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3D simulation technology has been adopted successfully in production industry for dec-

ades. It benefits the manufacturers by the possibility to answer ‘how would it be’ with 

vivid visual images, consuming much lower capital investment, resources and human 

power.  

This thesis paper first investigates into the background research of simulation and mod-

elling approaches employed within the industry. Then a pallet-based Flexlink produc-

tion line in FAST-Lab, Tampere University of Technology, is taken as the simulated 

object for case study. 3D model is created under FESTO CIROS Studio software envi-

ronment, using built-in mechanism offered by the program to realize full transportation 

system of the assembly line, both sensors and actuators. Logic control of the conveyor 

system is integrated with built-in virtual PLC and programmed in FBD and STL with 

Siemens STEP7.  

The assessment results reveal the possibility of handling multiple pallets with multiple 

recipes simultaneously. Also the performance of FESTO CIROS Studio is evaluated as 

showing some limitations during research.  



 1 

 

CONTENTS 

1. Introduction ............................................................................................................... 8 

1.1. Scope .............................................................................................................. 8 

1.2. Outlines .......................................................................................................... 8 

2. Background research of simulation ......................................................................... 10 

2.1. Introduction to simulation ............................................................................ 10 

2.1.1. Pros and Cons................................................................................. 11 

2.1.2. Simulation process ......................................................................... 12 

2.2. Manufacturing simulation ............................................................................ 14 

2.2.1. Benefits .......................................................................................... 14 

2.2.2. Classification .................................................................................. 14 

2.3. Flexible Manufacturing System (FMS)........................................................ 15 

2.4. Multi-Agent Simulation (MAS) ................................................................... 17 

2.5. Petri Net........................................................................................................ 19 

2.5.1. Formal definition of Petri Net ........................................................ 19 

2.5.2. Properties of Petri Net .................................................................... 20 

2.5.3. PN Application ............................................................................... 21 

2.5.4. Advantages of PN in production simulation .................................. 24 

2.6. CAD/CAM tools .......................................................................................... 24 

2.6.1. FESTO CIROS Studio ................................................................... 25 

2.6.2. QUEST ........................................................................................... 26 

2.6.3. Taylor Enterprise Dynamics .......................................................... 27 

2.6.4. Visual Components product family ............................................... 28 

2.6.5. Comparison .................................................................................... 30 

3. Case study presentation ........................................................................................... 32 

3.1. Layout of assembly line ............................................................................... 32 



 2 

3.1.1. Start segment .................................................................................. 33 

3.1.2. Middle segment .............................................................................. 34 

3.1.3. End segment ................................................................................... 36 

3.2. Routing description ...................................................................................... 37 

3.3. Mechanism application and I/O configuration ............................................. 39 

3.3.1. Actuators ........................................................................................ 39 

3.3.2. Sensors ........................................................................................... 41 

3.4. Design limitation and solutions .................................................................... 42 

4. Simulation implementation ..................................................................................... 48 

4.1. Implementation steps.................................................................................... 48 

4.1.1. Insert the PLC into the model ........................................................ 48 

4.1.2. Link the I/Os of the PLC with the objects in the model ................ 49 

4.1.3. PLC programming.......................................................................... 50 

4.2. Design specifications.................................................................................... 50 

4.2.1. Timing for pallet stopping.............................................................. 51 

4.2.2. Interactions between segments....................................................... 51 

4.2.3. Multiple pallets handling ............................................................... 52 

4.2.4. Decision signals ............................................................................. 53 

4.3. User Interface and recipe loading................................................................. 54 

4.4. Pallet tracking ............................................................................................... 56 

4.5. Process perfection ........................................................................................ 58 

4.5.1. Process scan ................................................................................... 58 

4.5.2. Final scan ....................................................................................... 59 

5. Assessment analysis ................................................................................................ 60 

5.1. Simulation results ......................................................................................... 60 

5.1.1. Single recipe execution .................................................................. 60 



 3 

5.1.2. Multiple recipes execution ............................................................. 62 

5.2. KPI analysis.................................................................................................. 64 

6. Conclusion .............................................................................................................. 66 

References ....................................................................................................................... 68 

Appendix 1 ...................................................................................................................... 70 

Appendix 2 ...................................................................................................................... 72 

 

  



 4 

ABBREVIATIONS 

3D Three-dimensional 

BCL Batch Control Language 

CAD Computer-Aided Design 

CAM Computer-Aided Manufacturing 

CNC Computer Numerical Control 

DAS Dynamic Assembly System (Flexlink Product Concept) 

DEC Discrete-Event Control 

DSS Decision Support System 

FBD Function Block Diagram 

FESTO CIROS Festo corporation simulation software 

FMS Flexible Manufacturing System 

IL Instruction List 

IPC Industrial Personal Computer 

IRL Industrial Robot Language 

KPI Key Performance Indicator   

LD Ladder Diagram 

MAS Multi-Agent System 

PLC Programmable Logic Controller 

PN Petri Net 

PNDEC Petri Net based Discrete Event Controller 

QUEST QUeueing Event Simulation Tool (Delmia)    

SCL Simulation Control Language 

SFC Sequential Function Chart 

SIPN Signal Interpreted Petri Net 

ST Structure Text 



 5 

List of Figures 

Figure 1 Vehicle simulator .............................................................................................. 10 

Figure 2 Process of simulation ........................................................................................ 13 

Figure 3 Major components of FMS and their relationships [Colombo, 2010] .............. 16 

Figure 4 Agent-based Information Technology Fusion in Mechatronics [Colombo, 

2010] ............................................................................................................................... 17 

Figure 5 Example of agent interactions in manufacturing control [Colombo, 2010] ..... 18 

Figure 6 Collaborative production automation architecture [Colombo, 2010] ............... 19 

Figure 7 PN graphic example .......................................................................................... 20 

Figure 8 Sample PN model for production events [Colombo, 2010] ............................. 22 

Figure 9 Block diagram of PNDEC [Korotkin et al, 2010] ............................................ 23 

Figure 10 FESTO CIROS Studio screenshot .................................................................. 25 

Figure 11 Taylor ED, 2D model with connected channels [Incontrol, 2011] ................. 28 

Figure 12 Taylor ED, 3D model of three counters [Incontrol, 2011] ............................. 28 

Figure 13 3DRealize interface [Visual Components] ..................................................... 29 

Figure 14 Flexlink production line .................................................................................. 32 

Figure 15 Top view of FESTO Studio model ................................................................. 33 

Figure 16 FESTO Studio model, start segment .............................................................. 34 

Figure 17 FESTO Studio model, middle segment .......................................................... 35 

Figure 18 Cross conveyor ............................................................................................... 36 

Figure 19 FESTO Studio model, end segment ............................................................... 36 

Figure 20 Start segment of conveyor system .................................................................. 37 

Figure 21 Middle segment of conveyor system .............................................................. 38 

Figure 22 End segment of conveyor system ................................................................... 39 

Figure 23 End lifter conveyor surface ............................................................................. 43 

Figure 24 Intermediate lifter ........................................................................................... 45 

Figure 25 Cell m_ml_c1 ................................................................................................. 46 

Figure 26 Solution for cells with two inlets and two outlets........................................... 47 

Figure 27 Simulation controllers setting ......................................................................... 49 

Figure 28 Manual Operation in FESTO CIROS Studio, I/O connection ........................ 50 

Figure 29 SIMATIC manager ......................................................................................... 50 

Figure 30 Interactions between segments ....................................................................... 51 

Figure 31 User interface for recipes ................................................................................ 54 



 6 

Figure 32 Cells numbering .............................................................................................. 55 

Figure 33 Recipes loading ............................................................................................... 56 

Figure 34 Pallet-position data block ............................................................................... 57 

Figure 35 Function logic for updating pallet position ..................................................... 58 

Figure 36 Simulation screenshot ..................................................................................... 62 

Figure 37 KPI framework [Rakar et al, 2004] ................................................................ 64 

 

  



 7 

List of Tables 

Table 1 Classifications of manufacturing simulation [Smith, 2003] .............................. 14 

Table 2 Petri net properties and their meanings [Zhou and Venkatesh, 1999] ............... 21 

Table 3 Model hierarchy description of CIROS Studio .................................................. 26 

Table 4 Feature comparison of selected simulation software [Salminen, 2010] ............ 30 

Table 5 Weighted feature comparison of selected simulation software [Salminen, 2010]

 ......................................................................................................................................... 31 

Table 6 I/O descriptions of actuator mechanism............................................................. 40 

Table 7 I/O descriptions for sensor mechanism .............................................................. 41 

Table 8 Decision points and corresponding inputs ......................................................... 53 

Table 9 Recipe composition and execution time for single recipe ................................. 61 

Table 10 Recipe relation ................................................................................................. 62 

Table 11 Quantified simulation results of multiple recipes ............................................ 63 

 



 8 

1. INTRODUCTION 

As one of the most tremendous infusive technology nowadays, simulation holds stupen-

dous promise all over the manufacturing industry. From product development, prototype 

design to facility planning, mass production, each phase inside a manufacturing enter-

prise involves modelling and simulation. The more widespread simulation technology 

becomes, the more comprehensive operation simulation methodology should provide to 

users.  

Meanwhile, integration between simulation models and real production lines tends to be 

crucial since it occupies relatively big proportion of monetary input. How to overcome 

the limitation of existing simulation methods falls into a significant research topic in 

manufacturing industry. 

1.1. Scope 

The simulation of production systems plays an important role in assessment of system 

performance. A visualization of simulation models simplifies the understanding of on-

going processes in the system. Possible integration of the simulation models with the 

production line could provide on-line monitoring.  

In the current thesis work, different simulation strategies for the production lines are 

going to be evaluated. Based on FESTO CIROS Studio, a pallet-based assembly line is 

going to be modelled. According to the model, the real system performance should be 

assessed. Quantified measurements are tended to be collected from simulation model to 

determine related parameters like system throughput, how many pallets can be handled 

at the same time. Some key performance indicators (KPI) of production line should also 

be retrieved from the model. 

1.2. Outlines 

This thesis starts with a background research of modelling and simulation approaches 

that have been implemented in manufacturing industry. A survey into the domain of 3D 

simulation and modelling approaches will be discussed in chapter 2.  

In chapter 3, 3D simulation model built in a FESTO CIROS Studio will be introduced 

based on the assembly system provided. How this model is integrated with Flexlink 

production line and based on what mechanism it was completed will also be covered. 

Simple user interface was established for determining recipes while the pallet loading 
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for processing. For the purpose of handling multiple pallets at the same time, they were 

distinguished from each other in order to mark which path they should be routed.  

Led by the creation of simulation model, a logic structure based on Siemens Simatic 

STEP 7 was implemented into the model and will be introduced in chapter 4. By insert-

ing virtual programmable logic controller (PLC) into simulation, connections between 

production simulation and operation controller were fully established. I/O signals from 

production line (sensors and actuators embedded) were mapping to PLC control signals, 

and a program based on FBD and STL (Statement List) language was built to fulfil the 

pallet transportation routes.   

By running the simulation model, production related assessment result will be measured 

and calculated quantified, and these parameters will be demonstrated in chapter 5. Also 

the quality of measurements and performance will also be evaluated in this section. Sys-

tem analyses will be introduced as well based by means of KPI. 

Chapter 6 concludes this thesis. Evaluation of FESTO CIROS Studio will be analyzed 

based on its performance during current thesis topic. Possible future work directions and 

extended applications of the current simulation result in manufacturing industry will be 

discussed. 
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2. BACKGROUND RESEARCH OF SIMULA-

TION 

Jerry Banks defines simulation as the imitation of the operation of a real-world process 

or system over time [Banks, 1998]. In industrial field, manufacturing represents one of 

the most important applications of simulation. 

2.1. Introduction to simulation 

Simulation is one of the most powerful analysis tools available to those responsible for 

the design and operation of complex process or systems [Shannon, 1992]. 

It has been widely applied into various fields: computer systems, manufacturing indus-

try, business analysis, military use, ecology, social studies, and biosciences and so on. 

The reason that simulation technology is so well adopted is the gap between objective 

reality and subjective perception. Figure 1 shows a simple example of simulation em-

ployment in automobile industry. 

 

Figure 1 Vehicle simulator 

When there is too much risk taking a new step, it is always a safe choice to experiment 

beforehand. This risk includes time issue, monetary issue, and safety issue and so on. 



 11 

Thus, modelling and simulation technology holds tremendous promise of reducing cost, 

avoiding risk and increasing rate of success.  

However, simulation can be utilized not only before producing real system but also at 

the same time of system carry-out. To simulate is essentially to duplicate the system or 

process for simplifying performance monitoring and analysis. From this perspective, 

simulation solves efficiently the problem that some huge-scaled systems with multiple 

types of input and output are hard to be evaluated by collecting real data resources. For 

example, it is not possible to calculate the exact rate of people who suffers diabetes over 

a country. But the result can be computed by taking a small sample of a group of people 

first, then approximate the ratio by mathematics method. This is one kind of simulation 

applying in public health. 

2.1.1. Pros and Cons 

To understand simulation, it is important to realize that it is not omnipotent for every 

case. Like all the other techniques, it still has two-side stories [Shannon, 1992]. 

For the bright side, firstly, simulation is an appropriate extending tool. It does not cause 

any interrupt to the existing system while it is on-going. Relatively less energy and 

other resources are needed for carrying out simulation process. And also it is a good 

way for exploring new policies and extending process procedures.   

Secondly, simulation is a descent testing tool. It can be used for evaluating, such as lay-

out design, hardware/software design, information and communication systems and so 

on, before being committed into the real system. 

Thirdly, simulation is a diagnosing tool. By simulating real system performance, certain 

abnormality and errors can be found before actual implementation into real system. 

Meanwhile the cause of these abnormal phenomena can be diagnosed to decrease un-

necessary capital expenses, time wasting and human resources, etc. For a positive result, 

the rate of feasibility is accordingly raised.  

Fourthly, simulation is a good tool for controlling time during testing duration. In real 

case, it is not possible to observe long time system performance in short time, vice 

versa. While in simulation process, it is easy to control the speed of running model. 

Thus system performance trend can be estimated for long-time decision making and 

short time motion can be slowed down for detailed analysis.  

Fifthly, simulation is a convenient analyzing tool. It helps to gain insight into the system 

and investigate the variables that matters to the real system without putting it to take 

risk. And it is also possible to analyze the interactions between different parameters and 

how they affect the performance of the entire system.  
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Sixthly, simulation is quite efficient for detecting bottleneck in material information and 

product flows. The situations such as equipment starving and blocking should be re-

ported in simulation process. Simulation also identifies error information when other 

type of abnormality occurs.   

