

José Héctor Zárate Rodríguez

MAINTAINING CONSISTENCY IN XML-BASED

CONFIGURATIONS: A PATTERN-DRIVEN APPROACH

Master of Science Thesis

Examiner: Adjunct Prof. Imed Hammouda (TUT)

Supervisor: M.Sc. Mikko Matilainen (Sasken)

Examiner and topic approved in the Faculty of

Computing and Electrical Engineering council

meeting on 7
th
 of December 2011

ii

Preface

This thesis work was done for Sasken Finland and I would like to express my most

sincere thanks to all my colleagues and especially to Mikko Matilainen for their help,

guidance and patience that made this thesis work possible.

I would like to thank my professors at Tampere University of Technology for their

vocation to teach and help me to be a more qualified professional. In particular I would

like to thank my examiner Imed Hammuda for his guidance during this thesis writing

period.

Finally I give thanks to God for the opportunity to live and experience these years in

Finland. I want to express my deepest gratitude to my mother, father, brother and sister

for their love and unconditional support without which the goal that this thesis

concludes would have not been possible. Also, I am thankful to my girlfriend for

encourage me to work hard and for her understanding and moral support during this

thesis writing.

iii

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Institute of Software Systems

Master’s Degree Programme in Information Technology

ZÁRATE RODRÍGUEZ, JOSÉ HÉCTOR: Maintaining consistency in XML-based

configurations: A Pattern-driven approach

Master of Science Thesis: 46 pages, 7 Appendix pages

December 2011

Major: Software systems.

Examiner: Adjunct Prof. Imed Hammouda

Supervisor: MSc. Mikko Matilainen

Keywords: consistency, specialization patterns, tool support, XML configurations

Several software artifacts are used along the software development process. These are

used as input to perform tasks that produce new artifacts. Inconsistencies between

related artifacts at different levels of abstraction can arise during the software

development process.

Specialization patterns abstract the structural description of a framework extension

point, and can be used to qualify an element of the framework with a status and get a list

of actions needed to change the element to a different status. A tool built using these

patterns can then provide an overview of the framework status and identify the actions

needed to reach a status of consistency.

This thesis first identifies a source of inconsistencies between three artifacts that are

generated and used in a framework (diagrams, XML schema and XML configuration

files). Second this thesis shows how to adapt specialization patterns to validate XML

configuration files. Finally this thesis provides a tool support that utilizes specialization

patterns to guide the developer in the process of editing the configuration of the

framework while maintaining the consistency of the three artifacts.

iv

1. Introduction ... 1

1.1. Motivation.. 1

1.2. Objectives .. 2

1.3. Structure .. 2

2. Software artifacts and consistency ... 4

2.1. Consistency of artifacts ... 5

2.2. Example artifact: XML configuration files .. 6

2.3. Problems with inconsistent artifacts ... 8

3. Use of specialization patterns to maintain artifacts consistency...................... 10

3.1. Design patterns .. 10

3.2. Specialization patterns .. 10

3.3. Roles, contracts and program elements .. 11

3.4. Pattern graph... 12

3.5. Using specialization patterns to validate XML files ... 13

4. Case study: Message generator framework ... 15

4.1. Meteorological message ... 16

4.2. Message generation process .. 17

4.3. Inconsistencies in message configuration process ... 21

5. Message configuration editor (MENE) ... 23

5.1. Architecture and design .. 23

5.2. WMO meteorological message structure .. 30

6. Using MENE .. 32

6.1. Editing an existing message configuration .. 33

6.2. Creating a message configuration ... 35

6.3. Saving the message configuration ... 36

7. Results.. 38

7.1. Benefits .. 39

7.2. Problems .. 39

8. Conclusions .. 41

8.1. Further development ideas .. 41

Bibliography .. 43

Appendix A XML schemas comparison .. A

Appendix B Message generator framework elements and descriptions C

Appendix C Example set of common message elements ... E

v

Table of figures

Figure 1 Relation between software artifacts. 5

Figure 2 Relation between roles, contracts and program elements. 11

Figure 3 Example of a pattern graph. 12

Figure 4 Example of a simple cast graph. 12

Figure 5 XML schema complex type converted to a specialization pattern graph. 13

Figure 6 Specialization pattern cast graph representation of an XML element. 14

Figure 7 Artifacts involve in the process of generating a message configuration. 16

Figure 8 Section 1 of FM 35–XI Ext. TEMP code form. 16

Figure 9 TEMP A section 1 message diagram. 18

Figure 10 Relation between message generator framework elements. 20

Figure 11 Overview of message configuration editor. 24

Figure 12 MENE sequence diagram. 25

Figure 13 Specialization pattern simplified class diagram. 26

Figure 14 Simplified class diagram of message element models. 28

Figure 15 Message strategy edit form. 29

Figure 16 Field renderer displaying the message element status. 30

Figure 17 General WMO coded message structure. 31

Figure 18 PILOT Section 2 code form. 31

Figure 19 MENE user interface starting point. 32

Figure 20 Steps to edit a message configuration. 33

Figure 21 MENE XML inspection panel. 34

Figure 22 MENE properties panel. 34

Figure 23 Edit message element activity diagram. 35

Figure 24 Field node in unworkable state. 35

Figure 25 Activity diagram depicting the process of creating message configuration. 36

Figure 26 CLIMAT TEMP diagram showing the leaves of the node nTmTmTmTmDm. 37

1

1. Introduction

Lehman and Belay concluded based on their studies of OS/350 and other large systems

that, ―the need to minimize software cost suggests that large-program structure must not

only be created but must also be maintained if decay is to be avoided or postponed.

Planning and control of the maintenance and change process should seek to ensure the

most cost-effective balance between functional and structural maintenance over the

lifetime of the program. Models, methods and tools are required to facilitate achieving

such balance‖. [1]

1.1. Motivation

Software development companies are moving forward to create software that can be

reused, adapted for several different requirements and that can evolve instead of just

developing bespoken software (software developed according to the needs of an

individual or organization [2]). A common approach is to build applications on top of

frameworks. A framework is a reusable, semi-complete application that can be

specialized and adapted to produce custom applications [3]. These applications have

access to the features provided in the framework and by using a proper configuration

input this application can be parameterized to solve specific problem cases.

The first law of software evolution formulated in 1974 by Lehman and Belady states

that an E-type system, a program that is embedded in the real world and has become

part of it, must be continually adapted or it becomes progressively less satisfactory [1].

In other words software must evolve in order to continue pleasing its users. The

evolution of applications based on frameworks implies modifications in the application

and the framework. These modifications require changes that affect several items that

were produced during the development phase of the system. The new changes need to

be documented to provide traceability of the changes. Addendums and updates to

artifacts such as software specification requirements and software design description

need to be done to reflect the new needs and finally the source code must be updated

with the new implementation. Keeping all related parts that are impacted for a single

change in consistent state is a laborious and error prone task in which having a support

tool to trace and maintain the relation up-to-date is important.

Parameterized applications can be adapted to new circumstances by altering their

configuration. A commonly used approach to parameterize an application is Extensible

Markup Language (XML). XML is a platform-independent programming language

designed to carry data and to be self-descriptive [4]. The structure of an XML file can

be well defined in an XML schema file. These characteristics make XML useful to

2

handle structured application configuration settings. For instance Microsoft® .NET

Framework uses XML configuration files since its first version to parameterize

applications [5].

Maintaining consistent specifications, technical documentation, configuration files

and source code is a time consuming task that may involve several people from

different levels of the organization. Such a task turns out to be expensive and

consequently easily dropped out of the scope of a project. Inconsistencies can be

introduced during the development phase and remain hidden until a late phase of the

development or even until the product is released and maintenance is needed. In the

latter cases the impact and cost of inconsistencies can severely affect the project.

Maintenance phase is also a common source of new inconsistencies if changes required

by the maintenance task are not documented and all documents related to the change are

not updated accordingly. A mechanism to link two or more different artifacts so that

changes in either of them are reflected in the others would help to maintain the

consistency of such artifacts. This need is not specific to one software development

process and is the motivation of the thesis work.

1.2. Objectives

This thesis has four objectives. The first objective is to introduce to the reader the

concepts of software artifacts and inconsistency of artifacts. The second is to show the

inconsistency problem in the concrete case of XML configuration artifacts. The third is

to adapt specialization patterns to provide a mechanism to detect inconsistencies

between XML configuration files and their schemas. The last objective of this thesis is

to develop a functional prototype support tool for editing XML configuration files based

on specialization patterns as an approach to maintain the consistency of the artifacts.

The prototype tool developed during this thesis can be used to visualize XML

configuration artifacts as a hierarchical diagram tree. The tool provides a user interface

that allows the user to alter the tree and evaluates the consistency of the artifact after

every change. In the case when the artifact becomes inconsistent the user interfaces

guides the user to solve the inconsistencies. This tool is used specifically to edit

meteorological message configurations and enforces the use of standard method to

transform the message specifications into design diagrams and these into XML

configuration files. The tool can be used to produce these artifacts, which satisfy the

needs of at least two stakeholders: software designers and developers.

1.3. Structure

This thesis is divided into 8 chapters with this introduction being the first of them. The

Chapter 2 defines important concepts such as software artifacts, consistency of artifacts

and presents XML configurations as a concrete example of software artifacts. Chapter 3

3

introduces specialization patterns, its core elements: roles, contracts, tasks and program

elements and how specialization patterns can be adapted to maintain the consistency of

XML files with their schema. Chapter 4 presents a case study about a framework to

generate meteorological messages in which different software artifacts are involved and

are currently subject of inconsistencies. Chapter 5 concentrates on MENE (MEssage

coNfiguration Editor) a support tool that uses specialization patterns to tackle

inconsistencies between artifacts in the process of generating meteorological messages.

Chapter 6 presents the use MENE. Chapter 7 lists the results of this thesis work.

Chapter 8 is final words and conclusions.

4

2. Software artifacts and consistency

An artifact is a piece of information that is produced, modified, or used by a process.

Artifacts are the tangible products of the project, which are created or utilized, while

working towards the final product. Artifacts are used as input by workers to perform an

activity; and they are the result or output of such activities [6]. Artifacts may take

various shapes or forms. Table 1 lists some of the most common artifacts and examples

of them.

Table 1 Common software artifacts

Artifact type Artifact example

Document

Business case, software architecture document, software

specification requirements (SRS), software design description

(SDD), test plan, etc.

Diagrams

Sequence diagram, state diagram, activity diagram,

collaboration diagram, entity-relationship model (ER), class

diagram, use cases, etc.

Code
Source code, database scripts, batch files, web pages, XML

configuration files, etc.

Executable Programs, scripts, plug-ins.

Results Test results, unit test results, bug report, etc.

Others Data, prototypes, etc.

Software systems are developed following phased processes in which software

engineering complexities are tackled by means of subsequent refinement activities [7].

These phases guide the development from its first conception to realization and

maintenance [8]. Each software development phase produces several artifacts. For

example Software Specification Requirements (SRS) is created during the requirement

analysis phase; Software Design Description (SDD), use cases, sequence diagrams,

among other are created during the design phase; and source code, configuration files,

executables and API documentation during the implementation phase. These artifacts

are tightly related as shown in Figure 1. The outcome artifact of one phase is the input

5

for the next phase. However a phased process does not guarantee traceability of how

requirements evolve into design and design into code [7] and neither the consistency of

the artifacts created in each phase.

Requirements
Implementation

artifacts
Architectural

artifacts
Design artifacts

Figure 1 Relation between software artifacts.

