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In just a few decades mire biodiversity has dramatically decreased in southern and cen-
tral Finland. An objective method for determining the natural state of a mire is needed
to direct mire usage for peat mining and agricultural purposes to mires that are already
drained beyond restoration. Man-made structures like ditches and roads in and surround-
ing mires are important descriptors of the natural state. Thus the mire naturality project
begins with development of an automated method for detection of these structures, which
also is the objective of this thesis.

The development of accurate remote sensing imaging technologies has made it possi-
ble to detect small details from the data. National Land Survey of Finland provides high
precision LiDAR data and orthophotos that are under open licence and free to use. This
data, collected from various mire sites in Southern Ostrobothnia, is used in this thesis.
A digital terrain model created from LiDAR data is used for ditch classification and or-
thophotographs, LiDAR intensity data and digital terrain model are used to detect roads.

The classification is done with logistic regression classifier which selects best features
for classification from a large feature set. In ditch detection also polynomial modeling
is used to connect broken segments. Logistic regression is a supervised classification
method so manually selected coordinate points are used for training the classifier. Dif-
ferent study sites are used for training and testing, and validation is done with manually
selected testing points.

Artificial drainage networks were detected well with the method and polynomial mod-
eling improved the results. Ditch points were divided into rough depth classes and the
results showed that ditches deeper than half a meter were detected well. Some of the
lower ditches were found, too. The percentage of found ditch points from all ditch points
(recall) was 90.51 before polynomial modeling and 97.27 after. The road detection accu-
racy did not correspond to values obtained from ditch detection. The roads were found
well but there were many excessive structures that were classified as roads. Yet the ditch
detection results indicate that logistic regression classification is a suitable method for this
application. For successful classification the feature set needs to be large enough and the
training set has to be comprehensive.

Artificial drainage network information will later be used in determining the extent of
mire drainage and modeling waterflow patterns. To estimate the impact of drainage, mire
type needs to be determined too. This will be done with logistic regression classification
of surface texture and height gradient information.
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Soiden biodiversiteetti on vähentynyt dramaattisesti Etelä- ja Keski-Suomessa
muutamassa vuodessa. Jotta turpeennosto ja maatalouden tarpeet voidaan ohjata
peruuttamattomasti kuivatetuille soille luonnonvaraisten sijaan, tarvitaan objektiivinen
menetelmä suon luonnontilaisuuden analysointiin. Ojat ja tiet suoalueilla kertovat
suon luonnontilan heikentymisestä. Näiden rakenteiden automaattinen etsintä on
tämän diplomityön tavoite ja ensimmäinen vaihe luonnontilaisuuden automaattisessa
määrityksessä.

Kaukokartoitusmenetelmien kehittyminen on mahdollistanut entistäkin pienempien
rakenteiden etsinnän kaukokartoitusdatasta. Maanmittauslaitos tarjoaa vapaasti
käytettävissä olevia, avoimen aineiston lisenssin alaisia kaukokartoitusaineistoja. Tässä
työssä hyödynnetään Maanmittauslaitoksen laserkeilausdataa sekä ortoilmakuvia Etelä-
Pohjanmaan soiden alueilta. Ojien luokittelussa käytetään laserkeilausdatasta tehtyä
digitaalista maastomallia ja teiden luokittelussa digitaalista maastomallia, ortoilmakuvia
sekä laserkeilauksesta saatua intensiteettidataa.

Luokittelu tehdään logistisella regressiolla, jossa suuresta piirrejoukosta valitaan
parhaat piirteet kyseiseen luokittelutehtävään. Lisäksi ojien etsinnässä katkenneet
ojasegmentit yhdistetään polynomimallinnuksen avulla. Logistinen regressio on ohjattu
luokittelumenetelmä, jossa luokittelija opetetaan käsin valituilla koordinaattipisteillä.
Opetukseen ja testaukseen käytetään dataa eri suoalueilta, ja tulokset validoidaan käsin
valittujen tarkistuspisteiden perusteella.

Ojitusverkostot löytyivät menetelmällä hyvin ja polynomimallinnus paransi tuloksia.
Erityisen hyvin luokittelu onnistui puolta metriä syvempien ojien kohdalla mutta ojien
madaltuessa myös luokittelutulokset huononivat. Ojapisteistä löydettiin 90.51 prosenttia
ennen polynomimallinnusta ja 97.27 prosenttia mallinnuksen jälkeen. Teiden etsintä
ei kuitenkaan antanut yhtä hyviä tuloksia. Vaikka tiet löydettiin hyvin, myös monia
ylimääräisiä objekteja luokiteltiin teiksi. Ojien etsinnästä saadut tulokset kuitenkin
osoittavat, että logistinen regressio on sopiva menetelmä tähän sovellukseen. Luokittelun
onnistumiseksi piirrejoukon tulee olla tarpeeksi laaja ja opetusjoukon kattava.

Ojitusverkkoluokittelua tullaan käyttämään suon ojituksen laajuuden arvioinnissa sekä
veden virtauksen mallinnuksessa. Jotta ojituksen vaikutuksia voidaan arvioida tarkasti,
myös suotyyppi täytyy selvittää. Tämä tullaan tekemään luokittelemalla pintatekstuureja
logistisella regressiolla sekä ottamalla huomioon korkeusgradientit.
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1. INTRODUCTION

Mire biodiversity has dramatically decreased in southern and central Finland in just a few

decades. This is due to peatland forestry, agriculture and peat mining. Pristine mires

exist basically only in northernmost Lapland and nature reserves [1]. Still there is strong

political support for peat mining since peat is a domestic fuel. To preserve existing mires

peat mining must be directed to mires that are already drained beyond restoration [2].

To prevent biased politics and conflict of interests an automated method for determining

suitable peat mining sites is needed.

Mire naturality index was developed to better describe the condition of mires. The

naturality index takes into consideration changes in vegetation and in mire hydrology.

The scale is from zero to five, where five indicates totally natural mires. A mire has

naturality below two if it has been irreversibly changed by actions of man. In Southern

Finland there are only a few mires of state four and five. Autio et al. [3] studied 84 mires

of Southern Ostrobothnia. In those 84 mires there were no mires of naturality index five

and only two of index four.

The objective of this thesis is to detect ditches and roads from remote sensing data.

This is the first phase of a project where the aim is to define mire naturality index auto-

matically. One important descriptor of the state of a mire is the drainage network in mire

and its margins. Drainage, even in mire margins, has far-reaching negative consequences

to mire hydrology and vegetation and also to aquatic ecosystems connected to the mire

[4]. Draining of pristine mires has mostly ended but ditches are still excavated in mire

margins [1]. Another important descriptor is the presence of roads near the mire. Thus

the method will be tested also for road detection.

Automated detection of structures is done with logistic regression classification to-

gether with polynomial modeling of broken segments. Digital terrain model (DTM) cre-

ated from laser scanning (light detection and ranging, LiDAR) data is used for ditch clas-

sification. Most important descriptor of ditches is their height when compared to their
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surroundings so they are well seen in DTM. When compared to orthophotography, laser

scanning has some great advantages. In orthophotographs tree canopies cause shadows

and sometimes block view. Laser waves partly penetrate tree canopies so LiDAR data

gives accurate description of ground even in forested areas. Also the quality of LiDAR

data is better since the intensity values in orthophotographs might change abruptly due to

the changes in image acquisition time and parameters. Road classification is done with

grayscale orthophotos and LiDAR height and intensity data.

Logistic regression classification has been successfully used in image classification.

Li et al. [5] used multinomial logistic regression and hyperspectral data to classify land

cover into 16 classes. Ruusuvuori et al. [6] used logistic regression together with graph

cut method [7] to detect spots from simulated images of cell and connection pads from

images of printed electronics. Logistic regression was chosen for structure detection since

it has proved to be a powerful tool in a variety of image classification tasks and sparse

models make it computationally efficient.

One great advantage of logistic regression is the automated feature selection process.

The aim was to create a generic feature set that would suit many different classification

tasks. Natural scientists can visually identify nature types from remote sensing data. This

expertise can be assigned to machine vision tasks if an expert selects ground truth points

for training and logistic regression automatically selects best features for the task.

Some of the ditches appear broken after classification due to discontinuities in data and

low visibility of lowest ditches. To obtain complete drainage network, broken segments

are connected in post-processing step. This is done with polynomial curve modeling

presented in [8, 9] and used in cotton fiber [10] and pulp fiber modeling [11]. Based on

the results of this thesis, an article was written to a scientific journal in the field of remote

sensing [12].

This thesis is divided into eight chapters. Remote sensing basics are presented in

chapter two. In chapter three all the features used in classification are introduced. Logistic

regression and polynomial modeling are described in detail in chapter four. In chapter five

the data acquisition and processing methods are introduced. The actual implementation

is shortly described in chapter six and results are presented in chapter seven. Finally,

conclusions are discussed in chapter eight.
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2. REMOTE SENSING

In this chapter the basics of remote sensing theory are introduced. First Earth ellipsoid,

map projections and Finnish coordinate system are described in detail. In second section

Earth’s surface elevation is discussed. Orthophotography and airborne laser scanning are

introduced in next sections. Finally, digital terrain modeling principles are presented.

2.1. Earth ellipsoid and coordinate systems

Earth is an imperfect, flattened ellipsoid which cannot be directly transformed into two-

dimensional map. Before any coordinate system can be deployed, we need to accurately

model the Earth ellipsoid. Geodetic Reference System (GRS) deployed in 1980, known

as GRS80, defines parameters for the reference ellipsoid surface and also for Earth’s

gravitational field. It is based on the equipotential ellipsoid theory which means that at

every point of an ellipsoid surface the gravity potential is equal. The reference ellipsoid

is described by four parameters: the equatorial radius of Earth, geocentric gravitational

constant, dynamical form factor and angular velocity of Earth. [13]

Based on the GRS80 ellipsoid, coordinate reference systems (CRS) that give locations

to geographical entities can be defined. The system used in Finland is ETRS89 (European

Terrestrial Reference System 89) which is attached to Eurasian plate. The number 89

refers to the date of the initial definition of the system. This epoch, or reference date,

is needed because of the continental drift occurring on Earth. This reference system

considers the Eurasian plate as static, so the system will be accurate for only a relatively

short time. In literature there is no absolute truth of the speed of continental plates. Zhen

[14] estimates the absolute velocity of Eurasian plate to be 0.95 centimeters per year, so

in year 2014 the plate has moved nearly 25 centimeters.

The realization of CRS is called coordinate system. It is created by determining con-

trol points at specific locations. The coordinates of these points are known, so a certain
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location can be fixed to known coordinates.

Figure 2.1: TM map projection.

