

KAN LI

3D MODELLING AND SIMULATION OF A PRODUCTION LINE
WITH CIROS

Master’s thesis

Examiner: Professor Jose Lastra

 Dr. Andrei Lobov

Examiner and topic approved by the
Faculty Council of the Faculty of
Automation, Mechanical and Materi-
als Engineering on7th December
2011.

 I

PREFACE

It has been a long and wonderful journey to finalize this paper, which is also a major

milestone of my study life. There is no accurate words could express my feeling at this

moment. I have been dreaming to come to this day to finally thank the people who have

been around me all this time.

I want to convey my biggest love to my parents, who have been my rock ever since the

first day I decided to come to this white land to pursue my dream. You guys have been

so supportive and understanding and I would not conquer so many challenges without

your generous love. My dear friend Tian Song and Xu Li who made my life here in

Finland into so much fun that I will never forget in my whole life. My best friends in

China, Zhang Chenxi, Shao Wen, Xu Jingshu and Zhang Shu, you guys know that how

much I love talking and sharing every little thing in my life with you and I cannot wait

to see you guys soon.

I would also like to deliver my greatest appreciation to my supervisor Dr. Andrei Lobov

and Professor Jose Lastra. I still have vivid memory of struggling in the work for many

days and would not have a clear outlet if it is not for the help from Andrei. Also I will

remember having the biggest trouble to locate my lovely supervisor, which has turned

out to be an indescribable fun during my work. I would also like to thank my colleges in

FAST-lab, Peymen, Prasad, Dazhuang, Juhani, Ahmed, who have made my school life

so fruitful.

Three and half years in Tampere, Finland, everything I learn and everyone I know here

have become a tremendous treasure. I will miss all of it for the rest of my life.

Li Kan

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Degree Programme in Machine Automation

Li, Kan: 3D modelling and simulation of a production line with CIROS

Master of Science Thesis, 69 pages, 9 Appendix pages

December 2011

Major subject: Factory automation

Examiner: Professor Jose Lastra, Dr. Andrei Lobov

Keywords: 3D simulation, Flexlink, FESTO CIROS Studio, Siemens STEP7

3D simulation technology has been adopted successfully in production industry for dec-

ades. It benefits the manufacturers by the possibility to answer ‘how would it be’ with

vivid visual images, consuming much lower capital investment, resources and human

power.

This thesis paper first investigates into the background research of simulation and mod-

elling approaches employed within the industry. Then a pallet-based Flexlink produc-

tion line in FAST-Lab, Tampere University of Technology, is taken as the simulated

object for case study. 3D model is created under FESTO CIROS Studio software envi-

ronment, using built-in mechanism offered by the program to realize full transportation

system of the assembly line, both sensors and actuators. Logic control of the conveyor

system is integrated with built-in virtual PLC and programmed in FBD and STL with

Siemens STEP7.

The assessment results reveal the possibility of handling multiple pallets with multiple

recipes simultaneously. Also the performance of FESTO CIROS Studio is evaluated as

showing some limitations during research.

 1

CONTENTS

1. Introduction ... 8

1.1. Scope .. 8

1.2. Outlines .. 8

2. Background research of simulation ... 10

2.1. Introduction to simulation .. 10

2.1.1. Pros and Cons... 11

2.1.2. Simulation process ... 12

2.2. Manufacturing simulation .. 14

2.2.1. Benefits .. 14

2.2.2. Classification .. 14

2.3. Flexible Manufacturing System (FMS).. 15

2.4. Multi-Agent Simulation (MAS) ... 17

2.5. Petri Net.. 19

2.5.1. Formal definition of Petri Net .. 19

2.5.2. Properties of Petri Net .. 20

2.5.3. PN Application ... 21

2.5.4. Advantages of PN in production simulation 24

2.6. CAD/CAM tools .. 24

2.6.1. FESTO CIROS Studio ... 25

2.6.2. QUEST ... 26

2.6.3. Taylor Enterprise Dynamics .. 27

2.6.4. Visual Components product family ... 28

2.6.5. Comparison .. 30

3. Case study presentation ... 32

3.1. Layout of assembly line ... 32

 2

3.1.1. Start segment .. 33

3.1.2. Middle segment .. 34

3.1.3. End segment ... 36

3.2. Routing description .. 37

3.3. Mechanism application and I/O configuration ... 39

3.3.1. Actuators .. 39

3.3.2. Sensors ... 41

3.4. Design limitation and solutions .. 42

4. Simulation implementation ... 48

4.1. Implementation steps.. 48

4.1.1. Insert the PLC into the model .. 48

4.1.2. Link the I/Os of the PLC with the objects in the model 49

4.1.3. PLC programming.. 50

4.2. Design specifications.. 50

4.2.1. Timing for pallet stopping.. 51

4.2.2. Interactions between segments... 51

4.2.3. Multiple pallets handling ... 52

4.2.4. Decision signals ... 53

4.3. User Interface and recipe loading... 54

4.4. Pallet tracking ... 56

4.5. Process perfection .. 58

4.5.1. Process scan ... 58

4.5.2. Final scan ... 59

5. Assessment analysis .. 60

5.1. Simulation results ... 60

5.1.1. Single recipe execution .. 60

 3

5.1.2. Multiple recipes execution ... 62

5.2. KPI analysis.. 64

6. Conclusion .. 66

References ... 68

Appendix 1 .. 70

Appendix 2 .. 72

 4

ABBREVIATIONS

3D Three-dimensional

BCL Batch Control Language

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CNC Computer Numerical Control

DAS Dynamic Assembly System (Flexlink Product Concept)

DEC Discrete-Event Control

DSS Decision Support System

FBD Function Block Diagram

FESTO CIROS Festo corporation simulation software

FMS Flexible Manufacturing System

IL Instruction List

IPC Industrial Personal Computer

IRL Industrial Robot Language

KPI Key Performance Indicator

LD Ladder Diagram

MAS Multi-Agent System

PLC Programmable Logic Controller

PN Petri Net

PNDEC Petri Net based Discrete Event Controller

QUEST QUeueing Event Simulation Tool (Delmia)

SCL Simulation Control Language

SFC Sequential Function Chart

SIPN Signal Interpreted Petri Net

ST Structure Text

 5

List of Figures

Figure 1 Vehicle simulator .. 10

Figure 2 Process of simulation .. 13

Figure 3 Major components of FMS and their relationships [Colombo, 2010] 16

Figure 4 Agent-based Information Technology Fusion in Mechatronics [Colombo,

2010] ... 17

Figure 5 Example of agent interactions in manufacturing control [Colombo, 2010] 18

Figure 6 Collaborative production automation architecture [Colombo, 2010] 19

Figure 7 PN graphic example .. 20

Figure 8 Sample PN model for production events [Colombo, 2010] 22

Figure 9 Block diagram of PNDEC [Korotkin et al, 2010] .. 23

Figure 10 FESTO CIROS Studio screenshot .. 25

Figure 11 Taylor ED, 2D model with connected channels [Incontrol, 2011] 28

Figure 12 Taylor ED, 3D model of three counters [Incontrol, 2011] 28

Figure 13 3DRealize interface [Visual Components] ... 29

Figure 14 Flexlink production line .. 32

Figure 15 Top view of FESTO Studio model ... 33

Figure 16 FESTO Studio model, start segment .. 34

Figure 17 FESTO Studio model, middle segment .. 35

Figure 18 Cross conveyor ... 36

Figure 19 FESTO Studio model, end segment ... 36

Figure 20 Start segment of conveyor system .. 37

Figure 21 Middle segment of conveyor system .. 38

Figure 22 End segment of conveyor system ... 39

Figure 23 End lifter conveyor surface ... 43

Figure 24 Intermediate lifter ... 45

Figure 25 Cell m_ml_c1 ... 46

Figure 26 Solution for cells with two inlets and two outlets... 47

Figure 27 Simulation controllers setting ... 49

Figure 28 Manual Operation in FESTO CIROS Studio, I/O connection 50

Figure 29 SIMATIC manager ... 50

Figure 30 Interactions between segments ... 51

Figure 31 User interface for recipes .. 54

 6

Figure 32 Cells numbering .. 55

Figure 33 Recipes loading ... 56

Figure 34 Pallet-position data block ... 57

Figure 35 Function logic for updating pallet position ... 58

Figure 36 Simulation screenshot ... 62

Figure 37 KPI framework [Rakar et al, 2004] .. 64

 7

List of Tables

Table 1 Classifications of manufacturing simulation [Smith, 2003] 14

Table 2 Petri net properties and their meanings [Zhou and Venkatesh, 1999] 21

Table 3 Model hierarchy description of CIROS Studio .. 26

Table 4 Feature comparison of selected simulation software [Salminen, 2010] 30

Table 5 Weighted feature comparison of selected simulation software [Salminen, 2010]

 ... 31

Table 6 I/O descriptions of actuator mechanism... 40

Table 7 I/O descriptions for sensor mechanism .. 41

Table 8 Decision points and corresponding inputs ... 53

Table 9 Recipe composition and execution time for single recipe 61

Table 10 Recipe relation ... 62

Table 11 Quantified simulation results of multiple recipes .. 63

 8

1. INTRODUCTION

As one of the most tremendous infusive technology nowadays, simulation holds stupen-

dous promise all over the manufacturing industry. From product development, prototype

design to facility planning, mass production, each phase inside a manufacturing enter-

prise involves modelling and simulation. The more widespread simulation technology

becomes, the more comprehensive operation simulation methodology should provide to

users.

Meanwhile, integration between simulation models and real production lines tends to be

crucial since it occupies relatively big proportion of monetary input. How to overcome

the limitation of existing simulation methods falls into a significant research topic in

manufacturing industry.

1.1. Scope

The simulation of production systems plays an important role in assessment of system

performance. A visualization of simulation models simplifies the understanding of on-

going processes in the system. Possible integration of the simulation models with the

production line could provide on-line monitoring.

In the current thesis work, different simulation strategies for the production lines are

going to be evaluated. Based on FESTO CIROS Studio, a pallet-based assembly line is

going to be modelled. According to the model, the real system performance should be

assessed. Quantified measurements are tended to be collected from simulation model to

determine related parameters like system throughput, how many pallets can be handled

at the same time. Some key performance indicators (KPI) of production line should also

be retrieved from the model.

1.2. Outlines

This thesis starts with a background research of modelling and simulation approaches

that have been implemented in manufacturing industry. A survey into the domain of 3D

simulation and modelling approaches will be discussed in chapter 2.

In chapter 3, 3D simulation model built in a FESTO CIROS Studio will be introduced

based on the assembly system provided. How this model is integrated with Flexlink

production line and based on what mechanism it was completed will also be covered.

Simple user interface was established for determining recipes while the pallet loading

 9

for processing. For the purpose of handling multiple pallets at the same time, they were

distinguished from each other in order to mark which path they should be routed.

Led by the creation of simulation model, a logic structure based on Siemens Simatic

STEP 7 was implemented into the model and will be introduced in chapter 4. By insert-

ing virtual programmable logic controller (PLC) into simulation, connections between

production simulation and operation controller were fully established. I/O signals from

production line (sensors and actuators embedded) were mapping to PLC control signals,

and a program based on FBD and STL (Statement List) language was built to fulfil the

pallet transportation routes.

By running the simulation model, production related assessment result will be measured

and calculated quantified, and these parameters will be demonstrated in chapter 5. Also

the quality of measurements and performance will also be evaluated in this section. Sys-

tem analyses will be introduced as well based by means of KPI.

Chapter 6 concludes this thesis. Evaluation of FESTO CIROS Studio will be analyzed

based on its performance during current thesis topic. Possible future work directions and

extended applications of the current simulation result in manufacturing industry will be

discussed.

 10

2. BACKGROUND RESEARCH OF SIMULA-

TION

Jerry Banks defines simulation as the imitation of the operation of a real-world process

or system over time [Banks, 1998]. In industrial field, manufacturing represents one of

the most important applications of simulation.

2.1. Introduction to simulation

Simulation is one of the most powerful analysis tools available to those responsible for

the design and operation of complex process or systems [Shannon, 1992].

It has been widely applied into various fields: computer systems, manufacturing indus-

try, business analysis, military use, ecology, social studies, and biosciences and so on.

The reason that simulation technology is so well adopted is the gap between objective

reality and subjective perception. Figure 1 shows a simple example of simulation em-

ployment in automobile industry.

Figure 1 Vehicle simulator

When there is too much risk taking a new step, it is always a safe choice to experiment

beforehand. This risk includes time issue, monetary issue, and safety issue and so on.

 11

Thus, modelling and simulation technology holds tremendous promise of reducing cost,

avoiding risk and increasing rate of success.

However, simulation can be utilized not only before producing real system but also at

the same time of system carry-out. To simulate is essentially to duplicate the system or

process for simplifying performance monitoring and analysis. From this perspective,

simulation solves efficiently the problem that some huge-scaled systems with multiple

types of input and output are hard to be evaluated by collecting real data resources. For

example, it is not possible to calculate the exact rate of people who suffers diabetes over

a country. But the result can be computed by taking a small sample of a group of people

first, then approximate the ratio by mathematics method. This is one kind of simulation

applying in public health.

2.1.1. Pros and Cons

To understand simulation, it is important to realize that it is not omnipotent for every

case. Like all the other techniques, it still has two-side stories [Shannon, 1992].

For the bright side, firstly, simulation is an appropriate extending tool. It does not cause

any interrupt to the existing system while it is on-going. Relatively less energy and

other resources are needed for carrying out simulation process. And also it is a good

way for exploring new policies and extending process procedures.

Secondly, simulation is a descent testing tool. It can be used for evaluating, such as lay-

out design, hardware/software design, information and communication systems and so

on, before being committed into the real system.

