
TOMI ÄIJÖ
INTEGER LINEAR PROGRAMMING BASED CODE
GENERATION FOR EXPOSED DATAPATH
Master of Science Thesis

Examiners: Prof. Tapio Elomaa and
D.Sc. Pekka Jääskeläinen
Examiners and topic approved in the
Faculty of Computing and Electrical
Engineering Council meeting
15th of January 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250160963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
TOMI ÄIJÖ: Integer Linear Programming Based Code Generation for Exposed
Datapath
Master of Science Thesis, 52 pages, 2 Appendix pages
December 2014
Major: Computer science
Examiners: Prof. Tapio Elomaa and D.Sc. Pekka Jääskeläinen
Keywords: processors, transport triggered architecture, instruction level parallelism, com-
pilers, integer linear programming

As the use of embedded processors has spread throughout the society pervasively,
the requirements for the processors have become much more diverse causing general
purpose processors to be inefficient on many occasions. This creates the need for
customized processors that are tailored for a particular use case. Transport trig-
gered architecture is a processor architecture template that exploits the instruction
level parallelism. The architecture provides the basic building blocks and means to
construct custom tailored processors. Transport triggered architecture processors
are statically scheduled, thus powerful instruction scheduling algorithms can bring
up significant efficiency increases in terms of chip area, clock frequency, and energy
consumption.

This thesis proposes an integer linear programming model for the instruction
scheduling problem of the transport triggered architecture. The model describes
the architecture characteristics, the particular processor resource constraints, and
the operation dependencies of the scheduled program. It is possible to optimize
the model for various criterion, for example to achieve as energy efficient processors
as possible. This scheduling algorithm was implemented to the high-level language
compiler of the TTA-based Co-design Environment, which is a toolset for designing
processors using the transport triggered architecture template.

The model was tested and measured with example problems such as complex
number arithmetics, and vector dot product. Such example algorithms are typically
executed in embedded processors and parallelize reasonably well. The performance
results were compared to the existing heuristic graph-based scheduling algorithm of
the toolset compiler.

The study indicates that the integer linear programming based instruction sched-
uler produced significantly shorter schedules compared to the heuristic scheduler.
In addition, the amount of register access in the compiled programs was generally
notably less than those of the heuristic scheduler. On the other hand, the proposed
scheduler used distinctly more execution time than the heuristic scheduler.

II

TIIVISTELMÄ
TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
TOMI ÄIJÖ: Kokonaislukuoptimointiin perustuva koodigenerointi näkyvän da-
tapolun arkkitehtuureille
Diplomityö, 52 sivua, 2 liitesivua
Joulukuu 2014
Pääaine: Ohjelmistotiede
Tarkastajat: prof. Tapio Elomaa ja TkT Pekka Jääskeläinen
Avainsanat: prosessorit, siirtoliipaisuarkkitehtuuri, käskytason rinnakkaisuus, kääntäjät,
kokonaislukuoptimointi

Viimeisten vuosikymmenten aikana sulautetut prosessorit ovat levinneet laajalle ja
niihin ei voi olla törmäämättä jokapäiväisessä elämässä. Koska prosessoreille on mitä
monimuotoisempia käyttötarkoituksia, eivät yleiskäyttöiset prosessorit sovi kaikkiin
tapauksiin. Tämä on johtanut tarpeeseen suunnitella räätälöityjä prosessoreita,
jotka mukautetaan tiettyä käyttötarkoitusta varten. Siirtoliipaisuarkkitehtuuri on
käskytason rinnakkaisuutta hyödyntävä prosessoriarkkitehtuuri, joka tarjoaa työka-
lut prosessorin suunnitteluun uudelleenkäytettäviä komponentteja yhdistelemällä.
Arkkitehtuuri on staattisesti skeduloitu, ja tehokkaalla käskyskeduloinnilla voidaan
saada aikaan suuria tehokkuuseroja piirin koon, kellotaajuuden ja energiatehokkuu-
den suhteen.

Tämä työ esittää siirtoliipaisuarkkitehtuuriin suunnitellun staattisen skeduloin-
tialgoritmin, joka on esitetty matemaattisena kokonaislukuoptimointimallina. Malli
kuvaa arkkitehtuurin erityispiirteet, tietyn prosessorin asettamat resurssirajoitteet
ja ohjelman käskyjen sisäiset riippuvuudet sekä mahdollistaa ohjelman operaatioiden
aikataulun optimoinnin tietyn kriteerin perusteella. Ohjelma voidaan esimerkiksi
optimoida mahdollisimman energiatehokkaaksi. Algoritmi toteutettiin osaksi siirto-
liipaisuarkkitehtuuriin suunnitellun kehitysympäristön ohjelmointikielen kääntäjää.

Skedulointialgoritmi testattiin ja sen tehokkuus arvioitiin käyttäen esimerkki-
ohjelmia kuten kompleksilukuaritmetiikkaa, ja vektorien pistetulon laskenta. Ky-
seiset algoritmit ovat tyypillisiä sulautetuissa prosessoreissa suoritettavia hyvin rin-
nakkaistuvia ongelmia. Algoritmia verrattiin kehitysympäristön kääntäjän olemassa
olevaan heuristiseen skedulointialgoritmiin.

Mittaukset osoittavat, että kokonaislukuoptimointimalliin perustuva käskyskedu-
lointialgoritmi tuottaa huomattavasti lyhyempiä ohjelmia verrattuna edellä mainit-
tuun heuristiseen skedulointialgoritmiin. Lisäksi rekisterien käyttöaste oli useimissa
tapauksissa huomattavasti pienempi kuin heuristisen skedulointialgoritmin. Toisaalta
ehdotetun skedulointialgoritmin suoritusaika oli suuruusluokkaa isompi suhteessa
heuristiseen skedulointialgoritmiin.

III

PREFACE
The work in this M.Sc. thesis was carried out at the Department of Pervasive Com-
puting at Tampere University of Technology as a part of the Parallel Acceleration
Project (ParallaX).

I would like to express my gratitude and appreciation to Professor Tapio Elomaa,
the advisor of this thesis, for his guidance, advice, and ideas through the process. I
am especially grateful to Pekka Jääskeläinen, Dr. Tech, for his invaluable guidance
and encouragement. Also I thank all the colleagues in the Customized Parallel
Computing group for their support. Especially Heikki Kultala, M.Sc., has been a
great help in the development process.

Finally, I wish to than my family for their lasting love, encouragement and per-
severance throughout my studies.

Tampere, Sep 25, 2014

TOMI ÄIJÖ

IV

CONTENTS
1. Introduction . 1
2. Processors . 3

2.1 Instruction Level Parallelism . 3
2.2 Very Long Instruction Word Architecture 4
2.3 Transport Triggered Architecture . 4
2.3.1 Programming model . 5
2.3.2 TTA specific optimizations . 6
2.3.3 TTA-based Co-design Environment 8

3. Compilers . 10
3.1 Intermediate Representation . 11
3.1.1 Static Single Assignment Form 11
3.1.2 Data Dependence Graph . 12

3.2 Code Generation . 14
3.2.1 Instruction Selection . 15
3.2.2 Register Allocation . 16
3.2.3 Instruction scheduling . 17
3.2.4 Phase Ordering . 18

3.3 TCE Retargetable Compiler Structure 19
4. Integer Linear Programming . 21

4.1 Modeling Optimization Problems with Integer Linear Programming . 22
4.2 Example models . 23
4.2.1 Knapsack . 23
4.2.2 Traveling salesman . 24

4.3 Solving Integer Linear Problems . 24
4.3.1 Branch and Bound Algorithm . 24
4.3.2 Special Ordered Sets . 28

5. Integer Linear Programming Formulation of the TTA Instruction Schedul-
ing Problem . 29
5.1 Completeness . 30
5.2 Constraints . 30
5.2.1 All Moves Must be Assigned . 30
5.2.2 Dependencies Between Moves . 31
5.2.3 Bypassing and Dead-Result Elimination 31
5.2.4 Register File Port Constraints . 32
5.2.5 Function Unit Constraints . 33

5.3 Special Ordered Sets . 35
5.3.1 SOS1: All Moves Are Assigned Once 36

V

5.3.2 SOS1: Input Socket Constraints 36
5.3.3 SOS1: Bus Constraints . 36

5.4 Objective Function . 36
6. Empirical Evaluation . 38

6.1 Minimalist Architecture . 38
6.2 Clustered Architecture . 41
6.3 Discussion . 45

7. Conclusions . 47
7.1 Future work . 48

References . 50
Appendix 1: Complete results

VI

SYMBOLS AND ABBREVIATIONS
ADF Architecture Definition File

ALU Arithmetic Logic Unit

CU Control Unit

DDG Data Dependence Graph

GPP General Purpose Processor

FIR Finite Impulse Response filter

FU Function Unit

HDL Hardware Description Language

II Initiation Interval

IIR Infinite Impulse Response filter

ILP Instruction Level Parallelism

IR Intermediate Representation

IU Immediate Unit

LLVM Low Level Virtual Machine, a compiler infrastructure

LSU Load-Store Unit

NDTM Nondeterministic Turing Machine

NOP No-Operation

NP Nondeterministic Polynomial Time

MIP Mixed Integer Programming

RAM Random-Access Memory

RaW Read after Write

RF Register File

SCIP Solving Constraint Integer Programs, a MIP solver

SoC System-on-a-Chip

SOS Special Ordered Set

SSA Static Single Assignment, a type of IR

OpenCL Open Computing Language

TCE TTA-based Co-design Environment

TPEF TTA Program Exchange Format

VII

TTA Transport Triggered Architecture

VLIW Very Long Instruction Word

WaR Write after Read

WaW Write after Write

1

1. INTRODUCTION

For the past few decades, the landscape of Systems-on-a-Chip (SoC) circuits has
dramatically changed: SoC circuits have become more ubiquitous than ever. Com-
puting appears pervasively everywhere in numerous shapes and sizes. An individual
interacts with SoC circuits on many different forms, often without realizing that a
sophisticated computer is involved.

As computers are found practically everywhere, the requirements for a proces-
sor design have become more diverse rendering General Purpose Processors (GPP)
ineffective on many occasions. These requirements typically involve computation
performance, energy consumption, and the physical chip size. In order to cope with
the growing complexity and taxing demands, many times the processor needs to be
custom tailored for a specific use case, occasionally from the scratch.

Designing a complex processor from the ground up is a highly expensive and
demanding operation, and at the same time, there is a need for a fast time to mar-
ket due to competition. There exist numerous prefabricated architecture templates
for processor construction that alleviate the cost and time of the tailored design.
Transport Triggered Architecture (TTA) is a processor architecture template that
provides basic building blocks and extensive possibilities for custom processor com-
position. The leading principle of TTA is that much of the complexity is moved from
the hardware to the compiler. A TTA program is statically scheduled raising the
need for powerful instruction scheduling algorithms to be able to meet the design
requirements.

NP-complete problems are a collection of computational problems that have effi-
ciently verifiable solutions, but no known deterministic linear time algorithm. They
are the hardest problems amongst the NP, in a sense that if one can be solved in
polynomial time then so can all other problems. Finding the optimal instruction
schedule for a TTA program is proven to be NP-complete problem [1].