Seventhly, simulation can be used as a verifying tool. Certain conceptions and suspect-

ing cases, which gained from designing process, can be verified during simulation. The 

differences between how it is thought to be and how it really is can be revealed sepa-

rately. Hypothesis can be tested to be applicable or not in advance. 

Eighthly, after all, simulation is an experiment tool that answers to lots of “what if” 

questions. Before taking into real commitment, it is very common that designers hold 

limited knowledge about the actual system. By means of experiment allows us to testify 

all the suspects occurred during conceptual phase and recognize more factors about the 

simulated objects. More importantly, simulation provides a wide platform to try out 

different thoughts with no harm to the real, and in many cases, expensive system. 

Even though simulation brought us these many conveniences, it still has some limita-

tions as followings. 

Model building is a subjective work that varies from individuals. The quality of analysis 

depends on the quality of the model and skill of the modeller [Shannon, 1992]. Gener-

ally, the more sophisticated and experienced modeller is the more comprehensive the 

model is to be. 

Simulation results are sometimes hard to interpret. Since the simulation model is made 

from capturing randomness from production process, it is sometimes hard to identify if 

the simulation result is observed from a significant relationship from system or just a 

random occurrence built into the model [Shannon, 1992]. 

Simulation analysis can be a time consuming and expensive process. An adequate 

analysis may not be feasible within the time and/or resources available and a quick es-

timate using analytical methods may be preferable [Shannon, 1992]. 

Besides, the integration of simulation study and real production line may cost a fortune 

sometimes. Different application requires dedicated interface, which may cause compli-

cation of data transforming and/or protocol exchange, etc.   

2.1.2. Simulation process 

As demonstrated before, the purpose of applying simulation technology so tightly to 

other domains is that it is a logical system helping to solve technical problems. There-

fore, to build a good simulation requires systematic procedures. There is one typical 

simulation process methodology concluded by Shannon (1992) is illustrated in Figure 2. 
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Figure 2 Process of simulation 

Implementation and Documentation 

Put the results to use, record the findings as well as document the model and its use 

Analysis and Interpretation 

Draw inferences from the data generated by the simulation 

Experimentation 

Execute the simulation to generate the desired data and to perform sensitivity analysis 

Final Experimental Design 

Design an experiment  determining how each ot the test runs specified in the experimental design 

Verification and Validation 

Debug and confirm that the output of the model is believable  and representative of the real system 

Model Translation 

Program the model in an appropriate computer language 

Input Data Preparation 

Identify and collect of the input data needed by the model 

Preliminary Experimental Design 

Select the factors to be varied, the levels of those factors to be investigated 

Conceptual Model Formulation 

Develop a model to define the compoments, variables and interactions constituting the system 

System Definition 

Determine the boundaries and restrictions for defining the system 

Project Planning 

Ensure the sufficiency of personnel, computer resources to support the job 

Problem Definition 

Define the goals of the study, recognize the purpose 
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2.2. Manufacturing simulation 

The implementation of simulation in manufacturing system has been a hot topic for 

decades. As one of the most crucial techniques applied, simulation is a strong tool in 

general system analysis domain and performance evaluation in manufacturing system 

and operation design. 

2.2.1. Benefits 

Manufacturing simulation focuses on modelling the behaviour of manufacturing organi-

zations, processes, and systems [McLean and Leong, 2001]. It can be used to: 

 Model “as-is” and “to-be” manufacturing and support operations from the sup-

ply chain level down to the shop floor 

 Evaluate the manufacturability of new product designs 

 Support the development and validation of process data for new products 

 Assist in the engineering of new production systems and processes 

 Evaluate their impact on overall business performance 

 Evaluate resource allocation and scheduling alternatives 

 Analyze layouts and flow of materials within production areas, lines, and work-

stations 

 Perform capacity planning analyses 

 Determine production and material handling resource requirements 

 Train production and support staff on systems and processes 

 Develop metrics to allow the comparison of predicted performance against “best 

in class” benchmarks to support continuous improvement of manufacturing op-

erations 

Simulation models are built to support decisions regarding investment in new technol-

ogy, expansion of production capabilities, modelling of supplier relationships, material 

management, human resources, and so forth [McLean and Leong, 2001]. 

2.2.2. Classification 

Smith (2003) has divided the application of manufacturing simulation into three main 

classes, which are manufacturing system design, manufacturing system operation, and 

simulation language/package development for manufacturing system application 

[Smith, 2003]. Table 1 illustrates these three classifications and the major sub subjects 

in each division.  

Table 1 Classifications of manufacturing simulation [Smith, 2003] 

Class Sub subjects 



 15 

Manufacturing System Design General system design and facility de-
sign/layout 

Material handling system design 

Cellular manufacturing system design 

Flexible manufacturing system design 

Manufacturing System Opera-
tion 

Operations planning and scheduling 

Real-time control 

Operating policies 

Performance analysis 

Simulation Language/Package Development 
 

Manufacturing system design involves making long-term decisions [Smith, 2003], such 

as system layout, capacity or configuration design. In this category, systems are simu-

lated macro. Once the simulation is finished, it may affect for long, time unit starting 

with weeks, months even for years. 

On the other hand, manufacturing system operation involves on a much shorter time 

schedule, which means that the model is generally used (and reused) much more often 

and simulation run time is a more significant factor than the previous category [Smith, 

2003]. Subjects like performance analysis and real-time control require frequent update 

as the collecting data fluctuates all the time. It may lose its power of reference when the 

information of the real system is obsolete.   

2.3. Flexible Manufacturing System (FMS) 

The essence of a Flexible Manufacturing System is a self-contained grouping of ma-

chinery that can perform all the operations, including transportation from one machine 

to another and/or performance under computer control with minimal human interven-

tion, required in the manufacture of a number of parts with similar processing require-

ments [Young and Greene, 1986]. 

The concept of Flexible Manufacturing System is composed of the ideas of decision-

making support system and adapting to changing environment. The system is designed 

to provide high productivity and flexible production capability.  

The purpose of FMS is to realise flexibility in several areas inside manufacturing indus-

try: machine flexibility, process flexibility, product flexibility, routing flexibility, vol-

ume flexibility, expansion flexibility, process sequence flexibility and production flexi-

bility [Yilmaz and Davis, 1987].  
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Figure 3 Major components of FMS and their relationships [Colombo, 2010] 

Figure 3 indicates the overview of major functions of an FMS and the relationship be-

tween components can be summarized as following: 

 The Decision Support System (DSS) consists of scheduler and dispatcher. It gener-

ates detailed scheduling tasks following the information from planning section. De-

cision Support System sends dispatching orders to downstream controllers. At the 

same time, DSS requests performance information from monitoring and visualisa-

tion system as the reference data in order to make self-developed decision for im-

proving next decision. 

 After receiving dispatching orders from DSS, coordination and logic control section 

translates these orders into detailed tasks to actuators and sends signals to each of 

them.  Meanwhile it collects signals from sensors through process interface of the 

FMS. Then this section analyzes collected data, interprets into valuable production 

information, such as states of resources, error messages, problems to be solved, 

process parameters and so on, and deliver them all towards monitoring and visuali-

sation section. 

 Monitoring and visualisation sections plays as a bridge in the whole system, col-

lecting data from all levels participated in the production activity and generating 

abnormality information to diagnosis centre. Simulation technology is one powerful 

tool in this section. It listens to not only the controller but also feedback signals 

from hardware components (sensors). This is necessary for building the database 
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for modelling and simulation. As the output, this section responses to DSS real-time 

information and also provides monitoring index to planning centre, offering objec-

tive reference and helping to establish next plan. 

 Diagnosis section receives error detection from monitoring and visualisation, works 

out recovery solutions, and then information flows to human operator to give in-

struction of repairing advices. Hardware components (actuators) are fixed to over-

come errors and limitations. By diagnosing procedure, experience of dealing some 

problem situation is gained, and recommended strategies is offered as an output into 

DSS, helping to perfect next decision. 

2.4. Multi-Agent Simulation (MAS) 

A multi-agent system can be defined as a set of agents represent the objects of a system, 

capable of interacting, in order to achieve their individual goals, when they have not 

enough knowledge and/or skills to achieve individually their objectives [Leitao, 2009]. 

A suitable definition, originated from the definition of multi-agent system, for agent is: 

“An autonomous component that represents physical or logical objects in the system, 

capable to act in order to achieve its goals, and being able to interact with other agents, 

when it does not possess knowledge and skills to reach alone its objectives” [Leitao, 

2009]. For example, people, organizations, social insects, robots can all be considered 

as agents with their own goals and behaviours. 

 

Figure 4 Agent-based Information Technology Fusion in Mechatronics [Colombo, 

2010] 
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In a manufacturing system, three typical agents are implemented, as indicated in Figure 

4, work-piece (pallet) agent, machine agent and transport agent. An example of these 

three agents’ interaction is given in Figure 5.  

Three main scenarios can be summarized from Figure 5. 

 Work-piece agent sends out requests to ask for a machine to be operated; 

 All three agents that represents machines reply to the work-piece agent and re-

port their status, and only machine agent #3 responses positively; 

 After identifying departure and destination location information, work-piece 

agent starts to negotiate with transport agent, transport agent plans for the route 

and transportation system is in charge of implementing orders of leading work-

piece to the position of machine#3. 

It is important to recognize that the control system is independent of the number of 

machines in the system and it does not notice the introduction of new machines or 

existing machines removing; also, agents that represent several machines are up-

graded using same customized development software, according to their type, skills 

and behaviour [Leitao, 2009].  

 

Figure 5 Example of agent interactions in manufacturing control [Colombo, 2010] 

The agent-based control system should be integrated to the commensurate industrial 

automation system as to emulate real-time operation. To realize machine autonomy, 

Computer Numerical Control (CNC) machines are implemented as the machine agent; 

for the same purpose, Programmable Logic Controller (PLC) for transportation system 

and Industrial Personal Computer (IPC) for work-piece agent. 
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Figure 6 Collaborative production automation architecture [Colombo, 2010] 

To enable the communication and information synchronization between all kinds of 

agents, a universal database is needed as to data storage for supporting production re-

lated decisions. Physical connections can be built by means of standardized physical 

link layer methodology, such as Ethernet, Modbus and so on. An agent-based manufac-

turing architecture based on collaboration is illustrated in Figure 6. 

2.5. Petri Net 

Petri Net, as simply defined, is a graphical and mathematical modelling tool. It is a 

promising methodology for describing and studying information process systems. 

Due to the generality and permissiveness inherent of Petri Net, it can be applied in many 

areas and systems. Two successful application fields are communication protocols and 

performance evaluation, and other promising areas of applications include modelling 

and analysis of distributed-software systems, distributed-database system, concurrent 

and parallel programs, flexible manufacturing/industrial control systems, discrete-event 

systems, dataflow computing systems, fault-tolerant systems and so on [Murata, 1989]. 

2.5.1. Formal definition of Petri Net 

A Petri Net is a 5-tuple,                 where: 

                is a finite set of places, 

                is a finite set of transitions, 
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              is a set of arcs (flow relation), 

              is a weight function, 

                 is the initial marking. 

      and     . 

A Petri net structure             without any specific initial marking is denoted 

by . And a Petri Net with the given initial marking is denoted by      . 

Places, transitions and the interconnections between places and transitions can be sym-

bolized as Figure 7. Introduction tokens into places and observation of their flow path 

help one to understand discrete-event behaviour of PN as well as the modelled system. 

 

Figure 7 PN graphic example 

2.5.2. Properties of Petri Net 

Like every other mathematical methodology, Petri net owns several properties which 

enable users to identify the presence or absence of the functional properties of the sys-

tem. Two types of properties can be distinguished, behavioural and structural ones 

[Zhou and Venkatesh, 1999]. The behavioural properties are those which depend on the 

initial state or marking of a PN. On the other hand, structural properties do not depend 

on the initial status of a PN but PN topology or structure only. 

Murata (1989) classified behavioural properties into eight sorts: reachability, bounded-

ness, liveness, reversibility and home state, coverability, persistence, synchronic dis-

tance, and fairness.    

 Reachability 

A marking    is said to be reachable from a marking    if there exists a sequence of 

firings that transforms    to  . A firing or occurrence sequence is denoted by   

                       or simply                . 

 Boundedness and Safeness 
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A Petri net        is said to be k-bounded or simply bounded if the number of tokens 

in each place does not exceed a finite number k for any marking reachable from  . 

A Petri net         is said to be safe if it is 1-bounded. 

 Liveness 

A Petri net        is said to be live (or equivalently    is said to be a live marking for 

 ) if, no matter what marking has been reached from   , it is possible to ultimately fire 

any transition of the net by progressing through some further firing sequence. 

The implications of these properties in manufacturing industries are summarized in the 

following table. 

Table 2 Petri net properties and their meanings [Zhou and Venkatesh, 1999] 

PN Properties Meanings in the Modelled Manufacturing System 

Reachability A certain state can be reached from the initial conditions 

Safeness Availability of a single resource; or no request to start an on-going 

process 

Boundedness No capacity (of, e.g., buffer, storage area, and workstation) overflow 

Liveness Freedom from deadlock and guarantee the possibility of a modelled 

event, operation, process or activity to be on-going 

 

2.5.3. PN Application 

It is well known that Petri net technology has been widely adopted in various industrial 

fields including manufacturing fashion. There are three main topics that have been ap-

plied with PN in factory automation, and they are summarized as followings.  

2.5.3.1 Manufacturing, production and scheduling systems 

Petri net technology can be used to model production events. Regarding the manufac-

ture resources as fixed entity and production task as mobile entity, a sample PN model 

can be established as shown in Figure 8. 
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Figure 8 Sample PN model for production events [Colombo, 2010] 

In the model,    represents the robot processing operation,    represents the state that 

resource is free,    represents the state that resource is busy before operation,    repre-

sents the state that resource is busy after operation, and    and    are the transitions be-

tween idle and busy state. 

For the purpose of scheduling system in manufacturing process, Lloyd et al. (1995) in-

troduced a modified branch & bound methodology for scheduling algorithm. Integrated 

with Petri net modelling and reachability generating, the proposed approach was proved 

to show some improvements than previous work.  