Thirdly, simulation is a diagnosing tool. By simulating real system performance, certain

abnormality and errors can be found before actual implementation into real system.

Meanwhile the cause of these abnormal phenomena can be diagnosed to decrease un-

necessary capital expenses, time wasting and human resources, etc. For a positive result,

the rate of feasibility is accordingly raised.

Fourthly, simulation is a good tool for controlling time during testing duration. In real

case, it is not possible to observe long time system performance in short time, vice

versa. While in simulation process, it is easy to control the speed of running model.

Thus system performance trend can be estimated for long-time decision making and

short time motion can be slowed down for detailed analysis.

Fifthly, simulation is a convenient analyzing tool. It helps to gain insight into the system

and investigate the variables that matters to the real system without putting it to take

risk. And it is also possible to analyze the interactions between different parameters and

how they affect the performance of the entire system.

 12

Sixthly, simulation is quite efficient for detecting bottleneck in material information and

product flows. The situations such as equipment starving and blocking should be re-

ported in simulation process. Simulation also identifies error information when other

type of abnormality occurs.

Seventhly, simulation can be used as a verifying tool. Certain conceptions and suspect-

ing cases, which gained from designing process, can be verified during simulation. The

differences between how it is thought to be and how it really is can be revealed sepa-

rately. Hypothesis can be tested to be applicable or not in advance.

Eighthly, after all, simulation is an experiment tool that answers to lots of “what if”

questions. Before taking into real commitment, it is very common that designers hold

limited knowledge about the actual system. By means of experiment allows us to testify

all the suspects occurred during conceptual phase and recognize more factors about the

simulated objects. More importantly, simulation provides a wide platform to try out

different thoughts with no harm to the real, and in many cases, expensive system.

Even though simulation brought us these many conveniences, it still has some limita-

tions as followings.

Model building is a subjective work that varies from individuals. The quality of analysis

depends on the quality of the model and skill of the modeller [Shannon, 1992]. Gener-

ally, the more sophisticated and experienced modeller is the more comprehensive the

model is to be.

Simulation results are sometimes hard to interpret. Since the simulation model is made

from capturing randomness from production process, it is sometimes hard to identify if

the simulation result is observed from a significant relationship from system or just a

random occurrence built into the model [Shannon, 1992].

Simulation analysis can be a time consuming and expensive process. An adequate

analysis may not be feasible within the time and/or resources available and a quick es-

timate using analytical methods may be preferable [Shannon, 1992].

Besides, the integration of simulation study and real production line may cost a fortune

sometimes. Different application requires dedicated interface, which may cause compli-

cation of data transforming and/or protocol exchange, etc.

2.1.2. Simulation process

As demonstrated before, the purpose of applying simulation technology so tightly to

other domains is that it is a logical system helping to solve technical problems. There-

fore, to build a good simulation requires systematic procedures. There is one typical

simulation process methodology concluded by Shannon (1992) is illustrated in Figure 2.

 13

Figure 2 Process of simulation

Implementation and Documentation

Put the results to use, record the findings as well as document the model and its use

Analysis and Interpretation

Draw inferences from the data generated by the simulation

Experimentation

Execute the simulation to generate the desired data and to perform sensitivity analysis

Final Experimental Design

Design an experiment determining how each ot the test runs specified in the experimental design

Verification and Validation

Debug and confirm that the output of the model is believable and representative of the real system

Model Translation

Program the model in an appropriate computer language

Input Data Preparation

Identify and collect of the input data needed by the model

Preliminary Experimental Design

Select the factors to be varied, the levels of those factors to be investigated

Conceptual Model Formulation

Develop a model to define the compoments, variables and interactions constituting the system

System Definition

Determine the boundaries and restrictions for defining the system

Project Planning

Ensure the sufficiency of personnel, computer resources to support the job

Problem Definition

Define the goals of the study, recognize the purpose

 14

2.2. Manufacturing simulation

The implementation of simulation in manufacturing system has been a hot topic for

decades. As one of the most crucial techniques applied, simulation is a strong tool in

general system analysis domain and performance evaluation in manufacturing system

and operation design.

2.2.1. Benefits

Manufacturing simulation focuses on modelling the behaviour of manufacturing organi-

zations, processes, and systems [McLean and Leong, 2001]. It can be used to:

 Model “as-is” and “to-be” manufacturing and support operations from the sup-

ply chain level down to the shop floor

 Evaluate the manufacturability of new product designs

 Support the development and validation of process data for new products

 Assist in the engineering of new production systems and processes

 Evaluate their impact on overall business performance

 Evaluate resource allocation and scheduling alternatives

 Analyze layouts and flow of materials within production areas, lines, and work-

stations

 Perform capacity planning analyses

 Determine production and material handling resource requirements

 Train production and support staff on systems and processes

 Develop metrics to allow the comparison of predicted performance against “best

in class” benchmarks to support continuous improvement of manufacturing op-

erations

Simulation models are built to support decisions regarding investment in new technol-

ogy, expansion of production capabilities, modelling of supplier relationships, material

management, human resources, and so forth [McLean and Leong, 2001].

2.2.2. Classification

Smith (2003) has divided the application of manufacturing simulation into three main

classes, which are manufacturing system design, manufacturing system operation, and

simulation language/package development for manufacturing system application

[Smith, 2003]. Table 1 illustrates these three classifications and the major sub subjects

in each division.

Table 1 Classifications of manufacturing simulation [Smith, 2003]

Class Sub subjects

 15

Manufacturing System Design General system design and facility de-
sign/layout

Material handling system design

Cellular manufacturing system design

Flexible manufacturing system design

Manufacturing System Opera-
tion

Operations planning and scheduling

Real-time control

Operating policies

Performance analysis

Simulation Language/Package Development

Manufacturing system design involves making long-term decisions [Smith, 2003], such

as system layout, capacity or configuration design. In this category, systems are simu-

lated macro. Once the simulation is finished, it may affect for long, time unit starting

with weeks, months even for years.

On the other hand, manufacturing system operation involves on a much shorter time

schedule, which means that the model is generally used (and reused) much more often

and simulation run time is a more significant factor than the previous category [Smith,

2003]. Subjects like performance analysis and real-time control require frequent update

as the collecting data fluctuates all the time. It may lose its power of reference when the

information of the real system is obsolete.

2.3. Flexible Manufacturing System (FMS)

The essence of a Flexible Manufacturing System is a self-contained grouping of ma-

chinery that can perform all the operations, including transportation from one machine

to another and/or performance under computer control with minimal human interven-

tion, required in the manufacture of a number of parts with similar processing require-

ments [Young and Greene, 1986].

The concept of Flexible Manufacturing System is composed of the ideas of decision-

making support system and adapting to changing environment. The system is designed

to provide high productivity and flexible production capability.

The purpose of FMS is to realise flexibility in several areas inside manufacturing indus-

try: machine flexibility, process flexibility, product flexibility, routing flexibility, vol-

ume flexibility, expansion flexibility, process sequence flexibility and production flexi-

bility [Yilmaz and Davis, 1987].

 16

Figure 3 Major components of FMS and their relationships [Colombo, 2010]

Figure 3 indicates the overview of major functions of an FMS and the relationship be-

tween components can be summarized as following:

 The Decision Support System (DSS) consists of scheduler and dispatcher. It gener-

ates detailed scheduling tasks following the information from planning section. De-

cision Support System sends dispatching orders to downstream controllers. At the

same time, DSS requests performance information from monitoring and visualisa-

tion system as the reference data in order to make self-developed decision for im-

proving next decision.

 After receiving dispatching orders from DSS, coordination and logic control section

translates these orders into detailed tasks to actuators and sends signals to each of

them. Meanwhile it collects signals from sensors through process interface of the

FMS. Then this section analyzes collected data, interprets into valuable production

information, such as states of resources, error messages, problems to be solved,

process parameters and so on, and deliver them all towards monitoring and visuali-

sation section.

 Monitoring and visualisation sections plays as a bridge in the whole system, col-

lecting data from all levels participated in the production activity and generating

abnormality information to diagnosis centre. Simulation technology is one powerful

tool in this section. It listens to not only the controller but also feedback signals

from hardware components (sensors). This is necessary for building the database

 17

for modelling and simulation. As the output, this section responses to DSS real-time

information and also provides monitoring index to planning centre, offering objec-

tive reference and helping to establish next plan.

 Diagnosis section receives error detection from monitoring and visualisation, works

out recovery solutions, and then information flows to human operator to give in-

struction of repairing advices. Hardware components (actuators) are fixed to over-

come errors and limitations. By diagnosing procedure, experience of dealing some

problem situation is gained, and recommended strategies is offered as an output into

DSS, helping to perfect next decision.

2.4. Multi-Agent Simulation (MAS)

A multi-agent system can be defined as a set of agents represent the objects of a system,

capable of interacting, in order to achieve their individual goals, when they have not

enough knowledge and/or skills to achieve individually their objectives [Leitao, 2009].

A suitable definition, originated from the definition of multi-agent system, for agent is:

“An autonomous component that represents physical or logical objects in the system,

capable to act in order to achieve its goals, and being able to interact with other agents,

when it does not possess knowledge and skills to reach alone its objectives” [Leitao,

2009]. For example, people, organizations, social insects, robots can all be considered

as agents with their own goals and behaviours.

Figure 4 Agent-based Information Technology Fusion in Mechatronics [Colombo,

2010]

 18

In a manufacturing system, three typical agents are implemented, as indicated in Figure

4, work-piece (pallet) agent, machine agent and transport agent. An example of these

three agents’ interaction is given in Figure 5.

Three main scenarios can be summarized from Figure 5.

 Work-piece agent sends out requests to ask for a machine to be operated;

 All three agents that represents machines reply to the work-piece agent and re-

port their status, and only machine agent #3 responses positively;

 After identifying departure and destination location information, work-piece

agent starts to negotiate with transport agent, transport agent plans for the route

and transportation system is in charge of implementing orders of leading work-

piece to the position of machine#3.

It is important to recognize that the control system is independent of the number of

machines in the system and it does not notice the introduction of new machines or

existing machines removing; also, agents that represent several machines are up-

graded using same customized development software, according to their type, skills

and behaviour [Leitao, 2009].

Figure 5 Example of agent interactions in manufacturing control [Colombo, 2010]

The agent-based control system should be integrated to the commensurate industrial

automation system as to emulate real-time operation. To realize machine autonomy,

Computer Numerical Control (CNC) machines are implemented as the machine agent;

for the same purpose, Programmable Logic Controller (PLC) for transportation system

and Industrial Personal Computer (IPC) for work-piece agent.

 19

Figure 6 Collaborative production automation architecture [Colombo, 2010]

To enable the communication and information synchronization between all kinds of

agents, a universal database is needed as to data storage for supporting production re-

lated decisions. Physical connections can be built by means of standardized physical

link layer methodology, such as Ethernet, Modbus and so on. An agent-based manufac-

turing architecture based on collaboration is illustrated in Figure 6.

2.5. Petri Net

Petri Net, as simply defined, is a graphical and mathematical modelling tool. It is a

promising methodology for describing and studying information process systems.

Due to the generality and permissiveness inherent of Petri Net, it can be applied in many

areas and systems. Two successful application fields are communication protocols and

performance evaluation, and other promising areas of applications include modelling

and analysis of distributed-software systems, distributed-database system, concurrent

and parallel programs, flexible manufacturing/industrial control systems, discrete-event

systems, dataflow computing systems, fault-tolerant systems and so on [Murata, 1989].

2.5.1. Formal definition of Petri Net

A Petri Net is a 5-tuple, where:

 is a finite set of places,

 is a finite set of transitions,

 20

 is a set of arcs (flow relation),

 is a weight function,

 is the initial marking.

 and .

A Petri net structure without any specific initial marking is denoted

by . And a Petri Net with the given initial marking is denoted by .

Places, transitions and the interconnections between places and transitions can be sym-

bolized as Figure 7. Introduction tokens into places and observation of their flow path

help one to understand discrete-event behaviour of PN as well as the modelled system.

Figure 7 PN graphic example

2.5.2. Properties of Petri Net

Like every other mathematical methodology, Petri net owns several properties which

enable users to identify the presence or absence of the functional properties of the sys-

tem. Two types of properties can be distinguished, behavioural and structural ones

[Zhou and Venkatesh, 1999]. The behavioural properties are those which depend on the

initial state or marking of a PN. On the other hand, structural properties do not depend

on the initial status of a PN but PN topology or structure only.

Murata (1989) classified behavioural properties into eight sorts: reachability, bounded-

ness, liveness, reversibility and home state, coverability, persistence, synchronic dis-

tance, and fairness.

 Reachability

A marking is said to be reachable from a marking if there exists a sequence of

firings that transforms to . A firing or occurrence sequence is denoted by

 or simply .

 Boundedness and Safeness

 21

A Petri net is said to be k-bounded or simply bounded if the number of tokens

in each place does not exceed a finite number k for any marking reachable from .

A Petri net is said to be safe if it is 1-bounded.

 Liveness

A Petri net is said to be live (or equivalently is said to be a live marking for

) if, no matter what marking has been reached from , it is possible to ultimately fire

any transition of the net by progressing through some further firing sequence.

The implications of these properties in manufacturing industries are summarized in the

following table.

Table 2 Petri net properties and their meanings [Zhou and Venkatesh, 1999]

PN Properties Meanings in the Modelled Manufacturing System

Reachability A certain state can be reached from the initial conditions

Safeness Availability of a single resource; or no request to start an on-going

process

Boundedness No capacity (of, e.g., buffer, storage area, and workstation) overflow

Liveness Freedom from deadlock and guarantee the possibility of a modelled

event, operation, process or activity to be on-going

2.5.3. PN Application

It is well known that Petri net technology has been widely adopted in various industrial

fields including manufacturing fashion. There are three main topics that have been ap-

plied with PN in factory automation, and they are summarized as followings.

