
SAMI ANTTILA

RESOURCE SHARING FOR OPEN BUILD SERVICE

Master of Science Thesis

Tarkastaja: Kai Koskimies

Tarkastaja ja aihe hyväksytty

Tieto- ja sähkötekniikan

tiedekuntaneuvoston

kokouksessa 09.03.2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250160725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

SAMI ANTTILA: Resource Sharing for Open Build Service

Diplomityö, 55 sivua, 11 liitesivua

Lokakuu 2011

Pääaine: Ohjelmistotuotanto

Tarkastajat: Kai Koskimies

Avainsanat: hajautetut käännösympäristöt, ohjelmien kääntäminen, paketointi, pilvi,

resurssien jakaminen, aikataulutus

Ohjelmistojen automaattista kääntämistä ja paketointia varten on kehitetty kään-

nösjärjestelmiä (esimerkiksi openSUSE:n Open Build Service), jotka jakavat raskaan

käännöstyön komponenteittain tai paketeittain usealle koneelle. Tällaisten kään-

nösympäristöjen ongelma on usein se, että vaikka yksittäinen palvelin skaalau-

tuu hyvin käännöstyötä tekeviä koneita lisäämällä, useamman palvelimen välinen

resurssien jakaminen ei ole mahdollista. Jokainen järjestelmä on rajoittunut sille

staattisesti allokoituihin resursseihin ja useamman palvelimen tapauksessa kyseinen

ratkaisu ei ole välttämättä kustannustehokkuuden kannalta optimaalinen. Tämä

työ keskittyy kyseisen ongelman ratkaisemiseen erityisesti OBS:n suhteen. OBS-

palvelimen tapauksessa käännöstyöt lähetetään erillisille koneille paketeittain, mutta

kääntävien koneiden jakaminen usean palvelimen välillä on mahdotonta. Tämä ra-

joittaa järjestelmän skaalautuvuutta.

Tätä diplomityötä varten tehdyn tutkimuksen tuloksena syntyi joustava resurssien

jako ohjelmisto, Flexible Worker Pool (FWP). Ratkaisun ajatuksena oli tarjota er-

illisille OBS-instansseille palvelu, josta ne pystyisivät varaamaan resursseja käyt-

töönsä tarvittaessa väliaikaisesti. Tämä toteutettiin suunnittelemalla ja toteut-

tamalla ohjelmisto, joka toimii dynaamisena välityspalvelimena OBS-palvelimen

ja käännöksiä suorittavien asiakaskoneiden välillä. Jotta resurssit pystyttiin jaka-

maan reilusti, integroitiin järjestelmään erillinen vuorottelija (englanniksi sched-

uler). Tavoitteena oli kehittää järjestelmä, joka luo dynaamisen ja virtuaalisen

FWP:n kontrolloiman OBS-verkkoinfrastruktuurin.

Lopullinen toteutus osoittautui staattista resurssien allokointia paremmaksi ratkaisuksi.

Tapauksissa, joissa OBS-palvelimien välillä ei ollut päällekkäisiä käännöstöitä yk-

sittäisen OBS-instanssin saamat resurssit vastasivat kaikkia järjestelmässä tarjolla

olevia resursseja. Järjestelmä toimi paremmin myös tapauksissa, joissa jokaisella

OBS-palvelimella oli tarvetta suuremmalle määrälle resursseja, vaikkakin etu oli

pienempi. Tyypillisessä tapauksessa resurssien tarve vaihtelee suuresti, yleensä

purskeittain. Suuren järjestelmän kääntämiseen tarvitaan paljon resursseja, mutta

käännöksen valmistuttua resurssit ovat vapaina ja toimettomina joskus pitkiäkin

III

aikoja. Ratkaisu toimi juuri tällaisissa tilanteissa parhaiten, koska OBS-palvelimilla

oli keskimäärin käytössä enemmän resursseja kuin staattisesti allokoiduissa tapauk-

sissa.

IV

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Information Technology

SAMI ANTTILA : Resource Sharing for Open Build Service

Master of Science Thesis, 55 pages, 11 Appendix pages

October 2011

Major: Software engineering

Examiner: Kai Koskimies

Keywords: distributed build systems, software building, packaging, cloud computing, re-

source sharing, scheduling

The increase in software system sizes and complexity has created a need for faster

and more cost-e�cient build systems to be researched. While the actual software

building process is rather complex, most parts of it are usually automated by the

build systems. Several modern build systems, such as HP's Domain Software Engi-

neering Environment (DSEE) and openSUSE's Open Build Service (OBS), rely on

distributing the computationally heavy build tasks to several build hosts equipped

with the functionality to compile individual components and �nally deliver the re-

sulting software packages to the developers.

The problem with such build systems is that while a single build system can scale

well as a singular instance, hosting multiple build systems usually requires separate

sets of hardware resources in order to complete the tasks. This thesis concentrates

on a speci�c system, Open Build Service. OBS server dispatches the build jobs

to separate build hosts that compile and package the source code provided by the

developer. However, these build hosts cannot be shared between OBS instances

which limits the scalability of the system.

The research for this thesis led to a solution that is called the Flexible Worker Pool

(FWP). The main concept of this solution was to provide separate OBS instances

a service that allowed them to obtain additional build resources for the duration of

their build jobs when required. This was achieved by designing and implementing a

software system that functions as a dynamic proxy server between the OBS server

and the dynamically allocated the build hosts. In order to allocate the resources

fairly, a scheduler was also implemented within FWP. The goal was to create a

virtual OBS network infrastructure that was controlled by FWP.

The �nal implementation of the Flexible Worker Pool turned out to be superior to

the static dedication of build resources. In cases where there were no parallel build

jobs on multiple OBS instances, the computational capacity was equal to the whole

pool of build resources being dedicated to each of the instances individually. Even in

the cases with all OBS instances being loaded with near to constant need for build

resources, the FWP solution functioned more e�ciently. Due to the bursty nature

V

of the need for build resources, the advantage of sharing the resources was often

signi�cant and the solution cost-e�ective as the same amount of hardware could

now support more OBS instances.

VI

PREFACE

First o�, I would like to thank the University for the pro�ciency it has provided me

during these last 9, or so, years. Writing software has been my passion since I was a

little kid and being able to design and implement these new systems with a skill-set

of a professional is an unrivaled privilege.

I would also like to thank my whole family for the support I have received through-

out my life. I would like to give special thanks to my parents who patiently pushed

me towards graduation. I would also like to thank my supervising professor Kai

Koskimies, my co-workers Uwe Geuder and Miko Nieminen; This thesis, and causally

my graduation, would not have been possible without their signi�cant personal ef-

forts.

Furthermore, I would also like to thank Santtu Lakkala for practically pushing

me into this opportunity - Thanks mate!

"Work smarter, not harder."

-Sami Anttila, 2011

VII

CONTENTS

1. Introduction . 1

2. Background . 3

2.1 System building . 3

2.1.1 System building process . 3

2.1.2 System building tools . 4

2.1.3 Network-oriented system building tools 4

2.2 Cloud computing . 5

2.2.1 Overview . 5

2.2.2 Cloud systems in practice . 6

2.3 Cloud computing and build services 8

3. Open Build Service . 10

3.1 Functionality . 10

3.2 Architecture overview . 11

3.3 OBS components . 13

3.4 Communication model . 16

4. Requirements for the system . 19

4.1 Motivation . 19

4.2 Concept . 20

4.3 Software requirements . 21

4.3.1 Dynamic worker allocation . 22

4.3.2 Replaceable scheduler . 22

4.3.3 Isolated environments . 22

4.3.4 Service . 23

5. Software architecture . 24

5.1 Design principles . 24

5.2 Communication model . 24

5.2.1 Flexible worker pool as a proxy service 25

5.2.2 Using remote execution scripts for worker control 26

5.2.3 The hybrid model . 26

5.3 Software components . 27

5.4 Worker Pool Master . 28

5.4.1 RequestParser . 29

5.4.2 RemoteExecutionScript . 30

5.4.3 DummyRepoServer . 30

5.4.4 WorkerProxy . 31

5.4.5 RepoProxy . 32

5.4.6 Communication between classes 33

VIII

5.5 Worker pool infrastructure module . 33

5.6 Administrative user interface . 33

5.6.1 Controllers . 35

5.6.2 Models . 36

5.6.3 Views . 36

5.7 Scheduler . 38

5.8 Common classes . 40

5.9 Implementation tools . 41

6. E�ciency analysis . 43

6.1 Performance in a typical hardware con�guration 43

6.2 Usage statistics . 44

6.3 Simulations . 46

6.3.1 Scenario 1: Even build frequency 46

6.3.2 Scenario 2: Equal increasing build frequencies 47

6.3.3 Scenario 3: 3-to-1 build frequency di�erence 48

6.3.4 Scenario 4: Increasing non-equal build frequency 49

7. Conclusions . 51

References . 53

A.MATLAB R© FWP simulator method . 56

B.Simulation code 1: Varying amount of workers 59

C.Simulation code 2: Varying frequencies . 62

D.Simulation code 3: Varying frequencies, varying build lengths 65

IX

TERMS AND ABBREVIATIONS

AUI Administrative User Interface. The main interface for

managing the �exible worker pool

API Application user interface.

AWS Amazon Web Service.

Build code Build code is the source code the worker uses to build the

the package.

CLI Command line interface.

cpio A binary �le archiver and an archive �le format.

FWP Flexible worker pool is a resource sharing service appli-

cation for Open Build Services

Handover The process of changing the allocation of a worker from

OBS to another.

Hard handover Manual re-allocation of a worker through con�guration

modi�cation and process restarting.

HTTP Hypertext Transfer Protocol.

HTTPS Secure HTTP.

IaaS Infrastructure as a Service.

OBS Open Build Service is an open and complete distribution

platform maintained by OpenSUSE organization

Proc Proc objects in Ruby are blocks of code bound to a set

of local variables

PaaS Platform as a Service.

Rails Web-based application framework built on Ruby. Often

referred to as Ruby on Rails.

REST Representational State Transfer.

RPM RedHat Packaging Manager. Also a package format.

Ruby Ruby programming language.

SaaS Software as a Service.

SOAP Simple Object Access Protocol.

Soft handover Handover performed through the worker's interface with-

out changing the actual con�guration.

osc Open Build Service command line interface tool.

Worker An instance of the OBS performing the actual build job.

Worker host Machine hosting one or more worker instances.

X

Worker code Worker code is the source code of the worker that is re-

quired to run a worker.

WPIM Worker Pool Infrastructure Module.

WPM Worker pool master is the main part of the back-end of the

Flexible Worker Pool application.

XML Extensible Markup Language.

1

1. INTRODUCTION

This thesis describes the development process and solutions behind the Open Build

Service (OBS) build resource sharing application called the Flexible Worker Pool

(FWP).

Increasing software system sizes and complexity have created a need for more

e�cient software building methods to be researched. Compiling and building soft-

ware packages is a computationally demanding task. Several build tools have been

developed to optimize the process and most system building is automated in mod-

ern software development. Besides automation, modern build systems often rely

on distributing system build tasks to several build hosts to complete the build jobs

in a timely fashion. Such build systems scale quite well since the computational

capacity can be increased by simply adding hardware resulting in faster and more

cost-e�ective build systems. Next logical step in improving the process is sharing

build resources between multiple build systems. The need for build resources is

often very bursty in the sense that either a lot of resources are needed or none are

required. Being able to utilize the idle times of these resources in other, parallel,

build systems would result in more cost-e�ective systems with less hardware.

Open Build Service (OBS) is an open source based distribution development

platform that can be used to build software packages against numerous Linux dis-

tribution targets and hardware platforms. A single build service instance consists

of a server and the build clients, called workers, that commence the actual system

building. Each worker is dedicated to a single instance of the OBS and cannot be

shared with other instances.

While the static nature of the OBS to worker relationship is not a problem in a

typical setting, it limits the scalability of multiple independent OBS instances that

could bene�t from a shared set of hardware resources. To address this problem, the

Flexible Worker Pool was designed and implemented to serve as a hardware resource

sharing service. The main outline of the concept was to be able to dynamically share

the workers between independent OBS instances for the duration of the build jobs.

The ideas presented in this research resemble the ideas from cloud computing. OBS

servers do not have information of the available resources within the Flexible Worker

Pool other than the possible deals with the service provider.

1. Introduction 2

Chapter 2 introduces some background information related to the implemented

system. This background includes information about building software, con�gura-

tion management and packaging as well as brief introduction to the history, archi-

tecture and methodology of cloud computing. It also describes a related system that

allows build systems to utilize cloud computing resources. Chapter 3 outlines the

Open Build Service architecture and functionality. The main focus of this section is

on the architecture and communication model of the OBS because those were the

most important factors for the Flexible Worker Pool design process. Chapter 4 de-

scribes the concept, motivation and requirements for the Flexible Worker Pool that

was implemented as a part of the project. Chapter 5 describes the design principles,

the communication model and the software architecture of the implemented Flexible

Worker Pool solution in detail. Chapter 6 analyzes the performance of the Flexible

Worker Pool as a resource sharing medium compared to individual OBS instances

running on varying static hardware con�gurations. Chapter 7 draws the conclusions

based on the actualized functionality and e�ciency of the Flexible Worker Pool

system compared to the original solution.

