must be known [10]. Intrinsic parameters characterize the internal

con�guration of the camera: the focal length, e�ective pixel density, the optical axis

and the skew of the sensor. Extrinsic parameters describe the physical arrangement

of the cameras, speci�cally their rotation and translation. Additional problems are

caused by the physical de�ciencies of the lenses. Typical artifacts are tangential and

radial distortions. Tangential distortions are caused by the misalignment of lenses in

relation to each other, while radial distortions are created by the non-planar shape

of the lens [9]. In practice, it is nearly impossible to set the capturing environment

and the cameras up so precisely that all these parameters are consistent between

the cameras.

Both of the parameter sets can be extracted for a certain camera con�guration

by capturing several di�erent poses of a known pattern. A common pattern used for

this is a checkerboard. By measuring the shape of the squares, it is possible to de�ne

how going through the camera system alters the pattern and then to compensate

accordingly. The same pattern gives cues on how to correct the radial distortions.

[11]

Recti�cation is performed after capture and before the images are input to the

stereo matching algorithm. Based on the extracted calibration parameters, such a

transformation is formed that when applied to the images, they ful�ll the require-

ments of a recti�ed pair. Applying the transform to the regular grid of the image

requires interpolation, as the resampling will in most cases require pixels to be ac-

quired from between the existing samples. As with all resampling tasks, this should

be performed in "reverse", going through grid of the the result image, interpolating a

value for each pixel by sampling the existing image. Transforming the existing pixels

into a new grid would only create a nonuniformly sampled, sparse representation.[10]

2.1.2 Similarity measures

The main factor in the outcome of the stereo matching is the choice of similarity

measure, as di�erent measures have di�erent properties. The measures are com-

puted between the left and right images L and R at discrete pixel coordinates (x, y)

Common options are the Squared Intensity Di�erence,

CSID(x, y) = (L(x, y)−R(x, y))2 , (2.1)

also known as Mean Squared Error, and Absolute Intensity Di�erence,
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CAID(x, y) = |L(x, y)−R(x, y)|, (2.2)

a.k.a. Mean Absolute Di�erence. A wide array of di�erent metrics have been

suggested, all with their own bene�ts and drawbacks. Some metrics are insensitive

to di�erences in gain and bias, such as the zero compensated AID [12] and census

transform [7]. Census transform and its usage as a similarity measure is described in

section 2.2.1. In this part of the stereo matching pipeline lies also the contribution

of this thesis. The suggested similarity measure is described in detail in section 2.2.

When a similarity is tested for each candidate over the whole image and the

whole search range, a single similarity can be seen as the value in a three dimensional

structure C(x, y, d), where x and y correspond to the spatial dimensions of the image

where the reference block is taken from, and d is the disparity candidate. This

structure is called a cost volume. The cost volume can be manipulated to improve

the quality of the estimate. Often the metric and the cost aggregation are referred

to in a single term, such as SAD, Sum of Absolute (intensity) Di�erences. SAD is

used here as the reference algorithm when experimenting with the other metrics.

For the remainder of the thesis, the term cost is used to refer to the similarity value

such that a low cost implies a high similarity, and therefore a good match, and vice

versa.

2.1.3 Cost volume aggregation

The assumption is that for natural scenes, neighboring disparity values are highly

correlated, even more so than in a color image. I.e., disparity maps are assumed

to be piecewise constant, or piecewise smooth, such as in Figure 2.2. To reduce

the e�ect of erroneous matches and noise, the consistency of the cost volume can

be reinforced by aggregating the cost values over a support region, which may be

anything from one to all three dimensions. For instance, a straightforward way of

doing this is to treat the xy-plane at each disparity d as an image, and to apply a

spatial �lter to it. The drawback with this is, that this e�ectively requires �ltering

as many images as there were disparity estimates in the search range. [10]

The method of aggregation can be of varying complexity. Quite a lot of di�erent

approaches have been suggested, which vary in the sizes and shapes of the support

windows, and in the weights given to their contents [13]. An extremely simple and

fast way is to use a box �lter, which for a N ×N,N = 2r �lter window is

CA(x, y) =
1

N2

r∑
n=−r

r∑
m=−r

C(x+ n, y +m). (2.3)

which can be e�ciently implemented using summed area tables (SAT) [14]. Fil-
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a) b)

Figure 2.2: Two ground truth disparity maps showing a) piecewise constant b) piecewise
smooth surfaces

tering with SAT is done in two steps. First, the values of the signal are summed

along the rows and columns in to a lookup table S so that

S(x, y) =
x∑

n=0

y∑
m=0

C(n,m). (2.4)

A response exactly equivalent to 2.3 for the box �lter at x, y is then computed

using

CA(x, y) =
1

N2
(S(x+ r, y + r)− S(x− r − 1, y + r)

− S(x+ r, y − r − 1) + S(x− r − 1, y − r − 1)) . (2.5)

The assumption of continuous depth does fail in object edges, which lead to dis-

parity discontinuities. A large aggregation window with constant weights is more

robust to matching errors, but is problematic in the edges and in �ne details which

are smaller than the window. This is why edge-aware �lters for cost volume aggre-

gation have been suggested. Those �lters attempt to preserve the edges, and still

make the allegedly uniform surfaces of objects consistent. One approach used for

this is the joint bilateral �lter [15], which can retrieve edge information from the

corresponding image in the stereo pair, and use that to preserve the edges in the

cost volume and thus the resulting disparity map. The bilateral �lter takes into ac-

count both the intensity and location di�erences, weights them with some arbitrary

functions and determines how much each pixel in the neighborhood contributes to



2. Theoretical background 8

the �lter response. The response of the basic version is

CA(x, y) =

r∑
m=−r

r∑
n=−r

f(m,n)g(C(x+n, y+m)− C(x, y))C(x+n, y+m)

r∑
m=−r

r∑
n=−r

f(m,n)g(C(x+n, y+m), C(x, y))

, (2.6)

where f is the weighting function for the distance and g is the weighting function

for the di�erence in intensity. A common choice for both is the Gaussian function

with di�erent parameters,

f(∆x,∆y) = exp

(
−1

2

√
∆x2 + ∆y2

σd

)
(2.7)

g(∆i) = exp

(
−1

2

∆i2

σi

)
, (2.8)

where σd and σi are the parameters determining the steepness of the Gaussian fall-

o� for distance and intensity, respectively.[16] With low values, the contribution of

di�erent intensities and far away pixels becomes larger, blurring the image, while

with high values the result is highly e�ected by noise and texture. Therefore the

suitable parameters are a compromise of picking up on the actual edges instead of

just any intensity changes, but not blurring too much to also loose the edges.

A stronger edge preserving e�ect is gained if it is assumed that intensity edges in

the corresponding stereo image are also edges in disparity. Therefore a joint bilateral

�lter is applied, where the weighting function g gets its parameters from the color

image, e.g. the right view R.

CA(x, y) =

r∑
m=−r

r∑
n=−r

f(m,n)g(R(x+n, y+m)−R(x, y))C(x+n, y+m)

r∑
m=−r

r∑
n=−r

f(m,n)g(R(x+n, y+m)−R(x, y))

. (2.9)

However, the naive implementation of a bilateral �lter is computationally quite

demanding. As the weights of the �lter vary between each pixel, the same tricks

that are used to perform e�cient convolution cannot be directly applied. However,

there are certain optimizations of the algorithm that improve the situation. A recent

suggestion is to perform a decomposition of the �lter into a series of linear �lters,

from which the response is then interpolated. This version can utilize the SAT

approach for computing those linear sections. The performance gain comes from

the fact that the amount of linear �lters can be heavily quantized from e.g. 255 to
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3 or 4 without much noticeable e�ect. [17]

Transform-based methods may not require a separate cost volume aggregation

step, and do not bene�t from it as much as those based on spatial domain di�erences.

As the similarity is computed based on a windowed image segment, there is some

amount of aggregation done already, although not strictly in the same manner as

with separate cost volumes. This issue is discussed more in section 4.1 with some

experimental data on the subject.

2.1.4 Disparity computation and con�dence

For any coordinates (x, y), the corresponding section of a cost volume is a cost

vector. Figure 2.3 displays examples of actual cost vectors. The �rst one is a good

cost vector with a distinct minimum value, while the other is a vector from an area,

which is not visible from both views, i.e. from an occluded pixel. No real match

exists for such pixels.
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Figure 2.3: Two examples of cost vectors, where there is a distinctive minimum value
corresponding to the disparity value at x = 13 (upper image) and where there is no clear
choice due to the fact that the point is occluded from the viewpoint of the other image
(lower image)



2. Theoretical background 10

From the cost vector, retrieving the disparity estimate is trivial. A simple Winner-

Takes-All (WTA) scheme is applied, where the lowest matching cost is selected as

the disparity estimate.

D(x, y) = arg min
d∈[dmin,dmax]

C(x, y, d)), (2.10)

If the similarity measure is a correlation or similar, the procedure is otherwise the

same, but the maximum value is selected. The disparity estimate is not, however,

the only information that can be extracted from the cost vector. For post processing,

it would be bene�cial to know, how trustworthy a single disparity estimate is, i.e.

the con�dence of the estimate. At its simplest, the cost can be used as a con�dence

value, with a better matching criteria also meaning a higher con�dence. Another

possibility that o�ers another interpretation of con�dence is Peak to Peak Ratio,

which measures how unique the match was. If the ratio is small, there is no "safety

margin", suggesting that the match may have been ambiguous because some other

disparities were almost equally good options. If the ratio is high, the disparity is a

clear winner, and therefore likely to be reliable, i.e. has a high con�dence. [8]

2.1.5 Post processing

From a �ltering perspective, the wrong matches can be considered as noise. However,

the type of noise is typically not normally distributed when using transform-based

similarity measures. It appears to be more or less statistically independent from

the true signal. Those kinds of metrics are slightly unpredictable in the sense that

sometimes a single estimate is completely o� the true disparity. Therefore it is

not a valid option to simply smooth the disparity estimate with a FIR-�lter such

as Gaussian, as it would only spread the errors around, thus creating "bumps" in

areas that should be planar. The mismatches mostly resemble salt&pepper noise,

although depending on the implementation of the Winner Takes All -procedure, it

tends to favor either high or low values of the tested disparity range.

The remedy to this kind of noise is to use rank-order �ltering, of which median

�ltering is a special case. Depending on which end of the disparity range the WTA

favors and if emphasizing the foreground or the background desired, the e�ect of

the �lter can be controlled by using other percentiles than the 50% of the median

�lter. This choice has a negligible e�ect on the computational performance.