Better scheduling algorithms do not only lead to slight incremental advance,
but possibly to an order of magnitude improvement. She at al. [2] presented up
to 80% effective energy saving with improvements over the register access using a
relatively simple heuristic scheduler for a TTA processor. Due to the rapid spread
of mobile phones, the Internet of Things, and other ultra-low power devices, the
demand for more power efficient SOC circuits are higher than ever. In addition to

1. Introduction 2

energy savings, improved schedules permit the pruning of the internal connections
of a processor which in turn allows higher clock frequencies.

The objective of this thesis project was to create an efficient and versatile in-
struction scheduling algorithm for the TTA template processors. The scheduler is
implemented by describing the scheduling problem as a mathematical model using
integer linear programming. Furthermore, the defined model is solved using an in-
teger linear programming solver to obtain the most favorable outcome according to
a specific criterion. The defined model is tested using a few benchmark programs
such as complex number arithmetics, and dot product calculation. These problems
are quite commonly executed in SoC circuits, and require high performance and,
simultaneously, low energy consumption.

The thesis is organized as follows. The second chapter introduces the concept
of customized processors more deeply. Moreover, the TTA processors are described
thoroughly and an example TTA processor is presented. In addition, TTA-based
Co-design Environment (TCE) is introduced, which can be used to design TTA
processors. The described instruction scheduler was implemented into the high-level
language compiler of the TCE.

Compilers, their structure, and internal data representation are discussed in
Chapter 3. Furthermore, a few common data structures in compilers are presented.
Chapter 3 also talks about code generation specifically for transport triggered archi-
tecture processors. The basic stages of code generation are presented, in particular
we discuss instruction scheduling which is in the focus of this thesis. Integer lin-
ear programming is introduced in Chapter 4 along with two example problems,
the knapsack problem and the traveling salesman problem. These problems are ex-
pressed as integer linear programming problems. Chapter 5 describes the scheduling
algorithm in terms of integer linear programming. Chapter 6 lays out the results of
experiments and discusses them. Chapter 7 summarizes the main results, concludes
the thesis, and provides suggestion for further research regarding the integer linear
programming model for the TTA scheduling problem.

3

2. PROCESSORS

A processor is a programmable computing unit that executes and responds to in-
structions. Typically processors are composed of multiple individual components
that can perform various tasks. A processor is said to be multi-issue if there are
multiple execution units that perform concurrently, as opposed to single-issue pro-
cessors. The multi-issue processors can achieve the concurrency either dynamically,
that is, at the runtime, or statically at the compilation time.

Processors are designed and optimized for a particular task in case general purpose
processors do not meet the requirements. The target application determines the
resources needed to carry out the computations of specific application as efficiently
as possible. Processors can be tailored by restricting and expanding the operation
set, or varying the physical functional units on board. In customized processor
design typical objectives are chip area, power consumption, manufacturing costs,
and clock rate.

Exposed datapath architectures are processor architectures where the programmer
or the compiler have direct control over the datapath [3]. These types of architectures
typically result in small, low-power processors that can achieve high performance by
efficient compile-time scheduling and high-level of parallelism.

2.1 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is a measurement of the number of operations
that can be performed simultaneously in a multi-issue processor [4]. A traditional
way to parallelize the execution of operations is pipelining, in which the operations
are divided into a sequence of dependent steps or stages. These stages can be
executed concurrently so that multiple operations are partly in execution at the
same time. Pipelining increases instruction throughput as multiple operations can be
performed simultaneously. An example of pipelining is fetching the next instruction
while the previous has not been completed yet, and similarly writing the result of a
completed operation to a register or memory when the next operation has already
been started. Pipelining is utilized dynamically by the processor.

Another way to exploit the possible concurrency of operations is to use of the
fine grained independence of operations allowing multiple operations to be executed
simultaneously. This is achieved by executing the sequential operation stream con-

2. Processors 4

currently given the processor resources such that the dependencies between the
operations are satisfied. The amount of static ILP that can be achieved varies
greatly depending of the application. This type of ILP needs thorough analysis of
the program when it is statically utilized by the compiler at compilation time.

2.2 Very Long Instruction Word Architecture

Very Long Instruction Word (VLIW) is a processor architecture style that is de-
signed to take advantage of static instruction level parallelism of operations [5].
Traditional dynamical approaches to improving performance in processor architec-
tures result in increased hardware complexity, whereas the static multi-issue, by
contrast, moves complexity from the hardware to the compiler. VLIW processor
consists of function units and register files, and an interconnection network enabling
all possible concurrent data transports between the units. In other words, VLIW
architecture allows the customization of the processor by varying the components.
Because of this, VLIW is not a single processor but a template that can be used to
design different kinds of processors.

The VLIW processor instruction stream consists of sets of instructions that are
executed at any given cycle whereas dynamically scheduled processor have a stream
of single instructions. For example, a VLIW processor might be able to execute four
operations concurrently. As not all applications are completely parallelizable, some
cycles might have less operations at execution than the resources would permit. In
addition, compilers that parallelize the input programs typically do not output the
optimal parallelization but some suboptimal approximation.

2.3 Transport Triggered Architecture

When the the number of function units is increased to obtain more ILP, the intercon-
nection network and the register file complexity of a VLIW processor grows exponen-
tially [6]. This leads to excessive power consumption, substantial expansion of chip
area, and decrease in achievable clock frequency. Transport Triggered Architecture
is an exposed datapath architecture also capable of exploiting the static instruction-
level parallelism [7]. TTA generalizes VLIW in the sense that the interconnection
network is visible to the programmer, which even further moves complexity from the
hardware to the compiler and alleviates the interconnection network bottleneck. In
other words, the TTA processor template can be used to design VLIW type proces-
sors, but it is not merely limited for that purpose. Whereas VLIW is programmed
using complete operations, TTA approach divides the operations into separate move
operations. TTA processors are modular in a sense that the units can be compiled
in any possible configuration, and the interconnection network allows an arbitrary

2. Processors 5

connectivity between the units.
The TTA interconnection network is formed of sockets that are attached to buses

[7]. Sockets might be either unidirectional or bidirectional depending on the ports
attached to them. Figure 2.1 shows an example TTA processor consisting of four
different units: Arithmetic Logical Unit (ALU), Load-Store Unit (LSU), Register
File (RF), and Control Unit (CU). Control unit is in charge of instruction fetching
from instruction memory, instruction decoding, and the execution of control flow
operations such as call and jump. Each port has a socket attached to it, and these
sockets are further attached to the buses. Socket-bus connections are illustrated
with the circles over the intersection of a bus and a socket. The arrows at the
sockets indicate the data transfer direction.

RF LSU ALU CU

Data memory Instruction memory

Bus 1

Bus 2

Bus 3

Bus 4

Figure 2.1: TTA processor with four buses and four units. Socket-bus connections are
illustrated with the circles over the intersections. The arrows in the sockets indicate the
data transfer direction.

2.3.1 Programming model

TTA programs consist of data transports, later referred to as moves, between the
units on the interconnection network instead of the traditional way of programming
complete operations [7]. A bus is capable of transferring a single value between
two connected sockets on each cycle. A program operation is divided into operand
and result moves. The operations are executed as side effect of the data transports
into the units. More specifically, one of the operand moves is a trigger that starts
the execution of an operation in a function unit. In addition, TTA processors are
capable of transferring constant values, immediates, into the units on the buses. The

2. Processors 6

constant value is encoded into the move operation source field.
For example, an addition operation of two registers ADD x,y → z produces two

operand moves x → ALU.in and y → ALU.t, and a single result move ALU.out →
z. This naming convention is typical in TTA context: in(1...n) are input ports, t
is the trigger port, and out (1...n) are output ports. Input operands of the addition
operation are transported through the connections provided by the interconnection
network to a compatible unit. After some operation latency, the result is read
back to the register z. Operation latency depends on both the operation and the
particular FU used.

An example of immediate value would be a subtraction operation of a register and
a constant, SUB 42,y → z, which produces two operand moves 42 → ALU.in and
y → ALU.t, and a single result move ALU.out → z. The value of 42 is transported
directly to the ALU function unit.

2.3.2 TTA specific optimizations

The transport triggered architecture template allows optimizations not possible on
other processor architectures [7]. Register file bypassing is an optimization that is
traditionally performed at run-time by hardware. In case of a TTA processor, the
compiler performs software bypassing at the compilation time.

In software bypassing, the compiler attempts to transfer results of an operation
directly from FU to dependent operations passing the register. This alleviates regis-
ter pressure and register file bottleneck by reducing the number of register accesses.
Further, bypassing might eliminate some false dependencies between operations in-
creasing the amount of scheduling freedom. Software bypassing may result in unnec-
essary register file write move after the result is transferred directly to all dependent
operations. This removal of redundant result moves is called Dead-result elimination
optimization. [7]

For example, consider a TTA program containing two dependent operations ADD
x,y → z and SUB z,a → b. The latter operation uses the result of the former
operation, thus the latter depends on the former. These subsequent moves produce
the following TTA moves:

x → ADD.in
y → ADD.t
ADD.out → z
z → SUB.in
a → SUB.t
SUB.out → b

The result of the addition operation can be bypassed directly to SUB.in. After

2. Processors 7

the bypass, move ADD.out -> z can be eliminated as there are no other uses for the
result. Figure 2.2 presents the possible data flow in the example. The dashed path
represents the bypass case in which the result of the addition operation is directly
written to SUB.1. The candidate move for dead-result elimination is highlighted by
the dash-dotted line.

ADD.out → z

a → SUB.t z → SUB.in

SUB.out → b

y → ADD.tx → ADD.in

ADD.out →
SUB.in

Figure 2.2: An example of a bypass opportunity. The bypass data flow is highlighted by
the dashed line. The dash-dotted move node is a candidate for dead-result elimination.

2. Processors 8

2.3.3 TTA-based Co-design Environment

TTA-based Co-design Environment is a toolset developed at Tampere University of
Technology for both designing and programming of synthesizable processors using
the TTA template [8]. TCE attempts to provide a convenient set of tools for TTA
processor design to minimize the time and the cost by automating as many steps as
possible.

TCE provides multiple customization points for processor design including the
interconnection network, the function units, and the register files. Architecture Def-
inition File (ADF) describes a TTA processor implementation. The file lists all
units that the processor contains, and how the interconnection network combines
the units together. In other words, a TTA processor in TCE is constructed from
an arbitrary set of units, and any kind of interconnection network that attach the
units together.

In TCE, processor design typically starts off with a high level language program
and a set of performance requirements and design limitations that must be met.
Once the high level language program has been implemented and tested natively,
a suitable TTA processor is constructed of function units, register files, and an
arbitrary connectivity network. The program is compiled to the designed processor
and simulated using a simulator, and the simulator metrics are used to evaluate the
design. This iterative process is carried out until all requirements have been met.
Below are listed the main tools of the TCE toolset that are involved in a processor
design.

Processor Designer (ProDe) is a graphical processor architecture design pro-
gram [8]. The tool provides an interface for graphically altering the designed TTA
processor, for example adding new units, and editing the interconnection network.
The designed processor is serialized into an ADF-file. Processor Generator (ProGe)
takes the output from the processor designer and generates a synthesizable Hardware
Description Language (HDL) description of the processor.

The retargetable TCE compiler tcecc compiles programs written in C, OpenCL
C, and C++ programming languages [8]. The compiler targets either TCE-specific
sequential bitcode or an architecture specific parallel TTA program in the TTA
Program Exchange Format (TPEF) as the low level language.

