

ZAHRA ABBASZADEH

SUPERVISED FAULT DETECTION USING UNSTRUCTURED

SERVER-LOG DATA TO SUPPORT ROOT CAUSE ANALYSIS

Master of Science thesis

Examiner: Prof. Moncef Gabbouj,
Prof. Mikko Valkama
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineer-
ing on 5th November 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250160964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Information Technology

ZAHRA ABBASZADEH: Supervised Fault Detection Using Unstructured Serv-
er-Log Data to Support Root Cause Analysis

Master of Science Thesis, 48 pages

November 2014

Major: Wireless Communication Circuits and Systems

Examiner: Prof. Moncef Gabbouj, Prof. Mikko Valkama

Keywords: fault detection, supervised learning, linear classification, SVM, log
data

Fault detection is one of the most important aspects of telecommunication networks.

Considering the growing scale and complexity of communication networks, mainte-

nance and debugging have become extremely complicated and expensive. In complex

systems, a higher rate of failure, due to the large number of components, has increased

the importance of both fault detection and root cause analysis. Fault detection for com-

munication networks is based on analyzing system logs from servers or different com-

ponents in a network in order to determine if there is any unusual activity. However,

detecting and diagnosing problems in such huge systems are challenging tasks for hu-

man, since the amount of information, which needs to be processed goes far beyond the

level that can be handled manually. Therefore, there is an immense demand for auto-

matic processing of datasets to extract the relevant data needed for detecting anomalies.

In a Big Data world, using machine learning techniques to analyze log data automatical-

ly becomes more and more popular. Machine learning based fault detection does not

require any prior knowledge about the types of problems and does not rely on explicit

programming (such as rule-based). Machine learning has the ability to improve its per-

formance automatically through learning from experience.

In this thesis, we investigate supervised machine learning approaches to detect known

faults from unstructured log data as a fast and efficient approach. As the aim is to identi-

fy abnormal cases against normal ones, anomaly detection is considered to be a binary

classification. For extracting numerical features from event logs as a primary step in any

ii

classification, we used windowing along with bag-of-words approaches considering

their textual characteristics (high dimension and sparseness).

We focus on linear classification methods such as single layer perceptron and Support

Vector Machines as promising candidate methods for supervised fault detection based

on the textual characteristics of network-based server-log data. In order to generate an

appropriate approach generalizing for detecting known faults, two important factors are

investigated, namely the size of datasets and the time duration of faults. By investigat-

ing the experimental results concerning these two aforementioned factors, a two-layer

classification is proposed to overcome the windowing and feature extraction challenges

for long lasting faults. The thesis proposes a novel approach for collecting feature vec-

tors for two layers of a two-layer classification. In the first layer we attempt to detect

the starting line of each fault repetition as well as the fault duration. The obtained mod-

els from the first layer are used to create feature vectors for the second layer. In order to

evaluate the learning algorithms and select the best detection model, cross validation

and F-scores are used in this thesis because traditional metrics such as accuracy and

error rates are not well suited for imbalanced datasets.

The experimental results show that the proposed SVM classifier provides the best per-

formance independent of fault duration, while factors such as labelling rule and reduc-

tion of the feature space have no significant effect on the performance. In addition, the

results show that the two-layer classification system can improve the performance of

fault detection; however, a more suited approach for collecting feature vectors with

smaller time span .needs to be further investigated.

iii

PREFACE

This work has been conducted at the Department of Signal Processing of Tampere Uni-

versity of Technology in collaboration with TIETO within ICT SHOK D2I project..

I would like to express my deepest gratitude to my supervisor Prof. Moncef Gabbouj

who trusted me in the first place giving me the opportunity to work in his research

group while fully helping me throughout this process. This thesis could not be accom-

plished without his support.

I would like to thank Professor Mikko Valkama especially for revising my thesis and

acting as an examiner.

My big appreciation goes to my co-supervisors Honglei Zhang and Dr. Stefan Uhlmann.

Honglei supported and guided me throughout my research while Stefan provided me

with constructive comments while writing the thesis. This thesis owes its existence to

Stefan’s great efforts, patience and feedback.

I would also like to thank my collaborators from Tieto, especially Harri Kukkasniemi,

for providing me with the required dataset and helping me to conduct the research

smoothly.

I do not have enough words to thank Sharareh Naghdi who has acted like my dearest

sister and has made my life abroad memorable.

I would like to specially mention my friend Dr. Payman Aflaki for his help and sugges-

tions on how to write this thesis.

Last but not least, my sincere gratitude goes my husband, Mehrdad, who experienced all

ups and downs of my research. Moreover, I dedicate this thesis to my parents for their

endless support and encouragement.

iv

CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

2.1 Feature extraction ... 5

2.1.1 Feature extraction methods for text documents 5

2.1.2 Feature extraction for online streaming data 6

2.1.3 Feature extraction for syslog data .. 7

2.2 Classification .. 8

2.2.1 Linear classifiers .. 9

2.3 Literature Review ... 12

3. METHODOLOGY .. 16

3.1 Feature generation .. 17

3.1.1 Prerequisites ... 18

3.1.2 Feature Extraction .. 20

3.2 Detection phase .. 22

3.2.1 General approach – short faults ... 22

3.2.2 Long fault duration – two-layer classification 22

4. RESULTS ... 30

4.1 Data .. 30

4.2 Evaluation measures ... 31

4.3 Experimental results and Discussion.. 34

4.3.1 TTY dataset .. 34

4.3.2 TTY-2 dataset .. 37

5. CONCLUSION ... 41

v

LIST OF FIGURES

Figure 2. 1 The sign of the projection onto the weight vector W yields the class

label…………………………………………………………………………………………........10

Figure 2. 2 Finding the best separating hyper-plane……………………………………...11

Figure 2. 3 Margin and support vectors for SVMS…………………………………...…...11

Figure 3. 1. Overview of the learning algorithm……………………………………...……17

Figure 3. 2. A part of ground truth dataset, fault logs labelled as 1 and normal logs

labelled as 0………………………………………………………………………………...……18

Figure 3. 3. Sequence of logs and their corresponding tokens……………………..…....19

Figure 3. 4. Assign label to each feature vector………………………………………....…20

Figure 3. 5. Sliding window to collect feature vector……………………………………..21

Figure 3. 6. Feature extraction approach of first layer……………………..……………24

Figure 3. 7. Creating first feature vector of second layer…………………...……..…....25

Figure 3. 8. Creating second feature vector for second layer……………………………26

Figure 3. 9. Feature vector consists of last five values from start-predicted-model and

statistical values from middle-predicted-model………………………………………….…27

Figure 3. 10. After detection of fault logs, only the last four elements of feature vector

will be changed…………………………………………………………………………....……28

Figure 3. 11. By ending the fault logs and indicating normal logs both buffer and mid-

dle-prob-estimate reset and procedure starts from first step………………..……………29

Figure 4. 1. A part of Fault List Log illustrating two different faults, and time duration

of each repetition………………………………………………………………….….…………31

Figure 4. 2. Confusion Matrix………………………………………………….…….………33

Figure 4. 3. Performance of different classifiers…………………………….……….……35

Figure 4. 4. Comparison bag-of-words vs bag-of-strings………………….………….…36

Figure 4. 5. Results of two different rules for labelling…………………….….......……37

vi

Figure 4. 6. Performance of two layer classification vs one layer classification………38

Figure 4. 7. The results of LIBLINEAR on fault 1 with duration between 12 minutes to

22 minutes for different window sizes…………………………………………………...……39

Figure 4. 8. The results of LIBLINEAR on fault 3 with duration around 4:30 minutes

for different window sizes………………………………………………………………...……39

Figure 4. 9. The results of LIBLINEAR on fault 4 with duration around 8 seconds for

different window sizes………………………………………………………………….….……40

Figure 4. 10. The results of LIBLINEAR on fault 5 with duration around 2 minutes for

different window sizes …………………………………………………….……………...……40

vii

LIST OF SYMBOLS AND ABBREVIATIONS

3G Third generation of mobile telecommunications technology

4G Fourth generation of mobile telecommunications technology

BCCH Broadcast Control CHannel

FN False Negative

FP False Positive

FV1 Feature vector correspond to first window

FV1-L2 First feature vector of second layer

HDD Hard Disk Drive

LTE Long-Term Evolution

SVM Support Vector Machine

LIBSVM An implementation of Support Vector Machine

LIBLINEAR An implementation of linear regression

TC Text Classification

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

TTY Unstructured log data including two days of network traffic data

with one fault type

TTY-2 Unstructured log data including five days of network traffic data

with five fault types

TP True Positive

TN True Negative

Wi-Fi Wireless Fidelity

viii

1

1. INTRODUCTION

Wireless communication is one of the big engineering success stories of recent years –

not only from a scientific point of view, where the progress has been astonishing but

also with respect to market size and impact on society. Cellular telephony is big evi-

dence, as it is the biggest market segment, and has the highest impact on everyday

lives. The popularity of mobile devices grows, as their offered capabilities and services

increase. The growing scale of services they offer, diversity of devices connected to the

network, introducing Heterogeneous Networks combining different Radio Access

Technologies (3G, LTE (Long-Term Evolution), Wi-Fi (Wireless fidelity)) and more

recently, variety of network topologies they can use, cause mobile communication net-

works to become more complex distributed systems [9]. High level of distributions

results in producing huge amounts of data including, for example, measurements indi-

cating radio interface efficiency and log data from different components [50].

As wireless systems are being increasingly used, it is becoming a challenge to debug

and keep network operation stable, fault free, and secure. In complex systems, a higher

rate of failure, due to the large number of components, has increased the importance of

both fault detection and root cause analysis. Such failures can be caused by different

sources such as power break down, hardware failure, software bugs, wrong configura-

tions, human mistakes, and intrusive attacks. Root cause of a failure is the reason for

which it occurs and root cause analysis is based on detecting and fixing the problem

and preventing it from reoccurring.

