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Abstract 

This thesis presents the theory, design, layout and a proposal for measurement set 

up of a synchronous DC-DC buck converter. This converter will be used as the supply 

modulator of power amplifier of mobile phones. The design is done using 45nm CMOS 

technology.  Pmos and nmos switches are synchronously turns on and off for DC voltage 

conversion. Second order LC type filter is used to filter out the ac component from 

output.  Two phase interleaving is done to reduce the output ripple voltage. Pulse Width 

Modulation (PWM) method is used for generating the control signal.  Several techniques 

like dead time control mechanism, reduced gate drive voltage for switches are applied for 

improving the efficiency of the converter.  

The operating voltage range of the converter is 3.3-4.2V and it can produce         

0.5-3V output voltage with 2W of maximum output power. It has maximum load current 

of 700mA. The switching frequency of the converter can be varied from 10MHz to 

100MHz. The ripple voltage is less than 10mV for 50MHz switching frequency. The 

converter shows good results in terms of power density and simulated efficiency which 

are 1.65W/mm2 and 88.5%.   
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Pääaine: Radiotaajuuselektroniikka 
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Tiivistelmä  

Tässä diplomityössä esitetään synkronisen buck -tyyppisen 

tasajännitemuuntimen teoria, suunnittelu ja mittauskytkentä ehdotus. Piiri on 

suunniteltu 45nm CMOS teknologialla, ja sen käyttökohteena on tehovahvistimen 

käyttöjännitteen modulointi. Ulostulojännite muodostetaan kytkemällä pmos ja nmos 

kytkimiä synkronisesti päälle ja pois. Ulostulojännitten ac komponentin, rippelin, 

suodattamiseen on käytetty toisen asteen LC-suodatinta. Lisäksi lomittamis (interleaving) 

tekniikkaa on käytetty vähentämään ulostulojännitteen rippeliä. Ohjaussignaali 

kytkimille muodostetaan pulssin leveys modulaatiota (PWM) käyttäen. Suunnittelussa 

on käytetty useita menetelmiä hyötysuhteen parantamiseksi, kuten säädettävä dead time 

ja madallettu ohjaussignaalin jännite. 

Tasajännitemuunnin toimii jännitealueella 3.3-4.2V ja se tuottaa ulostulojännitteen 

välillä 0.5-3V. Maksimi ulostuloteho on 2W ja kuormavirta 700mA. Kytkentätaajuus 

voidaan valita väliltä 10-100MHz. Ulostulojännitteen rippeli on alle 10mV 50MHz 

taajuudella. Simulaatioissa saavutettu tehotiheys on 1.65W/mm2 ja hyötysuhde 88.5%.  
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1 Introduction 

Portable electronics have significantly advanced in the last decades. Most of these 

equipments have Li-Ion batteries as their power supply. The output voltage of the Li-Ion 

batteries changes from 4.2 to 2.6 [1]. Due to this reason Li-Ion batteries can not be used 

directly as a power supply for different IC’s in the electronic system [1]. The IC’s used in the 

system, need a constant power supply for proper operation. A power management unit is 

used between the battery and the system to provide a constant power supply to different IC 

of the system. DC-DC converter is the major component of the system. DC-DC converter 

gives a regulated output voltage while the input voltage and load current are varying widely.  

Discharge characteristics of Li-ion battery

3
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3.9

4.2
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Figure 1-1. Discharge characteristics curve of Li-ion battery. [1] 
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The electronic equipments are consisting of the analog, digital and mixed-signal 

systems. They are becoming more complex to meet the challenges of increased demand for 

different features and due to continuous pressure on size reduction. The trend in minimizing 

the cost and power consumption of portable electronic devices are forcing to implement 

different system in a single IC. But these systems need good isolation and independent power 

supplies [3]. DC-DC converter can work as power supply unit for different system with 

isolation from each other. Beside this the design of converter is dependent on application. As 

for example, for a Power Amplifier (PA) using Polar Modulation techniques needs a DC-DC 

converter with variable voltage and current for increasing the overall efficiency of the system.  

 

Switching Regulator 
(1.8 V Analog)

Switching Regulator 
(1.2 V Digital)

Regulators Array

DSPR-1 R-2

R-3 R-4

Mixed-Signal Digital

Variable Battery Voltage 

 

Figure 1-2. DC-DC converter in different part of a portable electronic system 

This thesis presents the design procedure of a high efficiency low ripple DC-DC 

converter, targeted for mobile phone transmitter. In the first chapter design background and 

different types of DC-DC converters are described. In the second chapter some state of art 

DC-DC converters are reviewed along with the specifications. Theory of the buck converter is 

explained in chapter three. Design and Layout of the converter are covered in chatter four 

and five. Chapter six includes the proposed measurement set up. Concluding remarks and 

comments for future works are included in chapter seven. 
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1.1 Background study 

First generation mobile phones in mid-90s were used only for voice communications. 

But in late-90s the emphasis on data services using mobile networks stars to increase. In the 

Figure 1-3.  [32] the increment of data speed of the mobile communication system is shown.  

For voice communication and lower data rate, constant-envelope modulation is used. In 

constant-envelope modulation techniques power amplifier have good efficiency. In case of 

GSM constant-envelope modulation technique is used for sending the information, which 

allowed the power amplifiers to operate in the saturation region, results high efficiency for 

the power amplifiers, normally more than 50%.  [3]    But in the late-90s new modulations 

techniques are applied for increasing the data speed. The envelopes of these modulated 

signals are not constant, which reduce the efficiency of the power amplifier. The amount of 

efficiency reduction of the power amplifier depends on the crest factor of the modulation 

techniques [3]. Peak to average ratio of the signal known as the crest factor increases with 

data speed. Increment of the crest factor decreases the power amplifier efficiency. For EGDE, 

UMTS AND CDMA2000 the crest factor is about 3.2 dB which reduces the power amplifier 

efficiency below 25% [3]. The latest telecommunication standards like LTE and WiMAX have 

even higer crest factor due to the higher data rate. LTE has a crest factor of 6.5dB and WiMAX 

has the uplink crest higher than 12dB [3]. Due to the low efficiency of PA, it is not suitable to 

use the same techniques in the system for transmitting modulated signal. New techniques 

such as use of supply modulators in the system are developed to increase the efficiency of the 

PA. Moreover the PA of the mobile phone consumes most of the power of the battery. The 

supply modulator of the PA needs to be efficient to have a good over all efficiency of the 

system. And at the same time it should not add extra noise to the information signal. There 

are several ways to improve the efficiency of the system by using a high efficiency DC-DC 

converter in the system as supply modulator. Some of the methods are: slow tracing, envelop 

tracking and polar modulation techniques. 
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Figure 1-3. Increment of mobile data speed with the evolution of mobile communication 

system. [32] 

 

In the Figure 1-4 slow tracking, envelope tracking and polar modulation techniques 

are shown for transmitting information using a supply modulator. In slow tracking process, 

the PA is supplied by slightly higher voltage than the largest peaks of the envelope.  This 

process tracks the comparatively slow changes in the average transmitter output power and 

recovers lost efficiency due to power-control back off. The second process named as envelope 

tracking, refers supplying the PA with a voltage which tracks the instantaneous changes in 

the envelope due to the modulation. Hence, this process offers the benefit to recover lost 

efficiency due to both modulation and power-control back off. But the problem is that the 

bandwidth of the tracking signal increases a lot. In this method the gain does not compressed 

too much thus the noise at the PA output decreased by several decibels. In case of polar 

modulation the PA worked in the saturation region. The noise and bandwidth increases a lot 

but the efficiency is much higher than the previous two cases, because the power supply of 

PA is same as the highest peak of the modulated signal. The efficiency increased significantly 

due to the virtue of the saturation and good RF filter is needed before transmission of the 

signal [3].  
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Figure 1-4. DC-DC converter used as a supply modulator in different tracking regime for increasing 
the efficiency of PA [3]. 
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1.2 Converter types 

DC-DC converters can be divided into different categories depending on the 

properties of the converters. They can be divided into linear and switching converters 

depending on circuit operation. There are several different topologies for designing 

converters with in each group. Switching converters can be divided in to LC type converter 

and switched capacitor type converter. In the Figure 1-5 the classification of the converters 

are shown. DC-DC converters can also be divided in to buck, boost and buck-boost types 

depending on the output voltage options. Buck converter has lower output voltage compare 

to the input voltage, and boost converter provides higher output level compare to input level. 

Buck-boost converter can give both lower and higher level of output. 

DC-DC Converter

Switching Converter/
Regulator

Linear Converter/
Regulator

LC type Converter Switched Capacitor type  
Converter

 

Figure 1-5. Classification of DC-DC converter depending on working principle. 

In linear converter or regulator transistors are operated in the active region. They are 

small in size and easy to design. But linear regulators are limited by their efficiency, as it 

works by taking the differences between the input and output. The efficiency of these 

regulators is in the range of low to medium (<81%) [33], [65]. The amount of heat production 

increases with the increment of difference. The efficiency of theses regulators are limited by 

the ratio of output to the input voltage. Maximum efficiency is achieved when output is equal 

to input.  A scaled down output signal is compared with internally generated reference signal 

to give a constant output.  There is no switching component in linear regulators.  These types 

of regulators are more popular where size is more important compare to efficiency. Linear 

regulators have lower settling time and ripple.  They generate less noise compare to 

switching regulators. These regulators are also known as Low Dropout Regulators (LDO). 

Linear regulator can only be buck types.  
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Figure 1-6. Simplified diagram of linear and switching regulator. 

 

The transistors of the switching regulator work in saturation or cut off region. 

Switching regulators work by transferring energy in discrete packets from input to output. 

This is done by a low-resistance switch and controlling the rate of energy transfer. When the 

switch is off, current through it is zero. And when the switch is on voltage over it is zero. 

Therefore the power losses are small, ideally zero. Therefore high efficiency can be achieved 

using switching regulator. Switching regulators can be buck, boost and buck-boost types. 

These regulators use capacitor or inductor as an energy transferring element from input to 

output.  Depending on the charge transfer elements switching regulators can be divided into 

switched capacitor (SC) type and LC type. These two types of converters are more popular in 

modern analog and mix-signal design in CMOS and Bi-CMOS process. 

 

Table 1-1. Comparison of linear and switching regulator 

Property of 
comparison 

Linear Regulator Switching Regulator 

Transistor 
operating region 

Transistors are operated in 
active region. 

 

Transistors are operated either in 
cut off or saturation region 

Efficiency Linear regulators have lower 
efficiency [33], [65]. 

Switching regulators have higher 
efficiency (70-95%) [33]. 