Assuming a �xed range of values, the median �lter (or any other rank order �lter)

can be implemented using histograms. This holds for a disparity map for obvious

reasons, as the cameras capturing the stereo pair have a �xed relative distance,

which limits the disparity range. Given the histogram hf (n) of a N ×M image f ,

the median of f is such a k that satis�es
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k∑
i=1

hf (i) =
NM

2
. (2.11)

Assuming b, the number of evenly distributed bins in h(n), is the same as fmax−
fmin + 1, i.e. there is a bin for each value of the image, the output will be exact.

If there are fewer bins, the output will be quantized. Computing a histogram is

a distributive operation, and this can be exploited when computing histograms of

spatially consecutive data in a sliding window manner. To ease demonstrating this

property, the histogram operation H(f) is de�ned as producing hf , the histogram

of f . Given two sets of values a and b,

H(a ∪ b) = H(a) +H(b). (2.12)

This property can be utilized both horizontally and vertically. For each column

of the input image, one histogram is maintained. As the �rst step, a histogram of

the �rst column segments has to be computed. Each of those histograms contains

the information for a section of the column that is the height of the �ltering window.

The histogram for a 2D section can be computed as the sum of those individual,

column-wise histograms. Furthermore, the histogram of a window di�ers from the

window one sliding step before by the histograms of two columns, the one leaving

the window and the one entering it. For adjacent columns cx,y, whose �rst pixel is

located at (x, y), and with a 8× 8 window size

H(c1,y ∪ ... ∪ c8,y) = H(c0,y ∪ ... ∪ c7,y)−H(c0,y) +H(c8,y). (2.13)

This allows the computation of the histogram for the next window with only

2b additions/subtractions, with the exception of the �rst window, which has to be

summed from the columns individually. When at the end of the �rst horizontal

pass, the column-wise histograms are updated. There is again a di�erence of two

areas - the above pixel that is leaving the �lter window, and the pixel below that is

entering it,

H
(
cx,y
)

= H
(
cx,y−1

)
−H

(
f(x, y)

)
+H

(
f(x, y+8−1)

)
. (2.14)

Updating the column-wise histograms requires �nding the correct bin for two values.

For single valued bins, this is achieved by two indexing and two increment/decre-

ment operations. Altogether, the distributive histogram o�ers a major improvement

over the conventional method of computing histograms without the large memory

footprint of alternative techniques. [18]
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2.1.6 Left-right consistency

Disparity estimation can be done from the viewpoint of either of the images in the

stereo pair. However, if it is done for both, the resulting two disparity maps can be

used to detect erroneous matches from each other. Ideally, all the non-occluded areas

of both disparity images should be consistent with each other. This assumption is

utilized by performing a left-right consistency check. Disparity values are projected

from e.g. the left disparity image to the right by what is essentially a form of

image-based rendering. The values of the disparity image give the displacements for

projecting that image itself. It is reasonable to allow a slight di�erence in the values

as it hardly makes any di�erence in the outcome. If the projected disparity value

di�ers signi�cantly from the corresponding value in the other image at the projected

coordinates, there is reason to suspect that the value might be wrong. [7] The check

is done by evaluating

|DR(x, y)−DL(x+DR(x, y), y)| > t (2.15)

for each pixel, and if it holds, the pixel is marked as inconsistent. The amount

of allowed variation is controlled by the parameter t. Often t = 1 is a reasonable

choice. The primary cause of inconsistencies is occluded areas in the image, but this

method can also catch other types of mismatches. There are various options on how

to �ll in those pixels that are evaluated as inconsistent. One can for instance replace

the inconsistent value with the response of a median �lter with selective sampling,

i.e. compute the median only of those pixels that were found to be consistent.

2.2 Transform-based matching

When transforming images into the Fourier domain, there is a property called phase

correlation that relates the shifting of the image in spatial domain to correlation

of the phase components [7]. The task of stereo matching is exactly this - �nding

the shift between two image blocks that are assumed to be if not identical, nearly

the same. This property has been applied to stereo matching before, both as an

assistive method for re�ning the search area for a more detailed matching algorithm

[19] and as the primary matching tool [20, 21]. However, the property is not unique

to the Fourier transform. It can be shown that DCT (Discrete Cosine Transform),

a special case of DFT (Discrete Fourier Transform) retains this property where the

correlation is computed between the signs of the DCT [22]. This property can also

be empirically extended to a wide array of di�erent transforms.

The presented transforms (except for census) can be expressed as matrix mul-

tiplications for a �xed size transform. An N × N 2D signal x transformed using
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transform T is

F = TfT ′, (2.16)

where T ′ is the transpose of T . However, in practice, an implementation of a trans-

form is rarely done using this method, as there is in many cases much redundancy.

The matrix multiplications in Eq. 2.16 are usually unrolled to avoid doing the same

computations more than once. Such optimizing scheme is for instance [23].

2.2.1 Transforms

Transforms experimented for applying into sign-only matching are DCT, two integer

transforms designed to approximate DCT, Walsh-Hadamard, a simpli�ed version of

the Haar wavelet transform and the census transform. In the following, the basics

of each candidate transform are described, and the particular matrix presentations

used in this work are shown. All of the presented transforms, including census,

have the inherent tolerance for intensity di�erences within the stereo pair caused by

di�erent exposure.

Discrete Fourier transform

The DFT (Discrete Fourier Transform) is one of the key techniques in modern digital

signal processing. As a discrete version of the continuous Fourier transform, it can be

used to express time or spatial domain signals in frequency domain as a combination

of sinusoidal waves. The complex valued transform of real valued one-dimensional

signal a of size N is de�ned as

A(k) =
N−1∑
n=0

a(n)e−i2π
kn
N , k ∈ [0, N − 1] . (2.17)

DFT can also be presented as a complex valued transform matrix, but as it is not

used in this work, the matrix is omitted. For two-dimensional N ×M data, DFT is

F (k1, k2) =
N−1∑
n=0

M−1∑
m=0

f(n,m)e−i2π(
nk1
N

+
nk2
M ), k1 ∈ [0, N − 1] , k2 ∈ [0,M − 1] . (2.18)

An important property is that multiplication in Fourier domain is equivalent to

convolution in spatial domain, FG = x ∗ y, where ∗ stands for convolution. Among

other things, this property leads to the technique Phase-Only Correlation (POC).

Cross correlation is essentially computed as a convolution between the spatial signals.

When both signals are transformed into the Fourier domain via DFT, the cross

correlation can be computed as a multiplication of the transformed signals.
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Discrete Cosine transform

Discrete Cosine Transform (DCT) [24] is a tool often applied in various image pro-

cessing tasks, including compression and denoising. It comes in four di�erent types,

of which type II is the most commonly used. Unlike DFT, DCT gives real valued

outputs on real valued inputs. One-dimensional type II DCT of size N is de�ned as

X(k) =
N−1∑
n=0

xn cos

(
π

N

(
n+

1

2

)
k

)
, k ∈ [0, N − 1] (2.19)

In the two-dimensional case, like with DFT, DCT is consecutively applied along the

rows of the input data, then along the columns of the intermediary transformed data

(or vice versa),

X(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

(
π

N2

(
n2 +

1

2
k2

))
cos

(
π

N1

(
n1 +

1

2

)
k1

)
(2.20)

The matrix presentation of an size 8 DCT is

TDCT =



0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354

0.490 0.416 0.277 0.098 −0.098 −0.278 −0.416 −0.490

0.462 0.191 −0.191 −0.462 −0.462 −0.191 0.191 0.462

0.416 −0.098 −0.490 −0.278 0.278 0.490 0.098 −0.416

0.354 −0.354 −0.354 0.354 0.354 −0.354 −0.354 0.354

0.278 −0.490 0.098 0.416 −0.416 −0.098 0.490 −0.278

0.191 −0.462 0.462 −0.191 −0.191 0.462 −0.462 0.191

0.098 −0.278 0.416 −0.490 0.490 −0.416 0.278 −0.098


.

DCT is an invertible operation, which is often utilized when decompressing images

compressed in DCT domain. However, for the purpose of this work, that property is

not utilized. Although similarity is computed in the transform domain, the similarity

value can be directly mapped to a spatial pixel pair without the need of inverse

transforming the blocks or their products.

The applicability of DCT into various purposes has sparked the need for simpler

computation of the transform. Transform matrices with integer coe�cients have

been designed in a way that approximates the original transform and therefore its

properties, but can be computed without using �oating point arithmetic. Such

transforms are for instance [18](later, I-DCT A) and [25](I-DCT B). For example,

the transform matrix of I-DCT A is
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TI−DCTA =



8 8 8 8 8 8 8 8

12 10 6 −3 −3 −6 −10 −12

8 4 −4 −8 −8 −4 4 8

10 −3 −12 −6 6 12 3 −10

8 −8 −8 8 8 −8 −8 8

6 −12 3 10 −10 −3 12 −6

4 −8 8 −4 −4 8 −8 4

3 −6 10 −12 12 −10 6 −3


.

Walsh-Hadamard transform

The Walsh-Hadamard transform can be seen as a binary Fourier representation.

Instead of sinusoids, the basis functions of the Walsh-Hadamard transform are Walsh

functions, square waves that take two values, either−1 or +1. As with the previously

described transforms, it can be computed using matrix multiplication. [26] A Walsh-

Hadamard matrix is an orthogonal, symmetric transform matrix consisting of values

∈ {−1,+1}. As there are no coe�cients whose absolute value di�ers from unity, no

multiplication is required when computing the transform, which is an obvious speed-

wise bene�t. Furthermore, the internal redundancy of the matrix can be exploited

by decomposing the computation into steps, where certain operations are cached

and used as building blocks of larger composite values.

Sylvester matrices are a type of Walsh-Hadamard matrix, and they can be con-

structed recursively starting from H20 = H1 =
[
1
]
using [27]

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
, (2.21)

The transform matrix TWH used when referring to Walsh-Hadamard in this work

is H23 = H8,

TWH =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


.
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Haar wavelet transform

Not unlike the Walsh-Hadamard transform, the Haar wavelet transform uses basis

functions resembling square waves. However, the basis functions are determined

by scaling and translating the simplest possible wavelet function, Haar wavelet.