The logs generated by network systems are generally time-series data streams con-

tained messages that represent the status of a running system and other expansive in-

formation to support fault diagnosis. Therefore, syslog analysis plays an essential role

for detecting failures in large systems [1]. However analyzing system logs manually is

not realistic and practical since in a complex system various parts produce huge

amounts of logs every day, which not all of them are interesting for error detection.

Furthermore, software and hardware are developed and updated frequently leading to a

considerable change of log files. As there is no standard structure for all log files, it is

2

infeasible to utilize a unique single log analyzer for a developing large system. Moreo-

ver, training many people to be as familiar with all system details is costly and time

consuming [62]. To cope with these issues, machine learning techniques are introduced

and exploited to automate the process of log analysis. Machine learning techniques can

automatically process large scale data and improve their performance through learning

patterns on a set of training data and then apply to new unknown data. In the field of

intrusion detection, the advantages of machine learning techniques are their ability to

detect unexpected problems and analyze all logs much faster than humans. Machine

learning techniques do not rely on explicit programming. In addition, the developer of a

machine learning system does not need to have any expert knowledge in log analysis;

however, it could be helpful to find high quality features.

In this thesis, we investigate supervised machine learning approaches to detect known

faults from unstructured log data simulated and provided by TIETO since these learn-

ing methods are fast and powerful in detecting known network faults and problems.

Generally, supervised machine learning techniques make use of pre-existing knowledge

and are first trained to generate models by using characteristics of labeled training data.

Then the models are applied to identify faults and/or intrusions in unseen test data. But

the preliminary and most important step in machine learning based fault detection sys-

tems is to extract numerical informative features from dataset since the performance of

classification tasks is affected by representation of features.

To select appropriate feature extraction and classification methods, we focus on stream-

ing and textual characteristics of log data as available dataset in communication net-

works. The used approach for feature extraction and collecting feature vectors in this

thesis is sliding window (considering streaming characteristics of data) along with bag-

of-words (considering textual characteristics of data). Regarding the textual characteris-

tics of log data, linear classification techniques are proposed for learning algorithm.

From various linear classification techniques, we choose to investigate two methods of

single layer perceptron and Support Vector Machines (SVMs) with more focus on

SVMs. Since SVMs are one of the best learning algorithms for binary classification

that is relevant in this thesis to detect abnormal logs against normal ones [50, 83 and 1].

There are different implementations of SVMs. In this thesis, we compare the results of

LIBLINEAR versus LIBSVM.

3

Our experiments are established in two phases based on usage of two different datasets.

We explore the effects of using bag-of-strings instead of bag-of-words for feature ex-

traction in order to reduce the dimension of feature space and different rules for label-

ling the feature vectors. The most challenging task in this thesis is to deal with long

lasting faults. From classification point of view long lasting fault means that one class

dominants the entire dataset while there is rare occurrences of another class. The prob-

lem with these kinds of dataset is low quality of their performance using standard de-

tection approaches. To address this problem, this thesis proposes a two-layer classifica-

tion with novel approaches for collecting feature vectors of each layer. The results

show high performance of two-layer classification in compare to one layer classifica-

tion for long fault durations. However, creating feature vectors for two layers are more

time consuming. The rest of this thesis is organized as follows.

Chapter 2 provides background information and highlights the research relevant to this

thesis. In this chapter, first the common approaches to extract features from text data

and streaming data and previous work on feature extraction of log data are reviewed in

general. Then the used classification methods in this thesis are introduced. In addition,

two major detection approaches and various methods of intrusion detection used by

researchers are given in this chapter.

Chapter 3 presents an overview of our approach for feature extraction, creating feature

vectors and learning algorithm.

Chapter 4 introduces evaluation metrics and represents the experiments and results. In

this chapter various factors that may affect the results are compared and the results of

the chosen classification methods are illustrated.

Chapter 5 concludes and discusses limitations of supervised classification over unstruc-

tured network log-data.

4

2. BACKGROUND

Mobile networks have become interesting and popular networks in recent years due to

the rapid increasing of wireless devices such as mobile laptop computers, PDAs and

wireless telephones and growing scale of services they offer. As mobile networks be-

come more popular and widely used, their operation, maintenance, security and in gen-

eral, protecting them against anomalous network behavior to improve services and

support this popularity, has become one of the major concerns. The anomalies can be

defined as a data pattern, which is different from normal data and requires atten-

tion [74]. Consequently, detecting anomalous behavior is an indispensable task in net-

work operation. Anomaly detection for communication networks is based on analyzing

system logs from servers or different components in a network and determines whether

there is any unusual activity. However, detecting and diagnosing problems in such huge

systems is a challenging task for both developers and operators since the amount of

information needed to process them goes far beyond the level that can be handled man-

ually [83]. Therefore, there is an immense demand for automatic processing of datasets

to extract the relevant data needed for detecting anomalies.

Generally, datasets in communication networks are represented in log format. The log

format varies by types of components that generate it. The only parts of each log to

correlate various types of unstructured log data are timestamps. Therefore, logs estab-

lish unstructured time series files, and event logs are non-numerical logs in which the

messages contain vocabulary of terms (or phrases). In this thesis, the datasets to ana-

lyze are event logs and by terms of system log or syslog I mean event logs. Thus, to

analyze the log files and collect feature vectors to apply machine learning techniques

and detect the anomalies, we consider approaches used for both textual data and

streaming data.

In this chapter, we first review feature extraction methods for text data and online

streaming data. Then we look at text classification focusing on linear classification, as a

5

main approach applied to event logs. The last part of this chapter reviews previous

anomaly detection methods for log data.

2.1 Feature extraction

Feature extraction is a core and preliminary step of any classification using machine

learning techniques. Considering aforementioned characteristics of event logs, we need

to combine the feature extraction methods of streaming data with textual feature extrac-

tion methods. In following a brief overview of feature extraction methods for both tex-

tual data and streaming data is represented., and then some researches on extracting

features and mining the patterns of logs which could be used in machine learning tech-

niques are reviewed.

2.1.1 Feature extraction methods for text documents

In text analysis such as natural language document classification, the main idea for fea-

ture extraction is to extract words from the raw text data and convert them into numeri-

cal features called term-based method, which gives a machine learning model a simpler

and more focused view of the text. The most common way to address this issue is bag-

of-words representation, which extracts numerical features from text content [1, 65]. In

this technique, text data is considered to be a collection of words, and a dictionary is

built by collecting all terms that occur at least once in a collection of documents. bag-

of-words is a vector whose components represent the number of occurrence of each

word in a document called term frequency (TF) while disregarding the position infor-

mation of the words in the document. Normalization is applied to scale the term fre-

quencies to values between 0 and 1 in order to measure the importance of a term in a

document. In this scheme each individual components of term frequency vector or term

weights vector is regarded as a feature [65].

Besides words, using phrases rather than words referred as n-grams may also be

used [58] since a collection of words (unigrams) ignore any word order dependence and

cannot consider phrases and multi-word expressions. Thus, in some cases, a collection

of bigrams (n=2) or n-grams instead of unigrams is preferred, where occurrence of

pairs or more consecutive words are counted [65].

6

TF-IDF (Term Frequency-Inverse Document Frequency) is also a commonly used fea-

ture in natural language processing (NLP) [40]. By using this method, the weight of

terms that occur frequently in a document is low and the weight of rarely occurrence

increases in order to improve the accuracy of classification [62, 56].

Feature selection is also an important issue in different classification methods, which is

defined as selecting a subset of features from original features in order to reduce the

dimension of text features and remove non-informative words from text data to im-

prove learning performance [79].

The most common and effective feature selection method in text data is stop-word re-

moval [8, 18]. In [84] a wide variety of feature selection methods in text categorization

are compared and their experimental results discussed.

2.1.2 Feature extraction for online streaming data

A data stream is a massive real time sequence of data, which is continuous, ordered (by

timestamp or arrival time), and fast changing. An issue concerning online streaming

data processing is that to store an entire data stream or to scan through it several times

is impossible due to its great volume. Sliding window approaches are a simple, widely

used and standard way for feature extraction when dealing with streaming data. Moreo-

ver, since data streams have a natural temporal ordering, new data are often more accu-

rate and more relevant than older ones [61].

For streaming (time-series) data processing, two types of sliding windows have been

presented in different researches [61, 27]. The main approach for both is to isolate the

range of continuous data to a sliding window, either with a fixed size of window con-

taining the most recent T items, called a count-base or a sequence-based sliding win-

dow, or windows contain items from last t time units, called time-base or timestamp-

based sliding window. Their performance is based on making a window classifier that

assign a label from predefined class labels or ground truth to each feature vector ex-

tracted from input window of width w. Using this method, each sequence of data is

segmented in temporal windows of fixed size of T items or time slices of t seconds in

length defined as Li = < li,…,li+t-1> that starts at time i. Next temporal window is de-

fined by window shift of r as Li+r = < li+r,…,li+r+t-1 >. Then, a feature vector is built up

7

by collecting features from each window and labeled them with a predefined categories

based on defined decision rule. The reason for popularity of this method is its simplici-

ty to apply to any classical learning algorithm.

2.1.3 Feature extraction for syslog data

Feature extraction for system logs is problem dependent and there is no generally ac-

cepted standard in this area. For those kinds of logs contained numerical data, features

are already provided that allows focusing on learning algorithm. But for time-series,

meaningful non-numerical logs called event logs (indicating the state of systems), the

features must be extracted since machine learning algorithm cannot process them di-

rectly. Even though many different methods have been represented in various study

researches [83], this issue is still under investigation.

