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Tässä työssä esitellään simulaattori, joka mahdollistaa evoluution alla olevien so-

lupopulaatioden mallintamisen. Soluissa olevien geeninsäätelyverkkojen dynamiik-

kaa mallinnetaan stokastisen simulointialgoritmin avulla yksittäisten molekyylien ja

yksittäisten tapahtumien tasolla. Tämän lisäksi työssä käsitellään monimutkaisten

järjestelmien, kuten biologisten geeninsäätelyverkkojen, mallinnusta. Simulaattoria

voidaan käyttää geneettisten piirien mallintamiseen käyttäen geneettisiä operaatto-

reita, kuten lisääntymistä, mutaatiota sekä geneettisen materiaalin siirtymistä, ja

solupopulaatiota voidaan mallintaa stokastisissa ympäristöolosuhteissa, jotka lisäk-

si muuttuvat ajan funktiona, mahdollistaen odottamattomien ympäristöolosuhtei-

den vaikutusten tutkimisen. Työssä esitellään myös kaksi biologisiin järjestelmiin

liittyvää tutkimusta, jotka havainnollistavat simulaattorin sovellettavuutta. Ensim-

mäisessä esimerkissä tutkitaan odottamattomien ympäristön muutosten vaikutuk-

sia solupopulaatioiden monimuotoisuuteen sekä soluissa tapahtuvien mutaatioiden

nopeuksiin. Tämän lisäksi esimerkki paljastaa, kuinka evoluutio muodostaa moni-

mutkaisia fenotyyppisiä jakaumia mutaatioden luonteesta riippuen. Toinen esimerk-

ki paljastaa, että pienet muutokset evoluution reunaehdoissa saattavat johtaa hyvin

erilaisten soluprossesien kehittymiseen, jotka voivat poiketa ainoastaan niissä olevan

stokastisuuden määrässä. Esimerkki paljastaa myös kuinka pienet muutokset näissä

prosesseissa johtavat sellaisten fenotyyppien kehittymiseen, jotka ovat huomattavasti

soveltuvampia tietynlaisiin ympäristöolosuhteisiin.
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This work presents a simulator for modeling evolving cell populations. The gene

network dynamics are simulated using a delayed stochastic simulation algorithm at

single event and single molecule level. Moreover, modeling strategies of such com-

plex systems are discussed. The simulator can be used to implement genetic circuits

using typical genetic operators such as reproduction, mutations, and exchange and

deletion of genetic material, in arbitrary fashion, and the evolving populations can

be modeled in transient stochastic environments, enabling studies of the pathways

of evolution in such unpredictable conditions. To demonstrate its applicability, two

biologically relevant examples are presented. In the �rst example, the e�ects of

environmental changes to the phenotypic diversity and mutation rates are studied.

Moreover, it is shown that evolution can generate complex distributions of pheno-

types, depending on the nature of the mutations. Using the second example, it is

shown that small changes in the evolutionary constraints can drive a population

to favor di�erent levels of stochasticity in their cellular processes, and how small

changes in the details of these processes will lead to generation of phenotypes with

signi�cant evolutionary advantage.
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TERMS AND SYMBOLS

C++ � A compiled programming language

CME, chemical master equation � An equation governing the time-evolution

of probabilities of states of a chemical system

DNA, deoxyribonucleic acid � A double-stranded polymer containing the ge-

netic information of an organism

DSSA, delayed stochastic simulation algorithm � An extension of SSA allow-

ing non-Markovian dynamics

genotype � The set of heritable traits of an individual

Lua � A lightweight scripting language

mRNA, messenger RNA � An RNA that is transcribed from DNA and used to

carry genetic information

ODE, ordinary di�erential equation � An equation involving rates of change

of variables that are functions of a single variable

phenotype � The observable set of traits of an individual

RE, reaction equation � A representation of the molecules involved in a chemical

reaction

RNA, ribonucleic acid � A single-stranded nucleic acid polymer

RNAP, RNA polymerase � An enzyme that is responsible for producing RNA

RRE, reaction rate equation � An equation relating the reaction rate to di�er-

ent conditions, such as numbers of reactant molecules

SSA, stochastic simulation algorithm � A Monte Carlo method for simulating

chemical kinetics
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1. INTRODUCTION

Since prehistoric times, the fact that organisms inherit their traits from their an-

cestors have been exploited by humans, for example, using selective breeding to

improve the yield of livestock and crop plants. However, prior to the pioneering

works of Charles Darwin [1] and Gregor Mendel [2], the scienti�c understanding of

such phenomena was completely non-existent.

The modern theory of evolution builds on traits, features that are characteristic

to an individual. Some of these traits are encoded in deoxyribonucleic acid (DNA),

the genetic material of the individuals. As a consequence, when an o�spring is

produced, the traits of the parents are propagated to their descendants. This set of

heritable traits is what is collectively known as the genotype.

The change in the distribution of these traits in a population of individuals over

time is what is commonly known as evolution [1]. For evolution to occur, it is

fundamental that there are processes generating variability in the set of traits that

a population of individuals possess, and that the traits can be inherited [3]. These

two factors allow the distribution of traits to evolve over time.

The genotypic variability is generated by means such as mutations, genetic re-

combination, and gene �ow, which constantly generate unforeseen combinations of

genotypic traits. However, since the processes that only generate variability would

lead to �uctuations without a drift in the genotype distribution, it is required that

there are mechanisms that act on the variability and drive the direction of the evo-

lution. A well known such mechanism is natural selection. Natural selection is the

process where some of the traits provide advantage over the others, making the indi-

viduals possessing them more likely to survive or reproduce, increasing the frequency

of the advantageous traits over time. Another kind of such mechanisms are provided

by genetic drift e�ects in small populations, which are random sampling e�ects that

can make drastic changes in the frequencies of traits, or even cause certain traits

to disappear, by chance. Furthermore, mechanisms such as biased mutations have

been identi�ed, with similar e�ects of introducing a drift to evolution [4].

However, not all of the traits are heritable. Some traits arise from the geno-

typic traits as a consequence of interactions with the environment. In contrast to

genotype, the observable set of traits that an individual possesses is called as its phe-

notype. The distinction between genotypic and phenotypic traits was noted to be of
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importance [5], since instead of the genotype it is the phenotype, which determines

the �tness of an individual, and on which the natural selection acts on [6], while it

is the genotype that gets inherited. The in�uence of the environment is a fact that

can make two individuals with identical genotypes to appear to be di�erent.

The genotype is encoded in genes, which are long runs of DNA carrying the ge-

netic information in a form of sequences of nucleobases [7]. The process of gene

expression is the most fundamental process, which makes the genotype to give raise

to the phenotype. This process is used by all known living organisms to generate

the polymers that are essential to life from the genes encoding them. This process is

known to be highly complex, consisting of a series of time-consuming subprocesses,

where several steps can be modulated, the non-protein-coding regions of DNA car-

rying the instructions of regulatory structures. Since the phenotype is what is under

selection, the dynamics of the process of gene expression is under evolutionary pres-

sure, and since the regulatory parameters encoded in the DNA are inherited, the

process of gene expression can be re�ned by evolution.

In live cells, the genes do not function as independent units but are organized

into networks of complex pathways of interactions, where the elements are coupled

in intricate manner. This is achieved by the expression products of a gene acting as

regulatory molecules of other genes, or themselves, either directly or via feedforward

and feedback loops of chains of regulatory motifs, such as switches [8, 9]. The details

of these processes must be understood to understand how life functions.

The networks of biological systems and other complex networks often feature

nonlinear cause and e�ect relationships between the elements. In most cases, the

response is a non-linear function of the inputs, where there is a very limited range of

control and outside of which the e�ects of the inputs quickly saturate to a constant

level. The modeling of these phenomena in genetic networks have been attempted,

�rst using boolean networks [10] to capture the threshold-like response, and later

using various alternative methods such as linear and non-linear di�erential equations

[11, 12], Bayesian networks [13], and neural networks [14], each of them possessing

their advantages and disadvantages.

More recently, advances in experimental measuring techniques in molecular bi-

ology have brought available novel data giving insight about the dynamics of cel-

lular processes with level of detail greater than the mean expression levels. Single-

molecule measurements in live cells have shown that indeed correlations and stochas-

tic �uctuations can play a major role in gene regulation [15�18], and that these fea-

tures are under evolutionary pressure [19]. These �ndings have promoted the usage

of stochastic chemical kinetic models [20�22] to accurately capture such dynamical

features that were found to be present in the cellular systems, and are neglected by

deterministic models. Moreover, these models allow independent regulation of both
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the mean expression level and the strength of the �uctuations [23], which has also

been found to be present in live cells [24].

Since many important genes are rarely expressed [25], the molecules involved in

regulation of genetic circuits are present in low numbers. This makes the �uctuations

and correlations in their numbers to play crucial role in the control. While it is

known that substantial part of the variability in the individuals is caused by di�erent

genotypes [26], the stochasticity that obscures the mapping between genotypes and

phenotypes plays a signi�cant role [27, 28]. Moreover, an additional layer of memory

is provided by the molecules that are inherited, for example, at the event of cell

division, to directly make the phenotypic traits heritable.

Several studies have also investigated the e�ects of the environmental changes to

the evolvability of a population [29]. Depending on the environmental conditions,

the noisy nature of gene expression can be exploited a population of cells. From the

point of view of the population, it can provide the �exibility necessary for survival

that enables the cells to adapt to environments that are rapidly changing [30].

Also, it is known that the rates of mutation depend on the environmental con-

ditions [31], can be regulated [32], and that these properties are heritable [33]. In

addition to the noise inherently present in the gene expression, the mutation rates

can be used to control the generation of the population variability, on which evolu-

tionary mechanisms such as natural selection act upon. It is likely that the presence

of higher mutation rates are promoted in highly transient environments, and this

control can turn out to be vital to enable the survival of a species, which has to cope

with multiple types of environmental conditions.

An inherent problem in making predictions about evolution is the curse of di-

mensionality, that is, the explosion in number of states the dimensionality increases.

The number of possible evolution paths of even the simplest organisms is vastly

beyond the total theoretical processing capacity on Earth [34]. Moreover, since the

process of evolution is thought to be gradual, its path is likely to depend highly on

the initial conditions and the imposed constraints [35], and tend towards solutions

that are only locally optimal.

There are methods for studying high-dimensional problems like evolution. For two

reasons, methods that are based on random sampling are well suitable for generation

of possible trajectories in the problem domain. First, they avoid dealing with the

inverse problem, which is usually much harder than the problem itself, and second,

they only work on a randomly sampled subspace of the forward problem domain. If

the forward problem can be formulated, a set of possible evolutionary trajectories

can be generated, from which conclusions can be drawn, with a con�dence that

grows with the number of runs.

In this work, a new simulator for studying these phenomena is presented, along
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with two biologically relevant examples of its usage. The dynamics of the simulations

are controlled by delayed stochastic simulation algorithm, allowing the modeling of

genetic circuits in a single molecule, single event level. With the simulator it is

possible to model the evolution of genetic circuits, using typical genetic operators

such as cell division, mutations, crossover, and gene deletions, in large populations of

cells, the operators acting in either synchronous or asynchronous fashion. Simulation

of cell lineages and populations over many generations is possible. Cell death and

division can be based on the assessment of �tness of each individual, regarding any

desired combination of features of the evolving system. Also, the environmental

conditions can be modeled as arbitrarily complex stochastic chemical processes, and

cells can be made in contact with an external environment and assessed in terms of

their �tness regarding the interaction with the environment.

The simulator is written in C++ [36], using algorithms with optimal or low

asymptotic complexities, to maximize speed and minimize memory usage allowing

simulations to be done in su�ciently large scale. The simulator features a built-in

Lua interpreter [37] that allows evaluation of arbitrary expressions and execution of

user-provided scripts at runtime. On hardware with multiple processors or cores,

parallelization is used to accelerate the simulations.
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2. BACKGROUND

2.1 Simulating chemical kinetics

2.1.1 Chemical reactions

Chemical reactions are used to describe processes where a set of substances is trans-

formed into another set of substances. These set of substances are typically called

reactants and products, respectively. The reactions can be classi�ed as spontaneous

or non-spontaneous reactions, depending on, for example, if some type of energy is

required for the reaction to take action. The reactions that cannot be further di-

vided into intermediate steps, and thus describe the behavior of the system in most

detail, are called elementary reactions.

A system of chemical reactions is typically represented by a set of chemical re-

action equations (RE). In this representation, the reactants and products, which

are the substances consumed and produced by the reaction, are placed on the left-

and right-hand sides of an reaction arrow. The reaction arrow represents the type

and direction of the reaction equation. Reaction equations 2.1 to 2.5 are typical

examples of chemical reactions:

∅ → A (2.1)

A→ B (2.2)

A+B 
 AB (2.3)

2A→ C (2.4)

A→ ∅ . (2.5)

In equations 2.1 through 2.5 there are various substances involved, namely A, B,

AB, and C. Equation 2.1 represents a spontaneous creation of the substance A,

whereas equation 2.2 represents the transformation of A to B. The equation 2.3 in

fact represents two reactions, �rst of which describes the formation of complex AB

by the reaction of A and B, and the second describes the reverse reaction, that is,

the disassociation of of this complex back to A and B. This kind of reaction equa-

tions are commonly used, since many chemical reactions are reversible by nature.

Furthermore, equation 2.4 describes the reaction of two instances of substance A
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yielding one instance of C, and equation 2.5 describes the destruction of a molecule

of the chemical species A.

2.1.2 Deterministic chemical kinetics

Typically, the kinetics of the chemical reactions are represented in terms of reaction-

rate equations (RRE). Reaction rate equations specify how fast the reaction occurs

per unit time, as a function of the concentrations of the substances in the system.

It is usually the case that only the reactants, or some of the reactants, contribute

to the reaction rate of the equation.

Let the system consist of n chemical species S1, · · · , Sn, which are the di�erent

possible types of substances. A general form for the rate equation is:

r = k [S1]
ν1 · · · [Sn]ν1 , (2.6)

where r is the reaction rate, [Si] ∈ N0 denotes the molecular concentration of the

species Si, and k and ν1 through νn are some constants that have to determined

experimentally. Speci�cally, k is the rate constant, which usually depends on the

conditions, such as the temperature and the reacting surface areas of the molecules.

