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Fault detection is one of the most important aspects of telecommunication networks. 

Considering the growing scale and complexity of communication networks, mainte-

nance and debugging have become extremely complicated and expensive. In complex 

systems, a higher rate of failure, due to the large number of components, has increased 

the importance of both fault detection and root cause analysis. Fault detection for com-

munication networks is based on analyzing system logs from servers or different com-

ponents in a network in order to determine if there is any unusual activity. However, 

detecting and diagnosing problems in such huge systems are challenging tasks for hu-

man, since the amount of information, which needs to be processed goes far beyond the 

level that can be handled manually. Therefore, there is an immense demand for auto-

matic processing of datasets to extract the relevant data needed for detecting anomalies. 

In a Big Data world, using machine learning techniques to analyze log data automatical-

ly becomes more and more popular. Machine learning based fault detection does not 

require any prior knowledge about the types of problems and does not rely on explicit 

programming (such as rule-based). Machine learning has the ability to improve its per-

formance automatically through learning from experience.  

In this thesis, we investigate supervised machine learning approaches to detect known 

faults from unstructured log data as a fast and efficient approach. As the aim is to identi-

fy abnormal cases against normal ones, anomaly detection is considered to be a binary 

classification. For extracting numerical features from event logs as a primary step in any 
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classification, we used windowing along with bag-of-words approaches considering 

their textual characteristics (high dimension and sparseness).  

We focus on linear classification methods such as single layer perceptron and Support 

Vector Machines as promising candidate methods for supervised fault detection based 

on the textual characteristics of network-based server-log data. In order to generate an 

appropriate approach generalizing for detecting known faults, two important factors are 

investigated, namely the size of datasets and the time duration of faults. By investigat-

ing the experimental results concerning these two aforementioned factors, a two-layer 

classification is proposed to overcome the windowing and feature extraction challenges 

for long lasting faults. The thesis proposes a novel approach for collecting feature vec-

tors for two layers of a two-layer classification.  In the first layer we attempt to detect 

the starting line of each fault repetition as well as the fault duration. The obtained mod-

els from the first layer are used to create feature vectors for the second layer. In order to 

evaluate the learning algorithms and select the best detection model, cross validation 

and F-scores are used in this thesis because traditional metrics such as accuracy and 

error rates are not well suited for imbalanced datasets.  

The experimental results show that the proposed SVM classifier provides the best per-

formance independent of fault duration, while factors such as labelling rule and reduc-

tion of the feature space have no significant effect on the performance. In addition, the 

results show that the two-layer classification system can improve the performance of 

fault detection; however, a more suited approach for collecting feature vectors with 

smaller time span .needs to be further investigated. 



iii 

 

PREFACE 

This work has been conducted at the Department of Signal Processing of Tampere Uni-

versity of Technology in collaboration with TIETO within ICT SHOK D2I project.. 

I would like to express my deepest gratitude to my supervisor Prof. Moncef Gabbouj 

who trusted me in the first place giving me the opportunity to work in his research 

group while fully helping me throughout this process. This thesis could not be accom-

plished without his support. 

I would like to thank Professor Mikko Valkama especially for revising my thesis and 

acting as an examiner. 

My big appreciation goes to my co-supervisors Honglei Zhang and Dr. Stefan Uhlmann. 

Honglei supported and guided me throughout my research while Stefan provided me 

with constructive comments while writing the thesis. This thesis owes its existence to 

Stefan’s great efforts, patience and feedback. 

I would also like to thank my collaborators from Tieto, especially Harri Kukkasniemi, 

for providing me with the required dataset and helping me to conduct the research 

smoothly. 

I do not have enough words to thank Sharareh Naghdi who has acted like my dearest 

sister and has made my life abroad memorable.  

I would like to specially mention my friend Dr. Payman Aflaki for his help and sugges-

tions on how to write this thesis.  

Last but not least, my sincere gratitude goes my husband, Mehrdad, who experienced all 

ups and downs of my research. Moreover, I dedicate this thesis to my parents for their 

endless support and encouragement. 



iv 

 

CONTENTS 

1. INTRODUCTION .................................................................................................... 1 

2. BACKGROUND ...................................................................................................... 4 

2.1 Feature extraction ........................................................................................... 5 

2.1.1 Feature extraction methods for text documents ............................... 5 

2.1.2 Feature extraction for online streaming data .................................... 6 

2.1.3 Feature extraction for syslog data .................................................... 7 

2.2 Classification .................................................................................................. 8 

2.2.1 Linear classifiers .............................................................................. 9 

2.3 Literature Review ......................................................................................... 12 

3. METHODOLOGY .................................................................................................. 16 

3.1 Feature generation ........................................................................................ 17 

3.1.1 Prerequisites ................................................................................... 18 

3.1.2 Feature Extraction .......................................................................... 20 

3.2 Detection phase ............................................................................................ 22 

3.2.1 General approach – short faults ..................................................... 22 

3.2.2 Long fault duration – two-layer classification ............................... 22 

4. RESULTS ............................................................................................................... 30 

4.1 Data .............................................................................................................. 30 

4.2 Evaluation measures ..................................................................................... 31 

4.3 Experimental results and Discussion............................................................ 34 

4.3.1 TTY dataset .................................................................................... 34 

4.3.2 TTY-2 dataset ................................................................................ 37 

5. CONCLUSION ....................................................................................................... 41 

 



v 

 

LIST OF FIGURES 

 

Figure 2. 1    The sign of the projection onto the weight vector W yields the class 

label…………………………………………………………………………………………........10 

Figure 2. 2  Finding the best separating hyper-plane……………………………………...11 

Figure 2. 3  Margin and support vectors for SVMS…………………………………...…...11 

Figure 3. 1. Overview of the learning algorithm……………………………………...……17 

Figure 3. 2.  A part of ground truth dataset, fault logs labelled as 1 and normal logs 

labelled as 0………………………………………………………………………………...……18 

Figure 3. 3. Sequence of logs and their corresponding tokens……………………..…....19 

Figure 3. 4. Assign label to each feature vector………………………………………....…20 

Figure 3. 5.  Sliding window to collect feature vector……………………………………..21 

Figure 3. 6.  Feature extraction approach of first layer……………………..……………24 

Figure 3. 7.  Creating first feature vector of second layer…………………...……..…....25 

Figure 3. 8. Creating second feature vector for second layer……………………………26 

Figure 3. 9. Feature vector consists of last five values from start-predicted-model and 

statistical values from middle-predicted-model………………………………………….…27 

Figure 3. 10. After detection of fault logs, only the last four elements of feature vector 

will be changed…………………………………………………………………………....……28 

Figure 3. 11. By ending the fault logs and indicating normal logs both buffer and mid-

dle-prob-estimate reset and procedure starts from first step………………..……………29 

Figure 4. 1. A part of Fault List Log illustrating two different faults, and time duration 

of each repetition………………………………………………………………….….…………31 

Figure 4. 2. Confusion Matrix………………………………………………….…….………33 

Figure 4. 3. Performance of different classifiers…………………………….……….……35 

Figure 4. 4. Comparison bag-of-words vs bag-of-strings………………….………….…36 

Figure 4. 5.  Results of two different rules for labelling…………………….….......……37 



vi 

 

Figure 4. 6. Performance of two layer classification vs one layer classification………38 

Figure 4. 7. The results of LIBLINEAR on fault 1 with duration between 12 minutes to 

22 minutes for different window sizes…………………………………………………...……39 

Figure 4. 8.  The results of LIBLINEAR on fault 3 with duration around 4:30 minutes 

for different window sizes………………………………………………………………...……39 

Figure 4. 9. The results of LIBLINEAR on fault 4 with duration around 8 seconds for 

different window sizes………………………………………………………………….….……40 

Figure 4. 10. The results of LIBLINEAR on fault 5 with duration around 2 minutes for 

different window sizes …………………………………………………….……………...……40 



vii 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

3G Third generation of mobile telecommunications technology 

4G Fourth generation of mobile telecommunications technology 

BCCH Broadcast Control CHannel 

FN False Negative 

FP False Positive 

FV1 Feature vector correspond to first window 

FV1-L2 First feature vector of second layer 

HDD Hard Disk Drive 

LTE Long-Term Evolution 

SVM Support Vector Machine 

LIBSVM An implementation of Support Vector Machine 

LIBLINEAR An implementation of   linear regression 

TC Text Classification 

TF Term Frequency 

TF-IDF Term Frequency-Inverse Document Frequency 

TTY Unstructured log data including  two days of network traffic data 

with one fault type 

TTY-2 Unstructured log data including five days of network traffic data 

with five fault types 

TP True Positive 

TN True Negative 

Wi-Fi Wireless Fidelity 

 



viii 

 