 
Out put voltage 
options 

Only step down operation. 
 

Both step-up and step-down 
operation. 

 
Noise It generates little noise at the 

output.  
 

Switching regulators may produce 
considerable noise at output. 

 
Size Small Bigger compare to linear regulator 
Design complexity Simple  Complex in design 
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1.2.1 SC type converter 

In SC type converter, capacitor works as energy transferring element. Capacitors are 

easier to integrate in CMOS design compare to inductors. Fully integrated switched-capacitor 

(SC) converters have recently received increased attention form both academic and industrial 

researchers. As for example in the paper [4] and [6] two fully integrated switched capacitor   

converters are describes, where multi-phase interleaving is done for ripple reduction.  The 

size of the capacitor depends on the frequency of operation. Higher frequency operation 

allows smaller valued capacitor to use. But the losses in the capacitors especially the losses in 

the bottom plate restrict to attain very high efficiency in fully integrated SC type DC-DC 

converters.   There are several other advantages of using switched capacitor converters, some 

of them are [7]: 

• No inductor needed 

• Minimum EMI  

• More than 90% efficiency is achievable. 

• Low cost and compact. 

1.2.2 LC type converters 

   LC type switching converter can achieve 80% efficiency easily, which makes them 

most popular types of DC-DC converter.  With carefully analysis of the loss components of 

the LC type converter and by optimizing them more than 90% efficiency can be achieved. In 

the modern CMOS technology LC type converters are widely used due to this reason and a 

lot of research work is going on this topic. Higher efficiency increases the battery life and 

longer battery life makes portable electronic goods more popular in the market. This thesis 

work is on LC type DC-DC converter. Though LC type converters have higher efficiency 

compare to other converters, they have several disadvantages such as:  

• Electro-Magnetic Interference, 

• Complexity in design, 

• External inductor is needed, which increases the size and costing, 

• In some CMOS process internal inductor is used but the quality factor of the 

inductors is low. High series resistance of the inductor degrades the efficiency of 

the converter. They also need lot of silicon area. 
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1.3 Conclusions 

DC-DC converter is one of the important elements of the power management unit. In 

the mobile phones, as the numbers of features are increasing, the power consumption is also 

increasing. These results lower operating time of the mobile phones. The high efficiency DC-

DC converter can increase the operating time by decreasing the power consumption. The 

efficiency of the PA of mobile phones is decreasing as the peak to average ratio is increasing, 

with higher data rates. For increasing the efficiency of power amplifier supply modulators 

are used. High efficiency DC-DC converter can be used as the supply modulator. There are 

different kinds of DC-DC converter.  SC type and LC type are most suitable for modern 

CMOS technology. Both of them have their own advantages and disadvantages. SC type 

converters are smaller in size and LC type converters have higher efficiency.  The choice of 

the converter depends on the application. 
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2 Review of LC-type DC-DC converter 

In this chapter some of the recently published LC type DC-DC converters for power 

amplifier amplifiers are reviewed. High efficiency DC-DC converters with low output ripple 

are needed for the supply modulator of PA. Higher efficiency is achieved by minimizing the 

losses in different sections. The operating frequencies of the converters are made higher to 

decrease the inductor size of the converters. Most common method for reducing ripple is to 

interleave the output.  

2.1 State of art LC-type DC-DC converter 

In recent year’s lot of state of art LC-type DC-DC converter are designed, for different 

applications. Comparing DC-DC converters are not straight-forward, some properties need to 

specify for comparing. This converter will be used as the supply modulator of power 

amplifier of mobile phones. So it would be more suitable to compare the designs by 

comparing the specifications of DC-DC converter used for PA modulation. Table 2-1 

presented some recently published LC-type DC-DC converter implemented in submicron 

CMOS technologies. 
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Table 2-1. Comparison of  LC type DC-DC converter . 

Ref. 

# 

VIN 

[V] 

VOUT 

[V] 

fswitch 

[MHz] 

L 

[uH] 

η 

[%] 

Output 

ripple 

[mV] 

ILoad 

(max) 

[mA] 

 

POUT 

[W] 

 

Si-area 

[mm2] 

Tech. 

 

Application 

[9] 4 2-3 5-10  89 <4 1100 
 

3.2 1.5 
0.25 μm 

CMOS 

GSM/ EDGE/ 

UMTS 

[11] 3.3 0.3-3 10 30  <2 750 
 

2 4.62 
0.35 μm 

CMOS 
CDMA 

[12] 
2.7-

4.3 
 130 

2×  

0.11 
83 -60dBc 750 

 
2 0.86 

0.25 μm 

LDMOS 
WCDMA 

[13] 3.3 0.3-3 
2.12/2.88

/3.75 
2.2   0-750 

 
2  

0.13 μm 

CMOS 

EDGE/ 

WCDMA/ WiMax 

[14] 
3.6/ 

3.3 
0-2.9 10 5.3 75.5  420 

 
1.2 4.2 

0.25 μm 

CMOS 
GSM900 

[15] 1.2 0-1.15 118 0.80  <4.3  
 

0.186 1.32 
65nm 

CMOS 
WLAN 

[16] 3.3 0-1.15 
3.4/1.6/

7.1 
   700 

 
 

65nm 

CMOS 

EDGE/ WCDMA 

/ LTE 

[17] 3.4 
0.5-

4.5 
3-6     

 
0.525/0.4

07 
4.42 

65nm 

CMOS 
LTE 

[18] 3.3 
0.4-

2.8 
10 2×0.5  <40 725 

 
2 3.09 

0.35 μm 

CMOS 
WCDMA 

 

A high efficiency power supply modulator for PA for GSM, EDGE and UMTS is 

presented in [9]. This supply modulator combines a high-bandwidth class-AB linear regulator 

and an efficient DC-DC converter in a master slave configuration. The DC-DC converter is 

designed based on current mode control topology and optimized for 1MHz to 25MHz 

switching frequency. Maximum efficiency 89% is achieved at 600mA load current. The output 

ripple is suppressed by a third order dual inductor LCR filter. The peak output power of the 

circuit is 3.2W and has current ripple less than 4mV. The supply modulator is fabricated in 

0.25μm CMOS process and has an active area of 1.5 mm2.  

The PA regulator described in [11] has output ripple less than 2mV and it designed for 

CDMA transmitter. This converter has also master slave configuration like previous one with 

maximum efficiency of 82%. The low frequency content of the envelope of the modulated 

signal is provided by a synchronous DC-DC converter while high frequency content is 
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supplied by the rail-to-rail class-AB amplifier. A low loss output current sensing circuit is 

used for output ripple and extending the overall bandwidth. This modulator is fabricated in 

0.35μm CMOS process and has an active area of 4.62mm2.  This regulator has a bandwidth of 

10MHz, with less than 0.2% envelops error which makes it suitable for CDMA applications. 

A 130MHz PWM mode DC-DC converter is described in the publication [12] by V. 

pinon et al.  from STMicroelectronics for WCDMA. A polar modulation technique is used for 

high efficiency, which is 83% at maximum 2W output power.  Careful PCB design can keep 

the switching harmonies below -60dBC.  The test chip area is 0.86mm2, fabricated in 0.25μm 

RF-CMOS process. 

A DC-DC converter for multi-standard applications is described by [13]. A hybrid 

switching supply modulator with programmable hysteric comparator enables multimode 

operation of this supply modulator. The maximum efficiency of this modulator is 89% and 

capable of provide 2W of power. The test IC is fabricated in 0.13um CMOS process.  

In the paper [14] combined delta-modulated switch-mode PA supply modulator is 

presented. The circuit is implemented in 0.25μm CMOS process and has an area of 4.2mm2. 

The maximum efficiency is 75.5% for 30.8dBm output power. 

A wideband modulator is described in the paper [15] which has a bandwidth of 

285MHz. The highest efficiency of the IC is 87.5%. It is realized in 65nm CMOS process 

having an area of 1.32mm2. The modulator is based on cascaded miller compensated linear 

amplifier and a class D switching amplifier. The modulator has a bandwidth of 20MHz and 

designed for polar modulated PA. It has maximum ripple of 4.3mV at 118MHz switching 

frequency.  

Another multiband supply modulator for PA applications is explained in the paper 

[16]. Here multimode operation is achieved by an envelope tracing techniques with a 

programmable hysteresis control and automatic switching current adaptation. A linear 

broadband class E amplifier is used here for output. Maximum efficiency of this converter is 

90%. The IC is fabricated in 65nm CMOS process. 

In [17] a high efficiency and wideband envelope tracking power amplifier with sweet 

spot tracking is presented. Sweet spots are local minimums of inter modulation distortion 

(IMD) and occurred by cancellation of harmonics. The efficiency is maximized by modulating 

supply voltage of PA and linearity is improved by envelope tracking and sweet spot tracking. 

Maximum achieved efficiency for this IC is 75%.  The IC is fabricated in 65nm CMOS process 

and the total silicon area is 4.42mm2. 
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A hybrid supply modulator with interleaving the outputs for low ripples, wideband 

and high efficiency class AB linear amplifier is described in [18].  Two–phase switching is 

implemented to lower the inductor current ripple. The IC is fabricated in 0.35μm CMOS 

process and the total silicon area is 3.09mm2. The test IC has a good efficiency of 89%, which 

is usually 9% higher than conventional converters.   

From these reviewed paper, DC-DC converter in [18] is chosen as a reference paper for 

further investigation and development. The goal of the development is to implement a DC-

DC converter for WCDMA application with low ripple, high efficiency and small silicon area.  

2.2 Specifications 

Depending on the above state of art DC-DC converters, competitive specifications are 

proposed for the converter design targeted for the PA of the transmitter of WCDMA.  In the 

table 2.2 the list of the specifications are given where the peak efficiency is more than 90%.   

 

Table 2-2. Specification of the DC-DC converter 

 

VIN 

[V] 

 

VOUT 

[V] 

 

fswitch 

[MHz] 

 

L 

[uH] 

 

η 

[%] 

Output 

ripple 

[mV] 

ILoad 

(max) 

[mA] 

 

POUT 

[W] 

 

Si-area 

[mm2] 

 

CMOS 

Tech. 

Application 

3.3 0.5-3 10-100 0.1-1 >90 <10 700 2 <1 45 nm WCDMA 

2.2.1 Efficiency 

Efficiency is the measure of how much energy is transferred from the input to the 

output. It is defined as the ratio of output power to the input power and represent in terms of 

percentage. Theoretically 100% efficiency is achievable for switching DC-DC converter, but 

different losses in the circuits limits the efficiency.  The input power is the product of input 

current and input voltage.  The DC-DC converter in this thesis has three different inputs or 

power supply, two supplies for two drivers and one battery power supply.  So for calculating 

the efficiency all the inputs are considered. Similarly, output power is the product of output 

current and output voltage which are shown by the equations 2.1-2.3.  