Considering the time-series characteristic of log files, sliding window methods have

been widely used in many machine learning based anomaly detection techniques. [83,

76, 74, 4, 9]. However, they used different methodology to extract features. For exam-

ple in [83], authors concentrate on two kinds of features, the state ratio vector using

time-based window to analyze the behavior of the system over a certain period of time,

and message count vector to collect problems concerning individual activities. Addi-

tionally, they applied TF-IDF method to its message count vector in order to improve

the accuracy of detecting errors of logs. Different researchers have used different meth-

ods based on their applications. For example [74] represent the frequencies of 2-grams

as features for network logs. Authors in [9] compare two one-class modelling tech-

niques; one-class Support Vector Machines and a Hellinger distance-based one-class

modeling in which the technique for extracting features is bag-of-words. Main concept

on windowing combined with one of the feature extraction methods researches repre-

sented tools to extract features from log files [83, 4]. They introduce either prepro-

cessing technique [83] or a tool to extract relative features more exactly [4] to improve

the detection results. In [4] the semi unstructured time series database, Splunk, is repre-

sented as a tool for automatic event boundary detection that breaks the text stream into

separate events exploiting the timestamps. It is used to index, search, and analyze mas-

sive datasets. The study [83] used programming to extract structured information from

unstructured data logs by parsing them and specifying their important properties. Au-

8

thors represent two kinds of properties, identifiers variables to identify the program

object which can take a large number of distinct values, and state variables that are la-

bels to show a set of possible states an object could have in program and can take a

small number of distinct values.

2.2 Classification

To detect network operational problems, we need to analyze the features extracted from

log files and attempt to find well suited classification techniques in order to achieve

high classification or detection accuracy. As log files resemble text document charac-

teristics, we first study commonly used text classification methods, considering specifi-

cations of text documents and their feature vectors.

Classification in general is a machine learning technique to predict labels for data in-

stances, and text classification (TC) is learning task, which assigns pre-defined catego-

ry labels automatically to text data. Traditionally, learning methods are divided into

two types: supervised learning and unsupervised learning. Supervised learning methods

exploit labeled data, pairs of input objects and their corresponding output, to learn a

classifier, which can be used to predict the output labels of new unknown data. While

unsupervised learning methods do not require labeled training samples to learn a classi-

fier, hence they can be used to model the input data based on their statistical properties.

Data can be in variant of single-label (binary classification), multi-label classification

or multi-class classification. Binary classification involves two classes composed of

relevant (positive) or not relevant (negative) items with respect to specific application

where exactly one class must be assigned to each document. Multi-class problems refer

to classification tasks with more than two classes while in multi-label problems a sam-

ple may be relevant to more than one class. Most of the research in text processing has

been focused on binary classifications since it can be extended to multi-class as well as

multi-label classifications. The strategy to deal with these problems is to break the

problem into a set of binary classification problems, one for each class. Then apply all

the binary classifiers to new data and make decision based on all prediction results [1,

15].

9

As text data contain a large number of words, the numerical feature vectors gained

from text data are high dimensional and sparse (most feature valued are zero) vectors.

Therefore, text classification needs special techniques to address the problem of high

dimensional sparse data [1]. A successfully used method proposed by researchers’ [1,

15, 1] to solve these problems is using linear classification algorithms.

In the following section, the main concept of linearity is defined. Then two well-known

linear classifications, perceptron and SVM that are used in this thesis, are theoretically

discussed.

2.2.1 Linear classifiers

The aim of a linear classifier is to divide two classes by a linear separator based on a

linear combination of features. A formula to express the idea of linear classification is

y = W · X + b (2.1)

in 2D the discriminant is a line, in 3D is a plane, and in nD it is a hyper-plane) where

X = (x1,…,xn) is the feature vector (e.g., normalized word frequency vector), W=

(w1,…,wn), is a vector of linear coefficients with the same dimension of the feature

space, which called weight vector, b is a constant value that does not depend on any

input value called bias value, and y is output, indicating class label. For a linear classi-

fier, the training data is used to learn W and for classifying new data only W is needed.

The core idea of the single layer perceptron algorithm is to define the class label of any

real-valued numerical input feature Xi, using the sign of the predicted function yi from

the discriminant function yi = W · Xi + b. Let us consider binary classification where

class labels are either y=1 or y=0. Figure 2.1 shows a simple example in a 2-

dimensional feature space. It illustrates two different classes and the separating plane

corresponding to W·X + b = 0.

10

Figure 2. 1. The sign of the projection onto the weight vector W yields the class label

It is clear that the sign of the function W ·X + b determines the class label. Thus, the

problem reduces to finding weights W with the use of training examples. The algorithm

starts with initializing the weight vector randomly to equal values for all elements, and

then updates these initial parameters when applying the current function on the training

set makes mistake [68, 59, 11, 44, 69]. Learning rate α, where 0 < α ≤ 1 can also be

used to adjust the magnitude of the update, for example a too high learning rate makes

the perceptron periodically oscillate around the solution.

The perceptron approximates a linear function, therefore if the training set is linearly

separable; the perceptron is guaranteed to converge. In case the data is not linear sepa-

rable then perceptron will not be able to find a good model to separate the data [44].

While the perceptron algorithm finds just any linear separation, Support Vector Ma-

chines (SVMs) [10, 81] are a kind of classifiers, which search for the best separator to

have maximum margin between two groups of data according to some criterion. For

example, consider two-class, separated training datasets of ‘x’ and ‘o’ that is illustrated

in Figure 2.2 Comparing three different separating hyper-planes denoted by A, B, and

C among many others, it is clear that the hyper-plane A provides better separation than

the other two which are close to data points of one or both classes, and the normal dis-

tance of any of the data points from it, is the largest. Therefore, the hyper-plane A rep-

resents the maximum margin to closest points of ‘x’ and ‘o’.

11

Figure 2. 2. Finding the best separating hyper-plane

The hyper-plane in SVM is constructed by using a subset of training data that are on

the margin. These training data are referred to support vectors [84]. Figure 2.3 shows

the margin and support vectors for a sample problem. [28] proposed that ”the ability of

SVMs to learn can be independent of the dimensionality of the feature space”. This

property causes SVMs to be able to apply for datasets with high dimensionality, if they

are separable with a wide margin. In addition, SVMs can also be used for nonlinear

classifiers using kernel functions [28].

Figure 2. 3 Margin and support vectors for SVMS

12

For nonlinear separable samples, these techniques have the ability of mapping the orig-

inal finite dimensional space into a higher dimensional space using kernels in order to

have linearly separable samples. However, [19] mentioned that kernel functions are not

so efficient for text classifications since the main assumption for kernels to be effective

is that single words are not informative as high order word correlations. But, in some

cases linear combination of word occurrences may provide this correlation. Therefore

they can be effective for some special problems.

2.3 Literature Review

In general, there are various techniques for detecting network intrusions, signature (or

misuse) detection, and anomaly detection [29, 30, 31, 32, 35 and36]. From [36], both

signature and anomaly-based detections are similar from conceptual operation point of

view yet their main difference is in the nature of attack and anomaly terms. The term of

attack refers to “a sequence of operations that puts the security of a system at

risk” [36], while an anomaly is defined as “an event that is dubious from security point

of view” [36].

In signature detection, the behaviour of a known intrusion or weak spots of a system

are modelled to use for detecting known intrusions [29, 30, 31, 32,33, 34, 35 and36].

High accuracy of detecting known attacks with low false positive rate is the main ad-

vantage of this approach. But this approach is not able to detect unknown intrusions. In

anomaly detection, normal behaviour of network is modelled and then it compares ac-

tivities against the normal behaviour [29, 30, 31, 32, 34, 35 and36]. The advantage of

this approach is its ability to detect new intrusions. However, it cannot detect the intru-

sions that are not significantly different from normal activities, leading in high false

positive rate [29, 30, 31, 32,33, 34, 35, and36].

Some research groups focused on signature (misuse) detection approaches using differ-

ent techniques. For example, [40] introduced a prototype Distributed Intrusion Detec-

tion System (DIDS) that worked based on expert systems generating a set of rules that

describe known attacks. Then the information from different components is analysed at

a central location. [34] represented an example for state transition analysis approach. In

this approach the process of intrusions are demonstrated as a series of state changes by

using a graphical notation. Researches in [39] focused on developing a domain-specific

13

language called behavioural monitoring specification language (BMLS) to determine

the relevant properties, from either normal behaviour of systems, or misuse behaviour

associated with known attacks. They provide the STAT Tool Suite, which includes a

language called STATL to describe the attack scenarios. But the problem of signature

(misuse) detection is that it needs frequent rule base updates and signature updates.

Nevertheless, this approach is not able to tackle the rapidly increased number of new

attacks.

On the other hand, anomaly detection methods that model the normal network behav-

iour are relatively easy to perform, and effective in finding both known and unknown

attacks. A vast number of researches have been performed on this topic using different

methodologies [41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54 and55]. These methods can be

categorized into three different groups: statistical-based, specification-based and ma-

chine learning-based, which are briefly introduced next.

Statistical-based methods build operational profiles that describe normal behaviour of

a system over a period of time. In general, normal profiles include probability distribu-

tions of different variables that represent the state of the system. Then a statistical dis-

tribution profile of new data is compared to the normal profile to distinguish significant

differences and make decision based on this discriminant [41, 42 and 43]. The weak-

nesses of this method are that it ignores the temporal and multiple-variable correlation

[67, 68].

Specification-based approaches are described in [44, 45 and 46]. In this approach,

instead of modelling the normal activity, it builds a model based on specification of a

secure operation. Accordingly, if an operation does not resemble this model then it is

marked as an intrusion. This approach does not have the drawbacks of statistical-based

methods; however it can be infeasible if the size of datasets is too big.

Machine learning can be defined as a programme or system that can learn from data

and improve the performance over time. Thus, the strategy of a machine learning based

method can change with new data. Necessity for labelled data to train a learning algo-

rithm is its unique characteristic. But the ability of this technique to extract information

directly from historical data without the need for manual work has attracted a lot of

attention concerning intrusion detection. In addition, it can draw patterns over incom-

14

plete data and handle a large amount of data. Because of these reasons, variants of ma-

chine learning techniques have been applied to intrusion detection systems.

For example Bayesian network is a model that provides capability to capture relation-

ships among variables of interest [36]. In general, this technique combined with statis-

tical schemes is used for intrusion detections. Researchers in [50, 52, 53 and 54] pro-

vide different approaches combining Bayesian network model with variety of statistical

values. But from [30], the problem with these methods is it depends on the assumptions

about the behavioral model of the system. It means that the detection accuracy depends

on the accuracy of chosen model. But finding an accurate model is a challenging task

because of the complexity behavioral model within this system.