The sum of the coe�cients ν1 through νn determines the reaction order, which

is often, but not necessarily taken to be a non-negative integer. In the case of

elementary reactions, the factors ν1 through νn are the stoichiometric coe�cients,

and are thus integers representing counts of whole molecules.

Most chemical kinetic models involve a set of reactions that are of order zero,

one, or two. Zeroth-order reactions, that are, reactions with rate equation of the

form r = k, are useful in the case where the system involving the reaction channel

is saturated of all of the a�ecting reactants and the reaction rate no longer varies as

a function of the number of reacting molecules.

Similarly, �rst-order reactions, with reaction rate equation of the form r = k [Sa],

are characterized by depending only on a concentration of a single molecular species.

They are also called unimolecular reactions, and are useful representing the sponta-

neous formation of a molecules of a certain species through another, or in situations,

where the concentrations of the other reactants do not signi�cantly a�ect the overall

reaction rate. The reactions of the latter form are sometimes called pseudo-�rst-

order reactions.

Second-order reactions, or bimolecular reactions, are reactions that have a reac-

tion rate equation of the form of r = k [Sa][Sb]. These can be further classi�ed into

reactions where a 6= b, and a = b, which is important when the concentrations are

low. Again, higher order reactions can be represented as second-order reactions,

where some of concentrations of the reactant molecules do not play a signi�cant role
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in determining the reaction rate.

Let us now consider a closed system of volume |V |, with the aforementioned n

chemical species S1, · · · , Sn. We use y(t) = (y1(t), · · · , yn(t)) denote the concen-

tration of the species, at time moment t, yi = [Si] denoting that of the species

Si. The m reaction channels R1, · · · , Rm are each characterized by the number

of consumed molecules ν−j = (ν−j,1, · · · , ν−j,n), the number of produced molecules

ν+
j = (ν+j,1, · · · , ν+j,n), and the reaction rate equation rj(y; kj,ν

−
j ) of the form of

equation 2.6.

In the in�nite volume limit |V | → ∞, where the numbers of the molecules tend

to in�nity while their concentrations approach some �nite numbers y, we can obtain

the so-called deterministic formulation of the chemical kinetics. The derivation will

be discussed brie�y later. Due to law of conservation of mass, we can arrive to the

conclusion that the behavior of the deterministic system in this limit is completely

characterized by the following equation:

∂

∂t
y(t) = f(y(t)) =

m∑
j=1

rj(y(t))νj , (2.7)

which is a set of ordinary di�erential equations (ODE) of the �rst order. Note that,

when modeling, the constants νj = ν+
j − ν−j are often con�ated into the reaction

rate constants kj. From this equation, it is of our interest to study the time evolution

of y(t), which requires that the system of equations 2.7 is solved for y(t).

In the case where f(y) is a linear or an a�ne function of y and constant over time,

that is f(y) = Ay+b, general analytical solutions are readily available regardless of

the number of the molecular species involved [38]. In this case, each of the reaction

channels would be either of order zero or one. However, this is often not the case,

since bimolecular reactions are common in chemical systems, making f(y) at best

quadratic. If the system is non-linear, and no analytical solution [39] can be found,

various numerical methods can be applied to estimate y(t) for a given initial value

of y(0) [40].

However, the problem with this approach might not be the tractability of solving

y(t), but rather the in�nite volume limit assumption. The behavior of the system

in this limit is a good approximation of the behavior of the system in the case where

the number of molecules of each of the species is su�ciently high, but it fails to

capture crucial features of systems where some of the species are present in low

copy numbers.
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2.1.3 Stochastic chemical kinetics

To obtain the stochastic formulation of the chemical kinetics, we start by considering

a system of n interacting chemical species S1, · · · , Sn, which interact through m

elementary reaction channels R1, · · · , Rm. Furthermore, we make the assumption

that at all moments of time t, the following shall hold:

1. the system is well stirred and of constant volume |V |, and

2. the system is in thermal equilibrium at constant temperature T .

The stochastic approach was developed to correctly account for the low copy

numbers of molecules and the correlations betweens them, whose e�ects the deter-

ministic approach fails to capture [41]. The formulation provided here builds on the

works of Gillespie [42�45].

In mathematical terms, the �rst assumption is taken to mean that for each molec-

ular species, the position r of an individual molecule is uniformly distributed in the

reaction space V and independent of the positions of the other molecules. That is,

the probability of �nding a molecule in any subregion V ′ ⊆ V with volume of |V ′|
of the space is given by:

πr(r; |V ′|) = |V ′| |V |−1 . (2.8)

Similarly, the second assumption is to assert that the components of the velocity

of a molecule with mass m are independently normally distributed in the three-

dimensional space with mean of zero and variance of kBTm
−1, where kB is the

Boltzmann constant. Consequently, this will result to the speeds ||v|| being Maxwell-

Boltzmann distributed, and in general, the probability that the velocity of a molecule

with mass m is in the in�nitesimal region of size δ3v about v is obtained from the

three-dimensional normal density:

πv(v;m) =
(
2πkBTm

−1)−3/2 exp

(
− ||v||2

2kBTm−1

)
δ3v . (2.9)

These assumptions are expected to hold for any constant-temperature dilute gas

systems, in which nonreactive molecular collisions are much frequent than the re-

active ones. The advantage provided by these assumptions is that it allows us to

omit the representation of positions and velocities of individual molecules, and assess

them in a probabilistic manner. That is, we have converted the problem of explicit

modeling of molecular dynamics into a probabilistic problem. Following this, we

opt to represent the system using a state vector x(t) = (x1(t), · · · , xn(t)), where xi

denotes the number of molecules of the chemical species Si in the system at time
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moment t. Next, since our system is probabilistic, the fundamental question we are

trying to address is not to �nd x(t), but rather the probability density of x(t).

We start by considering a bimolecular reaction Sa + Sb → · · · . For now, it is

irrelevant if a = b or not. Suppose the molecules of chemical species Sa and Sb having

masses ofma andmb and radii of ra and rb, respectively. The reaction can take place

when the distance between the centers of the two molecules reaches r′ = ra + rb.

Using the tools of classical mechanics, we can formulate this two-body problem in

terms of a single body problem involving the reduced mass m′ = mamb(ma +mb)
−1

and the relative velocity vector v′ = va−vb. Clearly the reaction can only take place
when the center of the molecule of the chemical species Sb lies within the cylindrical

volume swept by the molecule of species Sb, moving with relative velocity v′ in an

in�nitesimally small time window of [t, t + δt). In terms of equations 2.8 and 2.9,

we can write:

π′Rj(δt; t) =

∫∫∫
v′
πr(r′; ||v′|| δt πr′2)πv(v′;m′) (2.10)

= |V |−1
(

8π−1kBTm
′−1
)1/2

π r′
2
δt , (2.11)

which denotes the probability that two molecules, one of each species, will collide in

the in�nitesimal time window δt around time moment t.

However, typically not all collisions are in fact reactive. It is reasonable to as-

sume that given that a collision has occurred, the reaction occurs immediately in

a probabilistic manner with some probability pj, that is independent of δt. Thus,

the probability for two molecules to collide and react, is given by the product of the

probabilities of the two conditions, since the former is a condition for the latter:

πRj(δt; t) = pj π
′
Rj

(δt; t) = cj δt , (2.12)

where cj is the stochastic rate constant, that is characteristic to the reaction channel

Rj. Note that all the constants that are involved in equation 2.11 along with pj,

are now packed in cj. It will turn out that it is essential that this value of cj is a

constant with respect to δt, which certainly appears to be true at least in the case

of a bimolecular reaction.

Similar arguments exist to support the hypothesis that not only in the case of

bimolecular reactions it is possible to express the probability πRj(δt; t) in the form of

equation 2.12. For example, in the case of unimolecular reaction channels Sa → · · · ,
we would expect the reaction mechanism to be a quantum mechanical mechanism

analogous to the nuclear decay, in which case we could represent the probability

πRj(δt; t) in a form of αj δt, where αj is a constant, both respect to δt and the

volume |V | of the reaction space.
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The modeling of higher order reactions Sa + Sb + · · · → · · · is somewhat contro-

versial. One could argue that the higher order reactions never appear as elementary

reactions, but are composed of a set of lower order reactions. In this case the jus-

ti�cation is not necessary, and the modeling should be done using the system of

lower order reactions. On the other hand, under some conditions the contribution

of some of the reactants vanish except up to a constant rate factor, and the reaction

is therefore well approximated by a single lower order reaction with this constant

rate factor. This is exactly what the earlier discussion of the ambiguity of the reac-

tion order was about. Whatever is the case, we should expect that if such reactions

are used, for a reaction of order k, there exists cj ∝ |V |k−1, or at least a good

approximate, that ful�lls our criteria.

Now that the form of the probability in equation 2.12, characteristic to the re-

action channel Rj, is established we proceed with the formulation. Again, we let

ν−j = (ν−j,1, · · · , ν−j,n) to denote the number of molecules consumed by the reaction

channel Rj, ν
+
j = (ν+j,1, · · · , ν+j,n) to denote the number of molecules produced by the

reaction, and νj = ν+
j −ν−j denote the change in the number of molecules when the

reaction takes place. Furthermore, let hj(x) be the number of combinations of the

reactant molecules of the reaction channel Rj. This is provided by the combinatorial

expression:

hj(x) =
n∏
i=1

(
xi
ν−j,i

)
=

n∏
i=1

xi(xi − 1) · · · (xi − ν−j,i + 1)

ν−j,i(ν
−
j,i − 1) · · · 1

. (2.13)

First, we will obtain the probability that exactly one reaction of kind of reac-

tion channel Rj will occur in the in�nitesimal time interval [t, t + δt). According

to equation 2.12, each of the hj(x) combinations of the reactant molecules of the

reaction channel Rj has a probability of reacting in the time window of cj δt. Since

the reactions occur independently, due to the system being well stirred, we can write

out the probability as a product of the probabilities of single reaction occurring and

all the other not occurring in the time window, summed over the number of the

combinations:

hj(x)∑
i=1

cj δt (1− cj δt)hj(x)−1 = cj hj(x) δt+ o(δt) , (2.14)

where o(δt) represents a term that goes to zero faster than δt in the limit of δt→ 0.

An interesting fact can now be observed. In the light of equations 2.6 and 2.14,

the relationship between the deterministic rate constant kj and the stochastic rate

constant cj is clear. Recall that in the deterministic formulation we used concen-

trations lim|V |→∞ xi |V |−1 = [Si] in the in�nite volume limit. We can now take the
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limit of the probability for the reaction to occur per unit volume:

lim
|V |→∞

cj hj(x) |V |−1 =

lim
|V |→∞

cj |V |k−1
(

n∏
j=1

ν−j,i(ν
−
j,i − 1) · · · 1

)−1 (
x1 |V |−1

)ν−j,1 · · · (xn |V |−1)ν−j,n ,

(2.15)

and the right hand side of the equation looks exactly like that of equation 2.6. It

appears that cj =
(∏n

j=1 ν
−
j,i(ν

−
j,i − 1) · · · 1

)
kj |V |−k+1, where k represents the total

reaction order.

Next, using the same arguments that were presented above, we write the prob-

ability that no reaction (of any reaction channel) occurs in the in�nitesimal time

interval [t, t+ δt):

m∏
j=1

(1− cj δt)hj(x) = 1−
m∑
j=1

cj hj(x) δt+ o(δt) , (2.16)

and �nally, due to equations 2.14 and 2.16, we note that the probability that more

than one reaction occurs in the system during the time interval [t, t + δt) appears

to be trivially o(δt).

The three previously introduced statements statements allow us to establish a

recurrence relation between the probabilities that the system is in state x at time

moment t, given that the state of the system at time moment t0 was x(t0) = x0:

πx,t(x, t+ δt;x0, t0) =
m∑
j=1

πx,t(x− νj, t;x0, t0)
(
aj(x− νj) δt+ o(δt)

)
+

πx,t(x, t;x0, t0)
(

1−
m∑
j=1

aj(x) δt+ o(δt)
)

+ o(δt)

,

(2.17)

where aj(x) = cj hj(x) is the propensity function. The �rst term of the equation 2.17

is the contribution from the fact that a single reaction occurred during the time

interval, the second is the contribution from if no reaction occurred, and the third

term is the contribution from other number of reactions occurring.
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Now, subtracting πx,t(x, t;x0, t0) from both sides, dividing by δt, and taking the

limit δt→ 0 will yield:

∂

∂t
πx,t(x, t;x0, t0) =

m∑
j=1

aj(x− νj)πx,t(x− νj, t;x0, t0)−

m∑
j=1

aj(x) πx,t(x, t;x0, t0)

, (2.18)

which is what is commonly known as the chemical master equation (CME). As it

appears from equation 2.18, the CME is a set of �rst-order ODEs describing the

time evolution of the probability of the state space of the system.

It was also mathematically proved that the deterministic formulation can be

obtained as the limiting case of the stochastic formulation, where the number of

molecules and the reaction volume approach in�nity, the concentrations converging

to some �nite values [46]. By multiplying both sides of equation 2.18 by x, and

summing over all values of x, it follows that:

∂

∂t
E[x(t) |x0, t0 ] =

m∑
j=1

E[ aj(x(t)) |x0, t0 ]νj , (2.19)

where E[·] denotes the expected value. By further dividing by |V | and taking the

limit |V | → ∞ it can be asserted that the expected value of y(t) is indeed that

of the right hand side of equation 2.7. A more complicated proof, involving either

Chebyshev inequality or central limit theorem [46, 47], can be then used at this limit

to show that the �uctuations and correlations in the molecular numbers will vanish,

from which it can be concluded that the distribution becomes degenerate and hence

the process deterministic, and in fact is exactly that described in equation 2.7.

2.1.4 Stochastic simulation algorithm

Since obtaining an analytical solution to the CME is sometimes intractable, numer-

ical methods have been proposed to address this problem. One such method is what

is commonly called stochastic simulation algorithm (SSA) [42, 44].

The SSA builds on the stochastic formulation of the chemical kinetics, that is, it

numerically simulates the underlying Markov process that the CME describes. The

approach used to circumvent the intractability of the CME is random sampling. A

single simulation of SSA will execute explicitly a single possible sequence of reac-

tions, yielding a single trajectory in the possible state space of the system with the

appropriate probability density. The resulting algorithm is simple, and it is rather

inexpensive to calculate a single trajectory on a digital computer. However, as it
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is usually of interest to estimate the probability density described by the CME, or

some other related density, one often needs to run large number of simulations to

obtain the sampled distribution of this density, which can become expensive.