Now to arrive at two-dimensional maps, in addition to coordinate system we need to

create a map projection. Map projections are used to mirror Earth’s surface to a plane.
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Figure 2.2: Map sheet naming of ETRS-
TM35FIN coordinate system.

The projection used in Finnish ETRS-

TM35FIN coordinate system is a cylindrical

projection where the axis of the cylinder lie in

equatorial plane as can be seen in Figure 2.1.

This projection is known as Transverse

Merchator projection (TM).

Universal Transverse Mercator (UTM) is a

cartesian coordinate system used to present

whole Earth. It is divided into 60 longitude

zones (vertical zones), each zone being 6°wide.

UTM uses the TM projection so that the cylin-

der is placed to each zone separately. Finland

situates in zones 34, 35 and 36 but only the

zone 35 is used for the projection. It is then

widened 5°west and 2°east, totaling 13°and

covering the whole of Finland. [15]

The data is divided into map sheets with a

naming system presented in Figure 2.2. Finland is first divided into 96 × 192 kilometer

blocks which are named with a letter and a number, for example N3 or V5. The letter
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presents longitude (from south to north) position and number indicates latitude (from

west to east) position. Letters vary from K to X and numbers from 2 to 6. These blocks

are further divided into four smaller blocks and a number of smaller block is added to the

name. When block size is 12 × 24 kilometers it is partitioned into eight blocks to obtain

square sheets, each of which corresponds to one orthophoto. One orthophoto corresponds

to 6× 6 kilometer area in nature which in turn consists of four laser scanning data sheets,

each representing a 3 × 3 kilometer area. This systematic naming makes it possible to

create an automated process for data download, which will be presented in chapter 5.

2.2. Earth surface elevation

In previous section the reference ellipsoid of the Earth was introduced. The satellite based

Global Positioning System (GPS) utilizes this ellipsoid to define horizontal coordinates

of a location. However, these coordinates cannot be used in e.g. determining the direction

of waterflow. [16] For a more meaningful elevation system, the reference plane used is

theoretical ocean surface, geoid. The relation between actual surface, geoid and ellipsoid

is presented in Figure 2.3. The letter h presents GPS height, from which the elevation

from sea level (H) can be calculated with formula H = h − N . Geoid is based on

gravitation and rotation as defined in GRS80. Tides and wind are excluded so the geoid

presents only the theoretical ocean surface. Oceans are continued to land, thus presenting

imaginary ocean surface. [15]

Ellipsoid

Geoid

Actual surface

h N

H

Figure 2.3: Relation between reference surfaces (ellipsoid and geoid) and the actual Earth’s sur-
face.

The geoid model is usually defined locally. The Finnish geoid model is called FIN2005

and the height system based on this geoid is N2000 [15]. The error of FIN2005 geoid is

less than 5 centimeters in whole of Finland [17].
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2.3. Orthophotography

Orthophotos are taken from an airborne platform like a helicopter or a plane. Previously

photos were taken with a regular camera to a film, but nowadays digital cameras have

very good resolution so they are mainly used in orthophotography. Orthophotos used in

this thesis are vertical, which means that the recording camera’s axis is perpendicular to

the ground. Imagery taken with tilted camera is called oblique. [18, p. 23-24.]

Original aerial photography is often distorted due to e.g. forward motion of the aircraft.

Orthophotographs have been orthorectified or, in other words, geometric correction have

been applied to them. This is usually done by selecting many ground control points and

referencing them to an existing map. [18, p. 41]

One orthophoto provided by National Land Survey of Finland (NLS) is 12000×12000

pixels in size and one pixel corresponds to 0.5×0.5 area in nature. The spectral resolution

(number of spectral channels) of these orthophotos is four and the spectral channels are

red, green, blue and near infrared.

2.4. Airborne laser scanning

Airborne laser scanning (ALS) is a remote sensing method for ground altimetry mea-

surements, usually referred to as LiDAR. In literature the word LiDAR is considered to

be an acronym of Light Detection And Ranging [18, 19]. However, according to Ring

[20] and Oxford English Dictionary, LiDAR origins from 1960s as a portmanteau of the

words "light" and "radar". Both of these origins indicate the relationship between LiDAR

and radar (radio detection and ranging). Radar is a device that transmits radiowaves that

bounce of objects and return to a sensor which records the received energy [18, p. 24].

LiDAR has the same principle but since it is a laser, it transmits visible or near-infrared

light pulses instead of radiowaves [21]. The time it takes for light to return to sensor is

measured and the distance of an object is defined accordingly [18, p. 25]. Most airborne

LiDAR sensors can measure multiple returns for one pulse. This is a big advantage when

measuring for example forest terrain - even though tree canopy might block part of the

pulse, both canopy and ground returns will be detected [18].

Lasers have been used for remote sensing purposes since the early 1960s. In 1962

researches from Massachusetts Institute of Technology (MIT) successfully bounced laser
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pulse from the surface of the Moon [20]. During 1980s, as new airborne instruments were

developed, LiDAR became a tool for terrain mapping [19]. Before 1995 LiDAR sensors

were custom made and expensive, but since 1995 a commercial off-the-shelf instrument

market has developed and today LiDAR technology is widely used for topographic map-

ping [19].

LiDAR data used in the implementation of this thesis is provided by NLS. The mea-

surements have been done from aircraft flying at an altitude of approximately 2000 me-

ters. The laser scanning device is an active sensor so it uses self-generated energy. The

point density is in minimum 0.5 points per meter, maximum point distance being around

1.4 meters. Mean error of altitude measurements is at maximum 15 centimeters. Foot-

print, the size of laser beam on ground, is 50 centimeters and scan angle is +/- 20 degrees.

[22]

The data is in a point cloud in laz-format which can be read with e.g. LAStools-

program [23]. One point in point cloud has at least the following parameters: X, Y and

Z coordinates, time stamp of initial pulse, intensity value, number of the returning pulse

(with maximum of three return pulses in total) and classification. The classification is

done by NLS first automatically and then interactively with the help of stereo orthopho-

tography. Most common classes are 1 for unclassified points, 2 for ground points, 3 for

low vegetation points, 9 for water points and 13 for overlapping points. Low vegetation

points come from objects the laser pulse has partly penetrated - from multiple returns they

are the returns that are not the last. Ground points present the surface that is the lowest

detected from an aircraft. [22] The calculation of height from ground is done from the

distance measure, flight path information and calibrated parameters of the laser scanning

device [24].

2.5. Digital terrain modeling

Digital terrain modeling is used to obtain a representation of land surface. These models

can be calculated from e.g. stereographic orthophotographs, ground survey together with

GPS measurements or LiDAR elevation data [25]. In this thesis the LiDAR data is used

for digital terrain modeling. It has accurate height information and it is preclassified as

described in previous chapter so exact surface presentations are easy to obtain.
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DTM

DSM

Figure 2.4: Difference between DSM and DTM

The concept of digital terrain modeling includes all land surface models. While DTM

is usually considered to be the model of ground, digital surface model (DSM) is a model

of ground and all the objects like trees and buildings on it [25]. The difference between

DSM and DTM can be seen in Figure 2.4.

Since NLS’s LiDAR data is preclassified, it is easy to create both DSM and DTM. For

DSM all the points are used, but erroneous points that result from e.g. cloud echoes have

to be filtered out. In DTM creation only points preclassified as ground points are used.

Digital models can be 3-dimensional representations of a surface, but models used in this

thesis are all 2-dimensional raster images. In raster DTM the pixel intensity values are

height from sea level.
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3. FEATURES

A feature is a numerical presentation of specific image property. Features are obtained

with feature extraction, where different operations are applied to the image to calculate an

n-dimensional feature vector that represents some image object. In this thesis the aim was

to create a large generic feature set so many different objects can be described with a sub-

set of these features. The most descriptive features for presenting specific objects (ditches

or roads) are selected from this feature set with automated feature selection presented in

next chapter.

In this chapter all the features used are presented. They are roughly divided into classes

that best represent the methods with which they are created. Main classes are features ob-

tained by filtering, local statistical properties, features calculated with morphological op-

erations and local binary patterns (LBP). In the end of the chapter, thresholding, wavelets

and image gradients are presented, since they do not fall into any of the other categories.

All feature names are written in boldface.

3.1. Spatial filtering

Spatial filtering in image processing is a technique where a filter (a.k.a. kernel), usually a

2-dimensional matrix, is used to obtain information of pixel surroundings. For each pixel

in an image the filter is placed so that the filter center is on the pixel, as in Figure 3.1.

The new value for pixel z5 (filtering response) is obtained be multiplying pixels with

corresponding filter coefficients and then summing all values. [26, p. 105]

The process of moving the kernel over the image and taking the sum of products as

a new value is called correlation. Convolution is a method closely related to correlation,

the only difference is that in convolution the kernel is rotated 180 degrees. [26, p. 150]

So with symmetrical kernels convolution and correlation results are the same, but with

unsymmetrical kernels they can differ greatly.
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z1 z2 z3

z4 z5 z6

z7 z8 z9
w1 w2 w3

w4 w5 w6
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Figure 3.1: Filtering operation for pixel z5.

Different filters that are used for filtering are presented next. Example filters are mostly

3× 3 or 5× 5 in size but filters used in features are up to 53× 53 in size.

FedgesH =

1 1 1

0 0 0

−1 −1 −1

, FedgesV =

1

1

1

0

0

0

−1

−1

−1

Figure 3.2: Prewitt filters for horizontal (left) and vertical (right) edge detection.

Edge emphasizing filtering is used to highlight linear changes of intensity. Different

filters are used for horizontal and vertical edges. Prewitt filters shown in Figure 3.2 are

examples of such filters.

Average filters are designed to smooth local regions of an image. The basic average

filter of size 5× 5 is shown in Figure 3.3.

Faverage = 1
25 ×

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.3: 5× 5 average filter.
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Gaussian lowpass filter (lpf) follows the shape of normal distribution. Gaussian filters

emphasize the center pixel and its closest neighbors while giving less weight to pixels

further away. Parameters needed to create a Gaussian filter are the size of the filter and

standard deviation (std). Two example Gaussian filters are shown in Figure 3.4.

5

10

246810
0

2

4

·10−2

20

40

20
40

0

1

·10−3

Figure 3.4: Gaussian lowpass filters of size 11 × 11 (left) and 49 × 49 (right) with stds of 1.91
and 9.56, respectively.

All filters presented previously are square but sometimes it is convenient to use other

shapes. Circular filters cover the pixel neighborhood evenly so the distance from each

border pixel to the center is about the same. Two circular structuring elements of different

sizes are shown in Figure 3.5.