[28] The requirement of orthogonality can again be relaxed, therefore avoiding the

multiplication with the scalar coe�cients of elements in the Haar matrix,

THaar =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1


.

The Haar transform without the scalar coe�cients in the individual elements

of the matrix is extremely simple to compute. As can be seen from the matrix

representation, there is a large number of zeros as coe�cients. Therefore when

unrolling the matrix multiplication, most of the individual multiplications can simply

be dropped. Unrolling one matrix multiplication of THaar with a 1D signal yields

the following 14 operations:

a0 = x0 + x1 X7 = x6 − x7
a1 = x2 + x3 X6 = x4 − x5
a2 = x4 + x5 X5 = x2 − x7
a3 = x6 + x7 X4 = x0 − x7
b0 = a0 + a1 X3 = a0 − a1
b1 = a2 + a3 X2 = a2 − a3

X1 = b0 − b1
X0 = b0 + b1,

(2.22)

where a0..3. and b0..1. are temporary variables storing intermediate results. This

allows avoiding having to recompute them for several elements of the output X. In

contrast, a naive multiplication with a 8×8 matrix would require 64 multiplications

and 56 additions.

Census transform

The census transform di�ers from the others presented by that it is not applied

as a matrix multiplication, but by comparing the pixels inside the window to the
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center pixel. This is computationally very simple, as processing of one pixel only

takes one memory access and one comparison. The census transform is a common

sight in stereo matching algorithms that are ranked high [6], [7] on the Middlebury

comparison site [8].

The (m,n) coe�cient of a transformed census

A(n,m) =

1, f(n,m) ≥ f(n0,m0)

0, f(n,m) < f(n0,m0)0
, (2.23)

where (n0,m0) is the center point of the spatial domain window.

For the sake of uniformity with the other presented transforms, the census can

be expressed as

F (n,m) = f(n,m)− f(n0,m0). (2.24)

This way the same approach of taking the signs of the transform coe�cients for

compressing the window can be applied to a census transformed window.

2.2.2 Phase-only and sign-only correlation

POC can be used to �nd the translation between two images, and with proper

conversion of the input space (into polar coordinates), also rotation and scaling.

[29]. It has often been applied to various image registration purposes [30, 31, 32]. In

the particular case of stereo matching, only detecting translations of image segments

is required. The link between POC and SOC described in the following is presented

in detail in [33].

Consider a 2-dimensional, real valued N ×M image f and its circularly shifted

copy g, whose complex valued 2D Discrete Fourier Transforms are F and G. They

can both be decomposed into a presentation such as

|F (n,m)|F ′(n,m) = |F (n,m)| exp (jθF (n,m)), (2.25)

where F ′ = exp (jθF ) is the phase term and |F | the magnitude. To keep the

notation clean and readable, the indexing from F (n,m) is omitted in the following,

but all the operations are to be considered element-wise. The relative spatial shift is

included in the phase terms as the di�erence between θF and θG. The cross spectrum

R between F and G is given by

R = exp θF |F | exp−θG|G| = FG, (2.26)

G being the complex conjugate of G. R normalized by the amplitude information

is then
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R̂ =
FG

|FG|
= F ′G′. (2.27)

The relative estimated translation is given by the POC function, r̂, which is the

inverse transform of R̂. The translation between images f and g is the location of

the maximum peak in r̂. For a perfect match between two identical circularly shifted

images, the maximum value of the POC function is 1. For a less than perfect match,

e.g. the shift is not circular, or the images are not identical, the corresponding peak

value will be between 0 and 1.

Following the same line of reasoning, sign-only correlation (SOC) in DCT domain

can be expressed as a special case of POC for a real valued transform,

R̂ = F ′G′ = F ′DCTG
′
DCT , (2.28)

where F ′DCT and G′DCTC are the "phase" terms of the DCTs, i.e. the signs of the

transform coe�cients. In practice they are represented by ones and minus ones.

The inverse DCT of this spectral function is again the SOC function,

rDCT (p, q) =
1

NM

N∑
n=0

M∑
m=0

SnSmR̂(n,m)cos
(πpn
N

)
cos
(πqm
M

)
, (2.29)

where p and q are the displacements evaluated and R̂(N) = R̂(M) = 0. By simpli-

fying that N = M , Sk can be de�ned as,

Sk =

1
2
, k = 0, N

1, k = 1, 2, ..., N − 1.
(2.30)

Moreover, as a special case of the sign-only correlation ( n = q = 0, i.e. 2.29 is

evaluated only for no displacement) is the DCT domain similarity between f and g

with a N ×M sized transform,

sDCT (f, g) =
1

NM

N∑
n=1

M∑
m=1

F ′DCT (n,m)G′DCT (n,m). (2.31)

Eq. 2.31 is then generalized for a generic transform T,

sT (f, g) =
1

NM

N∑
n=1

M∑
m=1

F ′T (n,m)G′T (n,m). (2.32)

This metric is proposed as a similarity measure to be used in stereo matching as

described in section 2.1.2. The function is evaluated for each pairwise comparison
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of blocks from a stereo pair, but some computational optimizations can be done to

improve the speed of doing this.

2.2.3 Computing similarity between transformed windows

The information of interest in the suggested transform-based methods consists of

either plus or minus signs of the coe�cients (which holds also for the formulation of

census transform in Eq. 2.24). This information is binary, so it is natural to encode

it as such, i.e. as a bitstring. The encoded transformed window of n pixels therefore

has only the size of n bits, one bit per pixel. This allows for both compact storage

of transformed windows, and e�cient processing when comparing two windows.

Each transformed window is needed several times as a candidate block when

performing the matching in both directions. Therefore it makes sense to store the

encoded window after the �rst transform and to bypass doing it again for each

time that same window needs to be evaluated as a matching pair. The storage

requirement for all windows centered on a pixel of an W ×H size image is 2nWH

bits. For instance, for a 1920× 1080 Full HD stereo pair and 64 pixels per window,

temporarily storing all the transformed windows takes roughly 32 MB of memory,

and each windows is transformed only once. Otherwise each disparity estimate

would require dmin − dmax + 1 transforms, leading to a huge amount of redundant

computation.

The key to the performance of transform-based matching is comparing bitstrings

e�ciently. The comparison is based on Eq. 2.32. However, a pixel-wise computation

would also require several steps iterating through each bitstring, and the {0, 1}
encoding would have to be decoded back to {−1,+1} for the cross-correlation to

produce expected results. It is important to note that a XOR-operation between

encoded operands ∈ {0, 1} results in the same, but reversed, relative ordering of

values of as cross-correlation in {−1,+1} with zero displacement (Table 2.1).

Table 2.1: Correlation of signs and their corresponding binary encoding. The symbol ?
denotes the cross-correlation between A and B with lag 0,0, i.e. no relative shift between
the signals.

A B Aenc Benc Aenc ⊕Benc (A ? B)[0, 0]
−1 −1 0 0 0 1
−1 +1 0 1 1 −1
+1 −1 1 0 1 −1
+1 +1 1 1 0 1

In Eq. 2.32, a single multiplication leads to incrementing the correlation value

by one if the operands are similar, or decrementing it by one if they are opposing

signs. In XOR, similar operands have no e�ect on the sum, while opposing signs
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increment it by one. It does convert the interpretation of the value from similarity

to a cost, but this does not matter, as the only required change is to look for a

minimum instead of a maximum. The lack of a penalty term for opposing signs

does not matter either, as the relative ordering of the values still stays the same,

only scaled to be strictly positive.

It is highly probable that any processor will support logical operations, XOR

among them. This allows replacing the sign-wise iteration over the window by a

limited number of XOR-operations. In the best case, the XOR part of the correlation

can be computed in a single operation on 64bit machines. What remains to be done

is collecting the results, i.e. the summation of Eq. 2.31. In practice, this is done

by counting the bits that are set to one in the XOR result, i.e. determining the

population count.

There are several methods of doing this commonly available in sources on the

Internet [34]. In any case, looping through a bitstring and counting one by one

whether or not a bit is set is not a reasonable alternative. There are at least three

distinctive ways of counting the set bits in a variable. First, there are methods

utilizing common commands found in processors, such as logical operations, bitwise

shifts and algebraic functionality. These aim to exploit the fact that the data is

packed so tightly into single variables that SIMD-like (Single Instruction, Multiple

Data) behavior is achieved. Second, if the amount of set bits in an m bit segment

is precomputed and arranged in an array according to the numerical value of that

segment, it is possible to use the array as a lookup table. When the array is indexed

with the segment, the amount of bits set in that segment is the result of that one

memory lookup. If the array is kept below the appropriate cache size of the processor,

this approach can be very fast. For the n bit bitstring, n/m memory reads have to

be performed per bitstring. The division should preferably be even so that there is

no wasted memory bandwidth.

The last kind of bit counting is using architecture-speci�c commands that are

designed just for the job. Namely the x86 (and the later 64 bit variants) architec-

ture used in most PC's has an expansion which includes the command POPCNT

[35], while the NEON coprocessor found in ARM processors has the VCNT [36]

command. Ideally, these kinds of operations can perform the population count on

large bitstrings in one clock cycle. Both of these functionalities are aimed at SIMD

processing, so this is more than convenient for the matching algorithm, which is em-

barrassingly parallel at the window comparison level. It is important to note, that

the requirement for faster sequential processing is only to have access to a scalar

population count operation. It will bene�t from the fact that such operations are

done in parallel with the same limitations as much as any other algorithm, including

the reference method SAD.
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3. IMPLEMENTATION

For experimentation with the di�erent transforms in a laboratory setting, a very

general implementation relying on Matlab and C++ was made. Individual trans-

forms were not optimized separately, but a library for e�cient matrix multiplication

was used. For the most frequently used parts, a C++ program was compiled as a

Matlab MEX �le. The MEX interface allows the programmer to write code on a

number of languages, which can run natively on the platform. Through the inter-

face, Matlab can call the program and access its inputs and outputs. Although the

interface can be cumbersome at times, porting computationally intensive parts of the

code to a representation native to the platform can bring massive improvements in

performance. For instance, a transform-based matching algorithm that took nearly

10 minutes in Matlab for a single stereo pair, takes only 0.5 seconds when executed

through the MEX interface as a natively compiled C++ program. Needless to say,

the �exibility of experimentation is greatly increased.

The use of the MEX interface allowed interfacing between the two parts to bene�t

from their strengths. Matlab severely lacks performance when working with data

consisting of single bits, which was required in compressing and comparing the

transformed windows. Therefore Matlab was used mostly for manipulation of the

cost volume and analyzing the data, while the transforms and comparisons were

accessed via MEX from a natively compiled program.