Figure 1 shows the relation between artifacts. The solid lines represent a direct

relation between artifacts. The dashed line shows the indirect relation between artifacts.

When due to changing circumstances the software product needs to be adapted, the

relation between requirements and design or design and code can easily break and the

artifacts become inconsistent. For example, a specific requirement is converted into an

architectural design artifact. Then a program element (piece of source code) satisfies

that design decision and therefore the specific requirement. If a requirement requires a

small change, it probably needs to be reflected in the design artifact and in the program

element. Similar situation occurs when a problem is found and fixed in the code. This

action can affect the architectural design causing that the requirements satisfied by the

design decision may not be fulfilled.

2.1. Consistency of artifacts

Systems evolve by extending or adapting to new use cases and scenarios. This

evolution includes modifications performed at all stages of the software development

lifecycle, from inception to retirement and is handled differently depending of the

development methodology used. Such modifications are performed on a wide range of

software artifacts ranging from those at a high level of abstraction to architecture,

design, and source code level artifacts [9]. Keeping the artifacts affected by a single

change up-to-date and in a state of consistency is important in all phases of software

development, regardless of the methodology used. It is especially in the later phases of

the process for instance in the maintenance phase that this state of consistency is critical

[10]. In practice maintaining these artifacts consistent with each other is a labor-

intensive process of manual reviewing and as such a highly error prone activity. In order

to avoid artifacts to become inconsistent in different phases of the development process,

automatic support for maintaining the consistency among them or a mechanism to trace

changes should be available. For example Aldrich, J. et all in their paper ArchJava:

6

Connecting Software Architecture to Implementation [11] propose an extension for Java

language that unifies software architecture with implementation, ensuring the

implementation is consistent with the architectural constraints.

In this work we define an artifact to be consistent with other artifact when a relation

between both exists and the artifact in question does not present any inconsistencies

with the related artifact. We use the definition of inconsistency given by Bashar

Nuseibeh: ―An inconsistency occurs if and only if a (consistency) rule has been broken‖

[12].

2.2. Example artifact: XML configuration files

XML artifacts play an important role in current software practices, especially in web

application [13]. They have become the prime standard for data exchange on the Web

[14]. For instance web feeds use XML to deliver information to their subscribers.

Listing 1 shows an XML snippet containing the weather information of a city.

Applications can use this XML as input to perform specific tasks.

Listing 1 Weather information exchange example using XML

Besides of being a standard for data exchange XML artifacts are also widely used to

store application settings. Humans can read XML and computer can easily parse and

process it. This characteristic is one of the reasons why XML configuration files are

widely used. For instance the compiler for Flex SDK, a framework to build mobile and

desktop application using the same base code [15], uses XML configuration files to

define the compiler switches to use. Listing 2 shows part of the compiler node of the

configuration file of Flex compiler.

Listing 2 Flex compiler configuration file snippet

An important characteristic of XML artifacts is that they can be validated against an

XML schema (see section 2.2.2) that specifies type constraints and integrity constraints

<compiler>

 <!-- Turn on generation of accessible SWFs. -->

 <accessible>false</accessible>

 <!-- Specifies the locales for internationalization. -->

 <locale>

 <locale-element>en_US</locale-element>

 </locale>

 <!-- Enable post-link SWF optimization. -->

 <optimize>true</optimize>

</compiler>

<weather>

 <location city="Tampere" country="Finland"/>

 <units temperature="C" distance="km" pressure="mb" speed="km/h"/>

 <condition text="Fair" code="34" temp="8" date="Sat, 15 Oct 2011 5:20 pm EEST"/>

 <wind chill="7" direction="190" speed="8.05"/>

 <atmosphere humidity="76" visibility="9.99" pressure="1015.92" rising="0"/>

 <astronomy sunrise="8:03 am" sunset="6:09 pm"/>

</weather>

7

[16]. If during the validation process the XML tree satisfies all the constraints defined

in the XML schema, then the artifact is considered to be consistent [17]. This validation

is an important component of quality assurance.

2.2.1. XML language

Standard Generalized Markup Language (SGML) and Extensible Markup Language

(XML) are "meta" languages because they are used for defining markup languages. A

markup language defined using SGML or XML has a specific vocabulary (labels for

elements and attributes) and a declared syntax (grammar defining the hierarchy and

other features) [18].

XML is a simple and very flexible text format derived from SGML (ISO 8879),

originally designed to meet the challenges of large-scale electronic publishing. XML is

also playing an increasingly important role in the exchange of a wide variety of data on

the Web and elsewhere [4].

2.2.2. XML schema

The structure of an XML document can be well defined using an XML schema. An

XML schema is a language for expressing constraints about XML documents. There are

several different schema languages in widespread use, but the main ones are XML

Document Type Definitions (DTDs), Schematron and W3C XSD (XML Schema

Definitions) [19]. The table presented in appendix A shows a detailed comparison of

these three XML schema languages.

XML DTD has limited capabilities compared to other schema languages. DTD uses

a terse formal syntax that defines which elements and references may appear in the

document.

Listing 3 DTD example.

XML schema is a W3C (The World Wide Web Consortium) recommendation [20].

It is written in XML itself. It expresses a set of rules that an XML document must fulfill

in order to be considered valid.

Listing 4 XSD example.

<complexType name="Student">

 <sequence>

 <element name="Name" type="string"/>

 <element name="StudentNumber" type="string"/>

 <element name="Notes" type="string"minOccurs="0"/>

 </sequence>

</complexType>

<!DOCTYPE Student [

<!ELEMENT Name (#PCDATA+)>

<!ELEMENT StudentNumber (#PCDATA+)>

<!ELEMENT Notes (#PCDATA?)>

]>

8

Schematron uses a list of XPath-based rules to define the structure of an XML file.

Listing 5 Schematron example.

The three example of XML schemas presented above can be used to validate the

XML element Student presented below.

Listing 6 XML element example.

Despites the benefits given by the use of XML schemas, they also introduce some

disadvantages. The use of XML-based syntax leads to verbosity in schema description,

which makes schemas harder to read, write and maintain. In the case of XSD the W3C

recommendation is complex, which makes XSDs difficult to understand and implement.

2.2.3. Consistency in XML-based configurations

An XML-base configuration is consistent with its XML schema if and only if the XML

tree produced by the XML-based configuration satisfies all the constraints defined in

the XML schema. Several tools exist to validate the compliance of an XML tree with a

schema. However solving the inconsistencies is not always a trivial process.

2.3. Problems with inconsistent artifacts

Lack of consistency among artifacts over time, which can be seen as a mismatch

between design and implementation, can cause a negative deviation of the software

system architecture from its original design and results in software erosion [21] [22].

Software erosion is a common problem in software engineering processes, it comprises

design erosion or architectural drift [23]. Design erosion is due to violations of the

architecture while architectural drift is due to the insensitivity about the architecture (the

architecturally implied rules are not clear). This insensitivity leads to inadaptability and

results in an obscure architecture that is easily violated [24]. If the erosion level is too

high the effort needed to fix it is such that redeveloping the system from scratch may

become a viable option. Van Gurp and Bosch in their work Design Erosion: Problems

<Student>

 <Name>John</Name>

 <StudentNumber>123</StudentNumber>

</Student>

<pattern name="Student data checks">

 <rule abstract="true" id="studentDataChecks">

 <assert test="Name">A student must have a name</assert>

 <assert test="StudentNumber">A student must have a student numner</assert>

 </rule>

 <rule context="Student">

 <extends rules="nameChecks"/>

 </rule>

</pattern>

9

& Causes [23] present several successful cases where developing a new system instead

of trying to fix an eroded system was a better solution.

Inconsistencies between requirements, design and code artifacts are one of the most

common and most elusive errors in software design. Several works exist in this topic.

Antoniol et al. suggest in their paper design-code traceability for object-oriented

systems [7] the use of traceability to ensure consistency among software artifacts of

subsequent phases of the development cycle. Looise in his work inter-level consistency

checking between requirements and design artifacts [8] states that Model Driven

Engineering (MDE) techniques can be used to support maintaining the consistency os

software artifacts and propose the use of meta-models for requirements specification

and architectural design to explicitly define the structure of these artifacts and to

perform consistency checking on them. Igor Ivkovic et al. in their paper tracing

Evolution Changes of Software Artifacts through Model Synchronization [9] present a

framework whereby software artifacts at different levels of abstraction are represented

by graph-based models that can be synchronized using model transformations.

10

3. Use of specialization patterns to maintain

artifacts consistency

A general solution to keep different artifact consistent and, which can be adapted to

different situations on the same context, requires a well-defined and structured

instrument. This instrument must be able to abstract the problem and provide an

acceptable solution for it. Design patterns own these characteristics.

3.1. Design patterns

Dirk Riehle and Heinz Züllighoven, in their work, understanding and using patterns in

software development, give a good definition of the term pattern which is broadly

applicable: ―a pattern is the abstraction from a concrete form which keeps recurring in

specific non-arbitrary contexts‖ [25].

A design solution in a specific area of expertise can be documented by using

patterns. This approach is commonly use in different disciplines ranging from

architecture to computer science. A pattern explains the reason why a particular

situation generates a problem and why a proposed solution is well-accepted. In the field

of software engineering a well-known and commonly used type of pattern is design

pattern [26]. According to Gamma et al. [26] a design pattern has four essential

elements:

 Unambiguous name that identifies the pattern.

 Problem definition that describes when to apply the pattern.

 Solution explaining elements and the relations which make up the design.

 Consequences describing the results and trade-offs of applying the pattern.

3.2. Specialization patterns

A specialization pattern is an abstract structural description of an extension point of a

framework [27]. It can be seen as one approach to describe parts of software

architecture and how such parts should be integrated to implement software products

[28].

11

 A specialization pattern is given in terms of roles to be played by program

elements. The association between roles and program elements is called contract. If

specialization patterns are applied to specific frameworks certain roles are played by

fixed, unique program elements of the framework. When this occurs the roles are

considered to be bound. The set of specialization patterns, contracts and the framework

itself constitute a developer kit delivered for application programmers [27].

ContractsRoles Program

elements

Source

code

Source

code

Source

code

Specialization pattern Cast Software

Figure 2 Relation between roles, contracts and program elements.

3.3. Roles, contracts and program elements

An application consists of program elements, which can in general be pieces of source

code. A specialization pattern consists of roles. Each role is an abstraction of a required

program element [28]. Roles contain dependencies, multiplicity and properties. The role

properties can be of two types:

 Constraint properties which specify a requirement for a concrete program

element, examples of this type of property are: inheritance, return type or

overriding.

 Template properties which can be used for code generation. For instance default

name, description and task title are properties of this kind.

Based on the role abstraction it is possible to generate a list of tasks that needs to be

done in order to link program elements with its role. When a program element commits

to play a particular role it is said that the program element has a contract. If a program

element violates its contract, based on the specialization pattern, it is possible to

generate a list of actions to instruct the developer to fix the violation. A role is bound to

a program element if a contract that links both of them exists.

Applying or instantiating a specialization pattern is called casting. Casting means an

incremental and interactive binding of program elements to unbound roles of the pattern

[29].

12

3.4. Pattern graph

A specialization pattern can be represented using a directed acyclic graph. This graph is

called pattern graph or pattern definition graph. The Figure 3 shows a definition graph

of a simple reusable structure for a class that contains a member variable and a method

called get that returns the variable.

declared in
declared in

returns

Variable1 Get method1

Instance of

Class B1

Class A+

Figure 3 Example of a pattern graph.