2.5.3.2 Sequence controller (Programmable Logic Controller, 

PLC) 

A PLC is a digital computer used for control automation operation. The first develop-

ment of PLC was to replace hard-wired control equipment. Nowadays, PLCs have been 

widely employed in automation areas from discrete manufacturing plants to continuous 

processes. Usually, PLC can be programmed using five standard programming lan-

guages: function block diagram (FBD), structured test (ST), ladder diagram (LD), in-

struction list (IL) and sequential function chart (SFC). 

Minas and Frey (2002) proposed a special type of Petri net, the Signal Interpreted Petri 

Net (SIPN) in their study. Comparing to conventional Petri net modelling, signals are 

introduced as the symbolism for influence caused by environment changing, which, in 

PN word, are the conditions for firing transitions. In this way, several transitions can be 

fired simultaneously due to signals changing. SIPN allows unstable states to exist cue to 

its dynamics property, and certain transitions can be fired at the same time until a stable 

stated is reached. This new language was proved, in a university course experiment, to 

be applied easier than standard PLC languages. During the formal correctness and 

transparency analyses, SIPN also showed improvements to the design process. 
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An extended example of Petri net application in control principle was placed for Dis-

crete-Event Control (DEC), and this methodology is called PNDEC (Petri Net based 

Discrete-Event Controller) [Korotkin et al, 2010]. The main idea for PNDEC is to as-

sign the readings of sensors and actuators from the Discrete Event Systems (DES) as 

input signals of the controller and output of controllers as control actions back to DES. 

Using PN to describe control logic, a set of input reading combinations are applied as 

firing conditions for PN model. A sample PNDEC integrated with FBD is shown in 

Figure 9.   

 

Figure 9 Block diagram of PNDEC [Korotkin et al, 2010] 

2.5.3.3 Communication protocols and networks 

A generalized timed Petri net representation was defined by Zhu and Denton (1988) to 

model entity behaviours in communication networking. Timed Petri nets are distin-

guished from conventional PN by introducing time variables. The reason of choosing 

timed Petri net for modelling communication protocols is that each level of protocols is 

built based on real-time property.  

In their study [Zhu and Denton, 1988], three basic phenomena example in communica-

tion technology were given, dealing with transmission error, timer and communication 

protocol (by specifying sender and receiver behaviours). 
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2.5.4. Advantages of PN in production simulation 

As a graphical modelling tool, Petri net provides users a unified design approach for 

discrete event system. Other than this, there are still many advantages that make Petri 

net a promising tool in production automation field. 

1. Ease of modelling characteristics of a complex industrial system: concurrency, 

asynchronous and synchronous features, conflicts, mutual exclusion, precedence 

relations, non-determinism, and system deadlocks [Zhou and Venkatesh, 1999]. 

Petri nets models offer excellent visualization of system dependencies. They fo-

cus on local information rather global one. Top-down (stepwise refinement) de-

sign, bottom-up (modular composition) design, and hybrid methods can be ap-

plied to design and construction of Petri nets models. 

2. Ability to generate supervisory control code directly from the graphical Petri net 

representation [Zhou and Venkatesh, 1999]. A Petri net execution algorithm can 

also be constructed for real-time implementation using either Programmable 

Logic Controllers (PLC) or computers. 

3. Ability to check the system for undesirable properties such as deadlock and ca-

pacity overflow and to validate code by mathematically based computer analysis 

- no time-consuming simulations are required for many cases [Zhou and 

Venkatesh, 1999]. 

4. Performance analysis without simulation for many systems. Production rates, 

cycle time, resource utilization, reliability, and performability can be evaluated 

[Zhou and Venkatesh, 1999]. Bottleneck machines can be identified. 

5. Discrete event simulation that can be driven from the model [Zhou and 

Venkatesh, 1999]. 

6. Status information that allows for real-time control, monitoring and error recov-

ery of FMS [Zhou and Venkatesh, 1999]. 

7. Usefulness for scheduling because the Petri net model contains the system 

precedence relations among events, concurrent operations, appropriate synchro-

nization, repetitive activities, and mutual exclusion of shared resources, as well 

as other constraints on system performance [Zhou and Venkatesh, 1999]. 

2.6. CAD/CAM tools 

Integration of Computer-Aided Design and Computer Aided Manufacturing is a signifi-

cant topic in industrial automation. It enables engineers to gain an insight preview of 

systems, helps to improve quality of products and optimize production time. Several 3D 

simulation tools are widely applied in the field, and some of them are introduced and 

compared in this section. 
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2.6.1. FESTO CIROS Studio 

CIROS Studio is the universal 3D simulation system developed by FESTO Didactic, 

belonging to the CIROS Automation Suite. In Figure 10, there is the screenshot of CI-

ROS Studio interface illustrated. And this software is chosen to create the 3D model for 

the given production line in current thesis. 

 

Figure 10 FESTO CIROS Studio screenshot 

CIROS Studio, in a nutshell, enables users to create a detailed planned workcell or an 

entire production line, to simulate robots operations associated with controller behav-

iours (external or internal), to test the reachability of critical positions, and to observe 

production processes. 

2.6.1.1 Modelling 

In CIROS Studio, plenty of existing model libraries are provided for efficient model-

ling, materials, machineries, robots, controllers, and well-made mechanisms like sensors 

and conveyor belts. After choosing from model libraries, relevant properties and com-

ponents of the object can be viewed in detail as well. Commensurate I/O configuration 

can also be found in well-made mechanisms, which is able to be controlled manually 

through manual operation tab. Signal changing is easy to observe, and connections be-

tween inputs and outputs can be established clearly in operation window. 
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It is also possible for the users to create 3D objects of their own. This enables the users 

to create their own libraries for needed job. Simple geometric shaping objects can be 

built by defining size related parameters. In current thesis, a 3D model of given produc-

tion line is supposed to be created from scratch. During modelling, it is also very impor-

tant to realise the model hierarchy, which contains the following element types in Table 

3.  

Table 3 Model hierarchy description of CIROS Studio 

Icon Element name Hierarchy description Example 

 

Objects The highest unit in the element struc-

ture are the objects. 

A robot is an object. 

 

Sections Sections are assigned to objects. One 

degree-of-freedom can be associated 

to each section that is moveable rela-

tively to the previous section. 

Each joint of a robot is a 

section. 

 

Hulls Hulls are assigned to sections and are 

responsible for the graphical repre-

sentation. 

A face, a box or a poly-

hedron are hulls. 

 

Gripper Points An object needs a gripper point to 

grasp other objects. Gripper points are 

assigned to sections 

At the flange of a robot, 

a gripper point is mod-

elled. 

 

Grip Points To be grasped by another object, an 

object needs a grip point. Grip points 

are assigned to sections. 

A grip point is associ-

ated to a work piece 

that has to be grasped. 

2.6.1.2 Programming 

Workcell programming is based on the creation of position list in advance. A position 

list contains all the must-go points from the robot processing route. Each position point 

can be edited in properties menu by defining x, y, and z parameters.  

After accepting a position list for robot, two programming languages can be applied to 

model robots behaviours, which are IRL (Industrial Robot Language) and Melfa Basic 

IV.  

2.6.2. QUEST  

QUEST (QUeueing Event Simulation Tool) is a well-known object-based, discrete 

event simulation tool. It belongs to a Delmia product family, Dassault Systems, which is 

aiming for digital manufacturing and production virtual design. Mastering QUEST al-
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lows manufacturers in any industry to define, plan, create, monitor and control all pro-

duction processes virtually.  

Modelling in QUEST is applied by means of creating elements, positioning them on the 

layout and defining relative parameters. Delmia QUEST provides a bunch of element 

classes and each element class possess an individual group of parameters which deter-

mine the outlook and behaviours of the model. Digital inputs and outputs have to be 

created and connected. Complicated functional logics and production processes need to 

be programmed in SCL or BCL language. 

From users’ perspective, Delmia QUEST provides a collaborative platform for indus-

trial engineers, manufacturing engineers and management to develop and prove out best 

manufacturing flow practise. It allows users to build a simulation model from concep-

tion phase to implementation phase, adding design details as needed through the whole 

development process. The advantages of QUEST can be summarized as followings: 

 Observe, interact and analysis of “what if” scenarios 

 Import CAD and other data such as scheduling and routing 

 Complete integration with other Delmia process planning and simulation solu-

tions 

 Identify bottlenecks 

 Optimize labour and production schedules 

2.6.3. Taylor Enterprise Dynamics 

Taylor Enterprise Dynamics (Taylor ED) is object-oriented software system used to 

model, simulate, visualize, and monitor dynamic-flow process activities and systems 

[Nordgren, 2001]. It was developed by Incontrol Simulation Solutions, belongs to a 

product serial which is also aiming for solutions in other fields, Logistics, Airport, 

Transport, Warehouse, Plato, Education and so on. 

The foundation of Taylor ED modelling is called “atom”. An atom is an object with four 

dimensions (x, y, z, and time), and each atom can have a location, speed, and rotation 

(in x, y, and z) and dynamic behaviour over time [Nordgren, 2001]. The control logic of 

each atom is defined with a script language called 4Dscript which is similar to Basic. 

To build a model, two general steps are determined. Starting model building, the atoms 

can be easily dragged out of the library into operation window. By right clicking on the 

atom, an input window containing general properties of the atom appears and users can 

edit, for example, the inter-arrival time field to customize each atom according to dif-

ferent requirements. Once the model is created, channels connecting atoms should be 

established and enabled. Each atom may contain multiple input and output channels, 

and the connections is successfully built when both input and output channels are open.  
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The model of Taylor ED can be viewed both in 2D and 3D version, which enable the 

users to view logical insights among atoms in 2D and visually simulate in 3D. An ex-

ample of presentation of Taylor ED is shown in the figures below. 

 

Figure 11 Taylor ED, 2D model with connected channels [Incontrol, 2011] 

 

Figure 12 Taylor ED, 3D model of three counters [Incontrol, 2011] 

2.6.4. Visual Components product family 

3DRealize is component-based 3D software for production line simulation which was 

developed by Visual Components Oy. Visual Components was founded in 1999 as a 

joint venture with JOT Automation Oy, and later in 2001 became independent. It offers 

a suite of 3D software solution package including 3DCreate, 3DSimulate, 3DRealize R, 

and 3DRealize. These software can be viewed free of charge from Visual Components 

official website. User interface of 3DRealize user interface is illustrated in Figure 13.  
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Figure 13 3DRealize interface [Visual Components] 

3DRealize is a powerful tool to generate 3D production line models that actually run. 

With 3DRealize, one can easily import or modify any existing models and it can auto-

matically recognize compatible equipments, which makes production line layout crea-

tion a piece of cake. Equipments can be dragged and dropped from side bars simply. 

After completing layout, some production indicators, such as energy consumption, en-

ergy efficiency, and throughput, can be evaluated, which benefit factory engineers with 

multiple alternatives of layout design, low risk of wrong investments, analysis of  pro-

duction plans and system performance in advance, and reducing unnecessary costs 

eventually. Simple operation benefits not only manufacturing engineers but also sales 

staffs. Visualization and presentation can be more vivid and convincing for the custom-

ers since design concept can be directly perceived through then sense.  

Another major advantage of 3DRealize is that model files are relatively smaller than 

other 3D simulation software, usually less than 100kb. This factor enables engineers to 

send models via email, among layout designers, manufacturers and plant managers. Fur-

thermore, engineers can share resources at within short time and participate in real-time 

discussions and communications. It also solves the time consuming issues caused by 

distant physical location of different staffs.   

Meanwhile, Visual Components software suite also provides solutions for machine 

building, system integration, robot simulation, material handling and PLC add-ons.  
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2.6.5. Comparison 

The finalists simulation tools compared in this section were proposed by Salminen 

(2010), which were discussed with key people at Flexlink Automation. These softwares 

somehow satisfy the demands of Flexlink modelling, which can be summarized as fol-

lows [Salminen, 2010]. 

 Capability to handle real production variables: physical lengths, speeds, accel-

erations and decelerations; utilization of a realistic plant layout for analyzing the 

effects on material handling equipment and labour 

 Capability to allocate resources required for certain processes 

 Possibility to use realistic movement paths  

 Possibility to use automated storage and retrieval systems 

 Allowance of utilization of Flexlink Automation’s existing CAD and visualiza-

tion tools, especially the already existing models and geometries 

 Interactive 3D environment provided, where different line solutions can be visu-

alized and studies 

 Flexible, easy-to-use material handling modules provided 

 Features or future possibilities for reporting, exporting, importing and database 

connectivity 

 Compatible programming languages with the ones that has been already used by 

Flexlink Automation 

For comparison purpose, impact factor was determined also by group discussion based 

on effect importance and user experience. The evaluation results are demonstrated in 

following tables. 

Table 4 Feature comparison of selected simulation software [Salminen, 2010] 
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Learning curve 5 4 3 2 3.5 4 

Ease of Use 4 3 3 3 3.25 5 

GUI 4 3 2 2 2.75 3 

Graphics 5 5 2 3 3.75 5 

Speed 2 4 4 5 3.75 3 

Modularity 5 4 3 2 3.5 4 

Plug and Play 5 4 3 1 3.25 4 

AutoCAD  
connection 

4 3 4 4 3.75 3 
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Statistics 1 1 3 5 2.5 2 

  

Table 5 Weighted feature comparison of selected simulation software [Salminen, 2010] 
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Learning curve 20 16 12 8 14 

Ease of Use 20 15 15 15 16.25 

GUI 12 9 6 6 8.25 

Graphics 25 25 40 15 18.75 

Speed 6 12 12 15 11.25 

Modularity 20 16 12 8 14 

Plug and Play 20 16 12 4 13 

AutoCAD 
connection 

12 9 12 12 11.52 

Statistics 2 2 6 10 5 

TOTAL 137 120 97 93 111.75 

POSITION 1 2 3 4  

 

Combined with the weighted parameters, these softwares can be compared to each 

other. The result shows that 3DRealize is more suitable for Flexlink Automation that 

others. TRAM PLB was tested faster and more tailor-made, on the other hand, 

3DRealize benefits with easier use and seems to be more open for future development 

[Salminen, 2010]. 
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3. CASE STUDY PRESENTATION 

In order to generate performance analysis result of simulation model, an assembly line 

customized by Flexlink is introduced as the object to be investigated. The outlook of the 

real line is shown in Figure 14 and the I/O configuration can be found in Appendix 1. In 

this chapter, a 3D simulation is created based on FESTO CIROS Studio.  