3.1 Generalized transform-based matching

A straightforward application of the proposed similarity measure into the stereo

matching pipeline yields something like Algorithm 3.1. First, Eq. 2.32 is evaluated

for each pair-wise comparison of windowed image sections, and the result is stored

into a three-dimensional cost volume. The cost volume is then aggregated by �ltering

it slice by slice. Finally, the minimum cost and its index in the cost volume is

found and the disparity estimate is generated. The window for each transform is a

rectangular section of the image centered on the pixel (x,y). In the case of a 8 × 8

window, the window is not actually symmetric, but the center pixel is selected to

be one next the center point. As long as the selection is consistent all over the

algorithm, this does not have a signi�cant e�ect.



3. Implementation 22

Algorithm 3.1 The main body of the matching algorithm

for x = 1→ width do
for y = 1→ height do

f ← window(L, x, y) . Window from left image around (x, y)
F ← transform(f)
for d = dmin → dmax do

g ← window(R, x− d, y) . Window from right image around (x, y)
G← transform(g)
C(x, y, d)← compare(F,G)

for d = dmin → dmax do
C(:, :, d)← filter(C(:, :, d)) . Filter the xy slice of the structure at d

for x = 1→ width do
for y = 1→ height do

for d = dmin → dmax do
c← C(x, y, d)
if c < cmin then

cmin ← c
dcand ← d

D(x, y)← dcand

Algorithm 3.2 An optimized version of the matching algorithm which precomputes
the transforms. The separate aggregation step is also bypassed on the basis that the
windowed transforms already enforces spatial correlation.

for x = 1→ width do
for y = 1→ height do

f ← window(L, x, y) . Window from left image around (x, y)
Ltrans(x, y)← transform(f)
g ← window(R, x, y)
Rtrans(x, y)← transform(g)

cmin ← NM
for x = 1→ width do

for y = 1→ height do
F ← Ltrans(x, y)
for d = dmin → dmax do

G← Rtrans(x− d, y)
c← compare(F,G)
if c < cmin then

cmin ← c
dcand ← d

D(x, y)← dcand
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There is, however, a huge redundancy in recomputing the transforms at each eval-

uation of the similarity measure. By sacri�cing some memory space to accommodate

the transformed windows, signi�cant reduction in computation is gained. Also, for

inputs where the �xed size of the transform behind the similarity measure is large

enough in relation to the image size, the aggregation step may not be necessary at

all. After these two modi�cations, the matching is formulated as Algorithm 3.2.

The most time consuming tasks in the algorithm are the transform and com-

pare functions. Their e�cient implementation is strongly dependent on the hard-

ware and software environment, and in the case of transform, the actual transform

that is selected. In some cases, especially if the transform is DCT, there may even

be a possibility to use hardware acceleration to compute the transforms.

The lookup table is a relatively hardware-independent solution for comparing

transformed windows. The way to do it is, however, very speci�c to the program-

ming language. Therefore generating a 16 bit lookup table in C++ is presented in

Algorithm 3.3, and the usage of the table in Algorithm 3.4.

Algorithm 3.3 Generating a 16 bit lookup table in C++ for performing the pop-
ulation count

const int bitsLen = 16;
unsigned countLen= pow(2.0, bitsLen);
unsigned count;
uint8* bitcountArray = new uint8[countLen];

// Count the set bits in all permutations achievable with bitsLen
for ( unsigned i = 0; i < countLen; i++)
{

v = i;
// Shift the value left until it evaluates as zero
for ( count = 0; v; v >>=1)
{

// Increment counter if the LSB of v is 1
count += v & 1;

}
bitcountArray[i] = count;

}

With 16 bits, there are 216 possible values. The generator iterates through them

all, and counts the number of set bits for each. It uses a naive counting method,

but as this table needs only to be generated once at the start of the application, this

is not a performance concern. It could also be precomputed at compile time and

stored with the executable. The table is constructed to allow indexing into it with

a variable to return the variables population count. Therefore the population count

of each of the bit permutations Algorithm 3.3 goes through is stored into the index

pointed by the integer interpretation of the bit permutation itself.
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When computing the similarity of two 64 bit presentations of transformed win-

dows, the �rst step is the exclusive or (operator "^" ). The value is partitioned

into appropriate sized segments, which in this case is a short int, a 16 bit (again, in

this environment) variable corresponding to the size of the lookup table generated

earlier. The partition is e�ciently done by interpreting the pointer to the original

64 bit variable as a 16 bit pointer using reinterpret_cast. Dereferencing the pointer

will return 16 bits from the start of the value. Incrementing the pointer will iterate

through the 64 bit variable in 16 bit segments. Indexing the lookup table with the

16 bit segment will return the population count of that segment. After 64/16 = 4

iterations, the sum will contain the population count of the whole variable.

Algorithm 3.4 A C++ implementation for comparing two transformed windows
using the lookup table created in Algorithm 3.3

int compare( long long int B1, long long int B2)
{

int sum = 0;
long long int cmp;
cmp = B1^B2;
unsigned short * ptr;
ptr = reinterpret_cast<short int*>(&cmp);

for ( int i = 0; i < sizeof(long long int)/sizeof(short int); i++)
{

sum += bitcountArray[*ptr];
ptr++;

}
return sum;

3.2 Census-based matching for mobile

The algorithm described was implemented on a prototype mobile device based on

the Nokia N950. The result is a C++ class without any external dependencies other

than the NEON headers (which are commonly available for the GCC compiler). This

provides as much �exibility as possible, as it does not constrain it to any speci�c

operating system or environment. The sections implemented in NEON intrinsics will

not compile on other architectures. However, there are also generic versions of the

functionality of those sections available interleaved in the program code, accessible

by de�ning a certain compiler macro.

The implemented parts are census transform-based matching and post processing

via a histogram-based median �lter and a decomposed bilateral �lter. Considering

the computational aspect, the bilateral �lter is most expensive of the discussed post

processing methods. However, after the implementation was completed and after

no longer having access to the platform, it was noted that improved results can



3. Implementation 25

be achieved by replacing the bilateral �lter with a consistency check. Left-right

consistency check is ideally only a few operations and two memory accesses per

pixel. The work done by the median �lter-based occlusion �lling is a subset of a

median �lter that goes through the whole image. Therefore the combination is both

faster and o�ers better quality. The left-right consistency check does not provide

usable results if it is done on the raw disparity maps generated by census matching.

Therefore it is important to �rst run median �ltering on both maps to remove most

of the noise.

3.2.1 Implementation platform

OMAP is a line of system on a chip -products by Texas Instruments. It includes a

number of key components for a functional computer in a compact package, and is

therefore well suited for mobile applications. OMAP devices come equipped with

ARM processors and may o�er varying support for SIMD computing in the form

of a NEON coprocessor and a DSP. The OMAP 3 the device used in this work is

based on usually runs a single core processor in the 500-1000MHz range, while the

this particular device is clocked at 1000MHz. [37]

ARM processors are frequently accompanied with a SIMD extension, a NEON

coprocessor. The NEON core can execute a large amount of di�erent operations that

process several variables at once. The SIMD width of NEON is 128 bits, although

some implementations only execute half of this truly in parallel. NEON has its own

data types, which are in some use cases completely hidden from the programmer,

while more deeply integrated development requires de�ning and handling these.

Those data types consist of vectorized versions of the normal types; di�erent sized

signed and unsigned integers, �oating point numbers etc. The length of the vectors

is limited by the 128bit processing pipeline, i.e. it can �t up to 16 8-bit integers, or

4 of 32-bit �oating point presentations etc. [36]

3.2.2 Optimization strategies for NEON

There are three possible ways of utilizing the SIMD properties of the NEON core

when writing code targeting an ARM processor. The simplest one is to enable the

compiler �ags for automatic vectorization and NEON usage. The compiler will then

analyze the code and automatically generate machine code that uses the NEON

instruction set where it thinks it is bene�cial. To aid the process, the programmer

can write pragmas inside the code to give additional information about things like

the number of iterations certain loops will always perform, or the dependencies of

function pointers between iterations.

Another method is to use intrinsic functions, speci�cally de�ned C-style functions



3. Implementation 26

that in theory map directly to individual NEON instructions. The programmer is

given almost assembly-like control over the data processing, but with a somewhat

more intuitive interface. Each operation supported by the NEON core has its own

intrinsic function, which is characterized by the operation itself and also by the data

types of the parameters and the output.

Finally, the NEON operations can be accessed with raw assembly commands. By

manually writing the assembly code, the maximum potential of the NEON core can

be reached. However, as with all direct assembly development, this approach is very

slow and complicated, especially for debugging. The di�culties of writing assembly

suggests that resorting to this level of optimization should be thoroughly considered

and is probably best used only in the last stages of creating an actual product.

The compiler oriented optimization strategies do have their own drawbacks. The

compiler's capability of discovering the parallel potential in the source code, even

with additional information provided by the programmer, is limited. There are

several automatic checks done to con�rm that those code segments considered to

be parallelized will not cause runtime errors or make the code produce erroneous

results. The most signi�cant aspect to check is that operations within iterations

of the same loop do not access the same data via pointers. These checks appear

to remain on the safe side, which is understandable. While in certain applications

compromises between accuracy of results and processing speed may be desirable,

the errors caused by concurrency and their scale can not be reliably predicted. If

automatic parallelization is desired, the programmer must take care that these tests

pass.

When using intrinsic functions, parallelization is explicitly de�ned by the pro-

grammer. The compiler then only has to map those functions into the correspond-

ing NEON operations, at least in theory. There seems to be some problems in

the mapping stage, though. Conceptually, utilizing the NEON core can boost the

performance of simple algorithms 4- or even 8-fold, depending on the version of

the hardware [36]. However, this is assuming the operations are used optimally.

It is apparently di�cult for the compiler to arrange the data operations between

the registers of the ARM processor and dedicated NEON registers. This leads to a

large amount of unnecessary data transfers between those two, which take signi�-

cant amount of clock cycles and therefore eat away much of the potential gain from

using NEON. To avoid this, manual cleaning of the compiler generated assembly is

required, making it arduous to experiment with di�erent parallelization approaches.