The nodes of the graph represent roles and the directed edges between nodes are

dependencies. The roles have multiplicity constraints: one to one (1), zero to one (?),

one to infinity (+), and zero to infinity (*). The role multiplicity indicates if the role

stands for a single program element or a set of elements. In this example the Class A has

a variable of type Class B that is returned by the get method. Therefore Class A depends

of the Class B role since in order to declare the variable of Class A the role Class B

needs to be casted first.

3.4.1. Cast graph

Given that a cast is an instance of a specialization pattern it can be represented as a

directed acyclic graph as well. A cast graph is used to show the state of the casting

process at a specific time. The nodes of the graph represent contracts. A contract is

always in a state which can be either complete or unworkable. Based on the multiplicity

and dependencies a contract may be mandatory or optional. Figure 4 illustrates the cast

graph and their relation to the pattern graph and program elements. The Class A

contract is in unworkable state since it still depends of the contract get method to be

completed. Get method is marked as mandatory because there is no program element

fulfilling the contract. The rest of the tasks are in the complete state.

Variablecompleted Get methodmandatoryVariable1 Get method1
Class B1

Class A+

Cast graphPattern graph

1 public class ClassA {

2 private ClassB m_Var;

3 }

1 public class ClassB {

2 private bool m_Foo;

3 }

Class Bcomplete

Class Aunworkable

Program elements

Figure 4 Example of a simple cast graph.

13

3.4.2. Pattern Engine

Pattern engine is an interpreter for the formal pattern specification language. It takes

pattern specification as an input and produces tasks as output [28]. Pattern engine uses a

casting algorithm to generate a dynamic list of tasks to be done in order to fulfill the

contract requirements of a role. It monitors constantly the state of the cast graph. When

the developer does actions that change the state of the graph cast, the pattern reacts to

them updating the list of tasks to be done by adding new task or removing the tasks that

are satisfied.

Pattern engine can make use of rules and heuristic to solve task that can be

automatically completed. For instance, if a task to create a get method for a variable

exists in the list the pattern engine can fix the violation by generating the method

automatically.

In order to take advantage of the pattern engine it must be embedded in an

environment that allows software development. Such environment should give to the

developer the opportunity to interact with the source code, notify the pattern engine of

the developer changes and provide the up-to-date list of tasks generated by the pattern

engine.

3.5. Using specialization patterns to validate XML files

Specialization patterns can be used to validate an XML file against its XML schema. In

order to do this, the XML schema needs to be converted into specialization pattern roles

as shown in Figure 5 and the XML file needs to be converted into specialization pattern

contracts as shown in Figure 6.

<complexType name="Student">

 <sequence>

 <element name="Name"

 type="string"

 maxOccurs="1"

 minOccurs="1"/>

 <element name="StudentNumber"

 type="string"

 maxOccurs="1"

 minOccurs="1"/>

 <element name="Notes"

 type="string"

 maxOccurs="1"

 minOccurs="0"/>

 </sequence>

</complexType>

XML Schema Patter graph

declared in

declared indeclared in

Notes? StudentNumber1 Name1

Student

Figure 5 XML schema complex type converted to a specialization pattern graph.

An XML schema defines the structure and rules that an XML file must follow,

similarly in specialization patters a role defines characteristics that instances of it need

14

to implement. The Figure 5 shows an XML schema that defines a complex type Student

with 3 properties: Name, StudentNumber and Notes. This complex type can be

represented as a pattern graph that consists of 4 nodes: Student a node without outgoing

edges and Notes, StudentNumber and Name nodes with edges to the Student node.

Cast graph

declared in

declared indeclared in

Notes optional StudentNumber complete

Student complete

XML

<student>

 <Name>John</Name>

 <StudentNumber>1234</StudentNumber>

</student>

Name complete

Figure 6 Specialization pattern cast graph representation of an XML element.

Similarly an XML file can be represented as a cast graph. Each node of the graph

maps to an XML element in the file. In the picture above the relation between nodes and

XML elements is clearly shown.

Using specialization patterns to validate XML files against XML schemas opens the

opportunity to create a tool support to detect inconsistencies between these two different

artifacts and provide to the user a clear list of task to be done in order to reach the state

of consistency.

15

4. Case study: Message generator framework

The efficient and timely movement of meteorological information is a fundamental

requirement of modern meteorology. Observers record information about the

environment and provide it to data processing centers so that forecast guidance products

may be produced. Countries exchange information to enhance their forecasts and to

produce global forecast models. The facility to move information quickly between

centers, without regard to language, and in a format that may be processed by

automated means is embodied in meteorological codes [30].

Meteorological messages encode meteorological information; the encoding process

is systematic and can be done by a computer. Several upper air sounding system provide

reports in the format of meteorological messages, for example: The Vaisala DigiCORA

Sounding System MW31, Vaisala MARWIN Sounding System MW32 among other

Vaisala sounding systems produce a wide variety of WMO messages [31] [32].

For purposes of discussion, an upper air sounding system consists of a radiosonde

for making pressure, temperature, humidity (PTU) and wind measurements, a ground

based antenna for receiving data from the radiosonde, and a system computer for

controlling the antenna and providing reports and data outputs in various formats [33].

The process to produce different meteorology messages shares diverse steps no

matter which message is being coded; therefore, the use of a general message generator

framework is needed in order to abstract the common steps and facilitate the addition of

new meteorological messages and modification of the existing ones.

In order to configure the system to generate a particular message a well-defined

message code form needs to be expressed as a design diagram that later is converted

into XML code. Therefore three different levels of artifacts are involved in the process

and their relations are extremely tight. Maintaining a diagram and its code consistent is

a tedious, difficult and error prone task that developers easily forget to carry out.

16

MiMiMjMj YYGGId IIiii

<SchemaItemsCollection>

<Row SchemaNamePk="TEMP Part A

Schema"

CollectionNamePk="GroupTTAAFields"

Description="Group TTAA fields for

Temp" />

<Row SchemaNamePk="TEMP Part A

Schema"

CollectionNamePk="GroupYYGGIdFields"

Description="Group YYGGId fields for

Temp" />

...

...

</SchemaItemsCollection>

Message code form

Design diagram

XML code

Figure 7 Artifacts involve in the process of generating a message configuration.

The Figure 7 depicts the relation among the three different artifacts used for the

system to generate a message configuration. This picture is not meant to provide details

about the message code form, design diagram or the XML code, but just to illustrate the

three different levels in which the same specification can be visualized and the

importance of the consistency between each of them.

4.1. Meteorological message

Meteorological messages are used for the international exchange of observed and

processed data required in specific applications of meteorology to various human

activities and for exchanges of information related to meteorology [30].

 The World Meteorological Organization (WMO) defines international

meteorological codes in the WMO Manual No. 306 [34]. The codes are composed of a

set of code forms made up of a group of letters representing meteorological or other

geophysical elements. In messages, these groups of letters are transcribed into figures

indicating the value or the state of the elements described [30]. As an example the

section 1 of the TEMP code form, which is used for reporting pressure, temperature,

humidity and wind of the upper regions of the atmosphere made by weather balloons

released from the surface level is shown in Figure 8.

Figure 8 Section 1 of FM 35–XI Ext. TEMP code form.

The TEMP code is the primary upper-air reporting code. TEMP codes are broken

down into four parts, A, B, C, and D. Data at and below the 100 hPa level is reported in

Parts A and B, and data above 100 hPa is reported in parts C and D. Additionally, each

SECTION 1 MiMiMjMj D….D** YYGGId

{

IIiiii*

or

99LaLaLa QcLoLoLoLo MMMULaULo*** h0h0h0h0im****

17

code part is divided into data sections. TEMP Section 1 contains the identification data.

Each code field is mapped to figures representing real observations. MiMi defines the

identification letters of the report; MjMj defines the part of the message. YY defines the

day of the month and the units in which winds are measured. GG defines the actual time

of observation. Id is an indicator used to specify the pressure relative to the last standard

isobaric surface for which the wind is reported. II defines the block number. iii defines

the station number. [34]. The field codes D….D, LaLaLa, Qc, LoLoLoLo, MMMULaULo

and h0h0h0h0im are only used on the variants TEMP SHIP and TEMP MOBIL and will

not be explained in this example.

Table 2 TEMP A Section 1 example

Code format Coded message

MiMiMjMj YYGGId IIiii TTAA 65071 02313

The Table 2 shows a typical coded identification data for a fixed land station. The

observation was done at 07:00Z on the 15th day of the month from block 02, station

313, with winds measured in knots.

Coded messages are designed to allow transmission of a large amount of data using

only a small number of characters. The numerically coded data allows the report to be

decoded by a weather person in any country, regardless of the language spoken. More

importantly, this numerically coded format can be readily transmitted by computers.

These codes may be easily loaded into computer programs that analyze the upper-air

data, plot graphical displays, and then calculate probable changes in the reported

conditions. The resulting information serves as an invaluable forecast aid [35].

4.2. Message generation process

The message generator framework is capable of producing coded messages; but it

requires the code forms to be converted into an XML message configuration file. The

translation from code forms into XML is not a trivial process. It requires a good

understanding of the message generator framework and the developer must be familiar

with the WMO code forms and specific terminology used in the meteorology domain.

An intermediate step is the creation of message configuration diagrams. These

diagrams use the message generator framework tree structure to represent a message

code form visually. The diagrams then can be converted by a developer to XML

message configuration files. Figure 9 shows the message diagrams for TEMP A Section

1.

18

Figure 9 TEMP A section 1 message diagram.

The figure above shows the message diagram of the Section 1 of TEMP A code

form. This diagram relates code form items to SchemaItem, SchemaItemCollection, and

finally to Field elements in the message generator framework. A Field element contains

a property Calculation which at the end of the chain will map to method that will return

the real value of the code form. A further explanation of the elements of the message

generator framework will be given later in this thesis.

From a message diagram it is possible to create the XML message configuration

file, which is in essence the XML representation of the diagram.

Listing 7 XML configuration for TEMP A section 1YYGG Group

<SchemaItemsCollection>

 <Row SchemaNamePk="TEMP Part A Schema" CollectionNamePk="GroupYYGGIdFields"/>

</SchemaItemsCollection>

<SchemaItems>

 <Row StrategyNameFk="TEMP" SchemaNamePk="TEMP Part A Schema"

 CollectionNamePk="Section1Groups" ItemNbrPk="2"

 ChildCollectionNameFk="GroupYYGGIdFields" SetNameFk="GroupYYGGId" />

 <Row StrategyNameFk="TEMP" SchemaNamePk="TEMP Part A Schema"

 CollectionNamePk="GroupYYGGIdFields" ItemNbrPk="1" SetNameFk="GroupYYGGId"

 FieldNameFk="FieldYY" />

 <Row StrategyNameFk="TEMP" SchemaNamePk="TEMP Part A Schema"

 CollectionNamePk="GroupYYGGIdFields" ItemNbrPk="2" SetNameFk="GroupYYGGId"

 FieldNameFk="FieldGG" />

 <Row StrategyNameFk="TEMP" SchemaNamePk="TEMP Part A Schema"

 CollectionNamePk="GroupYYGGIdFields" ItemNbrPk="3" SetNameFk="GroupYYGGId"

 FieldNameFk="FieldIdPartA" />

</SchemaItems>

19

<Sets>

 <Row StrategyNamePk="TEMP" SetNamePk="GroupYYGGId" Type="group"

 XmlNodeFk="GroupNode" />

</Sets>

<Fields>

 <Row StrategyNamePk="TEMP" SetNamePk="GroupYYGGId" FieldNamePk="FieldYY"

 Description="Day of month" CalculationNameFk="CalculationGetFieldYY"

 DefaultValue="" XmlNodeFk="FieldNode" />

 <Row StrategyNamePk="TEMP" SetNamePk="GroupYYGGId" FieldNamePk="FieldGG"

 CalculationNameFk="CalculationGetFieldGG" DefaultValue="" XmlNodeFk="FieldNode" />

</Fields>

The resulting XML configuration files for the entire TEMP A message (including

the SHIP and MOBIL variants) is close to 1500 lines of code. Generating this file by

hand is a tedious task which is prone to errors. The constant repetition of similar

elements in the file and the verbosity of XML language incite the developer to use copy

and paste, this is the source of bugs that are not easily identified. The need for a tool to

automate the process of generating the configuration file out of the message diagrams is

evident. The use of such tool will:

 Maintain message diagrams and their configuration file in consistent state.