 

Figure 14 Flexlink production line 

3.1. Layout of assembly line 

A FESTO CIROS Studio model was built according to the actual measurements taken 

from assembly line. The top view of the whole line is illustrated in Figure 15. In this 

thesis, only the pallet transportation system is taken into simulation consideration, 

which means that the robot execution and manual operations are not included.  
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Figure 15 Top view of FESTO Studio model 

The assembly line is composed of three sections: start segment, middle segment and end 

segment. There are totally two layers of conveyors: upper layer and lower layer. The 

pallet is a 400×400×50mm metal plane tray which supports the parts to be processed 

among different workcells. The pallet flows firstly on upper conveyor layer, starting 

from the start segment to middle segment and end segment, then translates to lower 

conveyor layer and returns back.  

3.1.1. Start segment 

Start segment (DAS Lite) is composed of one start lifter (5099EN-1HC), one manual 

workstation (5098EN-1HC), one customized robot cell and a portion of the mainline.  
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Figure 16 FESTO Studio model, start segment 

Paired with the layout model, a S7 simulation controller model was inserted virtually as 

the internal PLC which was dedicated to the start segment. All compulsory connections 

between mechanism model and controllers can be established in “Manual Operation” 

window which can be found in “Modelling” menu. Therefore, two objects complete the 

layout model of start segment: 

 StartSegment.mod 

a) StartLifter 

b) S_MainLine1 (as a portion of mainline, with two level of conveyors) 

c) S_MainLine2 (vertical line near start lifter) 

d) S_MainLine3 (vertical line near middle segment) 

e) S_RobotCell 

f) S_WorkStation 

 S_SimulationController 

3.1.2. Middle segment 

Middle segment (DAS 30) includes two manual workstations, one intermediate lifter 

and a portion of the mainline.  
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Figure 17 FESTO Studio model, middle segment 

Objects that involve with the middle segment are: 

 MiddleSegment.mod 

a) IntermediateLifter 

b) M_MainLine (as a portion of mainline, with two level of conveyors) 

c) M_RightLine (taking the pallet flowing direction as reference direction) 

d) M_LeftLine  

 M_SimulationController 

What is worth to mention here is that all cross conveyors of the first two segments are 

all implemented with a small push device, pushing up the conveyor when it needs to 

deliver pallet in the crossover direction. Normally, the cross conveyor is equipped a 

little lower than the main direction surface (see Figure 18). When crossover direction is 

selected by user, the pallet will stop on top of the cross conveyor, waiting for it to rise 

up and then roll on.  
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Figure 18 Cross conveyor 

3.1.3. End segment 

End segment (DAS Ergo) consists of an ergonomic manual workstation, an end lifter 

(5047EN-1HC) and a portion of the mainline.  

 

Figure 19 FESTO Studio model, end segment 

Objects that involve with the end segment are: 

 EndSegment.mod 

a) E_MainLine (as a portion of mainline, with two level of conveyors) 
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b) E_WorkStation 

c) EndLifter 

 E_SimulationController 

3.2. Routing description 

The pallet flowing logic in start segment is defined as depicted in Figure 20. 

There are in total two decision points in start segment.  

Firstly, when the pallet leaves the start lifter and fully occupies the first cell of mainline 

(s_ml2_c1), it needs to be told by the control system that which way it continues: 

mainline or workstation? If the pallet is chosen to go to the workstation path, then the 

pallet turns right (taking the mainline flowing direction as reference), and the route cov-

ers two side lines and the manual workstation, no other intervening needed; and if the 

pallet is chosen to go on the mainline route, it will reach to the second decision point 

(s_ml1_c2) after a short while, which is the cell in front of robot cell. At this time, the 

pallet needs the instruction of going to robot cell or continuing on mainline. The simu-

lated scenario of the robot execution here is for the pallet stopping two seconds at the 

end of the conveyor, then pallet moves back to the mainline, continues on to the middle 

segment. 

 

Figure 20 Start segment of conveyor system 

The pallet flowing logic in middle segment is defined as depicted in Figure 21. 

There are in total three decision points in middle segment, both on mainline.  

The first cell (m_ml_c1) is equipped with cross conveyor and it requires direction deci-

sion from user: mainline or right line? However, no matter which route is determined, 

the pallet will ultimately reach the last cell of the mainline (m_ml1_c3) which is also 
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the second decision point. At this point, the user has to make choice between continuing 

on mainline or going to the left line workstation. After all processes, the pallet will fi-

nally arrives at intermediate lifter, where it arrives at the third decision point where the 

pallet can either go down a little then pass to the end segment or down to the lower level 

conveyor as to return back to start segment. 

 

Figure 21 Middle segment of conveyor system 

The pallet flowing logic in end segment is defined as depicted in Figure 22. 

Only once in end segment does the decision point exist, which is the first cell (e_ml_c1) 

of mainline. It needs instruction to choose between mainline and workstation. If 

mainline rout is chosen, the pallet continues to the end lifter, translates down to the 

lower level and then returns back to the start. And if the workstation route is chosen, the 

pallet takes a detour to the workstation and then goes back to mainline. 
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Figure 22 End segment of conveyor system 

3.3. Mechanism application and I/O configuration 

FESTO CIROS Studio software provides multiple libraries including a bunch of well-

made robot models, controllers, miscellaneous mechanisms, sensors and modelling es-

sentials. These models can be found under the menu of “Model libraries”. Meanwhile, 

users can always create their own model and save as a model for later reference.   

In current production line, conveyors and lifters exist in every segment which requires 

motors to initiate physical translation movement and also sensors inserted in every con-

veyor. Therefore, certain miscellaneous mechanisms, such as ‘Conveyor belt’, ‘Reflex 

Light Barrier’ sensors, and ‘Cylinder for translation’, are widely utilized to simulate the 

functionality and performance of real actuators and sensors. How these mechanisms are 

implemented and how the inputs and outputs are configured in the model will be ex-

plained in this section. 

3.3.1. Actuators  

Mechanism ‘conveyor belt’ was used to simulate all the mechanical conveyors. This 

mechanism has two digital inputs ‘BeltOn’ and ‘BeltReverse’, which not only fulfils the 

functionality of a regular conveyor but also solve the problem that no motors can be 

modelled in the simulation. By setting and resetting digital inputs, conveyors could be 

turned on and off, move forward and backward.  

Another application of actuator mechanism is using ‘Cylinder (two-way) for translation’ 

to complete the specifications of all lifters (allocated in start lifter, intermediate lifter, 

end lifter, and every cross conveyor). The lifter is composed of two parts, ‘Base’ and 

‘Piston’. By inserting lifter frame (the body of lifter) into the ‘Piston’ section and defin-

ing the coordination of ‘Gripper point’, this translation model could imitate the move-



 40 

ment of a real lifter as to move in and out smoothly. By changing the lower and upper 

axis limit (which can be found in ‘General’ tab from ‘Properties for section’ menu), the 

range of movement can be edited.  For the purpose of carrying a pallet on the lifter, a 

commensurate ‘Grip point’ needs to be added on the pallet, where the pallet is grasped 

by the lifter. Thus, when the pallet moves onto the lifter and the ‘Grip point’ meets with 

‘Gripper point’, grasping functionality is completed to enable the pallet to move with 

lifter all together. 

A standard ‘Cylinder (two-way) for translation’ has two inputs, ‘MoveOut’ and 

‘MoveIn’, and two outputs, ‘IsMovedOut’ and ‘IsMovedIn’. Inputs control the move-

ment of translation and outputs indicate the status of movement. What is worth to notice 

here is that two inputs cannot be set at the same time; otherwise it may cause some con-

fusion and the latter changed signal does not influence anything. Therefore, when pro-

gramming the control logic, it is always always important to reset those controlling I/Os 

to their initial status. There is also another mechanism called ‘Cylinder for translation’ 

which performs similarly as the two-way cylinder, which has only one input ‘MoveOut’ 

and one output ‘IsMovedOut’. The difference between these two translations is that, 

during translation movement, two-way cylinder can be forced to change translation di-

rection if both input signals are changed; however, translation direction of one-way cyl-

inder can be changed only when the ‘Piston’ is moving in, which means once the signal 

of ‘MoveOut’ is changed from 0 to 1, the ‘Piston’ section could only move in after it 

reaches the upper axis limit. 

Table 6 I/O descriptions of actuator mechanism 

 Conveyor belt Cylinder (two-way) for translation 

 I/O name Description I/O name Description 

Inputs BeltOn The conveyor is turned 

on, any object with a 

valid ‘Grip point’ can 

move on the conveyor 

surface by its default 

direction.  

MoveOut The ‘Piston’ section moves 

away from the ‘Base’ sec-

tion. 

Bel-

tReverse 

This input must work 

associated with input 

‘BeltOn’. With it set to be 

1, the direction of con-

veying reverses. 

MoveIn The ‘Piston’ section moves 

back towards the ‘Base’ 

section. 

Outputs PartAtEnd Report when the object 

reaches the end of the 

IsMove-

dOut 

The ‘Piston’ section has 

moved away from the 

‘Base’ section and reached 



 41 

conveyor surface. its maximum limit. 

IsMov-

edIn 

The ‘Piston’ section has 

moved back into zero posi-

tion referring to the ‘Base’ 

section and reached its 

minimum limit. 

Attach-

ments 

Base With a default ‘conveyor 

surface’ built in, of which 

the dimension and pose 

can be edited. 

Base With a default ‘Grip point’ 

built in. 

Piston With a set of default ‘Grip-

per point’ built in. 

 

Generally, there are two kinds of conveyors utilized in current model: cross conveyor 

and one-way conveyor. The cells that are facilities with cross conveyors offer two pos-

sibilities of directions. And in these cells, two sensors are embedded to determine 

whether the cell is fully occupied by the pallet, when to stop for instruction and when to 

move forward. Each cross conveyor is equipped with a small lifter for the purpose of 

transfer pallet to the other direction. When the non-main route is chosen, the lifter lifts 

up and creates face connections between pallet and conveyor belt, then the conveyor is 

ought to be turned on and finishes the operation. 

3.3.2. Sensors 

Mechanism ‘Reflex Light Barrier’, which provides ‘Detect’ and ‘Distance’ outputs, was 

implemented to simulate all the sensors in this model to recognize the existence of a 

blocking pallet. Based on customized demand, the measuring range of sensor could be 

edited in ‘Sensor’ tab from ‘Properties for object’. Behaviours of these sensors can be 

observed in ‘Manual Operation’ window as a light signal, which turns green if the sen-

sor is occupied. In current model, only ‘Detect’ signal is used to locate pallet position 

and manage the conveyor movement as a control signal in later implementation phase. 

Table 7 I/O descriptions for sensor mechanism 

 Reflex Light Barrier 

 I/O name Description 

Outputs Detect Boolean variable, report when an object being 

discovered within its measuring range. 

Distance Report the exact distance between the object 

within measuring range and the sensor using 
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unit of millimetre. 

Attachments Base With the default geometric shape of the sen-

sor built in. 

 

3.4. Design limitation and solutions 

Current simulation model was built based on the actual outlook and measurements of 

the real Assembly line. But there are still some remaining limitations that cannot be 

fully expressed, and some of them that have been realized during simulation process are 

listed below. 

 Positions of sensors inserted in the lifter 

Observing the Assembly line, one can easily find that each cross conveyor/lifter is 

equipped with one or two sensors inserted. Normally, these sensors are meant to move 

up down with the lifter. However, during modelling it has been discovered that only 

simple objects (lifter frame, built from geometric primitives) but not existing models 

(sensors) can be inserted into ‘Piston’ section, so that sensors in the simulation cannot 

move with the lifter like the original conveyors but only stays where they were allocated 

initially.  

Solution to this problem is to create a ‘Gripper point’ on the lifter and then attach the 

sensor on this ‘Gripper point’. To do this, the ‘Grip point’ created on the sensor needs to 

be grasped initially by lifter and also avoid locating on the track of nearby conveyor 

surface. Otherwise, when the nearby conveyor is turned on, the sensor maybe recog-

nized as the object for transporting due to its ‘Grip point’. 

 Duplication of conveyor surface 

A standard physical conveyor possesses a conveyor surface on top of it, which is the 

interface of transporting objects, so is the conveyor mechanism offered in FESTO CI-

ROS Studio. The size of conveyor surface constrains the range of conveying area. In 

reality, this conveyor surface moves with the conveyor simply because it is physically 

attached to conveyor despite of conveyor movement. However in FESTO CIROS Stu-

dio, when simulating lifters, a ready-made conveyor mechanism cannot be inserted into 

the ‘Piston’ section, which means it is not possible to model a movable conveyor. What 

is also worth to be noticed is that when placing conveyor surface, two surfaces from 

near conveyor segment should not overlay on each other. Otherwise, when the first con-

veyor stops, even though the second is still on, pallet may be observed to stop on a 

“running” conveyor. 
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 Solution here is to duplicate the conveyor surface for the other layer of conveyor and 

only keep one lifter frame. For example, the lower layer of start lifter is a perfectly func-

tioned conveyor; when it moves out towards the upper layer, only the ‘Piston’ section 

(lifter frame) raises until it reaches fully move out position and meets with the upper 

layer conveyor surface. This upper layer “conveyor” is made of only an invisible con-

veyor surface in the simulation model which has its own control I/Os. For this case, 

each lifter is allocated with two sets of control signals dedicated to upper and lower 

layer separately. 

 

Figure 23 End lifter conveyor surface 

 Sensor does not work when ‘Distance’ is measured to be 0 

During the simulation process, it has been discovered that the sensors stop working 

when the surface of the object, which is supposed to be detected, is sensed right upon 

the sensors. This circumstance happens when the output ‘Distance’ appears to be 0, 
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even with an object existing within the measuring range of sensor, the output ‘Detect’ 

still turns to be 0. However, in reality it is always possible for a sensor to perform even 

no space remains between the sensor and the surface upon it. 

Solution to this problem is simply locating every sensor a bit shallower than the surface 

of embedded object, for instance 10mm.    

 Lifter is not stoppable during translation 

For safety considerations, any section out of the production line had better possess an 

emergency stop control, including all the lifters. If any abnormality occurs, it should be 

possible for the operator or inspector to stop the lifter from moving manually. This re-

quires the mechanism for simulating lifter to offer a ‘stop’ input to terminate the transla-

tion movement. However, neither of the two mechanisms (regular and two-way cylinder 

for translation) mentioned previously provides a separate input for this purpose. After 

all, the current model was built under the condition that no other human intervention is 

needed during the whole process. 