3

2. BACKGROUND

This chapter examines the background of relevant concepts to the research. Sec-

tion 2.1 examines relevant system building concepts and tools as well as potential

issues. Section 2.2 introduces cloud computing concept along with advantages and

challenges it creates.

2.1 System building

This thesis concentrates on improving an existing system building solution, it is

important to understand the underlying concept behind the process. The following

sub-sections outline the system building process as a whole and introduce some of

the tools used in it.

2.1.1 System building process

An essential part of any bigger software development process is system building.

In this process, the di�erent components of a software system are collected and

(usually) compiled and linked into a working executable and distributable program

package. The resulting package can then be installed and executed on the target

machine. Since the compiled packages are typically architecture (such as i586 or

ARM) and operating system (for example Windows or Linux) dependent, the built

packages can generally only be used on the system architecture it was built for.

It should be noted, however, that the system building process can take place on

a di�erent architecture than the build target architecture. This is called cross-

compilation. It can create problems that are di�cult to approach and debug and

might require a complete redo of the system build to correct.

Furthermore, system building is a computationally demanding task. Depending

on the size and complexity of the system, it can take from minutes to days to compile

a system completely. For this reason, additional methods of resource division have

been developed for building sizable systems. These methods often revolve around

the idea of distributing the computationally heavy compiling tasks to multiple host

machines.

2. Background 4

Figure 2.1: Network-oriented system building[28].

2.1.2 System building tools

Given the complex nature of system building, several tools have been created to

easen the process of creating and maintaining builds. These systems can reduce

the possibility of human errors and speed up the whole process by, for example,

minimizing re-compilation if no changes have been made to the component. [28]

An example of such a tool would be the most commonly used build tool Make

[9]. Make keeps track of compiled components and their dependencies based on a

make�le created by the developer. While Make has its limitations when building

bigger systems, it is often used in component level compiling.

2.1.3 Network-oriented system building tools

Network-oriented system building tools, much like the traditional ones, are used to

compile and possibly package software. With the network-oriented systems, however,

the focus is usually on distributing the computationally demanding building tasks to

external workstations. An example of such a build system is Hewlett-Packard's Do-

main software engineering environment [15] (DSEE). DSEE's hardware architecture

is illustrated in Figure 2.1.

On a grander scale of things, software and software building can both rely on

other programs or libraries existing on the build system environment. While the

typical build tools generally notice the absence of these components, they do not

necessarily try to compile them. Such is the case with previously mentioned pro-

gram Make. Network-oriented systems can provide the build environment for the

programmer while the programmer provides the source code for the software and

required information to compile it. Such systems are often referred to as build ser-

vices.

2. Background 5

One advantage of such services is that they can be integrated with version and

con�guration management systems. Build services can potentially be used to com-

pile same software for multiple architectures and the di�erent versions can be main-

tained in data storages within the build service. Network-oriented system building

also supports distributed software development as the build systems can be accessed

via networks.

2.2 Cloud computing

While cloud computing is not the primary subject of the thesis, the researched

system implementation included several similar traits. The following sub-sections

describe cloud computing brie�y and introduce some advantages and related prob-

lems in cloud systems.

2.2.1 Overview

National Institute of Standards and Technology (NIST) de�nes cloud computing as

a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of con�gurable computing resources such as networks, servers, storage space,

applications and services that can be rapidly provisioned and released with minimal

management e�ort or service provider interaction[22].

While the underlying concept of cloud computing dates back to the 1960s, the �rst

modern implementation was launched in 2006 by Amazon. Amazon Web Service [1]

(AWS) o�ers remote computing services available over HTTP using REST[5] and

SOAP[33] protocols.

NIST outlines �ve key characteristics for cloud services: on-demand self-service,

broad network access, resource pooling, rapid elasticity and measured service[22].

In other words, the clients can dynamically receive a proper amount of computing

capabilities through the network without human interaction and without the exact

knowledge of where the resources come from other than from within the cloud. The

cloud concept is illustrated in Figure 2.2.

Furthermore, for the consumer, the resources within a cloud can be virtually

unlimited as the cloud systems are supposedly very scalable and thus, the limitations

are mainly related to the amount of hardware in the cloud. Cloud systems also

automatically control the use of resources by using some sort of metric such as

bandwidth, storage space or processing power. Figure 2.2 illustrates the general

concept of cloud computing by the di�erent application layers.

2. Background 6

Figure 2.2: Cloud computing overview[13].

The size and infrastructure of the cloud is controlled by the deployment model

used and can vary from small internal cloud services to ones open to the general

public. The type of the cloud is vastly e�ected by the needs of the community or

organization hosting it. The underlying idea is that cloud systems should be well

scalable to any necessary capacity.

2.2.2 Cloud systems in practice

Cloud systems can be divided to three sub-categories based on the nature of their

service models: Software as a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS)[22].

Software as a Service

Cloud systems o�ering software as a service grant the client software access

to applications running within the cloud. The client cannot install additional

software nor modify the underlying infrastructure of the system.

2. Background 7

Figure 2.3: Elastic build site structure[16].

Platform as a Service

Platform as a service o�ers an access point to an existing software infrastruc-

ture for the client to deploy arbitrary applications. In such a case, the client

does not have control over the infrastructure and is typically restricted to run-

ning applications that are created using the programming languages and tools

supported by the service provider.

Infrastructure as a Service

Cloud systems can also o�er infrastructure as a service; essentially giving

the client control over the portion of computational resources. In practice,

clients have control over the storage space and can con�gure their own software

environment including the operating system and the applications. While the

level of control over resources such as host �rewalls can vary, IaaS does not

grant the client any control over the underlying cloud infrastructure.

Typically, the client requests resources from the cloud, but has no knowledge

of the actual source of these resources. In other words, the internal infrastructure

of the cloud is not visible to the client. One prevalent goal of this approach is to

simplify the problem from the client's point of view. If resources can be received on

request, the client does not have to know where they are coming from. This divides

the problem into two smaller problems: management of the cloud infrastructure

(handled by the service provider) and management of the client application (handled

by the developer). Figure 2.3 illustrates the on-demand resource allocation model.

From the service provider's point of view, cloud systems also create some issues

that have to be addressed. These issues include privacy issues, performance issues

and legal issues. The legal issues are not in the scope of this thesis.

2. Background 8

Figure 2.4: Elastic build system for OBS[26].

Because of the nature of the resource sharing, an issue of privacy is very preva-

lent. The service provider has to be able to guarantee (depending on the case) a

level of security and privacy over the resources used since having an external cloud

means that the service provider also has access to the information within the shared

resources. Furthermore, the service provider has to be able to guarantee that other

users using the resources in the cloud cannot access the resources of other clients.[36]

Performance issues are also a direct result of running large distributed systems

o�ering services to arbitrary amount of clients simultaneously. In most cases, the

networking bandwidth is the limiting factor as the actual storage and processing

power resources can be extended simply by adding hardware. It should be noted

that many cloud systems do not o�er individual host machines for use directly, but

grant access to virtual machines running within a di�erent and hidden infrastructure.

In such cases the issue of managing the resources becomes more complex.

2.3 Cloud computing and build services

The next step in utilizing computational power more e�ciently is the expansion

of the network oriented build infrastructure to use cloud and cloud-like solutions.

Since the build services' build e�ciency is mostly limited by the amount of hardware,

accessing additional resources in the cloud should be able to improve the e�ectiveness

of the build system.

Ville Seppänen researched the use of cloud computing with Open Build Service in

his Master's Thesis Elastic Build System in a Hybrid Cloud Environment [26]. The

research takes an approach where it concentrates on utilizing Amazon's pre-existing

Cloud Service, Amazon Web Services (AWS), in a hybrid cloud infrastructure to

reserve an external infrastructure for the deployment and the usage of workers based

on demand as illustrated in Figure 2.4. Reserving the infrastructure from the cloud

dynamically based on a temporary need is called cloud bursting. The underline

concept is that multiple OBS instances dynamically allocate the workers based on

2. Background 9

the need and can potentially reserve the same worker hosts. Such systems create

new challenges related to reliability, security and cost-e�ciency, but o�er promising

possibilities in terms of system scaling.

10

3. OPEN BUILD SERVICE

This chapter gives a brief explanation of the main functionality and implementation

of the Open Build Service (OBS). OBS is an open and complete distribution platform

maintained by OpenSUSE organization. It provides the infrastructure for creating

and releasing open source software for numerous Linux distributions on di�erent

hardware architectures. [20]

3.1 Functionality

OBS is an open source application and it is released under the GPL license[8]. It is

being used by numerous Open Source projects such as MeeGo[31]. The biggest single

instance of the OBS is currently running at Novell servers at http://build.opensuse.org/[20]

with almost 30,000 developers working on more than 20,000 projects which consist

of over 150,000 packages in 27,000 repositories.

The main function of OBS for software developers is con�guring, building and

publishing packages. A project is an aggregate of packages with additional metadata.

Packages are automatically compiled by the OBS from the set of source �les provided

by the developer. The actual compiling can be done for di�erent architectures and

distributions without the need for external compiler farms. The developers also have

the option to work in groups on the projects.

Building features include automatic dependency resolving and linking to other

projects. Should a package depend on another package, those will also be compiled

in the building process. Changes in these depended packages will also trigger a

rebuild in the package depending on it. Such functionality makes it possible to test

patches against packages from other projects. After a completed build, the resulting

packages are published in separate repositories that can be accessed by the users.

OBS can also serve as a software distribution platform for normal users, such as

independent developers or developer groups. Users can access the newest version

of software for their distribution directly through the HTTP user interface. This

availability can further be boosted by using mirror servers.

3. Open Build Service 11

Figure 3.1: OpenSUSE Build Service instance at http://build.opensuse.org/[20]

OBS provides integration with OpenSUSE KIWI Image System[21] for automatic

product and image creation. This allows users to compile their software into ap-

pliances with just enough operating system components to run the software. The

appliance images can be created to be ran from USB sticks, live CDs or external

hard drives.

OBS o�ers an external HTTP based interface. OBS, as a default, o�ers a web-

based client interface illustrated in Figure 3.1 and a command line interface (CLI)

called osc. The interface is open and can also be accessed via third party applications

and use its resources for their bene�t.

3.2 Architecture overview

OBS server can be architecturally divided into a front-end and back-end. Front-end

consists of the API for di�erent user interface applications. It is typically accessed

via web-based user interface application or the CLI that provide user friendly access

to the resources provided to it by the back-end.

Back-end hosts repositories and sources of the projects and their packages and

manages the building process and scheduling related to it. It also maintains the

status information of the build clients, usually referred to as workers. The main

components of the OBS back-end are the source server, the repository server and

the pool of workers, generally referred to as the worker pool, that consists of one or

more build clients.

3. Open Build Service 12

Figure 3.2: OBS Internal Architecture [30]

3. Open Build Service 13

Another architectural line can be drawn between the OBS back-end server pro-

cesses and the worker pool. While the workers commence build jobs for the repos-

itory server, they are still separate instances, often (but not necessarily always)

running on separate hosts. A single OBS instance is very scalable as the amount of

workers can be increased by adding hardware.

Figure 3.2 illustrates the architecture inside the OBS. The �rst boxed part at the

top, consists of the web server that is used to forward requests to OBS. The second

box, titled "Ruby on Rails", includes the web-based user interface (on the left) and

the front-end API application on the right. On the bottom-left of the picture are the

worker instances. Both of these are connected to the OBS back-end. The front-end

connects to it through a HTTP REST API, while the workers use their own RPC

calls to communicate with the back-end. The internal connections between back-end

parts are discussed in better detail in the following sub-sections.

Individual parts of the OBS are implemented in di�erent programming languages.

The back-end is implemented in Perl, while the front-end and web user interface are

implemented in Ruby[18] using Rails web-development framework[11]. The com-

mand line interface client, osc, is implemented in Python[23].

3.3 OBS components

As mentioned in Section 3.2, OBS architecture can be divided into two main com-

ponents: the back-end and the front-end. The back-end can further be broken down

into a smaller sub-set of components, each running in their individual processes.

In principle, the back-end serves the front-end with the actual functionality of the

build service and the workers with the necessary functionality required for acquiring

build essentials.

Each OBS instance consists of one or more repository servers. The repository

server provides access to the binary repositories of the de�ned projects, packages

and architectures. Furthermore, it functions as a gateway for many other functions

of the OBS. It also forwards some events to the source server. The repository server

also maintains the list of workers registered to it (the worker pool) and informs the

scheduler of any �nished jobs by those workers.

It is noteworthy that in most cases, the OBS con�guration has only one repository

server. At the time of this research, the support for multiple repository servers was

still in development and OBS instances were thus limited to a single repository

server instance.

For each OBS instance, there exists a single source server. It manages the source

codes, revisions, project/package metadata, submit requests, etc. that originate

from the users of the OBS. In a typical con�guration, it runs on the same host as

the repository server.

3. Open Build Service 14

Dispatcher handles the dispatching of the build jobs to the available workers. The

queued build jobs are stored in the �le system as XML[34] �les by the scheduler.

Similar convention is used for storing the worker information. Dispatcher sends the

build jobs as XML through the worker's API.