The key for generating the trajectories according to the CME is not the proba-

bility density of the time evolution of the number of molecules in the system (equa-

tion 2.17). Instead, it is yet another density, namely, the density that the next

reaction in the system will occur in a in�nitesimal time interval [t + τ, t + τ + δτ),

and will be a reaction Rµ. This density can be obtained by considering the time

interval [t, t + τ) divided into a set of time windows of size ε = τk−1. It must be

that no reaction occurs in each of these time windows, and �nally the reaction Rµ

occurs in the time window [t + τ, t + τ + δτ). With the knowledge provided by

equation 2.16, we can now write:

πτ,µ(τ, µ;x, t) δτ = (1− a(x)ε+ o(ε))k (aµ(x) δτ + o(δτ)) , (2.20)

where a(x) =
∑m

j=1 aj(x). Dividing by δτ , and taking the limit δτ → 0 we will

obtain:

πτ,µ(τ, µ;x, t) = (1− a(x)ε+ o(ε))k aµ(x) (2.21)

=
(
1− k−1

(
a(x)τ + o(ε)ε−1τ

))k
aµ(x) , (2.22)

for which we take the limit k →∞, yielding:

πτ,µ(τ, µ;x, t) = aµ(x) exp(−a(x)τ) (2.23)

= a′µ(x) a(x) exp(−a(x)τ) , (2.24)

where a′µ(x) = aµ(x) a(x)−1 is the normalized propensity of reaction µ, and the rest

can be recognized to be the probability density of an exponential distribution, with

a rate parameter of a(x).

Now, based on equation 2.24, the observations fundamental to the SSA can

be made. The next reaction is characterized by the pair (τ, µ), where the time

when the next reaction occurs τ ∼ E(a(x)) and the choice of the next reaction

µ ∼ M(a′1(x), · · · , a′m(x)) are independent random variables with exponential and

multinomial densities, respectively. To generate the trajectories, all we now need

is to generate pairs of random numbers according to these densities. This can be

done using so-called inverse transform sampling, that is, for a pair of continuous

uniform random numbers r1, r2 ∼ U [0, 1) in the semi-open unit interval, we perform
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the following transformations:

τ = −a(x)−1 ln(1− r1) (2.25)

µ = µ′ such that

µ′−1∑
j=1

aj(x) ≤ r2 a(x) <

µ′∑
j=1

aj(x) , (2.26)

which are simply the inverse functions of the respective cumulative distribution

functions of the required distributions.

Now we are ready to outline the full algorithm. Recall that we are provided with

the initial moment of time t0, the initial number of molecules of each species x0, and

the characteristics of each of the m reaction channels in terms of the propensities

aj(x) and the updates in the number molecules νj. The algorithm is executed by

following the steps:

1. initialize the time t← t0 and the system state x← x0

2. evaluate each aj(x) and their sum a(x), which depend on the system state x

3. generate τ and µ according to equations 2.25 and 2.26, respectively

4. perform the reaction Rµ by letting t← t+ τ and x← x+ νµ

5. go back to step 2

The above scheme will yield a time series x(t) in the state space of the system,

where x(t) changes at discrete points, which can be recorded right after performing

step 4. As discussed, the trajectory obtained is an exact realization of the Markov

process described by the CME, which can be seen since it was derived using the

same principles with no additional approximations. In particular, one should note

that the time step τ is not an approximation parameter which is typically found in

ODE solvers, but a realization of a single time interval with the distribution that

was shown to be appropriate.

2.1.5 Delayed stochastic simulation algorithm

One major di�culty with the simulations using SSA is that we must describe the

system using elementary reactions, or at least using reactions that appear to behave

like the elementary ones to a certain degree.

Especially in biological context many processes, such as transcription, translation,

and degradation of their products, are compound multi-step processed that, for

example, involve sequential assembly of long molecules. Since these processes are

inherently slow, their e�ects cannot be ignored. Moreover, due to central limit

theorem, we would expect such multistage processes to exhibit Gaussian statistics
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instead of the exponential, which were found to apply for the elementary reactions

used in the SSA. However, such a process could be modeled as a set of sequential

reactions, but the explicit modeling would require knowledge about the details of

each elementary step, and the complexity and number of free parameters in the

model would explode.

To address this problem, several modi�cations to the SSA have been proposed to

account for this kind of semi-Markovian dynamics. The approach presented here was

�rst proposed by Bratsun et. al. [48], and generalized for multiple delayed products

by Roussel and Zhu [49]. Let us consider a sequence of elementary reactions of the

form:

A
c0−→ I1

c1−→ · · · cn−1−−→ In
cn−→ B , (2.27)

where A is transformed almost surely into a B through n intermediates I1, · · · , In,
which supposedly do not play any other role in the system. This could be readily

represented by the non-elementary reaction A→ B, but we must ascertain that the

dynamics are preserved. From 2.25 we know that the time intervals τ1, · · · , τn are

each independent and follow the exponential distributions E(c1), · · · , E(cn), respec-

tively. This can be converted into a reaction of the form:

A
c0−→ B(τB) , (2.28)

where the parenthesized τB denotes the time delay, that it takes after the reaction

has occurred, that the product B is introduced into the system.

Now we need to determine the distribution of τB, whose probability density can

be obtained by convolving the probability densities of the individual distributions.

The exact result is rather intricate, but good approximations exists, which can

signi�cantly speed up the simulation and reduce the dimensionality of the model.

For example, due to central limit theorem, when n is su�ciently large, the time

delay can be approximated by the normal distribution N (
∑n

i=1 ci
−1,
∑n

i=1 ci
−2) with

mean of
∑n

i=1 ci
−1 and variance of

∑n
i=1 ci

−2. Note that this approximation is just

a convenience and nothing prevents us to obtain the exact distribution for τB, or to

determine the distribution completely by experimental measures.

The delayed stochastic simulation algorithm (DSSA), which is an extension to

the SSA presented earlier, can be outlined as follows. The steps that are equivalent

to the original algorithm are represented in cursive:

1. initialize the time t← t0 and the system state x← x0

2. evaluate each aj(x) and their sum a(x), which depend on the system state x

3. generate τ and µ according to equations 2.25 and 2.26, respectively
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4. if there are delayed products to be released in the time interval [t, t+ τ ]

(a) release the delayed product Si with least t′ by letting t ← t′ and xi ←
xi + 1

(b) go back to step 4

5. perform the reaction Rµ by letting t ← t + τ and x ← x + ν ′µ, where ν
′
µ is

change in number of molecules without the delayed products

6. for each delayed product Si, delay the release until t′ = t + τ , where τ is the

time delay

7. go back to step 2

Note that in step 6 the time delay τ can be drawn from arbitrary distribution, as

necessary. This algorithm also allows di�erent products to have di�erent time delays.

Moreover, by comparing the DSSA algorithm to the algorithm of the original SSA,

it can be veri�ed that when no delayed products are present, the DSSA algorithm

is exactly equivalent to that of the original SSA.

2.2 Modeling genetic circuits

2.2.1 Modeling transcription and translation

The control of features such as timing, location, and total rate of gene expression of

the fundamental genes is crucial to the survival of the organisms. The key processes

determining the dynamics of gene expression are the processes of transcription and

translation. In transcription, the RNA polymerase (RNAP) reads the DNA, assem-

bling a messenger RNA (mRNA), which is a single-stranded copy of the gene. This

mRNA is used as a template, which in turn can be read by ribosomes to assemble

the genetic products [7]. The details of these processes play a role in determining

not only the rate [50, 51] at with the gene is be expressed, but the diversity and the

�uctuations [52], and other dynamical features such as burstiness [20, 51, 53�55].

Due to this, the modeling of gene expression often focuses on modeling the details

of these two processes.

Since the genetic products often exist in low copy numbers [56�58], the e�ect

of �uctuations and correlation their levels cannot be neglected [20]. Moreover,

these processes are inherently complex multi-step processes [59], involving steps

such as binding and unbinding of various regulatory molecules, assembly of com-

plexes, di�usion of the assembling molecules through a nucleotide chains of various

lengths, and maturation and folding of the produced polymers to their appropriate
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three-dimensional structure [7]. This means that they are not only the most time-

consuming subprocesses of the process of gene expression, thus limiting the total

rate, but they also determine the variability and correlations in the gene expression

that are resulted in the overall process.

The models of stochastic chemical kinetics have been found to successfully capture

the features that are present in the cellular processes [60]. Arguably the simplest

stochastic model for gene expression is the model of zeroth-order creation of the

gene expression products:

∅ cp−→ p , (2.29)

where p represents the gene expression product, typically a protein, and cp is the

rate of production. This has been shown to well describe the measurements of single-

molecule dynamics in live cells under certain conditions, such as the production of

mRNA in bacterial genes with slow rates [61].

The lifetime of these gene expression products is often limited, and has been

shown to be described by a �rst-order degradation process [57]:

p
dp−→ ∅ , (2.30)

where dp is the degradation rate, analogous to the nuclear decay rate. The gene

expression products are often quite short-lived [57], which is a factor that contributes

to the small mean levels observed.

If the reactions 2.29 and 2.30 are coupled, the CME can be readily solved to �nd

that, for the limit t → ∞, the protein numbers p ∼ P(cp dp
−1) follow a Poisson

distribution, with rate parameter cp dp
−1. The Poisson distribution is able to cap-

ture one fundamental feature of gene expression, namely, the low copy number or

Poisson noise. It is characteristic to the Poisson distribution that the noise, that

is the relative uncertainty, decreases as a function of the mean, resulting in strong

�uctuations for small mean levels.

A more detailed model of this process is a single step transcription-translation

model with delayed products [62] that is represented by the reaction:

P +R
cp−→ P (τP ) +R(τR) + bp p(τp) , (2.31)

where [P ] ∈ Z2 represents the promoter being occupied ([P ] = 0) or free ([P ] = 1),

R is an RNA polymerase, and p is the resulting protein. The value of bp determines

how many proteins are produced from a single mRNA, and can be used to tune

the burstiness of gene expression. The reaction rate cp is determined based on the

binding a�nity of the RNAPs to the promoter region, as well as their di�usion
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along the nucleotide strand, searching for the transcription start site. The promoter

delay τP represents the time it takes to clear the promoter region after starting

the transcription, which is necessary before another transcription event can start,

whereas the delay on the RNAP additionally includes the time intervals such as that

of transcriptional elongation, after which the RNAP is released and ready for another

transcription event. The time delay τp on the protein includes all the events, starting

from the transcription initiation, including translation, to the protein folding and

maturation, which are necessary for the protein to become functional. Due to their

physical meaning, it is expected that τP < τR < τp.

The natural extension of this model is to separate the steps of transcription and

translation. This is represented by the following model [63], where the �rst equation

models the transcription, and the second the translation:

P +R
cm−→ P (τP ) +R(τR) +m(τm) (2.32)

m+ r
cp−→ m(τ ′m) + r(τr) + p(τp) , (2.33)

where P , R, and p denote the promoter region, RNAP, and protein, as in equa-

tion 2.31. Moreover, m is used to represent the messenger RNA, to which the

ribosome r binds to, initiating translation. Here, no burstiness parameter bp is re-

quired, since in the production of multiple proteins from a single mRNA is inherent,

and the burstiness can be tuned using the other parameters of the model.

In the model represented by reaction equations 2.32 and 2.33, the parameter cm

acts in the role of the cp of the previous model, and the transcriptional parameters

τP and τR have the respective roles of τP and τR of the previous model. However,

the value of τm now represents time it takes form a piece of mRNA where the

ribosomes r can bind, after the transcription has initiated. In prokaryotic gene

expression this time is equivalent to the time of forming a piece of mRNA which

contains the ribosome binding site, whereas in eukaryotes the messenger RNA needs

to be fully produced and transported into the nucleus for translation to initiate.

The translational parameters cp, τ
′
m, τr, and τp act similarly to their transcriptional

counterparts: cp involves the binding of the ribosomes and their di�usion to �nd

the translation initiation site, τ ′m is the time delay after which the ribosome binding

site of the mRNA is available for another initiation of translation event, τr the delay

that the corresponding ribosome is available for another translation event, and τp

includes each of the translational steps, including translational elongation, with the

addition of post-translational steps such as protein folding, maturation, and possible

transportation to its active site.

Also, even more detailed models have been presented [49, 64, 65], allowing the

study of more �ne grained details of the steps involved in the processes of transcrip-
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tion and translation. This has been motivated by the single-molecule measurements

in live cells [54, 61]. These models account for the smallest known details, such as

the individual steps of formation of the complexes in transcription and translation

initiation [59], premature termination [66] of the transcription and tranlation pro-

cess, stepwise elongation nucleotide-by-nucleotide, or codon-by-codon, with features

such as arrests [67], pauses [68, 69], and editing and backtracking [67].

2.2.2 Gene regulatory networks

In real world, genes form complex circuits. The products of gene expression can

bind to the promoter regions of other genes, or to that of the same gene, causing

regulation of the expression of the downstream genes. This interactive behavior gives

rise to pathways of genetic networks possibly consisting of thousands of elements

with intricate control structures including multiple feedback and feedforward loops.

It is often the case that several molecules bind to a promoter region of a gene,

acting, for example, as a transcription factor or a cofactor. Typically, the pro-

teins acting as transcription factors are produced by other genes in the same cell,

and the cofactors are non-protein compounds that act in cooperation with proteins

catalyzing the expression of the gene. The sites that these molecules bind to are

called operator sites. Recall that if the molecules binding to the promoter region

are present in low copy numbers, their e�ects cannot be con�ated to the reaction

rate, but we must explicitly consider them in our models.

The earliest models of genetic networks were boolean networks, proposed by

Kau�man [10]. In these models, the boolean variables of the nodes represent genes

being on or o�, depending on the value of the variable. Each of the nodes is then

updated according to some boolean function that depends on the states of a subset

of these nodes. Despite their relative simplicity and abstractness, Boolean networks

have been shown to exhibit rich dynamics with features typical to non-linear complex

systems, such as oscillations, attractors, and hysteresis [70�72].