Clustering is another technique that works by grouping the data based on a given simi-

larity or distance measure and characterizes anomalies considering dissimilarities [36].

A similarity measure is a key parameter in clustering to detect anomalies. For example,

the k-nearest neighbor approach in [51] uses Euclidean distance to assign data points to

a given cluster. Some sophisticated clustering also use fuzzy-k-mean and swarm-k-

mean algorithms to improve the local convergence [55]. From [76] the advantage of

clustering is its ability to learn from raw data in addition to detect intrusion in raw data

without necessity of preprocessing and manual work. But for high dimensional data

points it cannot provide the result with high accuracy.

Neural networks are human brain inspired approaches that have been employed for

anomaly intrusion detection. Flexibility and adoptability to environmental changes are

characteristics of these approaches; however there is not any learnable function [76] for

making decision. Various approaches using neural networks for intrusion detection

have been introduced by some research groups [59, 60 and 61]. In [62], the Anomalous

Network-Traffic Detection with Self Organizing Maps (ANDSOM) was represented,

which works based on monitoring a two dimensional Self Organizing Map (SOM) cre-

ated for each network service. In training phase neurons are trained using normal net-

work traffic. When feeding real time data to trained neurons, an anomaly is detected by

comparing the distance of incoming traffic with a present threshold.

Support Vector Machines (SVMs) are another techniques involved in anomaly detec-

tions [69, 70]. Such techniques use one class learning techniques for SVM and learn a

15

region within the feature space with a maximum margin. Many researchers use variants

of the basic technique (combined with other methods or different kinds of feature ex-

traction methods) for detecting the anomalies in different fields such as computer and

telecommunication networks. For example, [63] reports an improvement using SVM to

the SOM approach used by [66]. In [65] authors have proposed a new robust approach

of SVM for anomaly detection over noisy data. They have shown in their approach that

testing time are faster since the number of support vectors is significantly less than

compared to standard SVMs.

16

3. METHODOLOGY

The aim of this thesis is to investigate supervised machine learning approaches to de-

tect known abnormal log behavior in log files as a fast and efficient approach. As men-

tioned in chapter 2, machine learning is the ability of a machine to improve its perfor-

mance automatically through learning. A supervised learning technique needs labeled

data in order to find a function or model that maps a sample into the class labels. Using

labeled data during the training phase enables achieving clear feedbacks that help to

learn quickly. Therefore, high efficiency and fast learning are advantages of supervised

learning techniques. In addition, it is a powerful approach to detect known failures due

to have robust patterns. Therefore, it can be a well suited approach and worth investi-

gating for our special case detecting known faults.

In this approach, anomaly detection is considered to be a binary classification since the

aim is to identify abnormal cases against normal ones. Thus, labelled data, as either

normal or abnormal, is used for the learning phase in order to build detection models

(profiles). Such models are employed for identifying the anomaly behaviors. The pri-

mary step in learning phase is to collect feature vectors as input data fed to training

algorithm. In this approach, we collect feature vectors using sliding window, n-gram

(bag-of-words), and word count to learn machine learning classification. From chapter

2, single layer perceptron and SVM are investigated as promising candidate methods of

linear classifications for anomaly detection based on the textual characteristics of event

logs used in this thesis. The most challenging phase of this investigation was big data

including long lasting fault.

In this chapter, the methodology for generating the detection model is described. As

illustrated in Figure 3.1 learning algorithm for building detection model contains fea-

ture extraction phase followed by model learning and testing phases to evaluate the

accuracy of the detection. In Section 3.1, feature extraction approaches and mining the

patterns of logs and prerequisites are defined. In Section 3.2, the approaches for detect-

ing short duration faults as well as long lasting faults are described.

17

Figure 3. 1. Overview of the learning algorithm

3.1 Feature generation

Feature generation is an important part of any classification method. To achieve high

quality anomaly detection, it is required to create high quality numerical features, indi-

cating the log information which is understandable by machine learning classification.

As reviewed in Chapter 2, several approaches for extracting features from log data have

been well investigated in the literature. In this project we use windowing along with n-

gram (bag-of-words) approach to extract features from event logs considering their

textual characteristics. The following sub-sections describe the proposed approach in-

vestigated in this thesis.

18

3.1.1 Prerequisites

Ground truth: In order to analyse event log data and create labelled training samples,

having ground truth is the first requirement. Mainly, ground truth dataset is human-

expert knowledge based. It is defined as the labels associated with the data points to

indicate if the data represents a problem or a normal case. Furthermore, ground truth

can be used to evaluate the method by measuring the degree of match between ground

truth labels (desired states) and actual ones obtained from classification methods. Fig-

ure 3.2 shows a part of ground truth dataset. Labels 1 indicate the fault logs, while la-

bels 0 are associated with normal ones. In the cases that more than one fault is available

in the event log data, one ground truth dataset is needed for each fault to allow pro-

cessing each fault separately.

Figure 3. 2. A part of ground truth dataset, fault logs labelled as 1 and normal logs

labelled as 0

Dictionary: As mentioned before and illustrated in Figure 3.3.a the format of logs

(event logs) is not fixed. But there are some similar characteristics between all log mes-

sages. A log event typically has a timestamp with a fixed format representing the time

at which the software has written the event. A log event also includes at least a text

message containing English words, digits, and special characters. In a bag-of-words

based feature model creating a dictionary, is a crucial prerequisites. By dictionary we

means a collection of terms (i.e., words or phrases), as a reference for collecting numer-

ical feature vectors. To do this, first message parts of all logs in a log data are tokenized

using for example white-spaces and punctuation as token separators. In order to reduce

19

the dimension of dictionary, which relates to reducing the feature vector dimensionali-

ty, it is necessary to filter tokens and collect as informative words as possible. Filtering

is done by removing digit numbers and special characters. Then by assigning an integer

id for each unique English word the desired dictionary is created since English word

messages are the most informative parts of logs. Figures 3.3.a and 3.3.b illustrate a log

message and its corresponding tokens after filtering which are to create dictionary (col-

lection of words)

a. A sequence of log messages

b. Tokens after filtering and a sample of a dictionary as a collection of words

c. Collected strings and a sample of a dictionary as a collection of strings

Figure 3. 3. Sequence of logs and their corresponding tokens

However, as the number of logs in a dataset increases, the dimension of dictionary and

consequently dimension of feature vectors increases as well. As a result, the processing

time significantly increases. To address this problem, using bag-of-strings inspired

from n-gram methodology in text processing, instead of bag-of-words is proposed. To

do this, each message line is converted to a message with reduced size by concatenating

the final desired words (from aforementioned rules) of each line to create a string. As it

is illustrated in Figure 3.3.c this approach causes the size of dictionary to reduce from

the numbers of unique English words in a log data to the numbers of unique messages

in that data, while each term in dictionary refers to a string instead of a word.

20

Labelling: As mentioned before, supervised learning needs labelled training data to

build a detection model. Therefore it is necessary to assign label to each feature vector

collected from raw data. To do this, time series dataset is segmented by windowing

while segments are contained a set of labels (from ground truth dataset) associated to

sequences of logs in that segment. Each segment is labelled based on the ratio of the

numbers of normal logs to abnormal logs while threshold can be changed based on the

series experimental results. For example in Figure 3.4 the rule for labelling is consid-

ered as one-fifth. It means if one-fifth of logs in each window are faults (labelled as 1)

the feature vector corresponding to that window is labelled as fault.

Figure 3. 4. Assign label to each feature vector

3.1.2 Feature Extraction

Our approach for collecting feature vectors is based on combining two strategies of

sliding window and bag-of-words. Sliding window as a standard way to deal with

streaming data is used to isolate sequential data. In this method, two properties of win-

dow size and sliding value need to be specified. The window size is used to limit a se-

quence of data used for processing to a certain range in time or number of logs. The

sliding value is used to specify the execution condition of the processing. Whenever the

process of collecting feature from certain window is performed, the sliding window is

moved forward by a presumed value to specify next sequence. For instance, consider a

21

window of fixed size, 15 minutes, (in a time based windowing) and sliding value of 7

minutes (50% overlap) as it is shown in Figure 3.5 This window is placed at the begin-

ning of the log file. All logs that fall in that window based on their time stamp are con-

sidered to be one sequence and create one feature vector. Then the window is moved

forward 7 minutes and the next 15 minutes logs are made into a sequence. In the sce-

nario that the duration of the faults is known (to have ground truth) the time based win-

dowing is preferred.

Window with size of 15 minutes
to collect feature vector

Sliding window with 50%
overlap, window is moved
forward 7 minutes to isolate
next 15 minutes

Figure 3. 5. Sliding window for streaming data

In bag-of-words based feature models, to collect feature vector associated with each

segment, certain sequence specified by windowing, we need to tokenize the message

parts of all logs in this window applying the same rules (tokenizing, filtering and col-

lecting words or strings) used for creating dictionary. Then the number of occurrence of

each term from dictionary in each segment is counted and collected as features to create

feature vector (feature vectors and dictionary have equal dimension). This notation is

called as term frequency in many documents.

For long documents, using raw counts directly particularly for linear classification is

not efficient [77], because different numerical features in each feature vector may have

different values. As mentioned in Chapter 2, in order to avoid those features with larger

values being dominant, normalization is usually required. For normalization we consid-

er the occurrence of each term versus the total number of occurrences of all terms in a

feature vector to scale the term frequencies to values between 0 and 1.

22

3.2 Detection phase

Considering the textual characteristics of event logs, linear classification is used, as it is

a well-suited method for text processing. Two important factors, the size of datasets

and the time duration of faults, are investigated in order to generate an appropriate ap-

proach generalizing for detecting known faults. In following sub-sections, first, general

approach; learning phase and testing phase used for short fault duration is described.

Then in Section 3.2.1, we deal with feature extraction and classification methods for

long faults.