This limitation also causes another problem in the simulation, which is multiple stop 

during lifter translation. Out of all three lifters in the production line, the intermediate 

lifter is distinguished from the other two due to its multiple layers stop. The height of 

mainline before middle segment (including middle segment) is 930mm, and 815mm for 

the mainline of end segment; the height of down line before middle segment is 480mm, 

and 255mm for the down line of end segment. These height differences requires the 

intermediate lifter to have four stops (see Figure 24) during translation because it re-

sponses for delivering the pallet on either mainline or down line from middle to end 

segment, vice versa. Besides, it should also be able to execute the possibility to transfer 

pallet from upper layer to lower layer than back to start.  

The most complex lifter is the intermediate lifter, which especially requires the feature 

of sudden stop during translation. What was utilized to simulate this special lifter is a 

conveyor mechanism modelled as the vertical track for lifter movement. Inserting a 

‘Grip point’ on the lifter frame, the lifter can move as a “pallet” on its active conveyor 

surface. At the same time, four sensors are employed on each level of stop in order to 

control the behaviour of lifter, when and where to stop. Integrated with these four sen-

sors, the timing for lifter to stop is controlled by the combination of sensor output and 

conveyor input. 
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Figure 24 Intermediate lifter 

 Laser line of sensor is not removable 

As one can see in the simulation model, there are various noticeable little red lines emit-

ted from the surface of conveyors. These are the simulated laser line of sensor. As men-

tioned previously, the measuring range of the sensor can be edited and it can be identi-

fied as the length of red laser line. The reason that this has been brought up as a design 

drawback is out of aesthetic consideration. The model would appear more likely to the 

real production line if the laser line can be set invisible like any other objects. 

 Pallet stops on cross conveyor 

Out of the whole production line, there are plenty of perpendicular corner where the 

pallet needs to turn 90 degree on the conveyor surface to continue moving on another 

line, and these are so called cross conveyors. When pallet reaches these cross convey-

ors, it either continue on the same direction that it came from or change for a perpen-

dicular direction, for example, cell m_ml_c1.  
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Figure 25 Cell m_ml_c1 

There are two input possibilities for this cell, from start segment or the left line, and two 

output possibilities, to mainline or the right line direction. Decision needs to be deter-

mined when pallet stops in the position shown in Figure 25 and the decision is involved 

as the form of an input signal. If the pallet is loaded from start segment and decision 

says ‘continue on mainline’, then there is no obstacle for the pallet to move on. How-

ever, if pallet is loaded from start segment and decision says ‘ go to the right line’, 

somehow it was discovered during the simulation test that the pallet does not move even 

though the cross conveyor is turned on (can be observed from ‘Manual operation’ win-

dow). The same situation encounters when the pallet is loaded from left line and meant 

to move on the mainline next. Once this problem occurs, it needs a little ‘push’ to pave 

the way of following movement, which is done by edit the (x, y, z) parameters in ‘Pose’ 

tab.  

The solution to this problem has been discovered during experiments. If a pallet is de-

termined to make a 90 degree turn on two perpendicular conveyor surfaces, the essential 

condition is that the pallet must reaches the end of first conveyor then it can automati-

cally change for another condition. The ‘PartAtEnd’ output of conveyor mechanism can 

be utilized to acknowledge when a pallet is unloaded from current conveyor. So to build 

rather shorter conveyor surface before cross conveyor is the solution for many corner 

cell in the line, such as s_ml2_c2, m_rl_c1, and m_ll_c1 and so on. 

When applying this method on the cells with two inlets and two outlets (three cells in 

total, which are s_robot, m_ml_c1 and m_ml_c3), a conflict between production reality 

and simulation smoothing encountered. 
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Figure 26 Solution for cells with two inlets and two outlets 

 As shown in Figure 26, the orange square represents the conveyor surface for mainline 

direction and the blue one represents the conveyor surface for cross conveyor. Normally 

the configuration of conveyor surface should be looking like the left picture, which is 

one conveyor for each direction. Due to one control signal maps to one conveyor, there 

is only one control signal responding to one direction, which is also the reality in actual 

production line. However, in simulation, this configuration is not qualified for the de-

mand of smooth transportation as pallet always stopping on cross conveyor even though 

the conveyor appears to be turned on. For the purpose of continuous simulation, con-

veyor from each direction is divided into two parts (right picture). In this way when the 

pallet passes through the first part, it reaches the end of the conveyor surface, thus it can 

continue move on any other direction according to the decision program.   
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4. SIMULATION IMPLEMENTATION 

With the 3D simulation model of the assembly line ready, integration of PLCs was next 

employed into the model. In FESTO CIROS Studio, there are several simulation con-

trollers existing in model library, out of which S7-simulator is the one that interprets 

executable S7-Programs.  

The SIMATIC manager is used for programming PLC. This software is part of the PLC 

development environment STEP 7 distributed by the Siemens cooperation. The whole 

configuration of a PLC is stored in a S7 project. The language that used in programming 

PLC in current thesis is FBD and STL.  

4.1. Implementation steps 

There are three steps to integrate a PLC into the current model: 

4.1.1. Insert the PLC into the model 

After establishing the simulation model of the assembly line, three simulation control-

lers were inserted into the model, each of which controls one segment of the line. One 

can go to the global properties of the object to change the type to controller from ‘Time’ 

to ‘SPS-S7-Simulator’. By this time, the simulation model should be able to perform 

some functions by pressing ‘Simulate’ button and changing the signals of the inputs in 

‘Manual Operation’. And it is recommend by the author to test all the mechanisms in 

this phase, for instance, the size of a conveyor surface or the maximum axis limit of a 

translation cylinder.  
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Figure 27 Simulation controllers setting 

4.1.2. Link the I/Os of the PLC with the objects in the model 

When all the mechanisms are verified to be working fine manually, the connections 

between actuators, sensors and PLC is ought to be built next. One can add new digital 

inputs and outputs to the controller by right clicking on the controller name. Then these 

unnamed I/Os will be listing in ‘Manual Operation’ window. By giving them dedicated 

names, it is easy to recognize the functionality of each I/O. Then one must link the I/O 

of controllers to the simulated objects, controller inputs to object outputs and controller 

outputs to object inputs. 
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Figure 28 Manual Operation in FESTO CIROS Studio, I/O connection 

4.1.3. PLC programming 

The programming of PLC is done by SIMATIC manager. Each S7 project could include 

several S7 programs separately. Before programming, it is very important to define all 

I/Os of the controller and assign them according to the order listed in simulation con-

troller. This can be done by clicking on ‘Symbols’ section after creating a new program 

in S7 project. Also each control signal should have its own unique name regarding to its 

functionality. Then one is ready to start programming PLCs in ‘Block’ section. Function 

Block Diagram and Statement List are used in current program and some example is 

illustrated in Figure 29. 

 

Figure 29 SIMATIC manager 

4.2. Design specifications 

During program design phase, plenty of production features need to be noticed closely. 

Some features can be only realized by means of programming, and these issues are 

summarized in the following sections. 



 51 

4.2.1. Timing for pallet stopping 

Among all the cross conveyors, there are some that the pallet needs to stop on either 

waiting for instruction of next move or turn perpendicularly. All these cross conveyors 

are equipped with two sensors, one for regular direction control and the other for cross-

ing direction control. The outputs of these sensors help to determine when and where 

the pallet should stop. And the pallet is ought to stop when it covers right above the 

cross conveyor, including both sensors. In the PLC program, a Start On-Delay Timer is 

employed to compute the timing for pallet stopping and the control logic is: when both 

sensors of a cross conveyor report to detect and the conveyor of current direction are on, 

after little amount of time (350-600ms was used in the program), turn off the conveyor. 

4.2.2. Interactions between segments 

Due to the fact that three controllers are utilized in the model instead of one, some 

communication needs to be established between two nearby segments. When pallet 

moves between two segments, it is mandatory for both segments to set up some connec-

tions to communicate the status of pallet flowing. One of the importances is that the 

latter segment should be able to notice former segment and shut down some unneces-

sary conveyors. Therefore, some signals from latter segment should also be considered 

when making logic decisions for former segment. For example, in Figure 30, the first 

two sensors (marked in red circle) from middle segment are extended in the logic con-

trol for start segment. The connection can be built up in ‘Manual Operation’ window, 

and it is worth to notice that only outputs from the model can be connected to multiple 

controller inputs. It is not possible for inputs to have multiple control outputs manipulat-

ing at the same time.  

 

Figure 30 Interactions between segments 
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Due to the complexity of the intermediate lifter, that it is the one and only connection 

section between middle and end segment for both upper and lower layer, sensor signals 

from both layers has to be involved in the PLC for middle segment. The main functions 

that the intermediate lifter features are: 

1. Pick the pallet from upper layer, middle segment, grasp it and transfer it to upper 

layer, end segment as well 

2. Pick the pallet from upper layer, middle segment, grasp it and transfer it to lower 

layer, middle segment 

3. Pick the pallet from lower layer, end segment, grasp it and transfer it to lower 

layer, middle segment  

Three status signals from end segment are considered in the simulation controller for 

middle segment. Two are from upper layer, which are the first sensor embedded in cell 

e_ml_c1 and the ‘IsMovedIn’ output signal from the lifter in the same cell reporting 

when the lifter is down to the upper layer surface. The sensor signal involves in the con-

trol logic for stopping the upper layer conveyor of the intermediate lifter (815mm in 

height). And the ‘IsMovedIn’ signal, which implies when the lifter is in default position, 

is one of the conditions that the pallet starts leaving intermediate lifter and moving to-

wards end segment. For the lower layer, the sensor inserted in the lower layer of end 

segment mainline reports to middle segment PLC, which calls for the intermediate lifter 

to pick up pallet when it detects one loading on the lower layer. The pallet will stop 

upon the sensor until the intermediate lifter reaches its position. Since there are two 

cells which are qualified to call for the intermediate lifter for picking (cell m_ml_c3 and 

e_dl_c2), in case that one cell is calling when the intermediate lifter is processing on 

one of the other levels, one mandatory condition for moving intermediate lifter is that 

none of the rest levels conveyors is on.  

4.2.3. Multiple pallets handling 

When operating the actual production line, processing multiple pallets at the same time 

is a crucial property for any production procedure. This brings efficiency in both time 

and financial aspect. The capability of handling multiple pallets in the simulation is real-

ized by programming PLC to coordinate among nearby cells. 

There are two phases regarding to the design of cell coordination. The core concept of 

phase one is to shut down the conveyor which just unloaded the pallet. Thus, if the sen-

sor from current cell detects existence of pallet and the current conveyor is on, the con-

veyor from previous cell should be shut down. In this way, after a single pallet flows 

over the whole production line (on both layers), all the conveyors are set back to default 

status which is off. 

The second design phase is to extend the time duration of shutting down the previous 

conveyor only if there is no pallet following up, which should be seen from the actual 
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production processes; and also ask the next cell if it is occupied before loading the pallet 

to it. The main principle is, when the pallet is detected by the sensors of current cell and 

meanwhile the sensors from previous cell have no response, which means no pallet is in 

the coming cell, it is proper time to shut down the previous conveyor; at the same time, 

if the sensors from next cell are acknowledged to be busy, stop the current conveyor 

until the next cell is idle. In order to realize this, a status variable is introduced in the 

program which regards a cell as a unit and this variable indicates the working status of 

the corresponding cell. When the status variable is set to be 1, it means that the cell is 

busy processing. And by busy processing, it means that both sensors (in some case there 

maybe only one sensor) are occupied, and by idle, it means neither or the sensors is oc-

cupied. So in simple words, the principle can be translated into: when the current cell is 

busy processing, if the previous cell is busy processing (with a new pallet), remain the 

current configuration; if the previous cell is not busy processing, turn off its conveyor; 

when the current cell is ready to unload the pallet to next cell, if the next cell is busy, 

stop the current conveyor; if the next cell is idle, turn the current conveyor on and load 

the pallet to the next cell. 

4.2.4. Decision signals  

There are totally six decision points in the whole assembly line, out of which two are 

from start segment, three are from middle segment and one is from end segment. They 

are summarized as shown in the following table. 

Table 8 Decision points and corresponding inputs 

Segment name Cell name Direction options Input name 

Start segment s_ml2_c1 mainline direction/ 

workstation direction 

S1_mainline 

S1_workstation 

s_ml1_c2 mainline direction/ 

robot cell 

S2_mainline 

S2_robotcell 

Middle segment m_ml_c1 mainline direction/ 

right line 

M1_mainline 

M1_rightline 

m_ml_c3 mainline direction/ 

left line 

M2_mainline 

M2_leftline 

m_intermediatelifter end segment direc-

tion/ start segment 

direction 

M3_continue 

M3_return 
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End segment e_ml_c1 mainline direction/ 

workstation direction 

E_mainline 

E_workstation 

 

4.3. User Interface and recipe loading 

On the side face of the start lifter, there is a user interface built with four groups of but-

tons which can be seen in Figure 31. These interfaces are only designed for user’s bene-

fit of easy access to recipe determination, and they are not included in the original as-

sembly line.  

The orange button on the very top is the button for sending out new pallets. Each press 

of the button corresponds to generate a new pallet on the lower layer of start lifter. This 

function is realized by inserting a replicator mechanism into the simulation model. The 

replicator mechanism provides the ability to generate new objects based on templates. 

By creating a pallet-shaped template and setting the input of replicator from 0 to 1, a 

new pallet with extended name is generated from its first grip point position. In current 

model, the start point is set to be (-830, 7.5, 530). When pressing the button, a new pal-

let with a new name is generated at start point. 

 

Figure 31 User interface for recipes 



 55 

There are five working cells in the whole line: robotcell, workstation from start seg-

ment, rightline and leftline from middle segment and workstation from end segment. By 

sorting these five stations in different combinations, the recipes are defined correspond-

ingly. Thus 31 combinations map to 31 recipes, which can be summarized in the table 

of next chapter. Recipe 1-5 includes one working station; recipe 6-15 includes two sta-

tions; recipe 16-25 includes three stations; recipe 26-30 includes four stations and recipe 

31 covers all five working stations. A controller was implemented dedicatedly for the 

determination of recipes, which is called “RecipeController” in the simulation model. 

This controller is connected with all the recipe buttons and all the decision signals. By 

pressing the recipe button, the corresponding decision signals are being stored which 

decides the route of the next one or next batch of pallets. 

The grey button on the left down corner functions as an acknowledge signal which 

should be pressed when finishing entering recipes that need to be executed, informing 

the controller that it is ready for loading recipes. 