2.5.3.1 Manufacturing, production and scheduling systems

Petri net technology can be used to model production events. Regarding the manufac-

ture resources as fixed entity and production task as mobile entity, a sample PN model

can be established as shown in Figure 8.

 22

Figure 8 Sample PN model for production events [Colombo, 2010]

In the model, represents the robot processing operation, represents the state that

resource is free, represents the state that resource is busy before operation, repre-

sents the state that resource is busy after operation, and and are the transitions be-

tween idle and busy state.

For the purpose of scheduling system in manufacturing process, Lloyd et al. (1995) in-

troduced a modified branch & bound methodology for scheduling algorithm. Integrated

with Petri net modelling and reachability generating, the proposed approach was proved

to show some improvements than previous work.

2.5.3.2 Sequence controller (Programmable Logic Controller,

PLC)

A PLC is a digital computer used for control automation operation. The first develop-

ment of PLC was to replace hard-wired control equipment. Nowadays, PLCs have been

widely employed in automation areas from discrete manufacturing plants to continuous

processes. Usually, PLC can be programmed using five standard programming lan-

guages: function block diagram (FBD), structured test (ST), ladder diagram (LD), in-

struction list (IL) and sequential function chart (SFC).

Minas and Frey (2002) proposed a special type of Petri net, the Signal Interpreted Petri

Net (SIPN) in their study. Comparing to conventional Petri net modelling, signals are

introduced as the symbolism for influence caused by environment changing, which, in

PN word, are the conditions for firing transitions. In this way, several transitions can be

fired simultaneously due to signals changing. SIPN allows unstable states to exist cue to

its dynamics property, and certain transitions can be fired at the same time until a stable

stated is reached. This new language was proved, in a university course experiment, to

be applied easier than standard PLC languages. During the formal correctness and

transparency analyses, SIPN also showed improvements to the design process.

 23

An extended example of Petri net application in control principle was placed for Dis-

crete-Event Control (DEC), and this methodology is called PNDEC (Petri Net based

Discrete-Event Controller) [Korotkin et al, 2010]. The main idea for PNDEC is to as-

sign the readings of sensors and actuators from the Discrete Event Systems (DES) as

input signals of the controller and output of controllers as control actions back to DES.

Using PN to describe control logic, a set of input reading combinations are applied as

firing conditions for PN model. A sample PNDEC integrated with FBD is shown in

Figure 9.

Figure 9 Block diagram of PNDEC [Korotkin et al, 2010]

2.5.3.3 Communication protocols and networks

A generalized timed Petri net representation was defined by Zhu and Denton (1988) to

model entity behaviours in communication networking. Timed Petri nets are distin-

guished from conventional PN by introducing time variables. The reason of choosing

timed Petri net for modelling communication protocols is that each level of protocols is

built based on real-time property.

In their study [Zhu and Denton, 1988], three basic phenomena example in communica-

tion technology were given, dealing with transmission error, timer and communication

protocol (by specifying sender and receiver behaviours).

 24

2.5.4. Advantages of PN in production simulation

As a graphical modelling tool, Petri net provides users a unified design approach for

discrete event system. Other than this, there are still many advantages that make Petri

net a promising tool in production automation field.

1. Ease of modelling characteristics of a complex industrial system: concurrency,

asynchronous and synchronous features, conflicts, mutual exclusion, precedence

relations, non-determinism, and system deadlocks [Zhou and Venkatesh, 1999].

Petri nets models offer excellent visualization of system dependencies. They fo-

cus on local information rather global one. Top-down (stepwise refinement) de-

sign, bottom-up (modular composition) design, and hybrid methods can be ap-

plied to design and construction of Petri nets models.

2. Ability to generate supervisory control code directly from the graphical Petri net

representation [Zhou and Venkatesh, 1999]. A Petri net execution algorithm can

also be constructed for real-time implementation using either Programmable

Logic Controllers (PLC) or computers.

3. Ability to check the system for undesirable properties such as deadlock and ca-

pacity overflow and to validate code by mathematically based computer analysis

- no time-consuming simulations are required for many cases [Zhou and

Venkatesh, 1999].

4. Performance analysis without simulation for many systems. Production rates,

cycle time, resource utilization, reliability, and performability can be evaluated

[Zhou and Venkatesh, 1999]. Bottleneck machines can be identified.

5. Discrete event simulation that can be driven from the model [Zhou and

Venkatesh, 1999].

6. Status information that allows for real-time control, monitoring and error recov-

ery of FMS [Zhou and Venkatesh, 1999].

7. Usefulness for scheduling because the Petri net model contains the system

precedence relations among events, concurrent operations, appropriate synchro-

nization, repetitive activities, and mutual exclusion of shared resources, as well

as other constraints on system performance [Zhou and Venkatesh, 1999].

2.6. CAD/CAM tools

Integration of Computer-Aided Design and Computer Aided Manufacturing is a signifi-

cant topic in industrial automation. It enables engineers to gain an insight preview of

systems, helps to improve quality of products and optimize production time. Several 3D

simulation tools are widely applied in the field, and some of them are introduced and

compared in this section.

 25

2.6.1. FESTO CIROS Studio

CIROS Studio is the universal 3D simulation system developed by FESTO Didactic,

belonging to the CIROS Automation Suite. In Figure 10, there is the screenshot of CI-

ROS Studio interface illustrated. And this software is chosen to create the 3D model for

the given production line in current thesis.

Figure 10 FESTO CIROS Studio screenshot

CIROS Studio, in a nutshell, enables users to create a detailed planned workcell or an

entire production line, to simulate robots operations associated with controller behav-

iours (external or internal), to test the reachability of critical positions, and to observe

production processes.

2.6.1.1 Modelling

In CIROS Studio, plenty of existing model libraries are provided for efficient model-

ling, materials, machineries, robots, controllers, and well-made mechanisms like sensors

and conveyor belts. After choosing from model libraries, relevant properties and com-

ponents of the object can be viewed in detail as well. Commensurate I/O configuration

can also be found in well-made mechanisms, which is able to be controlled manually

through manual operation tab. Signal changing is easy to observe, and connections be-

tween inputs and outputs can be established clearly in operation window.

 26

It is also possible for the users to create 3D objects of their own. This enables the users

to create their own libraries for needed job. Simple geometric shaping objects can be

built by defining size related parameters. In current thesis, a 3D model of given produc-

tion line is supposed to be created from scratch. During modelling, it is also very impor-

tant to realise the model hierarchy, which contains the following element types in Table

3.

Table 3 Model hierarchy description of CIROS Studio

Icon Element name Hierarchy description Example

Objects The highest unit in the element struc-

ture are the objects.

A robot is an object.

Sections Sections are assigned to objects. One

degree-of-freedom can be associated

to each section that is moveable rela-

tively to the previous section.

Each joint of a robot is a

section.

Hulls Hulls are assigned to sections and are

responsible for the graphical repre-

sentation.

A face, a box or a poly-

hedron are hulls.

Gripper Points An object needs a gripper point to

grasp other objects. Gripper points are

assigned to sections

At the flange of a robot,

a gripper point is mod-

elled.

Grip Points To be grasped by another object, an

object needs a grip point. Grip points

are assigned to sections.

A grip point is associ-

ated to a work piece

that has to be grasped.

2.6.1.2 Programming

Workcell programming is based on the creation of position list in advance. A position

list contains all the must-go points from the robot processing route. Each position point

can be edited in properties menu by defining x, y, and z parameters.

After accepting a position list for robot, two programming languages can be applied to

model robots behaviours, which are IRL (Industrial Robot Language) and Melfa Basic

IV.

2.6.2. QUEST

QUEST (QUeueing Event Simulation Tool) is a well-known object-based, discrete

event simulation tool. It belongs to a Delmia product family, Dassault Systems, which is

aiming for digital manufacturing and production virtual design. Mastering QUEST al-

 27

lows manufacturers in any industry to define, plan, create, monitor and control all pro-

duction processes virtually.

Modelling in QUEST is applied by means of creating elements, positioning them on the

layout and defining relative parameters. Delmia QUEST provides a bunch of element

classes and each element class possess an individual group of parameters which deter-

mine the outlook and behaviours of the model. Digital inputs and outputs have to be

created and connected. Complicated functional logics and production processes need to

be programmed in SCL or BCL language.

From users’ perspective, Delmia QUEST provides a collaborative platform for indus-

trial engineers, manufacturing engineers and management to develop and prove out best

manufacturing flow practise. It allows users to build a simulation model from concep-

tion phase to implementation phase, adding design details as needed through the whole

development process. The advantages of QUEST can be summarized as followings:

 Observe, interact and analysis of “what if” scenarios

 Import CAD and other data such as scheduling and routing

 Complete integration with other Delmia process planning and simulation solu-

tions

 Identify bottlenecks

 Optimize labour and production schedules

2.6.3. Taylor Enterprise Dynamics

Taylor Enterprise Dynamics (Taylor ED) is object-oriented software system used to

model, simulate, visualize, and monitor dynamic-flow process activities and systems

[Nordgren, 2001]. It was developed by Incontrol Simulation Solutions, belongs to a

product serial which is also aiming for solutions in other fields, Logistics, Airport,

Transport, Warehouse, Plato, Education and so on.

The foundation of Taylor ED modelling is called “atom”. An atom is an object with four

dimensions (x, y, z, and time), and each atom can have a location, speed, and rotation

(in x, y, and z) and dynamic behaviour over time [Nordgren, 2001]. The control logic of

each atom is defined with a script language called 4Dscript which is similar to Basic.

To build a model, two general steps are determined. Starting model building, the atoms

can be easily dragged out of the library into operation window. By right clicking on the

atom, an input window containing general properties of the atom appears and users can

edit, for example, the inter-arrival time field to customize each atom according to dif-

ferent requirements. Once the model is created, channels connecting atoms should be

established and enabled. Each atom may contain multiple input and output channels,

and the connections is successfully built when both input and output channels are open.

 28

The model of Taylor ED can be viewed both in 2D and 3D version, which enable the

users to view logical insights among atoms in 2D and visually simulate in 3D. An ex-

ample of presentation of Taylor ED is shown in the figures below.

Figure 11 Taylor ED, 2D model with connected channels [Incontrol, 2011]

Figure 12 Taylor ED, 3D model of three counters [Incontrol, 2011]

2.6.4. Visual Components product family

3DRealize is component-based 3D software for production line simulation which was

developed by Visual Components Oy. Visual Components was founded in 1999 as a

joint venture with JOT Automation Oy, and later in 2001 became independent. It offers

a suite of 3D software solution package including 3DCreate, 3DSimulate, 3DRealize R,

and 3DRealize. These software can be viewed free of charge from Visual Components

official website. User interface of 3DRealize user interface is illustrated in Figure 13.

 29

Figure 13 3DRealize interface [Visual Components]

3DRealize is a powerful tool to generate 3D production line models that actually run.

With 3DRealize, one can easily import or modify any existing models and it can auto-

matically recognize compatible equipments, which makes production line layout crea-

tion a piece of cake. Equipments can be dragged and dropped from side bars simply.

After completing layout, some production indicators, such as energy consumption, en-

ergy efficiency, and throughput, can be evaluated, which benefit factory engineers with

multiple alternatives of layout design, low risk of wrong investments, analysis of pro-

duction plans and system performance in advance, and reducing unnecessary costs

eventually. Simple operation benefits not only manufacturing engineers but also sales

staffs. Visualization and presentation can be more vivid and convincing for the custom-

ers since design concept can be directly perceived through then sense.

Another major advantage of 3DRealize is that model files are relatively smaller than

other 3D simulation software, usually less than 100kb. This factor enables engineers to

send models via email, among layout designers, manufacturers and plant managers. Fur-

thermore, engineers can share resources at within short time and participate in real-time

discussions and communications. It also solves the time consuming issues caused by

distant physical location of different staffs.

Meanwhile, Visual Components software suite also provides solutions for machine

building, system integration, robot simulation, material handling and PLC add-ons.

 30

2.6.5. Comparison

The finalists simulation tools compared in this section were proposed by Salminen

(2010), which were discussed with key people at Flexlink Automation. These softwares

somehow satisfy the demands of Flexlink modelling, which can be summarized as fol-

lows [Salminen, 2010].

 Capability to handle real production variables: physical lengths, speeds, accel-

erations and decelerations; utilization of a realistic plant layout for analyzing the

effects on material handling equipment and labour

 Capability to allocate resources required for certain processes

 Possibility to use realistic movement paths

 Possibility to use automated storage and retrieval systems

 Allowance of utilization of Flexlink Automation’s existing CAD and visualiza-

tion tools, especially the already existing models and geometries

 Interactive 3D environment provided, where different line solutions can be visu-

alized and studies

 Flexible, easy-to-use material handling modules provided

 Features or future possibilities for reporting, exporting, importing and database

connectivity

 Compatible programming languages with the ones that has been already used by

Flexlink Automation

For comparison purpose, impact factor was determined also by group discussion based

on effect importance and user experience. The evaluation results are demonstrated in

following tables.