 



1 

 

1. INTRODUCTION 

Wireless communication is one of the big engineering success stories of recent years – 

not only from a scientific point of view, where the progress has been astonishing but 

also with respect to market size and impact on society. Cellular telephony is big evi-

dence, as it is the biggest market segment, and has the highest impact on everyday 

lives. The popularity of mobile devices grows, as their offered capabilities and services 

increase. The growing scale of services they offer, diversity of devices connected to the 

network, introducing Heterogeneous Networks combining different Radio Access 

Technologies (3G, LTE (Long-Term Evolution), Wi-Fi (Wireless fidelity)) and more 

recently, variety of network topologies they can use, cause mobile communication net-

works to become more complex distributed systems [9]. High level of distributions 

results in producing huge amounts of data including, for example, measurements indi-

cating radio interface efficiency and log data from different components [50].  

As wireless systems are being increasingly used, it is becoming a challenge to debug 

and keep network operation stable, fault free, and secure. In complex systems, a higher 

rate of failure, due to the large number of components, has increased the importance of 

both fault detection and root cause analysis. Such failures can be caused by different 

sources such as power break down, hardware failure, software bugs, wrong configura-

tions, human mistakes, and intrusive attacks. Root cause of a failure is the reason for 

which it occurs and root cause analysis is based on detecting and fixing the problem 

and preventing it from reoccurring.  

The logs generated by network systems are generally time-series data streams con-

tained messages that represent the status of a running system and other expansive in-

formation to support fault diagnosis. Therefore, syslog analysis plays an essential role 

for detecting failures in large systems [1]. However analyzing system logs manually is 

not realistic and practical since in a complex system various parts produce huge 

amounts of logs every day, which not all of them are interesting for error detection. 

Furthermore, software and hardware are developed and updated frequently leading to a 

considerable change of log files. As there is no standard structure for all log files, it is 
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infeasible to utilize a unique single log analyzer for a developing large system. Moreo-

ver, training many people to be as familiar with all system details is costly and time 

consuming [62]. To cope with these issues, machine learning techniques are introduced 

and exploited to automate the process of log analysis. Machine learning techniques can 

automatically process large scale data and improve their performance through learning 

patterns on a set of training data and then apply to new unknown data. In the field of 

intrusion detection, the advantages of machine learning techniques are their ability to 

detect unexpected problems and analyze all logs much faster than humans. Machine 

learning techniques do not rely on explicit programming. In addition, the developer of a 

machine learning system does not need to have any expert knowledge in log analysis; 

however, it could be helpful to find high quality features.  

In this thesis, we investigate supervised machine learning approaches to detect known 

faults from unstructured log data simulated and provided by TIETO since these learn-

ing methods are fast and powerful in detecting known network faults and problems. 

Generally, supervised machine learning techniques make use of pre-existing knowledge 

and are first trained to generate models by using characteristics of labeled training data. 

Then the models are applied to identify faults and/or intrusions in unseen test data. But 

the preliminary and most important step in machine learning based fault detection sys-

tems is to extract numerical informative features from dataset since the performance of 

classification tasks is affected by representation of features.  

To select appropriate feature extraction and classification methods, we focus on stream-

ing and textual characteristics of log data as available dataset in communication net-

works. The used approach for feature extraction and collecting feature vectors in this 

thesis is sliding window (considering streaming characteristics of data) along with bag-

of-words (considering textual characteristics of data). Regarding the textual characteris-

tics of log data, linear classification techniques are proposed for learning algorithm. 

From various linear classification techniques, we choose to investigate two methods of 

single layer perceptron and Support Vector Machines (SVMs) with more focus on 

SVMs. Since SVMs are one of the best learning algorithms for binary classification 

that is relevant in this thesis to detect abnormal logs against normal ones [50, 83 and 1]. 

There are different implementations of SVMs. In this thesis, we compare the results of 

LIBLINEAR versus LIBSVM.  
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Our experiments are established in two phases based on usage of two different datasets. 

We explore the effects of using bag-of-strings instead of bag-of-words for feature ex-

traction in order to reduce the dimension of feature space and different rules for label-

ling the feature vectors. The most challenging task in this thesis is to deal with long 

lasting faults. From classification point of view long lasting fault means that one class 

dominants the entire dataset while there is rare occurrences of another class. The prob-

lem with these kinds of dataset is low quality of their performance using standard de-

tection approaches. To address this problem, this thesis proposes a two-layer classifica-

tion with novel approaches for collecting feature vectors of each layer. The results 

show high performance of two-layer classification in compare to one layer classifica-

tion for long fault durations. However, creating feature vectors for two layers are more 

time consuming. The rest of this thesis is organized as follows. 

Chapter 2 provides background information and highlights the research relevant to this 

thesis. In this chapter, first the common approaches to extract features from text data 

and streaming data and previous work on feature extraction of log data are reviewed in 

general. Then the used classification methods in this thesis are introduced. In addition, 

two major detection approaches and various methods of intrusion detection used by 

researchers are given in this chapter.  

Chapter 3 presents an overview of our approach for feature extraction, creating feature 

vectors and learning algorithm. 

Chapter 4 introduces evaluation metrics and represents the experiments and results. In 

this chapter various factors that may affect the results are compared and the results of 

the chosen classification methods are illustrated. 

Chapter 5 concludes and discusses limitations of supervised classification over unstruc-

tured network log-data. 
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2. BACKGROUND 

Mobile networks have become interesting and popular networks in recent years due to 

the rapid increasing of wireless devices such as mobile laptop computers, PDAs and 

wireless telephones and growing scale of services they offer. As mobile networks be-

come more popular and widely used, their operation, maintenance, security and in gen-

eral, protecting them against  anomalous network behavior to improve services and 

support this popularity, has become one of the major concerns. The anomalies can be 

defined as a data pattern, which is different from normal data and requires atten-

tion [74]. Consequently, detecting anomalous behavior is an indispensable task in net-

work operation. Anomaly detection for communication networks is based on analyzing 

system logs from servers or different components in a network and determines whether 

there is any unusual activity. However, detecting and diagnosing problems in such huge 

systems is a challenging task for both developers and operators since the amount of 

information needed to process them goes far beyond the level that can be handled man-

ually [83]. Therefore, there is an immense demand for automatic processing of datasets 

to extract the relevant data needed for detecting anomalies. 

Generally, datasets in communication networks are represented in log format. The log 

format varies by types of components that generate it. The only parts of each log to 

correlate various types of unstructured log data are timestamps. Therefore, logs estab-

lish unstructured time series files, and event logs are non-numerical logs in which the 

messages contain vocabulary of terms (or phrases). In this thesis, the datasets to ana-

lyze are event logs and by terms of system log or syslog I mean event logs. Thus, to 

analyze the log files and collect feature vectors to apply machine learning techniques 

and detect the anomalies, we consider approaches used for both textual data and 

streaming data.  

In this chapter, we first review feature extraction methods for text data and online 

streaming data. Then we look at text classification focusing on linear classification, as a 
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main approach applied to event logs. The last part of this chapter reviews previous 

anomaly detection methods for log data. 

2.1 Feature extraction 

Feature extraction is a core and preliminary step of any classification using machine 

learning techniques. Considering aforementioned characteristics of event logs, we need 

to combine the feature extraction methods of streaming data with textual feature extrac-

tion methods. In following a brief overview of feature extraction methods for both tex-

tual data and streaming data is represented., and then some researches on extracting 

features and mining the patterns of logs which could be used in machine learning tech-

niques are reviewed.  