Schedulers maintain the projects and packages for their corresponding repository

servers. Individual scheduler instances are required for each architecture supported

by the OBS instance. Schedulers are responsible for starting the build jobs in the

correct order as well as collecting binary packages and creating external repositories

in case the project's repository is already completely built. However, schedulers

do not actually send any commands to the workers, but store the queue in the �le

system as XML �les for the dispatcher that will send the whole build job objects

to the worker API. Scheduler also uses all the information about �nished build jobs

for dependency recalculation and creates publish events (in the �lesystem) for the

publisher.

Signer process runs in its individual process and signs the built packages. It is

not a necessity but is often recommended.

Publisher handles the publish events generated by the scheduler. It moves the

packages from projects to the corresponding repository trees and generates the re-

lated metadata. Publisher then uploads the content to the download servers where

it is available for the users to download.

Warden is an optional process that monitors running Worker instances and kills

running jobs if the workers die without sending out a clean shutdown message.

Build clients, also known as workers, are processes that build the actual packages

for the OBS. Workers often reside on separate hosts. A machine that hosts one or

more worker processes is called a worker host.

The workers request the repository server for worker code upon start up. Worker

code is the executable source code of the actual running worker process that listens

to a socket and waits for commands from the repository server. Worker code is

identi�ed by hash created from the source code and it is checked each time the

worker receives a build job. Di�ering build code versions will cause the worker to

update its worker code to the version provided by the OBS and restart the instance.

The worker code implements a HTTP-based API that receives the build requests

from the repository servers as well as status requests, log requests and potential build

interruption requests. However, it does not actually perform the build process.

3. Open Build Service 15

Figure 3.3: Some worker hosts building packages [20].

A worker will receive its build code from the repository server upon starting a build

after the worker code has been updated and the worker has been restarted. This

behavior allows easy updating of the workers for newer versions without the need

to individually perform updates. It also makes the workers more �exible if being

moved from one OBS instance to another. All worker versions are not necessarily

guaranteed to be compatible, but it should be the case for most versions.

Figure 3.3 illustrates a random set of OBS workers in action. Each separate group

of workers represent a worker host machine (i.e. build03, build10, build12). The list

also displays the worker host's architecture next to the name. Each worker host

can host an arbitrary number of workers that can be building concurrently. In most

cases, however, the amount of workers is set (but not limited) to the amount of cores

available on the build machine for maximum computational capacity utilization.

After receiving a build job and the appropriate build code, the worker commences

the build process. It will inform the repository server that its status is now building.

The actual build process is not in the scope of this thesis.

After a completed build, the resulting binaries will be sent back to the OBS

repository server in a package that will store them for later user access.

Source service server is a service for source code processing. It hosts services

such as source RPM[24] extraction, �le integrity veri�cation and package's version

metadata updating.

OBS front-end service provides an interface and access control logic for the ex-

ternal interface applications. The provided interface works either over HTTP or

HTTPS protocol, depending on the setup.

The current installment of the OBS includes two interface options for accessing

the front-end: The web-based user interface and a command line interface (osc).

Front-end is not examined in more detail since the emphasis of this research is on

the internal communication of the OBS back-end.

3. Open Build Service 16

Port

Web interface 80
Front-end 81
Repository server 5252
Source server 5352
Source service server 5152
Direct access to built packages 82

Table 3.1: Defaults inbound ports for OBS

3.4 Communication model

The communication between the separate parts of the OBS is a very complex and

wide area to cover. The aim of this section is to outline the main communication

model and only examine the speci�cs of the parts relevant to this research.

The internal communication between the sub-processes of the repository server

is handled through �le-based events. In practice this means storing XML-�les with

the event data into the �le system at designated locations for the other modules to

pick them up for processing.

The communication between the running main processes (front-end, repository

server and source server) is accomplished by using a HTTP- or HTTPS-based inter-

face. Each of the three instances reserve an inbound port. The defaults ports are

listed in Table 3.1.

Source service server port is listed below the line because it is not relevant in this

research, nor is it a necessity for running an OBS instance.

Notice the last port in Table 3.1 is not directly related of any of the parts above

it, but merely a link to a directory listing which is open by default. The actual

functionality is implemented by the underlying web-server (often lighttpd[14]). This

port is likely to be closed in most open instances.

The communication between the workers and the repository server is a compli-

cated, but relevant subject for this thesis. Both the worker and the repository server

instances implement a simplistic HTTP server with the workers' server code being

simpler than repository server's. This means that they both work on a request-

response basis and will stand-by for incoming commands.

Upon initialization, the workers �rst load the repository server's address con�g-

uration from buildhost.con�g �le. It then proceeds to request the repository server

for a worker code through a /getworkercode call. The worker code is returned in

chunked HTTP response consisting of cpio [7] encoded data that of the �les the

worker process needs to run. After successfully receiving the code, the worker host

restarts the workers in order to take the new runtime code into use as described in

Section 3.3.

3. Open Build Service 17

IDLE The worker is idle and waiting for a command from the
repository server.

BUILDING The worker is already building a package. The information
can be obtained with the /info command.

REBOOTING The worker has been issued a reboot command. Worker
will be non-receptive to new commands during this state.

KILLED The worker has been issued a completed kill order.
DISCARDED The worker's job has been discarded.
BROKEN The worker is broken and cannot be used.

Table 3.2: Worker state message types

After initializing the worker code, the worker starts a state message sending loop

that will send the worker's current state in XML format, as illustrated below, every

5 minutes to the repository server.

<worker hostarch="i686" ip="127.0.0.1" port="48417" workerid="w/1" />

The message contains the information of the worker's native architecture, ip ad-

dress, port and worker identi�er. The identi�er consists of the name of the worker

(in the example 'w') coupled with the index of the instance. This means that if the

worker host is running multiple worker processes, they will be consequently named

'w/1', 'w/2', ..., 'w/n' where n is the amount of worker instances running on the

worker host.

The repository server maintains a list of the states of all of the workers dedicated

to it and accepts new workers to the worker pool based on these state messages.

The possible worker state message types are listed in Table 3.2.

Each worker instance listens to a port randomized upon each restart of the worker

instance. Notice that a worker receiving a build job that requires worker code to be

updated will also restart the worker process, giving it a new port.

OBS will build packages based on their update status. In other words, when a

user updates the contents of a package, it will trigger a (re)build. The scheduler will

schedule the build jobs by storing an XML-�le with the con�guration of each build

under its con�gured job queue directory. A stripped example of such XML-�le is

illustrated in Program 3.1.

The dispatcher will then �nd the newly created job �les and dispatch them as

remote procedure calls (RPC) through the workers' HTTP interface. This will

trigger the workers to fetch the proper build code and commence the actual building.

The build process starts by the worker downloading the necessary binaries from

the repository server for compiling the package. It also �gures out dependencies of

the package and builds them in a clean environment as well.

3. Open Build Service 18

<buildinfo project="home:Admin" repository="openSUSE_11.4"

package="bzip2" srcserver="http://localhost.domain.fi:5352"

reposerver="http://localhost.domain.fi:5252">

<job>home:Admin::openSUSE_11.4::bzip2-4ee301d40b1a326195</job>

<arch>i586</arch>

<srcmd5>4ee3010f73fa5c72aafad40b1a326195</srcmd5>

<verifymd5>4ee3010f73fa5c72aafad40b1a326195</verifymd5>

<rev>12</rev>

<reason>new build</reason>

<needed>0</needed>

<revtime>1308668005</revtime>

<readytime>1316444845</readytime>

<file>bzip2.spec</file>

<versrel>1.0.5-47</versrel>

<bcnt>14</bcnt>

<release>47.14</release>

<subpack>bzip2-doc</subpack>

... more sub-packs ...

<bdep name="aaa_base" preinstall="1" runscripts="1" notmeta="1" />

... more dependencies ...

<path project="home:Admin" repository="openSUSE_11.4"

server="http://localhost.domain.fi:5252" />

<path project="openSUSE.org:openSUSE:11.4" repository="standard"

server="http://localhost.domain.fi:5352" />

</buildinfo>

Program 3.1: An example of build job XML-�le (HTTP headers omitted)

The worker transmits its current state to the repository server(s) it was initially

con�gured to service. However, upon receiving a build job, the worker system by-

passes the original worker con�guration and uses the con�guration received in the

build job message XML. Such con�guration includes the repository server and source

server addresses that can be seen in Program 3.1. This means that, in theory, the

scheduler could choose to redirect the resulting package to an arbitrary repository

server instead of the one it originates from.

19

4. REQUIREMENTS FOR THE SYSTEM

This chapter examines the problem of build system scaling when there are multiple

OBS instances involved. Each OBS requires a dedicated set of workers that are idle

most of the time while the need for computational resources can often surpass the

capacity when it is needed. In order to utilize the resources better, this chapter

introduces the concept and the requirements for the proposed solution, the Flexible

Worker Pool (FWP).

Section 4.1 examines the motivation behind the research in more detail and the

system implemented for this project. Section 4.2 describes the concept of the imple-

mented Flexible Worker Pool system. Section 4.3 lists and provides an explanation

for individual requirements set for the implemented software.

4.1 Motivation

Every OBS instance requires one or more workers in order to build packages for the

users as described in Chapter 3. These workers are collectively called the worker

pool. A single static worker pool with a set of dedicated workers is typically su�cient

for any single OBS instance.

Two small setups are illustrated in Figure 4.1. The setup on the left consists of 3

workers and one OBS server instance. Such setup is very scalable since the worker

count can be increased by simply adding hardware.

Figure 4.1: Two typical small OBS hardware con�gurations

4. Requirements for the system 20

Even though a single OBS instance can host virtually limitless amount of workers

making it very scalable, multiple OBS instances cannot share workers with each

other in the current software architecture so the setup would look something like

the right-side con�guration in Figure 4.1. In most OBS instances, the idle times

for individual workers are relatively high. Therefore hosting multiple OBS instances

with dedicated worker hosts for each instance can quickly become unpractical and

expensive. This can be the case, for example, in a corporate setting where separate

project groups or clients might require their separate OBS instances. Since all the

projects within a repository server are, by default, visible to all the users of the

OBS, it becomes di�cult to draw managerial lines between the di�erent subsets of

users. This could be a problem for individual company clients who wish to develop

their software in a secure and isolated environment. Having their projects exposed

to other users would make such work impossible.

Being able to share the workers dynamically and securely between OBS instances

based on the current need for computational power would reduce the cost of hard-

ware required for running multiple OBS instances. It would also make the system

more adaptive to changes in the OBS utilization rates. There are indicators in the

OBS source code and documentation that sharing workers has been thought of but

never implemented.

Such approach resembles the ideas of cloud computing presented in Section 2.2

in the sense that computational resources are requested from an external service

without prior knowledge to whether there are any available. Allocating build clients

in this manner would be more �exible than the current solution described in Chapter

3.

4.2 Concept

The Flexible Worker Pool (FWP) concept introduces the idea of a dynamic worker

pool from which individual OBS servers can reserve workers for the duration of

their build jobs. The key idea of this concept is that worker allocation should be

completely dynamic and sharing workers should not make the OBS instances using

the FWP aware of each other. This unawareness requirement creates some security

issues that need to be addressed. These issues are listed in detail as requirements

in Section 4.3.

The underlying idea is that the FWP server functions as an access point to the

hardware resources, namely the workers as illustrated in Figure 4.2. The workers

acquire the correct build code from the OBS server automatically and build the

package which can then be delivered back to the front-end client application for the

user to acquire. The service o�ered by FWP resembles Platform as a Service (PaaS)

type functionality for the OBS servers. OBS servers can deploy their build code and

4. Requirements for the system 21

Figure 4.2: Two OBS con�guration with FWP

worker code to be executed on the workers as long as the worker code provides the

proper worker's API.

From the end-user's point of view, the OBS is already a software instance with

some cloud-like behavior. The user typically cannot a�ect the exact source of the

building resources and has to trust the OBS to provide them. An exception to this

principle is the case of private OBS instances where the administrator hosts the

workers and controls the build and worker code on the OBS server.

Similarly to users not being able to control the exact source of build resources,

FWP provides the OBS instance additional resources based on the current build

queues acquired from the OBS. As such, the OBS server does not require infor-

mation regarding the amount of workers within the FWP service, but only has to

acknowledge the need for more resources and the FWP will provide them if there

are any available.

FWP concept aims to minimize the idle times and thus maximize the utilization

rates of individual workers while reducing the hardware costs of hosting multiple

OBS instances by making the dynamic pool of workers available for all the instances

connected to it.

4.3 Software requirements

Several software design requirements were de�ned based on the desired functionality

that was described in Section 4.2. The main requirements were reduced to dynamic

worker allocation examined in Section 4.3.1, replaceable scheduler examined in Sec-

tion 4.3.2, isolated environments examined in Section 4.3.3 and it being an external

serviced as explained in Section 4.3.4.

4. Requirements for the system 22

4.3.1 Dynamic worker allocation

Dynamic worker allocation during runtime is a direct requirement derived from the

original FWP concept described in Section 4.2. FWP should be able to dynamically

allocate workers to speci�ed OBS server instances for the required duration based

on their build queues. Moving the worker allocation from one OBS instance to

another is called a handover. Conceptually, the handover types were de�ned in

the context of this research: soft handovers and hard handovers. Soft handover is a

form of moving a worker from one OBS to another in a manner that does not require

recon�guration and restart of the actual worker process through shell commands.