In order to verify and benchmark a designed processor architecture, the program
execution is typically simulated using a software that models the processor [8]. TCE
contains TTA Simulator (ttasim) that cycle-accurately interprets the input program
on an architectural model of the processor. The simulator requires the architecture
definition file of the simulated processor, and a program that is compiled to TPEF
against the ADF-file.

2. Processors 9

Program Image Generator (PIG) converts the compiled TPEF program into in-
struction memory and data memory images [8]. These images may be used along
with the generated HDL environment to test the processor in HDL simulators, and
for programming the fabricated final processor.

10

3. COMPILERS

A compiler is a computer program that transforms source code written in a source
language into another computer language, the target language. Usually the compiler
translates a high-level programming language to a lower level language such as
assembly language. The compiler analyses the high-level language statements of the
source program and transforms them into an internal representation that is further
processed. The internal representation, given that it is not syntactically ill formed
or semantically invalid, is synthesized into a target program.

Modern compilers are typically organized around multiple passes which are suc-
cessive stages in the compilation [9]. The phases of the compilation transform the
representation of the source program to another. The advantage of multi-pass com-
pilers is the possibility to perform many sophisticated optimizations. Also the input
to one optimization may depend on the output of another optimization. In addition,
a compiler that consists of multiple small parts is more understandable, and simpler
to test and develop.

A compiler is typically divided into three separate parts: the front-end, the
middle-end, and the back-end [9]. The front-end is in charge of analyzing the
high-level language programs and generating an intermediate program representation
(IR). Typically compilers have multiple front-ends for different high-level program-
ming languages.

The middle-end performs language- and machine-independent optimizations on
the intermediate program representation. These optimizations may include for ex-
ample removal of useless or unreachable operations, and function inlining. Different
front-ends and back-ends share a common middle-end which allows different high-
level language compilers targeting various architectures have shared implementation.

The back-end is aware of the target machine architecture and in charge of gener-
ating the output language code. Typically the output language is the native machine
language of the target machine. In addition, there are numerous machine-dependent
optimizations that are performed in this phase. Figure 3.1 presents the structure of
a typical compiler.

3. Compilers 11

Front-end Middle-end Back-end

Front-end x

Front-end y

Front-end z

Middle-end

Back-end a

Back-end b

High-level
language x

High-level
language y

High-level
language z

Target
architecture a

Target
architecture b

Figure 3.1: The structure of a typical compiler.

3.1 Intermediate Representation

The front-end of a compiler transforms the high-level language to an intermediate
representation of the input program [9]. The intermediate representation is imple-
mented with intermediate language that is targeting an abstract virtual machine.
The abstract machine has a virtual operation set of primitive operations that typ-
ically are found in most processor architectures. The IR stores the data in virtual
registers of the abstract machine. The number of available virtual registers is usually
higher than that of a target machine, or even infinite.

Using intermediate representation allows modular and clear separation of different
compiler parts. This way a single compiler might target multiple input languages,
and similarly support code generation for multiple target architectures.

3.1.1 Static Single Assignment Form

Static Single Assignment (SSA) is an intermediate representation where each virtual
variable is assigned only once [10]. If a program variable is assigned multiple times, a
new version of the variable is created for each assignment. This IR design simplifies
the analysis of variables.

For example, Figure 3.2 shows a high-level language program and its correspond-
ing SSA form. The transformation is done by splitting variable pos into variables
pos0 and pos1 as shown in Figure 3.2 (b). Function ϕ is used to merge the different
values of a variable at a join point. In this case, the merged value of pos0 and pos1

is assigned to pos2.

3. Compilers 12

x = f () ;
i f x > 0 then

pos = true ;
e l s e

pos = f a l s e ;
p r i n t (x , pos) ;
(a) High-level language

x0 = f () ;
i f x0 > 0 then

pos0 = true ;
e l s e

pos1 = f a l s e ;
pos2 = ϕ(pos0, pos1)
p r i n t (x0 , pos2) ;

(b) SSA form

Figure 3.2: High-level language program before and after SSA transformation.

3.1.2 Data Dependence Graph

Data Dependence Graph (DDG) is a directed acyclic graph G = (V, E), where V

is a set of nodes, E is a set of edges, which are ordered two-element subsets of V .
The nodes correspond to operations of the program and edges to the dependencies
between the operations. The weights of the edges resemble the minimum delay
interval between the execution of the predecessor and successor operations of the
edge. The graph is utilized whenever the ordering of operations is considered. For
example, instruction scheduling relies on the information that the DDG presents.

Critical path of a DDG is the longest directed path between any root node and
leaf node. However, the critical path is not unique because multiple paths in the
graph may have an equal length. The length of the critical path lays a lower bound
of cycles to the schedule. It might be impossible to achieve the optimal schedule
due to limitations set by the utilized hardware.

Data dependence analysis considers the ordering constraints between the opera-
tions, and results in a data dependence graph of the program. The constraints limit
the amount of ILP that one can exploit. There are two kinds of data dependen-
cies, flow dependencies and anti dependencies. Flow dependencies occur due to data
being shared by variables whereas anti dependencies rise when operations share a
read register. Anti dependencies are sometimes called false dependencies because
they are caused by register re-usage and not by the program semantics. Data de-
pendence analysis determines the limits in which the operations can be reordered
and parallelized.

Read after Write (RaW) is a dependency where a result written to register is later
used. For example, consider two operations, ADD x,y → z and SUB z,a → b. As
the substitution operation uses register z, there is a RaW dependency between the
operations.

When a register is being written multiple times, write operations are Write after

3. Compilers 13

Write (WaW) dependent. For example, two addition operations ADD x,y → z and
ADD a,b → z that write the result to same register are WAW dependent.

Write after Read (WaR) is anti dependency between two operations. If a register
is used after a read, the write and the read operations must be WAR dependent
to produce correct result. For example, two addition operations ADD x,y → z and
ADD a,b → y are WaR dependent because the latter operation rewrites the register
used by the former operation.

In addition to the dependencies listed above, operations also cause dependencies
between the generated moves in TTA processors. The result moves of an operation
depend on the input operands. For example, consider operation ADD x,y → z and
the generated moves:

x → ADD.1
y → ADD.2
ADD.3 → z

Move ADD.3 → z must depend on the input operands x → ADD.1 and y →
ADD.2 to preserve correct execution order of the operation stages.

The outcome of data dependence analysis is the data dependence graph. For
example, two operations, ADD x,y → z and SUB z,a → z produce the following
TTA moves:

x → ADD.1
y → ADD.2
ADD.3 → z
z → SUB.1
a → SUB.2
SUB.3 → z

These moves form a DDG as shown in Figure 3.3, assuming that addition and
subtraction operations take two cycles, and a register read consumes one cycle. The
edges are labeled with the dependence types and the edge weights, and the critical
path is highlighted by the dashed line.

3. Compilers 14

x → ADD.in y → ADD.t

a → MUL.tz → MUL.in

MUL.out → z

ADD.out → z

ADD, 2 ADD, 2

RAW, 1

OP(MUL), 2 OP(MUL), 2

WAW, 3

WAR, 2

Figure 3.3: Data dependence graph of two operations, ADD x,y → z and MUL z,a → z.
Edges are labeled with the dependence types and the edge weights. The critical path is
highlighted by the dashed line.

3.2 Code Generation

Code generation is the transformation of the intermediate representation into the
instruction set of the target processor performed by the backend. The major tasks in
code generation are instruction selection, register allocation, and instruction schedul-
ing. The flow of compilation is illustrated in Figure 3.4.

Instruction
Selection

Register
Allocation

Instruction
SchedulingIntermediate

Representation Target Code

Figure 3.4: Code generation process from the intermediate representation to the target
code.

Code generation for the transport triggered architecture is in many ways iden-
tical to that of common general purpose processors. The main differences are the

3. Compilers 15

requirement for statical compile-time scheduling, which this thesis concerns, and
various TTA-specific optimizations.

The subsections below describe the fundamental components involved in the com-
pilation of a program. The example program below is used to illustrate the code
generation process step by step.

z = ++x + y
b = z - a

In the example, at first the variable x is incremented by one using the increment
operation of the high-level language. The result of increment operation is then added
to y. At last, this intermediate result is subtracted by a and stored to variable b.

3.2.1 Instruction Selection

Instruction selection is a process of mapping virtual IR operations to target processor
instructions [11]. It is quite common that a single target instruction covers a set
of IR instructions, and that a IR operation is expanded to a sequence of target
machine operations. In practice, a compiler attempts to find a set of non-overlapping
instruction templates that cover all the IR instructions. Instruction selection is
proven to be NP-complete.

An instruction selector typically operates on a graph of the input program. For
example, SSA graph, which is a graphical representation of the input program in
SSA form, could be used in instruction selection. There are usually multiple ways
in which the graph can be covered with instruction templates. The compiler might
for example attempt to minimize the number of target instructions, or optimize for
some other cost over the target instructions.

Below are the TTA moves that the example above results in after the instruction
selection. The increment operation is executed using an addition by a constant of
one. The addition and subtraction are carried out with corresponding operations.

x → ADD.in
1 → ADD.t
ADD.out → x
x → ADD.in
y → ADD.t
ADD.out → z
z → SUB.in
a → SUB.t
SUB.out → b

3. Compilers 16

Consider the increment operation for variable x, ++x. This operation can be
covered with the ADD instruction as shown above. The variable x is transported into
a function unit that contains the operation ADD, incremented by the constant of one,
and stored back to the variable. Another way to cover the increment operation with
machine instructions is to use the increment operation that is found in many modern
architectures instead of the ADD instruction. The INC operation increments a register
by one and is typically notably faster the addition operation. More specifically, in
case of a TTA processor there then would be no need to transport the constant value
one to the function unit.

3.2.2 Register Allocation

The intermediate representation operates on virtual registers or variables. Register
Allocation is a process of mapping these virtual variables to real registers in the
target processor [12]. Each virtual variable has a live range, a time interval between
the first and the last usage of the variable. The live range of a variable determines
when a given variable needs to exists in either a register or memory. After the live
range, a variable is announced dead, meaning that it is not used anymore.

The number of concurrent live ranges of variables might exceed the number of
physical registers in the hardware. This raises the need for spilling values to memory.
A special spill code needs to be inserted in appropriate locations of the program to
store live variables in memory. Similarly, the variables need to be fetched back to
registers when they are needed again. Random accessible memory can be an order
of magnitude slower than processor registers. For this reason the task of register
allocator is to minimize register spilling and to keep the frequently used variables in
registers. Register allocation problem is proven to be NP-complete [13].

The re-usage of registers introduces anti dependencies between operations that
reduce the change for concurrency [14]. These dependencies are name dependencies,
that is, they can be removed by renaming the registers used. This optimization is
known as the register renaming.

Continuing with the example, below is a listing of the source code with the
registers assigned. The notation RF.n means that the variable is assigned to nth
register of register file RF. Register RF.0 is reused when the result of the addition
operation is transported back to the register file RF.