For this implementation, a hybrid approach between the �rst and the second

methods was chosen. The most computationally intensive sections of the matching,

namely transforming windows and comparing bitstrings were implemented using

intrinsic functions. The compiler's attempts at this proved to be ine�cient, as
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despite of e�orts to try to formulate the code in the necessary way, it was not able

to do any automatic parallelization. The post processing consists of simpler tasks,

so it was left for the compiler to autovectorize, which it performed with varying

success.

3.2.3 Implementation speci�cs

Despite the poor quality census-based matching showed in the preliminary tests,

the approach that was �nally chosen for the mobile implementation is to completely

avoid the aggregation phase and to attempt to compensate with suitable post pro-

cessing. The matching algorithm is exactly the same as described in section 3.2.

The di�erence is that census is used instead of the heavier decomposing transforms.

The C++ version of the census transform is described for reference in Algorithm

3.5. The NEON accelerated transform is given in Algorithm 3.6. Both implementa-

tions of it are functionally equivalent. The custom type bitstr is de�ned to be long

long int for the remainder of the presented code.

Algorithm 3.5 A serial C++ implementation for applying census transform on a
window centered at (x, y) in image img

typedef long long int bitstr
bitstr census( const uint8* img, unsigned x, unsigned y )
{

uint8 t, c = img[ y * WIDTH + x];
bool cmp;
int i = 0;
bitstr ans = 0;

for ( int yi = -3; yi <= 4; yi++)
{

for ( int xi = -3; xi <= 4; xi++, i++)
{

t = img[ (y+yi) * WIDTH + x+xi];
cmp = t > c;
ans |= cmp << i;

}
}
return ans;

}

The C++ version simply takes the center pixel and loops through the 8 × 8

window one pixel at a time. At each position, the target pixel t is compared to

the center pixel c and the result stored in the boolean variable cmp. Shifting the

boolean variable by i causes an implicit typecast into an integer, which has the ith

bit set to the comparison result. The result bit is then saved at the correct position

in the result bitstr, which is �nally returned to the caller after the whole window

has been processed.
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Algorithm 3.6 A serial C++ implementation for applying census transform on a
window using NEON intrinsic functions

bitstr censusmatch::census( const uint8* img, unsigned x, unsigned y )
{

// Center pixel value duplicated onto 8 lanes
uint8x8_t cdup = vld1_dup_u8(img+y*width_+x);
// Bit mask that is used to copy individual bits to the result
uint8x8_t mask = vdup_n_u8(1);

uint8x8_t trow;
uint8x8_t cmprow;
uint8x8_t result = {0};

for ( int yi = -3; yi <= 4; yi++)
{

// Load a horizontal line of 8 pixels from the window
trow = vld1_u8( img + (y+yi)*width_ + x );
// Compare them to the center pixel
cmprow = vcge_u8(trow, cdup);
// Bits chosen by ’mask’ from ’cmprow’ go into ’result’
result = vbsl_u8(mask, cmprow, result);
// Shift to pick the next bits on next iteration
mask = vshl_n_u8(mask, 1);

}
ans = reinterpret_cast<bitstr>(result);

}

In the NEON version of the transform, the center pixel is also fetched, but the

result is duplicated onto the eight lanes of the uint8x8_t NEON variable cdup. On

each iteration of the for-loop, eight variables at a time are loaded from memory to

trow in a single command. The whole row is compared to the duplicated center pixel

cdup. The inner loop of Algorithm 3.5 is therefore replaced by the parallel processing

of a complete row of the window in one iteration. The result of the comparison is

stored in an uint8x8_t variable, where all bits of a lane are set to either 0 or 1 based

on the relative values stored in the corresponding lanes of the operands. A single bit

is copied from each lane to the result variable. As all the source bits of a lane are

the same, it does not matter which one is copied. This allows the copy operation to

directly copy a bit from the same location that is the correct location in the result.

This is done using a binary mask that has only one bit selected per lane. The mask

is shifted by one on each iteration, moving the destination of the result bit in the

result variable. Finally, the variable of type uint8x8_t is simply reinterpreted as a

bitstr (i.e. long long int). As the variables are of the same size (64 bits vs. 8 × 8

bits), this makes the function compatible with the rest of the program �ow without

porting everything over to NEON data types.
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Algorithm 3.7 A C++ implementation for comparing two transformed windows
using NEON intrinsic functions

for ( int y = 0 ; y < HEIGHT; y++ )
{

for ( int x = 0 ; x < WIDTH; x++ )
{

// Read and dup l i c a t e the cen ter p i x e l s o f four windows
uint16 ∗ sp t r = reinterpret_cast<uint16 >( f romst r s ) ;
uint16x4_t B10 = vld1_dup_u16 ( sp t r + 4∗( y∗WIDTH + x ) ) ;
uint16x4_t B11 = vld1_dup_u16 ( sp t r + 4∗( y∗WIDTH + x) + 1 ) ;
uint16x4_t B12 = vld1_dup_u16 ( sp t r + 4∗( y∗WIDTH + x) + 2 ) ;
uint16x4_t B13 = vld1_dup_u16 ( sp t r + 4∗( y∗WIDTH + x) + 3 ) ;

b i t s t r ∗ topt r = t o s t r s + width_∗y + x ;
for ( int d = mindisp_ ; d <= maxdisp_ ; d+=4)
{

xd = x + d ;
uint16x4_t sums = {0 , 0 , 0 , 0} ;

// Read four complete p i x e l s and d i s t r i b u t e them
uint16x4x4_t B2 = vld4_u16 ( reinterpret_cast<uint16∗>( topt r + d ) ) ;
uint16x4_t B20 = B2 . va l [ 0 ] ;
uint16x4_t B21 = B2 . va l [ 1 ] ;
uint16x4_t B22 = B2 . va l [ 2 ] ;
uint16x4_t B23 = B2 . va l [ 3 ] ;

// XOR, count b i t s and accumulate sum x4
uint16x4_t cmp = veor_u16 (B10 , B20 ) ;
uint8x8_t counts = vcnt_u8 ( vreinterpret_u8_u16 (cmp ) ) ;
sums = vpadal_u8 ( sums , counts ) ;

cmp = veor_u16 (B11 , B21 ) ;
counts = vcnt_u8 ( vreinterpret_u8_u16 (cmp ) ) ;
sums = vpadal_u8 ( sums , counts ) ;

cmp = veor_u16 (B12 , B22 ) ;
counts = vcnt_u8 ( vreinterpret_u8_u16 (cmp ) ) ;
sums = vpadal_u8 ( sums , counts ) ;

cmp = veor_u16 (B13 , B23 ) ;
counts = vcnt_u8 ( vreinterpret_u8_u16 (cmp ) ) ;
sums = vpadal_u8 ( sums , counts ) ;

// Store a l l 4 computed s i m i l a r i t i e s
vst1_u16 ( c o s t va l u e s+d , sums ) ;

}
d = find_min ( c o s t va l u e s ) ;

}
}
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The other focal point of the algorithm is the comparisons of transformed win-

dows. The plain C++ version of the mobile implementation is roughly the same

as described in conjunction with the generalized version in Algorithm 3.3 and 3.4.

The comparison function is called once for each of the pairwise comparisons done

between transformed windows. The NEON version is somewhat more complex, as

several comparisons are parallelized to be performed simultaneously. The straight-

forward method would be to �ll a single NEON register with one transformed win-

dow. This is however avoided due to the fact that it is more e�cient to aggregate

the results along individual NEON lanes instead of across a single NEON variable.

The memory accesses resulting from traversing the search range using x ± d leads

to over indexing at certain areas. Handling this is trivial by assigning an arti�cially

high cost to those comparisons, and is omitted from the program code.

For each coordinate (x, y) in the source image, the corresponding compressed,

transformed window is retrieved. The pointer to the window storage is interpreted

as a pointer to 16 bit values - incrementing and dereferencing this pointer will return

16 bit segments, which are duplicated to �t a variable of type uint16x4. After this,

the variables B10...B13 each contain a duplicated 16 bit segment of the reference

window. The disparity search range is then iterated in steps of four, with each

iteration comparing four target windows with the reference window.

A wide memory load is used to read four compressed target windows into a

composite variable. The variable is then decomposed into separate vectors so that

each one contains a 16 bit segment of each of the target windows. For instance, B20

will contain the �rst 16 bits from all of the target windows. Now the arrangement of

the data between the reference (B10...B13 ) and the targets (B20...B23 ) is consistent.

This allows exclusive or and population count to be performed in one operation

each on corresponding segments of the windows to be compared. The population

count operation takes operands as 8 bit variables, but fortunately 8 at a time.

As the operation is not dependent on the actual numerical interpretation of the

operands and the existing uint16x4_t variables are of the same length, a simple

reinterpret_cast will su�ce.

This is repeated for each segment while aggregating the resulting sum into sums

after each population count. Therefore it is not necessary to cross the lane borders

to sum the results, which would not be easily achievable. The �nal result is stored

in a vectorized variable where each element contains the value for one pairwise

comparison. They can be directly written to memory using a wide store operation.

After the whole search range has been processed at coordinates (x, y) , the minimum

value is found like described in Algorithm 3.2.
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4. RESULTS AND EVALUATION

There are a number of quality metrics that appear frequently in the context of

evaluating quality of depth maps. The percentage of bad pixels (PBP) is perhaps the

most common. Among other things, it is the primary metric used on the Middlebury

evaluation site, which ranks submitted stereo matching algorithms by the quality

they produce on a common test set. The disparity map is compared to the ground

truth, and those pixels that are di�erent are counted. PBP is then the percentage

of those di�ering pixels from the whole image. It is reasonable to allow a slight

di�erence, e.g. a variation of one. The proposed similarity measure is not compared

to those reported on the site, as it would not be a fair comparison. The proposed

approach only covers a part of the stereo matching pipeline, and is not a complete

matching system like those ranked on the site. [8] PBP is still used as the metric to

compare how variations in the proposed preliminary stages of the matching pipeline

a�ect the quality. Another metric with which results are occasionally presented is

mean squared error (MSE) between the disparity map and the ground truth.

Due to the somewhat erratic nature of the results given by census matching and

the speci�c use case of virtual view rendering is aimed at, an additional metric is

also considered when dealing with the the mobile implementation. PSNR is the

peak-signal-to-noise ratio computed between the disparity estimate and the ground

truth. PSNRR is computed between novel views rendered based on the estimated

disparity map and the ground truth. The absolute quality is obviously dependent on

the used rendering method, but as all images are generated with the same method,

the relative di�erence does indicate how the disparity maps rank in relation to each

other. [24]

The problem with numerical metrics is that they tend to measure reconstruction

accuracy, which is not necessary equivalent with the quality of rendering. Some

metrics are strongly a�ected by types of errors that do not have much of an impact

on the perceived quality of rendered views, and vice versa. Even though metrics

like PSNRR attempt to evaluate the perceived quality of a viewer, it is still a�ected

by artifacts that may be negligible to the viewer. For instance, a error of one in

the disparity map can cause a large portion of the scene to be shifted by one pixel.