Quite often, many of the regulatory pathways are not known in full detail, or

the details are so intricate that their modeling and simulation is not possible. In

these cases the models are often reduced to a certain degree of detail. For these rea-

sons, the study of boolean networks in the context of genetic networks concentrated

on studying ensembles of random networks, that is, networks whose topology and

boolean networks were generated randomly.

The boolean functions that are involved in the boolean networks can be used in an

equivalent manner in stochastic networks [62], where the e�ects of low-copy number

of the regulatory molecules can be appropriately accounted for. Let us consider a

network consisting of k genes. We use Pi,(s1,··· ,sk) to denote the state of a promoter

region of the gene i, where sj = 1 if and only if a regulatory molecule produced by
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gene j is bound to it, and sj = 0 otherwise. It is evident that there is 2k promoter

states that we need to consider. By using these di�erent states of promoters, we can

model the state transitions as appropriate, and consider di�erent set of parameters

for the gene expression model depending on the state.

The expression of each gene is modeled by their appropriate reactions. In addition

to the gene expression we should account for the degradation of its product(s), as is

usually the case in biological systems. For example, based on the model in reaction

equation 2.31, we have:

Pi,s +Ri

fi(s) cpi,s−−−−−→ Pi(τPi,s) +Ri(τRi,s) + pi(τpi,s) (2.34)

pi
dpi−→ ∅ , (2.35)

where that P , R, and p of the original model is replaced by Pi,s, Ri, and pi,s,

respectively, to make a distinction between the di�erent genes and the di�erent

states of their promoters. Moreover, fi(s) : Z2
k 7→ Z2 is the boolean function of the

gene, specifying the genes, whose products are required to bind or not to bind to

the promoter region of the gene i to make it active, and s = (s1, · · · , sk) ∈ Z2
k is

just an abstract representation of the 2k di�erent promoter states.

Note that the kinetic parameters of each gene can be selected to be di�erent. The

RNAPs in the vicinity of the ith gene can be modeled separately for each gene as in

reaction equation 2.34. Alternatively, the RNAPs can be either shared by the genes

that are closely located, or the limit [R]→∞ can be taken, in case the RNAPs are

abundant, in which case the values of cpi,s and τRi,s become irrelevant.

The coupling between the di�erent genes is represented by a set of reactions of

the form:

Pi,(s1,··· ,sj−1,0,sj+1,··· ,sk) + pj
aj,i cbi,s−−−−−⇀↽−−−−−
aj,i cui,s

Pi,(s1,··· ,sj−1,1,sj+1,··· ,sk) (2.36)

where the product of gene j bind to the promoter of the gene i. The parameters

cbi,s and cui,s control the rate of the binding and unbinding of this molecule in that

promoter region. Moreover, aj,i = [A]j,i is the element of the adjacency matrix

A ∈ Z2
k×k of the genetic network, that is, aj,i = 1 if and only if the products of

gene j regulate the expression of gene i.

The scheme presented above will lead to the exponential explosion number of

promoter state transitions. However, we can omit the reactions which have a zero

reaction rate, since consequently they can never occur. Typically, either the number

of regulatory molecules of a given promoter is taken to be small, and/or most of

the state transitions are not possible. For example, this can be due to some of the

elements being cofactors, binding to elements that are already bound, or due to
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conformational changes in the promoter region, which may require that some the

regulatory molecules have a speci�c order of binding.

The modeling of stochastic genetic networks can be exempli�ed by considering a

k-gene repressilator, that is, an genetic circuit with ring topology. Such circuits are

found in cells and they are used in building clock-like subcircuits [9, 73], that regulate

other parts of genetic networks. In this circuit, products of gene i − 1 (mod k) are

used to repress the expression of gene i. By using the scheme presented above, this

can be represented by a set of following reactions for each gene:

Pi +R
cpi−→ Pi(τPi) +Ri(τRi) + pi(τpi) (2.37)

pi
dpi−→ ∅ (2.38)

Pi + pi−1 (mod k)

cbi−⇀↽−
cui

Pi
′ dpi−→ Pi , (2.39)

where Pi represents the unrepressed state of the promoter of gene i and Pi the

repressed. The reaction equations 2.37 correspond to those of 2.34, the �rst part of

2.39 to that of 2.36, and 2.38 and the latter part of 2.39 to those of 2.35.

It is visible that this scheme of building stochastic networks is an extension built

on the methods used in Boolean network models. The adjacency matrixA is used to

describe the network topology, and the boolean function f(s) = (f1(s), · · · , fk(s))

controls the logic that drives the network dynamics, just as they do in the context

of boolean networks. If the networks are generated in a random fashion, one can

study the network in terms of ensembles of random stochastic networks with given

properties. Such network generators are already available [74].

In the presented modeling strategy, higher-order regulatory elements such as mul-

timerization of the protein products were not considered. However, instead of the

protein products directly binding to the operator sites, an additional set of reactions

can be introduced to form the multimers that are used to control the expression of

the genes, in cases where such control is appropriate.

2.2.3 Evolving dynamics

The Darwinian theory of origin of species is based on heritable variability and natu-

ral selection [1]. The variability enables some of the individuals to be more suited to

the environmental conditions under which they are living. This score of having evo-

lutionary advantageous set of traits is called �tness. Natural selection, for example,

operates on the variable population by a�ecting the fecundity and survival of the

individuals based on their �tness, providing selective advantage to the individuals

with higher �tness.

The �tness of an individual is determined by its phenotype through the interac-
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tions with its environment. The phenotype is largely determined by the genotype

[26], which is the set of heritable traits, that is transferred from previous generations.

Some traits might be advantageous in a certain kind of environment, but a disadvan-

tageous in another. Additionally, most organisms do not live in a static environment,

but are subject to multiple di�erent environmental conditions, either caused by the

�uctuating and transient environmental conditions, or by the population growing

and migrating to places that are subject to other kinds of environments. A popula-

tion of individuals, evolved to be optimal in certain environmental conditions, might

go extinct, when a perturbation in the environmental conditions is triggered.

Di�erent organisms are known to possess di�erent ways of coping with environ-

mental changes. Unpredictable environmental changes can be countered by having

high population diversity, which allows survival of su�cient subset of the popu-

lation from the attacks of various kinds of threats. Consequently, the variability

in the genotypes and phenotypes of a population of organisms is a crucial factor

determining the adaptability and the robustness of the survival of the population.

The �tness is rarely considered to be proportional to the lifetime of an individual,

but instead, it is associated to their capability to reproduce. For example, an equally

�t individual with shorter lifetime than its competitors, but being able to produce

larger o�spring, has better chance of spreading its gene pool down to the successive

generation of individuals. This emphasizes the fact that not even the best traits are

evolutionary preserved if they cannot be inherited.

In addition to natural selection, there are mechanisms that can change the fre-

quencies of the traits in a population. Genetic drift is the process where the fre-

quency of certain trait changes due to the e�ects of random sampling. In populations

with low number of individuals, it is not that unlikely that the population adopts a

trait that is not the most advantageous one just by chance. It is also possible that

a trait can disappear by chance, even though it would have been advantageous, if it

was carried only by a few individuals who got eliminated, for example, by accident.

This e�ect is only present in su�ciently small populations, the e�ects becoming less

drastic as the number of the individuals increases.

There are also a number of ways by which heritable variability can be generated

in a population. The most common source of this variability are mutations, which

are spontaneous changes in the genetic sequence of an organism. Mutations are

inherently random, but they might be sometimes biased towards certain e�ects [4].

Some of the mutations may be deleterious, that is, they lead to the death of the

individual. On the other hand, some of them provide the individuals with advan-

tageous traits, and introduce unforeseen combinations of traits in the population.

There are also neutral mutations that do not a�ect the phenotype of the individual.

Since harmful mutations are common, there are mechanisms to limit the rates
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of mutations [75]. Such mechanisms include error detection and repairing of the

DNA, detection of transcriptional and translational errors, as the nucleotide strand

is being copied, and elimination of erroneous products. There are estimates that

the fraction of mutations that are harmful might be as high as 70% [76]. One way

of controlling the e�ective rates of mutations is the regulation of such mechanisms.

The optimal mutation rates depend on the environmental conditions [32], and such

control is likely to provided evolutionary advantage if the environmental conditions

are changing.

Another source of genetic variation is the process of genetic recombination. In

this process, the two or more pieces of DNA are split to smaller runs, and these

runs are used to recreate a piece of DNA, which is a combination of the smaller

runs from multiple sources. Coupled with natural selection that is used to select the

evolutionary advantageous combination of traits, this is e�ectively a mechanism for

generating the best of both worlds.

Some species are inherently clonal and some are not [77]. Species where di�erent

sexes exist, the introduction of variability at reproduction is enhanced compared to

that in the asexual species. However, organisms that reproduce by division might

have other mechanisms of generating mixtures of their gene pool. For example,

some prokaryotes are known to exchange genetic material with their peers [78], as

opposed to the gene transfer of genetic recombination, where the genetic material is

transferred only from the ancestors.

Most of the kinetic parameters are determined by the nucleotide sequence, en-

coded by the DNA, and consequently the changes in DNA can introduce changes in

the kinetic parameters. Moreover, it is the dynamical features that the individuals

exhibit that give rise to their phenotype in a given environment, and therefore, the

values of these kinetic parameters that de�ne the dynamical features of gene ex-

pression are under evolutionary pressure. One example are the transcriptional and

translational elongation rates that depend on sequence of bases and codons that is

encoded by the DNA sequence. Even more importantly, the mutations in the regu-

latory regions can a�ect other kinetic parameters with small changes causing drastic

e�ects in the expression levels, such as a�ecting the binding a�nity of the regulatory

molecules, or causing conformational changes in the macromolecules involved. On

the other hand, some of the regulatory molecules are transported to the cell from

the environment external to the cell, the environmental conditions playing a major

role in determining the dynamics of the expression of the genes.

The process of simulating evolution to solve a computational problem is called

genetic programming. This is especially well suited in problems that are NP-hard,

and the dimensionality and/or state space are huge. The evolution is mimicked

by applying the genetic operators the on a population of individuals. The �tness
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of each individual is evaluated, and selection is applied based on the �tness of the

individuals. Finally, some means of genetic recombination is used to create the next

generation of potential candidates.

To study the evolution of the gene expression, similar techniques can be used.

The models provided in the previous sections can be used to construct models of

gene expression in cells and in cellular networks, and their parameters can be mu-

tated. The �tness can be measured either by based on abundances of important

molecules or arbitrarily generated �tness units, or based on games between the indi-

viduals. In models that work explicitly on the nucleotide sequence, the modeling of

the mutations can be made to directly a�ect the genotype. From these changes in

the genotype, the e�ects can be propagated to the dynamics. For example, if di�er-

ent rates of elongation in transcription and translation are known for each type of

nucleotide, they can be introduced in the model, instead of concentrating to evolve

abstract features such as the overall rate.

However, it is typical that the e�ects of the mutations are not that well known

in full detail. Even single nucleotide mutations might introduce changes in less well

known features such as the three-dimensional structure of the molecules, which can

in turn a�ect the dynamical features. Therefore, it is hard to predict what are the

exact e�ects of a mutation in a single nucleotide of the DNA. For this reason, the

modeling of these processes often concentrates in varying the parameters, which are

known to be evolvable, in a random fashion, rather than explicitly modeling the

mutations, and natural selection is let to work out its way to the optimal set of

parameters in terms of the constraints imposed.

Similarly to how evolution in the real world is thought to work, genetic program-

ming does not necessary lead to solutions that are optimal. At any given time, only

solutions that are su�ciently close to the ones that the previous generation of the

population possessed are considered. Nevertheless, if enough time is given, novel

combinations of traits will emerge, providing evolutionary advantage to the individ-

uals. Moreover, if a su�ciently large sample is used, the set of results obtained will

provide valuable insight about the general behavior of the processes.

2.2.4 Evolution of genetic networks

It is not only the behavior of the individual elements that determine the dynamics

of a complex system, such as a genetic network, where the individual elements are

intricately connected with interactions between them. As we saw in section 2.2.2,

two additional factors can be identi�ed, and must be considered when modeling a

complex biological network.

The �rst factor that controls the dynamics of a network is the nature of the

interactions. In section 2.2.2 this was represented by a combination of a boolean
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function and a set of chemical reactions used for coupling the proteins with the

promoter of the target gene, which were used to determine if a set of input states

have promoting or repressing function to expression of the target gene. If the type

of interactions were to be altered, the dynamics would likely to be di�erent. For

example, if the repressing function of the proteins in the case of the repressilator

were all to be replaced with an activating function, the circuit would not feature

multistable periodic behavior. Another factor that deserves consideration is the

network topology, that in the previous section was de�ned in terms of an adjacency

matrix. The adjacency matrix completely determines the network topology, that is,

which elements can interact and with whom. Even similar nodes, put in a network

with slightly di�erent topology are likely to have di�erent pattern of behavior as a

whole.

First studies of biological networks often utilized regular lattices or random

graphs. This was pioneered by Kau�man [10] in random graphs [79], where the

nodes were boolean variables representing genes being expressing or not. The sole

purpose of this approach was convenience. First of all, it was not usually well known

what kind of structures and interactions these network exhibited in the real world.

Second, this kind of structures were more tractable for mathematical analysis, and

consequently studies about their properties started to emerge.

Later studies pointed out that the networks found in real world do not appear

to exhibit topologies of regular or random graphs. For this reason, a family of

networks, called small-world networks was proposed. Whereas the regular graphs

are characterized by high clustering with the cost of high shortest path length, and

the random graphs are characterized by low clustering and relatively low shortest

path length, the small-world networks appear to possess best features of both regular

and random graphs. The algorithm proposed by Watts and Stroganz [80] allows a

parameter to be used to tune steplessly between regular and random graphs.