2.1.1 Feature extraction methods for text documents 

In text analysis such as natural language document classification, the main idea for fea-

ture extraction is to extract words from the raw text data and convert them into numeri-

cal features called term-based method, which gives a machine learning model a simpler 

and more focused view of the text. The most common way to address this issue is bag-

of-words representation, which extracts numerical features from text content [1, 65]. In 

this technique, text data is considered to be a collection of words, and a dictionary is 

built by collecting all terms that occur at least once in a collection of documents. bag-

of-words is a vector whose components represent the number of occurrence of each 

word in a document called term frequency (TF) while disregarding the position infor-

mation of the words in the document. Normalization is applied to scale the term fre-

quencies to values between 0 and 1 in order to measure the importance of a term in a 

document. In this scheme each individual components of term frequency vector or term 

weights vector is regarded as a feature [65]. 

Besides words, using phrases rather than words referred as n-grams may also be 

used [58] since a collection of words (unigrams) ignore any word order dependence and 

cannot consider phrases and multi-word expressions. Thus, in some cases, a collection 

of bigrams (n=2) or n-grams instead of unigrams is preferred, where occurrence of 

pairs or more consecutive words are counted [65]. 
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TF-IDF (Term Frequency-Inverse Document Frequency) is also a commonly used fea-

ture in natural language processing (NLP) [40]. By using this method, the weight of 

terms that occur frequently in a document is low and the weight of rarely occurrence 

increases in order to improve the accuracy of classification [62, 56]. 

Feature selection is also an important issue in different classification methods, which is 

defined as selecting a subset of features from original features in order to reduce the 

dimension of text features and remove non-informative words from text data to im-

prove learning performance [79]. 

The most common and effective feature selection method in text data is stop-word re-

moval  [8, 18]. In [84] a wide variety of feature selection methods in text categorization 

are compared and their experimental results discussed. 

2.1.2 Feature extraction for online streaming data 

A data stream is a massive real time sequence of data, which is continuous, ordered (by 

timestamp or arrival time), and fast changing. An issue concerning online streaming 

data processing is that to store an entire data stream or to scan through it several times 

is impossible due to its great volume. Sliding window approaches are a simple, widely 

used and standard way for feature extraction when dealing with streaming data. Moreo-

ver, since data streams have a natural temporal ordering, new data are often more accu-

rate and more relevant than older ones [61]. 

For streaming (time-series) data processing, two types of sliding windows have been 

presented in different researches [61, 27]. The main approach for both is to isolate the 

range of continuous data to a sliding window, either with a fixed size of window con-

taining the most recent T items, called a count-base or a sequence-based sliding win-

dow, or windows contain items from last t time units, called time-base or timestamp-

based sliding window. Their performance is based on making a window classifier that 

assign a label from predefined class labels or ground truth to each feature vector ex-

tracted from input window of width w. Using this method, each sequence of data is 

segmented in temporal windows of fixed size of T items or time slices of t seconds in 

length defined as Li = < li,…,li+t-1> that starts at time i. Next temporal window is de-

fined by window shift of r as Li+r = < li+r,…,li+r+t-1 >. Then, a feature vector is built up 
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by collecting features from each window and labeled them with a predefined categories 

based on defined decision rule. The reason for popularity of this method is its simplici-

ty to apply to any classical learning algorithm. 

2.1.3 Feature extraction for syslog data 

Feature extraction for system logs is problem dependent and there is no generally ac-

cepted standard in this area. For those kinds of logs contained numerical data, features 

are already provided that allows focusing on learning algorithm. But for time-series, 

meaningful non-numerical logs called event logs (indicating the state of systems), the 

features must be extracted since machine learning algorithm cannot process them di-

rectly. Even though many different methods have been represented in various study 

researches [83], this issue is still under investigation.  

Considering the time-series characteristic of log files, sliding window methods have 

been widely used in many machine learning based anomaly detection techniques. [83, 

76, 74, 4, 9]. However, they used different methodology to extract features. For exam-

ple in [83], authors concentrate on two kinds of features, the state ratio vector using 

time-based window to analyze the behavior of the system over a certain period of time, 

and message count vector to collect problems concerning individual activities. Addi-

tionally, they applied TF-IDF method to its message count vector in order to improve 

the accuracy of detecting errors of logs. Different researchers have used different meth-

ods based on their applications. For example [74] represent the frequencies of 2-grams 

as features for network logs. Authors in [9] compare two one-class modelling tech-

niques; one-class Support Vector Machines and a Hellinger distance-based one-class 

modeling in which the technique for extracting features is bag-of-words. Main concept 

on windowing combined with one of the feature extraction methods researches repre-

sented tools to extract features from log files [83, 4]. They introduce either prepro-

cessing technique [83] or a tool to extract relative features more exactly [4]  to improve 

the detection results. In [4] the semi unstructured time series database, Splunk, is repre-

sented as a tool for automatic event boundary detection that breaks the text stream into 

separate events exploiting the timestamps. It is used to index, search, and analyze mas-

sive datasets. The study [83] used programming to extract structured information from 

unstructured data logs by parsing them and specifying their important properties. Au-
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thors represent two kinds of properties, identifiers variables to identify the program 

object which can take a large number of distinct values, and state variables that are la-

bels to show a set of possible states an object could have in program and can take a 

small number of distinct values. 

2.2 Classification 

To detect network operational problems, we need to analyze the features extracted from 

log files and attempt to find well suited classification techniques in order to achieve 

high classification or detection accuracy. As log files resemble text document charac-

teristics, we first study commonly used text classification methods, considering specifi-

cations of text documents and their feature vectors.  

Classification in general is a machine learning technique to predict labels for data in-

stances, and text classification (TC) is learning task, which assigns pre-defined catego-

ry labels automatically to text data. Traditionally, learning methods are divided into 

two types: supervised learning and unsupervised learning. Supervised learning methods 

exploit labeled data, pairs of input objects and their corresponding output, to learn a 

classifier, which can be used to predict the output labels of new unknown data. While 

unsupervised learning methods do not require labeled training samples to learn a classi-

fier, hence they can be used to model the input data based on their statistical properties. 

Data can be in variant of single-label (binary classification), multi-label classification 

or multi-class classification. Binary classification involves two classes composed of 

relevant (positive) or not relevant (negative) items with respect to specific application 

where exactly one class must be assigned to each document. Multi-class problems refer 

to classification tasks with more than two classes while in multi-label problems a sam-

ple may be relevant to more than one class. Most of the research in text processing has 

been focused on binary classifications since it can be extended to multi-class as well as 

multi-label classifications. The strategy to deal with these problems is to break the 

problem into a set of binary classification problems, one for each class. Then apply all 

the binary classifiers to new data and make decision based on all prediction results [1, 

15].  
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As text data contain a large number of words, the numerical feature vectors gained 

from text data are high dimensional and sparse (most feature valued are zero) vectors. 

Therefore, text classification needs special techniques to address the problem of high 

dimensional sparse data [1]. A successfully used method proposed by researchers’ [1, 

15, 1] to solve these problems is using linear classification algorithms.  

In the following section, the main concept of linearity is defined. Then two well-known 

linear classifications, perceptron and SVM that are used in this thesis, are theoretically 

discussed. 

2.2.1 Linear classifiers 

The aim of a linear classifier is to divide two classes by a linear separator based on a 

linear combination of features. A formula to express the idea of linear classification is  

y = W · X + b (2.1) 

 

in 2D the discriminant is a line, in 3D is a plane, and in nD it is a hyper-plane ) where 

X = (x1,…,xn) is the feature vector (e.g., normalized word frequency vector), W= 

(w1,…,wn), is a vector of linear coefficients with the same dimension of the feature 

space, which called weight vector, b is a constant value that does not depend on any 

input value called bias value, and y is output, indicating class label. For a linear classi-

fier, the training data is used to learn W and for classifying new data only W is needed.  