A viewer will not even notice such a di�erence, but PSNR can be severely a�ected

if the area has high frequency texture. Therefore a small scale subjective test was
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performed to compare the quality of scenes rendered from estimates by SAD and

census matching. Subjective testing is described in detail in section 4.2.2.

4.1 Generalized transform-based methods

The data set for these experiments is 21 pre-recti�ed Middlebury stereo pairs, which

comes in di�erence sizes. The majority of the testing is done using images scaled to

one third of the original size, while some experiments are conducted on the full size

images (approximately 1300× 1100 pixels). [38]. Occluded areas are extracted from

the ground truths and are excluded from the numerical quality estimates, as any kind

of occlusion �lling is not being handled or proposed. For SAD, the radius of the box

�lter used in cost volume aggregation for each stereo pair is always selected as the

one providing best results in terms of that speci�c metric. Quality produced by SAD

is greatly dependent on the size of the aggregation window, so this approach gives

even a slightly too favorable treatment to the method. In practice, the window size

would be either constant or adaptive based on some features of the images. Selecting

the optimal as done here is not possible in a real application. The metrics have to

be computed in reference to a ground truth, which is obviously not available if one

must resort to stereo matching to begin with.

The reference point used for comparing the results of transform-based metrics

is the commonly used sum of absolute di�erences (SAD) with di�erent sizes of

rectangular aggregation windows. The quality of disparity estimates is evaluated

with the percentage of pixels that do not match the ground truth (PBP) and the

MSE of the estimate against the ground truth. As shown in Table 4.1, all the

tested transforms perform on similar levels. This also holds true for the majority

of individual comparisons. Therefore the rest of the results are presented only for

DCT and Haar in order to improve the clarity of the results. DCT is selected due

to its widespread usage in image processing tasks and Haar as the one providing

the best results and o�ering the fastest computation. It is worth noting that there

are di�erences in the quality of the two integer transforms designed to appriximate

DCT. I-DCT A performs slightly worse than true DCT, while I-DCT B is actually

better. The scaling of the algorithm is exactly the same as described in section

4.2.1 regardless of the transform, only with a higher constant component before any

comparisons are made.

Table 4.1: Average quality metrics over the whole dataset for each of the transforms ex-
perimented with.

SAD DCT I-DCT A I-DCT B Walsh-Had. Haar
PBP 34.0% 28.3% 29.3% 27.8% 27.0% 26.2%
MSE 148.6 149.2 155.7 148.0 142.6 142.2
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Figure 4.1: Percentage of bad pixels and MSE of estimated disparity map for each image
in the Middlebury 2006 data set using SAD, DCT and Haar -based similarity measures.
All disparity maps have been 5× 5 median �ltered

Figure 4.1 shows percentage of bad pixels and MSE for each individual stereo pair

in the data set. The cost volume formed by transform-based methods has not been

aggregated in any way. The measurements for the SAD method are using the best

aggregation window size from the tested range (from 1 × 1 to 19 × 19). The only

post processing that has been applied after the matching stage is median �ltering.

The general trend is that transform-based methods give disparity estimates with

less bad pixels for the majority of the pairs, and do not fall very far behind even in

the cases where SAD performs better. In terms of MSE there is some more variation

between stereo pairs, with the averages over the whole data set being roughly equal.

This leads to the conclusion that transform-based methods make bigger mistakes,

but are wrong less often than SAD.

In order to improve the quality of the disparity estimate, the cost volume of

transform-based methods can also be aggregated. Figure 4.2 demonstrates the e�ect

of a box aggregation step on the cost volume generated from images of the smaller

data set. SAD does not in practice work without the cost aggregation step, so 1x1

(no aggregation) has been omitted for that method. Both DCT and Haar -based

methods are getting some additional bene�t from aggregation up until the window

sizes 9× 9 and 11× 11. In terms of MSE, the cuto� of quality improvement at 9× 9

is very pronounced. This coincides somewhat with the window size of the transform,
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which is 8 × 8, although the reasoning why they seem to be linked is not entirely

clear.
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Figure 4.2: Average percentage of bad pixels and MSE for the Middlebury 2006 1/3 data
set after box �ltering (i.e. aggregating) the cost volume with di�erent block sizes. Size 1x1
corresponds to no �ltering, which is omitted for SAD as it simply does not work.

For full size images, Figure 4.3 shows that the bene�t gained from aggregating the

transform-based cost volume is larger than on the smaller images. This is due to the

�xed size of the transform window, which represents smaller sections of the image

as the image size increases. Here, SAD matching with appropriate sized aggregation

window (in the range of 21-31 pixels) actually reaches the same level of quality as

the methods based on DCT and Haar without aggregation. By sacri�cing the speed

gain over SAD by incorporating the cost aggregation step, those will again surpass

it in quality, reaching the minimum PBP around the same window sizes as SAD.
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Figure 4.3: Average percentage of bad pixels and MSE for the Middlebury 2006 full size
data set after box �ltering the cost volume with di�erent block sizes. In contrast to the
smaller resolution data set, there is a slight overlap in the average quality between SAD
and the others.
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As mentioned earlier in subsection 2.1.5, based on the type of noise introduced

into the disparity map by the typical mistakes transform-based methods do, median

�ltering can be recommended as a post processing step following immediately after

the disparity computation. Figure 4.4 demonstrates the e�ect of median �ltering

on the average PBP and MSE of disparity maps computed from the smaller data

set. As is evident, even a moderate amount of �ltering signi�cantly improves the

quality, con�rming the hypothesis. It is also clear, that the type of noise in SAD

matched disparity maps is di�erent, as the median �lter has very little e�ect on it.

PBP for transform-based methods improves around 5-6 percentage units, while the

e�ect for SAD less than 2 percentage units. The optimal �lter window in this case

is 9 × 9, which is about the same as the optimal aggregation window, i.e. slightly

more than the original matching window of 8 × 8. If �ltering is applied with too

large of a window, the details in the edges of the shapes start disappearing.
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Figure 4.4: The e�ect of median �ltering the disparity map with di�erent sized windows
on the quality of the disparity estimate. While 5x5 SAD is not the optimal window size for
cost volume aggregation for all images, it is used to display the trend for SAD. Transform
methods are again not separately aggregated.

The e�ect of aggregation and median �ltering is compared in Figure 4.5. The

di�erence in favor of aggregation is approximately only 2.5 percentage units in the

smaller size data set. Forgoing the speed considerations and applying both �ltering

approaches will improve the quality even more. The visual e�ect of aggregation is

demonstrated in the examples in Appendix 2. With larger images (full size data

set), the lesser in�uence of median �ltering the disparity map in comparison to

aggregation is shown in Figure 4.6, where the aggregation drastically drops the

error rate, while median �ltering has only a relatively minor e�ect.
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Figure 4.5: The e�ect of cost volume aggregation and post processing with a median �lter
on disparity maps estimated from the smaller data set.

Figure 4.6: The e�ect of cost volume aggregation and post processing with a median �lter
on disparity maps estimated from full size data set.
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Two examples of disparity maps estimated with SAD, DCT and Haar are shown in

Figure 4.7. Worth noting is the di�erence in the structure of the erroneous matches.

SAD experiences large, smooth patches of wrong matches. This can mostly be

attrubuted to the the aggregation procedure, which is responsible for much of the

outcome. If the errors are dominant in some area, then instead of improving quality,

the aggregation step spreads the error around. On the other hand, transform-based

approaches su�er from more varying valued errors in matches, in a sense distributing

the faulty matches more evenly over the image. This is bene�cial as there is then

some correct information available at most parts of the scene. There is very little

di�erence in the behavior of the methods in textured surfaces which exhibit piecewise

smooth disparities.

Figure 4.7: Disparity maps of Bowling1(upper row) and Rocks1 (lower), from left to right:
Ground truth, estimates with SAD with box �lter, DCT and Haar. All maps have been 5x5
median �ltered. The Bowling1 scene illustrates well the types of "noise" characteristically
originating from the methods. SAD su�ers from large smooth patches of wrong disparities
while transform-based methods experience a kind of salt&pepper type of noise. The Rocks1
scene shows how all methods behave similarly on smooth surfaces

Middlebury also o�ers versions of the basic data set which have been taken in

di�erent lighting conditions and with di�erent exposure times [38]. Table 4.2 shows

a number of tests where the images of the stereo pair have been selected from

di�erent exposures. Under each di�erent illumination (Illum 1..3) each di�erent

exposure has been compared with the longest exposure time and the pair is marked

in the Exp-column like 2, 0, i.e. exposure number two is paired up with number

zero. The indexing corresponds to the one used in the Middlebury data set. SAD

has very little success in dealing with any discrepancies in the exposure time, and

only provides reasonable results when paired up with the same exposure (that is,

2, 2). The transform-based methods are a�ected, but to a much lesser extent. Even
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the worst case quality di�erence between the same exposures and the maximally

di�erent exposures (DCT, illum. 1, 2,0 vs. 2,2) is less than 10 percentage units.

The aggregated versions of DCT and Haar are especially robust in this respect.

Table 4.2: Average percentage of bad pixels of disparity estimates between images captured
with varying exposure times under di�erent illuminations. A-DCT and A-Haar have the
optional box aggregation step included. An example of the contents of the data set is
presented in Appendix 1.

Exp SAD DCT Haar A-DCT A-Haar

Illum. 1
2,0 93.0 36.2 33.9 24.5 23.8
2,1 93.0 28.4 26.3 20.7 19.8
2,2 35.0 26.9 25.0 20.1 19.4

Illum. 2
2,0 93.2 34.5 32.4 23.4 22.9
2,1 92.7 29.2 27.5 21.4 21.1
2,2 35.2 29.4 27.8 21.7 21.4

Illum. 3
2,0 93.2 38.9 37.2 27.0 26.9
2,1 92.7 32.0 30.5 24.5 24.2
2,2 43.1 30.9 29.7 24.0 23.9

4.2 Census-based mobile implementation

Table 4.3 displays some numerical quality metrics comparing census and SAD. A

slightly di�erent test setting was used than with the generalized transform-based

methods, which makes these values only comparable to each other and not with the

ones presented earlier. For instance, occluded pixels have not been excluded from

this comparison.