Table 4 Feature comparison of selected simulation software [Salminen, 2010]

3
D

R
e

a
li

ze

T
R

A
M

 P
L

B

T
a

y
lo

r
E

D

Q
U

E
S

T

A
v

e
ra

g
e

IM
P

A
C

T
 F

A
C

T
O

R

Learning curve 5 4 3 2 3.5 4

Ease of Use 4 3 3 3 3.25 5

GUI 4 3 2 2 2.75 3

Graphics 5 5 2 3 3.75 5

Speed 2 4 4 5 3.75 3

Modularity 5 4 3 2 3.5 4

Plug and Play 5 4 3 1 3.25 4

AutoCAD
connection

4 3 4 4 3.75 3

 31

Statistics 1 1 3 5 2.5 2

Table 5 Weighted feature comparison of selected simulation software [Salminen, 2010]

3
D

R
e

a
li

ze

T
R

A
M

 P
L

B

T
a

y
lo

r
E

D

Q
U

E
S

T

A
v

e
ra

g
e

Learning curve 20 16 12 8 14

Ease of Use 20 15 15 15 16.25

GUI 12 9 6 6 8.25

Graphics 25 25 40 15 18.75

Speed 6 12 12 15 11.25

Modularity 20 16 12 8 14

Plug and Play 20 16 12 4 13

AutoCAD
connection

12 9 12 12 11.52

Statistics 2 2 6 10 5

TOTAL 137 120 97 93 111.75

POSITION 1 2 3 4

Combined with the weighted parameters, these softwares can be compared to each

other. The result shows that 3DRealize is more suitable for Flexlink Automation that

others. TRAM PLB was tested faster and more tailor-made, on the other hand,

3DRealize benefits with easier use and seems to be more open for future development

[Salminen, 2010].

 32

3. CASE STUDY PRESENTATION

In order to generate performance analysis result of simulation model, an assembly line

customized by Flexlink is introduced as the object to be investigated. The outlook of the

real line is shown in Figure 14 and the I/O configuration can be found in Appendix 1. In

this chapter, a 3D simulation is created based on FESTO CIROS Studio.

Figure 14 Flexlink production line

3.1. Layout of assembly line

A FESTO CIROS Studio model was built according to the actual measurements taken

from assembly line. The top view of the whole line is illustrated in Figure 15. In this

thesis, only the pallet transportation system is taken into simulation consideration,

which means that the robot execution and manual operations are not included.

 33

Figure 15 Top view of FESTO Studio model

The assembly line is composed of three sections: start segment, middle segment and end

segment. There are totally two layers of conveyors: upper layer and lower layer. The

pallet is a 400×400×50mm metal plane tray which supports the parts to be processed

among different workcells. The pallet flows firstly on upper conveyor layer, starting

from the start segment to middle segment and end segment, then translates to lower

conveyor layer and returns back.

3.1.1. Start segment

Start segment (DAS Lite) is composed of one start lifter (5099EN-1HC), one manual

workstation (5098EN-1HC), one customized robot cell and a portion of the mainline.

 34

Figure 16 FESTO Studio model, start segment

Paired with the layout model, a S7 simulation controller model was inserted virtually as

the internal PLC which was dedicated to the start segment. All compulsory connections

between mechanism model and controllers can be established in “Manual Operation”

window which can be found in “Modelling” menu. Therefore, two objects complete the

layout model of start segment:

 StartSegment.mod

a) StartLifter

b) S_MainLine1 (as a portion of mainline, with two level of conveyors)

c) S_MainLine2 (vertical line near start lifter)

d) S_MainLine3 (vertical line near middle segment)

e) S_RobotCell

f) S_WorkStation

 S_SimulationController

3.1.2. Middle segment

Middle segment (DAS 30) includes two manual workstations, one intermediate lifter

and a portion of the mainline.

 35

Figure 17 FESTO Studio model, middle segment

Objects that involve with the middle segment are:

 MiddleSegment.mod

a) IntermediateLifter

b) M_MainLine (as a portion of mainline, with two level of conveyors)

c) M_RightLine (taking the pallet flowing direction as reference direction)

d) M_LeftLine

 M_SimulationController

What is worth to mention here is that all cross conveyors of the first two segments are

all implemented with a small push device, pushing up the conveyor when it needs to

deliver pallet in the crossover direction. Normally, the cross conveyor is equipped a

little lower than the main direction surface (see Figure 18). When crossover direction is

selected by user, the pallet will stop on top of the cross conveyor, waiting for it to rise

up and then roll on.

 36

Figure 18 Cross conveyor

3.1.3. End segment

End segment (DAS Ergo) consists of an ergonomic manual workstation, an end lifter

(5047EN-1HC) and a portion of the mainline.

Figure 19 FESTO Studio model, end segment

Objects that involve with the end segment are:

 EndSegment.mod

a) E_MainLine (as a portion of mainline, with two level of conveyors)

 37

b) E_WorkStation

c) EndLifter

 E_SimulationController

3.2. Routing description

The pallet flowing logic in start segment is defined as depicted in Figure 20.

There are in total two decision points in start segment.

Firstly, when the pallet leaves the start lifter and fully occupies the first cell of mainline

(s_ml2_c1), it needs to be told by the control system that which way it continues:

mainline or workstation? If the pallet is chosen to go to the workstation path, then the

pallet turns right (taking the mainline flowing direction as reference), and the route cov-

ers two side lines and the manual workstation, no other intervening needed; and if the

pallet is chosen to go on the mainline route, it will reach to the second decision point

(s_ml1_c2) after a short while, which is the cell in front of robot cell. At this time, the

pallet needs the instruction of going to robot cell or continuing on mainline. The simu-

lated scenario of the robot execution here is for the pallet stopping two seconds at the

end of the conveyor, then pallet moves back to the mainline, continues on to the middle

segment.

Figure 20 Start segment of conveyor system

The pallet flowing logic in middle segment is defined as depicted in Figure 21.

There are in total three decision points in middle segment, both on mainline.

The first cell (m_ml_c1) is equipped with cross conveyor and it requires direction deci-

sion from user: mainline or right line? However, no matter which route is determined,

the pallet will ultimately reach the last cell of the mainline (m_ml1_c3) which is also

 38

the second decision point. At this point, the user has to make choice between continuing

on mainline or going to the left line workstation. After all processes, the pallet will fi-

nally arrives at intermediate lifter, where it arrives at the third decision point where the

pallet can either go down a little then pass to the end segment or down to the lower level

conveyor as to return back to start segment.

Figure 21 Middle segment of conveyor system

The pallet flowing logic in end segment is defined as depicted in Figure 22.

Only once in end segment does the decision point exist, which is the first cell (e_ml_c1)

of mainline. It needs instruction to choose between mainline and workstation. If

mainline rout is chosen, the pallet continues to the end lifter, translates down to the

lower level and then returns back to the start. And if the workstation route is chosen, the

pallet takes a detour to the workstation and then goes back to mainline.

 39

Figure 22 End segment of conveyor system

3.3. Mechanism application and I/O configuration

FESTO CIROS Studio software provides multiple libraries including a bunch of well-

made robot models, controllers, miscellaneous mechanisms, sensors and modelling es-

sentials. These models can be found under the menu of “Model libraries”. Meanwhile,

users can always create their own model and save as a model for later reference.

In current production line, conveyors and lifters exist in every segment which requires

motors to initiate physical translation movement and also sensors inserted in every con-

veyor. Therefore, certain miscellaneous mechanisms, such as ‘Conveyor belt’, ‘Reflex

Light Barrier’ sensors, and ‘Cylinder for translation’, are widely utilized to simulate the

functionality and performance of real actuators and sensors. How these mechanisms are

implemented and how the inputs and outputs are configured in the model will be ex-

plained in this section.

3.3.1. Actuators

Mechanism ‘conveyor belt’ was used to simulate all the mechanical conveyors. This

mechanism has two digital inputs ‘BeltOn’ and ‘BeltReverse’, which not only fulfils the

functionality of a regular conveyor but also solve the problem that no motors can be

modelled in the simulation. By setting and resetting digital inputs, conveyors could be

turned on and off, move forward and backward.

Another application of actuator mechanism is using ‘Cylinder (two-way) for translation’

to complete the specifications of all lifters (allocated in start lifter, intermediate lifter,

end lifter, and every cross conveyor). The lifter is composed of two parts, ‘Base’ and

‘Piston’. By inserting lifter frame (the body of lifter) into the ‘Piston’ section and defin-

ing the coordination of ‘Gripper point’, this translation model could imitate the move-

 40

ment of a real lifter as to move in and out smoothly. By changing the lower and upper

axis limit (which can be found in ‘General’ tab from ‘Properties for section’ menu), the

range of movement can be edited. For the purpose of carrying a pallet on the lifter, a

commensurate ‘Grip point’ needs to be added on the pallet, where the pallet is grasped

by the lifter. Thus, when the pallet moves onto the lifter and the ‘Grip point’ meets with

‘Gripper point’, grasping functionality is completed to enable the pallet to move with

lifter all together.

A standard ‘Cylinder (two-way) for translation’ has two inputs, ‘MoveOut’ and

‘MoveIn’, and two outputs, ‘IsMovedOut’ and ‘IsMovedIn’. Inputs control the move-

ment of translation and outputs indicate the status of movement. What is worth to notice

here is that two inputs cannot be set at the same time; otherwise it may cause some con-

fusion and the latter changed signal does not influence anything. Therefore, when pro-

gramming the control logic, it is always always important to reset those controlling I/Os

to their initial status. There is also another mechanism called ‘Cylinder for translation’

which performs similarly as the two-way cylinder, which has only one input ‘MoveOut’

and one output ‘IsMovedOut’. The difference between these two translations is that,

during translation movement, two-way cylinder can be forced to change translation di-

rection if both input signals are changed; however, translation direction of one-way cyl-

inder can be changed only when the ‘Piston’ is moving in, which means once the signal

of ‘MoveOut’ is changed from 0 to 1, the ‘Piston’ section could only move in after it

reaches the upper axis limit.

Table 6 I/O descriptions of actuator mechanism

 Conveyor belt Cylinder (two-way) for translation

 I/O name Description I/O name Description

Inputs BeltOn The conveyor is turned

on, any object with a

valid ‘Grip point’ can

move on the conveyor

surface by its default

direction.

MoveOut The ‘Piston’ section moves

away from the ‘Base’ sec-

tion.

Bel-

tReverse

This input must work

associated with input

‘BeltOn’. With it set to be

1, the direction of con-

veying reverses.

MoveIn The ‘Piston’ section moves

back towards the ‘Base’

section.

Outputs PartAtEnd Report when the object

reaches the end of the

IsMove-

dOut

The ‘Piston’ section has

moved away from the

‘Base’ section and reached

 41

conveyor surface. its maximum limit.

IsMov-

edIn

The ‘Piston’ section has

moved back into zero posi-

tion referring to the ‘Base’

section and reached its

minimum limit.

Attach-

ments

Base With a default ‘conveyor

surface’ built in, of which

the dimension and pose

can be edited.

Base With a default ‘Grip point’

built in.

Piston With a set of default ‘Grip-

per point’ built in.

Generally, there are two kinds of conveyors utilized in current model: cross conveyor

and one-way conveyor. The cells that are facilities with cross conveyors offer two pos-

sibilities of directions. And in these cells, two sensors are embedded to determine

whether the cell is fully occupied by the pallet, when to stop for instruction and when to

move forward. Each cross conveyor is equipped with a small lifter for the purpose of

transfer pallet to the other direction. When the non-main route is chosen, the lifter lifts

up and creates face connections between pallet and conveyor belt, then the conveyor is

ought to be turned on and finishes the operation.

3.3.2. Sensors

Mechanism ‘Reflex Light Barrier’, which provides ‘Detect’ and ‘Distance’ outputs, was

implemented to simulate all the sensors in this model to recognize the existence of a

blocking pallet. Based on customized demand, the measuring range of sensor could be

edited in ‘Sensor’ tab from ‘Properties for object’. Behaviours of these sensors can be

observed in ‘Manual Operation’ window as a light signal, which turns green if the sen-

sor is occupied. In current model, only ‘Detect’ signal is used to locate pallet position

and manage the conveyor movement as a control signal in later implementation phase.

Table 7 I/O descriptions for sensor mechanism

 Reflex Light Barrier

 I/O name Description

Outputs Detect Boolean variable, report when an object being

discovered within its measuring range.

Distance Report the exact distance between the object

within measuring range and the sensor using

 42

unit of millimetre.

Attachments Base With the default geometric shape of the sen-

sor built in.

3.4. Design limitation and solutions

Current simulation model was built based on the actual outlook and measurements of

the real Assembly line. But there are still some remaining limitations that cannot be

fully expressed, and some of them that have been realized during simulation process are

listed below.

 Positions of sensors inserted in the lifter

Observing the Assembly line, one can easily find that each cross conveyor/lifter is

equipped with one or two sensors inserted. Normally, these sensors are meant to move

up down with the lifter. However, during modelling it has been discovered that only

simple objects (lifter frame, built from geometric primitives) but not existing models

(sensors) can be inserted into ‘Piston’ section, so that sensors in the simulation cannot

move with the lifter like the original conveyors but only stays where they were allocated

initially.

Solution to this problem is to create a ‘Gripper point’ on the lifter and then attach the

sensor on this ‘Gripper point’. To do this, the ‘Grip point’ created on the sensor needs to

be grasped initially by lifter and also avoid locating on the track of nearby conveyor

surface. Otherwise, when the nearby conveyor is turned on, the sensor maybe recog-

nized as the object for transporting due to its ‘Grip point’.

 Duplication of conveyor surface

A standard physical conveyor possesses a conveyor surface on top of it, which is the

interface of transporting objects, so is the conveyor mechanism offered in FESTO CI-

ROS Studio. The size of conveyor surface constrains the range of conveying area. In

reality, this conveyor surface moves with the conveyor simply because it is physically

attached to conveyor despite of conveyor movement. However in FESTO CIROS Stu-

dio, when simulating lifters, a ready-made conveyor mechanism cannot be inserted into

the ‘Piston’ section, which means it is not possible to model a movable conveyor. What

is also worth to be noticed is that when placing conveyor surface, two surfaces from

near conveyor segment should not overlay on each other. Otherwise, when the first con-

veyor stops, even though the second is still on, pallet may be observed to stop on a

“running” conveyor.