Hard handover is a forced handover maneuver that consists of manually modifying

the con�guration, cleaning up the environment and restarting the worker. The initial

system speci�cation did not determine the kind of handovers that were to be used

in the �nal implementation.

The initial implementation concept was speci�ed as the OBS instances being able

to request workers dynamically when all the dedicated resources are being utilized.

However, as a result of further research, the option for obtaining the build queues

from the OBS server was discovered. By changing the requirement to being able to

provide resources when required, a system monitoring multiple OBS instances could

be designed. This allowed the design of better scheduling methods as the FWP is

not relying on receiving requests at arbitrary times.

4.3.2 Replaceable scheduler

A scheduler performs the dynamic worker allocation described in Section 4.3.1. It

should receive the information of dispatched builds and the existing build queues

from the OBS instances in the system and allocate the workers based on that infor-

mation.

An essential part of the design was to have a dynamic scheduler that can easily

be replaced with another implementation if deemed necessary. In practice, this

meant architecturally separating the scheduler from the main Flexible Worker Pool

architecture and preferably running it as an individual process.

This also meant that FWP is not dependent on the existence of the running

scheduler process and that the scheduler could be changed without restarting other

FWP processes.

4.3.3 Isolated environments

Based on the need for security, especially in a corporate setting, the allocated workers

and the OBS server should create isolated environments. This meant that other

OBS instances should not be able to access the workers' environment or any data

4. Requirements for the system 23

associated with it unless the worker in question is allocated to the OBS instance.

This responsibility continues further as the environment should also be clean when

the previous allocation ends and the worker is being allocated to another OBS

instance.

Therefore, Flexible Worker Pool should create temporary virtual environments

that grant access to the worker for a limited period of time and for one OBS at

a time. One idea was that this could at least partly be achieved with the use of

con�gurable software �rewalls. The nature of the relationship between the workers

and the OBS instance is temporary and therefore the �rewall rules would have to

be changed in real-time if this approach was to be used.

4.3.4 Service

An important requirement for the design was that Flexible Worker Pool could be

o�ered as an external service for internal and external OBS instances. This meant

that any OBS instance existing outside the main FWP instance could be connected

to the worker pool in a dynamic manner in order to provide it additional resources

when required.

In practice, this meant running Flexible Worker Pool as a separate instance rather

than integrating it to the existing OBS infrastructure. This requirement gave the

design some freedom, but also added some constraints. These constraints are exam-

ined in detail in Chapter 5.

24

5. SOFTWARE ARCHITECTURE

This chapter outlines the architecture of the implementation of the Flexible Worker

Pool concept that was described in Chapter 4. It begins by introducing the de-

sign princibles in Section 5.1, followed by the description of the evolution of the

communication model in Section 5.2. Section 5.3 describes the components of the

�nal implementation and the following sections introduce each of these components

separately in more detail.

5.1 Design principles

Two design principles were decided before the actual design phase of the project.

These principles a�ected the resulting architecture as a whole and are listed below.

Tolerance to changes in the OBS protocol

Modi�cations to the existing OBS protocol should be avoided if possible. In

other words, changes in the internal OBS protocol should not require a multi-

tude of changes to the Flexible Worker Pool implementation.

Minimal modi�cations to the existing OBS source code

The amount of modi�cations to the existing source code should be avoided

if possible. This way, no branching of the OBS would be required and OBS

instances could be updated independently. Furthermore, it should make the

Flexible Worker Pool easily addable to any existing system without separate

software update requirements.

5.2 Communication model

The core of the Flexible Worker Pool system design is the communication model.

Section 4 described the system as being an autonomous resource managing software

that distributes workers to OBS instances based on their need for resources. Worker

allocation can be done in two ways: by modifying the con�guration and restarting

the workers, and by redirecting the messages from the workers to OBS servers with

a separate software instance handling this proxy functionality.

The handover process has to be secure to the extent that the new OBS instance

should not be able to obtain any information regarding the previous build environ-

ment. This restriction is a result of the isolated environment requirement as it was

5. Software architecture 25

described in Section 4.3.3.

Given that the OBS is a fairly large, limitedly documented system, the design

on the communication model of the Flexible Worker Pool was started based on the

OBS protocol independent ideas before knowing all the details of the actual system.

This led to an evolution of the model as new issues emerged.

The following sub-sections describe the di�erent phases of communication model

development in chronological order and the �nal solution that was reached as a

result. It is necessary to describe these parts and their advantages and problems in

order to understand the �nal solution and why it was chosen over the alternatives.

5.2.1 Flexible worker pool as a proxy service

The �rst concept was to build the Flexible Worker Pool to serve as a proxy server

between the workers and the OBS servers. The concept revolves around the idea that

the communication between workers and OBS servers can be completely forwarded

without modifying it in order to create virtual structurally di�erent networks that

are seemingly invisible to both the OBS and the workers.

Advantages. Proxying the data between workers and OBS' had the obvious

merit of being completely independent of the OBS protocol. OBS operates on an

HTTP protocol layer that is being used to send and receive XML objects. This

allowed the use of a modi�ed HTTP proxy for implementing the proxy communica-

tion model. Furthermore, with the proxy model, callback methods could be de�ned.

These callback methods are called when the proxy server receives or sends a message

allowing the modi�cation of the redirection information as well as the message itself.

This way relevant information could be captured or modi�ed in the process which

provided the design with more potential �exibility.

One great advantage of being able to control the �ow and handle the packets

in between is that the WPM can receive real-time status information of the state

of the virtual OBS network as well as information about the status of individual

workers. In terms of controlling the building (i.e. amount of builds for example),

this gives the system the capability to limit the amount of builds OBS instances can

build as the proxy server can choose to discard further messages after the worker

has completed the build job quota given to it.

Problems. Some issues were discovered when it was noticed that proxying the

data between the OBS instances and the workers works extremely �uently. In fact,

the worker instance was completely unaware of the occurred changes in allocation.

This meant that if the worker host was allocated to another OBS when it was

building, the new OBS could obtain information about the build through the worker

API. This sort of information leakage would be a serious security issue and it had

to be addressed before the model could be securely implemented.

5. Software architecture 26

Furthermore, this model only allowed restarting the workers through the worker

API. While this might not be a problem in a general case, it does not account

for crashed workers nor can the worker's discard method be trusted to clean the

environment including the cache when a handover from one OBS to another one is

made.

5.2.2 Using remote execution scripts for worker control

In order to solve the problems that emerged in the design of the proxy service model,

another approach was considered. The second idea was to use remotely executable

scripts to modify the con�guration of the workers and the OBS instances as well

as restarting. This way, the OBS network infrastructure would actually be changed

instead of using a virtual environment. This approach opened up some possibilities

that the use of proxies alone could not achieve.

Advantages of this approach consisted of direct control over the workers, actual

network infrastructure instead of one created by transparent proxies and directly

con�gurable �rewalls. In other words, allocated worker hosts could be recon�gured

to serve the desired OBS instance and restarted with the �rewall blocking data to

the previous allocation.

Problems. It was apparent that the downside of this approach was the lack of

real time status data from the workers. The worker status could only be monitored

through polling methods or patching existing status update scripts to somehow

inform the FWP. Neither of these options were elegant nor necessarily reliable. In

practice, polling might result in a scenario where the worker would complete a build

and start a new one without the FWP noticing. This would e�ectively make the

scheduling very unreliable and non-deterministic. While patching the worker might

in fact yields the desired result, it goes against the second design principle of not

modifying the OBS source code.

5.2.3 The hybrid model

The third and �nal approach was to combine the use of proxying data with the

remote execution scripts and use the strengths of both models in order to achieve

the required functionality.

Advantages. The hybrid model uses data proxying to control the �ow of data

and receive real-time information of the status of the system. Remote execution

scripts are used to gain direct control of the workers in order to modify their con-

�guration and clean up the environment as well as their �rewall's con�guration and

restart them when necessary.

5. Software architecture 27

Problems. The only discovered practical problem with this approach was its

complexity. Either one of the earlier approaches alone can have their own problems

when it comes to the implementation. Combining the use of both means that the

practical issues of implementation have to be dealt for both. However, this issue

was not insurmountable.

Further development revealed that the use of remote execution scripts would not

necessarily be available for all setups. In practice, this led to researching alterna-

tive methods for performing the same actions earlier performed with the remote

execution scripts. Even though the remote execution scripts are still used, their im-

portance decreased when methods for restarting workers through their own API were

found. Furthermore, methods for securing the environment for the duration of the

builds were found. As a result, the use of remote execution script was made optional.

The option to remove them completely was discarded due to worker restarting being

more reliable using remote execution scripts.

5.3 Software components

Flexible worker pool consists of four independent components: the database, Ad-

ministrative User Interface (AUI), Worker Pool Master (WPM) and the scheduler.

The database can be any underlying database supported by the Rails framework.

In practice, it was tested with MySQL[19] and SQLite3[4]. It contains the data con-

cerning FWP network components such as build services, worker hosts and workers

and their relationships.

AUI is a web-based user interface implemented with Ruby on Rails application

framework for system administrators. It is also used as the access point to the

database for the WPM. It grants the administrator the tools for monitoring and

controlling the state and structure of the virtual proxy network.

WPM is an independent process that handles the proxy threads based on the

routing information it requests and receives from the database through AUI. WPM

is responsible for proxying the data from the worker hosts to the correct OBS reposi-

tory servers and vice versa. WPM uses Worker Pool Infrastructure Module (WPIM)

for retrieving and storing data of the network structure. WPIM includes the func-

tionality to perform requests to the AUI API and store the received runtime infor-

mation.

The scheduler is a separate process that monitors the build queues of the repos-

itory servers connected to FWP and allocates the workers based on these queues.

The manual allocation functionality is also accessible through the AUI. This means

that running the scheduler is optional although often recommended for optimal per-

formance.

5. Software architecture 28

Figure 5.1: Component level structure of the Flexible Worker Pool

Figure 5.1 illustrated the relationships between software components. The rela-

tionships to OBS components (Worker and Repository server) can be seen. The

individual components are described in detail in the following sub-sections.

5.4 Worker Pool Master

Worker pool master is responsible for conveying the messages from the individual

worker hosts to the repository server and vice versa. This is achieved by running

individual proxy threads for each worker host and repository server. The proxies

use the data from AUI to forward the messages to correct addresses. WPM also

updates the worker states and allocation values in the database when builds are

commenced. Furthermore, it performs the handovers when remaining allocations

reach zero and all build jobs have been completed. The automatic allocations are

handled by the scheduler as described in Section 5.7. Optionally, the allocations can

be set manually through the AUI regardless of the existence of the scheduler.

WPM consists of three major parts: Worker proxies, repository server proxy, and

dummy repository server.

Worker proxies are started for each running worker within the FWP. Each worker

proxy forwards the requests from the repository server directly to the appointed

worker instance.

5. Software architecture 29

Repository server proxy is the main thread of the WPM. It forwards the requests

from the worker hosts to the assigned OBS repository servers. It is also respon-

sible for updating the worker's state information to the database and performing

handovers when necessary. Repository server proxy also changes worker port from

worker's state messages to correspond the appropriate worker proxy's port that

generally di�ers from the actual worker's port.

Dummy repository server is a singular thread that provides some functionality of

a repository server to the unassigned (or possibly some error state) workers. Since a

worker does not start if it cannot receive a proper worker code, one will be provided

for it by the dummy repository server.

Worker Pool Master serves as a data transfer medium in a rather transparent

manner. In practice, this does not mean that WPM intentionally hides its existence

but that the OBS communicates with it as if it was the repository server/worker.

As a result of the design of OBS communication model, the actual tra�c between

the OBS and the workers goes both through the WPM and directly between the

instances.

The workers send their state information and default requests to the repository

server IP address or hostname they were given in the con�guration �le upon ini-

tialization. However, because individual build job communication works directly

between the worker host and repository server as described in Section 3.4, the high

bandwidth communication such as binary uploads and binary downloads bypass the

proxies making the solution more e�cient.

On a lower abstraction level, the classes include and consist of a multitude of

structure classes. While the majority of the functionality of each class resides in the

main classes, RepoProxy and WorkerProxy, it is important to understand the role

of each sub-class in order to understand the system. The overall class structure and

the details of the individual classes as illustrated in Figure 5.2.

5.4.1 RequestParser

RequestParser class parses the di�erent kinds of HTTP requests sent by the work-

ers and the repository server and returns instances of appropriate request classes,

denoted by the Request su�x in the class name. It uses the query string associated

with the request to identify the type of the message. If an unidenti�ed request is

passed to the RequestParser, it returns an instance of itself.

StateRequest class represents a state update message from the worker. The in-

stance parses the values from the given URL. These values consist of the worker's

id (in format: worker host name/instance #), architecture (f.ex. "i586"), listened

port and state. The class also implements the method for modifying the port in the

query port number translation.

5. Software architecture 30

Figure 5.2: Worker Pool Master's class structure.

BuildRequest class represents a build job initiated by the repository server. It

includes the necessary information about the build job, such as the target worker id

and the worker and build code hashes. The actual build job data is stored as XML

in the original request but is not parsed by the BuildRequest class.

5.4.2 RemoteExecutionScript

RemoteExecutionScript is an instantiable class. Each instance represents a shell

script that can be executed on a remote machine through an SSH2 connection[35].