Table 4.3: Objective quality metrics comparing disparity maps computed using SAD and
census

PBP (%) PSNR (dB) PSNRR (dB)
Box SAD 11x11 36.8 16.9 31.2
Box SAD 7x7 38.5 16.8 31.0
Census 8x8 46.6 17.4 27.9

4.2.1 Performance analysis

The processing speed was measured on the implementation platform for grayscale

images with 433x370 resolution and 70 disparity estimates. Some inherent properties

of the platform reduced the timing accuracy to a certain degree, but the results

were deemed su�cient to give a sense of the computational load. On a PC, the

implementation without explicit parallelization on thread or instruction level, the
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implementation took approximately 0.5 seconds (using lookup table for population

count). The direct port of that on the OMAP platform had a runtime of 6.7 seconds

per pair. Optimizing the memory access patterns dropped this down to 4.2 seconds

per pair, and adding the post processing brought it back up to 6.7 seconds.

Implementing transforms and matching with NEON intrinsic functions and en-

abling the compiler to autovectorize the post processing resulted in a runtime of

4.3 seconds per pair. The matching step alone takes about 2.5 seconds for disparity

estimates from both viewpoints of the stereo pair. It can clearly be seen the improve-

ment gained from the NEON intrinsics is nowhere near the maximum potential of

the NEON core, which leads to believe that the conversion from intrinsic functions

to assembly is not working as well as it should.

A sparse disparity estimate was also tested, where transforms and matching is

only computed for every other pixel. The result is then upsampled (by a factor

of 2) to the original size using the bilateral �lter. This has the advantage that

computationally it does not matter if the input of the bilateral �lter is a subsampled

version. The only di�erence is with indexing, where indices into the image must be

scaled to match the subsampled image size. As in this case the factor is two, this

can be done trivially by shifting the index towards the least signi�cant bit. With

some loss of quality, the speed of that approach is 2.0 seconds per pair.

The other suggestion for post processing is using a left-right consistency check,

which was not implemented due to scheduling constraints concerning access to the

device. It is, however, drastically faster than the bilateral �lter. Judging by the

complexity of the computation, the consistency check is almost trivial to compute

in comparison to the bilateral �lter. Filling the inconsistent pixels has to be done

though, which e.g. corresponds roughly to a second application of the median �lter.

In any case, it is a much faster approach than the bilateral �lter.

Table 4.4: Estimated operation counts required to perform one comparison of windows.
Listed methods are box �ltered SAD (with summed area tables) and two approaches to
comparing transform-based bit strings (with 16 bit memory lookup or hardware imple-
mented population count). Memory cache also plays an important role, but is more di�cult
to analyze.

Arithmetic op Memory reads Memory writes
Box SAD 5 6 3

Software population count 4 5 1
Hardware population count 2 1 1

A de�nitive advantage of the census transform-based matching is that additional

disparity estimates are quite fast to compute compared to the competing SAD

method. Table 4.4 lists the operation counts needed to compare one neighborhood

of one pixel to one correspondence candidate. Although the lookup table -based
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comparison is not that far from SAD in terms of the operation count, the di�erence

between their processing speeds can be explained by the more cache-friendly mem-

ory access patterns of the transform-based methods. This is demonstrated in Figure

4.8. The data for the below �gures have been computed using pure C implementa-

tions running on a desktop PC. Hardware assisted population count was not used,

which would improve the scaling of census even further.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Disparity estimates 

T
im

e 
(s

)

 

 

SAD
Census

Figure 4.8: Processing time scaling as a function of the number of disparity estimates for
O(1) aggregation SAD and the census transform-based matching algorithms

As could be expected, both SAD and transform-based methods scale linearly as

a function of the image size of the source stereo pair (Figure 4.9) Also unsurpris-

ingly, census matching maintains its speed advantage over SAD when the image size

increases.
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Figure 4.9: Processing time scaling as a function of the image size for O(1) aggregation
SAD and the census transform-based matching algorithms over 50 disparity estimates.
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The initial results quality-wise do not favor the census, but the trivial computa-

tion allowed by its simplicity is a de�nitive bene�t. If cost volume aggregation is

applied, the results of census and the simplest matrix multiplication-based trans-

form, the simpli�ed Haar provide very similar results. If there is no aggregation

applied, the result of the matching has a large number of mismatches. Fortunately

though, the correct matches are still dominant in the result, so it can be quite ef-

fectively corrected with post-processing. Some loss of detail can not be avoided,

though, as the �ltering window necessary for this will be relatively large.

4.2.2 Subjective testing

The traditional metrics were noticed to be quite unreliable in the case of census-

based matching. Due to the di�culties in �nding such objective quality metrics

that would appropriately portray not only the reconstruction accuracy, but also the

visual quality of virtual views rendered using the depth, a small scale subjective test

was organized. 20 test subjects were shown sequentially a series of 16 image pairs.

Two image pairs were used for training and control, and were arti�cially degraded

using photo manipulation software. The rest were shown in a randomized order

(both the order of image pairs and the order of images inside the pair). The other

image in the pair was always a rendered virtual view based on depth acquired with

census-based matching, while the other was rendered using the same method, but

based on depth estimated with box �lter aggregated SAD with window size 11x11.

The subjects were asked to mark down which of the two images looked better,

or in the case of lacking distinctive di�erences, "no di�erence". Images were viewed

on a matte 2D display of a desktop computer in even o�ce lighting. In order to

keep the test simple, rendered stereo pairs were not shown on a 3D display, where

factors such as each subject's capability of seeing the stereoscopic 3D e�ect would

have greatly in�uenced the results. Occlusion �lling for the rendering was done

by �lling such pixels that did not get a projected value with a median value of

surrounding pixels. Granted it is not the most sophisticated of methods, but both

of the compared matching algorithms get treated the same way.

Looking at the results that favor either SAD or census, SAD does get more votes

as providing better quality by 13 percentage units ( 27% favor census, 40% SAD).

The "no di�erence" answers, however, level the playing �eld, as 33% of total answers

did not distinguish the two from each other. Looking at the distribution of votes for

SAD (Figure 4.10), certain image pairs have a huge bias favoring it. Further analysis

of the images behind the vote distributions shows that few images have some very

distinctive and speci�c distortions that are likely to be the cause of the results for

those pairs. These speci�c errors were not addressed in this thesis, but analysis of

the errors may well lead to post processing methods capable of handling them.
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Figure 4.10: The distribution of votes during the subjective test for each stereo pair for
choices "census", "SAD" and "neither"

In Figure 4.11 the two cards leaning against each other is somehow di�cult for

census to process. A large portion of the cards gets a wrong disparity value, but the

error is present in both the left and right disparity estimates, as it is not a�ected

by the left-right consistency check. In the rendered view, the error is shown as an

obvious distortion. All though SAD is also having some problems with the same

area, the distortion is not so pronounced.

Figure 4.11: Zoomed partitions of views rendered from depth estimated by census (left),
SAD (center) and the original view from the same viewpoint. The source stereo pairs are
Moebius and Baby3 from [8]
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Another kind of problem is in shown in the lower row of Figure 4.11. The two

miniature cow toys on both sides of the baby doll are detected by census, but the

areas have such a low ratio of correct matches that the shape of those toys is lost

in post processing. The toys are large enough not to be completely hidden by the

large median �lter applied, but they do su�er from it as the resulting disparity map

does not correspond to the source image. The appearance of those toys is likely

so distinguishable to the human observer that their distortion into something less

recognizable is easily noticed.
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5. CONCLUSIONS

A novel method of applying transform-based similarity measures to �nding stereo

correspondences has been presented. In most cases, transform-based metrics o�er

better quality in comparison to SAD with box �lter -based aggregation. Another

bene�t is a better computational scalability with the number of disparity measures.

This is due to the more compact presentation of the required information, which

better utilizes the memory architecture of modern processors and the ability to pro-

cess large segments of that presentation at once even without utilizing parallelization

via dedicated SIMD accelerators. The noise of the resulting disparity characteris-

tic to transform-based methods map is shown to be controllable using simple post

processing to match and surpass the quality of the reference metric.

The speed gain in comparison to SAD comes from the lack of a separate aggre-

gation step, where the cost volume is �ltered using spatial �lters. Transform-based

matching methods o�er the bene�t of having a constant amount of work to be done

in the beginning, and a lower coe�cient on the linear component of the computa-

tional complexity with regards to number of disparity estimates. A drawback is the

O(n2) complexity with regards to the window radius, and the constant window of

size 8×8 has limited performance on large source image sizes. The 8×8 window size

utilizes hardware e�ciently, which makes it tricky to change the window size freely

and retain the computational bene�ts. If improved quality is the focus, sacri�cing

some speed in favor of introducing a separate aggregation step will further increase

the quality of transform-based matching.

As far as quality and speed are considered, the Haar wavelet transform is clearly a

better choice for most applications. However, DCT is frequently used in other image

processing tasks. It may allow for synergy bene�ts between stereo matching and

other algorithms that are also transforming some or all of the same windows. DCT

might also have accelerated implementations readily available on some platforms.

An integer-based approximation of DCT can work for this purpose even better than

the original transform if chosen correctly.

The transform-based methods presented here have an inherent ability to ignore

constant di�erences in intensity between stereo pairs due to the way the constant

term is included in a single component, which as the average of the window is always

positive anyway. Also the census transform exhibits this property due to the way it
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uses the window's center pixel as a reference. This allows changes in the exposure

between the stereo pair with no extra computational cost, unlike SAD, where the

intensity changes must be compensated by additionally computing mean values for

windows.

The approach to evaluating these metrics was to compare them at the basic level

as similarity measures for �nding stereo correspondences. A modern stereo match-

ing algorithm will also consider con�dence metrics and more elaborate schemes for

post �ltering. There are further studies to be made on this area. Also the potential

synergy between denoising based on the same transformed windows as the matching

algorithm is a potential continuation of this work. For instance, the e�cient �nd-

ing of correspondences may be well suited for non-local denoising methods which

already transform windowed sections of the image into DCT domain. Based on the

experimental results, it is reasonable to assume, that the described transform domain

approach would work to some degree on any generalized harmonic transforms. Also,

it is possible that there exists such transform domain representations that would lead

to even better quality. Computationally though, an optimized implementation of

the unscaled Haar wavelet transform is hard to beat.