 Simplify the process of generating and editing XML configuration files.

 Eliminate redundant work when modifying a message configuration.

 Reduce the amount of errors.

The message generator framework can read the message configuration directly from

the XML files or from a database. When the database is used an extra step to export the

XML files to database tables is needed. Once the message generator has loaded a

message configuration and a source of data has been properly set up, it can be

commanded to code such message.

4.2.1. Message generator framework elements

The message generator framework elements refer to tables in the database or nodes in

the XML configuration file. The Figure 10 shows the relation of these elements.

20

Message

Strategy

Message

Layouts

Message Type

Message

Formatter

Message

Schema

Message

Compositor

Formats

Layout Items
Schema Items

Collection

Schema Item

Sets

FieldsDescriptors

Calculations

Calculation

Variables
Algorithms

Algorithm

Parameters
Variable

Measurand

Figure 10 Relation between message generator framework elements.

The root element of a message is the message strategy which can contain one or

more message types. For example TEMP is a message strategy and the different parts

(A, B, C and D) and variants (SHIP, MOBIL) are message types. Each message type

requires a message formatter and a message compositor. The message formatter

requires a message layout, which contains a collection of layout items each of them

defining the format of individual items. A message compositor defines a message

schema with a set of schema item collections, schema items, sets, descriptors, fields and

xml nodes in order to describe the message structure in a tree format [36].

MessageSchema defines the tree structure of a WMO message code form. It

comprises one or more SchemaItemCollections which are containers for other elements.

A SchemaItemCollection is always associated with a SchemaItem and a Set. The latter

one indicates what kind of container the collection is, this information can be used to

format specific types differently when the final message output is produced.

A SchemaItem is a node in the MessageSchema tree. SchemaItems are associated

with Sets, Descriptors or Fields depending of the function they have. Table 3 shows the

characteristics of the possible uses of a SchemaItem:

21

Table 3 SchemaItem uses

SchemaItem use Description

Set

A set can be of type heading, section, group, data subset,

sequence, replication or line. This type is used by the formatter to

support custom formatting of different types of sets

Descriptor

A descriptor is used to associate meta-data to provide extra

information for sets or fields. This meta-data is used in binary

format messages such as BUFR (Binary Universal Form for the

Representation of meteorological data).

Field

A field that represents a leaf node, which is a real entry in the final

message. The output value of the field is obtained by three

different forms in this order of precedence: calculation, the value

is calculated; variable, the value maps to a defined variable;

default, a given default value.

The appendix B describes the use of all the elements of the message generator

framework.

4.3. Inconsistencies in message configuration process

The process used in practice at the moment of this thesis writing to convert a code form

into a configuration file requires three phases. First to convert the code form into a

message diagram; second to convert the message diagram into an XML configuration

file and third export the configuration file to the data base. Two different artifacts are

produced along the process: message diagrams created in Microsoft Viso and XML

configuration files. In the current practice these artifacts are maintained independently,

nothing enforces the relation and dependencies of these artifacts. If a change is made in

the message diagram the XML configuration file needs to be updated manually and vice

versa, if not the two artifacts become inconsistent.

The experience shows that XML configuration files are updated when changes are

required due to bug fixing or when new requirements appear e.g. custom section added

to the message or customized layout required; but the message diagrams tend to become

obsolete. This problem does not exist between database and XML configuration files

since a tool that export the XML configuration files to the database that can be used

every time the configuration changes.

Obsolete and inconsistent diagrams are useless for the developer and cannot be used

as a documentation artifact because they do not reflect the current implementation state.

The effort needed to detect inconsistencies and fixed is too high compared to the benefit

the developer gets while implementing small modification to the message configuration.

22

However every time the XML configuration file is modified and the message diagrams

are not updated the software erosion of the system increases. At the moment that this

thesis was written the message diagrams for the 4 message strategies configured in the

message generator framework are in a state of inconsistency with their XML

configuration.

XML configuration files as mention in section 2.2.3 can be validated to check their

consistency against their XML schemas. This is other source of inconsistencies in the

process. Without a tool support to validate the consistency after each change made in

the XML configuration file, maintaining its consistency is difficult. For example if the

name of a SchemaItem is changed the elements that reference it need to be updated

properly.

23

5. Message configuration editor (MENE)

It is common knowledge that support tools play a critical role in the software

engineering process by improving quality and productivity. A huge number a support

tools have been produced to assist tasks in software development processes. Most

software developer teams use tools that are assembled over time and adopt a new tool

when the use of it brings them a benefit [37]. The inconsistency problems presented in

the section 4.3 can be resolved by the use a support tool.

MENE (MEssage coNfiguration Editor) is a functional support tool that assists the

software developers in the process of create and edit XML message configuration files

used by a specific meteorological message generation framework. MENE uses an

adaptation of specialization patterns to validate an XML configuration file and provide

the tool with a list of tasks needed to make the XML configuration file consistent with

its XML schema.

By using MENE a software developer can maintain XML configuration files valid

and consistent with their message diagrams.

5.1. Architecture and design

MENE is implemented using Adobe Flex 4.5.1 SDK. This technology was chosen

following an internal policy of the company for whom the tool is developed. MENE

follows a modular architecture consisting of three basic components: specialization

patterns, message element models and user interface. Specialization pattern component

is an adaptation of the specialization pattern presented section 3.2. Message element

model component contains data models to store message element configurations. User

interface component uses both the specialization patterns component and the data

models to present the user a message configuration and guide it in the editing process.

Figure 11 depicts how these three components relate.

24

MENE

Message Generator
Framework

Pattern engine Message elements model

User interface

Reads XML
Message configuration

Schema and creates roles

Shows the message
configuration

In diagram form

MENE user

Reads an
XML configuration

and creates contracts

Creates data model
for message elements

Uses MET to create
or edit message
configurations

Specialization patterns

XML Message
Configuration

Schema
XML Message
configuration

Exports an XML
Configuration file

Figure 11 Overview of message configuration editor.

5.1.1. Example sequence of using MENE

Figure 12 shows an example of editing a message element using MENE. The user starts

the user interface (UI) and the XML schema that defines the message configuration is

loaded automatically. The UI passes the loaded XML schema to the pattern engine,

which will analyze it and extract from it roles and tasks. After this the UI is fully

initialized and ready to be used; but no message configuration has been loaded yet. The

user then can load an XML configuration file containing one or multiple message

configuration. This XML configuration file is passed then to the specialization pattern,

which converts it into contracts and task. Now the UI shows the configuration as a

message diagram and the user can modify message elements and receive feedback for

its actions as the pattern engine validates the consistency of the configuration on the fly.

Finally the edited message configuration can be exported to an XML configuration file

or to an image file.

25

User UI Specialization Pattern XML Schema XML Configuration

Open the UI

UI initialized

Load XML Schema

XML Schema loaded

Load roles from schema

Roles loaded

Open message configuration

Load XML file

XML configuration loaded

decode XML

contracts added

message configuration loaded

modfify message element

Updates pattern engine

element status

show element status

Saves message configuration

export to XML

XML configuration

save to file

XML file saved

configuration saved

Figure 12 MENE sequence diagram.

5.1.2. Pattern engine

Pattern engine implements an adapted version of specialization patterns presented

section 3.2 which is used to validate elements of the configuration files and detect when

these become inconsistent. Pattern engine provides support to convert XML schema

files and XML configuration files into specialization pattern items: roles, contracts and

tasks and these elements back to XML configuration files.

The pattern engine component is the core of the MENE. It is implemented as a

singleton that exposes a collection of all the roles supported by the pattern engine and

other collection for all the contracts instances existing in the engine. The status of each

contract is available at any time and it indicates the consistency state of the element that

it represents. The Figure 13 shows the relation of pattern engine and the specialization

pattern elements.

26

+getStatus()

+getUnworkableTask()

+toXML()

+programElement

+tasks

-role

Contract

+getInstance()

+addContract()

+clear()

+decodeXML()

+exportToXml()

+findContract()

+findContracts()

+findRole()

+loadRolesFromSchema()

+loadXML()

+removeContract()

+contracts

+roles

-contractsDic

-rolesDic

PatternEngine

+validate()

+child

+childAttributes

+name

+parent

+parentAtttributes

Relation

+findTask()

+toXML()

+name

+relations

+tasks

Role

+clone()

+isSatisfied()

+attribute

+description

+name

+relationTask

+required

Task

1*

**
1 *

1

*

*
*

1
*

Figure 13 Specialization pattern simplified class diagram.

5.1.2.1. Roles

A specialization pattern role maps to an element of the XML configuration schema. A

role includes a list of tasks and relations that a contract inherits when it is instantiated.

Each attribute of the XML element creates an entry in the task list. If the XML element

has constraints defined, the refKey attribute of the constraint also creates an entry in the

task list and an entry in the relation list. The use of tasks and relation is explained in

section 5.1.2.3.

Listing 8 MessageStrategies XML schema definition.

<xs:element name="MessageStrategies">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="Row">

 <xs:complexType>

 <xs:attribute name="StrategyNamePk" type="EntityName" use="required" />

 <xs:attribute name="Description" type="Description" use="required" />

 <xs:attribute name="GridStorageTypeNameFk" type="EntityName" use="required" />

 <xs:attribute name="Priority" type="xs:integer" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:key name="IdxMessageStrategiesPk">

 <xs:selector xpath=".//MessageStrategies/Row" />

 <xs:field xpath="@StrategyNamePk" />

</xs:key>

 <xs:keyref name="IdxMessageStrategies1" refer="IdxDynamicTypesPk">

 <xs:selector xpath=".//MessageStrategies/Row" />

 <xs:field xpath="@StrategyTypeNameFk" />

</xs:keyref>

 <xs:keyref name="IdxMessageStrategies2" refer="IdxDynamicTypesPk">

 <xs:selector xpath=".//MessageStrategies/Row" />

 <xs:field xpath="@GridStorageTypeNameFk" />

</xs:keyref>

For instance the XML definition given above will produce a role named

MessageStrategies that contains two relations, one for each keyref constraint, and six

tasks, one for each required attribute plus the two relation tasks.

27

5.1.2.2. Contracts

A contract can be seen as an instance of a role. It maps to a row of the role in the XML

configuration file. A contract stores the piece of code that it represents in a property

called programElement. Contracts can be loaded from an XML configuration file or

added manually to the engine pattern. Since a contract represents a piece of code it can

be at any time converted to its XML representation.