The chosen SSH2 implementation was a Ruby Gem called Net::SSH [2] that uses the

system's underlying SSH2 implementation for forming connections. This is a good

approach for automatic authentication because both the underlying SSH2 imple-

mentation and Net::SSH are widely used and thoroughly tested, making the choice

secure as well.

5.4.3 DummyRepoServer

Class DummyRepoServer instantiates an individual thread dedicated to servicing

non-dedicated worker hosts. When a worker instance is started, it requires the

worker code to run. This will be a problem if, upon start up, the worker is not

5. Software architecture 31

allocated to any OBS instance. In such cases, the worker code needs to be provided

to the worker hosts manually. For such cases, the DummyRepoServer is used.

DummyRepoServer receives calls from the worker such as idle state messages

and worker code requests and answers them properly. In practice, this means re-

turning the worker code cpio encoded package when requested and answering the

state updates accordingly. Since the WEBrick proxies are being used for the actual

data transfer, this solution was simpler and far more convenient to implement than

integrating these responses to the actual proxy server code.

5.4.4 WorkerProxy

Class WorkerProxy is an instantiable class. One worker proxy is instantiated for

each worker. It is being used by the OBS server instance to communicate with the

individual workers.

Each instance of the WorkerProxy listens to a single port. The port number is

chosen by selecting the �rst free port with a running number greater than 3000.

In other words, the worker proxies will receive ports (assuming non-reserved) 3001,

3002, ..., etc. in the order of initialization. The role of the worker proxy is to perform

the necessary modi�cations to the messages that are send to the workers.

Besides potentially modifying the messages, the WorkerProxy class can also

choose to discard messages that originate from illegal addresses such as unregis-

tered OBS instances. Furthermore, it implements methods for shutting down the

proxies.

Each instance of the WorkerProxy class instantiate a single WEBrick proxy

server[29] thread for the actual proxy functionality. WEBrick proxies operate on

callback methods. The main functionality is a Proc object stored in the instance

variable @callback_proc that is passed to the proxy thread as a variable upon ini-

tialization. It will be called when the proxy receives a message. In theory, WEBrick

proxy server o�ers functionality for de�ning callbacks for return messages as well,

but these callbacks are not utilized in the WPM implementation. Instead, all the

responses are returned to the original sender as they are received from the repository

server.

Class WorkerProxy implements a class method interface that is used by the call-

back code. Class methods are similar to static methods (in comparison to languages

such as C++) in the sense that they can be called without instantiating the class

through the class interface. This interface was necessary for using the WEBrick

proxy as the thread is not running inside the WorkerProxy class. In practice, the

callback sets the forward IP address and port for the message or, in case of an error,

discards it by throwing an exception.

Instance of the WorkerProxy class is identi�ed by an unique instance of Work-

5. Software architecture 32

erInstance class. It contains the necessary data to make the distinction between

workers (IP address, name and port).

5.4.5 RepoProxy

RepoProxy class maintains a single proxy thread for forwarding the messages from

workers to repository servers. The main proxy functionality is handled by aWEBrick

proxy server instance, similar to WorkerProxy class. The internal implementation

of the RepoProxy class relies completely on class methods and, thus, it is never

actually instantiated. It listens to the same port as OBS repository servers. In fact,

this currently sets the limitation of not being able to run WPM on the same host as

the repository server. It also limits the WPM to the extent that if the OBS instances

have been con�gured to use unconventional ports, it will only be able to service one

of these ports.

Technically it might be possible to run an instance of WPM for each separate

port of the connected OBS instances, but the concurrency issues resulting from this

have not been investigated. This design decision was reached due to the internal

repository server implementation issue where the repository server sends the port

it listens to the worker. Changing this from the message itself (not the headers),

would have been possible, but this would have resulted in all the data transfers

going through the repository proxy, including the heavy binary data transfers. The

decision was made to prefer e�ciency over adaptivity on this issue.

Upon receiving a message from a worker host, the repository proxy thread sends

a query to the AUI in order to fetch the associated worker host information. An

exception will be thrown as a result of non-existing worker hosts. The exception

will cause the message to be discarded and the information about the sender to

be logged. Errors in the proxy process will typically only discard the message and

future messages will work properly if they are coming from validated sources.

Most of the messages proxied by the repository proxy are worker state messages.

Other than that, the worker does not need to be in contact with the OBS server

instance, unless it is commencing a build. State messages are the most important

for WPM since they deliver the worker state and actions to it in real-time. Since the

listened port of the WorkerProxy instance di�ers from the actual worker's port and

the port is included in the state message query string, the repository proxy performs

a port number translation before forwarding the message, changing the port from

the actual port of the worker instance to the port of the corresponding worker proxy.

Another important function of the RepoProxy class is to forward the /getworker-

code requests. Depending on the existence of the allocation for the worker host the

request originates from, the message will be forwarded to either the allocated OBS

server instance or the DummyRepoServer instance.

5. Software architecture 33

After completing a build, the worker will send it directly to the repository server

so no RepoProxy is required in the transaction.

5.4.6 Communication between classes

The structure of WPM consists of the main repository proxy thread that initializes

the separate worker proxy threads. The repository proxy is a non-instantiable class

that functions much like a singleton[10].

WorkerProxy maintains list(s) of the WorkerProxy instances. These lists are not

directly accessible outside the WorkerProxy class, however, there are methods for

getting and creating WorkerProxy instances.

RepoProxy communicates with the individual WorkerProxy instances through

WorkerProxy class method interface. It fetches the WorkerProxy instance handles

identi�ed by the WorkerInstance class instances it can generate from the necessary

worker host and worker information. In practice, this is required when the repository

proxy receives a state message from a worker that is, or will as a result of a handover,

be assigned to a repository server. RepoProxy will create the WorkerInstance based

on the data received in the state request and start the appropriate WorkerProxy

thread unless it's already running.

5.5 Worker pool infrastructure module

The worker pool infrastructure module represents the system's internal data struc-

ture. The structure is similar to the database structure and, thus, similar to the

AUI's model structure. Such design pattern is called Active Record [6].

The �rst consideration was to use the AUI models directly, and thus the use Ruby

on Rails' ActiveRecord [12] to access the database directly was considered. However,

it was decided that having a single access point to the database is better design

structurally. It was also concluded that this design should solve some potential

concurrency issues with the database usage.

Instead of using Rails' ActiveRecord, a new class was implemented with a similar

interface. DatabaseRecord class is functionally and syntactically similar to ActiveRe-

cord. However, instead of directly accessing the database, DatabaseRecord uses an

external RESTful API[5] interface provided by the AUI.

5.6 Administrative user interface

Administrative User Interface (AUI) was implemented using the Rails 2.3 framework

for Ruby (usually referred to as Ruby on Rails). This framework was chosen because

it is also used in the OBS web-based user interface implementation.

5. Software architecture 34

Figure 5.3: WPIM class structure.

The main function of the AUI is to provide the user and the WPM the means

to modify the routing information from worker hosts to OBS server instances. AUI

implements a RESTful HTTP interface for WPM and the scheduler. This interface

communicates with sent and received JSON[3] objects. Furthermore, it o�ers a

web-based interface for the user for making direct modi�cations in the database.

The class structure of the AUI follows the Model-View-Controller (MVC)[25]

structure. Each resource in the database is represented by a model class and con-

trolled by its own controller as illustrated in Figure 5.4. Individual views provide

the user with the means to view and modify the data in the model classes through

the controller. Such structure is typical for Rails applications.

As illustrated in Figure 5.4, three identi�able resources can be seen in the class

structure: BuildService, WorkerHost and Worker. Each is controlled solely by its

dedicated controller. Besides the method index that lists all the resources of that

type, the other methods are always targeted to an individual database resource.

ClassesActionController::Base, ApplicationController andActiveRecord::Base are

the base classes for the structure provided by Rails. They provide the actual

database connectivity as well as the means to deliver relevant data to the views

for the client application to receive.

5. Software architecture 35

Figure 5.4: Administrative user interface class structure.

Every action of a controller can have a view. In Rails applications, views are

displayed by the framework and no new classes need to be implemented for them.

Instead, views are implemented by providing Rails with properly formatted HTML

templates with embedded Ruby (ERB)[17], or by using Rails' plug-ins for pre-

formatted objects such as JSON.

5.6.1 Controllers

The �ow control and the actual program logic of the software are located in the

controllers. The controllers decide, generally based on the users actions, which

action to perform and which view to show as a result as well as what information

to include in it. Controllers access the resources through the model classes and

convey the information to the views where it is displayed to the user or the client

application that made the request.

BuildServicesController handles the creation, modi�cation, deletion and fetching

of information regarding the build service records in the database. WorkerHostsCon-

troller handles the creation, modi�cation and fetching of information regarding the

worker host records in the database. Each worker host resource represents a single

physical or virtual host with a unique IP address. WorkersController handles the

creation, modi�cation and fetching of information regarding the worker records in

the database.

5. Software architecture 36

Resource Views

BuildService Edit
Index
New
Show

WorkerHost Edit
Index
New
Show

Worker Index

Table 5.1: Worker states and their representative strings

5.6.2 Models

All model classes are inherited from the Rails ActiveRecord::Base class. ActiveRe-

cord::Base provides the classes with the interfaces to access the database. Each

model class represents its equivalent table in the database. This means that the in-

stance variables of a model class correspond to the �elds of the table in the database.

In practice, this means that Rails programs are written on a rather high level of ab-

straction and the actual database interface is not visible to the programmer.

BuildService instance represents an individual build service in the database. It

stores build service variables such as name, ip and port, as well as WPM related

data such as scheduling priority, maximum dynamic worker hosts and online status.

WorkerHost instance represents an individual worker host in the database. It

stores information about the worker host as well as required routing data. This

information includes the name and IP of the worker host as well as the current and

next allocation lengths and targets. Notice that it contains no information of the

architecture or ports listened by the worker host.

Worker instance represents an individual worker instance running within a worker

host. It stores the information updated by the WPM upon state messages. This

information consists of the name, port, state and the architecture of the worker

instance. Furthermore, it stores the foreign key to the worker host, forming a many-

to-one relationship between Worker and WorkerHost classes.

5.6.3 Views

The user interface consists of views. Each view is represented by a HTML view with

embedded Ruby. For each action that user can perform there exists a view. Such

actions include creating, viewing, deleting and modifying resources.

Table 5.1 lists the views by resource type. Notice that not all actions require a

speci�c view. For example deleting an object from the database will redirect the

5. Software architecture 37

user to the Index view of that resource. Saving an edited object in Edit view will

trigger Update action that redirects to the Show action. Notice thatWorker only has

Index view. This is due to the relevant worker information usually being displayed

in the WorkerHost views. The index was only implemented so that removed worker

instances could manually be removed from the database.

Each view is identi�ed by an URL that points directly to the resource and action

(f.ex. /worker_host/1/edit). This kind of referencing system provides a simple,

easily accessible interface from the browser as well as the AUI API interface.

AUI provides WPM with a RESTful API to its methods. The methods are,

for the most part, same as the ones used with AUI user interface with a couple of

exceptions.

Firstly, the worker information can be accessed directly through theWorkersCon-

troller unlike in the user interface where individual workers can only be removed

through the WorkerHost view.

Secondly, the amount of data retrieved through the API is usually smaller than

that displayed by the user interface. All API calls (except listing the resources) are

directed at individual resources in the database.

{"build_service":{

"worker_hosts":[],

"name":"Asmodeus",

"created_at":"2011-06-07T16:42:00Z",

"updated_at":"2011-06-21T14:07:24Z",

"port":5252,

"priority":2,

"lock_version":1,

"max_worker_hosts":-1,

"id":1,

"ip":"192.168.1.100",

"status":true

}}

Program 5.2: An example of a BuildService JSON object from AUI API.

The objects are transferred over HTTP as JSON objects. Program 5.2 illustrates

a sample BuildService object that was received through the AUI API. AUI makes the

distinction between browsers and WPM based on the action URL. In order to receive

JSON responses from the AUI, ".json" has to be added to the end of the action URL.

For example /build_service/1.json would return the JSON representation of the �rst

build service in the database.

Internal Rails implementation dictates some of the request types for the standard

RESTful interface. These types for each action are listed in Table 5.2.

5. Software architecture 38

Action HTTP Request Type In JSON API

Index GET Yes
Show GET Yes
New GET No
Create PUT Yes
Edit GET No
Update POST Yes
Destroy DELETE Yes

Table 5.2: HTTP request types for API calls (Rails 2.3)

5.7 Scheduler

Scheduler takes care of properly �guring out the allocations for each worker host. It

does not commit the actual handover or directly assign the worker hosts, but merely

sets the next allocation through the AUI API. WPM will decide whether to act on

the next allocation or not. The actual scheduler that performs the actions is chosen

in a con�guration �le from a list of dynamically loaded scheduler classes.

Store the current priorities between scheduling rounds

@cur_priorities = Array.new

def perform_scheduling

OBS = fetch_build_services # Fetch OBS' from database

OBS.queues = fetch_queues # Fetch build queues from OBS

Loop as long as free workers and queues exist

while workers.free? and queues.exist?