The core idea of the single layer perceptron algorithm is to define the class label of any 

real-valued numerical input feature Xi, using the sign of the predicted function yi from 

the discriminant function yi = W · Xi + b. Let us consider binary classification where 

class labels are either y=1 or y=0. Figure 2.1 shows a simple example in a 2-

dimensional feature space. It illustrates two different classes and the separating plane 

corresponding to W·X + b = 0.  
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Figure 2. 1.  The sign of the projection onto the weight vector W yields the class label 

 

It is clear that the sign of the function W ·X + b determines the class label. Thus, the 

problem reduces to finding weights W with the use of training examples. The algorithm 

starts with initializing the weight vector randomly to equal values for all elements, and 

then updates these initial parameters when applying the current function on the training 

set makes mistake [68, 59, 11, 44, 69]. Learning rate α, where 0 < α ≤ 1 can also be 

used to adjust the magnitude of the update, for example a too high learning rate makes 

the perceptron periodically oscillate around the solution. 

The perceptron approximates a linear function, therefore if the training set is linearly 

separable; the perceptron is guaranteed to converge. In case the data is not linear sepa-

rable then perceptron will not be able to find a good model to separate the data [44]. 

While the perceptron algorithm finds just any linear separation, Support Vector Ma-

chines (SVMs) [10, 81] are a kind of classifiers, which search for the best separator to 

have maximum margin between two groups of data according to some criterion. For 

example, consider two-class, separated training datasets of ‘x’ and ‘o’ that is illustrated 

in Figure 2.2 Comparing three different separating hyper-planes denoted by A, B, and 

C among many others, it is clear that the hyper-plane A provides better separation than 

the other two which are close to data points of one or both classes, and the normal dis-

tance of any of the data points from it, is the largest. Therefore, the hyper-plane A rep-

resents the maximum margin to closest points of ‘x’ and ‘o’. 
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Figure 2. 2.  Finding the best separating hyper-plane 

 

The hyper-plane in SVM is constructed by using a subset of training data that are on 

the margin. These training data are referred to support vectors [84]. Figure 2.3 shows 

the margin and support vectors for a sample problem. [28] proposed that ”the ability of 

SVMs to learn can be independent of the dimensionality of the feature space”. This 

property causes SVMs to be able to apply for datasets with high dimensionality, if they 

are separable with a wide margin. In addition, SVMs can also be used for nonlinear 

classifiers using kernel functions [28].  

 

Figure 2. 3 Margin and support vectors for SVMS 
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For nonlinear separable samples, these techniques have the ability of mapping the orig-

inal finite dimensional space into a higher dimensional space using kernels in order to 

have linearly separable samples. However, [19] mentioned that kernel functions are not 

so efficient for text classifications since the main assumption for kernels to be effective 

is that single words are not informative as high order word correlations. But, in some 

cases linear combination of word occurrences may provide this correlation. Therefore 

they can be effective for some special problems.    

2.3 Literature Review 

In general, there are various techniques for detecting network intrusions, signature (or 

misuse) detection, and anomaly detection [29, 30, 31, 32, 35 and36]. From [36], both 

signature and anomaly-based detections are similar from conceptual operation point of 

view yet their main difference is in the nature of attack and anomaly terms. The term of 

attack refers to “a sequence of operations that puts the security of a system at 

risk” [36], while an anomaly is defined as “an event that is dubious from security point 

of view” [36]. 

In signature detection, the behaviour of a known intrusion or weak spots of a system 

are modelled to use for detecting known intrusions [29, 30, 31, 32,33, 34, 35 and36]. 

High accuracy of detecting known attacks with low false positive rate is the main ad-

vantage of this approach. But this approach is not able to detect unknown intrusions. In 

anomaly detection, normal behaviour of network is modelled and then it compares ac-

tivities against the normal behaviour [29, 30, 31, 32, 34, 35 and36]. The advantage of 

this approach is its ability to detect new intrusions. However, it cannot detect the intru-

sions that are not significantly different from normal activities, leading in high false 

positive rate [29, 30, 31, 32,33, 34, 35, and36]. 

Some research groups focused on signature (misuse) detection approaches using differ-

ent techniques. For example, [40] introduced a prototype Distributed Intrusion Detec-

tion System (DIDS) that worked based on expert systems generating a set of rules that 

describe known attacks. Then the information from different components is analysed at 

a central location. [34] represented an example for state transition analysis approach. In 

this approach the process of intrusions are demonstrated as a series of state changes by 

using a graphical notation. Researches in [39] focused on developing a domain-specific 
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language called behavioural monitoring specification language (BMLS) to determine 

the relevant properties, from either normal behaviour of systems, or misuse behaviour 

associated with known attacks. They provide the STAT Tool Suite, which includes a 

language called STATL to describe the attack scenarios. But the problem of signature 

(misuse) detection is that it needs frequent rule base updates and signature updates. 

Nevertheless, this approach is not able to tackle the rapidly increased number of new 

attacks. 

On the other hand, anomaly detection methods that model the normal network behav-

iour are relatively easy to perform, and effective in finding both known and unknown 

attacks. A vast number of researches have been performed on this topic using different 

methodologies [41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54 and55]. These methods can be 

categorized into three different groups: statistical-based, specification-based and ma-

chine learning-based, which are briefly introduced next. 

Statistical-based methods build operational profiles that describe normal behaviour of 

a system over a period of time. In general, normal profiles include probability distribu-

tions of different variables that represent the state of the system. Then a statistical dis-

tribution profile of new data is compared to the normal profile to distinguish significant 

differences and make decision based on this discriminant [41, 42 and 43]. The weak-

nesses of this method are that it ignores the temporal and multiple-variable correlation 

[67, 68]. 

Specification-based approaches are described in [ 44, 45 and 46]. In this approach, 

instead of modelling the normal activity, it builds a model based on specification of a 

secure operation. Accordingly, if an operation does not resemble this model then it is 

marked as an intrusion. This approach does not have the drawbacks of statistical-based 

methods; however it can be infeasible if the size of datasets is too big.  

Machine learning can be defined as a programme or system that can learn from data 

and improve the performance over time. Thus, the strategy of a machine learning based 

method can change with new data. Necessity for labelled data to train a learning algo-

rithm is its unique characteristic. But the ability of this technique to extract information 

directly from historical data without the need for manual work has attracted a lot of 

attention concerning intrusion detection. In addition, it can draw patterns over incom-
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plete data and handle a large amount of data. Because of these reasons, variants of ma-

chine learning techniques have been applied to intrusion detection systems. 

For example Bayesian network is a model that provides capability to capture relation-

ships among variables of interest [36]. In general, this technique combined with statis-

tical schemes is used for intrusion detections. Researchers in [50, 52, 53 and 54] pro-

vide different approaches combining Bayesian network model with variety of statistical 

values. But from [30], the problem with these methods is it depends on the assumptions 

about the behavioral model of the system. It means that the detection accuracy depends 

on the accuracy of chosen model. But finding an accurate model is a challenging task 

because of the complexity behavioral model within this system.  

Clustering is another technique that works by grouping the data based on a given simi-

larity or distance measure and characterizes anomalies considering dissimilarities [36]. 

A similarity measure is a key parameter in clustering to detect anomalies. For example, 

the k-nearest neighbor approach in [51] uses Euclidean distance to assign data points to 

a given cluster. Some sophisticated clustering also use fuzzy-k-mean and swarm-k-

mean algorithms to improve the local convergence [55]. From [76] the advantage of 

clustering is its ability to learn from raw data in addition to detect intrusion in raw data 

without necessity of preprocessing and manual work. But for high dimensional data 

points it cannot provide the result with high accuracy. 

Neural networks are human brain inspired approaches that have been employed for 

anomaly intrusion detection. Flexibility and adoptability to environmental changes are 

characteristics of these approaches; however there is not any learnable function [76] for 

making decision. Various approaches using neural networks for intrusion detection 

have been introduced by some research groups [59, 60 and 61]. In [62], the Anomalous 

Network-Traffic Detection with Self Organizing Maps (ANDSOM) was represented, 

which works based on monitoring a two dimensional Self Organizing Map (SOM) cre-

ated for each network service. In training phase neurons are trained using normal net-

work traffic. When feeding real time data to trained neurons, an anomaly is detected by 

comparing the distance of incoming traffic with a present threshold. 