 

_ _ _ _IN BAT BAT PMOS driver PMOS driver NMOS driver NMOS driverP V I V I V I= + +  (2.1) 

OUT OUT OUTP V I=  (2.2) 



Two-Phase DC-DC Buck Converter for Power Amplifier Modulation 

 14 

, OUT

IN

Pefficiency
P

η =  (2.3) 

 

The current flowing form the battery and the current at the output are switching. So 

the equations of the input power and the output power are modified and the average of the 

voltage and current are taken for calculating the efficiency. 

2.2.2 Output ripple 

It is expected that the output of the DC-DC converter is clean DC. But due to the 

switching operation, the output voltage varies over time. The ripple is like a small ac signal is 

imposed on DC signal. A typical example picture is shown in the Figure 2-1. Here ∆V 

represents the amount of ripple voltage, where Vavg is the average of the voltage. 

 

Voltage vs. time curve

0.98

0.99

1

1.01

1.02

0 35 70 105 140
Time (uS)

V
ol

ta
ge

 (V
)

 

Figure 2-1. voltage vs. time curve for showing the ripple.. 

The ripple requirement is small for WCDMA, GSM, EGDE, 3G and other wireless 

communication standards. State of art DC-DC converters which are presented here have less 

than 40mV output ripple voltage. 

2.2.3 Output power 

Output power is the measure of the maximum amount of power than can be deliver 

to the load by the DC-DC converter.  And the equation for measuring the output power is 

already given by equation 2.2. The output power rating for a WCDMA application a mobile 

phone PA is 2W.  

∆V Vavg 
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2.2.4 Frequency of operation and inductor sizing 

There is a simple relationship between the switching frequency and inductor size. 

Higher switching frequency allows using lower valued inductor. But higher switching 

frequency increases switching loss and degrades the efficiency. Smaller valued inductor 

increases the output current ripple. There is a trade off between the ripple, inductor sizing 

and switching frequency.  The switching frequency of a the supply modulator of a RF PA 

must be roughly ten times the maximum frequency of the envelope the output ripple does 

not degrade the performance of operation of the whole system [21],[22]. 

2.3 Conclusions 

The state-of-the-art LC type DC-DC converters are reviewed in this chapter. All the 

state of art DC-DC converter in this chapter has good efficiency, low ripple and lower silicon 

area. The specifications of this work is set competitive, like the state of art DC-DC converters. 

For achieving good efficiency, low ripple new techniques are applied in design, but this 

increases the complexity in the circuit and increases the silicon area. Thus trade offs are 

needed among these parameters.  
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3 Basic Theory of DC-DC Converter 

This chapter discusses the DC-DC converter circuit topology and design consideration 

that is chosen for implementation. The basic theory of synchronous switching DC-DC 

converter is explained in the first part of the chapter. Then the design procedures of different 

sections are given. Finally in the last part of the chapter, different considerations for 

maximizing efficiency are explained which will be implemented in this design. 

3.1 Basic concept 

A buck converter has lower output voltage than input voltage. In Figure 3-1 a) the 

block diagram of a LC type synchronous DC-DC buck converter is shown. The converter 

gives a regulated output VOUT from the unregulated VBAT power supply. Here the inductor 

works as an energy transferring element.  Two switches Sw-1 and Sw-2 are synchronously 

controlled. When Sw-1 is conducting, VX is connected the input of the low pass filter. At this 

time the switch Sw-2 off and the input VBAT is providing energy to the inductor. When Sw-2 is 

on, the inductor current flows through it, and the stored energy in the inductor transfer to the 

load. These two switches chop the battery voltage into square pulses which have an average 

output voltage equal to the desired output voltage [19]. A pulse width modulation technique 

is used to control the width of the chopped voltage that has an average value equal to the 

expected output level. The switches can be designed either BJT or MOSFET. In the Figure 3-1 

b) MOSFET implementation of synchronous DC-DC converter is shown. A low pass filter 

consists of an inductor and a capacitor attenuates the harmonics and gives a DC output 

voltage with acceptable AC ripples.  The cut-off frequency of the filter is chosen much lower 
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than the switching frequency for ripple reduction.  In the Figure 3-2 the timing diagram of the 

DC-DC converter is shown. 

 

Figure 3-1. a) Simplified block diagram of a buck DC-DC converter, b) MOSFET implementation of 
buck DC-DC converter 

pmos 
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DTs

Ts

nmos 
on

Time

Time

Time

Time
 

Figure 3-2. Timing diagram of gate drive voltages, switching node voltage and inductor current.  

The output voltage level of a buck converter depends on the duty cycle of the gate 

drive voltage. In steady state operation the integral of the inductor voltage over the switching 

period is zero. The relationship between the input and output voltage can be shown by the 

following equation 3.1, when the system is ideal. For practical case the losses are added and 

the VOUT voltage is lower than this calculated value.   

OUT BATV D V= ×  (3.1) 

Where, D is the duty cycle of the switching pulses.  

DC-DC converter design stars with the sizing of the switches for maximum efficiency. 

The driver stages for the switches and the filter stages are design once the switches are 

optimized. The losses in all the stages are minimized for maximum efficiency. 
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3.1.1 Converter losses and efficiency  

Theoretically switching DC-DC converter can achieve 100% efficiency, if the converter 

is made of ideal components. But due to several losses the efficiency decreases. For a 

switching DC-DC converter more than 75% efficiency can be achieved easily, but with careful 

analysis of losses and by minimizing them more than 90% can be achieved [20]. The main 

losses of switching converters are: conduction loss, gate drive loss, capacitive switching loss, 

short circuit loss and body diode reverse recovery loss [20]. The driver stages losses are 

consist of conduction loss, switching loss, short circuit loss etc. The filter element losses are 

mainly conduction loss due to the inductor parasitic resistance. 

  

PDriver PM
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NDriver Cx
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Figure 3-3. DC-DC converter with loss components in the practical circuits [20]. 

Conduction loss: Conduction loss in the switches occurs due to the resistive 

component of non-ideal switches and parasitic resistance of interconnections. Conduction 

loss represented by [20],  

  2
cond rmsP i R=  (3.2) 

 

Gate-drive loss: When the gate drive voltages of mosfets changes their states, they 

dissipates an average power. The amount of the power dissipation increases with the increase 

of the mosfets size. The dissipated power can be expressed as [20],  

  g g sP E f=  (3.3) 

Where, Eg is directly proportional to the gate energy transferred per cycle, and this 

also include energy losses due to the miller effect and losses in the drive circuitry. 

 

Capacitive switching loss: Due to the charging and discharging of the parasitic 

capacitance of the mosfets PM and NM, power dissipates in each cycle. The parasitic 
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capacitance will include drain to body junction capacitance Cdb, gate drain overlap 

capacitance Cgd, wiring capacitance from their interconnections and stray capacitance 

associated with the filter capacitance. The loss can be found by the following equation [20].  

  2
C parasitic in sP C V f=  (3.4) 

The parasitic capacitance, Cparasitic will also include the capacitance of bonding pads 

and off- chip bonding wire, if the external inductor is used. In the case of soft switching the 

power loss reduced to half of PC. 

  

Short circuit loss: A short circuit path exits temporarily between the battery and 

ground when the switch gate drive voltages change their stages, like the inverter transition 

period. Because at that time both the switch are on for a small amount of time and short 

circuit current flows directly from the supply to the ground. But this phenomenon can be 

stopped introducing dead time between the switch transitions, which is explained later in this 

chapter. 

 

Body diode reverse recovery loss: If the duration of the dead time is high, then the 

body diode of the NM are forced to forward bias to pick up the inductor current for a fraction 

of time in each cycle. And if the forward biased body diode voltage is comparable to the 

output voltage then a significant amount of current flows to the ground causes the 

conduction loss given by the equation 3.5. When the mosfet PM is turned on, it removes the 

excess minority carrier stores in the body diode of the PM and dissipate an energy given the 

equation [20],   

  rr rr inE Q V=  (3.5) 

Where rrQ , is the stored charge in the body diode. 

 

Driver loss: The driver stage loss consists of all the losses explained earlier in this 

section. But the loss is small comparing to the losses of transistor PM and NM.  Because PM 

and NM are considerably big compare to the driver stages.   

 

Filter-element loss: Resistive element of the inductor causes the conduction loss in the 

filter. In addition to this the filter elements have dielectric loss in the capacitor, charging and 

discharging loss of capacitor in each cycle and inductor core losses. At higher switching 
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frequency the conduction loss increases, because the resistance of the inductor increases due 

to the skin effect and proximity effect [34]. 

3.1.2 Synchronous switch design 

The efficiency of the converter can be improved by designing the switches for low 

losses. The current flowing through these switches of this converter is high, 700mA for 

maximum output. The on resistance of the mosfets should be as low as possible to reduce the 

dissipation loss, which is one of the main losses for efficiency reduction. The on resistance of 

mosfetes is calculated using following equation [35].  

( )on
ox GS T

Lr
C W V Vμ

=
−

 (3.6) 

 

For decreasing the on resistance the width of the mosfets is made as big as possible, 

but bigger mosfets has higher parasitic capacitance. In each cycle there will be loss for 

charging and discharging of parasitic capacitance. A trade off is required between the 

resistive loss and capacitive loss of the mosfets [19].  The expressing for the optimum values 

for the widths of the nmos and pmos transistors are as follows, considering all the losses in 

the mosfets [36] [19].  

1

( 1) ( )
2

L
NMOS

oxBAT
s BAT t

IW CV b f V Vμ=
+ −

 
(3.7) 

PMOS NMOSW bW=  (3.8) 

Where, IL is the current through the inductor, Vt is the threshold voltage of the mosfet, 

b is the ratio between the electron and hole effective motilities, fs is the switching frequency, 

VBAT is the battery voltage, μ  is the electron or effective  mobility, Cox is the gate oxide 

capacitance per unit area. 

3.1.3 Output filter design 

The square wave generated by the synchronous switch is passes through filter to 

suppress the harmonics of the square wave. The filter is a second order LC type low pass 

filter, which passes the DC component of the switching node (Vx) and attenuates the AC 

component to an acceptable ripple voltage [20].  For a dynamic power supply of PA, the filter 

response is expected to critically damped ( ξ=0.707 ), for which the step response is well 
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damped and the 3dB cutoff frequency coincides with the undammed natural frequency. The 

cut off frequency of the filter and the damping ratio are given by the following equations [19]. 