Fcircular = 1 1 1 1 1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

00 0 0 0

0 0 0 0

, FaverageC = 0.077 0.077 0.077 0.077 0.077

0.077

0.077

0.077

0.077

0.077

0.077

0.077

0.077

0

0

0

0

0

0

0

00 0 0 0

0 0 0 0

Figure 3.5: Circular structuring element (left) and circular average filter (right) of size 5× 5.

Filtered images can be processed further by subtracting filtered image from original

image, or by filtering image with two filters of different sizes and subtracting these from

one another. Gaussian filtering difference is obtained by filtering image with Gaussian

lpf and subtracting this image from the original. Average filtering difference is done by

filtering image with two average filters of different sizes and subtracting the one filtered

with smaller filter from the other. Circular average filtering difference is otherwise the

same as average filtering difference, but the filter is circular. 5 pixels wide example filters

are shown in Figure 3.5, where the average filter is on the right.
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3.2. Thresholding and h-maxima transformation

Thresholding is a simple operation that results in a binary image. A scalar value is used

as a threshold, and pixels that have intensities greater or equal than the threshold are

given value 1 and those with smaller intensity values are given value 0. Thresholding is

especially efficient in detecting roads from orthophotos since roads (that are not shadowed

by trees) appear light in orthophotos.

H-maxima transformation is an image processing technique that suppresses all regional

maxima less than threshold h and subtracts h from other values. Regional maxima are

connected components of pixels that have constant intensity value and which are sur-

rounded by boundary pixels with lower intensities. For 2-dimensional images connectiv-

ity can be either 4 or 8. In 4-connectivity diagonally connected pixels are not included.

[27]

Masking with h-maxima transformation is initiated by filtering the image with a

small average filter. Then h-maxima transformation is applied to the filtered image. Trans-

formation result is then subtracted from filtered image.

3.3. Morphological transformations

Structuring elements are used in morphological operations to define size and shape of

pixel neighborhood used in operations. They are like filters but contain only values 0 and

1, where 1 marks pixels belonging to the neighborhood. For grayscale images morpholog-

ical erosion is defined as the minimum value in the pixel neighborhood and morphological

dilation as the maximum value. Consider we have image I and structuring element B and

we mark erosion with I 	 B and dilation with I ⊕ B. Morphological opening is erosion

followed by dilation [26, p. 668]:

I ◦B = (I 	B)⊕B, (3.1)

and closing is dilation followed by erosion:

I •B = (I ⊕B)	B. (3.2)
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Now we can define morphological top-hat transformation and morphological

bottom-hat transformation. Top-hat transformation is the subtraction of I and mor-

phologically opened I [26, p. 668]:

That(I) = I − (I ◦B), (3.3)

while bottom-hat transformation is the subtraction of closed I and I:

Bhat(I) = (I •B)− I. (3.4)

(a) Original DTM (b) Top-hat (c) Bottom-hat

Figure 3.6: Morphological top-hat and bottom-hat transformations.

Interpretation of grayscale erosion and dilation is quite simple: erosion emphasizes

darker points (lower intensities) while dilation emphasizes brighter points (higher inten-

sities). Defining top-hat and bottom-hat transformations is not as simple, so the results

are visualized in Figure 3.6. The transformation was done with 5 pixels wide circular

structuring element to a DTM where ditches are clearly visible.

3.4. Local statistical properties

Local statistical properties used in this project include mean, variance, third and fourth

image moments, spectral energy, entropy, range and standard deviation. These prop-

erties are calculated from square windows of varying sizes. In following equations

z = z1, z2, . . . , zmn is point set included in local window of size m× n.

Mean (µ) is the sum of pixel intensities divided by the number of pixels. Standard

deviation (σ) and variance (σ2) are closely related to each other. Both can be used to
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present image contrast, or in other words the spread of intensity values around the mean

[26, p. 97]. Standard deviation is defined as follows:

σ =

(
1

mn

mn∑

i=1

(zi − µ)2
) 1

2

, (3.5)

and variance is the square of std:

σ2 =
1

mn

mn∑

i=1

(zi − µ)2. (3.6)

The common operation of std and variance is the sum of difference between mean and

pixel values divided by the number of pixels, so the more the pixel intensities vary, the

bigger the sum.

Variance is also known as the second image moment. Image moments are defined

in [26, p. 97] with probability distributions of pixel intensity levels. However, in this

thesis the (normalized) moments are calculated directly from intensities, as was done

with variation. So the formula for M th moments is:

momM =
1

mn

mn∑

i=1

(xi − µ)M . (3.7)

Third image moment and fourth image moment are also used as features. It is

difficult to define what these moments actually mean in images so they are visualized

in Figure 3.7 together with variance. The operations were applied to RGB orthophoto

that was first transformed to grayscale image. Square neighborhood width was 7, so

m × n = 49. Variance describes the spread of intensity values so it is especially high

on road edges. Since third moment is lifted to the power of three, there are also negative

values and this makes it different from second and fourth moments.

Spectral energy density is calculated from Discrete Fourier Transform (DFT). If we

have an image f(x, y) of size Mf ×Nf , the DFT is calculated with equation [26, p. 235]

F (u, v) =

Mf−1∑

x=0

Nf−1∑

y=0

f(x, y)e−j2π(ux/Mf+vy/Nf ). (3.8)

Here the discrete variables u and v are given values u = 0, 1, 2, . . . ,Mf − 1 and v =
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(a) Grayscale or-
thophoto

(b) Second moment
(variance)

(c) Third moment (d) Fourth moment

Figure 3.7: Image moments calculated from grayscale orthophoto.

0, 1, 2, . . . , Nf − 1.

Each pixel in DFT image F (u, v) has a real (real(u, v)) and imaginary (imag(u, v))

part, which are squared and summed to obtain spectral energy of an image block [26,

p. 245]. The magnitude of 2-dimensional DFT, also known as Fourier spectrum, is defined

as

|F (u, v)| = [real2(u, v) + imag2(u, v)]1/2, (3.9)

and the spectral energy density is obtained with the equation

P (u, v) = |F (u, v)|2 = real2(u, v) + imag2(u, v). (3.10)

Entropy is calculated from histogram H which tells the number of pixels with same

intensity values. Number of bins in a histogram of 8-bit grayscale image is 256 so the

histogram is defined as H = h1, . . . , h256. The equation for entropy is [27]:

E =
256∑

i=1

(hi ∗ log(hi)), (3.11)

where log is the natural logarithm.

Range is the difference between smallest and largest values of local neighborhood.

These values can be obtained with e.g. grayscale erosion and dilation described previously

in this chapter.
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3.5. Local binary patterns

LBPs are used to describe the texture of pixel surroundings in relation to the pixel itself.

They were first introduced by Ojala et al. [28]. The initial approach to local binary

patterns is presented in Figure 3.8. Using center pixel gc as a threshold we assign one to

neighboring pixel if it is equal to or bigger than the center pixel and zero otherwise, as in

Figure 3.8 (c). These values are then multiplied with two to power of pixel index, zero

being the index of first pixel and seven the last. Finally we get the local binary pattern

by summing the new values of neighbor pixels, which is done in Figure 3.8 (e). This

presentation is basically an 8-bit binary presentation of a number. Example in Figure 3.8

is written 0100 1011 in binary code.

g0

g1g2g3

g4

g5 g6 g7

gc 9

1058

7

4 11 5

8 1

101

0

0 1 0

1

248

16

32 64 128

1

208

0

0 64 0

75= : × =

(a) (b) (c) (d) (e)

Figure 3.8: Local binary pattern calculation.

The original LBP was calculated with square neighborhood. In generalized approach

a radius R and number of samples N are given and LBP is calculated from a circular

neighborhood. Given center pixel gc and surrounding pixels (g0, g1 . . . gN−1), the formula

for general LBP is as follows [29]:

LBPN,R =
N−1∑

p=0

s(gp − gc)2p, (3.12)

where

s(x) =




1 if x ≥ 0

0 otherwise.
(3.13)

If we have radius R, point index p as used in equation 3.12 and α being angle be-

tween two points, we can define x-coordinate of a point with R cos(pα) and y-coordinate

−R sin(pα), respectively. Weighted average of pixel values is used in cases where four
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pixels intersect the sample location. Three examples of generalized approach are shown

in Figure 3.9, first one having 8 samples and radius of 1, second one with 12 samples and

a radius of 2 and third one with 16 samples and radius of 3.

R = 1, N = 8 R = 2, N = 12 R = 3, N = 16

Figure 3.9: Generalized LBPs with different radii and number of sample points.

There are many variations of LBP that are used as features. Many of these modifica-

tions aim to make LBP more robust to noise. Improved Local Binary Patterns (ILBP)

were introduced by Jin et al. [30]. Instead of using the gray value of center pixel as a

threshold, ILBP uses mean value of all pixels in a local neighborhood. The center pixel is

thresholded with this mean as well. The formula for ILBP is as follows:

ILBPN,R =
N−1∑

p=0

s(gp − gmean)2p + s(gc − gmean)2N , (3.14)

where

gmean =
1

N + 1

(
gc +

N−1∑

p=0

gp

)
. (3.15)

The function s(x) is defined as in equation 3.13. Since the center pixel is calculated to

the sum, the maximum value of ILBP is 2N greater than LBP’s maximum value.

Median Binary Patterns (MBP) are closely related to ILBP, but instead of mean

value, the median value is used as a threshold. MBP was introduced by Hafiane et al.

[31] and the formula is as follows:

MBPN,R = s(gc − gmedian)2N +
N−1∑

p=0

s(gp − gmedian)2p, (3.16)
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where

gmedian = median(g0, g1, . . . , gN−1, gc) (3.17)

and the function s(x) is defined as in equation 3.13.

In next LBP modifications an additional threshold t is taken into account. In Local

Ternary Patterns (LTP), as proposed in [32], the difference between neighboring and

center pixel is coded with three values:

LTPN,R =
N−1∑

p=0

s3(gp, gc, t)2
p, (3.18)

where

s3(gp, gc, t) =





1, gp ≥ gc + t

0, gc − t ≤ gp < gc + t

−1, otherwise.

(3.19)

So the scalar t is added to or subtracted from the value of the center pixel and these

values are used as threshold. LTP cannot be easily expressed as a binary number since an

additional value, −1, is used in coding.

We can extend LTP to Improved Local Ternary Patterns (ILTP) as we extended LBP

to ILBP, so we use mean value instead of center pixel as a threshold. ILTP was introduced

by Nanni et al. [33] and the equation is:

ILTPN,R = s3(gc, gmean, t)2
N +

N−1∑

p=0

s3(gp, gmean, t)2
p, (3.20)

where s3 is defined as in equation 3.19 and gmean is calculated with equation 3.15.