RF.0 → ADD.in
1 → ADD.t
ADD.out → RF.0
RF.0 → ADD.in
RF.1 → ADD.t

3. Compilers 17

ADD.out → RF.0
RF.0 → SUB.in
RF.3 → SUB.t
SUB.out → RF.4

3.2.3 Instruction scheduling

Instruction scheduling is a compiler optimization that attempts to reorganize the
execution order of instructions to improve performance. In dynamically scheduled
processors, instruction scheduling rearranges operations to improve the utilization
of processor resources. Operations consists of multiple stages in the processor, and
typically these stages can be interleaved. Pipelining might introduce hazards due
to dependencies between operations. Hazards result in pipeline stalls, No Opera-
tion (NOP) executions until the dependency is satisfied. During the hazards, the
instruction scheduler can appoint other instructions from the pipeline that are not
dependent of the current result.

Instruction scheduling is particularly important in TTA processors for efficient
execution. TTA processors typically have multiple concurrent function units that
are able to take advantage of pipelining. A TTA instruction scheduler takes account
of all available resources on the processor and attempts to utilize as much ILP as
possible. The instruction scheduler assigns operations to function units, and moves
to transport buses and sockets.

One possible schedule for the TTA moves of the example above, given the ar-
chitecture shown in Figure 2.1, is presented in Table 3.1. It is assumed that the
addition operation takes two cycles and the subtraction operation three cycles. All
operations are assigned to the function unit ALU.

Cycle Bus 1 Bus 2 Bus 3 Bus 4
1 RF.0 → ALU.in 1 → ALU.t - -
2 - - - -
3 - - ALU.out → RF.0 -
4 RF.0 → ALU.in RF.1 → ALU.t - -
5 - - - -
6 - - ALU.out → RF.0 -
7 RF.0 → ALU.in RF.3 → ALU.t - -
8 - - - -
9 - - - -
10 - - ALU.out → RF.4 -

Table 3.1: A schedule for the TTA moves presented in the example above for the TTA
processor shown in Figure 2.1.

Figure 3.5 shows the moves assigned at cycle 4. The dashed-line path represents

3. Compilers 18

the move RF.0 → ADD.in and the dashed-dotted line move RF.1 → ADD.t. The
socket to bus connections highlighted with red color are the ones connected at this
cycle.

RF LSU ALU CU

Figure 3.5: An illustration of the schedule shown in Table 3.1 at cycle 4.

The result is read from ALU at cycle 6 as is shown in Figure 3.6. The SUB operation
move assignments are identical to those of the addition operation.

RF LSU ALU CU

Figure 3.6: An illustration of the schedule shown in Table 3.1 at cycle 6.

3.2.4 Phase Ordering

Register allocation may be performed either before, after, or at the same time as
instruction scheduling. Register allocation attempts to minimize the spilled vari-
ables and reuse registers as much as possible. Reuse of registers leads to a higher
number of dependencies between operations that the instruction scheduler must
cope with. Register renaming during scheduling reduces the number of these ad-
ditional dependencies. On the other hand, the instruction scheduler attempts to

3. Compilers 19

exploit as much ILP as possible, given the particular TTA processor, leading to
more spilling as the number of physical registers is typically much lower than the
amount of virtual registers alive in parallel. These two objectives are in conflict with
each other. Simultaneously performed register allocation and instruction scheduling
require complicated algorithms and makes the scheduler monolithic.

3.3 TCE Retargetable Compiler Structure

The TCE retargetable compiler is a high-level language compiler targeting C, C++,
and OpenCL C programming languages [8]. The front-end is implemented around
the Clang compiler front-end that is part of the LLVM compiler infrastructure [15].
The Clang compiler produces intermediate representation named LLVM intermedi-
ate representation. The LLVM intermediate representation is in SSA form. TCE
utilizes the numerous middle-end optimizations that LLVM provides around the
LLVM IR language. [15] The back-end of the TCE compiler is customized specifi-
cally for TTA processors. Figure 3.7 presents the structure of the TCE compiler.

In tcecc, the instruction scheduler operates on a single basic block, which is a
set of operations that have only one entry point and only one exit point. These
types of schedulers are known as local schedulers. In addition, register allocation
is done before instruction scheduling to reinforce modularity. This design choice
prioritizes efficient register usage over exploiting all possible ILP. Schedule-time
register renaming is used to compensate the disadvantages of this approach in tcecc.

This thesis proposes a new instruction scheduling algorithm for the TCE compiler,
highlighted in the Figure 3.7. The scheduler is implemented as a pass to the TTA
specific back-end of the compiler. This pass gets a basic block and the current TTA
processor configuration, that is the units and the interconnection network, as an
input, and results in a set of scheduled moves as an output.

3. Compilers 20

TTA Code Generation

Retargetable TTA backend

LLVM code generation framework

Standard LLVM Tools

High-level Language
Program

Bitcode Libs:
Dthread, Newlib LLVM Optimizations

Clang Compiler
Frontend LLVM Bitcode Linker LLVM Optimizer

Architecture
Description

Retargetable TTA
Backend

Bitcode
Instruction
Selector

Program
Partitioner

Register
Allocator

LLVM IR
to

TCE IR
Conversion

TCE libraries

Instruction
Scheduler and
TTA-specific
Optimizations

Parallel TTA
Program

Bitc
od

e

Bitc
od

e
Bitcode

Figure 3.7: Overview of the TCE compiler. The highlighted part indicates the modified
component in this thesis project.

21

4. INTEGER LINEAR PROGRAMMING

A Constraint Satisfaction Problem (CSP) P is a triple P = 〈X , D, C 〉, where X
is an n-tuple of variables X = 〈x1 , x2 , ..., xn〉, D is an n-tuple of domains D =
〈D1 , D2 , ..., Dn〉 and C is an m-tuple of constraints C = 〈C1 , C2 , ..., Cm〉. Each
variable xi is in the corresponding domain, xi ∈ Di. A constraint Cj is a pair
〈X , Sj〉, where Sj is a relation on the variables [16].

A feasible solution is an assignment x of values to the variables in X , where the
assigned values appear in their respective domains D, that satisfies the constraints
in C . There might be no solution, a single solution, or multiple solutions. Typically
the applications are under constrained, that is they have multiple solutions which
can be arranged according to some property of the solution. These kinds of problems
are called Constraint Optimization Problems (COP). In addition to the constraints,
they have an objective function f which is to be either minimized or maximized.
An optimal solution x∗ is a feasible solution such that for any other feasible solution
x′, f(x∗) ≤ f(x′) given that the objective function is to be minimized.

Integer Linear Programming problems are a subset of constraint satiscation prob-
lems in which the variables X are restricted to be integers, and the objective function
f and the constraints D are linear. Moreover, 0-1 integer programming is a spe-
cial case of integer linear programming problems where variables are required to be
binary, that is, 0 or 1. The practical applications of integer linear programming
problems are numerous including scheduling, artificial intelligence, and resource al-
location [17].

P is the set of all problems that can be solved in polynomial time by a determin-
istic Turing machine. Nondeterministic polynomial time (NP) problems are a set
of all computational problems that have efficiently verifiable solutions, that is they
are solvable in polynomial time by a nondeterministic Turing machine (NDTM).
Since all deterministic Turing machines are a subset of nondeterministic Turing
machines, P is also a subset of NP. Stephen Cook introduced the theorem of NP-
completeness through his famous 1971 paper entitled ’The Complexity of Theorem
Proving Procedures’ [18]. The prevailing belief is that NP-complete problems do not
have polynomial time algorithms, and thus are not in P [19]. A decision problem
S is NP-complete if the feasibility of any given potential solution can be verified
in polynomial time and if any NP problem can be Turing-reduced to S in polyno-

4. Integer Linear Programming 22

mial time [18]. Thus, if there exists a polynomial time algorithm for a NP-complete
problem S, all other NP-complete problems can be solved in polynomial time by
first converting them to an instance of the problem S. Consequently, NP-complete
problems are the most important problems amongst NP problems.

Constraint satisfaction problems are typically in NP [20], and many important
constraint satisfaction problems are proven to be NP-complete [16]. In particular,
integer linear programming has been shown to be NP-hard [21] and 0-1 integer
programming to be NP-complete [22].

4.1 Modeling Optimization Problems with Integer Linear Pro-
gramming

There are useful common patterns that can be utilized to model the relations of
problem variables. The knowledge of these patterns also helps understanding com-
plex integer linear programming constraints. Below we list some common ways to
model conditional variable relations with linear constraints. In these examples, all
variables are binary.

In scheduling, some one-time events might be required to happen at least n units
of time before others. This can be modeled as follows: given a prerequisite event xt

and a set of dependees Y = {yt} (t ∈ [0, T]), the following must hold:

xt +
∑
y∈Y

t+n∑
t′=0

yt′ ≤ 1, for t ∈ [0, T]. (4.1)

This constraint requires that if xt equals 1, then none of the variables in the set
of dependees can be equal to 1 within the time interval [0, t + n]. Consequently,
xt must happen at least n units of time before the dependee events. For example,
when scheduling a manufacturing process consisting multiple steps, consecutive steps
should be assigned to correct order and there must be the delay of each subprocess
in between the steps.

Similarly, a one-time event might enforce a set of other events to happen within
n units of time of its occurrence. To constraint the set of other events to occur at
most n units of time before xt, the following most hold

xt −
1
|Y |

t∑
t′=t−n

∑
yt∈Y

yt ≤ 0, for t ∈ [0, T]. (4.2)

Whereas if the event constrains the set of other events to happen at most n units
of time after xt,

xt −
1
|Y |

t+n∑
t′=t

∑
yt∈Y

yt ≤ 0, for t ∈ [0, T]. (4.3)

4. Integer Linear Programming 23

These constraints require that all the binary variables in the set Y are equal to
one exactly once within the corresponding time interval if and only if the variable xt

equals 1. This causes the summation to equal the cardinality of the set Y and thus
the subtraction equals zero. In case the prequisite variable equals zero, the values
of variables in the set Y are not constrained. For example, a manufacturing process
might require that some consecutive steps must be done within predetermined time
interval.

Mutually exclusive variables can be precluded by constraining the sum of the
variables be equal to one. Similarly, the mutual exclusivity of sets of variables leads
to

∑
X∈S

1
|X|

∑
x∈X

x = 1, (4.4)

where S is a set of all mutually exclusive sets of variables and |X| is the cardinality
of the set X. This equation constraints that exactly one set has a variable of value
1. By varying the scale factor |X|−1, it is possible to set different bounds to the
variables in sets. A scale factor of 0.5 allows a single set to have exactly two variables
that have a value of 1. For example, there might be different alternative processes
consisting of independent steps in a manufacturing process of which a single process
is to be chosen.

4.2 Example models

4.2.1 Knapsack

The knapsack problem is a problem of constraint optimization. The objective is
to determine a collection of items so as to maximize the total value of the knap-
sack without exceeding the capacity of the knapsack. The knapsack problem is
NP-complete [23]. The knapsack problems represent a very large number of real-
world problems and often arises in economics, financial optimization, optimization
of available resources, and cryptography.

Knapsack problem can be modeled as an integer linear programming problem.
Let an integer variable xi be the quantity of each item, X = 〈x1, x2, ..., xn〉. For
each item, the domain is Di = {d ∈ N | 0 ≤ d ≤ di}, where di is the largest number
of items that weight less than the capacity of the sack such that diwi ≤ C, in which
wi is the weight of the ith item and C is the capacity of the sack.

The overall weight cannot exceed the knapsack capacity, yielding constraint∑n
i=1 wixi ≤ C. In order to find an optimal collection of items, objective function of∑n
i=1 xivi, where vi ≥ 0 is the value of the ith item, is to be maximized.