 43

 Solution here is to duplicate the conveyor surface for the other layer of conveyor and

only keep one lifter frame. For example, the lower layer of start lifter is a perfectly func-

tioned conveyor; when it moves out towards the upper layer, only the ‘Piston’ section

(lifter frame) raises until it reaches fully move out position and meets with the upper

layer conveyor surface. This upper layer “conveyor” is made of only an invisible con-

veyor surface in the simulation model which has its own control I/Os. For this case,

each lifter is allocated with two sets of control signals dedicated to upper and lower

layer separately.

Figure 23 End lifter conveyor surface

 Sensor does not work when ‘Distance’ is measured to be 0

During the simulation process, it has been discovered that the sensors stop working

when the surface of the object, which is supposed to be detected, is sensed right upon

the sensors. This circumstance happens when the output ‘Distance’ appears to be 0,

 44

even with an object existing within the measuring range of sensor, the output ‘Detect’

still turns to be 0. However, in reality it is always possible for a sensor to perform even

no space remains between the sensor and the surface upon it.

Solution to this problem is simply locating every sensor a bit shallower than the surface

of embedded object, for instance 10mm.

 Lifter is not stoppable during translation

For safety considerations, any section out of the production line had better possess an

emergency stop control, including all the lifters. If any abnormality occurs, it should be

possible for the operator or inspector to stop the lifter from moving manually. This re-

quires the mechanism for simulating lifter to offer a ‘stop’ input to terminate the transla-

tion movement. However, neither of the two mechanisms (regular and two-way cylinder

for translation) mentioned previously provides a separate input for this purpose. After

all, the current model was built under the condition that no other human intervention is

needed during the whole process.

This limitation also causes another problem in the simulation, which is multiple stop

during lifter translation. Out of all three lifters in the production line, the intermediate

lifter is distinguished from the other two due to its multiple layers stop. The height of

mainline before middle segment (including middle segment) is 930mm, and 815mm for

the mainline of end segment; the height of down line before middle segment is 480mm,

and 255mm for the down line of end segment. These height differences requires the

intermediate lifter to have four stops (see Figure 24) during translation because it re-

sponses for delivering the pallet on either mainline or down line from middle to end

segment, vice versa. Besides, it should also be able to execute the possibility to transfer

pallet from upper layer to lower layer than back to start.

The most complex lifter is the intermediate lifter, which especially requires the feature

of sudden stop during translation. What was utilized to simulate this special lifter is a

conveyor mechanism modelled as the vertical track for lifter movement. Inserting a

‘Grip point’ on the lifter frame, the lifter can move as a “pallet” on its active conveyor

surface. At the same time, four sensors are employed on each level of stop in order to

control the behaviour of lifter, when and where to stop. Integrated with these four sen-

sors, the timing for lifter to stop is controlled by the combination of sensor output and

conveyor input.

 45

Figure 24 Intermediate lifter

 Laser line of sensor is not removable

As one can see in the simulation model, there are various noticeable little red lines emit-

ted from the surface of conveyors. These are the simulated laser line of sensor. As men-

tioned previously, the measuring range of the sensor can be edited and it can be identi-

fied as the length of red laser line. The reason that this has been brought up as a design

drawback is out of aesthetic consideration. The model would appear more likely to the

real production line if the laser line can be set invisible like any other objects.

 Pallet stops on cross conveyor

Out of the whole production line, there are plenty of perpendicular corner where the

pallet needs to turn 90 degree on the conveyor surface to continue moving on another

line, and these are so called cross conveyors. When pallet reaches these cross convey-

ors, it either continue on the same direction that it came from or change for a perpen-

dicular direction, for example, cell m_ml_c1.

 46

Figure 25 Cell m_ml_c1

There are two input possibilities for this cell, from start segment or the left line, and two

output possibilities, to mainline or the right line direction. Decision needs to be deter-

mined when pallet stops in the position shown in Figure 25 and the decision is involved

as the form of an input signal. If the pallet is loaded from start segment and decision

says ‘continue on mainline’, then there is no obstacle for the pallet to move on. How-

ever, if pallet is loaded from start segment and decision says ‘ go to the right line’,

somehow it was discovered during the simulation test that the pallet does not move even

though the cross conveyor is turned on (can be observed from ‘Manual operation’ win-

dow). The same situation encounters when the pallet is loaded from left line and meant

to move on the mainline next. Once this problem occurs, it needs a little ‘push’ to pave

the way of following movement, which is done by edit the (x, y, z) parameters in ‘Pose’

tab.

The solution to this problem has been discovered during experiments. If a pallet is de-

termined to make a 90 degree turn on two perpendicular conveyor surfaces, the essential

condition is that the pallet must reaches the end of first conveyor then it can automati-

cally change for another condition. The ‘PartAtEnd’ output of conveyor mechanism can

be utilized to acknowledge when a pallet is unloaded from current conveyor. So to build

rather shorter conveyor surface before cross conveyor is the solution for many corner

cell in the line, such as s_ml2_c2, m_rl_c1, and m_ll_c1 and so on.

When applying this method on the cells with two inlets and two outlets (three cells in

total, which are s_robot, m_ml_c1 and m_ml_c3), a conflict between production reality

and simulation smoothing encountered.

 47

Figure 26 Solution for cells with two inlets and two outlets

 As shown in Figure 26, the orange square represents the conveyor surface for mainline

direction and the blue one represents the conveyor surface for cross conveyor. Normally

the configuration of conveyor surface should be looking like the left picture, which is

one conveyor for each direction. Due to one control signal maps to one conveyor, there

is only one control signal responding to one direction, which is also the reality in actual

production line. However, in simulation, this configuration is not qualified for the de-

mand of smooth transportation as pallet always stopping on cross conveyor even though

the conveyor appears to be turned on. For the purpose of continuous simulation, con-

veyor from each direction is divided into two parts (right picture). In this way when the

pallet passes through the first part, it reaches the end of the conveyor surface, thus it can

continue move on any other direction according to the decision program.

 48

4. SIMULATION IMPLEMENTATION

With the 3D simulation model of the assembly line ready, integration of PLCs was next

employed into the model. In FESTO CIROS Studio, there are several simulation con-

trollers existing in model library, out of which S7-simulator is the one that interprets

executable S7-Programs.

The SIMATIC manager is used for programming PLC. This software is part of the PLC

development environment STEP 7 distributed by the Siemens cooperation. The whole

configuration of a PLC is stored in a S7 project. The language that used in programming

PLC in current thesis is FBD and STL.

4.1. Implementation steps

There are three steps to integrate a PLC into the current model:

4.1.1. Insert the PLC into the model

After establishing the simulation model of the assembly line, three simulation control-

lers were inserted into the model, each of which controls one segment of the line. One

can go to the global properties of the object to change the type to controller from ‘Time’

to ‘SPS-S7-Simulator’. By this time, the simulation model should be able to perform

some functions by pressing ‘Simulate’ button and changing the signals of the inputs in

‘Manual Operation’. And it is recommend by the author to test all the mechanisms in

this phase, for instance, the size of a conveyor surface or the maximum axis limit of a

translation cylinder.

 49

Figure 27 Simulation controllers setting

4.1.2. Link the I/Os of the PLC with the objects in the model

When all the mechanisms are verified to be working fine manually, the connections

between actuators, sensors and PLC is ought to be built next. One can add new digital

inputs and outputs to the controller by right clicking on the controller name. Then these

unnamed I/Os will be listing in ‘Manual Operation’ window. By giving them dedicated

names, it is easy to recognize the functionality of each I/O. Then one must link the I/O

of controllers to the simulated objects, controller inputs to object outputs and controller

outputs to object inputs.

 50

Figure 28 Manual Operation in FESTO CIROS Studio, I/O connection

4.1.3. PLC programming

The programming of PLC is done by SIMATIC manager. Each S7 project could include

several S7 programs separately. Before programming, it is very important to define all

I/Os of the controller and assign them according to the order listed in simulation con-

troller. This can be done by clicking on ‘Symbols’ section after creating a new program

in S7 project. Also each control signal should have its own unique name regarding to its

functionality. Then one is ready to start programming PLCs in ‘Block’ section. Function

Block Diagram and Statement List are used in current program and some example is

illustrated in Figure 29.

Figure 29 SIMATIC manager

4.2. Design specifications

During program design phase, plenty of production features need to be noticed closely.

Some features can be only realized by means of programming, and these issues are

summarized in the following sections.

 51

4.2.1. Timing for pallet stopping

Among all the cross conveyors, there are some that the pallet needs to stop on either

waiting for instruction of next move or turn perpendicularly. All these cross conveyors

are equipped with two sensors, one for regular direction control and the other for cross-

ing direction control. The outputs of these sensors help to determine when and where

the pallet should stop. And the pallet is ought to stop when it covers right above the

cross conveyor, including both sensors. In the PLC program, a Start On-Delay Timer is

employed to compute the timing for pallet stopping and the control logic is: when both

sensors of a cross conveyor report to detect and the conveyor of current direction are on,

after little amount of time (350-600ms was used in the program), turn off the conveyor.

4.2.2. Interactions between segments

Due to the fact that three controllers are utilized in the model instead of one, some

communication needs to be established between two nearby segments. When pallet

moves between two segments, it is mandatory for both segments to set up some connec-

tions to communicate the status of pallet flowing. One of the importances is that the

latter segment should be able to notice former segment and shut down some unneces-

sary conveyors. Therefore, some signals from latter segment should also be considered

when making logic decisions for former segment. For example, in Figure 30, the first

two sensors (marked in red circle) from middle segment are extended in the logic con-

trol for start segment. The connection can be built up in ‘Manual Operation’ window,

and it is worth to notice that only outputs from the model can be connected to multiple

controller inputs. It is not possible for inputs to have multiple control outputs manipulat-

ing at the same time.

Figure 30 Interactions between segments

 52

Due to the complexity of the intermediate lifter, that it is the one and only connection

section between middle and end segment for both upper and lower layer, sensor signals

from both layers has to be involved in the PLC for middle segment. The main functions

that the intermediate lifter features are:

1. Pick the pallet from upper layer, middle segment, grasp it and transfer it to upper

layer, end segment as well

2. Pick the pallet from upper layer, middle segment, grasp it and transfer it to lower

layer, middle segment

3. Pick the pallet from lower layer, end segment, grasp it and transfer it to lower

layer, middle segment

Three status signals from end segment are considered in the simulation controller for

middle segment. Two are from upper layer, which are the first sensor embedded in cell

e_ml_c1 and the ‘IsMovedIn’ output signal from the lifter in the same cell reporting

when the lifter is down to the upper layer surface. The sensor signal involves in the con-

trol logic for stopping the upper layer conveyor of the intermediate lifter (815mm in

height). And the ‘IsMovedIn’ signal, which implies when the lifter is in default position,

is one of the conditions that the pallet starts leaving intermediate lifter and moving to-

wards end segment. For the lower layer, the sensor inserted in the lower layer of end

segment mainline reports to middle segment PLC, which calls for the intermediate lifter

to pick up pallet when it detects one loading on the lower layer. The pallet will stop

upon the sensor until the intermediate lifter reaches its position. Since there are two

cells which are qualified to call for the intermediate lifter for picking (cell m_ml_c3 and

e_dl_c2), in case that one cell is calling when the intermediate lifter is processing on

one of the other levels, one mandatory condition for moving intermediate lifter is that

none of the rest levels conveyors is on.

4.2.3. Multiple pallets handling

When operating the actual production line, processing multiple pallets at the same time

is a crucial property for any production procedure. This brings efficiency in both time

and financial aspect. The capability of handling multiple pallets in the simulation is real-

ized by programming PLC to coordinate among nearby cells.

There are two phases regarding to the design of cell coordination. The core concept of

phase one is to shut down the conveyor which just unloaded the pallet. Thus, if the sen-

sor from current cell detects existence of pallet and the current conveyor is on, the con-

veyor from previous cell should be shut down. In this way, after a single pallet flows

over the whole production line (on both layers), all the conveyors are set back to default

status which is off.

The second design phase is to extend the time duration of shutting down the previous

conveyor only if there is no pallet following up, which should be seen from the actual

 53

production processes; and also ask the next cell if it is occupied before loading the pallet

to it. The main principle is, when the pallet is detected by the sensors of current cell and

meanwhile the sensors from previous cell have no response, which means no pallet is in

the coming cell, it is proper time to shut down the previous conveyor; at the same time,

if the sensors from next cell are acknowledged to be busy, stop the current conveyor

until the next cell is idle. In order to realize this, a status variable is introduced in the

program which regards a cell as a unit and this variable indicates the working status of

the corresponding cell. When the status variable is set to be 1, it means that the cell is

busy processing. And by busy processing, it means that both sensors (in some case there

maybe only one sensor) are occupied, and by idle, it means neither or the sensors is oc-

cupied. So in simple words, the principle can be translated into: when the current cell is

busy processing, if the previous cell is busy processing (with a new pallet), remain the

current configuration; if the previous cell is not busy processing, turn off its conveyor;

when the current cell is ready to unload the pallet to next cell, if the next cell is busy,

stop the current conveyor; if the next cell is idle, turn the current conveyor on and load

the pallet to the next cell.

4.2.4. Decision signals

There are totally six decision points in the whole assembly line, out of which two are

from start segment, three are from middle segment and one is from end segment. They

are summarized as shown in the following table.

Table 8 Decision points and corresponding inputs

Segment name Cell name Direction options Input name

Start segment s_ml2_c1 mainline direction/

workstation direction

S1_mainline

S1_workstation

s_ml1_c2 mainline direction/

robot cell

S2_mainline

S2_robotcell

Middle segment m_ml_c1 mainline direction/

right line

M1_mainline

M1_rightline

m_ml_c3 mainline direction/

left line

M2_mainline

M2_leftline

m_intermediatelifter end segment direc-

tion/ start segment

direction

M3_continue

M3_return

 54

End segment e_ml_c1 mainline direction/

workstation direction

E_mainline

E_workstation

4.3. User Interface and recipe loading

On the side face of the start lifter, there is a user interface built with four groups of but-

tons which can be seen in Figure 31. These interfaces are only designed for user’s bene-

fit of easy access to recipe determination, and they are not included in the original as-

sembly line.