Contracts inherit from their parent role the list of task to be done in order to consider

a contract done. Contracts contain a dynamic list of unworkable task. This list reports

all the required tasks of the contract that are not satisfied at a specific time.

Listing 9 PILOT message strategy definition.

<MessageStrategies>

 <Row StrategyNamePk="PILOT"

 Description="Strategy for PILOT"

 GridStorageTypeNameFk="WmoGridStorage"

 Priority="2"/>

</MessageStrategies>

The snippet of XML above creates a contract of role type MessageStrategies. The

list of unworkable task is populated based on the existence of other contracts in the

pattern engine. If a contract of type DynamicTypes that satisfies the relation task of this

contract exists, then all the tasks are done and the unworkable task list is empty.

Otherwise an entry for this task is reported in the list and the status of the contract is

unworkable.

5.1.2.3. Tasks and relations

A task represents a constraint that a contract needs to satisfy. Every attribute defined in

the XML schema definition represents a task. Tasks can be required or optional. The

attributes marked as required are marked as required tasks.

Keys and reference keys in the XML schema are also required tasks. The tasks for

reference keys include a relation object. A relation is an object that defines how two

different roles are related.

Tasks can be either satisfied or incomplete depending of the contracts in the pattern

engine. For example a task is satisfied if a contract programElement defines a value for

the attribute and this attribute has a valid relation to other contract programElement

attribute.

5.1.3. Message element models

Message element model component contains classes that encapsulate different elements

of a message code form. These models can be used in the user interface views as

sources of data for bindings.

28

Message element models provide a status property that combines the statuses of all

the contracts that form part of the model. A list of unworkable task is populated with the

tasks that are incomplete when the general status of the message elements is

unworkable.

+gridStorage

+messageStrategy

Strategy

Descriptor

+calculations ()

+algorithm

+calculation

+calculationVariables

Calculation

+getCalculationVariablesFromPatternEngine ()

+algorithmParameter

+calculationVariable

CalculationVariable

+dynamicTypes()

+findDynamicTypeItemByName()

+dynamicType

DynamicType

-schemaItem

-schemaItemCollection

-set

-elementContainers

ElementContainer

+layoutItem

-messageType

LayoutableMessageElement

+getGroupsFromPatternEngine ()

Group

Format

+getFieldsFromPatternEngine ()

+field

+schemaItem

+fieldDescriptor

Field

+getLinesFromPatternEngine ()

Line

MessageLayout

+sections

+compositor

+formatter

+messageLayout

+messageSchema

+messageType

+schemaItemcollection

+strategy

MessageType

+getGroupsFromPatternEngine()

Section

+getSequencesFromPatternEngine ()

Sequence

+measurand

+variable

-variables

Variable

IMessageElement

IMessageElement IMessageElement

IMessageElement

IMessageElement

IMessageElement
IMessageElement

IMessageElement

IMessageElement

IMessageElement

1 *
1 *

1

*

1

*

1 *

**

1

*

IDescriptor

* * * *

1 *

1*

ILayoutable

Figure 14 Simplified class diagram of message element models.

The figure above shows a simplified class diagram of the message element models.

IMessageElement is an interface that all elements that can be edited with MENE need to

implement since it defines the property status that can be used in the user interface view

to mark an element as valid or invalid. The relations between these model classes allow

to move along related elements e.g. from a Field model it is possible to reach the

message type to which the Field belong. This enables the propagation of changes done

in shared elements for example if the name of a MessageTypes changes all the elements

that have a relation with the MessageType will detect the change and update their

properties accordingly.

29

5.1.4. Graphical user interface

The graphical user interface allows the manipulation and edition of message elements in

a visual way. The user interface is developed on top of a third party library called

Kalileo and editing forms created using Flex SDK. Kalileo® diagrammer component

displays data as a graph to better visualize connections and allow the manipulation of

the graph providing a good editing user experience [38]. The use of our own

diagrammer library could be possible in the future, and MENE can be adapted to use it,

however the development of such library is consider out of the scope of this work.

5.1.4.1. Diagrammer

Diagrammer is a class that inherits from Kalileo® diagrammer component. Its main

function is to represent a message type in a tree-shaped-graph format. Diagrammer has

a method drawMessageDiagram that gets as a parameter a MessageType instance,

which is the root node of the tree. Diagrammer then adds a node for the MessageType

elements and iterates recursively though the children of it and adds each of them as

nodes. Each node will use a different renderer to have a custom appearance on the

diagram.

Diagrammer listens and handles two types of ActionScript events: add message

element and elements deleted. These events are used to communicate the diagrammer

that a node needs to be added or removed from the tree.

5.1.4.2. Forms

Forms package contains a collection of controls that provide and interface to edit

message elements. There is a form for each message element. Each form has a property

that references a message element model. The values of the form controls: text fields,

drop-down lists, etc., use two-way binding to the message element model item of the

form. This means that a change in the item is reflected in the form and vice versa

without need of manually saving such a change.

Figure 15 Message strategy edit form.

The form shown above allows the user to edit all the relevant values of a message

strategy element.

30

5.1.4.3. Renderers

A renderer is a visual element that holds a data property and can be used to visually

represent or show the data associated with it. In case of MENE all the renderers have a

rectangular shape, which contains different labels where the values of node attributes

are displayed. The color of the renderer border is used to show the status of the message

elements it represents. If the message element status is unworkable the border turns red.

If the diagram contains at least one node in unworkable state, this means that the XML

configuration file is not consistent with the XML schema. Figure 16 shows a Field node

in both states.

done unworkable

Figure 16 Field renderer displaying the message element status.

The figure above shows a contract in both states: done and unworkable. A

description is required for this contract and therefore the contract that does not define a

description is marked as unworkable and its renderer has a red color border.

Kalileo® provides several methodologies and tools to fully control what is rendered

and how it behaves in the diagram. One of these is the use of itemRendererFunction

[39]. When a new node is added to the diagrammer the function itemRendererFunction

is called and inside this a specific renderer for the node is defined. Any object that

implements fr.kapit.visualizer.IRenderer or mx.core.IDataRenderer can be used as a

node renderer. MENE uses mx.core.IDataRenderer because they are part of Flex SDK

and can be reused in case that our own diagrammer is used instead of Kalileo®.

The use of renderers allows customizing how data is shown, this is an important

feature because gives the possibility to adapt the user interface easily. MENE defines

the following renderers: FieldRenderer, GroupRenderer, LineRenderer,

SectionRenderer, SequenceRenderer, MessageTypeRenderer.

5.2. WMO meteorological message structure

Message generator framework (see Chapter 4) supports complex message tree

structures. This gives to the developer the freedom to convert a WMO message code

specification into XML message configuration in several different but equivalent and

valid forms. This freedom does not give any advantage in the process of converting the

specification into XML code; on the contrary it causes that configuration for similar

messages written by different developers do not follow the same structure. In order to

mitigate this MENE enforces the use of the common structure shown in the Figure 17.

31

Strategy

Message
Types

Sections

Sequences

Lines

Groups

Fields Groups

Groups

Fields Groups

Figure 17 General WMO coded message structure.

The figure above presents a typical WMO message structure. Each node of the

structure tree represents a message element. A strategy comprises a set of related WMO

message codes e.g. TEMP is a strategies that groups all WMO message codes for

TEMP. A message type is a specific WMO code message e.g. FM 32-XI Ext. PILOT.

Every message is composed of sections which are element containers. Group is a basic

element container that can have only fields or other groups. A sequence is a special type

of container used to group data that repeats in the message body. A line contains the

data that can be repeated in the message.

SECTION 2 44 n P1P1

dd fff

dd fff

…. etc.

 or

55 n P1P1

Section Group Sequence Line Field

Figure 18 PILOT Section 2 code form.

The previous figure shows how the elements of a code form match with the defined

message structure.

32

6. Using MENE

This chapter introduces the use of MENE. In this chapter it is explained how MENE can

be used to create new message configurations or edit configuration created with it. The

chapter focuses on the user interface. Figure 19 shows the user interface of MENE. It

consists of 6 main areas: main application menu, diagrammer pane, edit pane, working

strategy pane, overview pane and tasks list pane. Edit pane has 3 tabs: Properties, XML

and Debug. The first one shows a form to edit a selected node in the diagrammer pane;

the second one displays a preview of the XML output for the selected node; the last tab

shows the runtime logs.

Diagrammer pane

Tasks list

Diagram overview

Working strategy

Main application menu

Edit pane

Figure 19 MENE user interface starting point.

MENE is a Flash® application and it can be executed locally in Flash® Player or

deployed to a web server. In both cases MENE loads the XML message configuration

schema from the same location from where the application is executed. Once the

schema is loaded, the roles defined on it are added to the pattern engine and MENE is

ready to be used.

The first step to use MENE is to load a full XML configuration file or a set of

common elements—appendix C provides a basic set of common elements. In both cases

33

MENE adds the contracts defined in the loaded XML configuration file to the pattern

engine. The next step is to interact with the user interface to add, remove or edit nodes.

Finally the newly edited configuration file can be saved as an XML configuration file or

a PNG image.

6.1. Editing an existing message configuration

In order to edit a message configuration MENE the configuration needs to be loaded

into the pattern engine. The menu File  Load file… prompts for the location and file

name to load. Once the file is loaded its contents are converted into contracts and added

to the pattern engine.

MENE shows always a MessageType element as root of a message configuration

tree diagram. A configuration file can include several message types but MENE shows

only one at the time in order to keep the diagrammer pane simple. The message type to

be shown can be selected by using the menu Edit  Select message type.

Figure 20 Steps to edit a message configuration.

34

Figure 20 shows the steps to load a configuration file and select a message type to

edit. Once these steps have been done a node can be edited by clicking on it to select it

and its properties will be shown in the properties tab of the edit panel.

The tab XML of the edit panel shows the XML representation of a selected node.

This allows the developer to check in real time the code that will be generated in the

exported configuration file for that specific element.

Figure 21 MENE XML inspection panel.

The properties tab shows the message element properties that can be edited. Figure

22 shows the properties panel of the field node JJJ. By inspecting this panel it is

possible to see all the properties of the field and modified them.

Figure 22 MENE properties panel.

In order to edit a message element it needs to be selected, by clicking on it. If the

change causes that the message elements becomes inconsistent with the message

configuration schema, the message element node border turns red. When a node is red

the list of task on the task panel shows the fields of the message element that need to be

modified to make the node consistent with the schema. Figure 23 shows the activity

diagram to edit a message element.

35

Select a message element

Edit message element properties

Review the task to be done

[message element is valid]

[message element is invalid]

{Message configuration is loaded and

a message strategy is selected}

Message element successfully edited

Figure 23 Edit message element activity diagram.

For example a message element field, requires a valid description. In the Figure 24

we can see that the field Description in the properties panel is empty, this causes that

the field is not consistent with the XML schema and the border of the field node turns

red. The task list shows the action needed to fix to the inconsistency.

Figure 24 Field node in unworkable state.

6.2. Creating a message configuration

In order to create a new message configuration file first it is needed to define and select

the upper level element MessageStrategy. It is a good practice to save one message

36

strategy and all its message types in the same XML configuration file. In this way all

the related messages are store in the same file and all the common elements shared

among message are accessible. Figure 25 show the steps to follow in order to define a

new message type.

Select a message type to work with

Add sections to the message type

Add message elements to the section

Define a new message type

Save the message configuration

Define a message strategySelect a message strategy

[strategies not defined]

[strategy is not selected] [strategy selected]

[strategies defined]

Valid XML message configuration file saved

Figure 25 Activity diagram depicting the process of creating message configuration.