The application of these methods on a mobile platform has been studied and de-

scribed. Transforms based on matrix multiplication such as DCT o�er good quality

matching, but the performance constraints of the platform call for even simpler pro-

cessing. In an e�ort to make it possible to run stereo matching at reasonable rates

without specialized hardware accelerated solutions like a DSP or a GPU, census

transform is used instead.

Some objective measures rate the quality of the census matching somewhat below

that of SAD-based methods, but on the other hand, some also favor census. Small

scale subjective studies imply that the census has some speci�c problems that ob-

servers pay attention to. This tips the scales in favor SAD in the general case, but

still, for a large number of tested scenes, census provides similar or better results.

Speed-wise the census shows promising results. It is embarrassingly parallel at

multiple levels, o�ering great possibilities to utilize any parallel processing capabil-

ities o�ered by the hardware platform. Due to the de�ciencies in compiler behavior

regarding the SIMD extension of ARM, the experimental implementation does not

fully bene�t from the potential of the NEON core. A detailed implementation using

assembly should be done for any actual implementation in a production environ-

ment. Compared to the closest competition from traditional stereo matching, the

box �ltered SAD, census is faster, especially given there is a specialized popula-

tion count operator in the hardware platform. The more cache-friendly memory

access patterns make it faster even if population count has to be emulated in soft-

ware. Any post processing done on the disparity image will likely not be a�ected
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by the amount of disparity estimates. Therefore the bene�t of having a better scal-

ing with the number of disparity estimates is not a�ected by the more intensive

post-processing required by census results.

A less intrusive method of post processing would greatly improve the reconstruc-

tion quality of the census transform, as there are rarely objects that are estimated

completely wrong. The bilateral �lter can be used to some extent to enforce con-

straints from the source stereo pair's color information, but the e�ect of a single

application of the �lter will not have a very powerful e�ect. Even the e�cient

implementations of the bilateral �lter are computationally quite intensive in this

hardware environment, so iterative approaches will quickly become too heavy. Con-

sistency checking between two alternate disparity maps is a promising option as

a post processing tool if it is applied after the disparity maps have been denoised

using median �ltering. Median �ltering can be e�ciently applied even with large

window sizes using the distributive properties of histograms to compute them for

each successive sliding window.



47

REFERENCES

[1] R. Szeliski, Computer Vision: Algorithms and Applications. New York:

Springer, 2010.

[2] R. J. Trew and J. E. Brittain, �3D media & displays,� Special issue, Proceedings

of the IEEE, vol. 99, no. 4, 2011.

[3] K. Müller, P. Merkle, and T. Wiegand, �3-D video representation using depth

maps,� Proceedings of the IEEE, vol. 99, no. 4, pp. 643�656, 2011.

[4] S. B. Gokturk, H. Yalcin, and C. Bamji, �A time-of-�ight depth sensor - system

description, issues and solutions,� in Computer Vision and Pattern Recognition

Workshop, 2004. CVPRW '04. Conference on, pp. 35�35, 2004.

[5] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,

D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, �KinectFusion: Real-

time dense surface mapping and tracking,� in Mixed and Augmented Reality

(ISMAR), 2011 10th IEEE International Symposium on, pp. 127�136, 2011.

[6] H. Hirschmuller, �Accurate and e�cient stereo processing by semi-global match-

ing and mutual information,� in Computer Vision and Pattern Recognition,

2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 807�814

vol. 2, 2005.

[7] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, �A fast

stereo matching algorithm suitable for embedded real-time systems,� Computer

Vision and Image Understanding, vol. 114, pp. 1180�1202, 11 2010.

[8] D. Scharstein and R. Szeliski, �A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms,� International Journal of Computer Vision,

vol. 47, no. 1, pp. 7�42, 2002.

[9] J. Weng, P. Cohen, and M. Herniou, �Camera calibration with distortion models

and accuracy evaluation,� IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 14, no. 10, pp. 965�980, 1992.

[10] A. Fusiello, E. Trucco, and A. Verri, �A compact algorithm for recti�cation of

stereo pairs,� Machine Vision and Applications, vol. 12, no. 1, pp. 16�22, 2000.

[11] Z. Zhang, �A �exible new technique for camera calibration,� Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1330�1334,

2000.



REFERENCES 48

[12] J. Banks, M. Bennamoun, and P. Corke, �Non-parametric techniques for fast

and robust stereo matching,� in TENCON '97. IEEE Region 10 Annual Confer-

ence. Speech and Image Technologies for Computing and Telecommunications.,

Proceedings of IEEE, vol. 1, pp. 365�368 vol.1, 1997.

[13] F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda, �Classi�cation

and evaluation of cost aggregation methods for stereo correspondence,� in Com-

puter Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,

pp. 1�8, 2008.

[14] F. C. Crow, �Summed-area tables for texture mapping,� SIGGRAPH Com-

put.Graph., vol. 18, pp. 207�212, jan 1984.

[15] A. Ansar, A. Castano, and L. Matthies, �Enhanced real-time stereo using bilat-

eral �ltering,� in 3D Data Processing, Visualization and Transmission, 2004.

3DPVT 2004. Proceedings. 2nd International Symposium on, pp. 455�462, 2004.

[16] C. Tomasi and R. Manduchi, �Bilateral �ltering for gray and color images,� in

Computer Vision, 1998. Sixth International Conference on, pp. 839�846, 1998.

[17] Q. Yang, K. H. Tan, and N. Ahuja, �Real-time O(1) bilateral �ltering.,� in

CVPR, pp. 557�564, 2009.

[18] S. Gordon, �Simpli�ed use of 8x8 transforms - updated proposal & results,�

tech. rep., Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,

2004.

[19] D. V. Papadimitriou and T. J. Dennis, �Stereo disparity analysis using phase

correlation,� Electronics Letters, vol. 30, no. 18, pp. 1475�1477, 1994.

[20] M. A. Muquit, T. Shibahara, and T. Aoki, �A high-accuracy pas-

sive 3D measurement system using phase-based image matching,� IEICE

Trans.Fundam.Electron.Commun.Comput.Sci., vol. E89-A, pp. 686�697, mar

2006.

[21] T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi, �A sub-pixel stereo cor-

respondence technique based on 1D phase-only correlation,� in Image Process-

ing, 2007. ICIP 2007. IEEE International Conference on, vol. 5, pp. 221�224,

2007.

[22] C. D. Kuglin and D. C. Hines, �The phase correlation image alignment method,�

IEEE Conference on Cybernetics and Society, pp. 163�165, 1975.



REFERENCES 49

[23] W. H. Chen, C. Smith, and S. Fralick, �A fast computational algorithm for the

discrete cosine transform,� Communications, IEEE Transactions on, vol. 25,

no. 9, pp. 1004�1009, 1977.

[24] K. R. Rao, P. Yip, and V. Britanak, Discrete Cosine Transform: Algorithms,

Advantages, Applications. Orlando, FL, USA: Academic Press, Inc, 2007.

[25] H. Qi, W. Gao, S. Ma, and D. Zhao, �Adaptive block-size transform based

on extended integer 8x8/4x4 transforms for H.264/AVC,� in Image Processing,

2006 IEEE International Conference on, pp. 1341�1344, 2006.

[26] N. Ahmed, K. Rao, and A. Abdussattar, �BIFORE or Hadamard transform,�

Audio and Electroacoustics, IEEE Transactions on, vol. 19, no. 3, pp. 225�234,

1971.

[27] S. Agaian, H. Sarukhanyan, K. Egiazarian, and J. Astola, Hadamard Trans-

forms. SPIE Press, 1 ed., 2011.

[28] R. S. Stankovic and B. J. Falkowski, �The Haar wavelet transform: its status

and achievements,� Computers & Electrical Engineering, vol. 29, pp. 25�44, 1

2003.

[29] C. A. Wilson and J. A. Theriot, �A correlation-based approach to calculate

rotation and translation of moving cells,� Image Processing, IEEE Transactions

on, vol. 15, no. 7, pp. 1939�1951, 2006.

[30] O. Urhan, M. K. Gullu, and S. Erturk, �Modi�ed phase-correlation based robust

hard-cut detection with application to archive �lm,� Circuits and Systems for

Video Technology, IEEE Transactions on, vol. 16, no. 6, pp. 753�770, 2006.

[31] K. Ito, A. Morita, T. Aoki, T. Higuchi, H. Nakajima, and K. Kobayashi, �A

�ngerprint recognition algorithm using phase-based image matching for low-

quality �ngerprints,� in Image Processing, 2005. ICIP 2005. IEEE International

Conference on, vol. 2, pp. II�33�6, 2005.

[32] K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima, �An e�cient iris

recognition algorithm using phase-based image matching,� in Image Processing,

2005. ICIP 2005. IEEE International Conference on, vol. 2, pp. II�49�52, 2005.

[33] I. Ito and H. Kiya, �DCT sign-only correlation with application to image match-

ing and the relationship with phase-only correlation,� in Acoustics, Speech and

Signal Processing, 2007. ICASSP 2007. IEEE International Conference on,

vol. 1, pp. I�1237�I�1240, 2007.



REFERENCES 50

[34] S. E. Anderson, �Bit twiddling hacks,� 2012. [Online] Cited 25.04.2012

http://graphics.stanford.edu/~seander/bithacks.html.

[35] Intel Corporation, �Intel 64 and IA-32 architectures - software developer's man-

ual,� 2011.

[36] ARM, �Cortex A8 technical reference manual,� 2006.

[37] Texas Instruments, �OMAP 3 architecture from TI for MID,� 2008.

[38] H. Hirschmuller and D. Scharstein, �Evaluation of cost functions for stereo

matching,� in Computer Vision and Pattern Recognition, 2007. CVPR '07.

IEEE Conference on, pp. 1�8, 2007.



51

APPENDIX 1: AGGREGATED DISPARITY MAPS

From left to right: SAD, DCT, Haar and from top to bottom, box aggregation radii 0, 2,
4, 6 and 9
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APPENDIX 2: EXAMPLE DATA: VARYING

ILLUMINATION AND EXPOSURE

Example (the Aloe stereo pair) from the data set used for comparing the performance
under di�erent lighting conditions and with di�erent exposure times. The exposure varies
from left to right (exp0...2 as referred to in the results section), while the illumination
changes from top to bottom (Illum 1...3).