4. Integer Linear Programming 24

4.2.2 Traveling salesman

The Traveling Salesman Problem (TSP) is the one of the most intensively studied
combinatorial optimization problems. It has been proven to be NP-complete [24].
It is simple to describe and yet computationally incredibly hard: for m cities and
their pairwise cost of traveling cij ≥ 0, determine the most economic way of visiting
each city exactly once. The practical applications of the TSP include scheduling,
logistics, and microchip manufacturing [25,26].

The TSP can be formulated as a 0 – 1 integer programming problem. Let xij be
a boolean variable representing whether the journey from ith city to jth is included
in the route, indicated by a true value. This produces m− 1 variables for each city
and m(m−1) variables altogether. The salesman must pass through each city once:

m∑
j=1

xij =
m∑

i=1
xij = 1, for j = 1, ..., m, i = 1, ..., m.

This constraint might lead to infeasible solutions because it is possible to route the
salesman through disjoint subtours instead of a single trip. Consequently, additional
constraint, ∑

i∈K

∑
j∈K xij ≤ |K| − 1, for all K ⊂ {1, ..., m}, must be included in

order to eliminate the subtour solutions. This inequality ensures that the route must
leave each subset K. The objective function to be minimized is ∑m

j=1
∑m

i=1 cijxij.

4.3 Solving Integer Linear Problems

Constraint satisfaction problems are typically solved using some sort of search ex-
ploring all the possible assignments of the variables. Typical techniques are back-
tracking and constraint propagation [16]. There are numerous algorithms to solve
integer linear problems exactly. Following subsection presents an algorithm called
Branch and Bound (BB).

4.3.1 Branch and Bound Algorithm

Branch and bound algorithm is a two-stage algorithm that is used for a number of
NP-hard problems [27]. Branching step splits the problem into two or more subprob-
lems, whereas bounding results in calculated lower or upper bounds for the objective
function value of the subproblem. These bounds are used to prune unpromising
subproblems. The problem is solved when there exist a single solution or when the
upper bound matches the lower bound. This leads to a search tree whose nodes are
the subproblems of the problem.

Linear programming relaxation (LP) is a solving technique where all integer con-
strains are replaced with their continuous counterparts [28]. For example, a binary
variable x ∈ {0, 1} would be replaced with a continuous variable x ∈ [0, 1]. The

4. Integer Linear Programming 25

resulting relaxation is a linear program that is solvable in polynomial time. That is
to say, LP-relaxation transforms a NP-hard optimization problem into an analogous
problem that can be solved in polynomial time to gain information about the solu-
tion to the original problem. LP-relaxation is typically used in branch and bound
to find the bounds of each subproblem.

For 0-1 integer linear programming, branch and bound with LP-relaxation is
performed as follows. The branching is done by dividing the problem into two
subproblems, one in which the variable is set to 0 and the other in which the variable
is set to 1. The solution to the LP-relaxation provides a bound for this subtree; If
the current solution is worse than the best integer solution found so far, the solver
backtracks from this subtree. Otherwise, the subtree is considered further. If the
current node is a leaf node of the search tree, the integer solution is checked against
the best integer solution so far. This procedure is recursively applied until the search
tree has been examined entirely.

For example, consider the following binary integer linear programming problem:

Maximize:
9a + 5b + 6c + 4d

Subject to:
6a + 3b + 5c + 2d ≤ 10

c + d ≤ 1
−a + c ≤ 0
−b + d ≤ 0

(4.5)

The optimal solution to the LP-relaxation a, b, c, d ∈ [0, 1] is (5/6, 1, 0, 1), and
the corresponding objective value equals 16.5. The first branch is done over variable
a. Let consider the branch in which a equals 0, where the problem becomes the
following

Maximize:
5b + 4d

Subject to:
3b + 2d ≤ 10
−b + d ≤ 0.

Since a equal to zero, c must be zero as well due to constraint −a + c ≤ 0.
The constraint c + d ≤ 1 can be eliminated also as d is in any case less than 1.
The optimal solution to the LP-relaxation of this subproblem is (0, 1, 0, 1) with an

4. Integer Linear Programming 26

objective value of 9. This becomes the current best known solution because all the
variables are binary valued.

The LP-relaxation of the branch where a equals 1 becomes

Maximize:
9 + 5b + 6c + 4d

Subject to:
3b + 5c + 2d ≤ 4

c + d ≤ 1
−b + d ≤ 0.

The subproblem has an optimal solution at (1, 0.8, 0, 0.8) with an objective value
of 16.2. As the objective value is greater than the current best known binary solution,
the branch is worth exploring further. Next, branching is done over variable c.
Setting b to equal 0 produces the following subproblem

Maximize:
9 + 6c

Subject to:
5c ≤ 4

The optimal solution to the LP-relaxation of the subproblem is (1, 0, 0, 0) with
an objective value of 9. The algorithm backtracks from this subtree as the objective
value is less than that of the current known best solution.

When c equals 1, the constraint 3b + 5c + 2d ≤ 4 becomes 3b + 2d ≤ −1 and is
thus unfeasible.

Next, the other branch over b, in which the variable equals 1, is considered. The
optimal solution to the LP-relaxation of the subproblem

4. Integer Linear Programming 27

Maximize:
14 + 6c + 4d

Subject to:
5c + 2d ≤ 1

d ≤ 1

equals (1, 1, 0, 0.5). The objective value equals 16, which is higher than the current
known best binary solution. As c is already 0 in the parent LP-relaxation solution,
the same solution is the best solution of this branch as well. Setting d to 0 gives
an objective value of 14 and becomes the current best known binary solution. The
solution where d equals 1, that is (1, 1, 0, 1), is not feasible as the constraint 5c+2d ≤
1 is not satisfied.

When c equals one, the solution is not feasible. Therefore (1, 1, 0, 0) is the optimal
solution to the problem with an objective value of 14. The search tree of this branch
and bound search is illustrated in Figure 4.1.

(5/6, 1, 0, 1)
Objective value: 16.5

(1, 0.8, 0, 0.8)
Objective value: 16.2

(0, 1, 0, 1)
Objective value: 9

a = 0a = 1

(1, 1, 0, 0.5)
Objective value: 16

(1, 0, 0, 0.8)
Objective value: 13.8

b = 1 b = 0

Not feasible(1, 0, 0, 0)
Objective value: 9

c = 1 c = 0

(1, 1, 0, 0.5)
Objective value: 16Not feasible

c = 1 c = 0

(1, 1, 0, 0)
Objective value: 14Not feasible

d = 1 d = 0

Figure 4.1: Search tree of the integer linear problem described in Equation 4.5.

4. Integer Linear Programming 28

4.3.2 Special Ordered Sets

A Special Ordered Set (SOS) is an ordered subset of model variables to specify
integrality conditions [29]. Branch and bound algorithm may work more intelligently
knowing that a variable belongs to an ordered set of variables. The branching
order of variables is prioritized as the special ordered set dictates. For example, in
scheduling there are typically sets of mutually exclusive variables and some of the
variables are more preferable than others.

There are two kinds of special ordered sets. Special Ordered Sets of type One
(SOS1) are defined to be an ordered set of variables at most one of which may be
non-zero in a feasible solution. Typically an SOS1 is to represent a set of mutually
exclusive alternatives ordered in increasing cost to guide the search order. Special
Ordered Sets of type Two (SOS2) is a set of consecutive variables in which not more
than two adjacent members can be positive, all others being 0.

29

5. INTEGER LINEAR PROGRAMMING
FORMULATION OF THE TTA INSTRUCTION
SCHEDULING PROBLEM

Let us model the TTA instruction scheduling problem as 0 – 1 integer linear pro-
gramming problem. The scheduler input consists of the sequential operation moves
generated from the compiled program, and the data dependency graph of the moves.
As register allocation is currently done prior to scheduling, move’s source or des-
tination might be already determined. After scheduling, all moves are assigned to
the interconnection network onto a single cycle, and consequently the operations are
appointed to function units.

For each move there may exist multiple destination and source ports, and similarly
there might be more than one connection between a pair of destination and source
port on the interconnection network. Immediate values only have a destination
port and an assigned bus. In addition to the moves generated from the compiled
program, an additional bypass move is created for each result move that is candidate
for bypass optimization given the interconnection network. This move, the bypass
move, is generated by taking the source from the bypass candidate move and the
destination from the bypass result move.

The decision variables of the model specify the connection to be used, and the
cycle the move is to be executed. Associate binary variable

Mi,t,c =

1 Move i is assigned to connection c at cycle t,

0 otherwise,

to describe a possible move assignment, indicated by a true value.
The interconnection network confines a set of possible connections Ci for each

move i. For each move there exist variables for all possible connections Ci, and
cycles in the range [tmin, tmax]. Let P be the set of all moves of a considered TTA
program.

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 30

5.1 Completeness

This section summarizes the aspects of the modeled problem that must be taken into
account. For each requirement, there is a reference to the subsection that proposes
the constraints that take care of the particular prequisite. The purpose is to provide
an informal completeness analysis of the integer linear programming model.

• Each move must be assigned exactly once, as proposed in Subsection 5.2.1.
Exception to this are bypass related moves which have more complicated rela-
tions and mutually exclusive options. Bypass related constraints are outlined
in Subsection 5.2.3. Above-mentioned constraints produce a schedule in which
all the moves are assigned but different resource limitations are not taken into
account.

• Some operations require results from previous operations, but preceding con-
straints allow operations to be assigned at an arbitrary order. In order to
obey these dependencies, Subsection 5.2.2 proposes constraints that restrain
the ordering to adhere with the dependencies.

• Multiple moves might be assigned to same bus at a given cycle. Subsection
5.3.3 lays out constraints to enforce that each bus transport only a single move
at each cycle.

• Function units can start an execution of a single operation at a cycle. More-
over, pipelined operations should be interleaved so that none of the results are
being overwritten before they are transported to the corresponding destina-
tions. Subsection 5.2.5 presents the necessary constraints.

• Register files might be accessed more than once per cycle per port. The access
is bounded by the number of input and output ports attached to the unit.
Each port can transport a single value at a cycle. Register file constraints are
proposed in Subsection 5.2.4.

5.2 Constraints

5.2.1 All Moves Must be Assigned

All moves Mi,c,t that are not bypass moves, moves candidate for bypassing, or bypass
result moves must be assigned exactly once to a connection and a cycle:

∀i :
∑
c∈Ci

tmax∑
t=tmin

Mi,c,t = 1. (5.1)

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 31

5.2.2 Dependencies Between Moves

The data dependency graph sets an order of execution for moves of a given program.
Let Mi,c,t be an indicator associated with an arbitrary move and MD

i′,c′,t′ be its
dependence. By Equation 4.1, the following constraint must be satisfied

MD
i′,c′,t′ +

t′+l∑
t=tmin

Mi,c,t ≤ 1, for t′ ∈ [tmin, tmax]. (5.2)

The constraint requires for each t′ that the dependent move must not be executed
within time interval [tmin, t′ + l], where l is latency of the executed operation.