3.2.1 General approach – short faults

Fault detection for datasets including short faults like any classification algorithm is

implemented in two steps, learning phase and testing phase. The major task of learning

phase is to build detection model using training dataset that provides information for

detecting anomaly behaviors. In testing phase the performance of learning algorithms

and feature extraction methods is evaluated. The testing phase algorithm employs the

detection model to classify new dataset that are unknown to the algorithm. Then, de-

tected labels are compared to the actual ones to estimate the performance of detection

algorithm.

3.2.2 Long fault duration – two-layer classification

Prior to this sub-section, an overall technique for fault detection was described. But for

long lasting faults where a large number of logs can be labeled as faults, the mentioned

approach is not able to successfully detect such abnormality. In practice, a special case

can be when a long fault is repeated several times throughout a dataset while many of

them overlap with each other. Such scenario will result in fault reporting for majority of

the logs. Two-layer classification with distinct approaches for extracting features in

each layer is presented as a solution to address this kind of problem.

Two-layer classification comprises of two layers. The first layer includes two classifi-

ers in parallel. For convenient understanding, we called them based on their character-

istics, middle classification and start classification. Middle classification focuses on all

abnormal logs while start classification concentrates on starting lines of each fault repe-

23

tition. The approach for middle classification is the same as previous ones. Feature vec-

tors are collected using the approach mentioned in Section 3.1 while the best detection

model from learning phase is required and saved to be used in the second layer.

As in start classification the focus is on starting lines of each fault occurrence, a differ-

ent approach of extracting features is proposed for this type of classification. As it is

shown in Figure 3.6 for extracting features and collecting feature vectors, the window-

ing is started from the first line of dataset. The window size and sliding value must be

the same as what was used for middle classification. However, the windows including

first line of each fault must be distinct without any overlap. It is needed to assign a spe-

cific window with the same size of others to the range of logs, including starting line of

fault, in such a way that the large part of the window includes the logs which come

after starting line of fault. For example by considering window size of 15 minutes, we

specify the window to start 2 minutes before timestamp of starting line and to terminate

13 minutes after starting line of each repetition of the fault. Then feature vector associ-

ated to each window is created using previous method (bag-of-words or bag-of-strings).

For labelling, windows containing starting line of each fault are labeled as abnormal

and all other windows are labeled as normal. Figure 3.6 shows that discarding some

lines is inevitable in this approach in order to avoid an overlap between windows in-

cluding start line of each fault and other windows. After collecting feature vectors,

detection models is built from learning phase and the best one is saved from testing

phase. As an important point, detection model for both middle and start classifications

must be created using the same classification method.

24

19.03.2014 16:37:54.491
First line of first occurrence of fault 2
Distinct window with size 15min
Label of this feature vector is ’1’

Window starts from 2 mins before starting time of fault

Window ends 13mins after starting time of fault

Window with size of 15 mins to
collect feature vector,label is ’-1’

Sliding window with 50%
overlap, label is ’-1’

Discard these lines to avoid the overlap
of window included start line of fault

Figure 3. 6. The approach of feature extraction for start classification of first layer

The approach of extracting features for second layer is completely different from what

has been used so far. To collect feature vectors of second layer, two detection models

produced from first layer are used exploiting the collecting feature vectors approach

described in 3.1 Section. In this approach, as faults have overlap to each other the start-

ing lines of each fault (which are unique) have critical part/role. Therefore, the last five

probability estimation values produced from applying detection model of start-

classification provided by first layer are used directly to create each feature vector of

second layer.

To implement such method, we design a buffer (first input-first output) with size of five

in order to save aforementioned values. As illustrated in Figure 3.7, vectors of second

layer are considered to have nine dimensions that their first five elements are filled by

the values of aforementioned buffer (Buffer-Q). The procedure is started by windowing

and creating numerical feature vector for the first window (FV1). Afterwards, two pre-

dicted models from first layer are applied on this feature vector.

25

FV1

Start-predicted-model

Middle-Predicted-model

q1

Buffer-QBuffer-Q

prob-estimated

m1middle-prob-
estimate

m1

m1

m1

0

min

max

mean

var

q1 0 0 0 0 m1 m1 m1 0FV1-L2

Prob-estimated

-1

-1

 Figure 3. 7. Creating first feature vector of second layer

The probability estimated value obtained by applying Start-classification model (named

as Start-predicted-model in Figure 3.7) is saved in the buffer while another vector

(middle-prob-estimate in Figure 3.7) is used to save probability estimated value ob-

tained by applying middle-classification model (named as Middle-predicted-model in

Figure 3.7) on this feature vector (FV1). This vector is an unlimited vector in order to

have the ability of saving probability estimated values of next windows. The statistical

values obtained from aforementioned vector such as minimum, maximum, mean, and

average value are used to create the feature vector of the second layer. The last step to

generate the feature vector is to replace the first five elements of it by buffer (Buffer-Q)

values and last four elements of it by statistical values of the second layer. But as it is

illustrated in Figure 3.7 for the first feature vector buffer has only one value, and hence,

we need to replace the other elements by zeros. Furthermore, there are three equal sta-

tistical values for the first feature vector of the second layer (FV1-L2).

For the second feature vector, the aforementioned procedure is performed on the next

window. It is depicted in Figure 3.8 that probability estimated value obtained by apply-

ing Start-predicted-model on the feature vector of this window is saved in buffer while

buffer has also kept the previous value. And statistical values are computed using both

26

probability estimated values of applying Middle-predicted-model on feature vector cor-

respond to this window and the previous one.

FV2

Start-predicted-model

Middle-Predicted-model

q2

q1

Buffer-QBuffer-Q

prob-estimated

m1 m2middle-prob-
estimate

min

max

avg

var

min

max

mean

var

q2 q1 0 0 0 min max avg varFV2-L2

q1 0 0 0 0 m1 m1 m1 0FV1-L2

Prob-estimated

-1

-1

Figure 3. 8. Creating second feature vector of second layer

To assign label to each feature vector, we use the approach described in Sub-Section

3.1.1 under the title of labelling. It means both generating feature vector of second layer

and labelling them are based on sliding window throughout the main dataset. As it is

illustrated in Figure 3.9 the aforementioned procedures continue and next feature vec-

tors are built as long as the fault logs have not been detected and all labels indicate the

normal cases.

27

FV7 Start-predicted-model

Middle-Predicted-model

q7

q6

q5

q4

q3

Buffer-QBuffer-Q

prob-estimated

m1 m2middle-prob-
estimate

min7

max7

avg7

var7

min

max

mean

var

q2 q1 0 0 0 min2 max2 avg2 var2FV2-L2

q1 0 0 0 0 m1 m1 m1 0FV1-L2

m7

q7 q6 q5 q4 q3 min7 max7 avg7 var7FV7-L2

Prob-estimated

-1

-1

-1

Figure 3. 9. Feature vectors of second layer consist of last five values from start-

predicted-model and statistical values from middle-predicted-model of first layer

When the fault is detected by the label correspond to window, buffer will not update

anymore and only the dimension of middle-prob-estimate increases by collecting the

probability values of applying middle-Predicted-model to feature vector correspond to

each window. Accordingly, as it is seen in Figure 3.10, after indicating fault logs, only

the last four elements of feature vectors are updated while the first five elements are

fixed. This procedure continues until the end of fault and indicating the normal logs by

associated label.

28

FVn6

Middle-Predicted-model
qn5

qn4

qn3

qn2

qn1

Buffer-QBuffer-Q

m1 m2middle-prob-
estimate

minn6

maxn6

avgn6

varn6

min

max

mean

var

q2 q1 0 0 0 min2 max2 avg2 var2FV2-L2

q1 0 0 0 0 m1 m1 m1 0FV1-L2

m7

q7 q6 q5 q4 q3 min7 max7 avg7 var7FV7-L2

Prob-estimated

1

1

mn6

qn5 qn4 qn3 qn2 qn1 minn5 maxn5 avgn5 varn5FVn5-L2

qn5 qn4 qn3 qn2 qn1 minn6 maxn6 avgn6 varn6FVn6-L2

Figure 3. 10. After detection of fault logs, only the last four elements of feature vector

will be changed

Indicating the normal situation cause both buffer and middle-prob-estimate vector, il-

lustrated in Figure 3.11 to reset, and the procedure repeats again from the first step for

the rest of data.

After collecting all feature vectors for second layer the detection model is created by

applying the same learning algorithm with the exact parameters used for first layer on

the training data obtained from second layer. And then this approach is evaluated by

applying aforementioned model on the testing samples.

29

FVnn

Middle-Predicted-model qnn

Buffer-QBuffer-Q

mnnmiddle-prob-
estimate

mnn

mnn

mnn

0

min

max

mean

var

q2 q1 0 0 0 min2 max2 avg2 var2FV2-L2

q1 0 0 0 0 m1 m1 m1 0FV1-L2

q7 q6 q5 q4 q3 min7 max7 avg7 var7FV7-L2

Prob-estimated

1

qn5 qn4 qn3 qn2 qn1 minn5 maxn5 avgn5 varn5FVn5-L2

qn5 qn4 qn3 qn2 qn1 minn6 maxn6 avgn6 varn6FVn6-L2

-1

1

Start-predicted-model prob-estimated

qnn 0 0 0 0 mnn mnn mnn 0FVnn-L2

Figure 3. 11. By ending the fault logs and indicating normal logs both buffer and mid-

dle-prob-estimate reset and procedure starts from first step

30

4. RESULTS

In this chapter, we present the experimental results for our proposed fault detection

technique over two dataset. We first describe the dataset characteristics and evaluation

measures used for our experiments, and then present the results and discuss the perfor-

mance of the detection method considering different factors.

4.1 Data

We did experiments using two different datasets, TTY and TTY-2, and compare two

classifier methods considering the effects of different factors. The datasets used in this

thesis are generated by TIETO using a simulator with a real cellular (3G/4G) network

structure from Poland
1
. The log data contains more than traffic data. It may also include

diagnosis data, system status report, error report, system performance report, and so

one. The data is collected from both mobile core network and other peripheral parts,

such as base stations. The faults simulated in the data are related to software, hardware,

and network connection faults as well as configuration problems in the 4G network

base stations. Software faults might relate to license expiring whereas hardware related

issues might be network connections lost, HDD failures or access/write problems.