Update current priorities (internal for scheduler)

@cur_priorities.each do |index, prio|

prio += OBS[index].priority

end

Sort the queues, highest current priority first

obs_by_priority = sort(OBS, :by => cur_priorities)

Service the OBS by giving it workers

service_obs(obs_by_priority.first)

Reset the priority and reduce queue

obs_by_priority.first.reset_priority

obs_by_priority.first.queue--

end

end

Program 5.3: Ruby pseudo-code for weighted round robin algorithm.

5. Software architecture 39

Figure 5.5: Scheduler class structure.

A simple weighted round-robin[27] algorithm shown in Program 5.3. The goal

was to implement a simple and fair scheduler with the option to prioritize some

OBS instances over the others. This was done by setting each OBS instance in

the database with a base priority that determines the level of service it will receive

from the FWP. Each scheduling round, the base priorities are added to the current

priorities maintained by the scheduler between scheduling rounds. The build service

queues are then sorted by their current priority and a worker is allocated. The OBS

instance that receives the worker will have it's priority reset to the initial value.

This loop will be continued until no free workers or no queues are left.

The algorithm is fair and thus guarantees that each OBS will get serviced at some

point and that equally prioritized OBS instances will acquire the same amount of

workers assuming they have similar build resource requirements.

The practical implementation of the algorithm is slightly more complex since it

processes the build job queues by architectures and takes capabilities of the work-

ers into account. This means that the scheduler has the required information to

determine whether a worker is capable of completing the queued build.

The scheduler was not the main emphasis of the research and could de�nitely be

more e�cient with more advanced scheduling algorithms. This is also one of the

reasons for designing the scheduler replaceable so that more advanced schedulers

can be designed and easily taken into use in the future.

5. Software architecture 40

Figure 5.6: Common classes shared by WPM, AUI and the schedulers.

All the individual scheduler implementations are inherited from the base class

SchedulerBase that implements a basic set of helper methods for the schedulers

to use as illustrated in Figure 5.5. These methods include OBS and worker state

check methods as well as the methods required for performing the actual worker

allocations.

The scheduler classes themselves are only required to implement the method per-

form_scheduling which will return either true on success or false on failure. It

was decided that the scheduler should not modify the current allocations of any of

the worker hosts because this might cause some routing errors and security risks.

The perform_scheduling method is only allowed to modify the next_allocation and

next_build_service variables of a worker host. While this requirement is not mon-

itored by the software, all scheduler designers are urged to comply with the set

restraint as breaking it might result in an unstable system.

5.8 Common classes

In addition, WPM, WPIM, AUI and the scheduler use a shared set of helper classes.

Such classes include con�guration loaders and symbol conversions to readable text.

These classes are illustrated in Figure 5.6.

Class Logger is a Ruby base-class that implements a logger with the support for

di�erent logging levels and output formats. It is being used by every part of the

WPM to record actions and errors within the system.

Class LoggerCon�g is a con�guration class that hosts a set of con�guration vari-

ables for separate loggers. Each part of the WPM and the scheduler has it's own

logger and a matching variable set to LoggerCon�g. In the implemented version, the

5. Software architecture 41

IDLE "idle"
BUILDING "building"
KILLED "killed"
DISCARDED "discarded"
REBOOTING "rebooting"
BROKEN "broken"

Table 5.3: Worker states and their representative strings

logging level and output �le could be set for each logger. The output �le could also

be set to point to a stream such as STDOUT or STDERR.

Class Con�guredLogger extends the basic logger by adding the functionality for

manually con�guring the loggers logging level and output type in the WPM con�g-

uration. A con�gured logger will receive it's logging level and output type from the

LoggerCon�g class.

Class WorkerState is a class shared by the AUI and the WPM. It is a simple

mapper class that maps individual worker status strings to their designated integer

representatives. Since both of the forementioned instances use the worker state

information as it resides in the database, such shared class was required. It o�ers

a simple interface for converting string values into integer constants and vice versa.

The possible conversion values are illustrated in Table 5.3.

Class BuildServicePriority class is similar to WorkerState class. It maintains

constants regarding di�erent build service priorities. Build service priorities are

used for scheduling. Each build service has a priority that represents the level

of service it's expecting to receive. Since the priorities are set through the AUI,

BuildServicePriority class is being used by both the scheduler and the AUI and is

thus placed under the common classes.

Class WPMCon�g holds the con�guration variables for WPM and the scheduler.

Such variables include the AUI address and the scheduler's implementation that is

to be used. The variables are loaded as a part of loading fwp_settings.rb �le upon

WPM startup.

5.9 Implementation tools

The tools for implementing Flexible Worker Pool were chosen based on the OBS'

implementation techniques. Since the OBS front-end was implemented using Ruby

on Rails (2.3), it was decided that AUI would be implemented using the same

programming language and framework.

WPM shares some data regarding the WPIM with the AUI as described in Section

5.8. This, along with the implementers preferences, lead into the decision to use

Ruby (1.8.7) as the main programming language for WPM as well.

5. Software architecture 42

The underlying database system can be freely chosen from those supported by

the Rails framework[11]. SQLite3 was set up as a default and was used in the

development process and is therefore the most tested database system for the �exible

worker pool. MySQL was also tested in a real production environment. Either way,

the underlying database should not have e�ect on the functionality and it can be

chosen freely from the pool of Rails' supported systems.

43

6. EFFICIENCY ANALYSIS

This chapter describes the e�ciency analysis performed for the Flexible Worker Pool

in practice and using simulations for the scheduling algorithm. Since the solution

does not improve the e�ciency of a worker in a single build, the analysis will concen-

trate on larger FWP networks with multiple OBS servers and workers and examine

the performance compared to separate OBS instances with a static set of workers.

Most of the analysis is based on simulations due to the limited amount of actual

usage statistics.

6.1 Performance in a typical hardware con�guration

Typical hardware con�guration for an OBS network consists of an OBS server and

workers running on separate hosts. The main focus of this analysis is on con�gura-

tions with multiple OBS instances as those are a�ected by the FWP.

The simplest case to see bene�t from the FWP is the case of two OBS machines

with one worker. With the current OBS architecture, this worker cannot be shared

between the OBS instances and must be con�gured to serve one OBS only. In this

case one OBS instance gets 100 percent service rate and the other one gets none.

If a Flexible Worker Pool instance is added to the con�guration, assuming an

in�nite build queue for both OBS instances, the setup guarantees 50 percent service

rate at all times. The scheduler maintains a balance between accepted build jobs

so neither is being favored (unless the scheduler priorities are set). Notice that the

time it takes to complete a build can vary and the current implementation of the

scheduler does not take this into account. In practice, this could be made more

e�cient by improving the scheduling algorithms so that they would estimate the

amount of time spent for the build. However, this is not in the scope of this thesis.

Notice that in this case a machine for the FWP is added since with the current

implementation of the FWP, it cannot reside on the same host as the repository

server. While the amount of workers remains the same, a fourth host is required

to properly utilize the Flexible Worker Pool. In such setting, if the FWP host is

capable of e�ciently functioning as a worker, the more e�cient solution would be

to utilize it as a worker. Both OBS instances would then be receiving service from a

100 percent dedicated worker, vastly surpassing the performance of the worker pool.

However, if we assume the worker being of di�erent architecture for faster native

6. E�ciency analysis 44

builds, the FWP host could not be used as a worker, thus rendering the FWP the

only viable solution in order to utilize the worker for both OBS instances.

If a third OBS host is added to the con�guration, there is no way to implement a

working network without the Flexible Worker Pool. In such a case, only 33 percent

service rates can be guaranteed. While the number is signi�cantly lower (per OBS)

compared to individual dedicated worker hosts, the fact that most worker hosts are

likely to be idle most of the time makes it a viable solution considering the saving

in hardware costs. For example, assuming that each of the three OBS will have a

build waiting 25 percent of the time, having 33 percent service rate guarantees that

all the builds will �nish. However, since the builds can be queued at the same time,

some OBS instances might be forced to wait for the completion of the other OBS'

build. Thus, the best way to guarantee fast service delivery is to host dedicated

worker hosts for priority builds, but this adds some hardware costs.

The actual advantages of the FWP can be seen more clearly when the con�gu-

ration includes more host machines and non-in�nite build queues. Several typical

scenarios will be examined in Section 6.3. Since one of the key goals of FWP is

to complete same amount (or more) of builds with less hardware, the focus was

on examining the two solutions on di�erent hardware settings and comparing their

potential capacity.

6.2 Usage statistics

The system was initially tested with virtual machines. However, due to the limited

capacity, only a handful of virtual machines could be used be used for testing and

proper statistics of the usage levels could only be achieved through testing in real

environment. FWP was taken into use for building MeeGo for ARM architecture.

• 1 Flexible Worker Pool

• 2 Build Services (OBS-1, OBS-2)

• 15 ARM Worker Hosts in FWP (Worker-1, Worker-2, ..., Worker-15)

• 3 Static ARM worker hosts (2 for OBS-1, 1 for OBS-2)

• 8 Static x86_64 Worker Hosts outside FWP (allocated to OBS-1)

The hardware con�guration included 2 OBS instances with 18 ARM workers.

Namely OBS-1, OBS-2 and workers Worker-1 through Worker-15 in the FWP. In

addition, 3 static ARM worker hosts are allocated outside the FWP, two for OBS-1

and one for OBS-2. Furthermore, the OBS-1 that was assumed to have more tra�c

had 8 additional static workers running on x86_64 architecture for cross-compiling

6. E�ciency analysis 45

Worker host Builds Utilization

Worker-1/1 48 3.00%
Worker-2/1 38 5.49%
Worker-3/1 24 8.26%
Worker-4/1 24 5.96%
Worker-5/1 20 4.81%
Worker-6/1 14 10.18%
Worker-7/1 7 3.34%
Worker-8/1 2 0.03%
Worker-9/1 9 6.07%
Worker-10/1 1 0.02%
Worker-11/1 0 0.0%
Worker-12/1 6 5.31%
Worker-13/1 1 0.06%
Worker-14/1 0 0.0%
Worker-15/1 14 1.87%

Table 6.1: Build statistics from a real environment

OBS instance Completed

builds

OBS-1 194
OBS-2 14

Table 6.2: Completed builds per OBS

ARM packages. This totaled 15 dynamically allocatable workers plus static 12

workers for OBS-1 and 1 static worker for OBS-2.

Table 6.1 includes the usage statistics from the real environment from a 24 day

period of actual use of the system. During this time, numerous MeeGo utility

and system builds were completed, mostly by individual developers compiling their

software. As can be seen, the usage levels were fairly low on the average. The

utilization percentage represents the time worker was building instead of being idle.

It was noticed that the early worker instances were favored over the latter ones in

terms of accomplished builds. This was due to the lack of implementation of a load

balancing mechanism in the scheduler. It should also be noticed that the amount

of builds does not correlate directly with the utilization rate as the di�erent builds

can take an arbitrary amount of time. This is also why the amount of builds is not

completely linear from �rst to last.

Table 6.2 shows the amount of completed build jobs per OBS. These statistics

only include the build jobs that went through the OBS. In practice, it is highly likely

that the static workers were utilized as a priority and are therefore not shown in

these statistics. In that sense, the statistics also show that the burst in build jobs

has required more resources than statically available for the OBS, e�ectively making

6. E�ciency analysis 46

the process faster as more parallel build jobs could be completed. The amount of

packages built by OBS-2 was signi�cantly lower in total, but the duration of the

build jobs was also decreased signi�cantly due to being able to build the packages

in a parallel fashion. In practice, most of the build time was allocated to OBS-1.

This meant that instead of utilizing a static set of hardware resources, OBS-1 got all

the resources in the pool for the duration of its build jobs, which made the process

remarkably faster compared to having the worker hosts divided staticly. Worker-11

and Worker-14 had crashed during the period and were not restarted during the

highest build spikes and the builds completed by them is therefore zero.

6.3 Simulations

In order to analyze the e�ciency of the scheduler solution, several simulations were

written with MATLAB R©[32]. The simulation code is available in Appendices A, B,

C and D. The use of simulations was needed due to the limited amount of real data

available at the time of this research. These simulations simulate the weighted round-

robin scheduling algorithm that was described in Section 5.7 in various di�erent

setups.

Two assumptions were made for the following simulations: all the build times are

constant and similar, build frequencies (the frequency with which the build jobs are

commenced in the system) can vary per OBS. The completed builds were analyzed

over a 100 time unit time frame over a 1000 rounds of simulations in order to �nd

the averages.

In scenarios 1 and 2, the hardware con�guration is assumed to be the following:

• 1 Flexible Worker Pool

• 2 Build Services

• 4 Worker Hosts

In the dynamic case, both workers are connected to the network through the

Flexible Worker Pool. In the static case, the workers are divided evenly for both

OBS instances.

6.3.1 Scenario 1: Even build frequency

In this scenario each build was assumed to take 5 units of time. This means that on

the average with 20 percent build frequency there is always a build waiting in the

queue.

Table 6.3 illustrates the simulation results over 1000 simulation rounds. It is

noticed that with 50 percent build queue frequency, the results are the similar for

both con�gurations.

6. E�ciency analysis 47

OBS-1 OBS-2

Dynamic workers 39.75 39.76
Static workers 39.35 39.37

Table 6.3: Completed build jobs with even build frequency ratio

Figure 6.1: Simulation results for OBS' build frequency as equal variables

In practice, it is possible that some variance in build times will occur due to

arbitrary waiting periods. It should be noted that even in this case, dynamic worker

sharing always appeared to emerge slightly ahead. While the di�erence is quite

negligible in practice, it shows that the dynamic approach can bene�t the system

in situations where other build service's queue is empty. Such cases are rare in the

given setting.