5.2.3 Bypassing and Dead-Result Elimination

Bypass moves generated from the bypass candidate moves are alternative to each
other. The bypass move inherits the dependencies from the source move, and each
move that is dependent of the bypassed move is dependent of the bypass move as well.
Figure 5.1 presents a data dependence graph with an added bypass move, highlighted
by the dashed line. The bypass source ADD.3 → z and bypass candidate move z →
SUB.2 are emphasized with the dashed-dotted poly-line. The bypass move contains
the incoming edges of the bypass source ADD.3 → z and respectively the outgoing
edges of the bypass candidate z → SUB.2.

Dead-result elimination allows the removal of the result move in case a move is
bypassed to all the destinations. For example, in the situation presented in Figure
5.1 the result move ADD.3 → z can be eliminated as the only outgoing edge is to
the bypassed move z → SUB.2. In summary, bypassing together with dead-result
elimination result in two possible relations of moves. If the result move only has
a single outgoing edge, either the bypass move, or the bypass candidate and the
result move shall be assigned. However, if the result moves multiple outgoing edges,
the result move is to be assigned and the bypass candidate and the bypass move
are alternative to each other. By applying Equation 4.4, the former case results in
constraint

∑
c∈Ccandidate

tmax∑
t=tmin

Mcandidate,c,t+

1
2

 ∑
c∈Cbypass

tmax∑
t=tmin

Mbypass,c,t +
∑

c∈Cresult

tmax∑
t=tmin

Mresult,c,t

 = 1, (5.3)

where Mcandidate, Mbypass and Mresult are the bypass candidate, the bypass move, and
the result move, respectively. The latter condition requires two constraints. The

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 32

ADD.out → z

a → SUB.in z → SUB.t

SUB.out → b

y → ADD.tx → ADD.in

ADD.out →
SUB.t

Figure 5.1: Data dependence graph showing a bypass opportunity for move z → SUB.t

bypass candidate and the bypass move must be alternative to each other. Using
Equation 4.4 gives

∑
c∈Ccandidate

tmax∑
t=tmin

Mcandidate,c,t +
∑

c∈Cbypass

tmax∑
t=tmin

Mbypass,c,t = 1, (5.4)

where Mcandidate and Mbypass are the bypass candidate and the bypass move, respec-
tively. Also the result moves has to be assigned yielding

∑
c∈Ci

tmax∑
t=tmin

Mresult,c,t = 1, (5.5)

where Mresult is the result move.

5.2.4 Register File Port Constraints

Register files have a number of registers of which a single one can be read from an
output port at any given cycle. In other words, the number of output ports bounds
the number of concurrent register reads from a register file. Similarly each input
port can write into a single register at a cycle. To limit the outbound moves at each
cycle to one for each port we require that

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 33

∑
Mi∈P

∑
c∈Crf

i

Mi,c,t = 1, for t ∈ [tmin, tmax], rf ∈ R, (5.6)

where R is a set of all RFs on the given TTA processor, and Crf is a set of all
connections that originate from register file rf.

5.2.5 Function Unit Constraints

Operations executed at function units consist of multiple operands, of which one is a
triggering operand that starts the operation execution. All other operands shall be
written to FU input ports at any cycle before or at the same time as the triggering
operand. Operand trigger constrains the latest cycle on which other operand must
be written. There might be multiple function units that can execute given operation
and each operand might have multiple connections to a FU. Therefore by Equation
4.2,

∑
c∈Cf

trigger

Mtrigger,c,t −
1
|O|

 ∑
Mi∈O

∑
c∈Cf

i

t∑
t′=t−e

Mi,c,t′

 ≤ 0,

for t ∈ [tmin, tmax],∀f ∈ FU, (5.7)

where FU is a set of all function units that can execute the considered operation, Cf

is a set of all connections that can transport given move to appropriate port on f ,
Mtrigger is the trigger move, O is a set of operand moves that relate to the triggering
move Mtrigger. Variable e is operand slade limit, a model parameter that restricts
the operand move transport to occur at most [0, e] cycles before the triggering move
to reduce model size.

No other operand moves must be written to operand ports between cycles [t−t′, t],
where t and t′ are cycles in which the triggering move and the operand move is
being written, respectively. In other words, the operand port is reserved to the
operation until the execution triggered to start after the operand is written to the
port. This is illustrated in Figure 5.2, where an operation of three operands is being
transferred to a FU. The port reservation after an operand write are illustrated
with blue line, which spans until the triggering port FU.3 is being written into.
This yields constraint

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 34

∑
c∈Cf

trigger

Mtrigger,c,t +
∑

c∈Cf
o

Mo,c,t′ + 1
|K|

 ∑
Mi∈K

∑
c∈Cf

i

t∑
t′′=t′

Mi,c,t′

 ≤ 2,

for t ∈ [tmin, tmax],∀t′ ∈ [t− e, t],∀f ∈ FU,∀Mo ∈ O, (5.8)

where Mo is the current operand node, O is the set of all operand moves, and K

is a set of other operand moves that might be assigned to same port as Mo. The
constraint is an application of Equation 4.4. By setting the left-hand side be equal
to two both the triggering move and the current operand move can be equal to one,
and all the other operand moves must be zero.

t

0

FU.in

FU.t

FU.out

1 2 3 4 5

Figure 5.2: Function unit port reservations until an operand is written. The first two
operands, FU.in and FU.t, reserve the corresponding input ports until the execution is
triggered to start from port FU.out.

The results are available at the output ports after an operation latency has passed
since the triggering move has been written and until the next operation overwrites
the result. All result reads of an operation must be read some time after the trigger-
ing move has been written, and no other operation can overwrite the result before
the result read occurs. Figure 5.3 illustrates the port reservation in case of two op-
erations in which FU.2 is the triggering port and both have a latency of two cycles.
The first operation result is available at t = 4, that is operation latency after the
trigger FU.2 is written. Since the result of the first operation is read at t = 5, the
execution of operation two shall not start before t = 4.

Using Equation 4.3 to enforce all result moves to occur at correct interval leads
to

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 35

t

0

FU.in

FU.t

FU.out

1 2 3 4 5 6 7 8
Operation 1 Operation 2

Figure 5.3: Pipelining of two operations. The first operation trigger cycle determines when
the results are available. Similarly, the cycle of the last result read determines when the
execution of next operation can be started.

∑
c∈Cf

trigger

Mtrigger,c,t −
1
|R|

∑
Mi∈R

∑
c∈Cf

i

t+l+e∑
t′=t+l

Mi,c,t′ ≤ 0,

for t ∈ [tmin, tmax],∀f ∈ FU, (5.9)

where R is a set of all results reads of the operation that Mtrigger triggers, and e is
result read slack, a maximum cycle count that given result can be retained in an
output port. All other triggering moves must be prevented to overwrite the result

∑
c∈Cf

trigger

Mtrigger,c,t +
∑
c∈Cf

r

Mr,c,t′ + 1
|T |

 ∑
Mi∈T

∑
c∈Cf

i

t∑
t′′=t′

Mi,c,t′

 ≤ 2,

∀t ∈ [tmin, tmax], for t′ ∈ [t− e, t],∀f ∈ FU,∀Mr ∈ R, (5.10)

where T is a set of other trigger moves to function unit f besides Mtrigger, and R is
a set of result moves of Mtrigger. The reasoning behind the constraint is identical to
that of Equation 5.8.

5.3 Special Ordered Sets

This section provides special ordered sets for the model described in the previous
section. These sets may be used by branch and bound solvers The ordering of the
special ordered sets defined below is based on the variable cycle, the earlier a variable
is assigned the better. This prioritizes as early assignments of variables as possible.

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 36

5.3.1 SOS1: All Moves Are Assigned Once

Since all must moves must be assigned only once as per Equation 5.1, variables
generated for each move of a program are mutually exclusive to each other. This
yields the following SOS1

∑
c∈Ci

tmax∑
t=tmin

Mi,c,t ≤ 1. (5.11)

5.3.2 SOS1: Input Socket Constraints

An input socket is able to transfer a single move into the unit on each cycle:

∑
Mi∈P

∑
c∈Cs

tmax∑
t=tmin

Mi,c,t ≤ 1, for s ∈ I, (5.12)

where I is a set of all input sockets and Cs is a set of all connections that pass along
socket s.

5.3.3 SOS1: Bus Constraints

A bus is capable of transferring a single value between two connected sockets on
each cycle. This yields SOS for all buses on each cycle

∑
Mi∈P

∑
c∈Cb

tmax∑
t=tmin

Mi,c,t ≤ 1, for b ∈ B, (5.13)

where B is a set of all buses and Cb is a set of connections that consume bus b.

5.4 Objective Function

Objective function of the integer linear programming model can be varied depending
on the intended use of the designed TTA processor. If the most important criterion
is the execution time of the compiled program, the height of the DDG can be
minimized. To achieve that, the objective function attempts to execute the leaf
nodes of the data dependence graph as early as possible. Thus all the other nodes
of the graph are pushed to be assigned earlier as they all are descendants of the leaf
nodes. The objective function to minimize is

min :
∑

Mi∈L

∑
c∈Cb

tmax∑
t=tmin

t ·Mi,c,t, (5.14)

where L is a set of leaf nodes of the data dependence graph. The model must
minimize the cycle of all leaf nodes and not just the ones on the critical path because

5. Integer Linear Programming Formulation of the TTA Instruction Scheduling
Problem 37

otherwise there might be outlier leaf nodes that increase the cycle count of the basic
block.

38

6. EMPIRICAL EVALUATION

The integer linear programming model for the TTA scheduling problem was tested
on a server that had processor clock speed of 3.2GHz, 12 CPU cores, and 16384MB
random-access memory. The models were optimized with Solving Constraint Integer
Programs (SCIP) Mixed Integer Programming solver, which is one of the fastest
non-commercial solvers available [30]. The model was compared to the graph-based
heuristic scheduler that TCE uses by default [8].

For each input program compiled, the cycle count, and the number of register
accesses were registered. The cycle count and the register usage of the compiled
program were obtained from the TTA simulator described in Subsection 2.3.3. In
addition, the CPU time and the wall clock time of the TCE compiler were measured
with the GNU time utility (version 1.7), which is accurate enough for these kinds of
measurements.

The sections below present the results for two different transport triggered archi-
tecture processors. The objective function used is the one described in Subsection
5.4, in which the height of the data dependence graph is minimized. There were
five different example problems: infinite impulse response (IIR) filter, finite impulse
response (FIR) filter, dot product calculation, convolution operation, and complex
number arithmetics. These kinds of problems are typically executed in embedded
processors and contain a reasonable amount of concurrency.

6.1 Minimalist Architecture

Minimalist architecture consists of two register files, RF and BOOL, an ALU, a LSU,
a CU, and a function unit MUL providing the multiplication operation. There are
three buses in the architecture. The interconnection network is quite reduced, but
provides enough connections to execute multiple operations concurrently. The ALU
can transport results back to its input ports enabling bypassing between arithmetic
operations. In addition, it is possible to bypass results from the MUL unit to the
ALU, and the other way. The load-store unit results and inputs can be bypassed
directly from both the ALU unit and the MUL unit. The architecture is shown in
Figure 6.1.

6. Empirical Evaluation 39

RF LSU ALU CU MUL BOOL

Figure 6.1: Minimalist architecture with two register files, RF and BOOL, an ALU, a
LSU, a CU, and a function unit MUL providing the multiplication operation.

The results for the minimalist architecture are tabulated in Appendix 1. The
integer linear programming scheduler is able to reduce the input program into 52%
of the cycles compared to the heuristic scheduler in the best case, and 97.5% at
worst case. The average cycle count equals 70.0% of the cycle count of the heuristic
scheduler. Relative cycle counts are shown in Figure 6.2.