Small-world networks are characterized by low average shortest path length, that

is the minimum distance between two nodes of a network, and high clustering coe�-

cient, which measures the degree to which the nodes tend to cluster together in the

network. Due to high clustering coe�cient, small-world networks tend to contain

cliques, which are subgraphs where the nodes are highly connected. Moreover, these

cliques appear to be connected using few hub nodes, which are highly connected,

leading to a low average shortest path length. The hubs are both the strength and

the weakness of this kind of networks. If nodes were to be deleted in a random

fashion, it would be very unlikely that the hubs were deleted, but the deleted nodes

would be the ones with low number of connections. On the other hand, the network

is vulnerable to deletions which are targeted to the hub nodes, which may cause

parts of the network to become disconnected. Nevertheless, even if one of the hub
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nodes happened to be deleted by chance, the structure of the remaining smaller parts

of the network would stay unchanged, since the leaf nodes are highly clustered, and

potentially continue their functioning as a separate subnetworks.

One possibility is that small-world networks are preferred due to their robustness

to perturbations over other network architectures [81]. If this was the case, networks

with small-world structure could provide advantage to biological systems that are

subject to damage by mutations or unexpected disturbances such as a viral infection,

and it could be the reason why such networks would be preferred in real life.

It is possible, and likely, to be the case that also the structure of complex networks

present in biological systems evolve over time. Networks that are observed in real

life are thought to be generated this way. That is, instead of being formed by a

procedure of precise design, they are formed by based on continuous expansion and

evolutionary pressure on their nodes.

Based on the continuous expansion and preferential attachment, a method for

generating networks was proposed [81, 82]. The process of continuous expansion is

present on evolving networks that are growing or otherwise transient. This feature

preserves already existing structures of the network, allowing it to evolve in a manner

where the changes are introduced incrementally in small quantities. The other key

feature of the design process is that the newly introduced nodes are attached to the

network in a preferential manner. Speci�cally, when a new node is inserted, it is

connected to the existing nodes with a probability proportional to the number of

connections in they already possess, making highly connected nodes to become even

more connected.

The scheme of generating networks based on continuous expansion and prefer-

ential attachment will yield a network where the vertex connectivities of the nodes

will follow a power-law distribution. Networks with such power-law distributions

are commonly known as scale-free network. Scale-free networks exhibit properties

similar to the small-world networks, but with additional characteristics, such as

ultra-small path lengths [83]. More recently, there has been evidence in favor that

the networks found in real world would be scale-free [81, 84, 85]. This kind of

networks were �rst recognized by de Solla Price in 1965 in networks of scienti�c

publications [84]. The currently known examples range from genetic networks and

social networks of human interactions [84] to technological networks such as the

world wide web [81].
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3. SIMULATING EVOLVING CELL

POPULATIONS

3.1 Introduction

One of the objectives of this thesis was to develop a tool, which allows the simulation

of evolving stochastic networks. In addition to the dynamics of the simulations being

based on stochastic molecular kinetics, the following criteria was selected.

One of the facts is that the networks of cells or genes, which are being modeled,

will at times need synchronization and other forms of interaction, despite most of the

time working as a cohesive whole, independent of the neighboring individuals. For

example, the regulatory networks in a single cell functions somewhat independently

of those of the other cells. However, at some points it is necessary to transmit

information between these systems. Such communication between the networks

is known to occur in biological systems. It is also required that the interactions

between the individual elements that are being modeled are not limited interactions

that are stationary processes over time. This feature allows studies of evolution of

network structures, in addition to evolving the kinetic parameters.

Second major feature was the modeling of environmental conditions. It is the

environment along with the genetic material of an individual, which gives rise to a

phenotype, and consequently determines the �tness of an individual. Rarely are the

environmental conditions static, or even stationary in nature, but rather vary over

time. The ability to model di�erent kinds of environments, for example, periodic or

oscillatory environments, as a stochastic process was also one criterion in the design.

The environmental conditions can be implemented using the dynamics permitted by

the DSSA. Modeling of cellular networks in such environments has applications in

studying events such as day-night cycles and viral infections.

Moreover, the environmental conditions for a population of individuals are often

not homogeneous, but the conditions vary between the individuals, for example, as

a function of the spatial location. A single individual which has evolved to be �t

to certain local environmental conditions, might be less �t in other regimes. This

can promote the generation of complex distribution of phenotypes with di�erent

optima for di�erent environmental conditions. To study the e�ects of non-uniform

distribution toxins and nutrients, it is of interest to have this kind of variations in
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the environmental conditions to which a single or a small group of individuals are

subject to.

Another interesting class of features, whose studies the simulator should enable,

are the e�ects of the spatial structures in cellular populations. The modeling of

spatial structure of the environment and the locations the individuals living in this

environmental space allows us to study the evolutionary e�ects as a function of

the spatial location. Moreover, local phenotypic distributions can be compared to

the global distributions, and the evolution of these distributions can be studied in

cases where the speed and function of spreading of mutations, diseases, and genetic

material can be constrained.

Furthermore, it is of interest to study the evolving populations without any arti-

�cial constraint on the size of the population. For example, an assumption that the

population size would be �xed should not be imposed, but the size of the population

should be limited by other means, such as making overpopulation of the environment

to lead to starvation. Moreover, the individuals should be created and destroyed

over time in an asynchronous fashion. These features allow studies of the e�ects of

population size to the survival of the population, such as determining the optimal

population sizes in certain kind of evolutionary constraints. For example, we might

be interested to study the e�ects of some limited resource to cell populations that

would normally grow exponentially in size. Moreover, this feature allows us to study

the evolution of populations that are growing.

3.2 Overview of the simulation

Based on the criteria that was set up for the simulator, the following design was

opted. The simulation is based on a set of entities that are being modeled, which

is let to vary dynamically both in its size and its content. Each of these entities is

an independent DSSA simulation, whose time evolution is simulated according to

the algorithm described in section 2.1.5. The �nal decision of what does an entity

represent is left to the user. However, the entities are the representation of the

objects on which the genetic operators, such as selection, are applied on.

When simulating the evolution of a genetic network, where the major component

under selection might be an individual gene, each entity can be selected to be a single

gene. On the other hand, in cases where there are a lot of gene-to-gene interactions,

and the performance of di�erent kind of genetic networks are compared, an entity

can be taken to represent a cell. The entities in a simulation are not constrained to

be equivalent in their behavior. The set of reactions, the set of molecular species,

and the kinetic parameters can be set independently for each entity.

The environmental conditions can be modeled either independently for each of

the entities or externally as a separate entities. In either case, the environmental
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conditions can be coupled with arbitrary entities, independently of them being el-

ements of selection or di�erent environmental conditions. This is done using the

entity-to-entity interactions.

The simulation generally consist of simulating the entities and manipulating them

over time. The entities are created dynamically. This means that at any point in

time, an entity can be created based on a stochastic chemical kinetic model. The

entity is formed with a number of reaction channels that transform molecules of

di�erent molecular species to those of another species, based on the initial molecular

abundances. The creation of an entity is an operator that allows modeling the birth

of the individuals.

Another fundamental operation that acts on entities as a whole is their destruc-

tion. Using this operator in tandem with the creation allows us a rudimentary

modeling of life, a birth-death process. Note that, since at the creation of an entity

the molecular concentrations can be arbitrarily speci�ed or altered, using these two

operators it is possible implement to more complex schemes of birth that are present

in di�erent organisms. An example of this is cell division, which is a process where

a mother cell duplicates its genetic information and other macromolecules that vital

the survival of the organism, and splits to two. Consequently, the molecules of the

mother cell are split to the newly created daughter cells, causing the mother cell to

cease to exist. It is also possible to model more complex schemes of reproduction,

such as that of the sexual reproduction. In such a scheme, two individuals can be

selected to mate, resulting in a birth of a child that inherits the traits from the

parents, possibly in a probabilistic manner.

The operator that generates phenotypic variability is the mutation operator. In

the simulator, point mutations can be performed at arbitrary points in time in

arbitrary entities. The mutations can be applied to any of the kinetic parameters

that are involved in their stochastic models. Moreover, the molecular concentrations

may be mutated, in case some of the genetic parameters are represented in those

terms. Again, it is up to the user to de�ne not only when, but how the mutations

are applied and what is the actual e�ect of the mutation, that is, how much and to

which direction these parameter are changed. When applying the mutations, facts

such as the �tness of the cell or the environmental conditions can be considered,

allowing the mutations to be performed in a non-homogeneous manner.

In a way similar to the other operators, the point mutation operator can be used

to form more complex genetic operators. These include genetic crossover, which is

the process where some of the parameters are swapped between units such as two

genes, possibly in a stochastic manner. The mutation operator can be also applied

to other schemes of recombination, such as that of the exchange of genetic material

between the peers.
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3.3 Implementation of DSSA

The DSSA simulation engine that governs the dynamics of each individual entity is

based on that of SGN Sim [62]. The original idea was that SGN Sim would have

been invoked as an external program. This would have allowed the users to replace

the simulator by a simulator of their choice. Consequently, by replacing SGN Sim by,

for example, an ODE solver could have been used to turn the stochastic dynamics

into deterministic ones, if such a choice was applicable and advantageous.

However, by using an external simulator for the entities possessed two funda-

mental problems related to the simulation performance. The �rst problem was the

overhead of processes spawning in the current operating systems. An attempt to

circumvent this problem was made by pre-spawning a pool of SGN Sim processes,

but it turned out that this was not the only factor hindering the performance. The

other problem was that most of the time was spent parsing the reaction �les, since

the mechanism of continuing simulation was based on dumping the system state as

a reaction �le that was then reread.

Since the idea of using an external simulator engine turned out to be infeasible,

the DSSA simulation engine of SGN Sim was embedded to the main application of

the evolution simulator. The authors of SGN Sim, Andre Ribeiro and Jason Lloyd-

Price, generously provided the parts of code that were necessary for this process,

and few modi�cations were made to this code that were vital for the evolution of

the entities. These modi�cations include the duplication of reaction systems that

are being simulated, and the mutation of the parameter values. Moreover, the

input syntax was augmented to mark the mutated parameters in order to reduce

the lookup times for systems that feature massive numbers of parameters.

The delayed stochastic simulation algorithm is rather straightforward to imple-

ment on a digital computer. When the algorithm outlined in section 2.1.5 is to be

implemented, there is only few choices that can be made to improve the performance

over a naive implementation. The algorithm that is implemented here is a variation

of what is called the logarithmic direct method [86], which under typical conditions,

provides asymptotically better runtime compared to the naive approach.

The system state x is implemented in the most obvious way, that is, by using a

plain array of the molecular counts. If there are total of n molecular species, this

array occupies O(n) space, and can be created in O(n) time, even if the size of

the array is not known in prior. Also, it is required to store the information about

the m reaction channels, each of which might involve information about O(n) of

the substances. This makes the initialization of the simulation algorithm O(mn) in

the worst case, in both space and time. However, it is often the case that not all

reactions involve all of the molecular species in the system. If each of the species is
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involved in O(1) reactions, both of the complexities relax to O(m+ n).

The key of the logarithmic direct method is to represent the values of aj(x) as a

tree of partial sums [86]. This means that the search for µ, in step 2 of the DSSA

algorithm speci�ed in section 2.1.5 is modi�ed from the naive approach. Instead

of forming the sums of equation 2.26 for each iteration, an array of partial sums

are maintained. This array is O(m) in space, and permits that the reaction to be

�red can be found using binary search in O(logm) time. It is to note that after

updating x, we need to update each a�ected aj(x), and the partial sums in which

they are involved. The consequent time complexity is O(mn+m logm), but again

O(mn)-part vanishes if all substances are involved in O(1) reactions.

The uniform random numbers that are required in step 3 of the algorithm, are

generated using Mersenne Twister MT19937 random number generator [87]. It is

a 32-bit uniform pseudorandom number generator with a period of 219937 − 1 that

generates random numbers that are k-distributed in 624 dimensions to the 32-bit

accuracy. The sequences of numbers generated pass numerous tests of statistical

randomness. Unlike the naive pseudorandom number generators, it is generally

considered to be adequate for numerical simulations. The generation of the numbers

requires constant time and space.

The waiting list of the DSSA is implemented as a binary heap. A binary heap

occupies linear space, that is, O(w) space if w is the number of elements in the heap.

Moreover, it permits lookup to the largest element in O(1) time, and the extraction

of the largest element and insertion in O(logw) time. The size of the waiting list is

limited by O(tn), where t is the number of reactions executed. As a consequence,

the operations on the waiting list per reactions executed will be O(n) amortized

time and space.

Using the details provided in above, the following applies for our implementation

of the DSSA. Step 1 is limited by the initialization of the molecular counts. The

time t is a scalar so it is O(1), the molecular counts take O(n), and an empty waiting

list is O(1), each of them in both time and space. The second step takes O(mn)

space and time to initialize the O(m) partial sums of aj(x)s, whereas subsequent

executions of this step takes O(mn+m logm) time. In step 3, generating τ is O(1)

and �nding µ is O(logm) time. In the next step, the comparison is O(1) time. The

release of an item from the waiting list is O(w) time followed by the mutation of a

single element, which can be done in constant time. Step 5 is O(n) time, whereas

step 6 is O(n logw) time, since O(n) molecular species can be involved.

To summarize the complexity of the DSSA implementation, the worst case space

complexity is O(mn) with a time complexity of O(mn) for initialization and O(mn)

per reactions executed. The worst case occurs when there is a substrate that is

involved in Θ(m) reactions. In the case where each of the m molecular species are
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involved in only O(1) reactions, the respective numbers are relaxed to O(m + n),

O(m+ n), and O(m logm).

3.4 Implementation of the simulator

The simulator was built to utilize event-driven architecture coupled with a concept

of time. The events are scheduled in a queue with arbitrary waiting times. This is

similar to the waiting list of the DSSA. However, the event queues were implemented

using stable queues, that is, for events with equal time, the event that was scheduled

�rst gets executed �rst, such that the order of the events is predictable.

To promote parallelization, events are separated to those that do not require

interactions between the entities, and to those that do. The former kind of events

can be executed in worker threads, in parallel, while for the latter, synchronization is

required. The events can be either a combination of the built-in events, or arbitrary

functions written in Lua [37]. The simulation is performed by manipulating the

event queues as follows:

1. the events are pushed to their appropriate event queues

2. the �rst event Eg is popped from the global event queue

3. each of the entities are simulated up to time moment tg; this step can be done

in parallel

(a) if for the time t` of the �rst event E` in the local event queue t` < tg

holds

i. perform the DSSA simulation up to time moment t`

ii. perform event E`

iii. go to step 3a

(b) perform the DSSA simulation up to time moment tg

4. the event Eg is performed

5. go to step 2

In the above algorithm, step 3 can be performed in parallel for each entity, in a sep-

arate unit of processing. The current implementation uses multiple threads, which

are individual entities of execution in the operating system scheduler, sharing the

same memory address space. The memory address space can be used for synchro-

nization and inter-thread communication. The number of worker threads should be

chosen to be the number of logical processing units in the system, if all resources of

the computer is to be optimally utilized.