1
2cutofff

LCπ
=  (3.9) 

1 1
2 L

L
C R

ξ =  (3.10) 

 

The inductor current of Figure 3-2 can be found by integrating the voltage over the 

inductor, for the time period on or off time of the switching.  This is shown by the equation 

3.11 [33]. The DC component of the inductor current flows through the load and the AC 

component flow through the capacitor. The magnitude of the AC voltage of the load can be 

determined using the equation 3.12 [33]. 

(1 )X
L

s

V D DI
Lf
−

Δ =  (3.11) 

2

(1 )
8

OUT

s

V DQV
C LCf

−Δ
Δ = =  (3.12) 

 

The output voltage ripple is a function of L, C, duty cycle and output voltage. By 

increasing the value of L and C output ripple can be decreased. By using the equations 3.9 

and 3.10 the value of L and C can be found in the following way [19]. 

1
4 L

C
R fπξ

=  (3.13) 

2 2

1
4

L
f Cπ

=  (3.14) 

 

For attenuating the AC component of the switching voltage, the cut off frequency of 

the filter is chosen as low as possible compare to the switching frequency.  But if the cut off 

frequency is lower the inductor and capacitor size increases.  High switching frequency 

allows using lower valued inductor and capacitor for miniaturizing the DC-DC converter.  

3.1.4 Driver design  

The sizes of the switch mosfets are usually big, in the rage of mm. To drive them 

cascaded drivers are needed. Driver stage is consisting of 3-5 stages of inverters connected 

one after another, with a gradual increment of size of the inverter stages.  The ratio of the 
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width of nmos and pmos is kept 2, as the electron mobility is more than 2 times than the holes 

mobility [9]. And the ratios of two consecutive stages are kept 4 [38]- [39], to have enough 

driving power for the next stage and to optimize the propagation delay.   

3.2 Design considerations 

Beside the design issues explained in the previous sections, there are several other 

techniques to maximize the efficiency of the converter. When design techniques are applied 

for efficiency maximization, the cost and the physical size of the converter are also 

considered. In following sections some design methods such as: high frequency operation, 

dead time control, zero voltage switching are explained for maximizing the efficiency.   

3.2.1 High frequency operation 

The inductor in the low pass filter is the biggest component in LC type DC-DC 

converter. The size and value of the inductor is inversely proportional to the frequency of 

operation. For lower valued inductor, the operating frequency is higher and it miniaturizes 

the converter. But higher operating frequency increases the losses in the switches roughly by 

the square root of the switching frequency, ( sf ) and ideally the size of the component 

decreases by a factor of fs-1 [20]. In the following Figure 3-4 the relation ship between the 

losses in the switches and the size of the converter is shown.  Depending on the design 

targets the size of the inductor can be chosen which will determine the size, efficiency and 

cost of the converter. 
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Figure 3-4. Theoretical relationship between the losses in the switches and the volume of the DC-DC 
converter [20] 
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There are several factors affect the selection of an inductor. Some of the factors are:  

DC resistance, quality factor, resonance frequency and the maximum current carrying 

capability of the inductors. By trade offs among theses parameters the converter can be 

optimized for high efficiency, while using higher operating frequency.    

3.2.2 Zero voltage switching  

Pmos and nmos switches of the converter turn on and off synchronously. When nmos 

is turning on the pmos is turning off in one edge of the gate drive switching voltage and in 

other edge of the gate drive voltage the opposite phenomena takes places. In case of hard 

switching, CP  amount of energy dissipates in every cycle and in case of soft switching 

0.5 CP×  amount of energy dissipates in each cycle. In addition to that there is short circuit 

current loss in every cycle, because there is a small amount of time for which the nmos and 

poms both are partially conducting. This can be stop by introducing a dead time between the 

pmos and nmos gate voltage pulses, where both the mosfets are forced to enter in off 

condition for a shot period of time. If the time is small there will be short circuit loss. If the 

time is big there will be reverse recovery loss, becasue when both the nmos and pmos are off, 

the magnetic energy stored in the inductor forced the body diode of the nmos to conduct and 

a path created to ground. In case of soft switching circuit the filter inductor works as a 

current source to charge and discharge the Cparasitic capacitor in a lossless manner. This 

charging current is the inductor current which normally flows to ground, when the nmos is 

on. But instead of going to ground this current charged the capacitor. This capacitor is 

discharged to the load and thus recovers some energy. More capacitor can be added to VX 

node to regain all the energy which is going from inductor to ground, but the extra 

capacitance will slow down the VX node.  At this charging and discharging time of the 

capacitor appropriate dead time can be set, to set the switching voltage of power transistors 

zero (Vds=0) [20]. This will eliminate the associated switching loss. In the paper [40] the 

efficiency of a synchronous buck converter improved by 7% for using zero voltage switching. 

In this design only the concept of dead time is applied to recover the lost energy. In future 

work zero voltage switching will be applied. The Figure 3-5 shows the concept of dead time. 

Two conditions are shown in the figure. In the Figure 3-5 a)  there is no dead time introduced, 

so there is a short period of time when both the mosfets are conduction. In b) there is a small 

amount of time when both the mosfets are off at the transitions and stops the short circuit 

current.  
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Figure 3-5. DC-DC converter gate drive voltage a) without dead time b) with dead time  

3.2.3 Supply voltages of drivers 

The gate drive loss of converter increases significantly in higher frequencies.  There 

are several ways to decrease or recover this lost energy in the gates. One of the popular 

methods for recovering this lost energy is to use resonator circuits, which are explained in the 

reference [23]–[25]. However, this method increases the complexity of the design. There is 

another simple approach to reduce the gate drive dissipation loss, by lowering the gate 

energy consumption per cycle [20]. This is achieved by lowering the voltage swing of gate 

drive voltage. The gate swing Vgs set between zero (Vgs =0, for off condition) and some other 

gate voltage Vg (for on condition) for nmos, for which the condition Vgs>>Vt is satisfied. In the 

case of pmos, Vgs set between VBAT (Vgs = VBAT, for off condition) and some other gate voltage 

Vg ( for on condition), for which the condition Vsg>>Vt is satisfied. Where Vt is the threshold 

voltage. But lowering the gate drive increases the on resistance of the switch which is shown 

by the equation 3.6.  As a result the conduction loss increases. The gate drive voltages of the 

switches are optimized for minimum total loss to obtain maximum efficiency.   

3.2.4 Cascode devices 

According to Moore’s low the number of transistors in an integrated circuit, which 

can be fabricated in the same area in silicon, is getting doubled in every two years [41]. 

Several measures in integrated circuit design like size, cost, density and speed of the 

components are also following this law [41]. The gate length sizes and oxide thickness of the 

transistors are also decreasing to increase the density of the transistors in the integrated 

circuits. With the decrement of the oxide thickness the supply voltage of the devices 
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decreases with the ratio of scaling factor [42] [46], because the breakdown voltage of the 

mosfets decreases with oxide thickness. In the Table 3-1 the decrement of the supply voltage 

of the integrated circuits is shown. The standard battery voltage of Li-Ions did not change last 

few years, same 3.7V Li-Ions battery is used in today’s mobile phones and other portable 

electronics. As a result previous CMOS design techniques are not implementable to modern 

integrated circuits. New methods are developed to use the latest CMOS technology with 

same battery voltage. LDMOS technology and use of cascode device are two methods for 

overcoming this problem. Here the cascode device approach is followed to solve the problem. 

 

Table 3-1: Reduction of supply voltage with the technological node advancement.[43]  

Year of Production 2004 2007 2010 2013 2016 

Technology node (nm) 90 65 45 32 22 

Supply voltage(V) 1.2 1.1 1.1/1 1.1/0.9 0.9/0.8 

 

In the following Figure 3-6 cascode structure is shown.  PMC works as pmos cascade 

and NMC works as nmos cascade. The cascode devices prevent the power mosfets from 

break down voltage.  
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Figure 3-6. DC-DC converter with cascade device 
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3.2.5 Interleaving  

Interleaving is the method where single phase converters are placed in parallel 

between the input and output. Each of the phases is turned on at equally spaced intervals 

over the switching period [26]. Thus the output ripple decreases significantly. In the Figure 

3-7 pictures are shown for load current for single and two phases. In two phase the ripples 

are varies with the duty cycle of the gate drive voltages of the converter. For 50% duty cycle 

the inductors current are 180° phase shifted and load current is ripple free. And the output 

voltage is directly proportional the load current.  

Another advantage of multiphase converter can respond to rapidly changing loads. In 

multiphase converter the output settled faster than a single phase converter.  The load current 

is distributed among the phases, which allows for using inductors having lower current 

ratings.  But the numbers of the inductors are increased proportionally with the increase of 

phases. This will result higher cost and larger space in the circuit. Normally in the DC-DC 

converters for mobile phone applications the two phase interleaving are used.  In the Figure 

3-8 a DC-DC converter with two phase interleaving is shown. Here phase-1 and phase-2 

works in parallel and the load currents are between LP1 and LP2. 
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Figure 3-7. Output current curves of single phase and two phase DC-DC converter. 
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Figure 3-8. 2-phase interleaving for DC-DC converter for decreasing the ripple. 

3.3 Conclusions 

High efficiency DC-DC converter design needs lot of considerations. Applying the 

basic theory for designing DC-DC buck type converter more than 75% efficiency can be 

achieved. But for higher efficiency different losses in the converter like conduction losses, 

gate drive losses and losses in the driver stage should be minimized. Along with theses 

considerations applying the concepts of high frequency operation, interleaving, zero voltage 

crossing switching and optimized gate swing voltage can make the efficiency more than 90%. 
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4 DC-DC Converter Design  

This chapter includes the design procedure of the DC-DC converter. The circuit is 

designed based on the theory presented in the previous chapter. The electrical design is made 

utilizing Cadence IC 6.1.3 with SpectreRF tool.  Design of the DC-DC converter is done step 

by step. First the design and simulation is done without the control circuits. Then the control 

circuits are introduced and simulation is done again with the control circuits.  

4.1 Design steps 

The converter design is done in four steps. First step is about the transistor sizing and 

optimizing it considering the efficiency. The second step is about designing the low pass 

filter. Then the gate drivers are designed and optimized for high efficiency. In the last step the 

control circuits are designed for generating two phases signal with dead time. In the 

following sections the design procedure and simulation results are given.  