If a strategy has not been loaded in MENE the first step is to define and select one,

because a message type always belongs to a strategy. Once the strategy is selected a

new message type can be added. After the message exists in the pattern engine it needs

to be selected as the working message as shown in the Figure 20. When an element is

selected its properties can be edited. See section 6.1.

6.3. Saving the message configuration

It is possible to save at any time the message configuration file that the pattern engine

contains and that is being edited in the tool by clicking the menu File  Save file....

MENE prompts for the file name and location to save it. The current version of the tool

does not support auto-save since it is not possible to write to the disk without a user

interaction due to a security restriction of Flash® Player.

Alternatively it is possible to save the diagram as PNG format image. In this way

MENE represents a source for two different artifacts: message diagrams and XML

37

configuration files. The artifacts, diagrams and code, produced using MENE are by

nature consistent among them.

Figure 26 CLIMAT TEMP diagram showing the leaves of the node nTmTmTmTmDm.

Figure 26 shows part of CLIMAT TEMP message configuration diagram created

using MENE.

38

7. Results

This thesis presented to the reader the concepts of software artifacts and consistency. In

specific the case of XML configuration file artifacts and their consistency. This thesis

also described specialization patterns and how to adapt them to validate XML artifacts

so that they can be qualified as consistent or inconsistent with an XML schema. The

concepts presented were put together in MENE, a support tool that utilizes

specialization patterns to warn the user of inconsistent XML configuration files and

provide guidance to solve the inconsistencies.

The adaptation of specialization patterns proposed in this thesis was successfully

implemented. It requires as input an XML schema and an XML configuration file. The

latter is automatically validated and in case that it is inconsistent with the schema the

specialization pattern gives a list of tasks to be done in order to restore the consistency.

The outcome of this thesis is MENE, a working prototype tool that assists the

developer in the process of editing XML configuration files. MENE uses the pattern

engine of specialization patterns to validate the consistency of the configuration during

runtime. In this way MENE provides a mechanism to maintain the consistency of the

XML configurations that is being edited. The use of MENE also removes a source of

inconsistency between two artifacts: diagrams and XML configuration files by

providing support to export configurations to XML files and diagrams images in PNG

format.

A framework to generate meteorological messages and the process needed to

convert message specification into XML message configuration was presented in the

case study. The process involves three artifacts that are subject to inconsistencies. The

use of MENE to edit the configuration files gives the software developer a standardized

method to edit configuration and produce consistent message diagram artifacts for the

messages XML configuration files.

In order to prove that MENE can be used to create and edit message diagrams and

XML message configuration files the message configuration for WMO message type

FM 75–XII Ext. CLIMAT TEMP was created using solely MENE. The result was 2

artifacts, message diagram and XML configuration file consistent among them state that

can be used by the generator framework. It is important to mention, that the calculations

needed to produce the CLIMAT TEMP are not implemented in the scope of this work

and therefore generating a real message is not possible yet.

39

7.1. Benefits

The use of MENE improves the current process used to generate XML message

configuration files since MENE is the only tool needed to pass from a message code

form to a valid configuration. The use of MENE creates many benefits in the process of

creating and editing message configuration files. The most significant benefit is that the

XML configuration files produced with MENE are validated against the XML

configuration schema; and the consistency between design artifact and XML

configuration files is enforced and maintained. The validity of the XML configuration

files is shown at any time to the user giving him the information needed to correct the

violations in case of inconsistencies.

There is no need for writing XML configuration files by hand. The XML production

is done automatically by MENE this removes the amount of human errors and

inconsistencies with the schema. The user of MENE does not need to know the internals

of message generator framework and XML structure in order to create or edit an XML

message configuration. The elements of message generator framework (SchemaItem,

SchemaItemCollection and Set and their relations) are encapsulated in message

elements that appear in the final coded message and map to nodes in the diagram

showed in MENE.

The configuration files produced by MENE follow a common structure. This helps

to reduce discrepancies among different messages of the same strategy. The

configuration files produces with MENE can be saved as diagrams. These diagrams are

simpler and cleaner than the old diagrams.

7.2. Problems

Besides the benefits introduce by the use of specialization patterns and MENE, the use

of the tool has also few limitations. First of all MENE enforces the creation of

configurations following the structure presented in section 5.2 therefore only

configuration that are compliant with that structure can be displayed and edited using

MENE. This is a big limitation of MENE but old message configuration can be updated

to follow the common structure.

MENE user interface only supports the current XML message configuration

schema. Changes in the roles, e.g. a new attribute, are reflected and handle properly by

the pattern engine, but the user interface forms do not provide means to edit the new

fields. This is not a big issue since the XML message configuration schema is not

expected to suffer modifications frequently. Another problem with the user interface is

the use of Kalileo community license. It only allows its use for internal use of the

organization, therefore as far as MENE is used as a prototype to demonstrate that the

concepts of this thesis Kalileo can be used; but in case the use of MENE is extended a

40

standard license needs to be acquired or MENE needs to be modified to use a different

diagrammer library.

Finally MENE presents several usability issues than could be improved in order to

increase the user experience and facilitate the execution of common task. For example

the use of copy-paste and key shortcuts would increase the user experience by making

the edit process faster.

41

8. Conclusions

Software developers use different software artifacts as input to perform tasks that

produce new artifacts. Inconsistencies between artifacts at different levels of abstraction

can arise during or between phases of software development. Over time, such

inconsistencies must be fixed in order to produce a working software system, or at least

partially resolved to produce part of a system for testing and quality assurance purposes

[40]. If inconsistencies are not resolved they could lead to software erosion and poor

quality products. Therefore the impact of consistency should not be underestimated.

Inconsistencies among artifacts should be prevented and resolve as earliest as possible.

A design pattern that abstracts the structural description of a framework extension

point can be used to qualify an element of a framework with a status. A tool built using

this pattern can then provide an overview of the framework status and identify the

action points needed to reach a valid status.

Inconsistency of software artifacts can be tackled and avoided by the use of tools

that support traceability of changes and management of consistency. The use of

specialization patterns as the back end of a user interface support tool is a working

solution to maintain at least two levels of artifacts in consistent state. Specialization

pattern can provide at any time the state of consistency for a given artifact. This thesis

applied these concepts to create MENE, a tool that solves the consistency problem

between message diagrams and XML message configuration files existing in a specific

framework that can be used generate meteorological messages. MENE allows the user

to read an XML message configuration schema, create a new message configuration

diagram and generate an XML configuration file out of it. And the use of MENE keeps

in consistency the diagrams and XML configuration files.

8.1. Further development ideas

The current adaptation of specialization patterns satisfies the need of the current version

of MENE. However it is possible to extend the implementation of specialization pattern

to produce class skeletons and method stubs for certain message elements. For example

if a new calculation is used in a message element Field, the user needs to provide the

name of the method, the parameters and the return value. This means that all the

information needed to create a stub for that calculation is available in the specialization

pattern already. For calculations that are defined in a DynamicType type-introspection

can be used to automatically populate the information related to the calculation. This

will remove a source of error and reduce the amount of work because the developer will

42

not need to use a different tool to get the information about the existing calculations.

With this features MENE would have a tighter integration with the process not only of

generating the configuration files but the actual process of implementing the message

itself.

Currently MENE only helps the developer in the process to generate the

configuration file; but it is possible to integrate it with other existing tools. For example

MENE can be linked to a tool that generates messages using message generator

framework so that MENE can command the generation of messages for the

configuration being edited. This will allow the developer to see how the configuration is

used by the framework by analyzing the generated message. A feature that can be useful

to many developers is a preview generation of a message based on the edited

configuration.

The use of MENE currently has one big limitation; it cannot be used to edit

configuration that do not follow the structure defined in 5.2. This limitation prevents the

developers to edit the existing configurations using MENE. A possible solution to this

problem is to use EXtensible Stylesheet Language (XSLT) to manipulate the old

configuration and make them follow the structure supported by MENE. However this

needs to be considered since the effort needed to perform this task can be bigger than

the effort required to recreate the configuration files using MENE.

MENE can be extended and generalized to support other configuration schemas. For

instance it can be easily adapted to allow the editing of the full message generator

configuration database. This generalization can include a mechanism to configure

MENE so that the forms used to edit elements are dynamically generated.

43

Bibliography

[1] Lehman M, Belady L. Program Evolution: Processes of Software Change.

London: Academic Press; 1985.

[2] TC Software. Custom Software vs Packaged Software. [Internet]. 2010 [Last

accessed November 25, 2010]. Available from:

http://tcsoftware.net/articles/custom-bespoke-software.html.

[3] Fayad M, Schmidt D. Object-oriented application frameworks. Communications

of the ACM. 1997;40(10):32-38.

[4] W3C. Extensible Markup Language (XML). [Internet]. 2011 [Last accessed

September 16, 2011]. Available from: http://www.w3.org/XML/.

[5] Bryan P. Parameterize Your Apps Using XML Configuration In The.NET

Framework 2.0. [Internet]. 2006 [Last accessed November 30, 2011]. Available

from: http://msdn.microsoft.com/en-us/magazine/cc163591.aspx.

[6] Rational Software. Best practices for software development teams. A Rational

Software Corporation White Paper. 1998.

[7] Antoniol G, Caprile B, Potrich A, Tonella P. Design-code traceability for object-

oriented systems. Annals of Software Engineering. 2000;9(10):35-58.

[8] Looise M. Inter-level consistency checking between requirements and design

artefacts. University of Twente; 2008.

[9] Ivkovic I, Kontogiannis K. Tracing evolution changes of software artifacts

through model synchronization. In: Proceedings of the 20th IEEE International;

2004; Washingto, DC. p. 252-261.

[10] Baxter I, Pidgeon C. Software Change Through Design Maintenance. In:

Proceedings of International Conference on Software Maintenance; 1997; Bari,

Italy. p. 250-259.

[11] Aldrich J, Chambers C, Notkin D. ArchJava: connecting software architecture to

implementation. In: IEEE, editor. Proceedings of the 24rd International

Conference on Software Engineering, 2002. ICSE 2002.; 2002; Orlando, Florida.

p. 187-197.

[12] Nuseibeh B. To be and not to be: On managing inconsistency in software

development. In: Proceedings of the 8th International Workshop on Software

http://tcsoftware.net/articles/custom-bespoke-software.html
http://www.w3.org/XML/
http://msdn.microsoft.com/en-us/magazine/cc163591.aspx

44

Specification and Design; 1996. p. 164-169.

[13] Anfurrutia F, Diaz O, Trujillo S. On Refining XML Artifacts. In: Proceedings of

the 7th international conference on Web engineering; 2007. p. 473-478.

[14] Arenas M, Fan W, Libkin L. Consistency of XML specifications. Inconsistency

Tolerance. 2005;3300:15-41.

[15] Adobe Platform Evangelism Team. What is Flex. [Internet]. [Last accessed

November 4, 2011]. Available from: http://flex.org/what-is-flex/.

[16] Fan W. XML constraints: Specification, analysis, and applications. In:

Proceedings of the 1st International Workshop on Logical Aspects and

Applications of Integrity Constraints. Included in Proceedings of DEXA 2005,

International Workshop on Database and Expert Systems Applications; 2005;

Copenhagen, Denmark. p. 805-809.

[17] Arenas M, Fan W, Libkin L. On Verifying Consistency of XML Specifications.

In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems; 2002; Madison, Wisconsin. p. 259-270.