6.3.2 Scenario 2: Equal increasing build frequencies

In order to determine the performance in the cases where the build frequency is the

same, this scenario evaluates the performance of the static and dynamic solutions

by setting both build frequencies equal in the range from 0 to 1.

Figure 6.1 illustrates the results of the simulation. The advantage of the Flexible

Worker Pool can clearly be seen, especially in the middle section of the range. While

the advantage is relatively insigni�cant, it still surpasses that of the static case. This

advantage is a result of the FWP solution performing more �exible in the cases where

one of the build services is idle and the other one has more than 2 jobs queued up.

In such case, FWP will allocate additional resources to the OBS that requires them

6. E�ciency analysis 48

OBS-1 OBS-2

Dynamic workers 55.27 24.36
Static workers 39.99 24.77

Table 6.4: Completed build jobs with 3-to-1 build frequency ratio

so the utilization rates are higher and more balanced.

For lower frequencies, the results were almost identical. This was due to both

OBS' having enough resources at their disposal. Once the frequencies reached higher

rates, both OBS' had jobs queued up at all times. Fair allocation is e�ectively similar

to both OBS having 2 dedicated workers in such a case and no additional resources

can be gained at this point. Notice that FWP still performs at equal level compared

to the static case.

Even though variance in build queues showed some advantage when FWP was

used, the main advantage was seen in uneven build queues and bursts of builds

rather than constant build frequencies.

6.3.3 Scenario 3: 3-to-1 build frequency di�erence

In this scenario the 3-to-1 build frequency ratio was assumed between the OBS

instances. In practice, OBS-1 was pushing new build jobs 3 times more frequently

than OBS-2.

As illustrated in Table 6.4, a vast improvement can be seen in the amount of

completed builds for OBS-1. In fact, the noteworthy statistic is that the number is

signi�cantly larger than with two single dedicated worker hosts. This is due to the

fact that OBS-1 occasionally has more than two worker hosts at it's disposal. OBS-2

commences builds at a lower frequency leaving the worker hosts free for OBS-1 to

use.

The lower build frequency for OBS-2 also explains why the amount of completed

is signi�cantly lower for OBS-2 compared to OBS-1. Since the frequencies a�ect

the amount of builds the OBS' are trying to build, the numbers are not directly

comparable between scenarios.

In this case, a minor di�erence can be noticed between the static and dynamic

worker sharing method for OBS-2 with the lower build frequency. The dynamic

version appears to consistently give a lower amount of completed builds. While

this is practically negligible, it can still be explained by the fact that in the static

setting, the OBS always has two worker hosts in it's disposal, while in the dynamic

case, there are times when OBS-2 has to wait for the worker hosts to be released by

OBS-1.

6. E�ciency analysis 49

Figure 6.2: Simulation results for OBS-1's build frequency as a variable

6.3.4 Scenario 4: Increasing non-equal build frequency

The third scenario examined the case where the build frequency was set as a variable

in order to draw a graph to examine the bene�t gained from using the Flexible

Worker Pool. The build frequency for OBS-1 was set to 0.25 while the frequency

for OBS-2 was set to run from 0 to 1.

Figure 6.2 illustrates the results. The light gray lines show the amount of com-

pleted builds for the static dedicated workers. The two lines reaching higher build

counts illustrate the amount of completed builds for the FWP solution. The �gure

shows that the amount of completed builds for OBS-2 in both cases was close to

the same. With such low build frequency and a dedicated worker, it is reasonable

to assume that OBS-2's worker requirements were close to ful�lled throughout the

simulation. Such was the case with the FWP solution as well.

However, some key points were noticed from the completed builds of OBS-1.

The amount of completed builds was close to equal until a 0.3 build frequency was

reached. Until this point, both OBS instances in both con�gurations had enough

resources to build the jobs in their queues. By the 0.5 build frequency limit, the

static case had reached its full capacity.

6. E�ciency analysis 50

For the Flexible Worker Pool, however, the results for OBS-1 rapidly surpassed

those of the static case from 0.3 build frequency and forward. This is because FWP

allowed OBS-1 to utilize OBS-2's excess building capacity for its own build jobs.

Notice that using the excess capacity did not visibly cut resources away from OBS-

2. OBS-1 reached it's maximum building capacity around 0.7 build frequency. At

this point, the amount of completed jobs surpassed that of the static case by 40%

(16 builds) per simulation.

51

7. CONCLUSIONS

The goal of this research was to design and implement a build resource sharing

system for OpenSUSE's Open Build Service in order to reduce hardware costs and

achieve higher utilization rates in individual OBS instances. A working solution was

discovered that utilized the idle resources when needed and performed similar to the

static case when no idle resources were available. In practice, FWP could achieve

higher utilization rates of build resources and thus, complete more builds with less

hardware compared to the existing static system.

The e�ciency analysis of the solution showed the advantages of the system com-

pared to the static dedicated workers. Due to the low utilization rates in real en-

vironment, the system's e�ectivity could only be measured properly in the general

case of only one OBS requiring additional resources at once. Such cases proved that

the solution is more e�cient as the OBS could utilize all the resources in the worker

pool and complete the build jobs faster as a result. In a static case, the OBS would

have been limited to the workers initially dedicated to it.

In order to measure the performance in other types of situations, scheduler simu-

lations were created. The simulations displayed that advantage exists even in evenly

distributed build queues, even though it was smaller in such cases. The main advan-

tage of the system can be seen when the build queues are uneven and unbalanced

between the OBS instances. Such scenarios occur when one or more OBS instances

are not utilizing their build resources to the fullest extent. The static build host

network left those resources idle, but the FWP solution utilized them when there

were any available.

In real life scenarios, the builds often stack up in queues in bursts, e�ectively

meaning that the need for resources is sudden and the distribution shows spikes. In

such cases, it is important to be able to utilize maximum computational capacity

to get these job chunks built as soon as possible. As displayed by the test results,

these are the kind of scenarios where FWP performs the best.

The practical e�ciency of the scheduler, and thus FWP, could likely be improved

by introducing advanced scheduling mechanisms, that would take additional vari-

ables into account. While it is very di�cult to estimate the build time of a single

package, caching the build times of frequently built packages could be one way to

help with the estimation.

7. Conclusions 52

It was also discussed that FWP is a cloud-like system providing a PaaS type

service for the OBS. In theory, adding any work stations or hosts as temporary

workers to the FWP could be considered. Some additional development for that

would be needed in order to make them function when they are idle, however, it was

considered to be a viable option for future development.

Compared to the research by Ville Seppänen that utilizes the AWS, the related

relevant challenges were for the most part di�erent. The use of AWS posed challenges

related to the time it required to upload the worker infrastructure to the cloud.

Thus, the essential di�erence in the solutions was that the cloud solution surpasses

the potential scalability of a single FWP instance in most cases at the cost of speed.

Another di�erence is the cost. FWP still o�ers a limited set of hardware resources

that are purchased as a one time investment by the service provider. The cloud

bursting solution relies on an external service that is paid for based on the usage.

In his research, Seppänen concluded that the cloud solution is a cost-e�ective

solution for the problem. It is, similar to FWP, the most e�cient in the cases

with a large number of packages compiled in a short period of time as opposed

to sustained workloads. His research also stated that the sustained workloads are

probably cheaper to handle in-house. One of the key di�erences is that FWP is often

used in an in-house setting. While the scalability is still limited by the amount of

workers in the FWP (usually less workers than by using actual cloud services), the

performance in such setting is enhanced.

Using the cloud also poses its challenges regarding reliability. The research stated

that one of the main concerns was the inconsistent behavior of the cloud service.

Sometimes the workers would not start or could not connect to the OBS through

the SSH and no debug information could be received. The platform o�ered by FWP

is generally smaller, more controlled and provides log information of the potential

shortcomings. This makes FWP a more reliable service at the cost of limiting the

maximum size of the OBS network infrastructure to the hardware resources available

in-house.

53

BIBLIOGRAPHY

[1] Amazon Web Services LLC. Amazon Web Service. [WWW], 2011. [accessed

on 17.08.2011]. Available at: http://aws.amazon.com/.

[2] Buck, J. Net::SSH Ruby Library. [WWW], 2008. [accessed on 27.09.2011].

Available at: http://net-ssh.rubyforge.org/.

[3] Crockford, D. RFC 4627: application/json. [WWW], 2006. [accessed on

27.09.2011]. Available at: http://www.ietf.org/rfc/rfc4627.txt?number=

4627.

[4] Dr. Hipp, R. SQLite. [WWW], 2000. [accessed on 27.09.2011]. Available at:

http://www.sqlite.org/.

[5] Fielding, R. T. Architectural Styles and the Design of Network-based Soft-

ware Architectures. University of California, Irvine, 2000. Available at:

http://www.ics.uci.edu/ �elding/pubs/dissertation/top.htm.

[6] Fowler, M. Patterns of enterprise application architecture. 2003. Addison-

Wesley. p. 160-163.

[7] Free Software Foundation, Inc. Cpio. [WWW], 2000. [accessed on 16.10.2011].

Available at: http://www.ics.uci.edu/ �elding/pubs/dissertation/top.htm.

[8] Free Software Foundation, Inc. GNU General Public License. [WWW], 2007.

[accessed on 22.2.2011]. Available at: http://www.gnu.org/licenses/gpl.

html.

[9] Free Software Foundation, Inc. GNU Make. [WWW], 2010. [accessed on

12.06.2011]. Available at: http://www.gnu.org/software/make/.

[10] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns. 1995,

Addison-Wesley. p. 128.

[11] Hansson. Ruby on Rails. [WWW], 2003. [accessed on 05.07.2011]. Available

at: http://rubyonrails.org/.

[12] Hansson, D.H., Kemper, J. ActiveRecord. [WWW], 2009. [accessed on

02.07.2011]. Available at: http://rubyforge.org/projects/activerecord/.

[13] Johnson, S. Diagram showing overview of cloud computing. [WWW], 2009. [ac-

cessed on 04.10.2011]. Available at: http://commons.wikimedia.org/wiki/

File:Cloud_computing.svg.

BIBLIOGRAPHY 54

[14] Kneschke, J. lighttpd. [WWW], 2003. [accessed on 27.09.2011]. Available at:

http://www.lighttpd.net/.

[15] Lubkin, D. DSEE: a software con�guration management tool. [WWW],

1991. [accessed on 10.08.2011]. Available at: http://findarticles.com/p/

articles/mi_m0HPJ/is_n3_v42/ai_10916486/.

[16] Marshall, P., Keahey, K., Freeman, T. Elastic Site: Using Clouds to Elastically

Extend Site Resources. [WWW], 2010. [accessed on 16.10.2011]. Available at:

http://www.nimbusproject.org/files/elasticsite_ccgrid_2010.pdf.

[17] Masatoshi, S. ERB - Ruby Templating. [WWW], 2003. [accessed on 27.09.2011].

Available at: http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/.

[18] Matsumoto, Y. Ruby. [WWW], 1995. [accessed on 27.09.2011]. Available at:

http://www.ruby-lang.org/en/about/.

[19] MySQL AB. MySQL. [WWW], 1995. [accessed on 27.09.2011]. Available at:

http://www.mysql.com/.

[20] Novell, Inc. OpenSUSE Build Service. [WWW], 2010. [accessed on 22.02.2011].

Available at: https://build.opensuse.org/.

[21] Novell, Inc. openSUSE KIWI Image System. [WWW], 2010. [accessed on

09.08.2011]. Available at: http://en.opensuse.org/Portal:KIWI.

[22] Peter M., Timothy G. The NIST De�nition of Cloud Computing. [WWW],

2009. [accessed on 11.11.2011]. Available at: http://www.nist.gov/itl/

cloud/upload/cloud-def-v15.pdf.

[23] Python Software Foundation. Python Programming Language. [WWW], 1990-

2011. [accessed on 27.09.2011]. Available at: http://www.python.org/.

[24] Red Hat. RPM Packaging Manager. [WWW], 1993. [accessed on 28.09.2011].

Available at: http://rpm.org/.

[25] Reenskaug, T. MVC. [WWW], 1979. [accessed on 27.9.2011]. Available at:

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html.

[26] Ville Seppänen. Elastic Build System in a Hybrid Cloud Environment. Master's

thesis, Tampere 2011. Technical University of Tampere.

[27] Silberschatz, A., Galvin, P. B.; Gagne, G. Operating System Concepts (8th

ed.). 2010, John Wiley & Sons (Asia). p. 194.

BIBLIOGRAPHY 55

[28] Sommerville, I. Software Engineering. 5th edition. 1998. Addison-Wesley. p.

690-696.

[29] Takahashi, M., Gotou Y. WEBrick documentation. [WWW], 2000. [accessed

on 10.03.2011]. Available at: http://www.ruby-doc.org/stdlib/libdoc/

webrick/rdoc/index.html.

[30] Tamski, M. OBS Internal Architecture. Tampere 2010, Nomovok. Unpublished

report. 1 p.

[31] The Linux Foundation. MeeGo. [WWW], 2011. [accessed on 27.09.2011].

Available at: https://meego.com/.