4.1.1 Power mosfet sizing 

The widths of the mosfets are calculated using the equations 3.2 and 3.3. Then the 

values of the widths are optimized using the simulation tools. This design is made for 45nm 

CMOS process technology. In the library of this process there is no special high voltage 

mosfets. The break down voltage of the available nmos and pmos are 1.2V and 2V.  As the 

supply voltage for this converter varies form 3.3V to 4.2V, the mosfets having higher 

breakdown voltage is chosen. One pmos and one nmos cascade are introduced in the design 
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which is shown in the following Figure 4-1. PMC and NMC works as coscode device in 

Figure 4-1. 
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Figure 4-1. Schematic diagram of DC-DC buck converter with cascade devices. 

The cascode devices have the same width and length of the synchronous switches. 

The widths of the devices are optimized for the best efficiency. The optimum width of the 

transistor is a function of operating frequency which is known from the equation 3.7. The 

performance of the bigger transistor will be good in terms of on resistance but the parasitic 

capacitance will increase. So the size is made not too big and not to small.  

For calculating the optimum widths of the switches 50 MHz switching frequency is 

used. Then the calculated values are optimized using simulation, which is shown in the 

following Figure 4-2. Efficiency of the converter for different width of the transistors are 

shown in the figure. Considering the efficiency the widths of the pmos and nmos transistors 

are set 24mm and 12mm.  
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Efficiency vs. trasistor width 
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Figure 4-2. Efficiency of the converter for different nmos and pmos width at 50MHz switching 

frequency. All the simulation is done for 1.8V output voltage and 3.6V battery voltage. 

4.1.2 Filter design 

The values of the component of the second order low pass filter are calculated using 

the equation given in equations 3.9 to 3.14. The cut off frequency of the filter is assumed five 

times lower the lowest switching frequency. The calculated value is justified using 

simulation. Choosing the inductor for the filter is a critical issue, because the DC resistance of 

the inductor greatly affects the efficiency. So the inductor having minimum DC resistance 

should be chosen. For smaller valued inductor DC resistance is lower. But if the inductor 

having lower inductance is used, in the filter the cut off frequency of the filter is higher and 

the output ripple increased.  If higher value of inductor is used, the DC resistance is higher 

and the efficiency of the converter drops. For good operation of the inductor the self 

resonance frequency of the inductor should be at least five times higher than the cut off 

frequency of the filter. For finding a suitable inductor for the filter the following parameters 

are considered. 

 Inductance 

 DC resistance of the inductor 

 Quality factor of the inductor 

 Resonance frequency of the inductor 

 Current conducting capability of the inductor.  
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Depending on these parameters the following Table 4-1 is made to compare different 

SMD inductors available in the market. Most of the inductors have current capability of 400-

500mA. But the maximum load current of the converter is 700mA. And for single phase 

converter the output ripple of the converter is higher than the specifications. Both of these 

problem leads to the solution of interleaving, which is explained in the previous chapter.  

Interleaving allows to use lower valued inductor by splitting the load current and the same 

time decreases the output ripple. Comparing all the parameters a 150nH [29] inductor 

(Model: B82422T) is chosen for the design. The choice of the inductor is justified by 

simulation. 

Table 4-1: Comparison of different SMD inductors available in the market 

L 

[nH] 

Rmax 

[mΩ ] 

Qmin 

 

Fresonance 

[MHz] 

Current  

[mA] 

Core Material 

 Reference 

47 130 45 1900 500  [27] 

100 260 40 1310 350  [27] 

47 300 26 1200 450  [28] 

100 440 28 700 450  [28] 

120 220 30 500 450  [28] 

47 200 26 1300 450 Ceramic [29] 

100 310 28 900 450 Ceramic [29] 

120 150 30 900 450 Ferrite [29] 

150 180 30 700 450 Ferrite [29] 

180 190 30 500 450 Ferrite [29] 

47 220 25 1600 470  [30] 

100 300 30 1000 400  [30] 

47 190 26 1350 510  [31] 

100 260 25 1000 440  [31] 

 

 

In the Figure 4-3 simulation results are shown for different DC resistance of the 

inductor. With the increment of DC resistance the efficiency drops. For 500mΩ resistance the 

efficiency drops by more than 5% compare to 200mΩ DC resistance of the inductor. All these 

simulation is done for 3.6V battery voltage and 1.8V output voltage. The load current for 

every simulation is 400mA. Lower DC resistance of the inductor will give better results in 

terms of efficiency. But in that case the inductance will be lower. This will increase the output 
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ripple voltage.   In the Figure 4-4 output ripple voltage vs. frequency curve is plotted for 1-

phase and 2-phase. Ripple voltage decreases a lot for 2-phase converter. For less than 25MHz 

switching frequency ripple voltage of two phase converter is less then 10mV. But in case of 1-

phase the ripple is more than 30mV for all frequency. Same simulation condition is used hare 

like previous case.     
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Figure 4-3. Efficiency of the converter for different inductor DC resistance. The efficiency decreases 

with the increment of DC resistance. The efficiency does not vary too much when inductor DC 

resistance is less than 200m.  All the simulation is done for 1.8V output options. 
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Figure 4-4. Output ripples voltage for 1-phase and 2-phase interleaving. Both the curves are for 1.8V 

output. The out ripple voltage decreases rapidly for 2-phase inter- leaving. 



Two-Phase DC-DC Buck Converter for Power Amplifier Modulation 

 33 

4.1.3 Driver stage design 

A cascaded four stage inverter is used to drive the power mosfets PM and NM. The 

sizes of the inverter stages increased by four times to maximize the gate drive power and 

minimize the propagation delay. The pmos and nmos drivers are designed for same 

propagation delay. To reduce the gate drive losses of the converter the supply voltages of the 

drivers are reduced. But the on resistance of the mosfet increases when the gate drive is 

decreased. So the optimum supply voltages for the drivers are selected when total loss is 

smallest.  The optimum supply voltage is found from the simulation. In the Figure 4-5 the 

driver circuit for the pmos, PM is shown. And in the Figure 4-6 efficiency for different driver 

supply voltage is shown. The supply voltage is varied to find out the maximum efficiency. 

When the difference between the supply and ground voltage is 1.2V, the efficiency is 

maximum and this voltage is chosen for the drivers.   

 

Figure 4-5. Schematic diagram of the pmos driver, showing the sizes of the inverter stages. 
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Figure 4-6. Efficiency for different driver voltage. The maximum efficiency is achieved for 1.2V driver 

supply voltage (Vsupply – Vground of driver).   
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The simulations for the Figure 4-6 is done for 3.6V battery voltage and 400mA load 

current when the output is settled at 1.8V. After the simulation, the voltages of Figure 4-5 are 

finalized. Vdd_driver voltage for pmos driver is set same as the battery voltage and Vss_driver 

voltage is set to 1.2V down from the battery voltage. In case of nmos driver supply voltage is 

1.2V and ground voltage is zero. 

4.2 Simulation results without control circuits 

In this following section different simulation results are shown. First few results are 

related with the timing diagram of the converter. These figures show the behavior of gate 

drive voltages, the switching nodes, output voltage and the currents through the inductors. 

Three scenarios are chosen to show the behavior of these curves. In the first case, the duty 

cycle of the switching frequency is 50% and the frequency is 50MHz. In the second scenario, 

the duty cycle of the switching frequency is smallest and the frequency is 10MHz. In the third 

the duty cycle of the switching frequency is more than 90% and the frequency is maximum, 

100MHz.  Different simulation results related to efficiency vs. frequency for different output 

voltage, battery voltage and output power are shown after the timing diagrams. 
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Inductor current vs. time
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                   c) 

Figure 4-7.   Figure showing different timing diagrams of the converter for 50MHz switching frequency 

when the out put is settled at 1.65V. The simulation is done for the battery voltage 3.6V and load 

current of 700mA. 

In picture Figure 4-7.a) the gate drive voltages for pmos and nmos are shown. The 

dead time concept is applied here to stop the short circuit losses.  In the figure b) the 

switching node voltage and output voltage are shown in different axis. The output ripple 

voltage is less than 1mV as the duty cycle is 50%. In the picture c) the behavior of inductor 

currents are shown. The inductor currents are out of phase resulting very low ripple voltage 

in the output. 
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Gate drive voltage vs. time
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Inductor current vs. time
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Figure 4-8.   Different timing diagrams of the converter for 10MHz switching frequency and 0.5V 

output voltage are shown in the previous pictures. This is one of the worst conditions in terms of 

voltage ripple and efficiency because the duty cycle and output power is very low.   
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In Figure 4-8 a) the gate drive voltages for pmos and nmos are shown where, zero 

dead time concept is applied like previous picture.  In the figure b) the switching node 

voltage and output voltage are shown in different axis. The voltage at the switching node has 

an average of 0.5V. The output ripple voltage is 73mV. In the picture c) the behavior of 

inductor currents are shown.  
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Inductor currenct vs. time
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Figure 4-9.   Different timing diagrams of the converter for 100MHz switching frequency and 3V 

output voltage. This is one of the best conditions in term of output power and efficiency but worst 

conditions in terms of voltage ripple.  

In this configuration the pmos is on most of the time and nmos is on for very small 

amount of time which is understood by the gate drive voltages from Figure 4-9 a) the gate 

drive voltages for phase-1, b) the switching node voltage goes lower than zero voltage when 

the current in the inductor gets a path to ground through nmos. The output ripple voltage is 

3.6mV. Though the current in the inductors are not perfectly out of phase, the ripple is not 

very high, because the frequency is high here. In the picture c) the behavior of inductor 

currents are shown. The timing diagrams shown in the previous sections are done for the 

3.6V battery voltage and in all the cases the load current is 700mA. 

4.2.1 Efficiency vs. frequency for different output voltage  

The size of the power mosfets are optimized for 50MHz switching frequency. But the 

maximum efficiency is achieved at 30MHz frequency, because the mosfets are sized without 

considering the losses in other blocks of the design. When losses from different blocks are 

added the peak efficiency shifted to lower frequency. In the Figure 4-10 curves are plotted 

efficiency vs. frequency for different output voltage. Efficiency increases with the output 

voltage level. Maximum efficiency is achieved for 30MHz switching frequency for output 

voltage level 3V. With the increase of frequency the efficiency increases at first and after a 

30MHz switching frequency efficiency starts to drop again. Because, initially conduction loss 

is high and switching loss is low for lower frequency. When the frequency increases the 

conduction loss decreases and switching loss increases [45]. And efficiency starts to rise 
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because overall loss decreases. The efficiency vs. frequency curve is also varies for output 

voltage level. For higher output voltage level the efficiency is higher. For the output voltage 

level 3 and 2.5, the converter has more than 90% efficiency for whole frequency range form 

10-100MHz. For 0.5V output voltage the efficiency is less than 80% for all frequency. Here all 

the simulation is done for 3.6V battery voltage. 
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Figure 4-10. Efficiency vs. frequency curves for different output voltage. Maximum efficiency 93% is 

achieved for 3V output and 30MHz switching frequency.  