Robust Local Binary Patterns (RLBP) are used to improve robustness against small

changes in local intensities [34]. We change the LBP equation (gp − gc) to (gp − gc − t),
where t is a threshold as in LTP. This means that 1 is assigned to local neighbor if the

neighbor intensity is greater than the sum of center pixel and threshold. The equation for

RLBP is as follows:

RLBPN,R =
N−1∑

p=0

s(gp − gc − t)2p, (3.21)

where s(x) is defined as in equation 3.13.
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If we consider the task at hand, detecting linear structures that are aligned in different

angles, we need to consider rotation invariance. Ojala et al. [29] introduced the concept

of rotation invariant LBPs. In Figure 3.10 three cases of rotation invariant patterns are

presented. Each line presents rotated patterns that in fact are the same if rotated to same

angle. Black dots are ones and white zeros and point indices are as in Figure 3.8(a), so on

the left are the rotations with smallest possible value.

Figure 3.10: Rotation invariance in LBPs, • = 1 and ◦ = 0.

Rotation invariance is used in LBPs where maximum resulting values are two to power

of 8, 12 or 16 and minimum is zero. In patterns where also center pixel is thresholded,

rotation invariance is applied to pattern before adding the center pixel thresholding re-

sult. This excludes patterns with additional threshold (LTP, ILTP and RLBP), so rotation

invariance was implemented to LBP, MBP and ILBP.

Local contrast describes the strength of texture and is calculated with circular LBP

operator. It is basically the same as variance, but when compared to local variance pre-

sented in previous sector, it is calculated from circular area surrounding the pixel. Local

contrast is calculated by first subtracting the mean from each LBP point, then lifting the

result to power of two and dividing it with number of samples [35]:

VARN,R =
1

N

N−1∑

p=0

(gp − µ)2, (3.22)
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where

µ =
1

N

N−1∑

p=0

gp. (3.23)

So the local contrast tells us the sum of differences between the mean and pixel values.

By lifting the difference to power of two, negative values are discarded since the sign of

difference is insignificant.

Multi-resolution LBP is an extension of LBP where a larger than usual spatial support

area is used. This can be done by combining LBP operator with Gaussian filtering. In

filtered image, the spatial support area of each sample in LBP neighborhood is as large as

the filter. [35]

Gaussian filter bank is a set of Gaussian filters of different sizes and standard deviations

that are used in multi-resolution LBP. Scale k is the number of filters in a filter bank and

effective area is the area that information is collected from. The radius of this effective

area is calculated with equation [35]:

rk = rk−1

(
2

1− sin(π/Pk)
− 1

)
, k ∈ {2, . . . , K}, (3.24)

where Pk is the number of neighborhood samples at scale k. Smallest radius, r1, is set to

1.5 which is the shortest distance between the center and the border of a 3× 3 sized filter.

[35]

The radius for LBP operator of each scale is selected so that the effective areas touch

each other. Thus the radius of LBP operator at a scale k(k ≥ 2) is halfway between the

radius of current scale and that of previous scale [35]:

Rk =
rk − rk−1

2
. (3.25)

Gaussian filters are designed in a way that 95 percent of their mass lies within the

effective area, so each pixel in filtered image is weighted sum of the whole effective

area. The size of Gaussian filter for scale k is obtained by rounding up the LBP radius,

multiplying it by two and adding one to the result:

wk = 2

⌈
rk − rk−1

2

⌉
+ 1. (3.26)
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The width of a two-dimensional Gaussian (fG(x, y)) can be described using std σ(σ >

0) if it is handled as a zero-mean distribution of two independent variables with equal

standard deviations:

fG(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (3.27)

where x and y are random variables in a Cartesian coordinate system. [35]

The same function can be expressed with polar coordinates (r, θ):

fG(r, θ) =
1

2πσ2
e−

r2

2σ2 . (3.28)

Definite integral is used to construct a two-dimensional analogy of one-dimensional Gaus-

sian integral, also known as the Gaussian error function:

erf2D(r, θ) =
1

2πσ2

2π∫

0

r∫

0

e
t2

2σ2 t dt dθ

= 1− e r2

2σ2 , r ≥ 0,

(3.29)

where t is a dummy integration variable and r is the integration radius. If we consider

Equation 3.29 in a statistical point of view, it gives us the probability that the random

variables x and y in Equation 3.27 are within the circle of radius r. [35]

The inverse of the Gaussian error function is expressed as

erf−12D(P ) = σ
√
−2 ln(1− P ), P ∈ [0, 1], (3.30)

where P is the probability of x and y being within the circle of radius r. So if we want

95% of the mass of filter to lie within the effective area, we must set P to 0.95. The

parameter σ is set to 1 to obtain the error function of "normal standard" distribution.

Given the error function, the standard deviation for Gaussian filter is calculated with

equation:

σk =
rk − rk−1

2× erf−12D(0.95)
. (3.31)

The resulting Gaussian filters of scales 2, 3 and 4 and their effective areas in LBP are

shown in Figure 3.11. The radii of dashed circles are 1.5, 3.35 and 7.53. The widths

of Gaussian filters are 3, 7 and 11. Features calculated with Gaussian filter bank are
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Figure 3.11: Gaussian filters of scale 2, 3 and 4 and their effective areas in 8-bit LBP.

individual LBPs for each scale, the sum of multi-resolution LBPs and Gaussian filter

bank difference, where an image filtered with Gaussian filter of scale k− 1 is subtracted

from image filtered with filter of scale k.

Some LBP operators are combined to get additional features. Division of LBP and

local contrast is calculated by dividing pointwise LBP image with local contrast image.

Sum of multi-resolution ILBPs is as sum of multi-resolution LBPs but ILBP is used

instead of LBP.

3.6. Wavelet decomposition

Wavelets are based on small waves with varying frequency and limited duration. They

fall in the field of multi-resolution theory which analyzes signals or images at more than

one resolution. [26, p. 461] Thus the wavelet function used in this thesis creates a 3-

dimensional image where each dimension is considered to be one feature, wavelet de-

composition image. The wavelet transformation is called the à trous (with holes) wavelet

transform which, according to Olivo-Marin [36], suits pattern recognition tasks better

than original orthogonal wavelet transform.

The wavelets are created by 2-dimensional convolution with 1-dimensional mask. In

wavelet decomposition the kernel [1/16, 1/4, 3/8, 1/4, 1/16] is used to first convolve the

image row by row and then column by column. Since the kernel is symmetric, the 180

degree rotation has no effect. If we have original image I0 and convolved image I1, the
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first wavelet plane is found by subtracting the convolved image from the original:

W1 = I0 − I1. (3.32)

(a) Original DTM (b) First plane (c) Second plane (d) Third plane

Figure 3.12: Three wavelet planes created from DTM

The process is repeated recursively with larger kernel that has been augmented by

adding zeros to the kernel. If we have J presenting the total number of wavelet planes

and i ∈ [1, J ], the number of zeros added between each number is 2i−1 − 1. From these

gaps with zeros comes the name à trous wavelet transform. The formula for recursive

wavelet plane calculation is

Wi = Ii−1 − Ii, 0 < i ≤ J. (3.33)

In Figure 3.12 three first wavelet planes of DTM are shown. First image is the original

DTM, following images are wavelet planes 1–3. The effect of augmented kernel can

clearly be seen as the spatial resolution diminishes towards higher planes.

3.7. Gradient magnitude

Image gradient is a tool for determining strength and direction of edges in an image. The

gradient of image f at location (x, y) is denoted as ∇f and defined as the vector [26,

p. 706]

∇f ≡


gx
gy


 =



∂f
∂x

∂f
∂y


 . (3.34)
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This vector points towards the greatest rate of change at specific location in an image.

The angle α(x, y) of gradient vector in respect to x-axis can be calculated with equation

α(x, y) = tan−1
[
gy
gx

]
. (3.35)

The direction of edges is, however, unimportant in detecting ditches and roads since their

alignment can be practically anything. More important feature is the strength of edges, or

gradient magnitude mag(∇f):

mag(∇f) =
√
g2x + g2y . (3.36)

As the equation implies, gradient magnitude is actually the length of gradient vector. It

determines the value of the rate of change in direction α(x, y). [26, p. 706]

Gradient operators gx and gy are partial derivatives at pixel location. The partial first

order derivative is defined as follows [26, p. 693]:

∂f

∂x
= f ′(x) = f(x+ 1)− f(x), (3.37)

so it is the digital difference of two consecutive points. When considering two-

dimensional image, the partial derivatives are [26, p. 707]:

gx =
∂f(x, y)

∂x
= f(x+ 1, y)− f(x, y) (3.38)

and

gy =
∂f(x, y)

∂y
= f(x, y + 1)− f(x, y). (3.39)

Gradient operators can be calculated with different edge emphasizing kernels, like

those presented in Figure 3.2 [26, p. 166]. In this thesis convolution with two different

one-dimensional kernels is used for the task. This operation is visualized in Figure 3.13.

Darker vectors in Figure 3.13 are used in first convolution to emphasize edges in the im-

age. Then lighter vectors are passed through image to get stronger visibility of continuous

edges. The resulting value is placed on z1. We can express these operations with terms of
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z3

z1 z2

z4

gx

1 −1

1

1

z3

z1 z2

z4

gy

1

−1

1 1

Figure 3.13: Gradient operator acquisition process.

mathematics:

gx = (z2 − z1) + (z4 − z3) (3.40)

gy = (z3 − z1) + (z4 − z2) (3.41)

Since the kernels shown in Figure 3.13 are rotated 180 degrees in convolution, they cor-

respond to filtering with their complements.

(a) (b) (c) (d)

Figure 3.14: Gradient operator images gx (b) and gy (c) calculated from DTM (a), and gradient
magnitude image (d).

In Figure 3.14 different gradient images calculated from DTM (on the left) are shown.

Gradient operator gx in Figure 3.14 (b) emphasizes especially vertical edges since gra-

dient is perpendicular to the direction of an edge. Thus operator gy in Figure 3.14 (c)

emphasized horizontal edges. Diagonal edges are visible in both images. Figure 3.14 (d)

is the gradient magnitude image, representing lengths of gradient vectors.
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4. SUPERVISED CLASSIFICATION FRAMEWORK

In this chapter the supervised classification framework is presented. The framework con-

sists of logistic regression classifier together with polynomial modeling as post-processing

step.

DTM

Logistic
regression

classification
Thinning Skeleton

cleaning

Broken
segment
linking

Result

Figure 4.1: Supervised classification framework for ditch classification

Figure 4.1 presents the framework for ditch classification so the example images

present ditches. In the classification phase features presented in previous chapter are

used as elements for a feature vector x. After the image has been segmented by logistic

regression classifier, the result is thinned (skeletonized) and pruned so that polynomial

modeling can be successfully applied to image. Road detection framework differs from

ditch detection. Ditch classification is done with solely DTM but in road detection DTM,

LiDAR intensity images and orthophotos are used for classification. Polynomial model-

ing is not used in road detection, for reasons that are explained in chapter 7.