Support Vector Machines (SVMs) are another techniques involved in anomaly detec-

tions [69, 70]. Such techniques use one class learning techniques for SVM and learn a 
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region within the feature space with a maximum margin. Many researchers use variants 

of the basic technique (combined with other methods or different kinds of feature ex-

traction methods) for detecting the anomalies in different fields such as computer and 

telecommunication networks. For example, [63] reports an improvement using SVM to 

the SOM approach used by [66]. In [65] authors have proposed a new robust approach 

of SVM for anomaly detection over noisy data. They have shown in their approach that 

testing time are faster since the number of support vectors is significantly less than 

compared to standard SVMs. 
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3.  METHODOLOGY  

The aim of this thesis is to investigate supervised machine learning approaches to de-

tect known abnormal log behavior in log files as a fast and efficient approach. As men-

tioned in chapter 2, machine learning is the ability of a machine to improve its perfor-

mance automatically through learning. A supervised learning technique needs labeled 

data in order to find a function or model that maps a sample into the class labels. Using 

labeled data during the training phase enables achieving clear feedbacks that help to 

learn quickly. Therefore, high efficiency and fast learning are advantages of supervised 

learning techniques. In addition, it is a powerful approach to detect known failures due 

to have robust patterns. Therefore, it can be a well suited approach and worth investi-

gating for our special case detecting known faults. 

In this approach, anomaly detection is considered to be a binary classification since the 

aim is to identify abnormal cases against normal ones. Thus, labelled data, as either 

normal or abnormal, is used for the learning phase in order to build detection models 

(profiles). Such models are employed for identifying the anomaly behaviors. The pri-

mary step in learning phase is to collect feature vectors as input data fed to training 

algorithm. In this approach, we collect feature vectors using sliding window, n-gram 

(bag-of-words), and word count to learn machine learning classification. From chapter 

2, single layer perceptron and SVM are investigated as promising candidate methods of 

linear classifications for anomaly detection based on the textual characteristics of event 

logs used in this thesis. The most challenging phase of this investigation was big data 

including long lasting fault. 

In this chapter, the methodology for generating the detection model is described. As 

illustrated in Figure 3.1 learning algorithm for building detection model contains fea-

ture extraction phase followed by model learning and testing phases to evaluate the 

accuracy of the detection. In Section 3.1, feature extraction approaches and mining the 

patterns of logs and prerequisites are defined. In Section 3.2, the approaches for detect-

ing short duration faults as well as long lasting faults are described. 



17 

 

 

 

 

Figure 3. 1. Overview of the learning algorithm 

 

3.1 Feature generation 

Feature generation is an important part of any classification method. To achieve high 

quality anomaly detection, it is required to create high quality numerical features, indi-

cating the log information which is understandable by machine learning classification. 

As reviewed in Chapter 2, several approaches for extracting features from log data have 

been well investigated in the literature. In this project we use windowing along with n-

gram (bag-of-words) approach to extract features from event logs considering their 

textual characteristics. The following sub-sections describe the proposed approach in-

vestigated in this thesis. 
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3.1.1 Prerequisites 

Ground truth: In order to analyse event log data and create labelled training samples, 

having ground truth is the first requirement. Mainly, ground truth dataset is human-

expert knowledge based. It is defined as the labels associated with the data points to 

indicate if the data represents a problem or a normal case. Furthermore, ground truth 

can be used to evaluate the method by measuring the degree of match between ground 

truth labels (desired states) and actual ones obtained from classification methods. Fig-

ure 3.2 shows a part of ground truth dataset. Labels 1 indicate the fault logs, while la-

bels 0 are associated with normal ones. In the cases that more than one fault is available 

in the event log data, one ground truth dataset is needed for each fault to allow pro-

cessing each fault separately. 

 

 

Figure 3. 2. A part of ground truth dataset, fault logs labelled as 1 and normal logs 

labelled as 0 

 

Dictionary: As mentioned before and illustrated in Figure 3.3.a the format of logs 

(event logs) is not fixed. But there are some similar characteristics between all log mes-

sages. A log event typically has a timestamp with a fixed format representing the time 

at which the software has written the event. A log event also includes at least a text 

message containing English words, digits, and special characters. In a bag-of-words 

based feature model creating a dictionary, is a crucial prerequisites. By dictionary we 

means a collection of terms (i.e., words or phrases), as a reference for collecting numer-

ical feature vectors. To do this, first message parts of all logs in a log data are tokenized 

using for example white-spaces and punctuation as token separators. In order to reduce 
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the dimension of dictionary, which relates to reducing the feature vector dimensionali-

ty, it is necessary to filter tokens and collect as informative words as possible. Filtering 

is done by removing digit numbers and special characters. Then by assigning an integer 

id for each unique English word the desired dictionary is created since English word 

messages are the most informative parts of logs. Figures 3.3.a and 3.3.b illustrate a log 

message and its corresponding tokens after filtering which are to create dictionary (col-

lection of words) 

 

 

a. A sequence of log messages 

 

    

b. Tokens after filtering and a sample of a dictionary as a collection of words  

 

c. Collected strings and a sample of a dictionary as a collection of strings  

Figure 3. 3.  Sequence of logs and their corresponding tokens 

However, as the number of logs in a dataset increases, the dimension of dictionary and 

consequently dimension of feature vectors increases as well. As a result, the processing 

time significantly increases. To address this problem, using bag-of-strings inspired 

from n-gram methodology in text processing, instead of bag-of-words is proposed. To 

do this, each message line is converted to a message with reduced size by concatenating 

the final desired words (from aforementioned rules) of each line to create a string. As it 

is illustrated in Figure 3.3.c this approach causes the size of dictionary to reduce from 

the numbers of unique English words in a log data to the numbers of unique messages 

in that data, while each term in dictionary refers to a string instead of a word. 
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Labelling: As mentioned before, supervised learning needs labelled training data to 

build a detection model. Therefore it is necessary to assign label to each feature vector 

collected from raw data. To do this, time series dataset is segmented by windowing 

while segments are contained a set of labels (from ground truth dataset) associated to 

sequences of logs in that segment. Each segment is labelled based on the ratio of the 

numbers of normal logs to abnormal logs while threshold can be changed based on the 

series experimental results. For example in Figure 3.4 the rule for labelling is consid-

ered as one-fifth. It means if one-fifth of logs in each window are faults (labelled as 1) 

the feature vector corresponding to that window is labelled as fault. 

 

Figure 3. 4. Assign label to each feature vector  

 

3.1.2 Feature Extraction 

Our approach for collecting feature vectors is based on combining two strategies of 

sliding window and bag-of-words. Sliding window as a standard way to deal with 

streaming data is used to isolate sequential data. In this method, two properties of win-

dow size and sliding value need to be specified. The window size is used to limit a se-

quence of data used for processing to a certain range in time or number of logs. The 

sliding value is used to specify the execution condition of the processing. Whenever the 

process of collecting feature from certain window is performed, the sliding window is 

moved forward by a presumed value to specify next sequence. For instance, consider a 
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window of fixed size, 15 minutes, (in a time based windowing) and sliding value of 7 

minutes (50% overlap) as it is shown in Figure 3.5 This window is placed at the begin-

ning of the log file. All logs that fall in that window based on their time stamp are con-

sidered to be one sequence and create one feature vector. Then the window is moved 

forward 7 minutes and the next 15 minutes logs are made into a sequence. In the sce-

nario that the duration of the faults is known (to have ground truth) the time based win-

dowing is preferred. 

 

Window with size of 15 minutes
to collect feature vector

Sliding window with 50% 
overlap, window is moved
forward 7 minutes to isolate
next 15 minutes

 

Figure 3. 5. Sliding window for streaming data 

 

In bag-of-words based feature models, to collect feature vector associated with each 

segment, certain sequence specified by windowing, we need to tokenize the message 

parts of all logs in this window applying the same rules (tokenizing, filtering and col-

lecting words or strings) used for creating dictionary. Then the number of occurrence of 

each term from dictionary in each segment is counted and collected as features to create 

feature vector (feature vectors and dictionary have equal dimension). This notation is 

called as term frequency in many documents. 