The orange button on the very top is the button for sending out new pallets. Each press

of the button corresponds to generate a new pallet on the lower layer of start lifter. This

function is realized by inserting a replicator mechanism into the simulation model. The

replicator mechanism provides the ability to generate new objects based on templates.

By creating a pallet-shaped template and setting the input of replicator from 0 to 1, a

new pallet with extended name is generated from its first grip point position. In current

model, the start point is set to be (-830, 7.5, 530). When pressing the button, a new pal-

let with a new name is generated at start point.

Figure 31 User interface for recipes

 55

There are five working cells in the whole line: robotcell, workstation from start seg-

ment, rightline and leftline from middle segment and workstation from end segment. By

sorting these five stations in different combinations, the recipes are defined correspond-

ingly. Thus 31 combinations map to 31 recipes, which can be summarized in the table

of next chapter. Recipe 1-5 includes one working station; recipe 6-15 includes two sta-

tions; recipe 16-25 includes three stations; recipe 26-30 includes four stations and recipe

31 covers all five working stations. A controller was implemented dedicatedly for the

determination of recipes, which is called “RecipeController” in the simulation model.

This controller is connected with all the recipe buttons and all the decision signals. By

pressing the recipe button, the corresponding decision signals are being stored which

decides the route of the next one or next batch of pallets.

The grey button on the left down corner functions as an acknowledge signal which

should be pressed when finishing entering recipes that need to be executed, informing

the controller that it is ready for loading recipes.

In the program of recipe controller, 33 data blocks were built in advance to store reci-

pes. Data block 1-31 stores the detail of 31 recipes correspondingly. Opening one data

block, one can find an array with five elements on one dimension, representing five

working stations. As shown in Figure 32, each cell is given a unique number, and the

cells with red square are the cells where process stations locate, number 2(robotcell),

10(s_workstation), 15(rightline), 18(leftline) and 25(e_workstation). If the pallet needs

the jobs carried out in certain stations, place the cell number in corresponding position;

if not, set the element to be -1. For example, recipe 19 requires pallets to go to robotcell,

rightline and leftline, the recipe is written as [2, -1, 15, 18, -1].

Having pre-defined all 31 recipes, the recipe data blocks are ready to use.

Figure 32 Cells numbering

Figure 33 gives an example of the process of loading recipes.

 56

Figure 33 Recipes loading

When starting the simulation, what recipes are desired to be executed needs to be re-

corded firstly. By pressing the recipe buttons on side of the start segment, the corre-

sponding recipe number is loaded to an integer type symbol out of memory area, #rec-

ipe number. Then an array with desired recipe numbers can be created by copying the

content in #recipe number after each press. This array is stored in a new data block

which is defined as an array with data length of 31 integers, which means at most 31

recipes can be recorded at once.

After recording recipe numbers, user must press on the grey button to acknowledge the

termination of recording procedure, which does not only imply finishing creating the

array of desired recipe numbers but also initiates the translation from recipe numbers to

detail combinations of each recipe into the executed data block.

In the program, there are two customized functions for this phase, one (FC 1) for re-

cording the pressed numbers and the other one (FC 2) for copying the corresponding

recipe details from recipe data blocks to the memory area first and then pasting them to

the executed data block.

4.4. Pallet tracking

As long as digging into the replicator mechanism offered by FESTO CIRSO Studio, it is

discovered that there is no difference among the generated objects except for their

names (which follow the same name as template object but with different numbered

ends). Therefore, it is not possible to distinguish each pallet from the simulation level,

under which circumstance a data block dedicated to pallet number and their positions is

created.

 57

By giving number of each cell shown in Figure 31, the position of each pallet is illus-

trated by the cell number. Cell number 5, 4, 11, 13, 20 and 21 are the decision points.

While the pallet is being transported on the production line, the data block will be up-

dated with their new cell numbers.

Figure 34 Pallet-position data block

Figure 34 shows the data block principle for recording pallet position and the relation

between itself and the executed data block. When the program scans and finds the cur-

rent cell is decision point, it recognizes the pallet number first and then turns to the exe-

cuted data block to find the recipe for current pallet and by identifying the decision

point cell number, the corresponding recipe detail is detected and will affect the deci-

sion finally. For example, when reaching cell number 11, it is for the decision to go to

rightline or not, and the third element of recipe detail determines that; and if the third

integer of its recipe equals to 15, then the pallet goes to rightline, vice versa. The red

number is the position of current moment. A new function (FC 9) was designed for up-

dating cell numbers for this requirement, which requires the previous cell number to

locate which pallet’s position is to be updated and current cell number to replace the

pallet position. The logic diagram of this function is shown in Figure 35.

 58

Figure 35 Function logic for updating pallet position

After tracking down the pallet’s recipe, another function (FC 3-8, each for one decision

point) which is responding to making direction decision is triggered under the condition

of reaching decision cell and knowing the recipe detail for current decision. These func-

tions are connected to the decision signals for each segment demonstrated in section

4.2.4 and initiate the commensurate conveyors. Therefore, if the second element of rec-

ipe detail equals to 10 when the position of pallet is 5, for example, it means pallet

needs to be loaded to the workstation of start segment. In order to avoid traffic crush,

when another pallet is detected at workstation, the current pallet will instead be loaded

to the other route and leave the process procedure to the next cycle until all processes

needed for this pallet is finished.

4.5. Process perfection

For some cases, all stations needed for a pallet cannot be approached in one cycle,

which requires the pallet for another or even more cycles. Thus updating the processed

situation of pallets is rather essential for the flexibility of production line.

4.5.1. Process scan

A new function (FC 11) was created for marking finished processes in real-time for the

program. When the sensor of the process station is found to be occupied, the program

reads into the pallets’ position data block and find out which pallet it is being processed.

Then open the data block of executed recipe detail and replace the corresponding recipe

 59

detail with -1. Therefore, if the pallet is reaching the same decision point next cycle, the

controller is able to realize that it has already taken the process, preventing from repeat

work.

4.5.2. Final scan

How to determine whether a pallet finishes all its processes? An idea was employed in

the model as to unload the finished pallet out of the line from the last cell of a full cycle,

which is s_dl_3, cell number 38.

In the simulation model, a trashcan mechanism was inserted to realize unloading func-

tionality for unloading the pallet. One of the gripper points of trashcan is located next to

the sensor of cell 38 which is where the pallet is vanished from.

On program level, when the pallet stops in cell 38, the program reads the position of

current pallet first and then scans in the executed recipe detail data block for the proc-

essed situation for current pallet. If all five elements are -1, which means the pallet fin-

ished all its desired procedure, trigger the trashcan mechanism; if not all five elements

are -1, which means the pallet still needs some more process from at least one process

station, pallet continue moving to the start lifter. A new function (FC 12) was estab-

lished to realize this final scan job.

For the pallet position data block, if a pallet finished all the processes and finally

reaches to cell 38, the position of current pallet will be replaced with -1, symbolizing a

fully processed pallet and distinguishing from other pallets; if the pallet moves back to

the start point, preparing for the next cycle, the program scans in the pallet position data

block for cell number 38, and replace it with the start cell number 1, which follows the

same pallet position of its original one.

The functionality of each customized data block, function in the program and their

codes can be found in Appendix 2.

 60

5. ASSESSMENT ANALYSIS

With the simulation model creation ready in chapter 3 and PLC program ready in chap-

ter 4, it is time to run the simulation and retrieve actual appealing measurements from

the simulation. One can obtain the recipe execution time and KPI analysis in this chap-

ter. These results are going to be sorted into different levels and analyzed separately

according to their properties and degree of importance. System analyses are discussed

based on KPI of production performance.

5.1. Simulation results

On process level, cycle time and throughput capacity are the most intuitive numerical

indicators that can be measured from a production line. Due to the fact that there are

plenty of recipe options for current assembly line, all the possibilities are considered and

listed in the tables in following sections. All these route possibilities were simulated

under the condition that conveyor speed is set to be 100mm/s. Start point of the pallet is

on the lower layer of startlifter, (-830, 7.5, 530), and the counting of cycle time stops

when the pallet returns to the start point. Also the process time consumptions are not

included in the assessment result.

5.1.1. Single recipe execution

By running the simulation model to each pre-determined recipe, cycle time, throughput

per 10mins are collected and listed in the following tables. In the table, ‘×’ means the

pallet follows this route, Due to the fact that the simulation was executed by first start-

ing recording time and then setting the start signal which initiates the whole process,

there might be some time differences in between; also at some decision point, a little

push is needed for the pallet to keep moving, thus some time differences exist in be-

tween. Thus the total execution time is calculated with 2s difference.

 61

Table 9 Recipe composition and execution time for single recipe

Recipe
number

Robotcell S_workst
ation

Rightline Leftline E_workstati
on

Cycle
time
(±2s)

1 × 127s

2 × 131s

3 × 124s

4 × 150s

5 × 210s

6 × × 258s

7 × × 138s

8 × × 164s

9 × × 224s

10 × × 142s

11 × × 169s

12 × × 229s

13 × × 160s

14 × × 222s

15 × × 248s

16 × × × 269s

17 × × × 296s

18 × × × 356s

19 × × × 174s

20 × × × 238s

21 × × × 262s

22 × × × 178s

23 × × × 241s

24 × × × 267s

25 × × × 258s

26 × × × × 306s

27 × × × × 367s

28 × × × × 393s

29 × × × × 272s

30 × × × × 277s

31 × × × × × 405s

Some comparison information about cycle time can be summarized from the table

above. For example, if the pallet follows the same route for the latter two segments,

time duration of taking workstation route is 4-6s longer than robot cell route and 18-20s

longer than merely mainline route; if the pallet follows the same route for start and end

segment, the longest time was spent when choosing first rightline then leftline in middle

segment, which is 9-11s longer than the route first mainline then leftline, 34-36s longer

than the rout first rightline then mainline and 47-48s longer the merely mainline route;

for the end segment, taking workstation route is generally 23-26s longer than taking

mainline route and 97-100s longer than returning to start segment from intermediate

lifter.

 62

For the recipes which desire robotcell and s_workstation both cannot be executed during

single cycle. Thus the regulations and relations among certain recipes are summarized

in the following table.

Table 10 Recipe relation

Recipe number Equals to

R16 R1 + R10 or R2 + R7

R17 R1 + R11 or R2 + R8

R18 R1 + R12 or R2 + R9

R26 R1 + R22 or R2 + R19 or R7 + R11 or R8 + R10

R27 R1 + R23 or R2 + R20 or R7 + R12 or R9 + R10

R28 R1 + R24 or R2 + R21 or R8 + R12 or R9 + R11

R31 R1 + R30 or R2 + R29 or R7 + R24 or R8 + R23 or R9 + R22 or R10 + R21

or R11 + R20 or R12 + R19

5.1.2. Multiple recipes execution

The designed simulation logic control is able to execute not only single recipe but also

multiple recipes. By pressing the desired recipes for the pallets in order, the controller

will record the recipe numbers and store them into a data block. Then translate these

recipe numbers into executable direction decisions back to the production line. After the

pallet passes over the process stations, the corresponding recipe detail will be set to -1 to

imply that it finished processing with certain stations.

Figure 36 Simulation screenshot

The functionalities of designed simulation program can be summarized as followings:

 63

1. Provide 31 recipe possibilities, including all combinations out of five process

stations in the whole line.

2. Specify user interface, simplifying recipe determination with one press.

3. Record customized pallet recipe number, 31 pallets recipe stored in one batch

maximum (can be extended).

4. Translate recipe numbers into program readable execution instruction.

5. Locate pallet position in real-time.

6. Make direction decision automatically according to recipe and traffic condition

in real-time when facing crossroads.

7. Load same pallet more than one cycle, avoiding traffic crush in process station.

8. Mark finished process, preventing from repeat process.

Taking five pallets in one batch for example, execution time, how many cycles needed

to finish processing all pallets and short-term throughput of some combination are listed

in the following table.

Table 11 Quantified simulation results of multiple recipes

Recipe order Execution time Total cycle number Throughput within

5mins (unloaded

pallets number)

[4, 4, 4, 4, 4] 326s 3

(2 pallets re-cycle)

4

[10, 11, 11, 20, 20] 352s 3

(2 pallets re-cycle)

3

[5, 9, 12, 21, 31] 517s 3

(2 pallets re-cycle)

2

[3, 8, 15, 18, 28] 462s 4

(3 pallets re-cycle)

2

[18, 15, 3, 28, 8] 546s 3

(2 pallets re-cycle)

3

[28, 18, 15, 8, 3] 512s 4

(3 pallets re-cycle)

1

 64

With more experiment result, one can find that even though the recipe numbers are the

same, with different order of pallet sending the results can be distinguished.

5.2. KPI analysis

According to Rakar’s derivation methodology of KPI [Rakar et al, 2004], production

related performance indicators are sorted in a three-level hierarchical structure (Figure

37). Level 1 is characterised by safety and environment in the sense of conformance

with regulations and standards; level 2 is composed of indicators related to quality, effi-

ciency and production plan tracking and level 3 deals with issues related to manpower

requirements.

Figure 37 KPI framework [Rakar et al, 2004]

Regarding to the first level, areas referring to work safety and accident, raw material

consumptions and their interactions with environment are taken into consideration, such

as fresh water consumption, number of hazardous alarms or waste generated before re-

cycling. Unfortunately, in current simulation environment only the transportation proc-

ess is simulated with no respect to the production process that could be executed in any

cell, thus there are no variants related to interactions with environment. Besides the en-

vironment factor, it is as well not possible to analyze how safe the process is and how

often accident occurs.