The logistic regression classifier with `1 penalty is presented in section 4.1. Thinning

and skeleton pruning process is introduced in section 4.2. Polynomial modeling used for

broken segment linking is presented in section 4.3.

4.1. Sparse logistic regression

Sparse logistic regression is a supervised classification method that falls into category

of linear classification. Supervised classification means that the classifier is trained with

data that has been pre-classified by the user, while unsupervised classifier defines classes

automatically without user input. Sparsity describes here the feature selection process

where a large set of different features that are given as an input will be diminished to only a
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few in the actual model [6]. In linear classification a linear model of image characteristics,

or features, is used for the classification. If we have a feature vector x, we can assign class

labels with a linear combination of the components of x with [37, 38]:

class =





1 if β0 + βTx < 0

2 otherwise,
(4.1)

where β is a weight vector and β0 is a bias. These are the model parameters of logistic

regression classifier.

Logistic regression classifier is based on the logistic function:

P (t) =
1

1 + e−t
. (4.2)

This function is plotted in Figure 4.2. Consider we have a feature vector x ∈ Rn present-

ing n features of pixel i. Logistic regression classifier uses the logistic function to map

the linear combination of this feature vector into an estimate of the probability that pixel i

belongs to a certain class. It is thus a probabilistic classifier. In Figure 4.2 P (t) describes

this probability.

−5 0 5
0

0.5

1

t

P
(t
)

Figure 4.2: Logistic function.

Logistic regression classifier can be used to classify image into two (binomial classi-

fier) or more (multinomial classifier) classes. In this thesis only binomial classifier is used

since ditches and roads are classified separately. Thus the classes are ditch and no ditch,

and road and no road. These will be later referred to as foreground (ditch or road) and

background.
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The probabilities of pixel i belonging to foreground (p(cF |x)) and background

(p(cB|x)) can be determined by combining equations 4.1 and 4.2. We can define a

linear predictor through linear function of the predictors [39]:

p(cF |x) = 1

1+e−(β0+xT β)
,

p(cB|x) = 1

1+e(β0+xT β)
= 1− p(cF |x).

(4.3)

So with negative predictor value as given in equation 4.1 for class 1, the probability is

between 0 and 0.5.

In Figure 4.3 the logistic function is visualized. First the linear predictor is defined by

multiplying each feature with corresponding element of model β which can be considered

as a weight of the feature. Model coefficient β0 is added to the sum of predictors, which

is then passed to logistic function to make a prediction.

βd

xd

β2x2

β1

x1 β0

t 1
1+e−t p(c|x)

Figure 4.3: Logistic regression classifier

The feature set consists of hundreds of features, some of witch are highly correlated

and some do not contain any significant information. We need a regression method that

selects only few features that give desirable classification result. Regularization is one

way to approach the problem of feature selection. In regularization, some additional

information like a penalty is used to arrive to a solution. The regularization method in

logistic regression is an extension of LASSO, which stands for Least Absolute Shrinkage

and Selection Operator and was developed by Tibshirani [40] in 1996 for linear regression.

LASSO is based on least squares approach, but adds a penalty factor to the method. Least

squares method minimizes the sum of square error (residual) of the model [26, p. 888].

Given original image y and classification result ŷ, the residual R is obtained by sub-
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tracting the latter from the former:

R = y − ŷ. (4.4)

Now the sum to be minimized is the sum of squares of residual terms:

S =
n∑

i=1

R2
i = ‖y − ŷ‖2. (4.5)

LASSO combines the least squares method with `1 penalty which can be expressed with

equation [39]

‖β‖1 =
p∑

j=1

|βj|. (4.6)

The theory behind LASSO according to is as follows. Consider we have data

(xi, yi), i = 1, 2, . . . , N where N is the number of initial features. Our input is

xi = (xi1, xi2, . . . , xiM)T which presents our M selected coordinates and yi are their

responses. We presume that responses yi are linearly independent given the input coordi-

nates xij . The predictors we want to derive are β0 and β = β1, β2, . . . , βM .

We calculate the residual term by combining equation 4.4 and the linear combination

of components of x given in equation 4.1:

Ri = yi − β0 −
M∑

j=1

βjxij. (4.7)

Now we can determine the LASSO equation [40]:

argmin
(β0,β)





N∑

i=1

(
yi − β0 −

M∑

j=1

βjxij

)2

+ λ

M∑

j=1

|βj|



 . (4.8)

In other words we want to find the β with which we get the minimum sum of square

error. Parameter λ in Equation 4.8 is our constraining factor since it limits the sum of

absolute values of β (`1 penalty). First sum in equations presents the least square error of

the model.

Friedman et al. [39] used logistic link function, or logit, to extend LASSO to create

the logistic regression classifier. If we consider equation 4.3, the logistic link function is
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as follows [39]:

log
p(cF |x)
p(cB|x)

= log
p(cF |x)

1− p(cF |x)
= β0 + xTβ, (4.9)

where log is the natural logarithm. Now we can estimate β by maximizing `1-penalized

log likelihood [6, 39]:

[∑

x∈F
log p(cF |x) +

∑

x∈B
log(1− p(cF |x))− λ‖β‖1

]
, (4.10)

where F and B are the training sets of foreground and background. Parameter λ > 0 lim-

its the length of β so it affects the sparsity of the result. It is selected by cross-validation,

where the training coordinates are divided into two sets. One set is used for creating the

model and model accuracy is tested with the other set. In Figure 4.4 an example plot of

validation process is shown, obtained from ditch detection model creation. Vertical axis

presents the error calculated with cross-validation and horizontal axis presents the value

of `1 penalty, as given in equation 4.6. The error is calculated way beyond the visible x

axis but for illustration purposes the plot is cut at 4000. The classifier selected β from the

point marked with dashed line. The minimum error value 0.01331 was obtained when the

penalty had value 5278, but since we have the limiting factor λ, it was not approved.
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Figure 4.4: Cross-validation error in relation to `1 penalty of β.

The model parameters β0 and β are estimated with glmnet algorithm created by

Friedman et al. [41]. It is a cyclical coordinate descent method which estimates the

model coefficients with different values of λ.
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The probability images are transformed into binary images presenting ditches or roads.

This is done by selecting a suitable threshold between values 0 and 1 to obtain optimal

classification. Foreground class is the class with low probabilities, so pixels below the

given threshold are those presenting roads and ditches.

4.2. Thinning and skeleton pruning

Thinning is done to obtain one pixel wide skeleton that can be further processed with poly-

nomial modeling. Pruning is the process of removing branches shorter than a threshold.

End points are points that are connected to only one other point in a skeleton. Junction

points can be considered as crossroads since they are connected to at least three other

points.

After classification the resulting binary image is thinned with an algorithm proposed

by Guo et al. [42] (Algorithm 1). It is a two-subiteration thinning algorithm that works in

a 3× 3 neighborhood shown in Figure 4.5.

p1 p2 p3

p8 p p4

p7 p6 p5

North

EastWest

South
Figure 4.5: Eight-connected neighborhood of pixel p.

As can be seen in Figure 4.5, p2, p4, p6 and p8 are p’s side neighbors, while p1, p3, p5

and p7 are diagonal neighbors. In following text, we will call pixels having value 1 true

and pixels having value 0 are called false. Obviously pixel p is true since the operation is

applied to it. Some variables and concepts are introduced next so that the actual algorithm

can be presented. Symbols ∧, ∨ and ¬ are logical conjunction (and), disjunction (or) and

negation (not). C(p) is the number of distinct eight-connected components of ones in the

neighborhood, which can be evaluated with equation:

C(p) = ¬p2 ∧ (p3 ∨ p4) + ¬p4 ∧ (p5 ∨ p6) + ¬p6 ∧ (p7 ∨ p8) + ¬p8 ∧ (p1 ∨ p2). (4.11)
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C(p) can have values from 0 to 4. The equation means that for each false side pixel we

check next two pixels clockwise. If one or both of these are true, 1 is added to C(p), so

largest possible value is obtained only if diagonal pixels are true and side pixels false.

The connectivity of p is described with variable N(p):

N(p) = min(N1(p), N2(p)), (4.12)

where

N1(p) = (p1 ∨ p2) + (p3 ∨ p4) + (p5 ∨ p6) + (p7 ∨ p8) (4.13)

and

N2(p) = (p2 ∨ p3) + (p4 ∨ p5) + (p6 ∨ p7) + (p8 ∨ p1). (4.14)

N1(p) and N2(p) group neighbors into four connected pairs, where each pair is given

value 1 if one or both pixels are true. N(p) is useful in endpoint detection, but in addition

it helps create thinner results. [42]

Pixel p is set to false if the following conditions are satisfied:

a. C(p) = 1

b. 2 ≤ N(p) ≤ 3

c. Apply one of the following:

1. (p2 ∨ p3 ∨ ¬p5) ∧ p4 = 0 in odd iterations

2. (p6 ∨ p7 ∨ ¬p1) ∧ p8 = 0 in even iterations.

Condition a. is necessary to preserve local connectivity of a neighborhood, so p cannot

be deleted if it is in the middle of a curve. Condition b. ensures that no end points are

deleted. Possible combinations that satisfy condition c. are shown in Figure 4.6, where

(a) and (b) present odd iterations and (c) and (d) even iterations. Points marked with x

can be either true or false. Condition c.1 removes pixels from north and east boundaries

while condition c.2 removes south and west boundary pixels.[42]

Since the segmented lines have often rugged edges, the skeleton has many excess

branches that are removed with skeleton pruning. Branches are lines starting from a junc-

tion point and ending in an endpoint that consist of less than Np pixels. Junction points
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Figure 4.6: Pixel values satisfying conditions c.1 ((a) and (b)) and c.2 ((c) and (d)) of Guo’s
thinning algorithm.

are points from which lines continue to three directions. Branch removal is done with an

algorithm proposed by Niemistö et al. [43].

If we have an input image I , temporal image J and a point amount threshold Np, we

create pruned image with following steps [43]:

1) Delete each 3× 3 neighborhood of a junction point from I and store the result in J .

2) Delete all connected components from J that do not contain an end point of a

connected component in I . Store the result in J .

3) Delete the pixels in I that correspond to connected components in J smaller or

equal to threshold Np and store the result in I .

4) Delete all end points in 3× 3 neighborhood of junction points from I and store the

result in I .

Connected components are all eight-connected, so diagonal connections count. The last

step removes remaining spurs of one pixel in size, but might sometimes create new ones.