3. Simulating evolving cell populations 33

The built-in events include creation, duplication, and destruction of entities. The

latter two can be done on individual entities without triggering the synchroniza-

tion. The space and time complexity of each of these events O(1) with respect to

the number of entities in the simulation, and that of a single DSSA system with

respect to the number of molecular species and reactions involved, as discussed in

the previous section. Similarly, querying a value of a kinetic parameter or a number

of molecules of a certain species of an entity is O(1) time, and making a mutation

is O(n + logm) time, where n is the number of the molecular species and m is the

number of the reactions in the entity. The details and derivation of these bounds

are discussed in section 3.3.

Moreover, the events that manipulate the sets of entities have their expected

complexities. These events require synchronization, and are performed in the main

thread. For k representing the number of entities involved in the simulation at the

same time, the time complexity for selecting and shu�ing is O(k), O(k log k) for

sorting, and head and tail operations are O(k) time, which can be lower (O(1) for

example) depending on the parameters. Each of these operations is asymptotically

optimal, and is performed in-place, such they can be easily chained and require no

additional space for intermediate storage.

The operations requiring random numbers, such as the shu�ing, and the ran-

dom number generation functions exposed to the user, utilize a Mersenne Twister

MT19937 pseudorandom number generator [87]. There is one generator for the pur-

poses of whole simulation operated by the main thread, from which a generator for

each entity is seeded. The user can seed the global generator in case the exactly

same path of simulation is to be reproduced.

3.5 Describing the DSSA system

As a consequence of the simulators inheritance to SGN Sim, the speci�cation of the

DSSA system to be simulated is given the in format of SGN Sim. Full details can be

found in the SGN Sim manual [88], but a short explanation is given in this section

to give an idea what kind of actions can be easily implemented.

The parameters are speci�ed using identi�er-data pairs. These directives are used

to provide all the required information to the simulator. The directives should be

written into a text �le, which is then loaded at the creation of an entity. It is

also possible to dynamically create the con�guration for the DSSA simulator, in the

fashion of the command line parameters of SGN Sim. Note that since the entities

can be duplicated, it is not necessary to reload the �le at the creation of every

duplicate. Moreover, after the creation of the DSSA system, it is possible to mutate

any of the parameters prior to starting the simulations.

In the con�guration �le, the identi�er-data pairs can be provided in any of the
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following formats. These pairs can be mixed with C++ style comments [36].

1. identifier data ;

2. identifier { data-1 ; ... data-N ; }

3. identifier !{ data }!

The �rst two forms are useful for specifying data that is well behaved, that is, does

not contain the control characters that include the braces and the semicolon. The

second form is syntactic sugar for:

identifier data-1 ;
...

identifier data-N ;

and the third form is used to specify data that is not well behaved, such as sections

of arbitrary Lua code [37].

The comments have the rules of C++, that is, two types of comments are rec-

ognized. The �rst type is the multiline comment /* ... */, and the second is the

single line comment // ... , where the part ... is the comment, and can contain

arbitrary sequence of characters not including the comment terminator. In the for-

mer case, the comment can span multiple lines, whereas in the latter, the comment

is terminated on the newline.

The following identi�ers are recognized, and they have their equivalent behavior

of SGN Sim: include, lua, molecule_readout, population, queue, reaction,

readout_interval. Additionally, the following set of identi�ers are recognized and

parsed appropriately, but ignored for various reasons: fourier_file, output_file,

output_file_header, performance, progress, save_file, save_index, save_-

interval, save_now, seed, stop_time, time, warn. Most of these ignored pa-

rameters are provided by other means, and some of them were excluded for their

complexity.

The directive include is used for inclusion of subsequent con�guration �les. The

argument data speci�es the �le name that is to be read, and the directive is e�ec-

tively replaced by the contents of that �le. The syntax of the �lename is platform-

speci�c, and not discussed here.

The molecule_readout directive is used to control the printing of the molecule

counts to the output �le. If the argument data is show, any subsequently added

molecular species will be printed in the output �le. The argument value hide can

be used to make the counts of the subsequently added molecular species not to be

printed in the output �le.

The population directive speci�es the initial number of molecules. The following

forms of the directive are recognized:
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population species = count ;

population species += count ; // Add

population species -= count ; // Subtract

population species ; // Equivalent to species = 0

If a species appears for which the molecular count is not speci�ed, it is taken to be

zero, and any possible action, such as addition or subtraction, is performed after

that operation. Similarly, if the species was not previously introduced but appears

in a reaction, its concentration is taken to be zero.

Additionally, molecules can be placed on the waiting list prior to the beginning

of the simulation, for the purpose of introducing them to the system at a later point

in time. This is achieved with the queue directive, and the following speci�es its

syntax:

queue [count ]species (release-time );

which causes count molecules of the molecular species species to be released at

time point release-time . If the number of molecules to be released is one, count

can be omitted along with the square brackets. Moreover, the square brackets are

not required if count is a number.

The reaction channels are speci�ed using the reaction directive. The following

format is used:

substrate-list --[ rate-constant ]--> product-list

where substrate-list is a sequence of the molecular species that act as the sub-

strates of the reaction, separated by +, speci�ed in the following format:

[count ]species (rate-function :param-1,...,param-N )

and product-list is a list of the same type for the reaction products in the following

form:

[count ]species (delay-distribution :param-1,...,param-N )

Again, when count is one it can be omitted, and the same rules as above apply

for the square brackets. Moreover, if the rate function 2.13 is to be used or no

time delay is to be present, the parenthesized expressions specifying them can be

omitted. Additionally species can be pre�xed with a * to prevent the consumption

of a substrate. For the di�erent values of rate-function , delay-distribution ,

and their parameters, please refer to the SGN Sim manual [88].

An extension to the syntax presented above is that the parameters that are to be

mutated are written in the form of mutable(param ) instead of the param . This ap-

plies to parameters such as the molecular counts, reaction rates, and the parameters

of rate functions and delay distributions.
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Finally, the sampling interval for output printing is speci�ed using the directive

readout_interval. These causes a line to be printed in the output �le with intervals

speci�ed by the arguments data , containing the molecular counts of each species

for which the printing was not suppressed. Note that the sampling interval is not

related to the simulated precision, unlike in some ODE solvers, and does not a�ect

the dynamics of the simulation.

3.6 Manipulating evolving cell populations

The simulator utilizes the parser of the built-in Lua interpreter [37]. The �les

that describe the simulated system are Lua scripts, and arbitrary Lua code can be

included in them. However, in addition to the built-in functions of Lua, a set of

functions that is used to control the simulation is exposed.

The simulator is invoked in the command line. Currently, there is only a command

line interface available. The syntax on the command line is the following:

cellsel [--function [argument ] | script ] [...]

where, function is the name of a function to be evaluated, its argument argument

is optional, and if provided, it is evaluated as a Lua expression and the values

are passed to the corresponding function. If any script s are provided, they are

interpreted as �lenames of Lua scripts that are to be run.

The simulation consists of manipulating entities and simulating their time evolu-

tion. The entities are automatically simulated, that is, the user is left to specify the

actions how the entities are to be manipulated. The simulation is outlined using the

following functions:

each(interval, action-1, ..., action-N )

once(interval, action-1, ..., action-N )

run(stop_time )

time = time()

The functions each() and once() are used to schedule events. In both cases the

expression action-1 (...(action-N ())) is evaluated when the simulation time

reaches time() + interval(). Moreover, in the case of the former, the expression

is evaluated inde�nite times with intervals obtained by successive invocations of

interval().

The function run()makes the simulator to simulate the currently speci�ed system

up to time moment stop_time , whereas the function time() may be used to query

the current state of the simulation, for example, inside the events.

Entities, which represent individual simulations of DSSA, are manipulated using

the entity objects. The entity objects behave like a Lua tables. You can use the
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regular means to query and/or manipulate an entity. Note that the indexing is

zero-based (Lua typically uses one-based indexing):

#entity

entity [0]

entity ['A']

entity.X = 5

where the �rst form returns the number of parameters in the entity, that is, the

number of di�erent molecular species plus the number of mutable parameters. The

last three forms exemplify the di�erent forms querying and manipulation of the

parameters of an entity. As shown in the examples, either raw indices or parameter

names can be used.

Each of the entities has an unique identi�er, that is automatically generated from

a pattern. The pattern can be speci�ed by user using the following function. It is

not necessary that the iden�ers of the entities follow the same pattern.

output_pattern(pattern )

where pattern is a Lua string, in which the substring '%%' appears one or more

times. When an identi�er is generated, this substring is to be replaced by an unde-

�ned number such that the pattern becomes unique.

A range object is used to represent a sequence of entities and it behaves like a

sequential Lua table with the exception that it is immutable. To obtain the entity

objects, they must be extracted them from a range object. Regular means of Lua

can be used to query a range:

#range

first = range [0]

last = range [#range - 1]

where the �rst expression returns the number of entities in a range, whereas the

second and the third expressions return the �rst and the last entity of the range,

respectively.

Moreover, the entity and range objects can be iterated in the fashion that is

typical to Lua:

for _, entity in range do

for index, key, value in entity do

...

end

end

In addition, the following set of functions is made available for manipulation of the

range objects.
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range = all()

range = create(arg-1, ..., arg-N )

range = dup(range )

range = head(count, range )

range = kill(range )

range = select(predicate, range )

range = shuffle(range )

range = sort(predicate, range )

range = tail(count, range )

The function all() returns a range that spans over all entities. A new entity can

be created using the function create(), where the arguments arg-1, ..., arg-N

are passed to SGN Sim, whereas the function dup() duplicates each of the entities

contained in the range provided as an argument. Both of the functions return a

range spanning over the newly created entities.

Entities are destroyed using the function kill(), which returns the entities that

were left to the system. The functions head() and tail() can be used to limit the

number of entries in a range. The former includes count �rst entities, and the latter

count last entities. If provided count is smaller than the range length #range , the

range will be unmodi�ed.

The functions select(), sort(), and shuffle() manipulate their argument

range accordingly. In the context of select(), the argument predicate() is a

function that maps an entity object to a boolean, true denoting that the entity

should be included in the range. Alternatively, the parameter predicate can be a

string denoting that a presence of substance of that name is required, or a string

pre�xed with '!', inverting the condition. For sort(), the argument predicate ()

is a function that returns true if and only if the entity provided in the �rst parameter

is to be sorted prior to the entity in the second parameter. Again, predicate can

alternatively be a string, optionally pre�xed with '+' or '-' denoting ascending

or descending sorting order. The default is ascending. Finally, shu�ing uses a

modi�ed Fisher-Yates shu�e [89], to shu�e the elements that are included in the

range provided as an argument. This means that a permutation of the elements is

chosen with each of the permutations having an equal probability.

Also, a corresponding generator is available for each of the range manipulation

functions. The generators can be used as events in the argument list of scheduling

functions each() and once().
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callable = All(...)

callable = Create(...)

callable = Dup(...)

callable = Head(...)

callable = Select(...)

callable = Shuffle(...)

callable = Sort(...)

callable = Tail(...)

The facilities for pseudorandom number generation is provided using both func-

tions and generators. The generator counterparts are useful as the �rst argument

for the scheduling functions each() and once(), whereas the functions can be called

in user-de�ned events.

By default, the random number generator is initialized based on the system time

and the process id. This seed should guarantee that the results are di�erent between

separate runs. However, it is sometimes desirable to be able to reproduce the trace

of a single simulation exactly. In this case, the random number generator can be

initialized with a �xed seed:

seed(seed_id )

The following functions can be used to generate random numbers with various

distributions:

number = betarnd(alpha, beta )

number = chi2rnd(nu )

number = exprnd(lambda )

number = gamrnd(alpha, beta )

number = geornd(p )

number = normrnd(mu, sigma )

number = rand()

number = unidrnd(a, b )

number = unifrnd(a, b )

where the function rand() is the raw interface to the underlying uniform pseu-

dorandom number generator, and the other functions generate variates with beta,

chi-squared, exponential, gamma, geometric, normal, discrete uniform, and continu-

ous uniform distribution, in that respective order. Beta distribution is parametrized

using two shape-parameters alpha and beta , chi-square by degrees of freedom nu ,

exponential by rate lambda , gamma distribution by shape parameter alpha and

rate parameter beta , geometric by the probability p , and normal by mean mu and

standard deviation sigma . The function rand() returns raw unscaled uniform ran-

dom number from the underlying generator. In contrast, the function unidrnd()
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returns uniform random integers and the function unifrnd() uniform random real

numbers from the continuous uniform distribution, both scaled to the semi-open

interval [a , b ).

Each of the functions that generate random variates also has a corresponding

generator. Some generators have multiple aliases. Again, these generators are useful

in combination with the scheduling functions each() and once().

callable = Beta(...)

callable = Chi2(...)

callable = Exp(...), Exponential(...)

callable = Gam(...), Gamma(...)

callable = Geo(...), Geometric(...)

callable = Gaus(...), Gaussian(...), Norm(...), Normal(...)

callable = Unid(...), UniformDiscrete(...)

callable = Unif(...), Uniform(...)

Moreover, the following generator is available for convenience:

callable = Const(value-1, ..., value-N )

which is a generator that returns the arguments value-1, ..., value-N that were

provided on its creation. This generator is useful for generating intervals from

degenerate distributions, where the intervals are deterministic.

Finally, there are some utility functions that are useful for composing the desired

set of events from the built-in ones:

callable = bind(fun, arg1, ..., argN )

callable = compose(fun-1, ..., fun-N )

loop(count, fun-1, ..., fun-N )

Here, the function bind() returns a callable object that binds the arguments arg-1,

..., arg-N to the function fun . Consequently, the expressions bind(fun, arg-1,

..., arg-N )(arg-N+1, ..., arg-M ) and fun (arg-1, ..., arg-N, arg-N+1,

..., arg-M ) are thus equivalent. The function compose() returns a callable object

that is the function composition of its arguments fun-1, ..., fun-N , consequently

making the expression compose(fun-1, ..., fun-N )(arg-1, ..., arg-M ) equiv-

alent to the expression fun-1 (...(fun-N (arg-1, ..., arg-M ))). Furthermore,

the function loop() that can be used to invoke a function, such as create(), several

times. Invoking loop() invokes count times the expression fun-1 (...(fun-N ())).