In the program of recipe controller, 33 data blocks were built in advance to store reci-

pes. Data block 1-31 stores the detail of 31 recipes correspondingly. Opening one data 

block, one can find an array with five elements on one dimension, representing five 

working stations. As shown in Figure 32, each cell is given a unique number, and the 

cells with red square are the cells where process stations locate, number 2(robotcell), 

10(s_workstation), 15(rightline), 18(leftline) and 25(e_workstation). If the pallet needs 

the jobs carried out in certain stations, place the cell number in corresponding position; 

if not, set the element to be -1. For example, recipe 19 requires pallets to go to robotcell, 

rightline and leftline, the recipe is written as [2, -1, 15, 18, -1]. 

Having pre-defined all 31 recipes, the recipe data blocks are ready to use.  

 

Figure 32 Cells numbering 

Figure 33 gives an example of the process of loading recipes. 
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Figure 33 Recipes loading 

When starting the simulation, what recipes are desired to be executed needs to be re-

corded firstly. By pressing the recipe buttons on side of the start segment, the corre-

sponding recipe number is loaded to an integer type symbol out of memory area, #rec-

ipe number. Then an array with desired recipe numbers can be created by copying the 

content in #recipe number after each press. This array is stored in a new data block 

which is defined as an array with data length of 31 integers, which means at most 31 

recipes can be recorded at once.  

After recording recipe numbers, user must press on the grey button to acknowledge the 

termination of recording procedure, which does not only imply finishing creating the 

array of desired recipe numbers but also initiates the translation from recipe numbers to 

detail combinations of each recipe into the executed data block. 

In the program, there are two customized functions for this phase, one (FC 1) for re-

cording the pressed numbers and the other one (FC 2) for copying the corresponding 

recipe details from recipe data blocks to the memory area first and then pasting them to 

the executed data block. 

4.4. Pallet tracking  

As long as digging into the replicator mechanism offered by FESTO CIRSO Studio, it is 

discovered that there is no difference among the generated objects except for their 

names (which follow the same name as template object but with different numbered 

ends). Therefore, it is not possible to distinguish each pallet from the simulation level, 

under which circumstance a data block dedicated to pallet number and their positions is 

created.  
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By giving number of each cell shown in Figure 31, the position of each pallet is illus-

trated by the cell number. Cell number 5, 4, 11, 13, 20 and 21 are the decision points. 

While the pallet is being transported on the production line, the data block will be up-

dated with their new cell numbers. 

 

Figure 34 Pallet-position data block 

Figure 34 shows the data block principle for recording pallet position and the relation 

between itself and the executed data block. When the program scans and finds the cur-

rent cell is decision point, it recognizes the pallet number first and then turns to the exe-

cuted data block to find the recipe for current pallet and by identifying the decision 

point cell number, the corresponding recipe detail is detected and will affect the deci-

sion finally. For example, when reaching cell number 11, it is for the decision to go to 

rightline or not, and the third element of recipe detail determines that; and if the third 

integer of its recipe equals to 15, then the pallet goes to rightline, vice versa. The red 

number is the position of current moment. A new function (FC 9) was designed for up-

dating cell numbers for this requirement, which requires the previous cell number to 

locate which pallet’s position is to be updated and current cell number to replace the 

pallet position. The logic diagram of this function is shown in Figure 35.  
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Figure 35 Function logic for updating pallet position 

After tracking down the pallet’s recipe, another function (FC 3-8, each for one decision 

point) which is responding to making direction decision is triggered under the condition 

of reaching decision cell and knowing the recipe detail for current decision. These func-

tions are connected to the decision signals for each segment demonstrated in section 

4.2.4 and initiate the commensurate conveyors. Therefore, if the second element of rec-

ipe detail equals to 10 when the position of pallet is 5, for example, it means pallet 

needs to be loaded to the workstation of start segment. In order to avoid traffic crush, 

when another pallet is detected at workstation, the current pallet will instead be loaded 

to the other route and leave the process procedure to the next cycle until all processes 

needed for this pallet is finished. 

4.5. Process perfection 

For some cases, all stations needed for a pallet cannot be approached in one cycle, 

which requires the pallet for another or even more cycles. Thus updating the processed 

situation of pallets is rather essential for the flexibility of production line.  

4.5.1. Process scan 

A new function (FC 11) was created for marking finished processes in real-time for the 

program. When the sensor of the process station is found to be occupied, the program 

reads into the pallets’ position data block and find out which pallet it is being processed. 

Then open the data block of executed recipe detail and replace the corresponding recipe 



 59 

detail with -1. Therefore, if the pallet is reaching the same decision point next cycle, the 

controller is able to realize that it has already taken the process, preventing from repeat 

work. 

4.5.2. Final scan 

How to determine whether a pallet finishes all its processes? An idea was employed in 

the model as to unload the finished pallet out of the line from the last cell of a full cycle, 

which is s_dl_3, cell number 38.  

In the simulation model, a trashcan mechanism was inserted to realize unloading func-

tionality for unloading the pallet. One of the gripper points of trashcan is located next to 

the sensor of cell 38 which is where the pallet is vanished from. 

On program level, when the pallet stops in cell 38, the program reads the position of 

current pallet first and then scans in the executed recipe detail data block for the proc-

essed situation for current pallet. If all five elements are -1, which means the pallet fin-

ished all its desired procedure, trigger the trashcan mechanism; if not all five elements 

are -1, which means the pallet still needs some more process from at least one process 

station, pallet continue moving to the start lifter. A new function (FC 12) was estab-

lished to realize this final scan job. 

For the pallet position data block, if a pallet finished all the processes and finally 

reaches to cell 38, the position of current pallet will be replaced with -1, symbolizing a 

fully processed pallet and distinguishing from other pallets; if the pallet moves back to 

the start point, preparing for the next cycle, the program scans in the pallet position data 

block for cell number 38, and replace it with the start cell number 1, which follows the 

same pallet position of its original one. 

The functionality of each customized data block, function in the program and their 

codes can be found in Appendix 2. 
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5. ASSESSMENT ANALYSIS 

With the simulation model creation ready in chapter 3 and PLC program ready in chap-

ter 4, it is time to run the simulation and retrieve actual appealing measurements from 

the simulation. One can obtain the recipe execution time and KPI analysis in this chap-

ter. These results are going to be sorted into different levels and analyzed separately 

according to their properties and degree of importance. System analyses are discussed 

based on KPI of production performance.  

5.1. Simulation results 

On process level, cycle time and throughput capacity are the most intuitive numerical 

indicators that can be measured from a production line. Due to the fact that there are 

plenty of recipe options for current assembly line, all the possibilities are considered and 

listed in the tables in following sections. All these route possibilities were simulated 

under the condition that conveyor speed is set to be 100mm/s. Start point of the pallet is 

on the lower layer of startlifter, (-830, 7.5, 530), and the counting of cycle time stops 

when the pallet returns to the start point. Also the process time consumptions are not 

included in the assessment result. 

5.1.1. Single recipe execution 

By running the simulation model to each pre-determined recipe, cycle time, throughput 

per 10mins are collected and listed in the following tables. In the table, ‘×’ means the 

pallet follows this route, Due to the fact that the simulation was executed by first start-

ing recording time and then setting the start signal which initiates the whole process, 

there might be some time differences in between; also at some decision point, a little 

push is needed for the pallet to keep moving, thus some time differences exist in be-

tween. Thus the total execution time is calculated with 2s difference.  
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Table 9 Recipe composition and execution time for single recipe 

Recipe 
number 

Robotcell S_workst
ation 

Rightline Leftline E_workstati
on 

Cycle 
time 
(±2s) 

1 ×     127s 

2  ×    131s 

3   ×   124s 

4    ×  150s 

5     × 210s 

6 × ×    258s 

7 ×  ×   138s 

8 ×   ×  164s 

9 ×    × 224s 

10  × ×   142s 

11  ×  ×  169s 

12  ×   × 229s 

13   × ×  160s 

14   ×  × 222s 

15    × × 248s 

16 × × ×   269s 

17 × ×  ×  296s 

18 × ×   × 356s 

19 ×  × ×  174s 

20 ×  ×  × 238s 

21 ×   × × 262s 

22  × × ×  178s 

23  × ×  × 241s 

24  ×  × × 267s 

25   × × × 258s 

26 × × × ×  306s 

27 × × ×  × 367s 

28 × ×  × × 393s 

29 ×  × × × 272s 

30  × × × × 277s 

31 × × × × × 405s 

 

Some comparison information about cycle time can be summarized from the table 

above. For example, if the pallet follows the same route for the latter two segments, 

time duration of taking workstation route is 4-6s longer than robot cell route and 18-20s 

longer than merely mainline route; if the pallet follows the same route for start and end 

segment, the longest time was spent when choosing first rightline then leftline in middle 

segment, which is 9-11s longer than the route first mainline then leftline, 34-36s longer 

than the rout first rightline then mainline and 47-48s longer the merely mainline route; 

for the end segment, taking workstation route is generally 23-26s longer than taking 

mainline route and 97-100s longer than returning to start segment from intermediate 

lifter. 
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For the recipes which desire robotcell and s_workstation both cannot be executed during 

single cycle. Thus the regulations and relations among certain recipes are summarized 

in the following table. 

Table 10 Recipe relation 

Recipe number Equals to 

R16 R1 + R10 or R2 + R7 

R17 R1 + R11 or R2 + R8 

R18 R1 + R12 or R2 + R9 

R26 R1 + R22 or R2 + R19 or R7 + R11 or R8 + R10 

R27 R1 + R23 or R2 + R20 or R7 + R12 or R9 + R10 

R28 R1 + R24 or R2 + R21 or R8 + R12 or R9 + R11 

R31 R1 + R30 or R2 + R29 or R7 + R24 or R8 + R23 or R9 + R22 or R10 + R21 

or R11 + R20 or R12 + R19 

 

5.1.2. Multiple recipes execution 

The designed simulation logic control is able to execute not only single recipe but also 

multiple recipes. By pressing the desired recipes for the pallets in order, the controller 

will record the recipe numbers and store them into a data block. Then translate these 

recipe numbers into executable direction decisions back to the production line. After the 

pallet passes over the process stations, the corresponding recipe detail will be set to -1 to 

imply that it finished processing with certain stations.   

 

Figure 36 Simulation screenshot 

The functionalities of designed simulation program can be summarized as followings: 
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1. Provide 31 recipe possibilities, including all combinations out of five process 

stations in the whole line. 

2. Specify user interface, simplifying recipe determination with one press. 

3. Record customized pallet recipe number, 31 pallets recipe stored in one batch 

maximum (can be extended). 

4. Translate recipe numbers into program readable execution instruction. 

5. Locate pallet position in real-time. 

6. Make direction decision automatically according to recipe and traffic condition 

in real-time when facing crossroads. 

7. Load same pallet more than one cycle, avoiding traffic crush in process station. 

8. Mark finished process, preventing from repeat process.   

Taking five pallets in one batch for example, execution time, how many cycles needed 

to finish processing all pallets and short-term throughput of some combination are listed 

in the following table. 

Table 11 Quantified simulation results of multiple recipes 

Recipe order Execution time Total cycle number Throughput within 

5mins (unloaded 

pallets number) 

[4, 4, 4, 4, 4] 326s 3  

(2 pallets re-cycle) 

4 

[10, 11, 11, 20, 20] 352s 3  

(2 pallets re-cycle) 

3 

[5, 9, 12, 21, 31] 517s 3 

(2 pallets re-cycle) 

2 

[3, 8, 15, 18, 28] 462s 4 

(3 pallets re-cycle) 

2 

[18, 15, 3, 28, 8] 546s 3 

(2 pallets re-cycle) 

3 

[28, 18, 15, 8, 3] 512s 4 

(3 pallets re-cycle) 

1 
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With more experiment result, one can find that even though the recipe numbers are the 

same, with different order of pallet sending the results can be distinguished.  

5.2. KPI analysis 

According to Rakar’s derivation methodology of KPI [Rakar et al, 2004], production 

related performance indicators are sorted in a three-level hierarchical structure (Figure 

37). Level 1 is characterised by safety and environment in the sense of conformance 

with regulations and standards; level 2 is composed of indicators related to quality, effi-

ciency and production plan tracking and level 3 deals with issues related to manpower 

requirements. 

 

Figure 37 KPI framework [Rakar et al, 2004]  

Regarding to the first level, areas referring to work safety and accident, raw material 

consumptions and their interactions with environment are taken into consideration, such 

as fresh water consumption, number of hazardous alarms or waste generated before re-

cycling. Unfortunately, in current simulation environment only the transportation proc-

ess is simulated with no respect to the production process that could be executed in any 

cell, thus there are no variants related to interactions with environment. Besides the en-

vironment factor, it is as well not possible to analyze how safe the process is and how 

often accident occurs.  

For the second level, efficiency variant can be divided into several categories according 

to plant structure and other aspects, such as efficiency of employees in production, unit 

production time, energy efficiency and so on. By running current simulation model in 

FESTO CIRSO Studio, it is easy to record unit production time (cycle time) by termi-

nating the simulation process manually. The drawback of this recording method is the 

lack of accuracy. It would be nice to have a measure system that can set the starting 

position and finishing position of a simulation process and be able to calculate cycle 

time automatically.  
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From the production plan tracking and quality points of view, the current simulation 

model appears somehow weak to acknowledge these kinds of information. For the cur-

rent version of simulation, it is only capable of imitate transportation system of produc-

tion line off-line. Once the interface has been built between simulation software and 

actual production line I/Os, it will be possible for the user to monitor the real-time pro-

duction process from simulation software window and collection of production plan 

tracking and quality parameters are accessible. 

What could be retrieved from the simulation with respect of level 3 indicators is that 

human intervention is definitely mandatory for assembly line, for the purpose of loading 

recipes (choosing pallet route) and sending pallets from the starting point. Although it 

appears that during simulation pallets need a little push when suddenly changing their 

flowing direction at times, it is actually a software constraint which causes such kind of 

a problem. However, other factors belonging to level 3, such as turnover rate and com-

plete job satisfaction of employees, require actual embodiment and further investment 

of current production simulation. 
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6. CONCLUSION 

The focus of this paper is on creating a pallet-based simulation model of a production 

line customized by Flexlink in FESTO CIROS Studio and analyzing the production per-

formance based on the KPIs retrieved from the simulation. The essential problem is to 

integrate the simulation model with virtual PLC and realize the transportation logic of 

the production system.  