Thus the algorithm is repeated iteratively until there is no change between original and

resulting images. [43]

Sometimes after thinning and pruning small rings remain in the skeleton which can be

seen in Figures 4.7(b) and 4.7(c). The process of removing these rings from image I

goes as follows:

1) Fill holes in the image and save the result in J1.

2) Erode J1 with a circular structuring element of radius 6 and save the result in J2.
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3) Set pixels that have value 1 in J1 and 0 in J2 as 1 in I .

4) Thin I and remove branches.

Middle steps are applied so that ditches that connect to each other will not be lost, since

they might form big rings that are filled in the first step.

(a) (b) (c) (d)

Figure 4.7: Ditch detection result (a) and the same result after thinning (b), pruning (c) and ring
removal (d).

Skeletonization results are shown in Figure 4.7. In Figure 4.7(b) is the result of thin-

ning of ditch detection result shown in Figure 4.7(a). Figure 4.7(c) is pruned skeleton and

Figure 4.7(d) presents the final result after ring removal.

4.3. Polynomial modeling

After thinning and skeleton pruning, polynomial modeling can be applied to the image.

Polynomial modeling is a method where broken skeleton segments are connected to form

continuous lines. We repeat the following method for each end point:

1. Beginning from endpoint X1 find continuous line of length l.

2. Find polynomial model with smallest mean square error for the line.

3. Extend the line and find points P near the extension.

4. If not enough points are found, find nearest endpoint and get a new point set by fol-

lowing a continuous line from that endpoint. If distance is very small, concatenate

fibers and continue to step one.
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5. Calculate new model for X and P to fill gaps between points.

6. If mean square error of resulting model and existing segments is smaller than a

threshold, concatenate fibers.

The polynomial modeling principles are as follows. If we have a line segment present-

ing N coordinates, X = (x1, y1), (x2, y2), . . . , (xN , yN) ∈ R2, the linear model of M th

order for the line is X = Hθ + E. The model parameters, as given in [11], are

H =




1 t11 t21 · · · tM1

1 t12 t22 · · · tM2
...

...
... . . . ...

1 t1N t2N · · · tMN



, θ =




θ0,1 θ0,2

θ1,1 θ1,2
...

...

θM,1 θM,2




and E ∈ RN is a residual term that the model does not explain. The second column in

matrix H is vector t ∈ [0, 1].

In Figure 4.8 two modeling results are shown. Squares present the original pixels and

black lines are modeled lines. Figure 4.8(a) presents first order model of the line, so the

new line is straight. In Figure 4.8(b) a second order model of the line is presented.

−10 −5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

(a)

−10 −5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

(b)

Figure 4.8: First (a) and second (b) order models of a line.

There are three different cases for modeling the line: modeling a segment, extending

line segment and filling a gap in line. In the first case, t ∈ [0, 1] is the same length as X .

For each point in X a value is assigned to vector t by traversing the line and calculating

distance to previous point. The equation for the method is [8]:

ti = ti−1 + ‖Xi −Xi−1‖
tmax
l
, i = 1, 2, . . . , N (4.15)
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where l is length of the segment, t1 = 0 and tmax = N + 1. Vector t is then normalized

to arrive at t1 = 0 and tN = 1. In line extension and gap filling a model for existing

segment is first calculated. Then model parameter θ is calculated for the existing line, as

presented later in this chapter. Now t is continued with values greater than 1. Suitable

values are estimated by finding optimal distance to previous point. In gap filling t is

assigned values from 0 to 1, but vector length is the length of X plus length of the gap.

The model parameter θ is calculated with standard least squares method:

θ̂ = (HTH)−1HTX. (4.16)

With θ̂ known, we can get new line from equation

X̂ = Hθ̂. (4.17)

In some cases the line curvature changes towards the end of the line. Polynomial model

for changing curvature can be found with simple extension of least squares method. First

we calculate a diagonal matrixW with equation wk,k = (1−min(tk, 1−tk)). For stronger

endpoint curvature, wk,k is lifted to power of j ∈ [1, 10]. Now with weighted least squares

we get equation [11]:

θ̂ = (HTWH)−1HTWX. (4.18)

The modeling is done two times for the image. In first step only the smallest isolated

pixel groups are removed before modeling so ditches that are not well classified and con-

sist of many small pixel groups can be connected. The second time also bigger pixel

groups are removed to get a clean result.

Finally the resulting skeleton is dilated with a 3x3 circular structuring element. The

testing coordinates are not always in the center of the ditch so dilation is needed to get

accurate validation.
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5. DATA

Remote sensing data used in this thesis consists of LiDAR point clouds and orthopho-

tographs. In this chapter data licence and different mires used for training and testing are

presented. Also the data acquisition process and LiDAR intensity data preprocessing are

described.

5.1. Data licence

All remote sensing data used in this thesis is obtained from National Land Survey of

Finland (NLS). LiDAR data and orthophotos are under National Land Survey open

data licence (Avoimen tietoaineiston lisenssi 2012). The licence gives user rights to

freely use and modify data in both commercial and non-commercial purposes. Licence

can be found at http://www.maanmittauslaitos.fi/en/NLS_open_data_

licence_version1_20120501.

5.2. Study sites

The selection of study sites was done with four criteria in mind:

1. Since NLS’s LiDAR data does not yet completely cover Finland, main criterion was

that the necessary data exists.

2. The study site is presented in the Mire study of Southern Ostrobothnia [3] which is

used as a reference guide.

3. In ditch detection the mire site needs to be considerably changed by actions of man

so a large drainage network is present.

4. In road detection, naturally, the presence of roads is required.

Ditch training set consists of Lammineva in Kurikka and Pohjaisneva in Alavus. Kalis-

tanneva and its surroundings in Kurikka is used for testing. Road training set includes

http://www.maanmittauslaitos.fi/en/NLS_open_data_licence_version1_20120501
http://www.maanmittauslaitos.fi/en/NLS_open_data_licence_version1_20120501
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Figure 5.1: Southern Ostrobothnia map and the mires used in this thesis. Contains data from the
NLS Municipal Division Database 01/2014.

mires Pikku Vasikkaneva in Jalasjärvi, Pohjaisneva in Alavus and Kalistanneva in Kurikka

while test mire is Lintuneva in Kurikka and Teuva. The mire locations are shown in Figure

5.1.

5.3. Data acquisition

All the data is downloaded from kartat.kapsi.fi server where it has been mirrored from

NLS’s own server. The reason for this is that data from NLS’s server has to be searched

and downloaded manually. From kapsi server the data can be automatically downloaded

via the wget command in Unix. The data is divided into packages that are named with

ETRS-TM35FIN coordinate system, as presented in Figure 2.2. These names can be

calculated automatically from coordinates, so the input parameters for data acquisition

function are coordinates of a mire and desired image size in meters. From this information

the image block names that are needed for whole image are calculated and, if the images

do not exist on computer, first searched and then downloaded from kapsi server. The

orthophotos are resized to half the original size so one pixel corresponds to 1 × 1 meter

area in nature. This is done to simplify data fusion, since the DTM pixel size is 1 × 1

meters. Using smaller pixel size would not be sensible since point distance in LiDAR

data is 1.4 meters.
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Raster digital terrain model (DTM) is created from LiDAR data by simply fitting the

scattered data into a grid. Nearest neighbor interpolation is used to fill empty grid cells.

Only points pre-classified as ground points are used. Pixel values in raster image are

height values in N2000 height system. An intensity image is also created the same way,

with the difference that LiDAR intensity values are used instead of height values. In ad-

dition, points classified as low vegetation (trees) are used to create a vegetation image,

where treeless areas are given value zero. DSM is created by combining DTM and veg-

etation image, so that zero values in vegetation image are substituted with corresponding

values from DTM. Finally images are cropped and combined to create mire-centered im-

ages of desired size.

5.4. Intensity data filtering

LiDAR intensity data is quite noisy so filtering operation is applied to it before training

and classification. Often mean filtering is used in noise removal, but in the case of road

borders, mean filter would take also other than road pixels into consideration. This would

make road border intensities differ from road center intensities [44]. To preserve road

edges, selective filtering is used to smooth the intensity data. It is a method where different

filters are used and one of them is selected based on some criterion [45]. The selective

filtering used in this thesis is based on Hachimura-Kuwahara filtering, where 9 different

filters are used. These filters are shown in Figure 5.2.

Figure 5.2: Hachimura-Kuwahara filters. First two filters are rotated 90, 180 and 270 degrees to
obtain rest of the filters, so there are 9 filters in total.

First two filters in Figure 5.2 are rotated 90, 180 and 270 degrees to obtain filters

covering all corners and sides. The last filter is a basic 3 × 3 mean filter that works well

for other than road border points.
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In Hachimura-Kuwahara filtering the variance is used as selection criteria. It is cal-

culated from the area that the filter covers, and filter resulting in minimum variance is

used to calculate mean that will be the new value for the center pixel [45, pp. 105-107].

Algorithm 1 presents the Hachimura-Kuwahara filtering algorithm. Filtering is done to

each pixel separately. For each filter, the variance of pixels inside filter is calculated and

if it is smaller than smallest variance thus far, mean of those pixels is saved to a vari-

able Meank. After all filters are passed through pixel, Meank is the mean of filter with

smallest variance and original pixel value is replaced with this mean value.

Algorithm 1 Algorithm for Hachimura-Kuwahara filter.

Hachimura-Kuwahara filter

Inputs: NumberOfRows × NumberOfColumns image

Set of subwindows {W1,W2, . . . ,WM}
Output: NumberOfRows × NumberOfColumns image

for i = 1 to NumberOfRows do
for j = 1 to NumberOfColumns do

let SmallestVar = LargestPossibleValue
for k = 1 to M do

place the subwindow Wk at (i, j)
let Vark = the variance of the elements inside Wk

if Vark < SmallestVar then
let SmallestVar = Vark
let Meank = the mean of the elements inside Wk

let OutputCandidate = Meank

end
let Output(i,j) = OutputCandidate

end

end

end

Based on Hachimura-Kuwahara filter, Xudong et al. [46] developed the flatness mean

filter (FMF). In FMF, the variance is calculated with height values since roads are uniform

in flatness but are often higher than their surroundings. Then the intensity data is used to

calculate mean values, and mean intensity corresponding to smallest variance is used as

new intensity.
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6. IMPLEMENTATION

In this chapter the implementation of the work is presented. All coding was done with

Matlab®. Some functions were pre-given. These include the logistic regression classi-

fier [47], original LBP code, filtering operations, wavelet and h-maxima transformations

and skeletonization and skeleton pruning functions. Thus, functions programmed by the

author include rest of the features, data acquisition and DTM creation, graphical user

interface for coordinate selection, flatness mean filtering function, polynomial modeling

function (excluding skeletonization) and performance evaluation calculations.