Using the set of functions presented above, evolutionary simulations can be easily

composed. For example,

loop(100, Create('foo.g'));

each(Exp(10), dup, kill, Head(.5 * #all()), Sort('A'));

run(10000);
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will simulate a population of 100 entities, killing the worst 50 entities determined by

their �tness measured in the number of molecules of the species A, and duplicating

the rest. The time intervals for the selection are drawn from exponential distribution

with a mean of 10, and the simulation is performed until time moment 10000.
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4. EVOLUTIONARY DYNAMICS OF A

POPULATION OF CELLS WITH A TOXIN

SUPPRESSOR GENE

4.1 Introduction

A study was performed, using a stochastic model, to investigate the evolution of

the dynamics of a population of cells that are subject to a toxin [90]. The toxin is

introduced in the cell in a stochastic manner with a rate depending on the environ-

mental conditions. To cope with this threat, the cells regulate the expression of a

gene that is used to degrade the toxin.

A self-repressing gene used to degrade a toxin has been characterized in biolumi-

nescent Escherichia coli K-12 cells [91]. This gene is responsible for producing TetR

proteins that are used to degrade tetracycline, which is a substance toxic to the cell.

In the absence of tetracycline, the produced TetR proteins bind to the promoter

region of the gene producing them causing repression of the gene, e�ectively leading

to a scheme of inhibitory self-regulation.

In the model used, the environmental conditions are not only stochastic, but also

transient. The evolution of cells was investigated in environmental conditions where

the introduction of toxin is either on or o�. Environmental conditions with both

predictable and unpredictable period were considered.

This model was used to quantify the e�ects of di�erent environmental conditions

to the genetypic and consequent phenotypic diversity of the cell population. Further-

more, it was quanti�ed how sudden environmental changes a�ect these diversities.

Finally, the optimal mutation rates for the parameters regulating the system were

quanti�ed as a function of the parameters in the environmental conditions.

4.2 Model

In the study, a population of k cells was simulated. Each of the cells contains a

self-repressing gene responsible for degrading the toxin. The gene expression is a

two-step delayed stochastic model of gene expression, accounting for the various

steps in transcription and translation. The gene expression is represented by the
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following set of reactions:

P +R
km−→ P (τP ) +R(τR) +m(τm) (4.1)

m+ r
kp−→ m(τm′) + r(τr) + p(τp) (4.2)

m
dm−→ ∅ (4.3)

p
dp−→ ∅ (4.4)

P + p
kr−⇀↽−
ku

P ′ (4.5)

P ′
dp−→ P , (4.6)

where P represents the promoter region in active state, R an RNA polymerase, m

a messenger RNA, r a ribosome, and p a protein. This model is similiar to those

represented by reaction equations 2.32 and 2.33. Furthermore, P ′ represents the pro-

moter region that is bound by protein p, causing the gene to be in the repressed state

where its expression is inhibited. The stochastic rate constants km, kp, dm, dp, kr,

and ku represent the transcription initiation rate, translation initiation rate, mRNA

degradation, protein degradation, repressor protein binding rate, and repressor pro-

tein unbinding rate, respectively. Moreover, the time delays τP , τR, τm represent the

time it takes after an initiation of transcription for the promoter clearance, RNAP

becoming available for subsequent transcription, and forming the ribosome binding

site in the mRNA, respectively. Similarly, their translational counterparts τm′ , τr,

τp represent the time taken after initiation of translation for ribosome binding site

clearance, ribosome becoming available for next translation, and forming a func-

tional protein, respectively. This part of the model is based on the models of gene

expression discussed in sections 2.2.1 and 2.2.2.

The toxin is produced in the environment, and their cellular actions are modeled

using the following reactions:

∅
kX−⇀↽−
dX

X , (4.7)

where X represents the toxin, kX is the rate at which the toxin is transported to the

cell, and dX is the degradation rate of the toxin. The interactions between the toxin

molecules and the proteins produced by the cells are represented by the reactions:

X + p
ka−→ X ′ (4.8)

X + P ′
ka−→ X ′ + P , (4.9)

where ka is the association rate of the protein-toxin binding. The �tness of a cells
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is measured in terms of the �tness units, that are created in a stochastic manner

according to the reaction:

∅
kf−→ f where (4.10)

kf = α (1 + [X ′]) (1 + [p])−1 (1 + [X])−1 , (4.11)

where f represents a �tness unit, and kf is the rate at which the �tness units are

being produced. The �tness function is based on the fact that not only the toxin X

is assumed to be harmful to the cell, but also the excess of proteins p. The excess

of these proteins will lead to cell death due to loss of membrane potential [92], and

should be thus avoided.

The size of the cell population k is kept constant. Each of the cells are simulated

for a �xed lifetime `. After the lifetime of a generation is past, q-quantile of the

cells are selected for reproduction. The reproduction is based on the �tness units

f present in the cells at the time of the division. The cells with highest �tness will

be selected to produce the largest o�spring, while the cells with the lowest �tness

produce no o�spring. For simplicity, only the value of q ← 0.5 was considered, and

the surviving cells were let to produce an o�spring of two cells. At the time of

reproduction, the daughter cells inherit all features of their mothers by becoming

duplicates of the mother cell. Only the �tness counter is set to zero, such that the

�tness of the newly created cells is not dominated by that of their ancestors.

Furthermore, the parameters km, kr, and ku are let to mutate. These parameter

are known to be dependent on factors such as the genetic sequence of the promoter,

which is a genotypic feature that is known to be mutable. For each of these param-

eters, the following mutation scheme is used:

k = k∗
(
1 + δ [n+

k ]
) (

1 + δ [n−k ]
)−1

with (4.12)

∅ kδ−→ n+
k (4.13)

∅ kδ−→ n−k , (4.14)

where k is the e�ective parameter value, k∗ is the initial value of the parameter, δ

is the mutation step size, and n+
k and n−k are the mutation counts, to up and down,

respectively. The rate constant kδ is the mutation rate. Note that the mutations

are performed in a stochastic manner.

4.3 Results

A population of k = 100 cells was simulated, for various number of generations and

for di�erent environmental conditions. The cell division time was set to ` ← 1800,
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which is the average division time in E. coli.

The following values of rates were used throughout the study: kp ← 0.0005,

dm ← 0.005, and dp ← 0.0004. Also, the initial values for the mutable parameters

were set to k∗m ← 0.0025, k∗r ← 0.0001, and k∗u ← 0.1. Finally, the time delays were

set to τP ← 2, τR ← 40, τm ← 2, τ ′m ← 2, τr ← 20, and τp ← 50. These parameters

were selected based on the justi�cations presented in a previous study by Zhu et. al.

[63], and in the citations therein.

The expected amount of toxin was controlled by tuning kX , while the toxin degra-

dation rate was kept �xed at dx ← 0.01 [93]. Additionally, the toxin-protein binding

rate was set to ka ← X, which is within realistic ranges according to [93]. Moreover,

�tness scaling of α← 1 was used throughout the simulations.

The standard mutation rates in E. coli are known to be in the order of 10−7

per cell division, but are also known to vary in orders of magnitudes, depending on

internal and external factors, such as environmental conditions [94]. The mutational

parameters kδ and δ were let to be varying parameters in this study.

First, the e�ects of varying δ was studied while keeping the mutation rate �xed

at kδ ← 0.0001. The toxin is introduced to the cells with a rate of kX ← 0.1 for ten

generations, after which, kX is set to zero for another ten generations, repeating this

procedure to produce an environment where the toxin concentration is a stochastic

function with a periodic, transient distribution. The mutation step size δ was only

found to a�ect the time it takes for the population to reach the maximal value of

�tness permitted by the set of imposed parameters.

The second step was to vary kδ in the range [10−7, 1]. For this purpose, it was

let δ ← 10, such that the mutation e�ects were able to propagate fast enough in

the simulation timescale. It was found that outside of the range kδ ∈ [10−6, 0.1]

the mutation rate was either too low or too high. In the former case the mutations

could not introduce e�ects that would be signi�cantly advantageous compared to

the inherent stochasticity between the individuals, while in the latter case selection

was not able to eliminate the e�ects of accumulation of harmful mutations.

Next, by letting kδ ← 10−4 and δ ← 10, the distribution of phenotypes was

studied in a periodic environment. For the �rst 100 generations, no toxin was set to

be present (kX set to zero), and for the second 100 generations, the rates were set to

kX ← 0.1 and dX ← 0.001. Again, by repeating this procedure an environment with

a period of 100 generations was created. The phenotypic diversity was quanti�ed

using squared coe�cient of variation cv
2, that is, the variance over the square of the

mean, from the mutable parameters.

It was found that after a change in the environmental conditions the phenotypic

diversity was signi�cantly increased, after which it settled down to a value near zero.

This veri�es that changes in the environment are followed by transient increases in
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phenotypic diversity of the cell population, during which the cell population adapts

to the new environmental conditions. Afterwards, this diversity is reduced, since the

optimal solution has been adopted by a majority of the individuals. This e�ect is

visible in �gure 4.1, where the transient period appears to last up to 40 generations

after each environmental change.
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Figure 4.1: Time evolution of the phenotypic diversity of the mutable rate parameters

km, kr, and ku in a periodic environment with period of 100 generations. The dashed

black lines represent changes in the environment; toxin is introduced to the cells during

the generations 100 through 199.

It appears that even for �xed mutation rates, as was the case in the simula-

tions, the phenotypic diversity is a�ected by the changes in the environment. The

environmental changes trigger sudden increases in the diversity of the population.

Moreover, in stationary conditions, a constantly mutating population maintains a

certain degree of diversity even after arriving near to the optimal phenotype, due to

continuous introduction of mutations that are harmful or neutral in nature.

While the harmful mutations get quickly eliminated, the neutral mutations give

rise to complex distributions of phenotype. Figure 4.2 depicts the phenotypic dis-

tribution of the parameter kr, which is one of the rates controlling the repressor

binding a�nity. With the set of parameters discussed above, some of the cells ap-

peared to opt for tuning the value of kr while the others opted for tuning ku. The
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resulting distribution of phenotypes is a complex multimodal distribution. Both of

these paths of evolution provide the same expected promoter availability and might

be equivalent in terms of �tness.
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Figure 4.2: Distribution of the evolved value of kr k
∗
r
−1, that is, the evolved ratio of the

repression rate to its initial value, in a population of 100 cells. The cells are from 100th
generation, that is, just before the change in the environmental conditions such that the

distribution is well-evolved.

Finally, the optimal mutation rates were quanti�ed in environments with unpre-

dictable period. The environment was let to change state with intervals drawn from

an exponential distribution with a mean of (10 `)−1. Environments with di�erent

rates of toxin production were tested, namely, kX ← 0.001, kX ← 0.1, and kX ← 1.

Meanwhile, the degradation was kept constant at dX ← 0.01. The average �tness of

the cell population as a function of the mutation rate in these three environments

is shown in �gure 4.3.

It was found that the optimal mutation rates depend on the environmental condi-

tions, that is, on the expected amount of toxin. The reason for this is that when an

environmental change is triggered, the higher mutation rates provide evolutionary

advantage, since the cells are likely to be of suboptimal phenotype and larger mea-

sures are required to quickly change the phenotype. However, in an environment

where the environmental changes are infrequent, even lower mutation rates allow
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Figure 4.3: Average �tness [f ] in a population of 100 cells as a function of the mutation

rate kδ, for cell populations subject various concentrations of toxin, controlled by the rate

kX . The cells are subject to an environment with unpredictable period and the �tness is

measured at the end of the simulation, from the 100th generation.

the cells to adapt the environmental conditions while possessing evolutionary ad-

vantage over the higher rates by allowing more �ne-grained tuning of the phenotype

during the stationary-like periods. This suggests that it is advantageous for the

cells to tune their mutation rates, to obtain better adaptability for a wider range

of environments. Such tuning of mutation rates has been observed in real cells, for

example, in a population of bacteria living in mouse gut the individuals are able

to control their mechanism of DNA repair, and consequently can vary the e�ective

rate of mutations [32].
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5. EVOLVING THE KINETICS OF SINGLE

GENE EXPRESSION

5.1 Introduction

Another example, in which the simulator was utilized, was a study of evolving

kinetics of a single gene expression in an stochastic environment where the food is

scarce and the individuals of the cell population compete for survival. This allowed

the quanti�cation of the optimal set of parameters for both the mean expression level

and the �uctuations involved in protein levels, as a function of the environmental

conditions. Also, it was studied if there are optima with di�erent characteristics,

triggered by di�erent regimes of the environmental parameters.

It is known that in biological systems, di�erent genes have evolved to express with

various rates, depending on their function. The optimal rate of gene expression is

controlled by several factors. In addition to the energetic costs, such as wasted

energy and raw materials, the gene expression is often limited by other constraints

such as some genetic products being harmful in excess concentrations [92].

Furthermore, di�erent genes have evolved to have certain degree of �uctuations

in the levels of their products. Under some conditions it is favorable to have more

precise intervals between the production of the resulting polymers, leading to smaller

�uctuations in levels of abundance. On the other hand, under di�erent conditions

bursty expression and/or on-o� periods of activity of the gene might be preferred.

Numerous examples of the di�erences between the expression of distinct genes have

be found [95].

As discussed in section 2.2.1, the distribution of protein levels is a result of a

series of complex processes that are related, for example, to the regulation of gene

expression, the assembly of the polymers, and �nally degradation. In this study,

instead of using a model with high level of detail in these processes, a more abstract

model was opted for. The dynamics are let to be controlled by a su�ciently �exible

family of physically feasible distributions, whose parameters can be evolved. For

example, the duration of the intermediate steps in transcription initiation [96] and

the number of pause-prone sites [97, 98] in the process of elongation are determined

by the genetic sequence of the promoter and gene regions, respectively. These details

of these processes are known to regulate both mean and variability of time intervals



5. Evolving the kinetics of single gene expression 50

between production of consecutive proteins [96�98], resulting in di�erences in the

distribution of temporal protein numbers [99, 100].