For long documents, using raw counts directly particularly for linear classification is 

not efficient [77], because different numerical features in each feature vector may have 

different values. As mentioned in Chapter 2, in order to avoid those features with larger 

values being dominant, normalization is usually required. For normalization we consid-

er the occurrence of each term versus the total number of occurrences of all terms in a 

feature vector to scale the term frequencies to values between 0 and 1. 
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3.2 Detection phase 

Considering the textual characteristics of event logs, linear classification is used, as it is 

a well-suited method for text processing. Two important factors, the size of datasets 

and the time duration of faults, are investigated in order to generate an appropriate ap-

proach generalizing for detecting known faults. In following sub-sections, first, general 

approach; learning phase and testing phase used for short fault duration is described. 

Then in Section 3.2.1, we deal with feature extraction and classification methods for 

long faults. 

3.2.1 General approach – short faults 

Fault detection for datasets including short faults like any classification algorithm is 

implemented in two steps, learning phase and testing phase. The major task of learning 

phase is to build detection model using training dataset that provides information for 

detecting anomaly behaviors. In testing phase the performance of learning algorithms 

and feature extraction methods is evaluated. The testing phase algorithm employs the 

detection model to classify new dataset that are unknown to the algorithm. Then, de-

tected labels are compared to the actual ones to estimate the performance of detection 

algorithm.  

3.2.2 Long fault duration – two-layer classification 

Prior to this sub-section, an overall technique for fault detection was described. But for 

long lasting faults where a large number of logs can be labeled as faults, the mentioned 

approach is not able to successfully detect such abnormality. In practice, a special case 

can be when a long fault is repeated several times throughout a dataset while many of 

them overlap with each other. Such scenario will result in fault reporting for majority of 

the logs. Two-layer classification with distinct approaches for extracting features in 

each layer is presented as a solution to address this kind of problem. 

Two-layer classification comprises of two layers. The first layer includes two classifi-

ers in parallel. For convenient understanding, we called them based on their character-

istics, middle classification and start classification. Middle classification focuses on all 

abnormal logs while start classification concentrates on starting lines of each fault repe-
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tition. The approach for middle classification is the same as previous ones. Feature vec-

tors are collected using the approach mentioned in Section 3.1 while the best detection 

model from learning phase is required and saved to be used in the second layer.  

As in start classification the focus is on starting lines of each fault occurrence, a differ-

ent approach of extracting features is proposed for this type of classification. As it is 

shown in Figure 3.6 for extracting features and collecting feature vectors, the window-

ing is started from the first line of dataset. The window size and sliding value must be 

the same as what was used for middle classification. However, the windows including 

first line of each fault must be distinct without any overlap. It is needed to assign a spe-

cific window with the same size of others to the range of logs, including starting line of 

fault, in such a way that the large part of the window includes the logs which come 

after starting line of fault. For example by considering window size of 15 minutes, we 

specify the window to start 2 minutes before timestamp of starting line and to terminate 

13 minutes after starting line of each repetition of the fault. Then feature vector associ-

ated to each window is created using previous method (bag-of-words or bag-of-strings). 

For labelling, windows containing starting line of each fault are labeled as abnormal 

and all other windows are labeled as normal. Figure 3.6 shows that discarding some 

lines is inevitable in this approach in order to avoid an overlap between windows in-

cluding start line of each fault and other windows. After collecting feature vectors,  

detection models is built from learning phase and the best one is saved from testing 

phase. As an important point, detection model for both middle and start classifications 

must be created using the same classification method. 
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19.03.2014 16:37:54.491
First line of first occurrence of fault 2 
Distinct window with size 15min
Label of this feature vector is ’1’

Window starts from 2 mins before starting time of  fault

Window ends 13mins after starting time of fault

Window with size of 15 mins to 
collect feature vector,label is ’-1’

Sliding window with 50% 
overlap, label is ’-1’

Discard these lines to avoid the overlap 
of window included start line of fault

 

Figure 3. 6.  The approach of feature extraction for start classification of first layer 

 

The approach of extracting features for second layer is completely different from what 

has been used so far. To collect feature vectors of second layer, two detection models 

produced from first layer are used exploiting the collecting feature vectors approach 

described in 3.1 Section. In this approach, as faults have overlap to each other the start-

ing lines of each fault (which are unique) have critical part/role. Therefore, the last five 

probability estimation values produced from applying detection model of start-

classification provided by first layer are used directly to create each feature vector of 

second layer.  

To implement such method, we design a buffer (first input-first output) with size of five 

in order to save aforementioned values. As illustrated in Figure 3.7, vectors of second 

layer are considered to have nine dimensions that their first five elements are filled by 

the values of aforementioned buffer (Buffer-Q). The procedure is started by windowing 

and creating numerical feature vector for the first window (FV1). Afterwards, two pre-

dicted models from first layer are applied on this feature vector.  
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FV1

Start-predicted-model

Middle-Predicted-model

q1

Buffer-QBuffer-Q

prob-estimated

m1middle-prob-
estimate

m1

m1

m1

0

min

max 

mean

var

q1 0 0 0 0 m1 m1 m1 0FV1-L2

Prob-estimated

-1

-1

 

 Figure 3. 7. Creating first feature vector of second layer 

 

The probability estimated value obtained by applying Start-classification model (named 

as Start-predicted-model in Figure 3.7) is saved in the buffer while another vector 

(middle-prob-estimate in Figure 3.7) is used to save probability estimated value ob-

tained by applying middle-classification model (named as Middle-predicted-model in 

Figure 3.7) on this feature vector (FV1). This vector is an unlimited vector in order to 

have the ability of saving probability estimated values of next windows. The statistical 

values obtained from aforementioned vector such as minimum, maximum, mean, and 

average value are used to create the feature vector of the second layer. The last step to 

generate the feature vector is to replace the first five elements of it by buffer (Buffer-Q) 

values and last four elements of it by statistical values of the second layer. But as it is 

illustrated in Figure 3.7 for the first feature vector buffer has only one value, and hence, 

we need to replace the other elements by zeros. Furthermore, there are three equal sta-

tistical values for the first feature vector of the second layer (FV1-L2). 

For the second feature vector, the aforementioned procedure is performed on the next 

window. It is depicted in Figure 3.8 that probability estimated value obtained by apply-

ing Start-predicted-model on the feature vector of this window is saved in buffer while 

buffer has also kept the previous value. And statistical values are computed using both 
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probability estimated values of applying Middle-predicted-model on feature vector cor-

respond to this window and the previous one.  

 

FV2

Start-predicted-model

Middle-Predicted-model

q2

q1

Buffer-QBuffer-Q

prob-estimated

m1 m2middle-prob-
estimate

min

max

avg

var

min

max 

mean

var

q2 q1 0 0 0 min max avg varFV2-L2

q1 0 0 0 0 m1 m1 m1 0FV1-L2

Prob-estimated

-1

-1

 

Figure 3. 8.  Creating second feature vector of second layer 

 

To assign label to each feature vector, we use the approach described in Sub-Section 

3.1.1 under the title of labelling. It means both generating feature vector of second layer 

and labelling them are based on sliding window throughout the main dataset. As it is 

illustrated in Figure 3.9 the aforementioned procedures continue and next feature vec-

tors are built as long as the fault logs have not been detected and all labels indicate the 

normal cases.  
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FV7 Start-predicted-model

Middle-Predicted-model

q7

q6

q5

q4

q3

Buffer-QBuffer-Q

prob-estimated

m1 m2middle-prob-
estimate

min7

max7
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var7
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mean
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q2 q1 0 0 0 min2 max2 avg2 var2FV2-L2

q1 0 0 0 0 m1 m1 m1 0FV1-L2

m7

q7 q6 q5 q4 q3 min7 max7 avg7 var7FV7-L2

Prob-estimated

-1

-1

-1

 

Figure 3. 9.  Feature vectors of second layer consist of last five values from start-

predicted-model and statistical values from middle-predicted-model of first layer 

 

When the fault is detected by the label correspond to window, buffer will not update 

anymore and only the dimension of middle-prob-estimate increases by collecting the 

probability values of applying middle-Predicted-model to feature vector correspond to 

each window. Accordingly, as it is seen in Figure 3.10, after indicating fault logs, only 

the last four elements of feature vectors are updated while the first five elements are 

fixed. This procedure continues until the end of fault and indicating the normal logs by 

associated label. 
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Middle-Predicted-model
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qn5 qn4 qn3 qn2 qn1 minn6 maxn6 avgn6 varn6FVn6-L2
 

Figure 3. 10. After detection of fault logs, only the last four elements of feature vector 

will be changed 

 

Indicating the normal situation cause both buffer and middle-prob-estimate vector, il-

lustrated in Figure 3.11 to reset, and the procedure repeats again from the first step for 

the rest of data.  