FESTO CIROS Studio is a proper choice of 3D simulation software for current thesis 

topic. The software provides profuse libraries with well-made models and mechanisms, 

from FESTO system platform, robot to conveyors, sensors, from which most mecha-

nisms needed in the assembly line can be found. Yet there are still some limitations, for 

instant, pallet cannot move independently when changing its conveying direction; end 

time of a simulation process cannot be set automatically. These constraints lead to a 

same problem which is the measurements of timing field are not accurate enough. 

All indicators that can be obtained from current simulation model are mainly concen-

trated on process level and a few on production level. This means that FESTO CIROS 

Studio is designed to concentrate on process simulation, such as transportation simula-

tion, sensor simulation and robotics simulation. Due to the fact that model library pro-

vides mechanism of actuator instead of motors, energy consumption and efficiency and 

other environment relevant factors are not accessible by merely running simulation.  

During simulation, it has been a major flaw of program manager of FESTO CIRSO 

Studio that it does not support real-time monitor on PLC I/Os directly in diagram but 

only from controller in statement form, which is not easy to read.  PLC program needs 

to be created by SIMATIC manager first and then integrated with simulation controller. 

However during simulation, it is not possible to observe I/O changing from interface, 

which brought a lot challenges to the job. 

Although the creation of production model is quite satisfying, the generated object that 

needs to be produced (pallet) cannot be distinguished from each other on model level. 

The identification of pallets can only be realized within S7 program by mapping its pre-

vious and current position. It would be more convenience to provide identification sys-

tem like radio frequency technology as to allocate pallets with its desired recipe. 

Leaving aside former limitations, it is a huge advantage that 3D model file done in 

FESTO CIROS Studio is rather small, in case of current simulation, around 3MB. This 

made it possible for users to discuss via email, which was done between the author and 
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product manager of Festo Didactic GmbH in Germany who has been tremendously 

helpful during this thesis work. 

Future work from current thesis topic could be extend the simulation field to include 

other system of the line, such as robot cell process and power consumption area, to en-

sure the simulation result more useful for production performance analysis and business 

level decision making as well. From the perspective of optimization, it is a possible ex-

tension to investigate on an algorithm which aims to minimize execution time when 

loading multiple pallets by sorting pallet loading order. Meanwhile, it is also worth to 

consider employing other simulation and model methodology to get comparison result 

of system properties, such as Petri Net modelling or Agent-Based Simulation.  



 68 

REFERENCES 
 

Banks, J., 1998. Handbook of Simulation: Principles, Methodology, Advances, Applica-

tions, and Practice, John Wiley and Sons, New York, NY. 

Colombo, A.W., 2010. Lecture Notes: Automation Technologies for Intelligent Manu-

facturing Systems, Tampere, Finland. 

Incontrol, 2011. Tutorial Enterprise Dynamics 8, http://support.incontrolsim.com/en/ed-

tutorials.html  

Korotkin, S.; Zaidner, G.; Cohen, B.; Ellenbogen, A.; Arad, M.; Cohen, Y., 2010. A 

Petri Net formal design methodology for discrete-event control of industrial automated 

systems, IEEE 26
th

 Electrical and Electronics Engineers in Israel, pp431-435. 

Leitao, P., 2009. Agent-based Distributed Manufacturing Control: A state-of-the-art 

Survey, Engineering Applications of Artificial Intelligence, v22 n7, pp 979-991. 

Lloyd, S.; Yu, H.; Konstas, N., 1995. FMS scheduling using Petri net modelling and a 

branch & bound search, Assembly and Task Planning, pp141-146. 

McLean, C. and Leong, S., 2001. The Expanding Role of Simulation in Future Manu-

facturing, Proceedings of the 200 Winter Simulation Conference, December 11
th

 to 14
th

 

2001, Phoenix, USA, pp 1478-1486.  

Minas, M. And Frey, G., 2002. Visual PLC-programming using signal interpreted Petri 

nets, Proceedings of the American Control Conference, v6, pp5019-5024. 

Murata, T., 1989. Petri Nets: Properties, Analysis and Applications, Proceeding of the 

IEEE, v77 n4, pp541-580. 

Nordgren, W.B., 2001. Taylor Enterprise Dynamics, Proceedings of the 2001 Winter 

Simulation Conference, v1, pp269-271. 

Rakar, A.; Zorzut S.; Jovan V., 2004. Assessment of production performance by means 

of KPI, Control 2004, University of Bath, UK.  

Salminen, M., 2010. Evaluation of simulation tools for modular assembly systems, 

Master of Science Thesis, Tampere University of Technology. 

Shannon, R.E., 1992. Introduction to simulation, Winter Simulation Conference, pp 65-

73. 

Smith, R.J., 2003. Survey on the Use of Simulation for Manufacturing System Design 

and Operation, Journal of Manufacturing Systems, v22 n2, pp157-171. 



 69 

Visual Components, 

http://www.simx.co.uk/software/vc/Brochures/3DRealizeBrochure.pdf 

Yilmaz, O.S and Davis, R.P., 1987. Flexible Manufacturing Systems: Characteristics 

and Assessment, Engineering Management International, v4 n3, pp 209-212. 

Young, C. and Greene, A., 1986. Flexible Manufacturing Systems, American Manage-

ment Association, New York. 

Zhou, M. and Venkatesh, K., 1999. Modelling, simulation, and control of flexible 

manufacturing systems: a Petri net approach, World Scientific Publishing, Singapore. 

Zhu, J.J. and Denton, R.T., 1988. Timed Petri nets and their application to communica-

tion protocol specification, Military Communications Conference, v1, pp195-199. 

  

 



 70 

APPENDIX 1 
 

      
s_dl_c
2                               

    

Single 
Con-
veyors 

s_dl_c
1 m_rl_c3       LIFTERS     

Double 
Convey-
ors       

End 
line       

      
m_dl_
c2 m_rl_c1                             

      
m_dl_
c1 

m_ml_c
3 (DP)                             

      
m_ml
_c2 

m_ml_c
1 (DP)                             

      
e_rl_c
4  m_ll_c3 

m_rl_
c2 
(S4)               s_ml_cc3         e_ml_c3 

I/O   
PAT-
TERN 

e_ml_
c2  m_ll_c1 

m_ll_c
2 (S3) 

e_dl_c
c1 

s_ws_
r1 (s5) s_ml_l1 m_ml_l1 e_ml_l1 PATTERN 

s_rl_cc1 
(s1) 

s_ml_cc1 
(DP) 

s_ml_c2 
(DP) e_rl_c3 

e_rl_c2 
(s5) e_rl_c1 

e_ml_c1 
(DP) 

IX0 0 
sen-
sor_b1 

sen-
sor_b
1 

sen-
sor_b1 

sen-
sor_b
1 

sen-
sor_b
1 

sen-
sor_b
1 sensor_b2 inv_ready 

PAL-
LET_TRAN
S 

f_sensor_
b1 

f_senso
r_b1 

f_sensor_
b1 

f_sensor_
b1 CC_UP 

CC_DO
WN 

SEN-
SOR_B1 

SEN-
SOR_B1 

  1 
sen-
sor_b2   

sen-
sor_b2   

sen-
sor_b
2   sensor_b1 

inv_pos_r
eached 

SEN-
SOR_B2 

f_sensor_
b2   

f_sensor_
b2 

f_sensor_
b2 

CC_DO
WN CC_UP TABLE_1 

CC_DOW
N 

  2 
crossc_
up   

crossc_
up       

pal-
let_trans sensor_b1 

SEN-
SOR_B3 

f_xconv_
up   

f_xconv_
up 

f_xconv_
up 

SEN-
SOR_B
1 

SEN-
SOR_B1 TABLE_2 

MC_UP_
RIGHT 

  3 
crossc_
down   

crossc_
down       

pal-
let_trans_r
ear sensor_b2 

SEN-
SOR_B1 

f_xconv_
down   

f_xconv_
down 

f_xconv_
down   

SEN-
SOR_B2   

MC_UP_
LEFT 

  4 send_1     
send_
1     lift_down reset 

LIFT_DOW
N 

send_but
ton 

send_b
utton       SEND     

  5 send_2     
send_
2     lift_up up_ss 

ALARM_U
P mode mode             

  6 mode     mode       down_ss 
ALARM_D
OWN                 

  7               up_button LIFT_UP 
split_con
v 

split_co
nv   

split_con
v         

IX1 0               
down_but
ton 

UP_BUTT
ON 

b_sensor
_b1 

b_senso
r_b1 

b_sensor
_b1 

b_sensor
_b1         



 71 

  1               
servi-
ce_switch 

DOWN_B
UTTON 

b_sensor
_b2   

b_sensor
_b2 

b_sensor
_b2         

  2               shaft_A 

RE-
SET_BUTT
ON 

b_xconv_
up   

b_xconv_
up 

b_xconv_
up         

  3               shaft_B 
RUN_SER
VICE 

b_xconv_
down   

b_xconv_
down 

b_xconv_
down         

  4                                   

  5                                   

  6                                   

  7                                   

                   QX
0 0 

conv_f
wd 

conv_
fwd 

conv_f
wd 

conv_
fwd 

conv_
fwd 

conv_
fwd 

lo-
wer_lifter pos_0 MC_FWD 

f_xconv_
right   

f_xconv_
right 

f_xconv_
right 

MC_RU
N 

MC_RU
N MC_RUN MC_UP 

  1 
crossc_l
eft   

crossc_l
eft       raise_lifter pos_1 MC_REV 

f_xconv_l
eft   

f_xconv_l
eft 

f_xconv_l
eft 

CC_RU
N 

CC_RU
N 

TAB-
LE_UP 

MC_DO
WN 

  2 lifter   lifter       conv_fwd inv_enable 
MC_IN_R
UN 

f_xconv_
raise   

f_xconv_
raise 

f_xconv_
raise 

CC_LIF
T CC_LIFT 

TAB-
LE_DOW
N MC_RUN 

  3 
crossc_r
ight   

crossc_r
ight       conv_bwd 

inv_cal_re
q 

MC_OUT_
RUN 

f_xconv_l
ower   

f_xconv_l
ower 

f_xconv_l
ower   

SEND_L
IGHT   CC_RUN 

  4 
conv_b
wd         

conv_
bwd   pos_mode LIFTER_UP conv_fwd 

conv_f
wd conv_fwd conv_fwd         

  5               run_req 

LIF-
TER_DOW
N 

conv_bw
d   

conv_bw
d           

  6               jog_spd 
LOW_SPE
ED 

b_conv_f
wd 

b_conv
_fwd   

b_conv_f
wd         

  7               jog_dir 
HIGH_SPE
ED                 

QX
1 0               pos_2   

b_xconv_
right   

b_xconv_
right 

b_xconv_
right         

  1               M1_bwd   
b_xconv_
left   

b_xconv_
left 

b_xconv_
left         

  2               M1_fwd   
b_xconv_
raise   

b_xconv_
raise 

b_xconv_
raise         

  3               
light_turre
t   

b_xconv_
lower   

b_xconv_
lower 

b_xconv_
lower         

  4                                   

  5                                   

  6                                   

  7                                   



72 

 

APPENDIX 2 
 
 

Block name Major functionality 

DB 1-31 Recipe details of recipe 1-31 

DB 32 Recipe numbers of each pallet in order 

DB 33 Executed recipe details of each pallet in order 

DB 34 Pallet positions updated in real-time in order 

FC 1 Record the pressed button numbers in DB 32 

FC 2 Copy the recipe details from DB 1-31 according to the recipe number and 
order in DB 32, then paste them in DB 33 in order 

FC 3 Read the second element of each recipe detail and make decision of s1 
and make decision of direction 

FC 4 Read the first element of each recipe detail and make decision of s2 and 
make decision of direction 

FC 5 Read the third element of each recipe detail and make decision of m1 and 
make decision of direction 

FC 6 Read the fourth element of each recipe detail and make decision of m2 and 
make decision of direction 

FC 7 Read the fifth element of each recipe detail and make decision of m3 and 
make decision of direction 

FC 8 Read the fifth element of each recipe detail and make decision of e1 and 
make decision of direction 

FC 9 Load cell number 1 to each new pallet’s first position 

FC 10 Scan for the previous position of pallet and replace with its current position; 
if decision points are identified, save the pallet number of current pallet as 

the reference for FC 3-8 

FC 11 Mark the finished element with -1 

FC 12 Check if all five elements of current pallet’s recipe are -1 and if they are, 
vanish the pallet and put -1 at position data block; if not, recycle to start 

point for next cycle 
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FC 1 
 
      L     "counter_press" 
      T     "recipe_order_int" 
      L     "recipe_order_int" 
      L     1 
      -I     
      T     "recipe_order_int" 
      L     "recipe_order_int" 
      ITD    
      T     "recipe_order" 
      OPN   "exec" 
      L     "recipe_order" 
      L     P#2.0 
      *D     
      T     "recipe" 
      L     #r_num 
      T     DBW ["recipe"] 
      L     "recipe" 
      L     P#60.0 
      ==D    
      =     "m_comp8" 
      A     "m_comp8" 
      BEC    
 

FC 2 

 
      L     P#0.0 
      T     "cur_r" 
m001: OPN   "exec" 
      L     DBW ["cur_r"] 
      T     #recipe_num 
      L     #recipe_num 
      L     -1 
      ==I    
      =     "m_comp7" 
      A     "m_comp7" 
      BEC    
      L     #recipe_num 
      T     "recipe_num" 
      OPN   DB ["recipe_num"] 
      L     DBW    0 
      T     "r1_temp" 
      L     DBW    2 
      T     "r2_temp" 
      L     DBW    4 
      T     "r3_temp" 
      L     DBW    6 
      T     "r4_temp" 
      L     DBW    8 
      T     "r5_temp" 
      OPN   "exec_detail" 
      L     "cur_r" 
      L     L#5 
      *D     
      T     "cur_d" 
      L     "r1_temp" 
      T     DBW ["cur_d"] 
      L     "cur_d" 
      L     P#2.0 
      +D     
      T     "cur_d" 
      L     "r2_temp" 
      T     DBW ["cur_d"] 
      L     "cur_d" 
      L     P#2.0 
      +D     
      T     "cur_d" 
      L     "r3_temp" 
      T     DBW ["cur_d"] 
      L     "cur_d" 
      L     P#2.0 
      +D     
      T     "cur_d" 
      L     "r4_temp" 
      T     DBW ["cur_d"] 
      L     "cur_d" 
      L     P#2.0 
      +D     
      T     "cur_d" 
      L     "r5_temp" 
      T     DBW ["cur_d"] 
      L     "cur_r" 
      L     P#2.0 
      +D     
      T     "cur_r" 
      LOOP  m001 
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FC 3 