TTY dataset with 500330 logs is chosen to evaluate two classifier methods, single layer

Perceptron and SVMs. It contains two days of network traffic data, which includes a

fault with a duration time of around 16 minutes that repeats 20 times throughout the

dataset. This fault is related to the base station base bandwidth failure.

 TTY-2 dataset with 516691 logs contains five days of network traffic data including

five different faults each one repeats 20 times throughout the dataset. These faults have

different duration time around 8 milliseconds, 2 minutes, 5 minutes, 16 minutes and the

most challenging fault has 36 hours duration. Thus, its 20 time repetitions cause to have

a dominant fault with near 5 days duration. The faults included station base bandwidth

1
 http://beta.btsearch.pl

31

failure, software licensing alarm issue, a faulty configuration file, a broken cable con-

nection, and BCCH missing alarm. TTY-2 is chosen to investigate the effect of fault

duration factor on classifier method and generate a proper approach for long lasting

faults.

For each experiment a time series data together with a configuration file that defines

the duration time of each fault and its repetition times are available. For example, from

Figure 4.1, time distance between first pair of lines (difference between two

timestamps) shows the fault duration for the nineteenth repetition of the fault with id

equal to 1. Second pair of lines indicates that fault with id 1 has been repeated twenty

times in total. Hence, the next pair of lines represents the timestamps of the fault with

id 2. This file is used to provide ground truth dataset required for supervised learning

methods.

Figure 4. 1. A part of Fault List Log illustrating two different faults, and time duration

of each repetition

4.2 Evaluation measures

As mentioned in chapter 3, in order to evaluate detection models, we need to reserve a

portion of data for the test set. In our early experiments we manually split the dataset

into two parts as training dataset and testing dataset. But for cases that fault logs are not

equally distributed throughout the dataset or the number of one class is very small in

compare to other class it is probable that one of the sets for training or testing might

miss a certain class. Therefore, this method for collecting training and testing samples

32

cannot provide a proper approach to assess the detection model. Instead Cross valida-

tion [47] is a technique used to overcome this shortage and to select the optimal detec-

tion model [2] and estimate the accuracy performance of classifiers. By using this tech-

nique, feature vectors collected from entire dataset are partitioned into complementary

subsets (or folds). One set is considered as testing set or validation set and used to eval-

uate the created model. While the other subsets called training set, are used to create the

detection model. In addition, to evaluate the performance of learning algorithms we

need to choose metric measures that are able to measure the best performance of learn-

ing algorithms. In literature, accuracy and error rate are two common criterion func-

tions to assess classifier performance in order to find the best detection model. Accura-

cy defines the percentage of correct classifications, while error rate is the percentage of

incorrect classifications. But they may not well suited for evaluating models created

from imbalanced datasets when the number of abnormal logs is much less than the

number of normal logs. For example in a dataset that consists of 100 logs in total and

only one abnormal log, for detection results indicating all logs as normal the accuracy

will be 99%. While this result represents low quality of model as it cannot detect any

faults in dataset. Instead, precision and recall are two evaluation functions that focused

on the number of detected faults [28]. To define these two evaluation metrics first we

need to introduce the confusion matrix that represents the prediction results. Confusion

matrix is a table where each cell [i,j] indicates the number of times that j was predicted

when the correct label was i. Figure 4.2 shows a confusion matrix where:

 True negative (TN) corresponds to the number of normal logs correctly predict-

ed by the learning method.

 True Positive (TP) corresponds to the number of abnormal logs correctly pre-

dicted by the learning method.

 False Negative (FN) corresponds to the number of abnormal logs wrongly pre-

dicted as normal logs by the learning method.

 False positive (FP) corresponds to the number of normal logs wrongly predicted

as abnormal logs by the learning method.

33

Figure 4. 2. Confusion Matrix

Thus, the diagonal elements indicate labels that were correctly predicted and the off-

diagonal elements indicate errors. Precision represents the fraction of real abnormal

logs from all predicted abnormal logs by a classifier method. High precision means that

learning method rarely predicts normal logs as abnormal logs. Recall measures the frac-

tion of abnormal logs that are correctly predicted by classifier method. High recall

means that learning method rarely predicts abnormal logs as normal logs.

Recall, r =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4.1)

Precision, p =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4.2)

However, consider only one of them is not enough to evaluate a learning method. Be-

cause, for example if a model predicts all logs as abnormal logs the recall value of it

will be large but its precision value will be low. On the contrary, high precision and

low recall represent that all predicted logs are correct though a large number of logs are

still unpredicted. Therefore, we need to trade-off between recall and precision and set

the standard way that has been proposed to combine these two measures. F-score [28]

is a metric that combines recall and precision to evaluate a learning model. Hence, a

model with high F-score implies that both recall and precision are high enough. F-score

reaches its best value at 1 and worst value at 0.

F-score, F1 =
2𝑟𝑝

𝑟+𝑝
=

2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁

(4.3)

34

4.3 Experimental results and Discussion

In the following subsections, the results of fault detection performance are represented.

The results are divided into two sections for TTY dataset and TTY-2 datasets consider-

ing different factors and characteristics of each one.

4.3.1 TTY dataset

In this part our primary focus is to obtain the best overall classification performance

regardless of the number of logs contained in each dataset and faults duration. All re-

sults in this chapter are obtained, using 10-fold cross validation to achieve as much

accuracy as possible. However the results are not perfect since the samples of each fold

in cross validation is selected randomly.

 Performance measurements of different classifiers: As mentioned in chapter 2, re-

garding textual characteristics of log data linear classification is the most proper tech-

nique for detecting the faults. In this thesis two linear classification methods, single

layer Perceptron and SVMs are to compare. From various implementations of SVMs,

LIBSVM and LIBLINEAR are two candidate approaches to be explored in this thesis.

LIBSVM [8] and LIBLINEAR [18] are both open source libraries for SVMs to help

users to easily apply SVM to their applications. However LIBLINEAR focuses on

large-scale problems such as text classifications as an easy-to-use tool to deal with their

large dimensionality sparse characteristics [18]. When training a support vector ma-

chine several parameters can be set. One of them is the type of kernel to use. For data

with the large number of features a linear kernel is preferred. LIBLINEAR is an im-

plementation of SVMs which trains linearly without the use of kernels. From Figure

4.3, as we expect the performance of LIBLINEAR is much better than two others for

all values of windowing. LIBSVM could provide high F-score for small window sizes.

But it seems that by increasing the size of window that causes to decrease the number

of training samples LIBSVM produces poor F-scores. And single layer perceptron pro-

vides the worst result for all window sizes among other methods.

35

Figure 4. 3. Performance of different classifiers

bag-of-words vs bag-of-strings: Increasing the size of data causes to increase the

number of features. As each feature corresponds to a dimension thus the dimension of

feature space increases that causes to reduce the quality of detection. Our proposed

approach to reduce the dimensionality problem and improve the detection performance

is to use bag-of-strings instead of bag-of-words in feature generation process. Figure

4.4 show that this solution gives significant performance only on Perceptron algorithm.

Because using bag-of-strings causes to reduce the sparseness problem of feature vec-

tors, in particular for small windows that suffer this problem severely. For two other

approaches, LIBLINEAR and LIBSVM, the results show that there are not significant

difference between using bag-of-strings and bag-of-words. These results prove that

SVM implementations are well suited methods for large sparse data.

Labelling rule: The other factor that may effect on the quality of results is the rule

utilized for labelling. As mentioned in Section 3.1.1, we labelled feature vectors based

on the ratio of the numbers of normal logs to abnormal logs. In our experiments we

examined several rules to find the best one with high quality. Figure 4.5 shows the re-

sults of two experiments for one-fourth and one-fifth rule on LIBLINEAR approach.

One-fourth rule means a feature vector is labelled as fault if one-fourth or more of logs

in a range of window indicate faults, otherwise it is labelled as normal.

36

a. Comparison of bag-of-strings and bag-of-words on Perceptron algorithm

b. Comparison of bag-of-strings and bag-of-words on Perceptron algorithm

c. Comparison of bag-of-strings and bag-of-words on LIBSVM

Figure 4. 4. Results of bag-of-strings vs bag-of-words

37

The concept of one-fifth rule is the same while only the threshold is changed to one-

fifth instead of one-fourth. We expect to improve the quality of results for smaller

thresholds since it causes to be more sensitive to the number of fault logs in each win-

dow. However from Figure 4.5, behavior of rules is not the same for all examined win-

dow sizes. In total the results of one-fifth rule is more satisfying for majority of win-

dow sizes. Then we prefer to continue our experiments using one-fifth rule for label-

ling.

Figure 4. 5. Results of two different rules for labelling

4.3.2 TTY-2 dataset

TTY-2 is a dataset with five different faults including a long lasting fault. For this da-

taset, we consider distinct binary classification for each fault separately. In this section,

the results of our proposed solution for long lasting fault are presented. Then by com-

paring the results of LIBLINEAR approach, , since it has the best performance among

other ones, on the other faults, we attempt to find the optimal window size that can give

the best performance.

Two-layer classification for long duration faults: long lasting faults cause to have ab-

normal dominant dataset while normal logs occur rarely. In TTY-2, this phenomenon

happened since one long fault of around 36 hours (fault-2) is repeated several times

throughout the dataset. This kind of dataset presents a particular challenge for learning

algorithm, which causes to reduce the accuracy achieved by simple method used for

TTY dataset. As mentioned in 3.2.2 to address this problem, two-layer classification is

38

proposed. Figure 4.6 shows the results of two different methods, single-layer and two-

layer classification. It is obvious that the best performance by using two-layer classifier

achieved for small window sizes that have the worst performance by using one layer

classification. But, there is no significant difference for large window sizes. In addition,

a drawback of this approach is that creating feature vectors for two layers and two

times for first layer is significantly time consuming. In practice may be we need a

trade-off between elapsed time and high quality. As we can see from Figure 4.6, by

using one layer classification for windows with sizes of 40 or 45 minutes, we do not

loss significant quality while we can improve the speed of implementation considera-

bly.