4.2.2 Efficiency vs. frequency for different   battery voltage 

The voltage of the Li-Ion batteries used in the mobile phones changes over time due to 

uses and aging. The efficiency of the converter varies with the change of battery voltage. In 

the following Figure 4-11 efficiency vs. frequency curves are plot for different battery voltage. 

The efficiency increases with the decrement of the battery voltage, because the ratio of the 

input by output decrease. The simulation results shown in the Figure 4-11 are for 1.8V 

output. For this output voltage options maximum efficiency reached 92.1%.  When the battery 

voltage drops below 3.3V, output voltage 3V is not guaranteed.  
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Efficiency vs. frequency for different VBAT
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Figure 4-11. Efficiency vs. frequency plots for different battery voltage. Maximum efficiency 92.1% is 

achieved for battery voltage 3.3. All the simulation is done for output voltage 1.8V and 400mA load 

current. 

4.2.3 Efficiency vs. output power 

The efficiency increases as the output power of the converter increases, because the 

loss of the converter does not increase proportionally with the increment of output power. In 

the following Figure 4-12 efficiency vs. output power curves are plotted for different 

switching frequency. For output power less than 400mW, the efficiency decreases rapidly, 

because the total loss becomes comparable with the output power. For output power more 

than 750mW the efficiency does not change significantly. The converter gives more than 90% 

efficiency in all switching frequency for more than 1.25W output power. For this simulation 

3.6V battery voltage and a 4.28Ω load resistor are used. The output power is changed by 

changing both the current and voltage. As a fixed load resistor is used, with the change of 

output voltage level the output current also changed.   The efficiency of the converter drops 

for light loads, because the pulse width modulation techniques (PWM) used here for varying 

the duty cycle is not good for light load management. Pulse frequency modulation techniques 

provide higher efficiency in light load condition [62] .A combination of PFM and PWM 

techniques will result high efficiency in all loading condition. From the figure it is observed 

that efficiency also depends on the switching frequency.  When the switching frequency of 

the converter is 30MHz it gives maximum efficiency in all load conditions. At 100MHz 

switching frequency it gives the worst results because switching loss is high.  
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Efficiency vs. output power curve for different 
frequency
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Figure 4-12. Efficiency vs. output power curves for different frequencies. For switching frequency 

30MHz the efficiency is maximum for low to high output power. More than 90% efficiency is achieved 

for all the switching frequency at 2W output power. 

4.2.4 Ripple voltage vs.  frequency 

The ripple voltage is inversely proportional to the frequency. With the increment of 

switching frequency the ripple voltage decreases. In the following Figure 4-13, output ripple 

voltage vs. the frequency curves are plotted for different output voltage level. The ripple 

voltage is related with the duty cycle. For 50% duty cycle the ripple voltage is minimum, 

theoretically zero. Because at 50% duty cycle the inductor currents cancel each others. With 

increment or decrement of duty cycle the ripple voltage decreases.   
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Figure 4-13. Ripple voltage vs. frequency plot for different output voltage. 



Two-Phase DC-DC Buck Converter for Power Amplifier Modulation 

 42 

4.2.5 Efficiency vs. dead time  

The efficiency of the converter is increased more than 1% by optimizing the dead 

time. Dead time restricts the short circuit path from battery voltage to ground. If the dead 

time is too much, then the body diode of the nmos starts to conduct and the energy stored in 

the inductors goes to ground. In the Figure 4-14 efficiency vs. dead time curves is plotted.  

The dead time for rising edge and falling edge is different. Maximum efficiency is achieved 

for 30pS falling edge delay and 150pS rising edge delay.  
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Figure 4-14. Efficiency vs. dead time curves for rising and falling edge of gate drive pulses. All the 

simulation is done for 3.6V battery voltage, 1.8V output voltage level, 400mA load current and 50MHz 

switching frequency.  

4.2.6 Frequency vs. efficiency when body of nmos of pmos driver is grounded    

In this design the bodies of all the nmos, of the pmos driver are considered as higher 

potential than ground.  In the simulation it is considered that both the body and source of the 

mosfet are in same potential. But usually all the p-substrates are connected to ground. But in 

some process it is possible to split the substrate. As this process does not allow substrate 

separation, simulation is done with the body all the nmos, of pmos driver grounded. In this 

case, the overall efficiency of the converter decreases by 3%.  
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Figure 4-15. Figure showing the body connection of the nmos of the pmos driver. In actual design the 

body of the nmos is not grounded, rather it is same potential with the source of the nmos. 

4.3 Control circuit design  

This DC-DC converter does not have any feedback circuit. It takes an input sinusoidal 

with a dc offset voltage as its control signal. The control circuit consists of a Schmitt trigger, 

one 180° phase shifter, two level shifters and two dead time controllers. Schmitt trigger 

generates pulse wave from the sinusoidal signal. The frequency of the pulse wave and the 

sinusoidal signal are same. The duty cycle of the pulse wave is determined by the offset 

voltage of the sinusoidal signal. The pulse wave then passes through the 180° phase shifter 

circuit, which produces two identical pulse waves having 180° phase shift. But the switching 

frequency of these two signals is half of the input pulse wave. These two signals then pass 

through the dead time controller circuits, level shifters and driver circuits before driving the 

power mosfets.    
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Figure 4-16. Signal flow graph of the DC-DC converter with the control circuits. 

4.3.1 Schmitt trigger 

Schmitt trigger detects the level of an input signal and gives a pulse wave as output. In the 

paper [47]-[50] different Schmitt trigger are described. A simple Schmitt trigger without 

hysteresis is chosen for this design. In this work, the Schmitt trigger is used to convert input 

sinusoidal into pulse wave. Depending on the amplitude and offset voltage of the sinusoidal 

signal the duty cycle is determined. In the Figure 4-17 the schematic diagram of the Schmitt 

trigger is shown. Maxim 1V offset voltage with 400mV VPP sine wave can be used as VIN. The 

input output curves of the Schmitt trigger is shown in Figure 4-23. Three different scenarios 

are shown in the picture for different duty cycle. The duty cycle of the VOUT pulse increases 

with the increase of Voffset. Simulation results of the Schmitt trigger is shown by the Figure 

4-19. 
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Figure 4-17. Schematic diagram of Schmitt trigger. 
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Figure 4-18. Input and output curve of the Schmitt trigger. a) Voffset >0, b) Voffset =0 and  

c) Voffset <0   
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Figure 4-19. Simulation results of the Schmitt trigger. The Schmitt trigger is producing more 

than 50% duty cycle. 
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4.3.2 180° phase shifter 

Two pulse signals separated by 180° degree are needed for driving two interleaved 

stages of the DC-DC converter. In the paper [51] and [52] two different techniques are 

explained for generating two phase signal form one phase signal. In the reference [51] a D 

flip–flop and two NAND gates are used for generating the signals. In the reference [52] a J-K 

flip-flop along with other circuitry are used for generating two phase signal. For this 

implementation the circuits of reference [51] is chosen for generating two phases signal. In the 

following Figure 4-20 a) the diagram of the circuit is given. In the Figure 4-20 b) the input 

output curve of the phase shifter is shown. In the Figure 4-20 PWM is the input signal; PWM1 

and PWM2 are the output signals. There are two drawbacks of this circuit. First the switching 

frequency of the new signal is half of the original signal. And secondly this circuit can not 

produce more than 50% duty cycle theoretically. First problem is solved by increasing the 

frequency of PWM signal by a factor of two. And for solving the second problem a controlled 

transmission gate is used. When the controlled voltage is zero it directly passes the pulses 

and when the controlled voltage is one it passes the inverter pulses. In this way the whole 

range of the duty cycle is covered.  A typical simulation result of the phase shifter is shown in 

the Figure 4-21. The simulation results matches with the Figure 4-22. (b. In the Figure 4-22 the 

schematic diagram of the transmission gate is given. If the VCNT is low then PWM1 passes 

through the transmission gate but if VCNT is low then PWMB1 appears at the output.  
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Figure 4-20. a) Schematic diagram of two phase generator and b) input output signal of two 

phase generator 
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Figure 4-21. Simulation results of the 180° phase shifter.  a) Input signal b) output signals of 

the phase shifter. 
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Figure 4-22. Schematic diagram of transmission gate for controlling the two phase signal.  
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4.3.3 Dead time controller 

Dead time is used for zero voltage switching to stop the short circuit current from 

battery to ground. In the paper [51] dead time controller circuit is described. In the Figure 

4-23 the dead time controller circuit is shown. The dead time for both the rising and falling 

edge can be controlled externally for maximum efficiency. The supply voltage of the feed 

back inverter chain controls the delay. When the supply voltage is higher then the inverter 

works very fast and the delay is minimum. When the supply voltage is low then the delay is 

higher, because for lower supply voltage the inverter chains produce maximum delay. In the 

Figure 4-24 control voltage vs. delay curve is shown both for the rising and falling edge 

delay. Falling edge delay is changed form 20pS to 600pS for the control voltage 1V to 0.5V 

and rising edge delay is changed from 40pS to 640pS for the same voltage range. In the figure 

Vcontrol voltage refers to the rising and falling edge control voltage. When the VC_RISING is 

varied VC_FALLING is fixed to 1V, when VC_FALLING is varied VC_RISING is fixed to 1V.   The 

maximum efficiency of the converter is achieved for 150pS rising edge delay and 30pS of 

falling edge delay.  The default supply voltages of the inverters and NAND gates are 1V DC 

and all the inverters and NAND have common ground.  
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Figure 4-23. Schematic diagram of dead time controller  
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Rising and falling egde delay vs. control voltage
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Figure 4-24. Rising and falling edge delay of the dead time control circuits for different 

control voltage.    

 

4.3.4 Level shifter 

Level shifter is needed to convert the low voltage PWM signal to high voltage PWM 

signal for driving the gate of pmos switch. Lowering the swing of the gate drive voltage 

increases the efficiency of the converter [20]. In the paper [54]-[58] different types of level 

shifter are presented for different applications. For this DC-DC converter, a level shifter is 

needed with very low rise time and fall time. And the low level switching pulses generated 

by 180° phase shifter need to convert high switching pulses with out duty ratio compression. 

The dead time of the circuit will be affected by the compression of the duty cycle, which will 

decrease the efficiency of the converter.  