After collecting all feature vectors for second layer the detection model is created by 

applying the same learning algorithm with the exact parameters used for first layer on 

the training data obtained from second layer. And then this approach is evaluated by 

applying aforementioned model on the testing samples. 
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Figure 3. 11. By ending the fault logs and indicating normal logs both buffer and mid-

dle-prob-estimate reset and procedure starts from first step 
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4. RESULTS 

In this chapter, we present the experimental results for our proposed fault detection 

technique over two dataset. We first describe the dataset characteristics and evaluation 

measures used for our experiments, and then present the results and discuss the perfor-

mance of the detection method considering different factors. 

4.1 Data 

We did experiments using two different datasets, TTY and TTY-2, and compare two 

classifier methods considering the effects of different factors. The datasets used in this 

thesis are generated by TIETO using a simulator with a real cellular (3G/4G) network 

structure from Poland
1
. The log data contains more than traffic data. It may also include 

diagnosis data, system status report, error report, system performance report, and so 

one. The data is collected from both mobile core network and other peripheral parts, 

such as base stations. The faults simulated in the data are related to software, hardware, 

and network connection faults as well as configuration problems in the 4G network 

base stations. Software faults might relate to license expiring whereas hardware related 

issues might be network connections lost, HDD failures or access/write problems. 

TTY dataset with 500330 logs is chosen to evaluate two classifier methods, single layer 

Perceptron and SVMs. It contains two days of network traffic data, which includes a 

fault with a duration time of around 16 minutes that repeats 20 times throughout the 

dataset. This fault is related to the base station base bandwidth failure. 

 TTY-2 dataset with 516691 logs contains five days of network traffic data including 

five different faults each one repeats 20 times throughout the dataset. These faults have 

different duration time around 8 milliseconds, 2 minutes, 5 minutes, 16 minutes and the 

most challenging fault has 36 hours duration. Thus, its 20 time repetitions cause to have 

a dominant fault with near 5 days duration. The faults included station base bandwidth 

                                                 
1
 http://beta.btsearch.pl 
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failure, software licensing alarm issue, a faulty configuration file, a broken cable con-

nection, and BCCH missing alarm. TTY-2 is chosen to investigate the effect of fault 

duration factor on classifier method and generate a proper approach for long lasting 

faults. 

For each experiment a time series data together with a configuration file that defines 

the duration time of each fault and its repetition times are available. For example, from 

Figure 4.1, time distance between first pair of lines (difference between two 

timestamps) shows the fault duration for the nineteenth repetition of the fault with id 

equal to 1. Second pair of lines indicates that fault with id 1 has been repeated twenty 

times in total. Hence, the next pair of lines represents the timestamps of the fault with 

id 2. This file is used to provide ground truth dataset required for supervised learning 

methods. 

 

 

Figure 4. 1. A part of Fault List Log illustrating two different faults, and time duration 

of each repetition 

 

4.2 Evaluation measures 

As mentioned in chapter 3, in order to evaluate detection models, we need to reserve a 

portion of data for the test set. In our early experiments we manually split the dataset 

into two parts as training dataset and testing dataset. But for cases that fault logs are not 

equally distributed throughout the dataset or the number of one class is very small in 

compare to other class it is probable that one of the sets for training or testing might 

miss a certain class. Therefore, this method for collecting training and testing samples 
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cannot provide a proper approach to assess the detection model. Instead Cross valida-

tion [47] is a technique used to overcome this shortage and to select the optimal detec-

tion model [2] and estimate the accuracy performance of classifiers. By using this tech-

nique, feature vectors collected from entire dataset are partitioned into complementary 

subsets (or folds). One set is considered as testing set or validation set and used to eval-

uate the created model. While the other subsets called training set, are used to create the 

detection model. In addition, to evaluate the performance of learning algorithms we 

need to choose metric measures that are able to measure the best performance of learn-

ing algorithms. In literature, accuracy and error rate are two common criterion func-

tions to assess classifier performance in order to find the best detection model. Accura-

cy defines the percentage of correct classifications, while error rate is the percentage of 

incorrect classifications. But they may not well suited for evaluating models created 

from imbalanced datasets when the number of abnormal logs is much less than the 

number of normal logs. For example in a dataset that consists of 100 logs in total and 

only one abnormal log, for detection results indicating all logs as normal the accuracy 

will be 99%. While this result represents low quality of model as it cannot detect any 

faults in dataset. Instead, precision and recall are two evaluation functions that focused 

on the number of detected faults [28]. To define these two evaluation metrics first we 

need to introduce the confusion matrix that represents the prediction results. Confusion 

matrix is a table where each cell [i,j] indicates the number of times that j was predicted 

when the correct label was i. Figure 4.2 shows a confusion matrix where: 

 True negative (TN) corresponds to the number of normal logs correctly predict-

ed by the learning method. 

 True Positive (TP) corresponds to the number of abnormal logs correctly pre-

dicted by the learning method.  

 False Negative (FN) corresponds to the number of abnormal logs wrongly pre-

dicted as normal logs by the learning method. 

 False positive (FP) corresponds to the number of normal logs wrongly predicted 

as abnormal logs by the learning method. 
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Figure 4. 2. Confusion Matrix 

 

Thus, the diagonal elements indicate labels that were correctly predicted and the off-

diagonal elements indicate errors. Precision represents the fraction of real abnormal 

logs from all predicted abnormal logs by a classifier method. High precision means that 

learning method rarely predicts normal logs as abnormal logs. Recall measures the frac-

tion of abnormal logs that are correctly predicted by classifier method. High recall 

means that learning method rarely predicts abnormal logs as normal logs. 

 

Recall, r = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4.1) 

Precision, p = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4.2) 

However, consider only one of them is not enough to evaluate a learning method. Be-

cause, for example if a model predicts all logs as abnormal logs the recall value of it 

will be large but its precision value will be low. On the contrary, high precision and 

low recall represent that all predicted logs are correct though a large number of logs are 

still unpredicted. Therefore, we need to trade-off between recall and precision and set 

the standard way that has been proposed to combine these two measures. F-score [28] 

is a metric that combines recall and precision to evaluate a learning model. Hence, a 

model with high F-score implies that both recall and precision are high enough. F-score 

reaches its best value at 1 and worst value at 0. 

 

F-score, F1 =
2𝑟𝑝

𝑟+𝑝
=

2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 

(4.3) 
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4.3 Experimental results and Discussion 

In the following subsections, the results of fault detection performance are represented. 

The results are divided into two sections for TTY dataset and TTY-2 datasets consider-

ing different factors and characteristics of each one. 

4.3.1 TTY dataset 

In this part our primary focus is to obtain the best overall classification performance 

regardless of the number of logs contained in each dataset and faults duration. All re-

sults in this chapter are obtained, using 10-fold cross validation to achieve as much 

accuracy as possible. However the results are not perfect since the samples of each fold 

in cross validation is selected randomly.  

 Performance measurements of different classifiers: As mentioned in chapter 2, re-

garding textual characteristics of log data linear classification is the most proper tech-

nique for detecting the faults. In this thesis two linear classification methods, single 

layer Perceptron and SVMs are to compare. From various implementations of SVMs, 

LIBSVM and LIBLINEAR are two candidate approaches to be explored in this thesis. 

LIBSVM [8] and LIBLINEAR [18] are both open source libraries for SVMs to help 

users to easily apply SVM to their applications. However LIBLINEAR focuses on 

large-scale problems such as text classifications as an easy-to-use tool to deal with their 

large dimensionality sparse characteristics [18]. When training a support vector ma-

chine several parameters can be set. One of them is the type of kernel to use. For data 

with the large number of features a linear kernel is preferred. LIBLINEAR is an im-

plementation of SVMs which trains linearly without the use of kernels. From Figure 

4.3, as we expect the performance of LIBLINEAR is much better than two others for 

all values of windowing. LIBSVM could provide high F-score for small window sizes. 