[18] SGML. Cover Pages. [Internet]. 2002 [Last accessed June 1, 2010]. Available

from: http://xml.coverpages.org/sgml.html.

[19] W3C. W3C. [Internet]. 2011 [Last accessed July 16, 2011]. Available from:

http://www.w3.org/standards/xml/schema.

[20] W3Schools. Introduction to XML Schema. [Internet]. [Last accessed January 16,

2011]. Available from: http://www.w3schools.com/schema/schema_intro.asp.

[21] O'reilly C, Morrow P, Bustard D. Lightweight Prevention of Architectural

Erosion. In: Software Evolution, 2003. Proceedings. Sixth International

Workshop on Principles of; 2003. p. 59--64.

[22] Ma Y, Chen J, Wu J. Research on the phenomenon of software drift in software

processes. In: eighth International Workshop on Principles of Software Evolution;

2005; Lisbon, Portugal. p. 195-198.

[23] Van Gurp J, Bosch J. Design erosion: problems and causes. Journal of Systems

and Software. 2002;61(2):105-119.

[24] Perry D, Wolf A. Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes. 1992;17(4):40-52.

[25] Riehle D, Züllighoven H. Understanding and using patterns in software

development. TAPOS. 1996;2(1):3-13.

[26] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns - Elements of

http://flex.org/what-is-flex/
http://xml.coverpages.org/sgml.html
http://www.w3.org/standards/xml/schema
http://www.w3schools.com/schema/schema_intro.asp

45

Reusable Object-Oriented Software. Addison-Wesley; 1995.

[27] Hakala M, Hautamäki J, Koskimies K, Paakki J, Viljamaa A, Viljamaa J.

Generating Application Development Environments for Java Frameworks. 2001.

[28] Hautamäki J. Task-Driven Framework Specialization Goal-Oriented Approach.

2002.

[29] Hakala M, Hautamäki J, Koskimies K, Paakki J, Viljamaa A, Viljamaa J.

Annotating Reusable Software Architectures with Specialization Patterns. In:

Proceedings. Working IEEE/IFIP Conference on Software Architecture; 2001. p.

171-180.

[30] National Weather Service Internet Web Team. Meteorological Character Codes.

[Internet]. 2002 [Last accessed November 6, 2011]. Available from:

http://www.nws.noaa.gov/tg/code.html.

[31] Vaisala Oy. Vaisala DigiCORA® Sounding System MW31. [Internet]. 2010

[Last accessed February 6, 2011]. Available from:

http://www.vaisala.com/en/meteorology/products/soundingsystemsandradiosonde

s/systems/Pages/DigiCORA-MW31.aspx.

[32] Vaisala Oy. Vaisala MARWIN® Sounding System MW32. [Internet]. 2010 [Last

accessed February 6, 2011]. Available from:

http://www.vaisala.com/en/products/soundingsystemsandradiosondes/soundingsy

stems/Pages/MW32.aspx.

[33] Wierenga R, Clowney F. Universal Upper Air Sounding System. International

Met Systems. 2005;3:2.

[35] Naval Education And Training Professional Development And Technology

Center. Aerographer’s Mate Module 2—Miscellaneous Observations and Codes.

Training Material. Washington, D.C. 1998.

[36] Vaisala Oy. Message Generator Service Configuration Guide. 2007.

[37] Baik J. The Effects of CASE Tools on Software Development Effort.

Dissertation. University of Southern California; 2000.

[38] Kap IT. Kalileo. [Internet]. 2009 [Last accessed July 13, 2011]. Available from:

http://lab.kapit.fr/display/kalileo/Kalileo.

[39] Kap IT. Kap Lab Developer Guide. [Internet]. [Last accessed July 13, 2011].

Available from: http://lab.kapit.fr/help/index.jsp.

[40] GrundyJ, HoskingJ, MugridgeR. Inconsistency management for multiple-view

software development environments. IEEE Transactions on Software

http://www.nws.noaa.gov/tg/code.html
http://www.vaisala.com/en/meteorology/products/soundingsystemsandradiosondes/systems/Pages/DigiCORA-MW31.aspx
http://www.vaisala.com/en/meteorology/products/soundingsystemsandradiosondes/systems/Pages/DigiCORA-MW31.aspx
http://www.vaisala.com/en/products/soundingsystemsandradiosondes/soundingsystems/Pages/MW32.aspx
http://www.vaisala.com/en/products/soundingsystemsandradiosondes/soundingsystems/Pages/MW32.aspx
http://lab.kapit.fr/display/kalileo/Kalileo
http://lab.kapit.fr/help/index.jsp

46

Engineering. 1998;24(11):960-981.

[41] Lee D, Wesley C. Comparative analysis of six XML schema languages. ACM

Sigmod Record. 2000;29(3):76-87.

[42] W3schools. DTD Tutorial. [Internet]. [Last accessed January 16, 2011]. Available

from: http://www.w3schools.com/dtd/default.asp.

[43] Vanhatupa J. Varma: Pattern-driven tool support for xml-based variation

management. MSc Thesis. Tampere: Tampere University of Technology; 2006

May 8.

[44] Hoss A. Ontology-based methodology for error detection in software design. PhD

Thesis. Louisiana State University Graduate School; 2007.

[45] W3schools. Introduction to XML. [Internet]. [Last accessed November 1, 2011].

Available from: http://www.w3schools.com/xml/xml_whatis.asp.

http://www.w3schools.com/dtd/default.asp
http://www.w3schools.com/xml/xml_whatis.asp

A

Appendix A XML schemas comparison

The following table presents a feature comparison of the three most common used XML

schemas [41].

Features DTD 1.0 XSD 1.0 Schematron 1.4

Schema

syntax in XML No Yes Yes

namespace No Yes Yes

include No Yes No

import No Yes No

Data typing

built-in type 10 37 0

user-defined type No Yes No

domain constraint No Yes Yes

null No Yes No

Attribute

default value Yes Yes No

choice No No Yes

optional vs. required Yes Yes Yes

domain constraint Partial Yes Yes

conditional definition No No Yes

Element

default value No Partial No

content model Yes Yes Yes

ordered sequence Yes Yes Yes

unordered sequence No Yes Yes

choice Yes Yes Yes

min & max occurrence Partial Yes Yes

open model No No Yes

conditional definition No No Yes

B

Features DTD 1.0 XSD 1.0 Schematron 1.4

Inheritance

simple type by extension No No No

simple type by restriction No Yes No

complex type by extension No Yes No

complex type by restriction No Yes No

Constraints

uniqueness for attribute Yes Yes Yes

uniqueness for non-attribute No Yes Yes

key for attribute No Yes Yes

key for non-attribute No Yes Yes

foreign key for attribute Partial Yes Yes

foreign key for non-attribute No Yes No

Miscellaneous

dynamic constraint No No Yes

version No No No

documentation No Yes Yes

embedded HTML No Yes Partial

self-describability No Partial Partial

C

Appendix B Message generator framework

elements and descriptions

Message

element

Description Parent element

Message

Strategy

Message strategy is a container for all message

types that are related to each other. For example

message strategy TEMP includes all messages of

type TEMP.

Message Type

A message type defines a message compositor and

message formatter for a WMO message code

form. This is the element that is passed in the

generation process time to command the coding of

a specific message.

Message

Strategy

Message

Compositor

The message compositor defines which message

schema is used to code the message. It is

responsible for reading the observation data and

composing an intermediate message in XML

format.

Message Type

Message

Schema

A Message schema defines the tree structure that

describes the WMO message code form structure.

Message schema is the root element of a message

type.

Message

Compositor

Schema Item

Collection

Schema item collection is a container node in the

schema tree. This is always associated with a set

and a schema item.

Schema Item

Schema Item

A schema item is a node in the message schema

tree. A schema item can optionally have a

dynamic calculation associated to it which

determines if the item is included or not in the

message. If a dynamic calculation is defined it

returns a boolean value indicating whether the

schema item is included or not in the schema tree.

Message

Schema

Set

A schema item that contains a group of schema

items. A set can be of type heading, section,

group, data subset, sequence, replication or line.

Schema Item

D

This type is used by the formatter to support

custom formatting of different types of sets

Descriptor

A schema item that contains metadata to provide

extra information for sets. This metadata is used in

binary format messages like BUFR.

Schema Item

Field

A schema item that represents a leaf node, which

is a real entry in the final message. The field

output value is obtained by three different forms

in this order of precedence: calculation, the value

is calculated; variable, the value maps to a defined

variable; default, a given default value.

Schema Item

Message

Formatter

The message formatter defines what message

layout is used to format a message type. The

message formatter reads the intermediate XML

message generated by the message compositor and

transforms it into its final layout.

Message Type

Message Layout

Message layout is a container node of all the

layout items used to format a message.

Message

Formatter

Layout Items

A layout item defines the format to use for each

set type. The layout item can be applied to a

specific set or to all sets of the same type

Message Layout

Formats

Format defines a default mask to represent invalid

node values and the format string to be used to

format the node value when it is valid.

Layout item

Feature comparison of XML schemas [41]

E

Appendix C Example set of common message

elements

<?xml version="1.0" encoding="utf-8"?>

<root xsi:noNamespaceSchemaLocation="Message_config.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <XmlNodes>

 <Row XmlNodePk="FieldNode" Name="Field" />

 <Row XmlNodePk="SectionNode" Name="Section" />

 <Row XmlNodePk="GroupNode" Name="Group" />

 <Row XmlNodePk="SequenceNode" Name="Sequence" />

 <Row XmlNodePk="LineNode" Name="Line" />

 <Row XmlNodePk="DataSubsetNode" Name="DataSubset" />

 <Row XmlNodePk="ElementDescriptorNode" Name="ElementDescriptor" />

 <Row XmlNodePk="SequenceDescriptorNode" Name="SequenceDescriptor" />

 <Row XmlNodePk="OperatorDescriptorNode" Name="OperatorDescriptor"/>

 <Row XmlNodePk="ReplicationNode" Name="Replication" />

 </XmlNodes>

 <Variables>

 <Row VariableNamePk="MsgGenerationTime" Description="Date and time of message"

 Type="DateTime" IsMandatory="false"/>

 <Row VariableNamePk="WMOBlock" Description="WMO block number." Type="Int32"

 DefaultValue="0" IsMandatory="false"/>

 <Row VariableNamePk="WMOStation" Description="WMO station number." Type="Int32"

 DefaultValue="0" IsMandatory="false" MeasurandNameFk="WMOStation"/>

 <Row VariableNamePk="LaunchTime" Description="Date and time of the observation"

 Type="DateTime" IsMandatory="false" MeasurandNameFk="LaunchTime"/>

 <Row VariableNamePk="WindFindingType" Description="Type of measuring equipment used"

 Type="String" DefaultValue="" IsMandatory="false"

 MeasurandNameFk="WindFindingType"/>

 <Row VariableNamePk="StationName" Description="Station name" Type="String"

 DefaultValue="0" IsMandatory="false" MeasurandNameFk="StationName"/>

 <Row VariableNamePk="HeightConfidence" Description="Height Confidence" Type="Int32"

 DefaultValue="1" IsMandatory="false" MeasurandNameFk="HeightConfidence"/>

 <Row VariableNamePk="Latitude" Description="Latitude" Type="Double" DefaultValue="0"

 IsMandatory="false" MeasurandNameFk="StationLatitude" />

 <Row VariableNamePk="Longitude" Description="Longitude" Type="Double"

 DefaultValue="0" IsMandatory="false" MeasurandNameFk="StationLongitude" />

 <Row VariableNamePk="Altitude" Description="Altitude" Type="Double" DefaultValue="0"