A folded cascode based level shifter is designed to solve this problem. Folded cascode 

amplifiers have higher gain compare to other amplifiers, which will help to reduce the rise 

and fall time of output pulses of the level shifter. This type of amplifier need higher power 

supply compare to other amplifier, which is an advantage of this application. As this is a 

direct battery powered circuit and cascode devices are used to protect the mosfets form 

breakdown.  

Figure 4-25 the schematic diagram of the level shifter is shown. 0-1.2V pulses coming 

in the input, VIN of the level shifter are converting into 2.4-3.6V output signal VOUT. Rbias  select 

the biasing current and controls the rising and falling time of the level shifter. VBAT sets the 

high level of the switching pulse and VSS_PDRV sets the low level of the level shifter. It has rise 

and fall time of 25pS when an inverter is used as a load.  The level shifter is simulated for 
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10MHz-100MHz switching pulses for all corner variation with temperature variations. This 

level shifter can convert any low switching pulse of 5-95% duty cycle into high switching 

pulses. In the Figure 4-26 the input and output curve of the level shifter is shown. The 

simulation is done for 50MHz switching frequency and 50% duty cycle. 

 

 
 

Figure 4-25. Schematic diagram of level shifter 
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Figure 4-26. Input output curve of the level shifter.  
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4.4 Simulation results with control circuits  

In the following sections simulation results of the DC-DC converter is shown with the 

control circuits. These results are similar like the results are presented in the previous section 

of this chapter. The losses in the control circuits are added with the other losses of the 

converter and decrease the efficiency. When the output power is high these losses are 

insignificance compare to the output power. Thus the maximum efficiency of the converter 

does not change. When the output power is low then the efficiency drops by more than 0.5% 

due to the losses in the control circuits.  

4.4.1 Efficiency vs. load current 

In the Figure 4-27 efficiency vs. load current curves are plotted for different output 

voltage. Maximum efficiency 93% is achieved for 3V output for 450mA load current. The 

efficiency is less than 60% for load current less than 150mA and the output voltage is 0.5V.   

Efficiency decreases further for lower load currents.   
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Figure 4-27. Efficiency vs. load current curve for different output voltage. Al the simulation is done for 

50MHz switching frequency 3.6V battery voltage. 

4.4.2 Efficiency vs. frequency for different output voltage 

Efficiency vs. frequency curve for different output voltage option is shown by the 

Figure 4-28. For higher output voltage options the efficiency is almost constant in all the 

frequency, but at lower output voltage option the efficiency drops rapidly at high frequency. 

At high frequency the switching losses increase significantly and the efficiency drops.   
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Figure 4-28. Efficiency vs. frequency curve for different output voltage. Here the input voltage is 3.6V 

and the load current is 700mA 

4.4.3 Efficiency vs. frequency for different battery voltage 

In the following Figure 4-29 efficiency vs. frequency curve is shown for different 

battery voltage. The efficiency increases when the difference between the battery voltage and 

the output voltage decreases. Maximum efficiency is achieved for maximum output voltage 

option when the battery voltage is 3.3V.  
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Figure 4-29. Efficiency vs. frequency curve for different battery voltage. Here the output voltage is 3V 

and the load current is 700mA. 



Two-Phase DC-DC Buck Converter for Power Amplifier Modulation 

 53 

4.4.4 Efficiency vs. output power for different frequency 

Efficiency vs. output power curve is shown by the Figure 4-30. Efficiency is increased 

with the increment of output power. At light load condition total loss becomes comparable 

with the output power, so the efficiency drops rapidly at low load condition.  Efficiency also 

varies with frequency. Switching loss increases with the increment of switching frequency 

which results in the reduction of efficiency at high frequency. At 100MHz switching 

frequency the efficiency decreases by 1.5% at maximum load condition shown by the green 

curve in the figure.  

Efficiency vs. pout for different frequency

65

75

85

95

250 750 1250 1750 2250
Pout (mW)

Ef
fi

ci
en

cy
 (%

)

10 MHz

30 MHz

50 MHz

100 MHz

 

Figure 4-30. Efficiency vs. output power curve for different frequency. Here the battery voltage is 3.6V.  

4.4.5 Efficiency vs. dead time 

Efficiency vs. dead time curve is shown by the Figure 4-31, which is similar like the 

Figure 4-14. But here the dead time is generated by the control circuit. Maximum efficiency is 

achieved for 30pS falling edge delay and 150pS rising edge delay.  
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Efficiency vs. dead time 
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Figure 4-31. Efficiency vs.  dead time curve.  

4.4.6 Summary of efficiency  

In the following Table 4-2 the efficiency of the converter is shown for different corner 

conditions. Maximum efficiency is found for 3V output when the load current is 400mA.  For 

100mA load current the efficiency is less than 60%, when the output voltage level is 0.5V. The 

efficiency is higher than 75% for more than 300mA load current for the output voltage 0.5-3V. 

Table 4-2: Efficiency of the converter for different conditions 

FSwitch VBAT VOUT ILoad Efficiency 

[MHz] [V] [V] [mA] [%] 

10 3.3 3 400 93.5 

10 4.2 0.5 100 58 

50 3.3 1.8 700 92.5 

100 3.3 3 700 91 

100 4.2 0.5 100 56 
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4.5 Conclusion  

Design procedure and simulation results of the DC-DC converter are explained in this 

chapter. The design starts with optimizing the pmos and nmos switch for single phase       

DC-DC converter and ends with two phase converter with complex control circuit.  First the 

converter is optimized without the control circuit. Two phase interleaving is done for 

reducing the output ripple voltage, but it needs two external inductors. Digital control is used 

for generating two phases control signal form a single phase signal. Dead times are 

introduced to stop the short circuit current, when the gate drive vlotage of the pmos and 

nmos are changing their states. The dead time can be controlled externally for maximum 

efficiency. Level shifter is used for pmos drive to decrease the gate drive loss. In the end the 

converter ends up with maximum efficiency of 93.5% for 3V output options at 30MHz 

switching frequency when the supply voltage is 3.3V.     
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5  DC-DC Converter Layout  

This chapter includes the layout procedure of the DC-DC converter. The layout is 

done using Cadence Virtuoso tools. DRC and LVS checks and parasitic extraction are 

performed with Cadence Assura RCX.  The first part of the chapter includes the layout 

considerations and the second part describes the layout design of the converter. 

5.1 Layout consideration  

The converter has 2W output power at 3V output, which represents 700mA current 

flows from battery to load at maximum condition. So the routing of the current paths is 

considered carefully. The signal path having switching frequency of 10-100MHz needs also 

special considerations for routing, because the signal can be easily distorted by the high 

current and noisy path. When the layout is done the following things are taken into 

consideration [59], 

1. Wiring for the high current path is made short and wide, so that the series 

resistance of the current path is as small as possible.  

2. Multiple metal layers are used in VBAT and VSS paths to decrease the series. 

3. For interconnecting the metal layers maximum number of via’s are used. 

4. The control signal path is made also wide a small to minimize the parasitic 

resistance.  

5. This is a two phase DC-DC converter. First the layout for one phase is done. Then 

by copying this layout the second phase is made. As a result an axis of symmetry 

is present in the layout. 
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6. Place big bypass capacitor near to DC power supply pads. 

7. Place ESD protection circuits.  

5.2  Floor plan 

Floor plan is the preliminary sketching of the layout of the circuit, which is done prior 

to the layout. Floor plan actually shows the placing of different blocks of the circuit and 

interconnections among them. When the floor plan of the DC-DC converter is done, all the 

points of previous section are considered very carefully. In the Figure 5-1 the floor plan of the 

DC-DC converter is shown. VBAT and VSS bus line is placed in the middle and two outputs are 

taken from two sides of the IC. VBAT and VSS bus creates the symmetric line of the IC. Each 

phase is placed vertically in two sides of the VBAT and VSS bus lines. The control units are 

placed in the bottom of each phase. All the pins are placed for minimum distance form the 

block to the pin.   
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Figure 5-1. Floor plan of the converter. 
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5.3 Layout design 

The power mosfets and cascodes take most of the places of the IC. They are divided 

into small segments for the easiness of the layout. Small segment of the switch and cascode 

device are placed together. The drivers are also divided into small segments. Thirty small 

segments of the switches, cascodes and a driver segment make a unit cell for both nmos and 

pmos. Forty unit pmos and twenty unit nmos cell   creates one phase of the converter.   

 

 Choosing the shape of cells are very important. Because depending in the size of them 

the size and shape of the converter will be determined. Different sized cells with different 

finger width are tried to make the whole converter square shaped. In the end MOS having 

total width of 10u and 10 fingers are chosen for small cells for switches and cascodes.  

 
 

Figure 5-2. Small segment of switch nmos and cascode nmos. 
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In the Figure 5-2 picture of a small segment of power nmos and cascode are shown. 

The drain (VX) and source (VSS) connecting wires are made wide to reduce parasitic 

resistance. Multiple metal layers are also used for decreasing the parasitic resistance. The 

gates are connected in the both sides of the mosfet. Same configuration is followed for the 

pmos. 

In the Figure 5-3 the layout diagram of the nmos unit cell is shown. Six small cells of 

nmos cascode and nmos switch are placed in a row and five of them are placed in a column.  

The driver for the unit cell is placed in the bottom of the unit. In one side of the unit cell the 

gate connections are given and in the other side of the unit cell the gate connections of the 

cascade devices are given. 
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Figure 5-3. Figure showing a unit cell of nmos. 
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Each phase is consisting of forty pmos unit cells and twenty nmos unit cells.  VBAT  and 

VSS bus lines are placed in between two phases. Two phase generator and the dead time 

control circuit are placed in the bottom of the layout. The control signal generator circuits for 

phase-1 and phase-2 are placed in the bottom of each phase. The detailed layout of the 

converter with all blocks is shown in the Figure 5-4 and the top level layout is shown in 

Figure 5-5.    Metal layers 11 and 10 are used for VBAT  connection and metal layers 9, 8, 7 and 

6 are use for VSS connection. Metal layers 11, 10 and 11 are used for connecting the outputs. 

Total current capability of the bus lines, 

BAT
8mAV = ×6μm×16×2=1536mA
μm

 and SS
2mAV = ×6μm×16×4=768mA
μm

 

Where, 8mA/μm is the current density of metal 10 and M1, 6μm is the metal width of 

each line, 16 is the total number of metal lines, 2m/μm is the current density of metal 6 to 9 

[60].   
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Figure 5-4. Layout of different blocks of the DC-DC converter. 
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Figure 5-5. Top level of the DC-DC converter. 