But it seems that by increasing the size of window that causes to decrease the number 

of training samples LIBSVM produces poor F-scores. And single layer perceptron pro-

vides the worst result for all window sizes among other methods.  
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Figure 4. 3. Performance of different classifiers 

 

bag-of-words vs bag-of-strings: Increasing the size of data causes to increase the 

number of features. As each feature corresponds to a dimension thus the dimension of 

feature space increases that causes to reduce the quality of detection. Our proposed 

approach to reduce the dimensionality problem and improve the detection performance 

is to use bag-of-strings instead of bag-of-words in feature generation process. Figure 

4.4 show that this solution gives significant performance only on Perceptron algorithm. 

Because using bag-of-strings causes to reduce the sparseness problem of feature vec-

tors, in particular for small windows that suffer this problem severely. For two other 

approaches, LIBLINEAR and LIBSVM, the results show that there are not significant 

difference between using bag-of-strings and bag-of-words. These results prove that 

SVM implementations are well suited methods for large sparse data.  

Labelling rule: The other factor that may effect on the quality of results is the rule 

utilized for labelling. As mentioned in Section 3.1.1, we labelled feature vectors based 

on the ratio of the numbers of normal logs to abnormal logs. In our experiments we 

examined several rules to find the best one with high quality. Figure 4.5 shows the re-

sults of two experiments for one-fourth and one-fifth rule on LIBLINEAR approach. 

One-fourth rule means a feature vector is labelled as fault if one-fourth or more of logs 

in a range of window indicate faults, otherwise it is labelled as normal.  
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a. Comparison of  bag-of-strings and bag-of-words on Perceptron algorithm 

 

b. Comparison of  bag-of-strings and bag-of-words on Perceptron algorithm 

 
c. Comparison of bag-of-strings and bag-of-words on LIBSVM  

Figure 4. 4. Results of bag-of-strings vs bag-of-words 
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The concept of one-fifth rule is the same while only the threshold is changed to one-

fifth instead of one-fourth. We expect to improve the quality of results for smaller 

thresholds since it causes to be more sensitive to the number of fault logs in each win-

dow. However from Figure 4.5, behavior of rules is not the same for all examined win-

dow sizes. In total the results of one-fifth rule is more satisfying for majority of win-

dow sizes. Then we prefer to continue our experiments using one-fifth rule for label-

ling. 

 

Figure 4. 5.  Results of two different rules for labelling 

4.3.2 TTY-2 dataset  

TTY-2 is a dataset with five different faults including a long lasting fault. For this da-

taset, we consider distinct binary classification for each fault separately. In this section, 

the results of our proposed solution for long lasting fault are presented. Then by com-

paring the results of LIBLINEAR approach, , since it has the best performance among 

other ones, on the other faults, we attempt to find the optimal window size that can give 

the best performance. 

Two-layer classification for long duration faults: long lasting faults cause to have ab-

normal dominant dataset while normal logs occur rarely. In TTY-2, this phenomenon 

happened since one long fault of around 36 hours (fault-2) is repeated several times 

throughout the dataset. This kind of dataset presents a particular challenge for learning 

algorithm, which causes to reduce the accuracy achieved by simple method used for 

TTY dataset. As mentioned in 3.2.2 to address this problem, two-layer classification is 
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proposed. Figure 4.6 shows the results of two different methods, single-layer and two-

layer classification. It is obvious that the best performance by using two-layer classifier 

achieved for small window sizes that have the worst performance by using one layer 

classification. But, there is no significant difference for large window sizes. In addition, 

a drawback of this approach is that creating feature vectors for two layers and two 

times for first layer is significantly time consuming. In practice may be we need a 

trade-off between elapsed time and high quality. As we can see from Figure 4.6, by 

using one layer classification for windows with sizes of 40 or 45 minutes, we do not 

loss significant quality while we can improve the speed of implementation considera-

bly. 

 

 

Figure 4. 6. Performance of two-layer classification vs one layer classification 

 

Finding optimal window size: To find an optimal window size in order to achieve 

high quality of fault detection, we test the other four faults of TTY-2 using different 

window sizes correspond to each fault durations. With the results in Figure 4.7 to Fig-

ure 4.10, it seems that the windows smaller than fault duration are not performing well, 

although there is a limitation range for windows with large size. As we see, for fault 3, 

fault 4, and fault 5 that have small duration, their performance after a certain range of 

window associated to each fault drop off significantly. However, we cannot mention an 

exact range as optimal; it is clear that well performance is obtained for those windows 

that are proportional to duration of faults. 
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Figure 4. 7. The results of LIBLINEAR on fault 1 with duration between 12 minutes to 

22 minutes for different window sizes 

 

 

Figure 4. 8. The results of LIBLINEAR on fault 3 with duration around 4:30 minutes 

for different window sizes 
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Figure 4. 9. The results of LIBLINEAR on fault 4 with duration around 8 seconds for 

different window sizes 

 

 

Figure 4. 10. The results of LIBLINEAR on fault 5 with duration around 2 minutes for 

different window sizes 
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5. CONCLUSION 

The aim of this thesis was to investigate supervised machine learning approaches to 

detect known faults from unstructured log data simulated and provided by TIETO. To 

find suitable methods, we focused on textual characteristics of the log data. Our pro-

posed approach for creating feature vectors in this thesis was inspired from methods for 

streaming data together with text data. Consequently, we used sliding window together 

with bag-of-words approaches to create feature vectors. Considering textual character-

istics of network-based server-log data such as large dimensions and sparseness, we 

focus on single layer perceptron and SVM, as two candidate methods of linear classifi-

cation methods. 

The preliminary experiments on a small dataset with limited logs indicated satisfying 

performance of single layer perceptron. But increasing the number of logs included in a 

dataset causes to reduce the detection quality of Perceptron. Experimental results show 

that the detection quality of SVM is significantly better than single layer perceptron for 

datasets with large number of logs. In this thesis, we compared the implementations of 

LIBLINEAR and LIBSVM. As we expected, LIBLINEAR not only provided much 

better results than LIBSVM also its training times were shorter than LIBSVM. In order 

to reduce the dimension of feature space and improve the detection quality, we pro-

posed using bag-of-strings instead of bag-of-words. But this solution was effective only 

for single layer perceptron and did not have considerable difference on two other ap-

proaches. This result proves high ability of SVMs to deal with high dimension sparse 

data. 

The other factor that was investigated in this thesis was dataset with long lasting fault. 

Long lasting fault in a dataset causes fault class to be dominant class while normal logs 

occur rarely. Simple LIBLINEAR method used for dataset with limited duration fault 

could not provide high quality results. We proposed two-layer classification with a 

novel approach for creating feature vectors as a solution to improve the fault detection 

performance. In the first layer, we attempt to detect each occurrence of fault (or the first 

line of each fault occurrence) along with total duration of fault throughout the dataset 
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by two separate classifications. The obtained models from first layer are used for creat-

ing feature vectors for second layer. Two-layer classification demonstrates more fault 

detection ability than single-layer classification. Although, creating feature vectors for 

two layers is time consuming task. Comparison the results of two approaches (single-

layer and two-layer classification) show that there are not significant differences in 

performance of two approaches for large window sizes. In practice, we may need a 

trade-off between elapsed time and high performance of detection.  

A limitation of our detection approach is that this approach is unable to detect unknown 

faults that may appear in dataset. Although, from this thesis, we could find well suited 

method for extracting features and learning algorithm and investigate the effect of some 

factors on fault detection, more investigation is still needed to achieve better results. 

There are some cases that the results are against our expectations. For example, we 

could not find an optimal range for window for sliding window as the results of each 

method show different performance associated to each window size. Moreover, creat-

ing feature vectors in particular for data with large number of logs is time consuming. 

Besides, there are some limitations that refer to supervised learning method. For exam-

ple this approach is unable to detect unknown faults that may appear in communication 

networks. In addition, as the approach depends on training data, any change in network 

and system behavior makes us update the training set and model prediction. 
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