Figure 4. 6. Performance of two-layer classification vs one layer classification

Finding optimal window size: To find an optimal window size in order to achieve

high quality of fault detection, we test the other four faults of TTY-2 using different

window sizes correspond to each fault durations. With the results in Figure 4.7 to Fig-

ure 4.10, it seems that the windows smaller than fault duration are not performing well,

although there is a limitation range for windows with large size. As we see, for fault 3,

fault 4, and fault 5 that have small duration, their performance after a certain range of

window associated to each fault drop off significantly. However, we cannot mention an

exact range as optimal; it is clear that well performance is obtained for those windows

that are proportional to duration of faults.

39

Figure 4. 7. The results of LIBLINEAR on fault 1 with duration between 12 minutes to

22 minutes for different window sizes

Figure 4. 8. The results of LIBLINEAR on fault 3 with duration around 4:30 minutes

for different window sizes

40

Figure 4. 9. The results of LIBLINEAR on fault 4 with duration around 8 seconds for

different window sizes

Figure 4. 10. The results of LIBLINEAR on fault 5 with duration around 2 minutes for

different window sizes

41

5. CONCLUSION

The aim of this thesis was to investigate supervised machine learning approaches to

detect known faults from unstructured log data simulated and provided by TIETO. To

find suitable methods, we focused on textual characteristics of the log data. Our pro-

posed approach for creating feature vectors in this thesis was inspired from methods for

streaming data together with text data. Consequently, we used sliding window together

with bag-of-words approaches to create feature vectors. Considering textual character-

istics of network-based server-log data such as large dimensions and sparseness, we

focus on single layer perceptron and SVM, as two candidate methods of linear classifi-

cation methods.

The preliminary experiments on a small dataset with limited logs indicated satisfying

performance of single layer perceptron. But increasing the number of logs included in a

dataset causes to reduce the detection quality of Perceptron. Experimental results show

that the detection quality of SVM is significantly better than single layer perceptron for

datasets with large number of logs. In this thesis, we compared the implementations of

LIBLINEAR and LIBSVM. As we expected, LIBLINEAR not only provided much

better results than LIBSVM also its training times were shorter than LIBSVM. In order

to reduce the dimension of feature space and improve the detection quality, we pro-

posed using bag-of-strings instead of bag-of-words. But this solution was effective only

for single layer perceptron and did not have considerable difference on two other ap-

proaches. This result proves high ability of SVMs to deal with high dimension sparse

data.

The other factor that was investigated in this thesis was dataset with long lasting fault.

Long lasting fault in a dataset causes fault class to be dominant class while normal logs

occur rarely. Simple LIBLINEAR method used for dataset with limited duration fault

could not provide high quality results. We proposed two-layer classification with a

novel approach for creating feature vectors as a solution to improve the fault detection

performance. In the first layer, we attempt to detect each occurrence of fault (or the first

line of each fault occurrence) along with total duration of fault throughout the dataset

42

by two separate classifications. The obtained models from first layer are used for creat-

ing feature vectors for second layer. Two-layer classification demonstrates more fault

detection ability than single-layer classification. Although, creating feature vectors for

two layers is time consuming task. Comparison the results of two approaches (single-

layer and two-layer classification) show that there are not significant differences in

performance of two approaches for large window sizes. In practice, we may need a

trade-off between elapsed time and high performance of detection.

A limitation of our detection approach is that this approach is unable to detect unknown

faults that may appear in dataset. Although, from this thesis, we could find well suited

method for extracting features and learning algorithm and investigate the effect of some

factors on fault detection, more investigation is still needed to achieve better results.

There are some cases that the results are against our expectations. For example, we

could not find an optimal range for window for sliding window as the results of each

method show different performance associated to each window size. Moreover, creat-

ing feature vectors in particular for data with large number of logs is time consuming.

Besides, there are some limitations that refer to supervised learning method. For exam-

ple this approach is unable to detect unknown faults that may appear in communication

networks. In addition, as the approach depends on training data, any change in network

and system behavior makes us update the training set and model prediction.

43

REFERENCES

[1] Aggarwal, Charu C., and ChengXiang Zhai. "A survey of text classification algo-

rithms." Mining text data. Springer US, 2012. 163-222.

[2] Arlot, Sylvain, and Alain Celisse. "A survey of cross-validation procedures for

model selection."Statistics surveys 4 (2010): 40-79.

[3] Axelsson, Stefan.”Intrusion detection systems: A survey and taxonomy. Vol. 99.

Technical report, 2000.

[4] Bitincka, Ledion, et al. "Optimizing data analysis with a semi-structured time series

database." SLAML’10: Proceedings of the 2010 workshop on Managing systems

via log analysis and machine learning techniques. 2010.

[5] Bonifácio Jr, José Maurıcio, et al. "Neural networks applied in intrusion detection

systems." Neural Networks Proceedings, 1998. IEEE World Congress on Computa-

tional Intelligence. The 1998 IEEE International Joint Conference on. Vol. 1. IEEE,

1998.

[6] Bowen, Theodore, et al. "Building survivable systems: An integrated approach

based on intrusion detection and damage containment." DARPA Information Sur-

vivability Conference and Exposition, 2000. DISCEX'00. Proceedings. Vol. 2.

IEEE, 2000.

[7] Broda, Bartosz, et al. "Fextor: A feature extraction framework for natural language

processing: A case study in word sense disambiguation, relation recognition and

anaphora resolution." Computational Linguistics. Springer Berlin Heidelberg, 2013.

41-62.

[8] Chang, Chih-Chung, and Chih-Jen Lin. "LIBSVM: a library for support vector ma-

chines." ACM Transactions on Intelligent Systems and Technology (TIST)2.3

(2011): 27.

[9] Ciocarlie, Gabriela F., et al. "Detecting anomalies in cellular networks using an

ensemble method." CNSM. 2013.

[10] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine

learning 20.3 (1995): 273-297.

[11] Dagan, Ido, Yael Karov, and Dan Roth. "Mistake-driven learning in text catego-

rization." arXiv preprint cmp-lg/9706006 (1997).

[12] Dasgupta, Dipankar, and Fabio González. "An immunity-based technique to

characterize intrusions in computer networks." Evolutionary Computation, IEEE

Transactions on 6.3 (2002): 281-291.

[13] Debar, Hervé, et al. An experimentation workbench for intrusion detection sys-

tems. IBM TJ Watson Research Center, 1998.

[14] Denning, Dorothy E. "An intrusion-detection model." Software Engineering,

IEEE Transactions on 2 (1987): 222-232.

44

[15] Dredze, Mark, Koby Crammer, and Fernando Pereira. "Confidence-weighted

linear classification." Proceedings of the 25th international conference on Machine

learning. ACM, 2008.

[16] Ensafi, Roya, et al. "Optimizing fuzzy k-means for network anomaly detection

using PSO." Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS

International Conference on. IEEE, 2008.

[17] Eskin, Eleazar. "Anomaly detection over noisy data using learned probability

distributions." (2000).

[18] Fan, Rong-En, et al. "LIBLINEAR: A library for large linear classification." The

Journal of Machine Learning Research 9 (2008): 1871-1874.

[19] Forrest, Stephanie, et al. "A sense of self for unix processes." Security and Pri-

vacy, 1996. Proceedings., 1996 IEEE Symposium on. IEEE, 1996.

[20] Fox, Kevin L., et al. "A neural network approach towards intrusion detection."

(1990): 124-134.

[21] Fung, Glenn, and Olvi L. Mangasarian. "Proximal support vector machine clas-

sifiers." Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2001.

[22] Garcia-Teodoro, Pedro, et al. "Anomaly-based network intrusion detection:

Techniques, systems and challenges." computers & security 28.1 (2009): 18-28.

[23] Garcia-Teodoro, Pedro, et al. "Anomaly-based network intrusion detection:

Techniques, systems and challenges." computers & security 28.1 (2009): 18-28.

[24] Ghosh, Anup K., Aaron Schwartzbard, and Michael Schatz. "Learning Program

Behavior Profiles for Intrusion Detection." Workshop on Intrusion Detection and

Network Monitoring. Vol. 51462. 1999.

[25] Ghosh, Anup K., Christoph Michael, and Michael Schatz. "A real-time intrusion

detection system based on learning program behavior." Recent Advances in Intru-

sion Detection. Springer Berlin Heidelberg, 2000.

[26] Ghosh, Anup K., and Aaron Schwartzbard. "A Study in Using Neural Networks

for Anomaly and Misuse Detection." USENIX Security. 1999.

[27] Golab, Lukasz. "Querying sliding windows over online data streams." Current

Trends in Database Technology-EDBT 2004 Workshops. Springer Berlin Heidel-

berg, 2005.

[28] Goutte, Cyril, and Eric Gaussier. "A probabilistic interpretation of precision,

recall and F-score, with implication for evaluation." Advances in Information Re-

trieval. Springer Berlin Heidelberg, 2005. 345-359.

[29] Habra, Naji, et al. "ASAX: Software architecture and rule-based language for

universal audit trail analysis." Computer Security—ESORICS 92. Springer Berlin

Heidelberg, 1992. 435-450.

45

[30] Hearst, Marti A., et al. "Support vector machines." Intelligent Systems and their

Applications, IEEE 13.4 (1998): 18-28.

[31] Helman, Paul, and Gunar Liepins. "Statistical foundations of audit trail analysis

for the detection of computer misuse." Software Engineering, IEEE Transactions on

19.9 (1993): 886-901.

[32] Hofmeyr, Steven A., and Stephanie Forrest. "Architecture for an artificial im-

mune system." Evolutionary computation 8.4 (2000): 443-473.

[33] Hood, Cynthia S., and Chuanyi Ji. "Proactive network-fault detection [telecom-

munications]." Reliability, IEEE Transactions on 46.3 (1997): 333-341.

[34] Hu, PingZhao, and Malcolm I. Heywood. "Predicting intrusions with local linear

models." Neural Networks, 2003. Proceedings of the International Joint Conference

on. Vol. 3. IEEE, 2003.