FIR IIR Dot Complex Conv
0

20

40

60

80

100

80.6%

64.3%
56%

52%

97.5%

Program

C
yc

le
C

ou
nt

[%
]

Figure 6.2: Integer linear programming scheduler cycle count relative to that of the heuris-
tic scheduler. The percentages are obtained by dividing the cycle count of the integer linear
programming scheduler by the cycle count of the heuristic scheduler.

The reduction of register reads is apparent although the objective was to mini-
mize the cycle count. In some cases, the IIR filter and the dot product calculation,
the integer linear programming scheduler was able to eliminate all results reads.
The schedule produced for the convolution program had slightly more register reads
than the heuristic scheduler. On average, the integer linear programming scheduler
consumed 64.7% less register reads compared to the schedule of the heuristic sched-
uler. The integer linear programming scheduler was able to eliminate 25.1% of the

6. Empirical Evaluation 40

register writes on average. In the case of the convolution program, the amount of
register reads was equal to that of the heuristic scheduler. The register accesses of
the integer linear programming scheduler are presented in Figure 6.3.

FIR IIR Dot Complex Conv
0

20

40

60

80

100

33.3%

0% 0%

33.3%

110%

90.9% 92.9%

72.7%

18.2%

100%

Program

R
eg

is
te

r
A

cc
es

se
s

Register Reads Register Writes

Figure 6.3: The ratio of register reads and register writes between the integer linear
programming scheduler and the heuristic scheduler.

Figure 6.4 presents the execution times for the integer linear programming sched-
uler. The heuristic scheduler was able to schedule all programs in a second or less.
It is evident that the proposed scheduler takes distinctly more time to schedule the
programs, 4.7 minutes on average and 19.1 minutes in the worst case.

FIR IIR Dot Complex Conv
0

5

10

15

20

3.4

0.2 0.3 0.3

19.1

Program

T
im

e
[m

in
]

Figure 6.4: Execution times for the integer linear programming instruction scheduler.

6. Empirical Evaluation 41

6.2 Clustered Architecture

Clustered architecture is a VLIW-like architecture divided into separate computing
clusters. These three clusters are formed of a register file and an ALU pairs. The
clusters are interconnected into each other. In addition, the architecture provides
a MUL unit for multiplication operation. There are 17 buses altogether. Although
the interconnection network is quite reduced, the architecture provides a high level
of concurrency for the operations. The architecture is illustrated in Figure 6.5.

6.
Em

piricalEvaluation
42

RF2 LSU CU MUL BOOLRF1 ALU2 ALU3ALU1

Figure 6.5: Clusted architecture consisting of three separate computing clusters, a multiplication unit, a CU, a LSU, and a boolean register file.

6. Empirical Evaluation 43

The results for the clustered architecture are tabulated in Appendix 1. On av-
erage, the integer linear programming scheduler decreased the program length by
19.6%. The most notable reduction was in the case of the complex number arith-
metics program, in which the number of cycles were 43.7% less than that of the
heuristic scheduler. The cycle counts of the integer linear programming scheduler
are presented in Figure 6.6.

FIR IIR Dot Complex Conv
0

20

40

60

80

100

78.8%

90.5%
96.2%

56.3%

80.6%

Program

C
yc

le
C

ou
nt

[%
]

Figure 6.6: Integer linear programming scheduler cycle count relative to that of the heuris-
tic scheduler. The percentages are obtained by dividing the cycle count of the integer linear
programming scheduler by the cycle count of the heuristic scheduler.

The schedules produced with the integer linear programming scheduler executed
45.7% less register reads compared to the heuristic scheduler. In the case of the IIR
filter, the integer linear programming scheduler was able to eliminate all register
reads. On the other hand, there were 12.2% less register writes as to the heuristic
scheduler. Register accesses of the integer linear programming scheduler with the
clustered architecture are shown in Figure 6.7.

6. Empirical Evaluation 44

FIR IIR Dot Complex Conv
0

20

40

60

80

100

120

47.4%

0%

50%

100%

74.1%

120%

92.9%

73.3% 70%

82.9%

Program

R
eg

is
te

r
A

cc
es

se
s

Register Reads Register Writes

Figure 6.7: The ratio of register writes and register reads between the integer linear
programming scheduler and the heuristic scheduler.

Figure 6.8 shows the execution times for the integer linear programming scheduler.
The execution times are even greater than those of the minimalist architecture. This
is due to the fact that the clustered architecture is much larger and provides much
more opportunities for data transports between the units. The average execution
time for the clustered architecture equals 7.2 minutes. In worst case, the proposed
scheduler uses 21 minutes to produce a schedule for the FIR filter program.

FIR IIR Dot Complex Conv
0

5

10

15

20

21

0.5

8.5

2.8 3.4

Program

T
im

e
[m

in
]

Figure 6.8: Execution times for the integer linear programming instruction scheduler.

6. Empirical Evaluation 45

6.3 Discussion

The objective of this thesis work was to model the transport triggered architecture
instruction scheduling problem as an integer linear programming model. In addition,
this model was to be optimized for the cycle count of the input program. With both
architectures, the minimalist architecture and the clustered architecture, the integer
linear programming based scheduler was able to produce more concise programs in
terms of the cycle count compared to the heuristic scheduler of the TCE compiler.
On average, the schedules of the integer linear programming model were 24.7%
shorter. In the most notable case, the schedule had 48% less cycles than that of
the heuristic scheduler. The reduction of cycles is achieved by utilizing the parallel
resources of the given architecture further. The heuristic scheduler has a limited
number of schemes to exploit on scheduling, and it works on sequential manner.
That is, each decision it makes might worsen the outcome of the following decisions,
but it does not backtrack in those cases. Whereas the integer linear programming
scheduler explores much wider result space and is able to find improved results.

The cycle count reduction was notably higher in the case of the minimalist archi-
tecture. The architecture has less possibilities for concurrent transports, and thus
is harder to schedule for. In contrast, the clustered architecture has much more
parallel connections which makes the scheduling easier. This leads to the conclusion
that the harder an architecture is for a scheduling algorithm, the better the integer
linear programming scheduler performs when compared to the heuristic scheduler.

In addition to the cycle count, the amount of register accesses of the programs
were registered. A register read can be eliminated by bypassing the value directly
from the origin unit to the target unit. Whereas a register write can be eliminated
through dead-result elimination. That is, if all uses of a value in a register are
bypassed, then the result move into the register can be removed. While the decrease
in register access was not the optimization objective, it is tightly connected to the
reduction of the cycle count. This is due to the fact that bypassing and dead-result
elimination reduce the amount of register access, and simultaneously eliminates
intermediate result transports through registers, which in turn allows more rapid
execution of operations.

The integer linear programming scheduler was able to eliminate 55.2% of the reg-
ister reads compared to the heuristic scheduler on average. Correspondingly, 18.6%
of the register writes were eliminated from the schedules. In two cases, the integer
linear programming scheduler resulted in excess register access when compared to
the heuristic scheduler, but the schedules were nonetheless shorter so the objective
was met.

6. Empirical Evaluation 46

The execution time of the integer linear programming scheduler was an order of
magnitude greater in all cases compared to the heuristic scheduler. The average
execution time was 4.7 minutes for the minimalist architecture, and 7.2 minutes for
the clustered architecture. In contrast, the heuristic scheduler was able to schedule
all programs in a second or less. This difference in execution time was expected as
the integer linear programming solvers attempts to find the optimal solution given
the objective.

The execution time of a program depends on the architecture used, the complexity
of the data dependence graph, the amount of moves in the program, and the model
parameters. It is difficult to predict the execution time in advance by looking at the
high-level language code and the defined architecture as the number of influential
parameters is high and their mutual relations affect the outcome as well.

47

7. CONCLUSIONS

An efficient scheduling algorithm for transport triggered architecture processor is
important because it might lead to significant improvements in terms of chip area,
energy consumption, and clock frequency. This thesis presented an integer linear
programming based scheduling model for the transport triggered processor architec-
ture. The model was implemented to the TCE retargetable compiler backend as a
scheduling pass, and can be used to schedule TTA programs. The scheduler attempts
to produce optimal schedules by some given criterion, for example to minimize the
energy consumption.

The empirical evaluation was based on two different transport triggered archi-
tectures, the minimalist architecture and the clustered architecture. The former
is a simple architecture containing only the essential components, and the latter
is a VLIW-style clustered architecture providing a high level of concurrency. The
optimization objective was to minimize the cycle count of the schedule. The in-
teger linear programming scheduler was able to produce on average 24.7% shorter
schedules for both architectures compared to the heuristic scheduler of the TCE
compiler.

In addition to the cycle count, the amount of register accesses was measured.
Even though the register usage was not the optimized parameter, it is closely related
to the reduction of the cycle count. Generally the less register access is utilized,
the shorter the schedule. This is due to the fact that bypassing and dead-result
elimination decreases the register usage and frees register file ports to other moves,
and at the same time eliminates intermediate result transports through registers,
which in turn causes the schedule to be shorter. The integer linear programming
based scheduler was able to eliminate 55.2% of the register reads, and 18.6% of the
register writes on average. In two cases register accesses in the schedules produced by
the proposed scheduler exceeded those of the heuristic scheduler, but the schedules
were nonetheless shorter.

The execution times of the integer linear programming based scheduler were dis-
tinctly longer than those of the heuristic scheduler. This was expected as the integer
linear programming solver explores much wider solution space than the heuristic
scheduler. The average execution times was 6 minutes, and 21 minutes at the worst
case. That being said, we argue that the execution time in this context is somewhat

7. Conclusions 48

unimportant, as the designed architecture is possibly used to produce a large num-
ber of processors. A small cost saving accumulates into significant amount when
enough hardware is fabricated. Consequently, it is acceptable to use more execution
time if it leads to better design.

7.1 Future work

This thesis presented an integer linear programming model for the transport trig-
gered architecture scheduling problem. The model covers the basic properties of
the architecture, but there is much room for further development. The TCE in-
frastructure contains numerous optimizations that are done to make the compiled
programs more efficient. Many of these improvements were not integrated to work
with the integer linear programming scheduler at this time. In addition, there are a
few additional things that the model could include as well to be able to make more
intelligent decisions.

Currently the register allocation in done prior to scheduling for reasons stated
at Section 3.2.4. This distinctly restricts the scheduler’s freedom to make decisions
and thus leads to inferior schedules as some of the move sources are determined in
advance. In order for the current integer linear programming model to also assign
registers to variables, it would need to include information about each variable and
the memory location in which the variable exists at any given cycle.

Function units might have internal shared resources that limit the pipelining
of operations in the FU. Currently the model assumes that all operations are fully
independent and permits pipelining for as long as operations do not overwrite others’
results. To cope with shared resources, the internal resources should be modeled
and limited at any given cycle to be used by at most a single operation.

Immediate values are coded to the source port field of the TTA move operation.
This means that the operation source fields needs to be as wide as the largest
supported constant value. In practice, TCE templates allow buses have different
immediate widths and larger values need to be transfered from Immediate Unit
(IU), which is a special unit to store constant values. Different immediate widths
and the immediate unit are not currently supported in the model.