For the second level, efficiency variant can be divided into several categories according

to plant structure and other aspects, such as efficiency of employees in production, unit

production time, energy efficiency and so on. By running current simulation model in

FESTO CIRSO Studio, it is easy to record unit production time (cycle time) by termi-

nating the simulation process manually. The drawback of this recording method is the

lack of accuracy. It would be nice to have a measure system that can set the starting

position and finishing position of a simulation process and be able to calculate cycle

time automatically.

 65

From the production plan tracking and quality points of view, the current simulation

model appears somehow weak to acknowledge these kinds of information. For the cur-

rent version of simulation, it is only capable of imitate transportation system of produc-

tion line off-line. Once the interface has been built between simulation software and

actual production line I/Os, it will be possible for the user to monitor the real-time pro-

duction process from simulation software window and collection of production plan

tracking and quality parameters are accessible.

What could be retrieved from the simulation with respect of level 3 indicators is that

human intervention is definitely mandatory for assembly line, for the purpose of loading

recipes (choosing pallet route) and sending pallets from the starting point. Although it

appears that during simulation pallets need a little push when suddenly changing their

flowing direction at times, it is actually a software constraint which causes such kind of

a problem. However, other factors belonging to level 3, such as turnover rate and com-

plete job satisfaction of employees, require actual embodiment and further investment

of current production simulation.

 66

6. CONCLUSION

The focus of this paper is on creating a pallet-based simulation model of a production

line customized by Flexlink in FESTO CIROS Studio and analyzing the production per-

formance based on the KPIs retrieved from the simulation. The essential problem is to

integrate the simulation model with virtual PLC and realize the transportation logic of

the production system.

FESTO CIROS Studio is a proper choice of 3D simulation software for current thesis

topic. The software provides profuse libraries with well-made models and mechanisms,

from FESTO system platform, robot to conveyors, sensors, from which most mecha-

nisms needed in the assembly line can be found. Yet there are still some limitations, for

instant, pallet cannot move independently when changing its conveying direction; end

time of a simulation process cannot be set automatically. These constraints lead to a

same problem which is the measurements of timing field are not accurate enough.

All indicators that can be obtained from current simulation model are mainly concen-

trated on process level and a few on production level. This means that FESTO CIROS

Studio is designed to concentrate on process simulation, such as transportation simula-

tion, sensor simulation and robotics simulation. Due to the fact that model library pro-

vides mechanism of actuator instead of motors, energy consumption and efficiency and

other environment relevant factors are not accessible by merely running simulation.

During simulation, it has been a major flaw of program manager of FESTO CIRSO

Studio that it does not support real-time monitor on PLC I/Os directly in diagram but

only from controller in statement form, which is not easy to read. PLC program needs

to be created by SIMATIC manager first and then integrated with simulation controller.

However during simulation, it is not possible to observe I/O changing from interface,

which brought a lot challenges to the job.

Although the creation of production model is quite satisfying, the generated object that

needs to be produced (pallet) cannot be distinguished from each other on model level.

The identification of pallets can only be realized within S7 program by mapping its pre-

vious and current position. It would be more convenience to provide identification sys-

tem like radio frequency technology as to allocate pallets with its desired recipe.

Leaving aside former limitations, it is a huge advantage that 3D model file done in

FESTO CIROS Studio is rather small, in case of current simulation, around 3MB. This

made it possible for users to discuss via email, which was done between the author and

 67

product manager of Festo Didactic GmbH in Germany who has been tremendously

helpful during this thesis work.

Future work from current thesis topic could be extend the simulation field to include

other system of the line, such as robot cell process and power consumption area, to en-

sure the simulation result more useful for production performance analysis and business

level decision making as well. From the perspective of optimization, it is a possible ex-

tension to investigate on an algorithm which aims to minimize execution time when

loading multiple pallets by sorting pallet loading order. Meanwhile, it is also worth to

consider employing other simulation and model methodology to get comparison result

of system properties, such as Petri Net modelling or Agent-Based Simulation.

 68

REFERENCES

Banks, J., 1998. Handbook of Simulation: Principles, Methodology, Advances, Applica-

tions, and Practice, John Wiley and Sons, New York, NY.

Colombo, A.W., 2010. Lecture Notes: Automation Technologies for Intelligent Manu-

facturing Systems, Tampere, Finland.

Incontrol, 2011. Tutorial Enterprise Dynamics 8, http://support.incontrolsim.com/en/ed-

tutorials.html

Korotkin, S.; Zaidner, G.; Cohen, B.; Ellenbogen, A.; Arad, M.; Cohen, Y., 2010. A

Petri Net formal design methodology for discrete-event control of industrial automated

systems, IEEE 26
th

 Electrical and Electronics Engineers in Israel, pp431-435.

Leitao, P., 2009. Agent-based Distributed Manufacturing Control: A state-of-the-art

Survey, Engineering Applications of Artificial Intelligence, v22 n7, pp 979-991.

Lloyd, S.; Yu, H.; Konstas, N., 1995. FMS scheduling using Petri net modelling and a

branch & bound search, Assembly and Task Planning, pp141-146.

McLean, C. and Leong, S., 2001. The Expanding Role of Simulation in Future Manu-

facturing, Proceedings of the 200 Winter Simulation Conference, December 11
th

 to 14
th

2001, Phoenix, USA, pp 1478-1486.

Minas, M. And Frey, G., 2002. Visual PLC-programming using signal interpreted Petri

nets, Proceedings of the American Control Conference, v6, pp5019-5024.

Murata, T., 1989. Petri Nets: Properties, Analysis and Applications, Proceeding of the

IEEE, v77 n4, pp541-580.

Nordgren, W.B., 2001. Taylor Enterprise Dynamics, Proceedings of the 2001 Winter

Simulation Conference, v1, pp269-271.

Rakar, A.; Zorzut S.; Jovan V., 2004. Assessment of production performance by means

of KPI, Control 2004, University of Bath, UK.

Salminen, M., 2010. Evaluation of simulation tools for modular assembly systems,

Master of Science Thesis, Tampere University of Technology.

Shannon, R.E., 1992. Introduction to simulation, Winter Simulation Conference, pp 65-

73.

Smith, R.J., 2003. Survey on the Use of Simulation for Manufacturing System Design

and Operation, Journal of Manufacturing Systems, v22 n2, pp157-171.

 69

Visual Components,

http://www.simx.co.uk/software/vc/Brochures/3DRealizeBrochure.pdf

Yilmaz, O.S and Davis, R.P., 1987. Flexible Manufacturing Systems: Characteristics

and Assessment, Engineering Management International, v4 n3, pp 209-212.

Young, C. and Greene, A., 1986. Flexible Manufacturing Systems, American Manage-

ment Association, New York.

Zhou, M. and Venkatesh, K., 1999. Modelling, simulation, and control of flexible

manufacturing systems: a Petri net approach, World Scientific Publishing, Singapore.

Zhu, J.J. and Denton, R.T., 1988. Timed Petri nets and their application to communica-

tion protocol specification, Military Communications Conference, v1, pp195-199.

 70

APPENDIX 1

s_dl_c
2

Single
Con-
veyors

s_dl_c
1 m_rl_c3 LIFTERS

Double
Convey-
ors

End
line

m_dl_
c2 m_rl_c1

m_dl_
c1

m_ml_c
3 (DP)

m_ml
_c2

m_ml_c
1 (DP)

e_rl_c
4 m_ll_c3

m_rl_
c2
(S4) s_ml_cc3 e_ml_c3

I/O
PAT-
TERN

e_ml_
c2 m_ll_c1

m_ll_c
2 (S3)

e_dl_c
c1

s_ws_
r1 (s5) s_ml_l1 m_ml_l1 e_ml_l1 PATTERN

s_rl_cc1
(s1)

s_ml_cc1
(DP)

s_ml_c2
(DP) e_rl_c3

e_rl_c2
(s5) e_rl_c1

e_ml_c1
(DP)

IX0 0
sen-
sor_b1

sen-
sor_b
1

sen-
sor_b1

sen-
sor_b
1

sen-
sor_b
1

sen-
sor_b
1 sensor_b2 inv_ready

PAL-
LET_TRAN
S

f_sensor_
b1

f_senso
r_b1

f_sensor_
b1

f_sensor_
b1 CC_UP

CC_DO
WN

SEN-
SOR_B1

SEN-
SOR_B1

 1
sen-
sor_b2

sen-
sor_b2

sen-
sor_b
2 sensor_b1

inv_pos_r
eached

SEN-
SOR_B2

f_sensor_
b2

f_sensor_
b2

f_sensor_
b2

CC_DO
WN CC_UP TABLE_1

CC_DOW
N

 2
crossc_
up

crossc_
up

pal-
let_trans sensor_b1

SEN-
SOR_B3

f_xconv_
up

f_xconv_
up

f_xconv_
up

SEN-
SOR_B
1

SEN-
SOR_B1 TABLE_2

MC_UP_
RIGHT

 3
crossc_
down

crossc_
down

pal-
let_trans_r
ear sensor_b2

SEN-
SOR_B1

f_xconv_
down

f_xconv_
down

f_xconv_
down

SEN-
SOR_B2

MC_UP_
LEFT

 4 send_1
send_
1 lift_down reset

LIFT_DOW
N

send_but
ton

send_b
utton SEND

 5 send_2
send_
2 lift_up up_ss

ALARM_U
P mode mode

 6 mode mode down_ss
ALARM_D
OWN

 7 up_button LIFT_UP
split_con
v

split_co
nv

split_con
v

IX1 0
down_but
ton

UP_BUTT
ON

b_sensor
_b1

b_senso
r_b1

b_sensor
_b1

b_sensor
_b1

 71

 1
servi-
ce_switch

DOWN_B
UTTON

b_sensor
_b2

b_sensor
_b2

b_sensor
_b2

 2 shaft_A

RE-
SET_BUTT
ON

b_xconv_
up

b_xconv_
up

b_xconv_
up

 3 shaft_B
RUN_SER
VICE

b_xconv_
down

b_xconv_
down

b_xconv_
down

 4

 5

 6

 7

 QX
0 0

conv_f
wd

conv_
fwd

conv_f
wd

conv_
fwd

conv_
fwd

conv_
fwd

lo-
wer_lifter pos_0 MC_FWD

f_xconv_
right

f_xconv_
right

f_xconv_
right

MC_RU
N

MC_RU
N MC_RUN MC_UP

 1
crossc_l
eft

crossc_l
eft raise_lifter pos_1 MC_REV

f_xconv_l
eft

f_xconv_l
eft

f_xconv_l
eft

CC_RU
N

CC_RU
N

TAB-
LE_UP

MC_DO
WN

 2 lifter lifter conv_fwd inv_enable
MC_IN_R
UN

f_xconv_
raise

f_xconv_
raise

f_xconv_
raise

CC_LIF
T CC_LIFT

TAB-
LE_DOW
N MC_RUN

 3
crossc_r
ight

crossc_r
ight conv_bwd

inv_cal_re
q

MC_OUT_
RUN

f_xconv_l
ower

f_xconv_l
ower

f_xconv_l
ower

SEND_L
IGHT CC_RUN

 4
conv_b
wd

conv_
bwd pos_mode LIFTER_UP conv_fwd

conv_f
wd conv_fwd conv_fwd

 5 run_req

LIF-
TER_DOW
N

conv_bw
d

conv_bw
d

 6 jog_spd
LOW_SPE
ED

b_conv_f
wd

b_conv
_fwd

b_conv_f
wd

 7 jog_dir
HIGH_SPE
ED

QX
1 0 pos_2

b_xconv_
right

b_xconv_
right

b_xconv_
right

 1 M1_bwd
b_xconv_
left

b_xconv_
left

b_xconv_
left

 2 M1_fwd
b_xconv_
raise

b_xconv_
raise

b_xconv_
raise

 3
light_turre
t

b_xconv_
lower

b_xconv_
lower

b_xconv_
lower

 4

 5

 6

 7

72

APPENDIX 2

Block name Major functionality

DB 1-31 Recipe details of recipe 1-31

DB 32 Recipe numbers of each pallet in order

DB 33 Executed recipe details of each pallet in order

DB 34 Pallet positions updated in real-time in order

FC 1 Record the pressed button numbers in DB 32

FC 2 Copy the recipe details from DB 1-31 according to the recipe number and
order in DB 32, then paste them in DB 33 in order

FC 3 Read the second element of each recipe detail and make decision of s1
and make decision of direction

FC 4 Read the first element of each recipe detail and make decision of s2 and
make decision of direction

FC 5 Read the third element of each recipe detail and make decision of m1 and
make decision of direction

FC 6 Read the fourth element of each recipe detail and make decision of m2 and
make decision of direction

FC 7 Read the fifth element of each recipe detail and make decision of m3 and
make decision of direction

FC 8 Read the fifth element of each recipe detail and make decision of e1 and
make decision of direction

FC 9 Load cell number 1 to each new pallet’s first position

FC 10 Scan for the previous position of pallet and replace with its current position;
if decision points are identified, save the pallet number of current pallet as

the reference for FC 3-8

FC 11 Mark the finished element with -1

FC 12 Check if all five elements of current pallet’s recipe are -1 and if they are,
vanish the pallet and put -1 at position data block; if not, recycle to start

point for next cycle

73

FC 1

 L "counter_press"
 T "recipe_order_int"
 L "recipe_order_int"
 L 1
 -I
 T "recipe_order_int"
 L "recipe_order_int"
 ITD
 T "recipe_order"
 OPN "exec"
 L "recipe_order"
 L P#2.0
 *D
 T "recipe"
 L #r_num
 T DBW ["recipe"]
 L "recipe"
 L P#60.0
 ==D
 = "m_comp8"
 A "m_comp8"
 BEC