5.2 Model

In the study, a population of k cells was modeled, in an environment, which provides

food for consumption in the cells. The population size k is let to freely vary over

time. By consuming food that is available to a cell, the cell then produces a protein,

and by the accumulation of these proteins, the cell can become competent, triggering

reproduction by division.

In the model, a stochastic environment is featured. In the environment, the food

is produced with a constant rate. To prevent the accumulation of the food and to

promote its consumption, the food is let to degrade. The food can be taken represent

any resource, which is stably produced in the environment and then transported to

the cells. The creation of the food in the environment is modeled according to the

reaction equation:

∅
λf−→ fr , (5.1)

where r is an uniform random number in [1, k], and fi represents the food available

to the ith cell. Obviously, the Markovian dynamics guarantee that this is equivalent

to having the following reaction equation for each cell i:

∅
λfk
−1

−−−→ fi , (5.2)

which makes us to notice that since the food is produced in a constant rate, the

expected food available per cell is inversely proportional to the population size k,

making explosion in the number of cells harmful to the population by leading to

starvation.

Next, cellular activities are modeled as follows. Each cell will transform an item

of food to a genetic product, via transcription and translation. This transformation

also occurs in a stochastic manner. Moreover, the products of the gene expression

are also let to degrade. For these purposes we have the following reactions:

Pi + fi
∞−→ Pi(τPi) + pi (5.3)

pi
dp−→ ∅ (5.4)

fi
df−→ ∅ , (5.5)

where Pi denotes the occupancy of the promoter region, fi the available food, and pi

the transcription product in the ith cell. Note that the reaction rate in equation 5.3
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is let to be in�nite, such that the time between production of the protein molecules

is independent of the amount of food fi present in the system, determined only by

the promoter delay τPi .

Additionally the promoter delay τPi ∼ Γ(αi, βi) is let to be gamma distributed,

with shape parameter αi and rate parameter βi. It is the parameters αi and βi,

which the cells are allowed to mutate. The gamma distribution was chosen due

to its �exibility to represent protein production dynamics ranging from sub- and

super-Poissonian. The Poisson process in the abundance of genetic products, that is

the result from the Markovian dynamics, can be obtained by letting the parameter

αi = 1, while the parameter βi determines the rate.

The mutations in the shape αi and the rate βi of the production interval distri-

bution of the cell is performed in linear scale with exponentially distributed time

intervals with rate of λm, with uniform probability to up or down. The mutation

uses a step size of ∆m, by which the parameter value is varied, that is, to mutate

parameter xi we set xi ← xi + (−1)d ∆m, for d ∈ {0, 1}. Again, a consequence

of the Markovian dynamics is that this is equivalent to performing the mutations

independently up and down, each with one half the rate. Additionally, a constraint

0 < αi, βi is applied to keep the system well-behaved. This only has an e�ect if a

value of αi or βi becomes small.

The cell cycle is modeled using a �xed cell lifetime `. During its lifetime the cell

tries to reach the competence, or it will decease without o�spring. Additionally,

cell death can be triggered by starvation, which is caused by the cell running out of

available food. On the other hand, when a cell manages to produce enough proteins

it becomes competent and it divides. That is, it forms two new daughter cells, with

parameters αi and βi inherited from the mother cell, and the proteins pi and food

fi are split to the two daughter cells. The state of competence is determined based

on a threshold T in the number of proteins present in the cell.

5.3 Results

The simulations were performed with an initial generation of population of size

k ← 10. The food was let to be created with rate λf ← 20T , and degraded with

rate df ← 0.1. The protein degradation rate was set to dp ← 1, and the initial

values of the parameters of gene expression were set to αi ← 1 and βi ← 5, for each

cell. This correspond to an exponential distribution with rate βi, and will result

in Poissonian dynamics. If there is no evolutionary advantage for non-Poissonian

dynamics, the evolutionary programming should retain Poissonian dynamics.

The initial concentrations of the molecules were set to [Pi] ← 1, [fi] ← 0, and

[pi]← bβi (αi dp)−1c, last of which is the expected protein level if there was in�nite

amount of food available, rounded towards zero. The cellular lifetime was set to
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` ← 100, the mutation rate was set to λm ← 1, and the mutation step was set to

∆m ← 0.02.

Finally, the model was simulated with two values of threshold T for cell compe-

tence, namely T ← 1 and T ← 10, which were called the low and the high threshold

case, respectively. Each of the models was simulated up to time point 500000, after

which it was clear that the solution had arrived near the steady state that could be

reached with current set of parameters. Moreover, 10 separate runs were done to

guarantee that the obtained result was not a single stochastic pathway, but indeed

the result is repeatable.

It was found out that by varying the threshold for cell competence various kinds

of optima can be found. Figures 5.1a and 5.1b depict the time evolution of the dis-

tribution of the parameters αi in the cell population, for the low and high threshold

case, respectively. Recall that the shape parameter α can be used to tune the noise

in the process of gene expression, whereas tuning the rate parameter β can be used

to adjust the mean levels independently, maintaining the variance-to-mean-ratio of

production constant.

There are interesting observations to be made from these �gures. As depicted

by �gure 5.1a, it turned out that in an environment where the threshold for the

competence is low, the cells appear to favor more deterministic control of gene

expression than would be expected. It is evident that the distribution of values of

α evolve to values greater than unity, making the process of gene expression sub-

Poissonian. After a short period of time, the individuals who favored smaller shape

parameter get eliminated, guaranteeing that there is not a single individual, whose

value of α is smaller or equal to unity, as the time moves further on.

On the other hand, for high values of threshold, this evolutionary model appears

to favor more noisy gene expression. In contrast to the low threshold condition,

in �gure 5.1b we see the shape parameter α to evolve to values strictly less than

unity. This means that in an environment where the threshold for the competence

is relatively high, the cells opt for having highly unpredictable timings between the

productions of proteins, making the process of gene expression super-Poissonian.

The resulting protein distributions are presented in �gures 5.2a and 5.2b, along

with the expected distribution if gene expression was purely Poissonian, that is, for

α = 1. It should be noted that while these distributions do not appear to exhibit

drastic di�erences to the Poisson distribution, the evolution of the shape parameter

α in both cases (see �gures 5.1a and 5.1b) shows that the non-Poissonian distribution

de�nitely exhibits evolutionary advantage in comparison to the Poissonian, since the

cells with the former have completely displaced the cells with the latter.

In both cases of threshold, more probability mass of the distribution is placed in

the region that passes the threshold than would have been expected. This provides
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Figure 5.1: Time evolution of the distribution of the scale parameter α, in (a) an environ-

ment with low threshold for competence (T ← 1), and in (b) an environment with high

threshold for competence (T ← 10). Di�erent levels of gray represent quantiles of the

population, with median denoted by the white dashed line, and maximum and minimum

denoted by the black dashed lines.

the cells with means of having greater probability of crossing the threshold for

competence, consequently allowing them to reproduce, and to pass on their evolved

features. Additionally, in both cases, the bulk of the distribution lies below the

threshold. Recall that the rate of gene expression is proportional to the consumption

of food, so it is therefore favorable to decrease the rate of the protein production

as much as possible, so as to conserve the available food and prevent starvation, as

long as the competence can be reached with a probability high enough.

In the case of low threshold, the probability mass have been shifted to the bar cor-

responding concentration of a single protein in a cell. The rest of the tail is reduced,

since producing extra proteins does not provide any advantage. Consequently, the

overall variance of this distribution is reduced in comparison with the Poisson dis-

tribution. Note that due to the constraints on the shape of the distribution of the

intervals between protein production in this speci�c model, the shape of the tail can

have a restricted form, preventing complete elimination of the tail.

These e�ects are also visible in the case of the high threshold. However, since the
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threshold is shifted, the distribution has evolved having a di�erent kind of shape.

Again, the bulk of the mass is placed below the threshold, making the expected con-

sumption of food small, preventing the starvation of the cells. This is accompanied

with a fat right tail, which provides the �uctuations by which the cell can reach the

competence.
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Figure 5.2: Distribution of protein concentration in the cells, at time moment 50000, in (a)

an environment with low threshold for competence (T ← 1), and in (b) an environment with

high threshold for competence (T ← 10). Solid lines with round markers represent Poisson

distributions with equivalent production rate and the vertical dashed lines represent the

threshold.

To summarize, in the case where the threshold is low, the competence can be easily

reached. Consequently, it is favorable to save the food to prevent the starvation of

the cell, and �nally reach the competence with more precisely timed production of

proteins during the lifetime of the cell. In the case of the high threshold, due to the

extremely noisy dynamics of gene expression, the mean expression of food can be

kept low. Again, this allows a large fraction of the cells to escape starvation, but

since the �uctuations have been evolved to be large, there is still a large probability

for producing a burst of proteins, guaranteeing that the cell to be able to reach the

state of competence during its lifetime.

There are few additional things to be noted. First, in the study, the cells were
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placed in a homogeneous environment. This is likely not to be the case in real world,

but di�erent cells are subject to di�erent environmental conditions, for example, the

expected amount of food available to a cell is likely to depend on several factors. For

example, it is likely that there is a cost of transport in the environment, such that

more distant locations of cells are subject to less available food. Another example is

the density of the cells. If there is an abundance of food in speci�c locations, the cell

density is likely to increase, either due to cells migrating from other areas to that

speci�c area, or just by survival and reproduction of the cells that were localized

there in the �rst place. Third, it might be that there is a scheme of competition of

the food, such that the amount of the food that a cell is able to gather is proportional

to some property of the cell.

Next, in �gures 5.1a and 5.1b it appears that the values of the shape parameter

α has not yet been well converged. This stochasticity in the shape parameters is

inherent to the model, since the mutation rate is �xed. In cases where the stability of

the parameters is of importance, the cellular systems might be able to tune the rate

of mutations. This can be done, for example, by regulating facilities that provide

error correction in the processes of replication of genetic material [32].

Finally, it is important to note that the initial value might play a role [35]. Since

we wanted to compare the dynamics of the gene expression with the Poissonian

model of gene expression, it was a su�ciently safe assumption to start with a ho-

mogeneous population of cells with α = 1. Also the evolved number of parameters

in this model is rather small, and cost function for the cells is expected to be su�-

ciently smooth, at least in terms of α and β. It is less straightforward to predict if

the e�ects of the variable population size k provide means of arriving to a multiple

minima.
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6. DISCUSSION

A simulator was introduced in this work, which allows the evolution of cellular

processes and genetic circuits to be simulated in a probabilistic manner. In addition

to the simulator, strategies for modeling such systems were presented, allowing the

construction of studies that investigate evolutionary phenomena in cellular systems.

Such a computational tool has not been previously available, either preventing such

studies, or requiring the construction of an ad-hoc tool for these purposes. As an

example of the applicability of this tool, two biologically relevant example studies

were presented, in which the di�erent features of the simulator were exploited.

The presented tool aims to be applicable for studying trajectories of complex

systems that are shaped by evolutionary processes. Due to the dimensionality of

these problems, it is not feasible nor intended that the tool would allow one to

predict where the evolution will lead, but rather to generate these trajectories that

can be used to obtain insight of the available evolutionary paths. Moreover, the tool

provides means for obtaining information on the behavior more restricted systems,

such as the evolution of bacterial populations in controlled environments. This

might be useful, for example, in such studies prior to wet lab experiments, which

tend to be laborious and expensive, unlike computer simulations. Alternatively, the

tool might prove itself useful as a tool aiding the engineering of genetic networks, to

reveal the circuits that not only behave well under the speci�c conditions, but also

can cope with environmental changes.

In addition to the modeling and simulation of genetic networks, the simulator

can be used as part of a stochastic and/or evolutionary optimization process. For

problems with large dimensionality, many of the parameters of the systems can be

let freely mutate, and a carefully speci�ed �tness function can be used to drive the

optimization process to reveal solutions of parameters that are a good candidates

for solving the problem.

Finally, the presented tool can be used to generate realistic data that can be

used as an input for building tools that convert the measurement data of real world

experiments to some higher form. For example, the simulated data can be used

to train and evaluate performance of tools that attempt to infer the time-varying

structures of networks that are under evolutionary pressure.

In the study that acted as the �rst example, the e�ects of environmental changes
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to the phenotypic diversity and mutation rates were studied. It was found that

environmental changes promote the introduction of additional population diversity,

and that in highly transient and unpredictable environments higher rates of gener-

ation of this variability is favored, for example, by controlling the mutation rates.

Moreover, it was shown that neutral mutations can lead to complex distribution of

phenotypes in cellular populations, by allowing multiple solutions to be optimal.

The second example focused on the evolution of gene expression dynamics in

stationary environmental conditions. It was found that small changes in the evolu-

tionary constraints can drive a population to favor di�erent levels of stochasticity in

their cellular processes. Moreover, it was shown that even small changes in the de-

tails of these processes will lead to generation of phenotypes that provide signi�cant

evolutionary advantage to trigger speci�c paths of evolution.

For future, it is planned that the number of features in the simulator will be

increased, such that its applicability of quickly building and simulating stochastic

kinetic models with evolutionary programming becomes even more easier. Moreover,

it is of interest to make the tool more friendly to end-users that are unfamiliar with

the intricate details that are involved in the evolutionary processes of stochastic

networks, without the loss of the simulators applicability.

Additionally, it is of interest to use the simulator to perform studies of evolution

in simple genetic circuits in complex environments. Among other genetic motifs

fundamental to life, the circuits to start with could be genetic toggle switches and

three-gene repressilators. Currently, the availability of such studies is limited, and

while the dynamical features of these processes have been studied previously, the

understanding of their behavior under evolutionary pressure is rather poor. Another

interesting line of work that the simulator allows to study involves investigating

the e�ects of evolution to isolated subpopulations. While such isolation might be

unlikely to occur in realistic networks by chance, intentional damage might cause

transient isolation of parts of the networks.

Furthermore, it would be interesting to see if the phenomena observed in the

examples can be reproduced using live cells. For example, live bacteria can be used

in such experiments, due to the fact that their genotype more limited in size and their

rate of reproduction is fast. Additionally current measurement techniques allows

the observations in single mRNA and protein level. For example, one could test if

di�erent controlled environmental conditions lead to the evolution of populations

with di�erent variability in their gene expression.
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