Instruction selection is currently performed before the scheduling which limits the
ability to achieve optimal schedule. Some instruction templates might lead to more
desirable end result even though they might be inferior from instruction selection
perspective. The integer linear programming model should be changed so that there
are multiple mutually exclusive sets of moves, the different instruction selections, of
which only a single set should be assigned.

Modulo scheduling is a form of software pipelining in which the iterations of a
loop use the same schedule [31]. These iterations are initiated at a constant rate.

7. Conclusions 49

Initiation Interval (II) is a constant that bounds the number of cycles between two
consecutive iterations of the loop. II depends on the loop operation dependencies
and the processor resources, and can be found using iterative search. Extending the
integer linear programming scheduling model to support modulo scheduling would
lead to higher performance and more compact code for loop kernels.

Further research may also concern alternative objective functions to achieve dif-
ferent goals. For example, minimizing the register accesses of the TTA program has
significant effect on the energy consumption albeit the compiled program could be
longer in terms of cycles. This could be achieved with added cost for each regis-
ter read and write. Secondary optimization criterion usually still needs to be the
schedule length due to real time constraints.

The current implementation of the model in TCE is not able to handle large
basic blocks. This is limitation of both the model, especially the function unit
constraints, and the implementation. The model places unnecessary and sometimes
overlapping constraints that could be reduced with careful review. For example,
function unit constraints could be pruned using the data dependence graph since
some operations can not happen after or before others. Further, the current TCE
scheduling algorithm could be used to provide an initial suboptimal solution for the
integer linear programming solver to speed up the solving. In addition, a preliminary
schedule could be used to set the model cycle count, that is parameters tmin and
tmax, more intelligently.

Presenting the constraints as 0 – 1 integer linear programming model sometimes
leads to quite large models in terms of size due to a large number of variables, which
in turns leads to a high memory usage on solving. Using ordinary integer variables
might be worth the try to see how much the memory consumption and model size
are decreased. Related to this, it would also be useful to only optimize the most
important parts of the program with the integer linear programming scheduler and
use the suboptimal but much faster heuristic scheduling algorithm for the rest.

50

REFERENCES
[1] H. Corporaal, J. Janssen, and M. Arnold, “Computation in the context of trans-

port triggered architectures,” International Journal of Parallel Programming,
vol. 28, no. 4, pp. 401–427, 2000.

[2] D. She, Y. He, B. Mesman, and H. Corporaal, “Scheduling for register file
energy minimization in explicit datapath architectures,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE ’12. San
Jose, CA, USA: EDA Consortium, 2012, pp. 388–393.

[3] B. Rister, P. Jaaskelainen, O. Silven, J. Hannuksela, and J. Cavallaro, “Paral-
lel programming of a symmetric transport-triggered architecture with applica-
tions in flexible LDPC encoding,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, May 2014, pp. 8380–8384.

[4] H. Torng and S. Vassiliadis, Instruction-Level Parallel Processors. Los Alami-
tos, CA: IEEE Computer Society Press, 1995.

[5] J. A. Fisher, “Very long instruction word architectures and the ELI-512,” in
ISCA ’83: Proceedings of 10th International Symp. on Computer Architecture,
Los Alamitos, CA, Jun. 1983, pp. 140–150.

[6] J. Hoogerbrugge and H. Corporaal, “Register file port requirements of transport
triggered architectures,” in Microarchitecture, 1994. MICRO-27. Proceedings of
the 27th Annual International Symposium on Computer Architecture, Nov 1994,
pp. 191–195.

[7] H. Corporaal, “Transport triggered architectures, design and evaluation,” Ph.D.
dissertation, Delft Univ. Tech., Netherlands, 1995.

[8] O. Esko, P. Jääskeläinen, P. Huerta, C. de La Lama, J.Takala, and J. Martinez,
“Customized exposed datapath soft-core design flow with compiler support,”
in Proceedings of International Conference Field Programmable Logic and Ap-
plications, Milan, Italy, Aug. 2010, pp. 217–222.

[9] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1988.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Ef-
ficiently computing static single assignment form and the control dependence
graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451–490, Oct.
1991.

REFERENCES 51

[11] G. Hjort Blindell, “Survey on instruction selection : An extensive and modern
literature review,” KTH, Software and Computer systems, SCS, Tech. Rep.
13:17, 2013, qc 20131007.

[12] G. J. Chaitin, “Register allocation & spilling via graph coloring,” SIGPLAN
Not., vol. 17, no. 6, pp. 98–101, Jun. 1982.

[13] F. Bouchez, A. Darte, C. Guillon, and F. Rastello, “Register allocation: What
does the NP-Completeness proof of Chaitin et al. really prove? or revisiting
register allocation: Why and how,” in Languages and Compilers for Parallel
Computing, ser. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2007, vol. 4382, pp. 283–298.

[14] J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts in
pipelined processors,” SIGARCH Comput. Archit. News, vol. 13, no. 3, pp.
36–44, Jun. 1985.

[15] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the International Symposium on
Code Generation Optimization, Mar. 2004, pp. 75–87.

[16] F. Rossi, P. v. Beek, and T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence). New York, NY, USA: Elsevier Sci-
ence Inc., 2006.

[17] S. Bradley, A. Hax, and T. Magnanti, Applied mathematical programming.
Addison-Wesley Pub. Co., 1977.

[18] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the Third Annual ACM Symposium on Theory of Computing, ser. STOC ’71.
New York, NY, USA: ACM, 1971, pp. 151–158.

[19] L. Fortnow, “The status of the P versus NP problem,” Communications of the
ACM, vol. 52, no. 9, pp. 78–86.

[20] A. K. Mackworth, “Consistency in networks of relations,” Artificial Intelligence,
vol. 8, no. 1, pp. 99–118, 1977.

[21] H. T. Jongen, K. Meer, and E. Triesch, Optimization theory. Kluwer, 2004.

[22] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of
Computer Computations, ser. The IBM Research Symposia Series, R. E. Miller,
J. W. Thatcher, and J. D. Bohlinger, Eds. Springer US, 1972, pp. 85–103.

REFERENCES 52

[23] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Im-
plementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[24] C. H. Papadimitriou, “The Euclidean travelling salesman problem is NP-
complete,” Theoretical Computer Science, vol. 4, no. 3, pp. 237–244, 1977.

[25] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Appli-
cations. Berlin, Heidelberg: Springer-Verlag, 1994.

[26] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied Math-
ematics). Princeton, NJ, USA: Princeton University Press, 2007.

[27] J. Clausen. Branch and bound algorithms - principles and examples.
(1999) [Accessed on 16th of Sep. 2014]. [Online]. Available: http:
//janders.eecg.toronto.edu/1387/readings/b_and_b.pdf

[28] A. Shmuel, “The relaxation method for linear inequalities,” Canadian Journal
of Mathematics, no. 6, pp. 382–392, 1954.

[29] E. Beale and J. Tomlin, “Special facilities in a general mathematical program-
ming system for non-convex problems using ordered sets of variables,” in Pro-
ceedings of the Fifth International Conference on Operational Research. Lon-
don: Tavistock Publications, 1970, pp. 447–454.

[30] T. Achterberg, T. Berthold, T. Koch, and K. Wolter, “Constraint integer pro-
gramming: A new approach to integrate CP and MIP,” in Proceedings of
the 5th International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, ser.
CPAIOR’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 6–20.

[31] M. Lam, “Software pipelining: An effective scheduling technique for vliw ma-
chines,” SIGPLAN Not., vol. 23, no. 7, pp. 318–328, Jun. 1988.

http://janders.eecg.toronto.edu/1387/readings/b_and_b.pdf
http://janders.eecg.toronto.edu/1387/readings/b_and_b.pdf

APPENDIX 1: COMPLETE RESULTS
This appendix presents the complete results for the two architectures used in the empirical evaluation. For each input program

compiled, the cycle count, and the number of register accesses were registered. The cycle count and the register usage of the compiled
program were obtained from the TTA simulator. In addition, the CPU time and the clock time of the TCE compiler were measured.

Table 1 displays the results for the minimal architecture for the five benchmark programs.

Integer Linear Programming Scheduler Heuristic Scheduler
Program Cycle

Count
Register
Reads

Register
Writes

Compilation
Time [min]

Cycle
Count

Register
Reads

Register
Writes

Compilation
Time [s]

FIR filter 25 (80.6%) 5 (33.3%) 10 (90.9%) 3.4 31 15 11 1
IIR filter 18 (64.3%) 0 (0.0%) 13 (92.9%) 0.2 28 9 14 1
Dot product 14 (56.0%) 0 (0.0%) 8 (72.7%) 0.3 25 3 11 1
Complex 13 (52.0%) 3 (33.3%) 2 (18.2%) 0.3 25 9 11 1
Convolution 78 (97.5%) 33 (110%) 35 (100.0%) 19.1 80 30 35 1

Table 1: Simulation results for the minimal architecture with the integer linear programming scheduler and the heuristic scheduler for the
benchmark programs. In the integer linear programming columns, the percentage in the parentheses shows the difference with respect to the
corresponding value of the heuristic scheduler.

Table 2 shows the results for the clustered architecture for the five benchmark programs.

Integer Linear Programming Scheduler Heuristic Scheduler
Program Cycle

Count
Register
Reads

Register
Writes

Compilation
Time [min]

Cycle
Count

Register
Reads

Register
Writes

Compilation
Time [s]

FIR filter 26 (78.8%) 9 (47.4%) 12 (120.0%) 21.0 33 19 10 1
IIR filter 19 (90.5%) 0 (0.0%) 13 (92.9%) 0.5 21 6 14 1
Dot product 25 (96.2%) 7 (50.0%) 11 (73.3%) 8.5 26 14 15 1
Complex 9 (56.3%) 5 (100.0%) 7 (70.0%) 2.8 16 5 10 1
Convolution 29 (80.6%) 20 (74.1%) 29 (82.9%) 3.4 36 27 35 1

Table 2: Simulation results for the clustered architecture with the integer linear programming scheduler and the heuristic scheduler for the
benchmark programs. In the integer linear programming columns, the percentage in the parentheses shows the difference with respect to the
corresponding value of the heuristic scheduler.

	Introduction
	Processors
	Instruction Level Parallelism
	Very Long Instruction Word Architecture
	Transport Triggered Architecture
	Programming model
	TTA specific optimizations
	TTA-based Co-design Environment

	Compilers
	Intermediate Representation
	Static Single Assignment Form
	Data Dependence Graph

	Code Generation
	Instruction Selection
	Register Allocation
	Instruction scheduling
	Phase Ordering

	TCE Retargetable Compiler Structure

	Integer Linear Programming
	Modeling Optimization Problems with Integer Linear Programming
	Example models
	Knapsack
	Traveling salesman

	Solving Integer Linear Problems
	Branch and Bound Algorithm
	Special Ordered Sets

	Integer Linear Programming Formulation of the TTA Instruction Scheduling Problem
	Completeness
	Constraints
	All Moves Must be Assigned
	Dependencies Between Moves
	Bypassing and Dead-Result Elimination
	Register File Port Constraints
	Function Unit Constraints

	Special Ordered Sets
	SOS1: All Moves Are Assigned Once
	SOS1: Input Socket Constraints
	SOS1: Bus Constraints

	Objective Function

	Empirical Evaluation
	Minimalist Architecture
	Clustered Architecture
	Discussion

	Conclusions
	Future work

	References