FC 2

 L P#0.0
 T "cur_r"
m001: OPN "exec"
 L DBW ["cur_r"]
 T #recipe_num
 L #recipe_num
 L -1
 ==I
 = "m_comp7"
 A "m_comp7"
 BEC
 L #recipe_num
 T "recipe_num"
 OPN DB ["recipe_num"]
 L DBW 0
 T "r1_temp"
 L DBW 2
 T "r2_temp"
 L DBW 4
 T "r3_temp"
 L DBW 6
 T "r4_temp"
 L DBW 8
 T "r5_temp"
 OPN "exec_detail"
 L "cur_r"
 L L#5
 *D
 T "cur_d"
 L "r1_temp"
 T DBW ["cur_d"]
 L "cur_d"
 L P#2.0
 +D
 T "cur_d"
 L "r2_temp"
 T DBW ["cur_d"]
 L "cur_d"
 L P#2.0
 +D
 T "cur_d"
 L "r3_temp"
 T DBW ["cur_d"]
 L "cur_d"
 L P#2.0
 +D
 T "cur_d"
 L "r4_temp"
 T DBW ["cur_d"]
 L "cur_d"
 L P#2.0
 +D
 T "cur_d"
 L "r5_temp"
 T DBW ["cur_d"]
 L "cur_r"
 L P#2.0
 +D
 T "cur_r"
 LOOP m001

74

FC 3

 OPN "exec_detail"
 L "pointer_s1"
 L L#5
 *D
 T "cur_d2" //current decision
 L "cur_d2"
 L P#2.0
 +D
 T "cur_d2"
 L DBW ["cur_d2"]
 L 0
 ==I
 = "m_comp9"
 A "m_comp9"
 R "s1_ws"
 R "s1_ml"
 BEC
 AN "m_comp9"
 L DBW ["cur_d2"]
 L 10
 ==I
 = "m_comp2"
 A(
 A "m_comp2"
 AN "s_ws1"
 AN "s_ws2"
 AN "s_2.2_m"
)
 = "s1_decision"
 A "s1_decision"
 = "s1_ws"
 AN "s1_decision"
 = "s1_ml"

FC 4

 OPN "exec_detail"
 L "pointer_s2"
 L L#5
 *D
 T "cur_d1" //current decision
 L DBW ["cur_d1"]
 L 0
 ==I
 = "m_comp10"
 A "m_comp10"
 R "s2_rc"
 R "s2_ml"
 BEC
 AN "m_comp10"
 L DBW ["cur_d1"]
 L 2
 ==I
 = "m_comp1"
 A(
 A "m_comp1"
 AN "s_rc"
)
 = "s2_decision"
 A "s2_decision"
 = "s2_rc"
 AN "s2_decision"
 = "s2_ml"

FC 5

 OPN "exec_detail"
 L "pointer_m1"
 L L#5
 *D
 T "cur_d3" //current decision
 L "cur_d3"
 L P#4.0
 +D
 T "cur_d3"
 L DBW ["cur_d3"]
 L 0
 ==I
 = "m_comp11"
 A "m_comp11"
 R "m1_rl"
 R "m1_ml"
 BEC
 AN "m_comp10"
 L DBW ["cur_d3"]
 L 15
 ==I
 = "m_comp3"
 A(
 A "m_comp3"
 AN "m_r1_m"
 AN "m_r2_m"
 AN "m_r3_m"
)
 = "m1_decision"
 A "m1_decision"
 = "m1_rl"
 AN "m1_decision"
 = "m1_ml"

FC 6

 OPN "exec_detail"
 L "pointer_m2"
 L L#5
 *D
 T "cur_d4" //current decision
 L "cur_d4"
 L P#6.0
 +D
 T "cur_d4"
 L DBW ["cur_d4"]
 L 0
 ==I
 = "m_comp12"
 A "m_comp12"
 R "m2_ll"
 R "m2_ml"
 BEC
 AN "m_comp12"
 L DBW ["cur_d4"]
 L 18
 ==I
 = "m_comp4"
 A(
 A "m_comp4"
 AN "m_l1_m"
 AN "m_l2_m"
 AN "m_l3_m"
)
 = "m2_decision"
 A "m2_decision"
 = "m2_ll"
 AN "m2_decision"
 = "m2_ml"

75

FC 7

 OPN "exec_detail"
 L "pointer_m3"
 L L#5
 *D
 T "cur_d5" //current decision
 L "cur_d5"
 L P#8.0
 +D
 T "cur_d5"
 L DBW ["cur_d5"]
 L 0
 ==I
 = "m_comp13"
 A "m_comp13"
 R "m3_c"
 R "m3_r"
 BEC
 AN "m_comp13"
 L DBW ["cur_d5"]
 L 25
 ==I
 = "m_comp5"
 A(
 A "m_comp5"
 AN "e_m1_m"
)
 = "m3_decision"
 A "m3_decision"
 = "m3_c"
 AN "m3_decision"
 = "m3_r"

FC 8

 OPN "exec_detail"
 L "pointer_e"
 L L#5
 *D
 T "cur_d6" //current decision
 L "cur_d6"
 L P#8.0
 +D
 T "cur_d6"
 L DBW ["cur_d6"]
 L 0
 ==I
 = "m_comp14"
 A "m_comp14"
 R "e_ws"
 R "e_ml"
 BEC
 AN "m_comp14"
 L DBW ["cur_d6"]
 L 25
 ==I
 = "m_comp6"
 A(
 A "m_comp6"
 AN "e_ws_1"
 AN "e_ws_2"
 AN "e_ws_3"
 AN "e_ws_4"
 AN "e_ws_5"
)
 = "e_decision"
 A "e_decision"
 = "e_ws"
 AN "e_decision"
 = "e_ml"

FC 9

 L "counter_1"
 T "pallet_order_s1_int"
 L "pallet_order_s1_int"
 L 1
 -I
 T "pallet_order_s1_int"
 L "pallet_order_s1_int"
 ITD
 T "pallet_order_s1"
 L "pallet_order_s1"
 L P#2.0
 *D
 T "pallet_lo"
 OPN "pallet_location"
 L "counter_1"
 L "counter_press"
 <=I
 = "m_comp43"
 AN "m_comp43"
 JC m001
 A "m_comp43"
 L 1
 T DBW ["pallet_lo"]
 BEC
m001: L P#0.0
 T "pointer_38"
next: L DBW ["pointer_38"]
 L 38
 ==I
 = "m_comp44"
 A "m_comp44"
 JC m002
 AN "m_comp44"
 L "pointer_38"
 L P#2.0
 +D
 T "pointer_38"
 L "pointer_38"
 L P#60.0
 ==D
 = "m_comp45"
 A "m_comp45"
 BEC
 AN "m_comp45"
 LOOP next
m002: L 1
 T DBW ["pointer_38"]
 BEC

76

FC 10

 L P#0.0
 T "pointer_db34"
 L #cur_pos
 T "cur_pos"
next: OPN "pallet_location"
 L DBW ["pointer_db34"]
 L #pre_pos
 ==I
 = "m_comp15"
 L "pallet_order_s1"
 A "m_comp15"
 JC m001
 A "m_comp15"
 JCN m002
m002: L "pointer_db34"
 L P#60.0
 ==D
 = "m_comp22"
 A "m_comp22"
 BEC
 AN "m_comp22"
 L "pointer_db34"
 L P#2.0
 +D
 T "pointer_db34"
 LOOP next
m001: L "cur_pos"
 T DBW ["pointer_db34"]
 L #cur_pos // if it is s1
 L 5
 ==I
 = "m_comp46"
 AN "m_comp46"
 JC m009
 A "m_comp46"
 L "pointer_db34"
 T "pointer_s1" //make copy
 BEC
m009: L #cur_pos // if it is s2
 L 4
 ==I
 = "m_comp24"
 AN "m_comp24"
 JC m004
 A "m_comp24"
 L "pointer_db34"
 T "pointer_s2" //make copy
 BEC
m004: L #cur_pos // if it is m1
 L 11
 ==I
 = "m_comp25"
 AN "m_comp25"
 JC m005
 A "m_comp25"
 L "pointer_db34" //make copy
 T "pointer_m1"
 BEC
m005: L #cur_pos // if it is m2
 L 13
 ==I
 = "m_comp26"
 AN "m_comp26"
 JC m006
 A "m_comp26"
 L "pointer_db34" //make copy
 T "pointer_m2"
 BEC
m006: L #cur_pos // if it is m3
 L 20
 ==I
 = "m_comp27"

 AN "m_comp27"
 JC m007
 A "m_comp27"
 L "pointer_db34" //make copy
 T "pointer_m3"
 BEC
m007: L #cur_pos // if it is e1
 L 21
 ==I
 = "m_comp28"
 AN "m_comp28"
 JC m008
 A "m_comp28"
 L "pointer_db34" //make copy
 T "pointer_e"
 BEC
m008: L #cur_pos
 L 38
 ==I
 = "m_comp40"
 AN "m_comp40"
 BEC
 A "m_comp40"
 L "pointer_db34"
 T "pointer_finish"
 BEC

FC 11

 L #cur_pos
 L 2 //robotcell?
 ==I
 = "m_comp30"
 A "m_comp30"
 JC m001
 L #cur_pos //s_worstation?
 L 10
 ==I
 = "m_comp31"
 A "m_comp31"
 JC m002
 L #cur_pos //rightline?
 L 15
 ==I
 = "m_comp32"
 A "m_comp32"
 JC m003
 L #cur_pos //leftline?
 L 18
 ==I
 = "m_comp33"
 A "m_comp33"
 JC m004
 L #cur_pos //e_workstation?
 L 25
 ==I
 = "m_comp34"
 A "m_comp34"
 JC m005
m001: OPN "pallet_location"
 L P#0.0 //find process station cell
number
 T "pointer_ps"
n1: L DBW ["pointer_ps"]
 L 2
 ==I
 = "m_comp35"
 A "m_comp35"
 JC l1
 AN "m_comp35"
 JC r1
l1: L "pointer_ps"
 T "pointer_ex"

77

 L "pointer_ex"
 L L#5
 *D
 T "pointer_ex"
 OPN "exec_detail"
 L -1
 T DBW ["pointer_ex"]
 BEC
r1: L "pointer_ps"
 L P#2.0
 +D
 T "pointer_ps"
 LOOP n1
m002: OPN "pallet_location"
 L P#0.0 //find process station cell
number
 T "pointer_ps"
n2: L DBW ["pointer_ps"]
 L 10
 ==I
 = "m_comp36"
 A "m_comp36"
 JC l2
 AN "m_comp36"
 JC r2
l2: L "pointer_ps"
 T "pointer_ex"
 L "pointer_ex"
 L L#5
 *D
 T "pointer_ex"
 L "pointer_ex"
 L P#2.0
 +D
 T "pointer_ex"
 OPN "exec_detail"
 L -1
 T DBW ["pointer_ex"]
 BEC
r2: L "pointer_ps"
 L P#2.0
 +D
 T "pointer_ps"
 LOOP n2
m003: OPN "pallet_location"
 L P#0.0 //find process station cell
number
 T "pointer_ps"
n3: L DBW ["pointer_ps"]
 L 15
 ==I
 = "m_comp37"
 A "m_comp37"
 JC l3
 AN "m_comp37"
 JC r3
l3: L "pointer_ps"
 T "pointer_ex"
 L "pointer_ex"
 L L#5
 *D
 T "pointer_ex"
 L "pointer_ex"
 L P#4.0
 +D
 T "pointer_ex"
 OPN "exec_detail"
 L -1
 T DBW ["pointer_ex"]
 BEC
r3: L "pointer_ps"
 L P#2.0
 +D
 T "pointer_ps"

 LOOP n3
m004: OPN "pallet_location"
 L P#0.0 //find process station cell
number
 T "pointer_ps"
n4: L DBW ["pointer_ps"]
 L 18
 ==I
 = "m_comp38"
 A "m_comp38"
 JC l4
 AN "m_comp38"
 JC r4
l4: L "pointer_ps"
 T "pointer_ex"
 L "pointer_ex"
 L L#5
 *D
 T "pointer_ex"
 L "pointer_ex"
 L P#6.0
 +D
 T "pointer_ex"
 OPN "exec_detail"
 L -1
 T DBW ["pointer_ex"]
 BEC
r4: L "pointer_ps"
 L P#2.0
 +D
 T "pointer_ps"
 LOOP n4
m005: OPN "pallet_location"
 L P#0.0 //find process station cell
number
 T "pointer_ps"
n5: L DBW ["pointer_ps"]
 L 25
 ==I
 = "m_comp39"
 A "m_comp39"
 JC l5
 AN "m_comp39"
 JC r5
l5: L "pointer_ps"
 T "pointer_ex"
 L "pointer_ex"
 L L#5
 *D
 T "pointer_ex"
 L "pointer_ex"
 L P#8.0
 +D
 T "pointer_ex"
 OPN "exec_detail"
 L -1
 T DBW ["pointer_ex"]
 BEC
r5: L "pointer_ps"
 L P#2.0
 +D
 T "pointer_ps"
 LOOP n5

78

FC 12

 OPN "exec_detail"
 L 0
 T "scan_times"
 L "pointer_finish"
 L L#5
 *D
 T "pointer_copy"
next: L DBW ["pointer_copy"]
 L -1
 ==I
 = "m_comp41"
 AN "m_comp41"
 BEC
 A "m_comp41"
 L "scan_times"
 INC 1
 T "scan_times"
 L "pointer_copy"
 L P#2.0
 +D
 T "pointer_copy"
 L "scan_times"
 L 5
 ==I
 = "m_comp42"
 A "m_comp42"
 JC m001
 AN "m_comp42"
 LOOP next
m001: = "disappear"
 OPN "pallet_location"
 L -1
 T DBW ["pointer_finish"]
 BEC