 
      OPN   "exec_detail" 
      L     "pointer_s1" 
      L     L#5 
      *D     
      T     "cur_d2"                    //current decision 
      L     "cur_d2" 
      L     P#2.0 
      +D     
      T     "cur_d2" 
      L     DBW ["cur_d2"] 
      L     0 
      ==I    
      =     "m_comp9" 
      A     "m_comp9" 
      R     "s1_ws" 
      R     "s1_ml" 
      BEC    
      AN    "m_comp9" 
      L     DBW ["cur_d2"] 
      L     10 
      ==I    
      =     "m_comp2" 
      A(     
      A     "m_comp2" 
      AN    "s_ws1" 
      AN    "s_ws2" 
      AN    "s_2.2_m" 
      )      
      =     "s1_decision" 
      A     "s1_decision" 
      =     "s1_ws" 
      AN    "s1_decision" 
      =     "s1_ml" 
 

FC 4 
 
      OPN   "exec_detail" 
      L     "pointer_s2" 
      L     L#5 
      *D     
      T     "cur_d1"                    //current decision 
      L     DBW ["cur_d1"] 
      L     0 
      ==I    
      =     "m_comp10" 
      A     "m_comp10" 
      R     "s2_rc" 
      R     "s2_ml" 
      BEC    
      AN    "m_comp10" 
      L     DBW ["cur_d1"] 
      L     2 
      ==I    
      =     "m_comp1" 
      A(     
      A     "m_comp1" 
      AN    "s_rc" 
      )      
      =     "s2_decision" 
      A     "s2_decision" 
      =     "s2_rc" 
      AN    "s2_decision" 
      =     "s2_ml"

FC 5 

 
      OPN   "exec_detail" 
      L     "pointer_m1" 
      L     L#5 
      *D     
      T     "cur_d3"                    //current decision 
      L     "cur_d3" 
      L     P#4.0 
      +D     
      T     "cur_d3" 
      L     DBW ["cur_d3"] 
      L     0 
      ==I    
      =     "m_comp11" 
      A     "m_comp11" 
      R     "m1_rl" 
      R     "m1_ml" 
      BEC    
      AN    "m_comp10" 
      L     DBW ["cur_d3"] 
      L     15 
      ==I    
      =     "m_comp3" 
      A(     
      A     "m_comp3" 
      AN    "m_r1_m" 
      AN    "m_r2_m" 
      AN    "m_r3_m" 
      )      
      =     "m1_decision" 
      A     "m1_decision" 
      =     "m1_rl" 
      AN    "m1_decision" 
      =     "m1_ml" 
 

FC 6 
 
 
      OPN   "exec_detail" 
      L     "pointer_m2" 
      L     L#5 
      *D     
      T     "cur_d4"                    //current decision 
      L     "cur_d4" 
      L     P#6.0 
      +D     
      T     "cur_d4" 
      L     DBW ["cur_d4"] 
      L     0 
      ==I    
      =     "m_comp12" 
      A     "m_comp12" 
      R     "m2_ll" 
      R     "m2_ml" 
      BEC    
      AN    "m_comp12" 
      L     DBW ["cur_d4"] 
      L     18 
      ==I    
      =     "m_comp4" 
      A(     
      A     "m_comp4" 
      AN    "m_l1_m" 
      AN    "m_l2_m" 
      AN    "m_l3_m" 
      )      
      =     "m2_decision" 
      A     "m2_decision" 
      =     "m2_ll" 
      AN    "m2_decision" 
      =     "m2_ml" 
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FC 7 
 
      OPN   "exec_detail" 
      L     "pointer_m3" 
      L     L#5 
      *D     
      T     "cur_d5"                    //current decision 
      L     "cur_d5" 
      L     P#8.0 
      +D     
      T     "cur_d5" 
      L     DBW ["cur_d5"] 
      L     0 
      ==I    
      =     "m_comp13" 
      A     "m_comp13" 
      R     "m3_c" 
      R     "m3_r" 
      BEC    
      AN    "m_comp13" 
      L     DBW ["cur_d5"] 
      L     25 
      ==I    
      =     "m_comp5" 
      A(     
      A     "m_comp5" 
      AN    "e_m1_m" 
      )      
      =     "m3_decision" 
      A     "m3_decision" 
      =     "m3_c" 
      AN    "m3_decision" 
      =     "m3_r" 
 
 

FC 8 
 
      OPN   "exec_detail" 
      L     "pointer_e" 
      L     L#5 
      *D     
      T     "cur_d6"                    //current decision 
      L     "cur_d6" 
      L     P#8.0 
      +D     
      T     "cur_d6" 
      L     DBW ["cur_d6"] 
      L     0 
      ==I    
      =     "m_comp14" 
      A     "m_comp14" 
      R     "e_ws" 
      R     "e_ml" 
      BEC    
      AN    "m_comp14" 
      L     DBW ["cur_d6"] 
      L     25 
      ==I    
      =     "m_comp6" 
      A(     
      A     "m_comp6" 
      AN    "e_ws_1" 
      AN    "e_ws_2" 
      AN    "e_ws_3" 
      AN    "e_ws_4" 
      AN    "e_ws_5" 
      )      
      =     "e_decision" 
      A     "e_decision" 
      =     "e_ws" 
      AN    "e_decision" 
      =     "e_ml"

FC 9 
 
      L     "counter_1" 
      T     "pallet_order_s1_int" 
      L     "pallet_order_s1_int" 
      L     1 
      -I     
      T     "pallet_order_s1_int" 
      L     "pallet_order_s1_int" 
      ITD    
      T     "pallet_order_s1" 
      L     "pallet_order_s1" 
      L     P#2.0 
      *D     
      T     "pallet_lo" 
      OPN   "pallet_location" 
      L     "counter_1" 
      L     "counter_press" 
      <=I    
      =     "m_comp43" 
      AN    "m_comp43" 
      JC    m001 
      A     "m_comp43" 
      L     1 
      T     DBW ["pallet_lo"] 
      BEC    
m001: L     P#0.0 
      T     "pointer_38" 
next: L     DBW ["pointer_38"] 
      L     38 
      ==I    
      =     "m_comp44" 
      A     "m_comp44" 
      JC    m002 
      AN    "m_comp44" 
      L     "pointer_38" 
      L     P#2.0 
      +D     
      T     "pointer_38" 
      L     "pointer_38" 
      L     P#60.0 
      ==D    
      =     "m_comp45" 
      A     "m_comp45" 
      BEC    
      AN    "m_comp45" 
      LOOP  next 
m002: L     1 
      T     DBW ["pointer_38"] 
      BEC    
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      L     P#0.0 
      T     "pointer_db34" 
      L     #cur_pos 
      T     "cur_pos" 
next: OPN   "pallet_location" 
      L     DBW ["pointer_db34"] 
      L     #pre_pos 
      ==I    
      =     "m_comp15" 
      L     "pallet_order_s1" 
      A     "m_comp15" 
      JC    m001 
      A     "m_comp15" 
      JCN   m002 
m002: L     "pointer_db34" 
      L     P#60.0 
      ==D    
      =     "m_comp22" 
      A     "m_comp22" 
      BEC    
      AN    "m_comp22" 
      L     "pointer_db34" 
      L     P#2.0 
      +D     
      T     "pointer_db34" 
      LOOP  next 
m001: L     "cur_pos" 
      T     DBW ["pointer_db34"] 
      L     #cur_pos                    // if it is s1 
      L     5 
      ==I    
      =     "m_comp46" 
      AN    "m_comp46" 
      JC    m009 
      A     "m_comp46" 
      L     "pointer_db34" 
      T     "pointer_s1"                //make copy 
      BEC    
m009: L     #cur_pos                    // if it is s2 
      L     4 
      ==I    
      =     "m_comp24" 
      AN    "m_comp24" 
      JC    m004 
      A     "m_comp24" 
      L     "pointer_db34" 
      T     "pointer_s2"                //make copy 
      BEC    
m004: L     #cur_pos                    // if it is m1 
      L     11 
      ==I    
      =     "m_comp25" 
      AN    "m_comp25" 
      JC    m005 
      A     "m_comp25" 
      L     "pointer_db34"              //make copy 
      T     "pointer_m1" 
      BEC    
m005: L     #cur_pos                    // if it is m2 
      L     13 
      ==I    
      =     "m_comp26" 
      AN    "m_comp26" 
      JC    m006 
      A     "m_comp26" 
      L     "pointer_db34"              //make copy 
      T     "pointer_m2" 
      BEC    
m006: L     #cur_pos                    // if it is m3 
      L     20 
      ==I    
      =     "m_comp27" 

      AN    "m_comp27" 
      JC    m007 
      A     "m_comp27" 
      L     "pointer_db34"              //make copy 
      T     "pointer_m3" 
      BEC    
m007: L     #cur_pos                    // if it is e1 
      L     21 
      ==I    
      =     "m_comp28" 
      AN    "m_comp28" 
      JC    m008 
      A     "m_comp28" 
      L     "pointer_db34"              //make copy 
      T     "pointer_e" 
      BEC    
m008: L     #cur_pos 
      L     38 
      ==I    
      =     "m_comp40" 
      AN    "m_comp40" 
      BEC    
      A     "m_comp40" 
      L     "pointer_db34" 
      T     "pointer_finish" 
      BEC    
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      L     #cur_pos 
      L     2                           //robotcell? 
      ==I    
      =     "m_comp30" 
      A     "m_comp30" 
      JC    m001 
      L     #cur_pos                    //s_worstation? 
      L     10 
      ==I    
      =     "m_comp31" 
      A     "m_comp31" 
      JC    m002 
      L     #cur_pos                    //rightline? 
      L     15 
      ==I    
      =     "m_comp32" 
      A     "m_comp32" 
      JC    m003 
      L     #cur_pos                    //leftline? 
      L     18 
      ==I    
      =     "m_comp33" 
      A     "m_comp33" 
      JC    m004 
      L     #cur_pos                    //e_workstation? 
      L     25 
      ==I    
      =     "m_comp34" 
      A     "m_comp34" 
      JC    m005 
m001: OPN   "pallet_location" 
      L     P#0.0                       //find process station cell 
number 
      T     "pointer_ps" 
n1:   L     DBW ["pointer_ps"] 
      L     2 
      ==I    
      =     "m_comp35" 
      A     "m_comp35" 
      JC    l1 
      AN    "m_comp35" 
      JC    r1 
l1:   L     "pointer_ps" 
      T     "pointer_ex" 



77 

 

      L     "pointer_ex" 
      L     L#5 
      *D     
      T     "pointer_ex" 
      OPN   "exec_detail" 
      L     -1 
      T     DBW ["pointer_ex"] 
      BEC    
r1:   L     "pointer_ps" 
      L     P#2.0 
      +D     
      T     "pointer_ps" 
      LOOP  n1 
m002: OPN   "pallet_location" 
      L     P#0.0                       //find process station cell 
number 
      T     "pointer_ps" 
n2:   L     DBW ["pointer_ps"] 
      L     10 
      ==I    
      =     "m_comp36" 
      A     "m_comp36" 
      JC    l2 
      AN    "m_comp36" 
      JC    r2 
l2:   L     "pointer_ps" 
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     L#5 
      *D     
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     P#2.0 
      +D     
      T     "pointer_ex" 
      OPN   "exec_detail" 
      L     -1 
      T     DBW ["pointer_ex"] 
      BEC    
r2:   L     "pointer_ps" 
      L     P#2.0 
      +D     
      T     "pointer_ps" 
      LOOP  n2 
m003: OPN   "pallet_location" 
      L     P#0.0                       //find process station cell 
number 
      T     "pointer_ps" 
n3:   L     DBW ["pointer_ps"] 
      L     15 
      ==I    
      =     "m_comp37" 
      A     "m_comp37" 
      JC    l3 
      AN    "m_comp37" 
      JC    r3 
l3:   L     "pointer_ps" 
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     L#5 
      *D     
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     P#4.0 
      +D     
      T     "pointer_ex" 
      OPN   "exec_detail" 
      L     -1 
      T     DBW ["pointer_ex"] 
      BEC    
r3:   L     "pointer_ps" 
      L     P#2.0 
      +D     
      T     "pointer_ps" 

      LOOP  n3 
m004: OPN   "pallet_location" 
      L     P#0.0                       //find process station cell 
number 
      T     "pointer_ps" 
n4:   L     DBW ["pointer_ps"] 
      L     18 
      ==I    
      =     "m_comp38" 
      A     "m_comp38" 
      JC    l4 
      AN    "m_comp38" 
      JC    r4 
l4:   L     "pointer_ps" 
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     L#5 
      *D     
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     P#6.0 
      +D     
      T     "pointer_ex" 
      OPN   "exec_detail" 
      L     -1 
      T     DBW ["pointer_ex"] 
      BEC    
r4:   L     "pointer_ps" 
      L     P#2.0 
      +D     
      T     "pointer_ps" 
      LOOP  n4 
m005: OPN   "pallet_location" 
      L     P#0.0                       //find process station cell 
number 
      T     "pointer_ps" 
n5:   L     DBW ["pointer_ps"] 
      L     25 
      ==I    
      =     "m_comp39" 
      A     "m_comp39" 
      JC    l5 
      AN    "m_comp39" 
      JC    r5 
l5:   L     "pointer_ps" 
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     L#5 
      *D     
      T     "pointer_ex" 
      L     "pointer_ex" 
      L     P#8.0 
      +D     
      T     "pointer_ex" 
      OPN   "exec_detail" 
      L     -1 
      T     DBW ["pointer_ex"] 
      BEC    
r5:   L     "pointer_ps" 
      L     P#2.0 
      +D     
      T     "pointer_ps" 
      LOOP  n5 
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      OPN   "exec_detail" 
      L     0 
      T     "scan_times" 
      L     "pointer_finish" 
      L     L#5 
      *D     
      T     "pointer_copy" 
next: L     DBW ["pointer_copy"] 
      L     -1 
      ==I    
      =     "m_comp41" 
      AN    "m_comp41" 
      BEC    
      A     "m_comp41" 
      L     "scan_times" 
      INC   1 
      T     "scan_times" 
      L     "pointer_copy" 
      L     P#2.0 
      +D     
      T     "pointer_copy" 
      L     "scan_times" 
      L     5 
      ==I    
      =     "m_comp42" 
      A     "m_comp42" 
      JC    m001 
      AN    "m_comp42" 
      LOOP  next 
m001: =     "disappear" 
      OPN   "pallet_location" 
      L     -1 
      T     DBW ["pointer_finish"] 
      BEC    