The training and test points were selected manually. A possibility of extracting points

from topographic maps by selecting objects of certain color with thresholding was con-

sidered, but this proved to be more unreliable method than manual selection. LiDAR

data and orthophotos are relatively new when compared to topographic maps, so new

structures do not exist in maps and some of the older ditches had been dried. Also the

topographic maps are not always totally accurate when compared to e.g. LiDAR data and

manual checking of correct locations was as time consuming as the manual selection of

coordinate points. In the training phase it is very important that the points are actual ditch

or road points and not just near a ditch or a road. To ease the coordinate selection process,

a graphical user interface (GUI), shown in Figure 6.1, was created for the task. With the

interface it is possible to define classes and select pixels or areas from image belonging to

a certain class. Also the removal of isolated pixels or pixels in a selected area is possible.

Training was done with two images (and two coordinate sets) in ditch detection and

three images in road detection. It was noted that one image is not enough for a reliable

model. In ditch detection two images were enough for successful classification. Road

detection proved to be a bit harder a task so three training images were used. The mini-

mum number of training images that gave a satisfactory model were used since coordinate

selection is a slow process and it must be done for test image also.

Even though feature set can be large and selection is automated, some rough initial
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Figure 6.1: Road point selections in GUI.

assumptions were done to reduce computational burden of the training phase. Since the

most descriptive property of a drainage network is its height in relation to surroundings,

only raster DTM was used for ditch detection. The true height of a ditch changes as

ground elevation changes, so features that use only the value of one pixel or mean of local

neighborhood were not used. The features used in ditch detection are shown in Appendix

1. Parameter range is given in format [min:step:max] and features are given in the order

they appear in Chapter 3. Some features take multiple parameters as inputs, but not all

parameter values are necessarily used together. For example in LBPs the radius of one is

only used with 8 points and a radius greater than 10 is used for 12 and 16 points. In ditch

detection there were 1065 features in total in the training phase.

In road detection LiDAR intensity images, orthophotos, DTM and DSM were used.

RGB components of orthophotos were combined to create a grayscale image. LiDAR

intensity images were filtered with flatness mean filter, as described in chapter 5.4. Also,

since there are no trees on a road, DSM created with ground and low vegetation points

was used. Here also the unprocessed intensity values mattered, so e.g. basic thresholding

was used. Since multiple images were used for classification, it was not possible to use

all the features with all images due to excessive computational burden. Features for road

detection are shown in Appendix 2. The images from which features were calculated are

given abbreviations, some of which were invented solely for the feature table. Since they

are not commonly used, they were not included in abbreviations listing. There were 1468

features in total in road detection in the training phase.
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7. EXPERIMENTAL RESULTS

The proposed method was tested with two different linear structures - ditches and roads.

For ditch detection only a raster digital terrain model is used for classification. In road

detection also orthophotographs, DTM and other LiDAR data were used.

In this chapter performance evaluation metrics are introduced, followed by the results

of ditch and road detection.

7.1. Performance evaluation

Before calculating performance evaluation metrics, we need to first calculate hits and

misses of testing coordinates. There are four possible outcomes for each coordinate point.

These outcomes can be presented in a confusion matrix shown in Figure 7.1.

False
positives

(FP)

True
positives

(TP)

False
negatives

(FN)

True
negatives

(TN)

P N

P N

True class

p

n

p

n

P
re

d
ic

ti
on

ou
tc

om
e Recall =

∑
TP∑
P

Specificity =
∑
TN∑
N

Precision =
∑

TP∑
p

F score = 2
1/precision+1/recall

Figure 7.1: Confusion matrix for performance evaluation. [48]

When the classifier makes a correct guess, we call it a hit. When the guess is wrong,

we call it a miss. True positives (TP) are hits when the true class is positive, while false

negatives (FN) are misses. When true class is negative, false positives (FP) are misses and

true negatives (TN) are hits.

In following equations, based on article by Fawcett [48], the sum (
∑

) means the num-

ber of points in a class. Recall (a.k.a. true positive rate, sensitivity) is the percentage of
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correctly classified positives from all positives (P):

Recall =
∑

TP∑
P

=

∑
TP∑

TP +
∑

FN
. (7.1)

Specificity (a.k.a. true negative rate) in turn is the percentage of correctly classified nega-

tives from all negatives (N):

Specificity =

∑
TN∑
N

=

∑
TN∑

TN +
∑

FP
. (7.2)

Precision (a.k.a. positive predictive value) is the percentage of true positives from all

points classified as positives (p):

precision =

∑
TP∑
p

=

∑
TP∑

TP +
∑

FP
. (7.3)

F score is the harmonic mean of precision and recall:

F score =
2

1/precision + 1/recall
=

2×∑TP∑
p +

∑
P
=

2×∑TP
2×∑TP +

∑
FP +

∑
FN

.

(7.4)

Recall and specificity describe how well positives and negatives are detected. Precision

grows when number of false positives diminishes, so it tells us how precise the classifier

is. F score improves when precision and recall improve.

7.2. Ditch detection results

Ditch detection was done solely from DTM. Probability image resulting from ditch classi-

fication was transformed into binary image with threshold 0.5. The threshold was selected

since it is in the center of the logistic function shown in Figure 4.2 and visual assessment

supports this conclusion. Polynomial modeling parameters were defined with careful test-

ing and visual evaluation of testing results. It was quite difficult to find optimal length of

gaps to fill and best mean square error (MSE) threshold since too big values cause erro-

neous linking and too small values prevent linking of many broken segments. Maximum

gap length was chosen to be 35 and MSE was 0.3 when candidate line was chosen by

nearest end point and 0.4 otherwise. These parameters were chosen through experiment-
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ing. The number of testing points used for evaluation metrics was 5802, from which 3732

were ditch points.

There were 1065 features in total from which 120 features were selected for the model.

Most used features were LTP, ILTP and rotation invariant ILBP, but also most of the other

features were used at least once. This does not directly tell us the importance ranking

of the features since the number of parameters for features varies. Also since the value

range of features varies, the importance of features cannot be determined from the model

coefficients β. However, since most of the features were used in the model, it can be said

that the feature set was suitable for ditch detection task.

Coordinates were divided into classes of equal size according to their depth. Depth is

calculated by maximum difference in 9x9 meter area around the pixel. In Figure 7.2(a) the

histogram of testing point depth is presented. Results of classification are shown in Fig-

ure 7.2(b). In y-axis is the percentage of correctly classified points, x-axis presents ditch

depth. The lower percentage in deepest ditches is due to the small amount of points in

those classes since one undetected point can lower greatly the total detection percentage.

From Figure 7.2(b) can be seen that ditches deeper than 1 meter are well detected. Lower

ditches, however, often break due to low visibility in LiDAR data, but their detection was

improved with polynomial modeling. This suggests that polynomial modeling makes the

method more robust.
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Figure 7.2: Histogram of ditch depth in testing point locations (a) and percentage of ditches found
in each depth class before (red) and after (blue) post-processing.

One example area of results is shown in Figure 7.3. Figure 7.3(a) shows the orthophoto

of the study site and Figure 7.3(b) is the DTM of selected area. In Figure 7.3(c) the

unprocessed classification result is shown. Figure 7.3(d) and Figure 7.3(e) are results

of two runs of polynomial modeling. Colors are used to represent different methods of
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the process: red is the original classification result, orange presents linking with nearest

points, yellow lines are linked with nearest endpoint and white lines are linked ditches

that were very close to each other.

0 0.5 1
km

N
(a) (b)

(c) (d) (e)

Figure 7.3: Orthophoto of Kalistanneva (a), DTM (b), original classification result (c) and re-
sults of first (d) and second (e) run of polynomial modeling. Contains data from the NLS Laser
Scanning Database 03/2012 and Orthophoto Database 08/2013.

Judging by visual assessment the locations of detected ditches correspond to actual

ditch locations and polynomial modeling improved the results. Even curved lines were

linked successfully as can be seen in Figure 7.3(d).

The performance of our classifier was evaluated quantitatively with precision, recall,

specificity and F score. Values were calculated before and after polynomial modeling.

Results can be seen in Table 7.1. Recall improved with polynomial modeling which

means that the number of correctly classified ditch points increased. The number of false

positives slightly increased causing the decrease of specificity and precision. F score,

which is a harmonic mean of recall and precision, also increased, which tells us that the



7. Experimental results 47

increase of recall outweighs the decrease of precision.

Table 7.1: Evaluation metrics for ditch detection.

TP FN TN FP Recall Specificity Precision F score
Classification 3378 354 2065 5 0.9051 0.9976 0.9985 0.9495
Modeling 3630 102 2064 6 0.9727 0.9971 0.9984 0.9853

Testing points for ditch detection were selected so that there are points on most of the

ditches so the recall value is quite accurate. The number of negative points, however, is

too small to make definite conclusions from evaluation metrics but by visual assessment

it can be seen that there are not many false positives.

Figure 7.4: DTM multiplied with unprocessed classification result.

The unprocessed segmentation result reaches coordinates outside ditches as can be

seen in Figure 7.4, which was obtained by multiplying the DTM with the segmentation

result. There are two possible reasons for this. Firstly, there are not many negative training

points near ditch borders. Secondly, some of the training coordinates have been placed

just outside ditch. Since the ditches at their narrowest are just one or two pixels wide, it

is quite understandable that some of the manually selected coordinate points have been

misplaced. However, to further improve the results, more precision is needed in training

coordinate selection process.

The results are very encouraging. Recall value of 0.97 is a good result in image clas-

sification. With further improvements of the method it is possible to raise the recall value
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even higher. Detection of ditches deeper than half a meter was already very successful so

improvements should be directed especially on detection of lower ditches.

7.3. Road detection results

In logistic regression model for road detection there were 123 features in total. Most used

features were edge emphasizing filtering, LTP and ILTP, rotation invariant ILBP, multi-

resolution LBP, different local statistical properties and morphological transformations.

Probability threshold was selected by calculating probability images of one of the three

training mires, then thresholding this image with values between 0.01 and 0.95 with step

size of 0.01. These features were used as training set for logistic regression classifier.

However, the actual model was not used but instead biggest value of model β was detected

and the corresponding threshold was selected for the task. This threshold was 0.25.

(a) (b) (c) (d)

Figure 7.5: Orthophoto of Lintuneva (a), classification result (b), binary image obtained with
threshold 0.25 (c) and 0.01 (d). Contains data from the NLS Laser Scanning Database 03/2012
and Orthophoto Database 06/2012.