[35] Hu, Wenjie, Yihua Liao, and V. Rao Vemuri. "Robust Support Vector Machines

for Anomaly Detection in Computer Security." ICMLA. 2003.

[36] Idé, Tsuyoshi, and Hisashi Kashima. "Eigenspace-based anomaly detection in

computer systems." Proceedings of the tenth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining. ACM, 2004.

[37] Ilgun, Koral, Richard A. Kemmerer, and Phillip A. Porras. "State transition

analysis: A rule-based intrusion detection approach." Software Engineering, IEEE

Transactions on 21.3 (1995): 181-199.

[38] Jian, Guan, Liu Da-Xin, and Cui Bin-Ge. "An induction learning approach for

building intrusion detection models using genetic algorithms." Intelligent Control

and Automation, 2004. WCICA 2004. Fifth World Congress on. Vol. 5. IEEE,

2004.

[39] Jiang, Weihang, et al. "Understanding Customer Problem Troubleshooting from

Storage System Logs." FAST. Vol. 9. 2009.

[40] Joachims, Thorsten. A Probabilistic Analysis of the Rocchio Algorithm with

TFIDF for Text Categorization. No. CMU-CS-96-118. CARNEGIE-MELLON

UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE, 1996.

[41] Joachims, Thorsten. Text categorization with support vector machines: Learning

with many relevant features. Springer Berlin Heidelberg, 1998.

[42] Kabiri, Peyman, and Ali A. Ghorbani. "Research on Intrusion Detection and

Response: A Survey." IJ Network Security 1.2 (2005): 84-102.

[43] Kayacik, H. Gunes, A. Nur Zincir-Heywood, and Malcolm I. Heywood. "On the

capability of an SOM based intrusion detection system." Neural Networks, 2003.

Proceedings of the International Joint Conference on. Vol. 3. IEEE, 2003.

[44] Kivinen, Jyrki, Manfred K. Warmuth, and Peter Auer. "The Perceptron algo-

rithm versus Winnow: linear versus logarithmic mistake bounds when few input

variables are relevant." Artificial Intelligence 97.1 (1997): 325-343.

46

[45] Kline, Jeff, et al. "Traffic anomaly detection at fine time scales with bayes

nets."Internet Monitoring and Protection, 2008. ICIMP'08. The Third International

Conference on. IEEE, 2008.

[46] Ko, Calvin, Manfred Ruschitzka, and Karl Levitt. "Execution monitoring of se-

curity-critical programs in distributed systems: A specification-based approach."

Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium on. IEEE, 1997.

[47] Kohavi, Ron. "A study of cross-validation and bootstrap for accuracy estimation

and model selection." IJCAI. Vol. 14. No. 2. 1995.

[48] Kruegel, Christopher, et al. "Bayesian event classification for intrusion detec-

tion." Computer Security Applications Conference, 2003. Proceedings. 19th Annu-

al. IEEE, 2003.

[49] Kumar, Sandeep, and Eugene H. Spafford. "A software architecture to support

misuse intrusion detection." (1995).

[50] Kumpulainen, Pekka, and Kimmo Hätönen. "Anomaly detection algorithm test

bench for mobile network management." Tampere University of Technology(2008).

[51] Laguna, Javier Ortiz, Angel García Olaya, and Daniel Borrajo. "A dynamic slid-

ing window approach for activity recognition." User Modeling, Adaption and Per-

sonalization. Springer Berlin Heidelberg, 2011. 219-230.

[52] Lane, Terran, and Carla E. Brodley. "Temporal sequence learning and data re-

duction for anomaly detection." ACM Transactions on Information and System Se-

curity (TISSEC) 2.3 (1999): 295-331.

[53] Lee, Wenke, and Salvatore J. Stolfo. "Data mining approaches for intrusion de-

tection." Usenix Security. 1998.

[54] Lee, Wenke, et al. "Real time data mining-based intrusion detection." DARPA

Information Survivability Conference & Exposition II, 2001. DISCEX'01.

Proceedings. Vol. 1. IEEE, 2001.

[55] Liao, Yihua, and V. Rao Vemuri. "Use of k-nearest neighbor classifier for intru-

sion detection." Computers & Security 21.5 (2002): 439-448.

[56] Martineau, Justin, et al. "Improving binary classification on text problems using

differential word features." Proceedings of the 18th ACM conference on Infor-

mation and knowledge management. ACM, 2009.

[57] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. "Intrusion detec-

tion using neural networks and support vector machines." Neural Networks, 2002.

IJCNN'02. Proceedings of the 2002 International Joint Conference on. Vol. 2.

IEEE, 2002.

[58] Náther, Peter. "N-gram based Text Categorization." Lomonosov Moscow State

Univ (2005).

47

[59] Ng, Hwee Tou, Wei Boon Goh, and Kok Leong Low. "Feature selection, per-

ceptron learning, and a usability case study for text categorization." ACM SIGIR

Forum. Vol. 31. No. SI. ACM, 1997.

[60] Nowak, Eric, Frédéric Jurie, and Bill Triggs. "Sampling strategies for bag-of-

features image classification." Computer Vision–ECCV 2006. Springer Berlin Hei-

delberg, 2006. 490-503.

[61] Papapetrou, Odysseas, Minos Garofalakis, and Antonios Deligiannakis. "Sketch-

based querying of distributed sliding-window data streams."Proceedings of the

VLDB Endowment 5.10 (2012): 992-1003.

[62] Papineni, Kishore. "Why inverse document frequency?." Proceedings of the sec-

ond meeting of the North American Chapter of the Association for Computational

Linguistics on Language technologies. Association for Computational Linguistics,

2001.

[63] Patcha, Animesh, and Jung-Min Park. "An overview of anomaly detection tech-

niques: Existing solutions and latest technological trends." Computer Networks

51.12 (2007): 3448-3470.

[64] Perdisci, Roberto, Guofei Gu, and Wenke Lee. "Using an ensemble of one-class

svm classifiers to harden payload-based anomaly detection systems."Data Mining,

2006. ICDM'06. Sixth International Conference on. IEEE, 2006.

[65] Radovanović, Miloš, and Mirjana Ivanović. "Text mining: Approaches and ap-

plications." Novi Sad J. Math 38.3 (2008): 227-234.

[66] Ramadas, Manikantan, Shawn Ostermann, and Brett Tjaden. "Detecting anoma-

lous network traffic with self-organizing maps." Recent Advances in Intrusion De-

tection. Springer Berlin Heidelberg, 2003.

[67] Salem, Malek Ben, and Salvatore J. Stolfo. "Detecting masqueraders: A compar-

ison of one-class bag-of-words user behavior modeling techniques."Journal of

Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications

1.1 (2010): 3-13.

[68] Schütze, Hinrich, David A. Hull, and Jan O. Pedersen. "A comparison of classi-

fiers and document representations for the routing problem." Proceedings of the

18th annual international ACM SIGIR conference on Research and development in

information retrieval. ACM, 1995.

[69] Sebastiani, Fabrizio. "Machine learning in automated text categorization." ACM

computing surveys (CSUR) 34.1 (2002): 1-47.

[70] Sekar, R., et al. "Specification-based anomaly detection: a new approach for

detecting network intrusions." Proceedings of the 9th ACM conference on Comput-

er and communications security. ACM, 2002.

[71] Shao, Jun. "Linear model selection by cross-validation." Journal of the Ameri-

can statistical Association 88.422 (1993): 486-494.

48

[72] Silva, Catarina, and Bernardete Ribeiro. "The importance of stop word removal

on recall values in text categorization." Neural Networks, 2003. Proceedings of the

International Joint Conference on. Vol. 3. IEEE, 2003.

[73] Sinka, Mark P., and David W. Corne. "A large benchmark dataset for web doc-

ument clustering." Soft Computing Systems: Design, Management and Applica

tions 87 (2002): 881-890.

[74] Sipola, Tuomo, Antti Juvonen, and Joel Lehtonen. "Anomaly detection from

network logs using diffusion maps." Engineering Applications of Neural Networks.

Springer Berlin Heidelberg, 2011. 172-181.

[75] Snapp, Steven R., et al. "DIDS (distributed intrusion detection system)-

motivation, architecture, and an early prototype." Proceedings of the 14th national

computer security conference. Vol. 1. 1991.

[76] Stearley, John. "Towards informatic analysis of syslogs." Cluster Computing,

2004 IEEE International Conference on. IEEE, 2004.

[77] Tamaru, Ann, et al. A real-time intrusion-detection expert system (IDES). SRI

International, Computer Science Laboratory, 1992.

[78] Tan, Kymie MC, and Roy A. Maxion. "Determining the operational limits of an

anomaly-based intrusion detector." Selected Areas in Communications, IEEE Jour-

nal on 21.1 (2003): 96-110.

[79] Tang, Jiliang, Salem Alelyani, and Huan Liu. "Feature Selection for Classifica-

tion: A Review."

[80] Tseng, Chin-Yang, et al. "A specification-based intrusion detection system for

AODV." Proceedings of the 1st ACM workshop on Security of ad hoc and sensor

networks. ACM, 2003.

[81] Vapnik, Vladimir. The nature of statistical learning theory. springer, 2000.

[82] Vigna, Giovanni, Steven T. Eckmann, and Richard A. Kemmerer. "The STAT

tool suite." DARPA Information Survivability Conference and Exposition, 2000.

DISCEX'00. Proceedings. Vol. 2. IEEE, 2000.

[83] Xu, Wei, et al. "Detecting large-scale system problems by mining console

logs."Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles. ACM, 2009.

[84] Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection

in text categorization." ICML. Vol. 97. 1997.

[85] Zhang, Tong, and Frank J. Oles. "Text categorization based on regularized linear

classification methods." Information retrieval 4.1 (2001): 5-31.

[86] Zhang, Yongguang, and Wenke Lee. "Intrusion detection in wireless ad-hoc

net works." Proceedings of the 6th annual international conference on Mobile compu

ting and networking. ACM, 2000.