 

5.4 Conclusion 

In this chapter the layout of the converter is explained. At first basic rules of layout 

and the floor plan is described. The layout is done maintaining the rules. The width of the 

high current lines is chosen for minimum 700mA current and staked metal layer is used for 

reducing parasitic resistance.  
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6 Proposed Measurement Set up 

 In the first part of this chapter the calculations of load and other resistances are 

shown. Then a typical set up for efficiency and ripple measurement are described in the later 

part of the chapter. With this set up efficiency for different load current and battery voltage 

can be found.  In the later part of this chapter expected practical results are given. The 

simulation is done by introducing main parasitic components of the converter and PCB. 

6.1 Load resistor calculations 

Six load resistors are placed in parallel in the output to change the load currents of the 

converter. The value of the load resistors are 24.9 and 30.1. In the Figure 6-1 combination of 

load resistors are shown and in the Table 6-1 load currents for different combinations of load 

resistors are shown.  

RL2 RL3 RL4 RL5 RL6

30.1Ω

24.9ΩVOUT

RL1

24.9Ω

24.9Ω

24.9Ω

24.9Ω

 

Figure 6-1. Load resistor combination for varying the load current from 100mA to 700mA. 
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Table 6-1: Load resistor and load current combinations 

Resistor Overall 

Resistance(Ω) 

Load Current (mA)  

for 3.0V output 

30.1 30.1 100 

24.9 24.9 120.5 

24.9║24.9 12.45 240 

24.9║24.9║24.9 8.3 360 

24.9║24.9║24.9║24.9 6.2 480 

24.9║24.9║24.9║24.9║24.9 4.98 602 

24.9║24.9║24.9║24.9║24.9║30.1 4.27 702 

6.2 LM38511 voltage regulator: bias voltage calculations 

In this DC-DC converter there are four different bias voltages and three variable 

voltages are needed. For generating these voltages seven different LM38511 voltage 

regulators are used. In case of fully functional DC-DC converter this regulator is not needed. 

These bias voltages will be generated internally. As it is not a complete DC-DC converter 

theses constant bias voltages are generated externally for test purpose. The bias voltages are 

2.4V, 1.8V, 1.2V, 1V and the variable voltages are 1.8/0 V, 550-1000mV, 550-1000mV. For 

calculating the bias voltages Figure 6-2 used as a reference picture and the formulas are taken 

from the datasheet of the regulator.  

 
Figure 6-2. Bias voltage calculation for using LM38511MR-ADJ [61]  

1
OUT ADJ
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Based on these equations the values of the resistor and capacitor are calculated. A 

variable resistor is used to tune the output voltage of the regulator. In the Table 6-2 the 

calculated values are shown. 

Table 6-2: Bias voltage calculations 

VOUT(V) 

of regulator 

R1(Ω) R2(Ω) RTRIM(Ω) Voltage 

Range (V) 

CFF(pF) 

2.4 2K 499 0-100 2.17-2.6 2700 

1.8 1.24K 453 0-100 1.62-1.98 3300 

1.2 1.21K 845 0-100 1.14-1.28 3300 

1 1K 1K 0-100 0.95-1.05 4700 

1.8(0) 3.01k 1.31K 0-100 1.72-1.88 2400 

0.55-1 100 1K 0-1K 0.525-1.05 47000 

0.55-1 100 1K 0-1K 0.525-1.05 47000 

6.3 Pin description 

The converter has twelve pins, six of them are input DC voltage, four control signal 

and two output voltages.  In the following table the descriptions of the pins are given.  

Table 6-3: Description of the pins of the converter 

Pin name Pin description 

VBAT Input voltage of the converter 

VCAS Cascode bias voltage for the cascode devices 

VSS_PDRV Ground voltage for pmos driver and level shifter 

VDD_NDRV Supply voltage for the nmos driver 

VDD_1V Supply voltage of the dead time generator circuit 

VOUT1 Output voltage of phase one 

VOUT2 Output voltage of phase two 

VCONTROL Input sine wave for controlling the output voltage 

VC_RISING Control voltage for controlling rising  edge relay  

VC_FALLING Control voltage for controlling falling edge relay 

VTG Control voltage of the transmission gate for duty cycle control  

VSS Ground pin 
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In the following Figure 6-3 the pin configuring of the converter is shown. The blue 

lines in the diagram represent the high current path and the green line represents the control 

signal path of the converter. 
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Figure 6-3. Pin configuration of the DC-DC converter. 

6.4 Electrical characteristics and proposed measurement set up  

A typical measurement set up for efficiency and output ripple measurement of the 

DC-DC converter is shown on the following figure Figure 6-4. The input signals of the set up 

are VBAT, VSS_PDRV, VCAS, VDD_NDRV, VDD_1V and VSS. The control signals are VCONTROL, VTG, 

VC_RISING and VC_FALLING. The output signals are VOUT1 and VOUT2. The load current is control by 

six resistors RL1 to RL6. The efficiency for different load current can be measured by changing 

these load resistances. As for example for 3V output options the load can be varied from 

100mA to 700mA. By changing the frequency of VCONTROL the switching frequency can be 
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changed. The switching frequency of the synchronous switches is half of the VCONTROL signals 

frequency. The dead time can be changed by changing the voltage levels VC_RISING and 

VC_FALLING. With this set up the efficiency for different battery voltage can also be measured   

by changing VBAT.  
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Figure 6-4. Proposed measurement setup of the DC-DC converter.  

Figure 6-5 shows the efficiency vs. load current curve. The simulation is done 

including the major parasitic components, which are parasitic resistances of the VBAT, VSS, 

VSSPDRV, VDDNDRV and the parasitic components of the PCB. Maximum efficiency drops by 5 % 

due to the losses in the parasitic components of circuits. But the patters of the curves are 

similar like the Figure 4-27, where the simulation results are shown without the parasitic 

effects.  In the end the electrical characteristics of the DC-DC converter is shown in the Table 

6-4. 
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Figure 6-5. Efficiency vs. load current curve for different battery voltage.  

 

Table 6-4: Electrical characteristics of the DC-DC converter. 

Pin Name Min Typ Max Unit 

VBAT 3.3 3.6 4.2 V 

VOUT 0.5  3 V 

I 50  700 mA 

FCONTROL 20 100 200 MHz 

FSWITCHING 10 50 100 MHz 

VPP_CONTROL   400 mV 

VOFFSET 300  1000 mV 

VCAS  VBAT/2  V 

VSS_PDRV  VBAT-1.2  V 

VDD_NDRV  1.2  V 

VTG  0/1.8  V 

VC_RISING 550 900 1000 mV 

VC_FALLING 550 950 1000 mV 

VDD_1V  1  V 

Efficency   88.5 % 

Without parasitic effects 
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6.5 Conclusion 

In this chapter a proposal is given for measuring the efficiency of the DC-DC 

converter is presented. Six resistors are used for changing the load current from 100mA to 

700mA for 3V output.  The DC bias voltages are given using the voltage regulator LM38511. 

For this test set up simulation is done for efficiency calculation at 50MHz switching frequency 

including the major parasitic effects. The peak efficiency drops by 5 % due to the effects of 

internal and PCB parasitic. 
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7 Conclusions and future works 

Designing high efficiency DC-DC converter is always challenging. DC-DC converter 

with high output power and lower silicon area makes it more complex. In this work a high 

efficiency LC type DC-DC converter is designed using Cadence 45nm generic design kit. The 

design procedure with considerations for high frequency, simulation results, layout and 

proposed measurement set up are explained in different chapter.    

 

This circuit operates for the voltage range 3.3V to 4.2V and can produce a variable 

output from 0.5V to 3V. The converter has 2W output power and designed for WCDMA 

mobile phones. Different state of art techniques are applied for improving the performance of 

the converter. Dead time control circuits and reduced gate drive voltage of the switches are 

used to improve the efficiency of the converter. The losses of the converter are minimized for 

the switching frequency range 10-100MHz. Simulated maximum efficiency is 88.5% for 3V 

output. Two phase interleaving is done to reduce the output ripple.    

 

In the Table 7-1 comparison of this work and some recently published LC-type DC-

DC converter is shown. Due to different technology it is not possible to compare the 

converters in the straight forward manner. But they can be comparable in terms of 

parameters like efficiency, silicon area, ripple voltage and output power. From the table it can 

be conclude that this design shows good performance in terms of efficiency and silicon area.  
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Table 7-1. Comparison of this work and other LC type DC-DC converter 

 

Ref. 

# 

 

VIN 

[V] 

 

VOUT 

[V] 

 

fswitch 

[MHz] 

 

L 

[uH] 

 

η 

[%] 

Output 

ripple 

[mV] 

ILoad 

(max) 

[mA] 

 

POUT 

[W] 

 

Si-area 

[mm2] 

 

Tech. 

 

Application 

[9] 4 2-3 5-10  89 <4 1100 
 

3.2 1.5 
0.25 μm 

CMOS 

GSM/ EDGE/ 

UMTS 

[11] 3.3 0.3-3 10 30  <2 750 
 

2 4.62 
0.35 μm 

CMOS 
CDMA 

[12] 
2.7-

4.3 
 130 2×0.11 83 -60dBc 750 

 
2 0.86 

0.25 μm 

LDMOS 
WCDMA 

[13] 3.3 0.3-3 

2.12/ 

2.88/ 

3.75 

2.2   0-750 

 
2  

0.13 μm 

CMOS 

EDGE/ WCDMA/ 

WiMax 

[14] 
3.6/ 

3.3 
0-2.9 10 5.3 75.5  420 

 
1.2 4.2 

0.25 μm 

CMOS 
GSM900 

[15] 1.2 0-1.15 118 0.80  <4.3  
 

0.186 1.32 
0.35 μm 

CMOS 
WLAN 

[18] 3.3 
0.4-

2.8 
10 2×0.5  <40 725 

 
2 3.09 

0.35 μm 

CMOS 
WCDMA 

This 

Work 

3.3-

4.2 
0.5-3 

10-100 

(50) 
2×0.15 88.5 10 700 

 
2 1.21 

45 nm 

CMOS 
WCDMA 

 

There are some limitations of design which can be improved. First of all, the circuit 

operates in open loop condition. There is no feedback circuit inside the converter. External 

signal is needed to control the output voltage level. A feedback circuit with oscillator and 

error amplifier can be designed to control the output voltage level internally. The dead time 

of this converter is controlled by external signal. But it is possible to design adaptive dead 

time control circuit, where no external voltage needed for controlling the dead time.  

This converter shows poor performance in light load condition. For generating control 

signal PWM techniques is used here which is good for higher load current management. PFM 

mode control is good for light load management. So combination of both PFM and PWM 

mode control can be implemented which will increase the efficiency at light load condition.  
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