In Figure 7.5 an example of road detection result is shown. Here the road class has

value 0 and background class value 1, while in ditch detection class values were the other

way around. The image is from the center of Lintuneva where a road intersects the mire,

so it is an interesting test case for the mire naturality project. Image on the left is the

original orthophoto and probability image is shown in Figure 7.5(b). The last two images

are thresholded results, where (c) was thresholded with value 0.25 and (d) with value 0.01.
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There are some circular structures in a mire that are false positives. With a thresh-

old low enough these structures can be mostly removed as can be seen in Figure 7.5(d),

but this also removes many road segments. Even though the road in Figure 7.5 stayes

intact with lower threshold, gaps in some other roads became too long to connect with

polynomial modeling. This means that the classifier has not been taught to exclude these

structures. Thus, we need either a bigger training set or some additional information to

reliably detect all the roads and only the roads. On the positive side, the wide asphalt

road in Figure 7.5 was very well detected even though tree canopies cause shadows in or-

thophotographs. These shadows are the main reason for using also LiDAR data, otherwise

roads could be detected from solely orthophotos with thresholding and filtering.

(a) (b)

(c) (d)

Figure 7.6: Orthophoto (a) of a race-course, LiDAR intensity image (b), probability image (c)
and result thresholded with value 0.25 (d). Contains data from the NLS Laser Scanning Database
03/2012 and Orthophoto Database 06/2012.

In Figure 7.6 another classification result is presented. First image is the orthophoto of

area where a race-course is present. Second image is the LiDAR intensity image filtered

with FMF. In Figure 7.6(c) is the probability image and in (d) is binary image obtained

with threshold 0.25.

The horizontal road on top of the image is gravel road, while the race-course is asphalt.

Figure 7.6(d) tells us that both types of road can be detected by the classifier. Also the
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parking lot was not classified as a road, which means that the shape of the road is a

significant cue in addition to intensity values. Some parts of the race-course are not as

well detected, so with a threshold of 0.25 they disappear.

Evaluation metrics for road detection are presented in Table 7.2. They are calculated

from binary images obtained with different thresholds. There were 10041 testing points

in total from which 1128 were road points and 8913 background points.

Table 7.2: Evaluation metrics for road detection.

Threshold TP FN TN FP Recall Specificity Precision F score
0.5 1032 96 8416 497 0.915 0.944 0.675 0.777
0.25 991 137 8608 305 0.879 0.966 0.765 0.818
0.01 721 407 8878 35 0.64 0.996 0.954 0.765

Evaluation metrics show that the results are as goos as in ditch detection. With low

threshold value (0.01) precision improved but recall decreased, so many false positives

were removed but also many of true road points were deleted. With large threshold value

(0.5) there were many false positives but also roads were detected well. The best F score

was obtained with threshold of 0.25. Thus, this threshold is a compromise between high

recall value with the expense of precision and high precision value with the expense of

recall.

The polynomial modeling function was tested for roads, but it did not improve the

results. This is due to the fact that there are so many false positives in the classification

result. Broken segments can be connected but this results in increased number of false

positives since existing false positives might be connected also. To remove false positives

from the skeleton pruning is needed, but when the length of branches to remove is big

enough to remove false positives, also some road segments are removed. Thus if the

number of false positives is decreased, so is the number of true positives. With low

threshold value many false positives can be removed, but some gaps in roads become

very long. If the maximum gap length in polynomial modeling is set very high, it will

result in many wrong connections. We can draw a conclusion that the classification with

the current set of features does not provide a satisfactory basis for polynomial modeling.

Road detection results could be improved by dividing the problem into smaller parts.

Here all roads were in same class, but they could be divided into gravel and asphalt road

classes. Multinomial logistic regression would then be used for classification since the
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number of classes is greater than two. This idea could be taken even further by dividing

the road points into road center and road border points. Now the classifier tries to bundle

different types of roads into one class which makes the problem complicated. With more

classes the description of one class would be more simple and probably more accurate.

Also more information would be obtained with single classification.
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8. CONCLUSIONS

In this thesis ditch and road detection from remote sensing data with logistic regression

classifier was presented. Ditch classification was done with only DTM, and polynomial

modeling was applied to classified results to link broken segments. The detection results

were very accurate for ditches deeper than half a meter and below that the ditch detec-

tion accuracy decreased as ditches became lower. Broken segments were successfully

connected with polynomial modeling and this improved the detection of low ditches, too.

Roads were detected from different images with logistic regression, but polynomial mod-

eling was not applied. The road detection accuracy does not correspond to values obtained

from ditch detection so the method should be further improved for it to function reliably.

Yet success in ditch detection indicates that logistic regression is a suitable method for

this application.

Logistic regression can create computationally efficient models that can classify im-

ages very accurately. However, the data used in this thesis is very heterogeneous and

there is noise and variation in measurements. For example, orthophotographs collected

from different study sites might look very different since the intensity values are not con-

sistent. Thus, the models might be complicated and results are not always as accurate as

desired, as was noted with road detection. Variations in data also make it necessary to test

the method thoroughly in the future. The results apply to a very limited material since

only one test site was used for both ditch and road detection, so more data is needed to

evaluate the reliability and generality of the method.

Some improvements could be achieved by adding new features to the feature set since

suitable features are the foundation of successful classification. New features are easy to

add due to the modularity of the implementation. Also combining existing features could

help, for example all features could be multiplied with one another. A bigger training set

with more study sites could improve the results, too, and make the method more general.

It is important to give the classifier a comprehensive training set of background points
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so it knows what kind of features to exclude. These improvements would increase the

computational burden in the training phase so the use of external computing resources is

recommended. However, by improving the training process the number of features in the

model would decrease and the classification phase would be faster and more reliable.

One possible application for logistic regression classification of remote sensing images

could be automated creation of topographic maps. The method should be deployed first

in a semi-automated manner, where the resulting map would be checked by human before

it is accepted. Currently topographic maps of NLS are created manually from aerial

photography. Classifier could be taught to recognize buildings, fields, forests and other

units appearing in maps. Ditches and roads are also important parts of these maps, so the

road detection method should be further improved. The method for ditch detection should

be further tested to get a better idea of method’s reliability. Now it has been tested only

in forested areas but testing in urban and rural areas would be required too. The results of

ditch detection imply that this kind of application is achievable with the classifier, but it

would need a comprehensive training set and comprehensive evaluation.

Ditches and roads in mire and its margins are important descriptors of the natural state

of a mire. With the method for ditch and road detection presented in this thesis, the au-

tomated analysis of the natural state is one step closer. Ditch information will be utilized

by determining the percentage of drained mire margins and giving additional weight to

ditches inside a mire. Also drainage network location is essential knowledge when mod-

eling waterflow patterns in and around a mire. Roads that cross mires affect negatively in

mire naturality, so they must be taken into consideration when determining the naturality

index. The next step in mire naturality analysis will be mire type classification, since

the effects of drainage vary according to mire type. This will be done by combining lo-

gistic regression classification of surface texture and ground height gradient to determine

whether the mire is convex or concave.
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APPENDIX 1: FEATURES FOR DITCH DETECTION

Table 1: Features for ditch detection. There were 1065 features in total.

Feature Parameters Values
Filtering

Edge emphasizing filtering
kernel size 3:5:53Gaussian low-pass filtering

Gaussian filtering difference
Average filtering difference kernel size 1,

kernel size 2

3:2:33,
ks1 + 2:2:12Circular average filtering difference

Thresholding and h-maxima transformation
Masking with h-maxima transformation size of h 3:5:53

Morphological transformations
Top-hat transformation

kernel size 3:5:53
Bottom-hat transformation

Local statistical properties
Standard deviation kernel size 3:4:51
Variance

kernel size 7:4:23
Third image moment
Fourth image moment
Spectral energy density
Entropy
Range kernel size 3:4:51

Local binary patterns
Rotation invariant LBP

radius,
number of points

1:1:20,
8:4:16

Rotation invariant ILBP
Rotation invariant MBP
LTP radius,

number of points,
threshold

1:1:10,
8:4:16,
0.05:0.05:4

ILTP
RBP

Local contrast
radius 1:0.5:5
number of points 8:4:16

Multi-resolution LBP scale 2:1:6
Sum of multi-resolution LBPs scale 4:1:8
Gaussian filter bank difference scale 3:1:6
Division of LBP and radius 1:0.5:5
local contrast number of points 8:4:16

Wavelet decomposition
Wavelet decomposition images depth plane 1:1:3

Gradient magnitude
Gradient magnitude image
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APPENDIX 2: FEATURES FOR ROAD DETECTION

Table 2: Features for road detection. There were 1468 features in total.

Abbreviations of input images:
DTM Digital terrain model
DSM Digital surface model
LI LiDAR intensity image
GO Grayscale orthophotograph

Feature Parameters Values Images
Filtering

Edge emphasizing filtering kernel size 3:5:53 DSM, LI, GO
Gaussian low-pass filtering kernel size 3:5:53 DSM, LI
Gaussian filtering difference kernel size 3:5:53 DSM, LI

Thresholding and h-maxima transformation
Thresholding threshold 20:1:70 LI
Thresholding threshold 100:5:200 GO
Masking with h-maxima transformation size of h 3:5:53 DSM, LI

Morphological operations
Top-hat transformation kernel size 3:5:53 DSM, LI, GO
Bottom-hat transformation kernel size 3:5:53 DSM, LI, GO

Local statistical properties
Mean kernel size 3:4:23 DSM, LI, GO
Standard deviation kernel size 3:4:51 DSM, LI, GO
Variance kernel size 3:4:23 DSM, LI, GO
Third image moment kernel size 3:4:23 DSM, LI, GO
Fourth image moment kernel size 3:4:23 DSM, LI, GO
Spectral energy density kernel size 3:4:23 DSM, LI, GO
Entropy kernel size 3:4:23 DSM, LI, GO
Range kernel size 3:4:51 DSM, LI, GO

Local binary patterns

LBP
radius 1

DSM, LI
number of points 8

ILBP radius 1:1:20
LI, GO

(rotation invariant) number of points 8:4:16
MBP radius 1:1:20

LI, GO
(rotation invariant) number of points 8:4:16

LTP
radius 1:1:20

DSM, LI, GOnumber of points 8,16
threshold 0.05:0.1:0.5

ILTP
radius 1:1:20

LInumber of points 8:4:16
threshold 0:0.05:0.4

Local contrast
radius 1:0.5:2

DSM, LI
number of points 8:4:16

Multi-resolution LBP scale 2:1:6 DTM, DSM, LI, GO
Sum of multi-resolution LBPs scale 4:1:8 LI
Gaussian filter bank difference scale 4:1:6 LI, GO
Division of LBP and radius 1:0.5:2

LI
local contrast number of points 8:4:16
Sum of multi-resolution ILBPs scale 0:1:2 LI

Wavelet decomposition
Wavelet decomposition images plane 1:1:3 DSM, LI, GO

Gradient magnitude
Gradient magnitude image LI
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