 IsMandatory="false" MeasurandNameFk="StationAltitude" />

 <Row VariableNamePk="WindDirection" Description="Wind direction" Type="Double"

 IsMandatory="false" MeasurandNameFk="WindDir"/>

 <Row VariableNamePk="WindSpeed" Description="Wind speed" Type="Double"

 IsMandatory="false" MeasurandNameFk="WindSpeed"/>

 <Row VariableNamePk="RadioRxTime" Description="RadioRxTime" Type="Double"

 IsMandatory="false" MeasurandNameFk="Time"/>

 <Row VariableNamePk="Height" Description="Height" Type="Double" IsMandatory="false"

 MeasurandNameFk="Height"/>

 <Row VariableNamePk="WindEast" Description="WindEast" Type="Double"

 IsMandatory="false" MeasurandNameFk="WindEast"/>

 <Row VariableNamePk="WindNorth" Description="WindNorth" Type="Double"

 IsMandatory="false" MeasurandNameFk="WindNorth"/>

 <Row VariableNamePk="UnitsOfAltitude" Description="Units of used height"

 Type="String" IsMandatory="false" MeasurandNameFk="UnitsOfAltitude"/>

 <Row VariableNamePk="IsMaxWindAtTopOfSounding"

 Description="Indicates id the max wind occured at the top of the sounding"

 Type="Boolean" MeasurandNameFk="MaxWindAtTopOfSounding" IsMandatory="false" />

 <Row VariableNamePk="MaxWindRadioRxTime"

 Description="RadioRxTime at a max wind speed level" Type="Double"

 MeasurandNameFk="MaxWindRadioRxTime" IsMandatory="false" />

 <Row VariableNamePk="MaxWindHeight" Description="Height at a max wind speed level"

 Type="Double" MeasurandNameFk="MaxWindHeight" IsMandatory="false" />

F

 <Row VariableNamePk="MaxWindSpeedEast"

 Description="East speed component at a max wind speed level" Type="Double"

 MeasurandNameFk="MaxWindSpeedEast" IsMandatory="false" />

 <Row VariableNamePk="MaxWindSpeedNorth"

 Description="North speed component at a max wind speed level" Type="Double"

 MeasurandNameFk="MaxWindSpeedNorth" IsMandatory="false" />

 <Row VariableNamePk="MaxWindPressure"

 Description="Pressure at a max wind speed level" Type="Double"

 MeasurandNameFk="MaxWindPressure" IsMandatory="false" />

 <Row VariableNamePk="MaxWindDirection"

 Description="Pressure at a max wind speed level" Type="Double"

 MeasurandNameFk="MaxWindDirection" IsMandatory="false" />

 <Row VariableNamePk="MaxWindSpeed"

 Description="Wind speed at a max wind speed level" Type="Double"

 MeasurandNameFk="MaxWindSpeed" IsMandatory="false" />

 <Row VariableNamePk="StdLevelPressure" Description="Pressure at the standard level."

 Type="Double" IsMandatory="false" MeasurandNameFk="FilteredStdLevelPressure"/>

 <Row VariableNamePk="StdLevelWindSpeed"

 Description="Wind speed at the standard level." Type="Double" IsMandatory="false"

 MeasurandNameFk="FilteredStdLevelWindSpeed"/>

 <Row VariableNamePk="StdLevelWindDirection"

 Description="Wind direction at the standard level." Type="Double"

 IsMandatory="false" MeasurandNameFk="FilteredStdLevelWindDirection"/>

 <Row VariableNamePk="WindGroupStartIndex"

 Description="Start index of the current wind group." Type="Int32"

 IsMandatory="false"/>

 <Row VariableNamePk="WindGroupCount" Description="Number of wind groups to follow."

 Type="Int32" IsMandatory="false"/>

 <Row VariableNamePk="WindSpeedUnits" Description="Wind speed units" Type="String"

 IsMandatory="false" MeasurandNameFk="WindSpeedUnits"/>

 <Row VariableNamePk="ShearWanted"

 Description="Flag indicating whether shear is wanted" Type="Boolean"

 IsMandatory="false" MeasurandNameFk="ShearWanted"/>

 </Variables>

 <Measurands>

 <Row MeasurandNamePk="StationName" Description="Station name."

 ExternalName="StationName" ScaleNameFk="none"/>

 <Row MeasurandNamePk="WMOStation" Description="WMO station number."

 ExternalName="WMOStation" ScaleNameFk="none"/>

 <Row MeasurandNamePk="HeightConfidence" Description="Height confidence."

 ExternalName="HeightConfidence" ScaleNameFk="none"/>

 <Row MeasurandNamePk="LaunchTime" Description="LaunchTime" ExternalName="LaunchTime"

 ScaleNameFk="none"/>

 <Row MeasurandNamePk="WindFindingType" Description="" ExternalName="WindFindingType"

 ScaleNameFk="none" />

 <Row MeasurandNamePk="WindDir" Description="Wind direction" ExternalName="WindDir"

 UnitNameFk="Degree" ScaleNameFk="none" />

 <Row MeasurandNamePk="WindSpeed" Description="Wind speed" ExternalName="WindSpeed"

 UnitNameFk="MetersPerSecond" ScaleNameFk="none"/>

 <Row MeasurandNamePk="WindEast" Description="East wind speed"

 ExternalName="WindEast" UnitNameFk="MetersPerSecond" ScaleNameFk="none"/>

 <Row MeasurandNamePk="WindNorth" Description="North Wind speed"

 ExternalName="WindNorth" UnitNameFk="MetersPerSecond" ScaleNameFk="none"/>

 <Row MeasurandNamePk="StationLatitude" Description="Station latitude"

 ExternalName="StationLatitude" UnitNameFk="Degree" ScaleNameFk="none"/>

 <Row MeasurandNamePk="StationLongitude" Description="Station longitude"

 ExternalName="StationLongitude" UnitNameFk="Degree" ScaleNameFk="none"/>

 <Row MeasurandNamePk="StationAltitude" Description="Station altitude"

 ExternalName="StationAltitude" UnitNameFk="Meter" ScaleNameFk="none"/>

 <Row MeasurandNamePk="Time" Description="" ExternalName="Time" ScaleNameFk="none" />

 <Row MeasurandNamePk="Height" Description="Height" ExternalName="Height"

 ScaleNameFk="none" />

 <Row MeasurandNamePk="UnitsOfAltitude" Description="Units of altitude"

 ExternalName="UnitsOfAltitude" ScaleNameFk="none"/>

 <Row MeasurandNamePk="MaxWindAtTopOfSounding" Description=""

 ExternalName="MaxWindAtTopOfSounding" ScaleNameFk="none"/>

 <Row MeasurandNamePk="MaxWindPressure" Description="Pressure at maximum level"

 ExternalName="MaxWindPressure" ScaleNameFk="none"/>

 <Row MeasurandNamePk="MaxWindDirection"

 Description="Wind direction at maximum level" ExternalName="MaxWindDirection"

 ScaleNameFk="none"/>

 <Row MeasurandNamePk="MaxWindSpeed" Description="Wind direction at maximum level"

 ExternalName="MaxWindSpeed" UnitNameFk="MetersPerSecond" ScaleNameFk="none"/>

 <Row MeasurandNamePk="MaxWindSpeedEast"

 Description="East wind speed at maximum level" ExternalName="MaxWindSpeedEast"

 UnitNameFk="MetersPerSecond" ScaleNameFk="none"/>

G

 <Row MeasurandNamePk="MaxWindSpeedNorth"

 Description="North Wind speed at maximum level" ExternalName="MaxWindSpeedNorth"

 UnitNameFk="MetersPerSecond" ScaleNameFk="none"/>

 <Row MeasurandNamePk="MaxWindRadioRxTime"

 Description="RadioRxTime at maximum wind level" ExternalName="MaxWindRadioRxTime"

 ScaleNameFk="none"/>

 <Row MeasurandNamePk="MaxWindHeight" Description="Height at maximum wind level"

 ExternalName="MaxWindHeight" ScaleNameFk="none"/>

 <Row MeasurandNamePk="HeightPilot" Description="" ExternalName="HeightPilot"

 ScaleNameFk="none"/>

 <Row MeasurandNamePk="FilteredStdLevelPressure"

 Description="Pressure at the standard level."

 ExternalName="FilteredStdLevelPressure" UnitNameFk="Pascal" ScaleNameFk="hecto"/>

 <Row MeasurandNamePk="FilteredStdLevelWindSpeed"

 Description="Wind speed at the standard level."

 ExternalName="FilteredStdLevelWindSpeed" UnitNameFk="MetersPerSecond"

 ScaleNameFk="none"/>

 <Row MeasurandNamePk="FilteredStdLevelWindDirection"

 Description="Wind direction at the standard level."

 ExternalName="FilteredStdLevelWindDirection" UnitNameFk="Degree"

 ScaleNameFk="none"/>

 <Row MeasurandNamePk="WindSpeedUnits" Description="Wind speed units"

 ExternalName="WindSpeedUnits" ScaleNameFk="none"/>

 <Row MeasurandNamePk="ShearWanted"

 Description="Flag indicating whether shear is wanted" ExternalName="ShearWanted"

 ScaleNameFk="none"/>

 </Measurands>

 <Formats>

 <Row FormatNamePk="NoFormat" Description="No format." InvalidMask=""

 FormatString="{0}"/>

 <Row FormatNamePk="LineBefore" Description="new line + value"

 InvalidMask="" FormatString="\r\n{0}"/>

 <Row FormatNamePk="9GroupsPerLineStartingWithNewLine"

 Description="new line + Blocks of nine groups" InvalidMask=""

 FormatString="\r\n{0}"/>

 <Row FormatNamePk="9GroupsPerLineNoNewLine" Description="Blocks of nine groups"

 InvalidMask="" FormatString="{0}"/>

 <Row FormatNamePk="9GroupsPerLine" Description="Blocks of nine groups + newline"

 InvalidMask="" FormatString="{0}\r\n"/>

 <Row FormatNamePk="RemoveTrailingSpaces"

 Description="Remove trailing spaces from lines." InvalidMask=""

 FormatString="{0}" />

 <Row FormatNamePk="RemoveTrailingSpacesNewLine"

 Description="Remove trailing spaces from lines and new line."

 InvalidMask="" FormatString="{0}\r\n" />

 <Row FormatNamePk="RemoveTrailingSpacesStartingWithNewLine"

 Description="New line and remove trailing spaces from lines."

 InvalidMask="" FormatString="\r\n{0}" />

 <Row FormatNamePk="SpaceDelimitered" Description="value + space."

 InvalidMask="" FormatString="{0} " />

 <Row FormatNamePk="Line" Description="line + newline."

 InvalidMask="" FormatString="{0}\r\n" />

 <Row FormatNamePk="Time1" Description="Time in yyyyMMdd24mm + space."

 InvalidMask="" FormatString="yyyyMMddHHmm " />

 <Row FormatNamePk="Int1" Description="Integer with length 1."

 InvalidMask="/" FormatString="0" />

 <Row FormatNamePk="Int2" Description="Zero padded integer with length 2."

 InvalidMask="/" FormatString="00" />

 <Row FormatNamePk="Int3" Description="Zero padded integer with length 3."

 InvalidMask="/" FormatString="000" />

 <Row FormatNamePk="Int4" Description="Zero padded integer with length 4."

 InvalidMask="/" FormatString="0000" />

 </Formats>

</root>