[32] The MathWorks, Inc. MATLAB R©. [WWW], 1994-2011. [accessed on

27.09.2011]. Available at: http://www.mathworks.se/products/matlab/.

[33] W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).

[WWW], 2007. [accessed on 28.09.2011]. Available at: http://www.w3.org/

TR/soap12-part1.

[34] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). [WWW], 2008.

[accessed on 28.09.2011]. Available at: http://www.w3.org/TR/REC-xml/.

[35] Ylonen, T. RFC 4251: The Secure Shell (SSH) Protocol Architecture. [WWW],

2006. [accessed on 27.09.2011]. Available at: http://tools.ietf.org/html/

rfc4251.

[36] Zissis D., Lekkas, D. Addressing cloud computing security issues. [WWW],

2010. [accessed on 11.11.2011]. Available at: http://www.sciencedirect.

com/science/article/pii/S0167739X10002554.

56

A. MATLAB R© FWP SIMULATOR METHOD

% FlexibleWorkerPool efficiency analyzer - simul1

%

% Parameters:

% -simu_length Time for one simulation

% -build_length Vector containing the possible build lengths

% -base_prios Base priorities for the build services

% -freq_by_bs Probability of new build coming to the queue

% -worker_allocation Worker allocation for dedication

% -random_seed Seed for the rng

%

% Returns:

% -completed_by_worker Completed build jobs by worker

% -completed_for_bs Completed build jobs list by target build serviec

% -completed_total Total completed builds

% -queued_total Total builds queued up

% -usage_avg Average workers in use

function [completed_by_worker, completed_for_bs, completed_total, \

queued_total, usage_avg] = simul1(simu_length, build_length, \

base_prios, freq_by_bs, worker_allocation, random_seed)

rng(random_seed)

build_services = size(base_prios, 2);

workers = size(worker_allocation, 2);

% Dynamically adjusted priorities

dyn_prios = base_prios;

% Build queues

queues_by_bs = int64(zeros(1, build_services));

% Record keeping for completed builds

completed_for_bs = zeros(1, build_services);

% Workers

% Holds progress for individual workers

progress_by_worker = zeros(1, workers);

A. MATLAB R© FWP simulator method 57

% Holds completion totals for workers

completed_by_worker = progress_by_worker;

% Allocated workers are considered dedicated

worker_dedication = worker_allocation > 0;

idle_avg = 0; % Average idle workers

queued_total = 0;

for j=1:simu_length,

% Add builds to queues (by chance) -> will be either 0 or 1

add_build_pr = int64(rand(1, size(queues_by_bs,2)) - 0.5 + freq_by_bs);

queued_total = queued_total + sum(add_build_pr);

queues_by_bs = queues_by_bs + add_build_pr;

% Process the workers

progress_by_worker = progress_by_worker - 1;

% Find finished workers, -1 = no job, 0 = completed

finished_workers = progress_by_worker == 0;

% Add to completion statistics

completed_by_worker = completed_by_worker + finished_workers;

% Free the finished workers

worker_allocation(not(worker_dedication)) = \

worker_allocation(not(worker_dedication)) .* \

((-1 * finished_workers(not(worker_dedication))) + 1);

% Reset the -1 to 0

progress_by_worker = max(progress_by_worker, 0);

% Start build jobs on dedicated worker hosts

dedicated_workers = find(worker_allocation > 0 & worker_dedication);

for d_alloc=1:size(dedicated_workers, 2),

w = dedicated_workers(d_alloc);

if (queues_by_bs(worker_allocation(w)) > 0) && progress_by_worker(w) == 0

queues_by_bs(worker_allocation(w)) = \

queues_by_bs(worker_allocation(w)) - 1;

completed_for_bs(worker_allocation(w)) = \

completed_for_bs(worker_allocation(w)) + 1;

progress_by_worker(w) = build_length(randi(size(build_length, 2), 1));

end

end

% Find the free dynamic worker count

free_worker_count = \

size(find(worker_allocation == 0 & not(worker_dedication)), 2);

A. MATLAB R© FWP simulator method 58

% Handle dynamic allocation

for alloc=1:free_worker_count,

% Update build service priorities

dyn_prios = dyn_prios + base_prios;

% Build services with no queues do not require service

tmp_prios = dyn_prios .* (dyn_prios & queues_by_bs);

% Find the index of the biggest priority

serviced_bs = find(tmp_prios == max(tmp_prios), 1);

if queues_by_bs(serviced_bs) > 0

queues_by_bs(serviced_bs) = queues_by_bs(serviced_bs) - 1;

completed_for_bs(serviced_bs) = completed_for_bs(serviced_bs) + 1;

dyn_prios(serviced_bs) = base_prios(serviced_bs); % Reset the serviced prio

% Find the first free worker and allocate it and add the build job

free_worker = find(worker_allocation == 0, 1);

worker_allocation(free_worker) = serviced_bs;

progress_by_worker(free_worker) = \

build_length(randi(size(build_length, 2), 1));

end

end

idle_avg = ((idle_avg * (j-1)) + size(find(worker_allocation == 0), 2)) / j;

end

%completed_by_worker

%completed_for_bs

completed_total = sum(completed_by_worker);

usage_avg = (workers-idle_avg);

59

B. SIMULATION CODE 1: VARYING AMOUNT

OF WORKERS

% Simulation 1

%

% Simulate through varying amount of workers for two build services

% with given frequencies.

% General variables

s_length = 100;

b_length = [5];

iterations = 1000;

seed = 'shuffle';

% Build services

base_prios = [1 1];

base_freq = [0.75 0.25];

dyn_avg_builds = [];

sta_avg_builds = [];

dyn_avg_completed = [];

sta_avg_completed = [];

worker_max = 6;

disp('Running simulation using varying worker counts')

disp('Step 1: Dynamically allocated workers')

B. Simulation code 1: Varying amount of workers 60

for workers=2:2:worker_max,

worker_allocations = zeros(1, workers);

avg_builds = 0;

avg_usage = 0;

avg_completed = zeros(1, size(base_prios,2));

for j=1:iterations,

[c_by_w, c_for_bs, c_total, q_total, usage] = \

simul1(s_length, b_length, base_prios, \

base_freq, worker_allocations, seed);

avg_builds = (avg_builds * (j-1) + sum(c_by_w)) / j;

avg_completed = avg_completed + c_for_bs;

end

avg_completed = avg_completed / iterations;

dyn_avg_completed = [dyn_avg_completed; avg_completed];

dyn_avg_builds = [dyn_avg_builds avg_builds];

end

dyn_avg_completed

dyn_avg_builds

disp('Step 2: Static workers - divided 50-50')

for workers=2:2:worker_max,

worker_allocations = [ones(1, workers/2) ones(1,workers/2)*2];

avg_builds = 0;

avg_usage = 0;

avg_completed = zeros(1, size(base_prios,2));

for j=1:iterations,

[c_by_w, c_for_bs, c_total, q_total, usage] = \

simul1(s_length, b_length, base_prios, \

base_freq, worker_allocations, seed);

avg_builds = (avg_builds * (j-1) + sum(c_by_w)) / j;

avg_completed = avg_completed + c_for_bs;

end

avg_completed = avg_completed / iterations;

B. Simulation code 1: Varying amount of workers 61

sta_avg_completed = [sta_avg_completed;avg_completed];

sta_avg_builds = [sta_avg_builds avg_builds];

end

sta_avg_completed

sta_avg_builds

plot(2:2:worker_max, dyn_avg_builds, '--r', \

2:2:worker_max, sta_avg_builds, 'g');

title('Builds completed by worker count');

xlabel('Workers');

ylabel('Builds completed');

legend('Dynamic workers', 'Static workers');

62

C. SIMULATION CODE 2: VARYING

FREQUENCIES

% Simulation 2

%

% Simulate through varying build queue frequencies for two build services

% with given frequencies.

% General variables

s_length = 100;

b_length = [5];

iterations = 100;

seed = 'shuffle';

% Build services

base_prios = [1 1];

dyn_avg_builds = [];

sta_avg_builds = [];

dyn_avg_completed = [];

sta_avg_completed = [];

disp('Running simulation using varying build queue frequencies')

disp('Step 1: Dynamically allocated workers')

workers = 4;

worker_allocations = zeros(1, workers);

avg_builds = 0;

avg_usage = 0;

avg_completed = zeros(1, size(base_prios,2));

for freq=0:0.05:1,

base_freq = [freq 0.25];

C. Simulation code 2: Varying frequencies 63

for j=1:iterations,

[c_by_w, c_for_bs, c_total, q_total, usage] = \

simul1(s_length, b_length, base_prios, base_freq, \

worker_allocations, seed);

avg_builds = (avg_builds * (j-1) + sum(c_by_w)) / j;

avg_completed = avg_completed + c_for_bs;

end

avg_completed = avg_completed / iterations;

dyn_avg_completed = [dyn_avg_completed; avg_completed];

dyn_avg_builds = [dyn_avg_builds avg_builds];

end

dyn_avg_completed

dyn_avg_builds

disp('Step 2: Static workers - divided 50-50')

for freq=0:0.05:1,

worker_allocations = [ones(1, workers/2) ones(1,workers/2)*2];

avg_builds = 0;

avg_usage = 0;

avg_completed = zeros(1, size(base_prios,2));

base_freq = [freq 0.25];

for j=1:iterations,

[c_by_w, c_for_bs, c_total, q_total, usage] = \

simul1(s_length, b_length, base_prios, base_freq, \

worker_allocations, seed);

avg_builds = (avg_builds * (j-1) + sum(c_by_w)) / j;

avg_completed = avg_completed + c_for_bs;

end

avg_completed = avg_completed / iterations;

C. Simulation code 2: Varying frequencies 64

sta_avg_completed = [sta_avg_completed;avg_completed];

sta_avg_builds = [sta_avg_builds avg_builds];

end

sta_avg_completed

sta_avg_builds

plot(0:0.05:1, dyn_avg_completed(:,1), 'r', ...

0:0.05:1, dyn_avg_completed(:,2), '--r', ...

0:0.05:1, sta_avg_completed(:,1), 'g', ...

0:0.05:1, sta_avg_completed(:,2), '--g', 'LineWidth', 2);

title('Simulation: Varying build frequency');

xlabel('OBS-1 build frequency');

ylabel('Builds completed');

legend('OBS-1 (dynamic)', 'OBS-2 (dynamic)', 'OBS-1 (static)', \

'OBS-2 (static)');

65

D. SIMULATION CODE 3: VARYING

FREQUENCIES, VARYING BUILD LENGTHS

% Simulation 3

%

% Simulate through varying static build queue frequencies and varying

% build lengths for two build services.

% General variables

s_length = 100;

b_length = [4 4 8];

iterations = 200;

seed = 'shuffle';

freq = 0.4;

% Build services

base_prios = [1 1];

dyn_avg_builds = [];

sta_avg_builds = [];

dyn_avg_completed = [];

sta_avg_completed = [];

disp('Running simulation using varying build queue frequencies')

disp('Step 1: Dynamically allocated workers')

D. Simulation code 3: Varying frequencies, varying build lengths 66

workers = 4;

worker_allocations = zeros(1, workers);

avg_builds = 0;

avg_usage = 0;

avg_completed = zeros(1, size(base_prios,2));

for freq=0:0.05:1,

base_freq = [freq freq];

for j=1:iterations,

[c_by_w, c_for_bs, c_total, q_total, usage] = simul1(s_length, \

b_length, base_prios, base_freq, worker_allocations, seed);

avg_builds = (avg_builds * (j-1) + sum(c_by_w)) / j;

avg_completed = avg_completed + c_for_bs;

end

avg_completed = avg_completed / iterations;

dyn_avg_completed = [dyn_avg_completed; avg_completed];

dyn_avg_builds = [dyn_avg_builds avg_builds];

end

dyn_avg_completed

dyn_avg_builds

D. Simulation code 3: Varying frequencies, varying build lengths 67

disp('Step 2: Static workers - divided 50-50')

worker_allocations = [ones(1, workers/2) ones(1,workers/2)*2];

avg_builds = 0;

avg_usage = 0;

avg_completed = zeros(1, size(base_prios,2));

for freq=0:0.05:1,

base_freq = [freq freq];

for j=1:iterations,

[c_by_w, c_for_bs, c_total, q_total, usage] = simul1(s_length,\

b_length, base_prios, base_freq, worker_allocations, seed);

avg_builds = (avg_builds * (j-1) + sum(c_by_w)) / j;

avg_completed = avg_completed + c_for_bs;

end

avg_completed = avg_completed / iterations;

sta_avg_completed = [sta_avg_completed;avg_completed];

sta_avg_builds = [sta_avg_builds avg_builds];

end

sta_avg_completed

sta_avg_builds

plot(0:0.05:1, dyn_avg_completed(:,1), 'r', ...

0:0.05:1, dyn_avg_completed(:,2), 'r', ...

0:0.05:1, sta_avg_completed(:,1), 'g', ...

0:0.05:1, sta_avg_completed(:,2), 'g', 'LineWidth', 2);

title('Simulation: Varying build lengths, same frequency');

xlabel('Build frequency (for both OBS)');

ylabel('Builds completed');

legend('OBS-1 (dynamic)', 'OBS-2 (dynamic)', \

'OBS-1 (static)', 'OBS-2 (static)');

