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Transistorien integrointitiheys on jatkanut kasvuaan jo vuosikymmeniä, eikä loppua

ole näköpiirissä. Suunnittelijoiden tuottavuus ei valitettavasti ole pysynyt tämän

kehityksen perässä, ja tämä on kasvattanut piirien suunniteluaikoja liikaa.

Ongelman ratkaisemiseksi on siirrytty käyttämään enemmissä määrin

uudelleenkäytettäviä lohkoja, joita voidaan yhdistellä monin eri tavoin, ja

koostamaan piirit näistä ns. IP-komponenteista. Yksi tällainen IP-komponentti on

Tampereen teknillisellä yliopistolla kehitetty RISC-prosessori, COFFEE.

Jotta prosessori olisi hyödyllinen, se kuitenkin tarvitsee monia eri ohjelmointi-

työkaluja kuten kääntäjän, assemblerin ja linkkerin. Tässä työssä on kuvattu kään-

täjän toteutus kehitetylle COFFEE RISC-prosessorille.

Aluksi tutkimme mahdollisia toteutustapoja, joita oli kolme: tehdä kokonaan

uusi kääntäjä, käyttää kaupallisia kääntäjänkehitystyökaluja, tai muokata olemas-

saolevia vapaan-lähdekoodin kääntäjiä. Kokonaan uuden kääntäjän kehitys ei ol-

lut resurssien rajallisuuden vuoksi kovinkaan hyvä vaihtoehto. Kaupallisista kään-

täjänkehitystyökaluista tutkimme CoWaRen LisaTek-työkalua, joka on tarkoitettu

helpottamaan prosessorien ja niiden ohjelmointityökalujen kehitystä. LisaTek-

työkalulla voi generoida kääntäjän graa�sen käyttöliittymän avulla, mutta kaupal-

lisena ohjelmana se asetti rajoituksia generoidun kääntäjän antamisessa vapaaseen

käyttöön. Lisäksi työkalun kehitys oli vielä kesken työn kriittisimmässä vaiheessa.

Tämä jätti ainoaksi ja parhaimmaksi vaihtoehdoksi valita olemassa oleva kääntäjä,

ja muokata sen lähdekoodia toimimaan COFFEE RISC-käskykannalla.

Vapaasti levitettäviä uudelleenportattavia kääntäjiä löytyi kaksi: LCC ja GCC.

LCC on opetuskäyttöön kehitetty uudelleenportattava C-kääntäjä. Se oli yksinker-

taisuutensa vuoksi hyvin houkutteleva vaihtoehdo, mutta GCC teknologisesti ke-

hittyneempänä ja suositumpana vei voiton. Lisäksi GCC:n myötä saataisiin myös

paljon jo kehitettyjä C-ohjelmointikielellä tehtyjä ohjelmistoja käyttöön, kunhan

GCC saataisiin portattua COFFEE:lle.

GCC on alusta asti suunniteltu uudelleenkäyttöä varten, ja sen rajapinnat mah-

dollistavat uusien kielien ja uusien käskykantojen lisäyksen. GCC:n toiminta on

jaettu kolmeen itsenäiseen osaan. Yksi osaa vastaa lähdekoodin lukemisesta ja
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analysoinista, keskimmäinen osa optimoinneista ja loppuosa vastaa konekielisen

koodin tuottamisesta. Jotta GCC saataisiin toimimaan COFFEE RISC:n käskykan-

nalla, sille tarvitsi kehittää uusi loppuosa.

Porttaaminen tapahtuu siten, että GCC:lle kerrotaan, miten tarvittavat arit-

meettiset ja datansiirto-operaatiot toteutetaan prosessorin käskykannalla. GCC:n

taustalla on kuvitteellinen ideaaliprosessori, jolle se generoi koodia, ja tämän kuvit-

teelisen prosessorin operaatiot ja niiden vastaavuus oikeaan prosessoriin kuvataan

ns. RTL-kielellä.

GCC:n porttausmanuaalissa kerrotaan kaikki mahdolliset kuvitteellisen proses-

sorin käskyt, joiden toiminta oikealla prosessorilla voidaan kuvata. Näitä kaikkia

ei kuitenkaan tarvitse toteuttaa, sillä GCC osaa automaattisesti emuloida nämä

operaatiot niiden kuvauksen puuttuessa, tai sille voidaan antaa konekielellä tehty

toteutus, jota GCC kutsuu tarvittaessa. Ainoat tarpeelliset kuvaukset ovat yh-

teenlasku tavuille, tavujen siirto muistin ja prosessorin välillä, loogiset operaatiot

tavuille ja ehdolliset hyppykäskyt. Kun nämä on toteutettu, GCC osaa kääntää

perus C koodia uudelle prosessorille.

COFFEE RISC:lle suurin osa käskyistä voitiin toteuttaa RTL-kielellä. Ainoas-

taan jakolaskuun liittyvät operaatiot jouduttiin tekemään konekielellä, sillä COF-

FEE:lla ei ole laitteistolla toteutettua jakolaskua. GCC tarvitsi myös muutamia C:n

standardikirjastojen funktioita konekielellä toteutettuna, joita olivat esim. mem-

copy (muistilohkojen kopiointi) ja memset (muistilohkojen alustus).

C-kieltä porttauksessa on tarvittu määrittelemään datatyyppien koot, rekiste-

rien määrät ja tarkoitus sekä pinon ja funktiokutsujen toteutustapa. Nämä on

toteutettu pääasiassa C-kielisillä makroilla, jotka voidaan tarvittaessa laajentaa

normaaleiksi funktiokutsuiksi, jos niiden koko on liian iso. Nämä konventiot on

dokumentoitu, jotta mahdollistettaisiin muilla ohjelmointikielillä tai konekielellä to-

teutettujen ohjelmien integroimisen C-kielellä toteutetun koodin kanssa.

Alkutestaukseen käytettiin kahta tunnettua signaalinkäsittelyalgoritmia, jotka

olivat FIR-suodatus ja DFT-muunnos. Nämä algoritmit toteutettiin C:llä ja kään-

nettiin COFFEE RISC:lle portatulla GCC:llä. Tarkistimme, että tekemämme kään-

täjä tuotti toimivaa koodia. Lisäksi tehdyt C-koodit käännetiin vielä kahden muun

prosessorin GCC-kääntäjällä ja analysoitiin koodin tehokkuutta. Porttattu COF-

FEE GCC-kääntäjä jäi koodin tehokkuudessa osittain jälkeen verrokkiprosessor-

eista (ARM7 ja Pentium 4), mutta siedettävissä määrin, ja DFT-muunnoksesta se

suoriutui jopa paremmin kuin ARM7. Jälkeenjääminen tehokkuudessa kuitenkin

johtui suuremmalta osin COFFEE:n käskykannasta eikä varsinaisesti portatusta

kääntäjästä. COFFEE:n käskykanta on huomattavasti suppeampi kuin verrokkina

käytetyillä kaupallisilla prosessoreilla.

Kun pahimmat virheet olivat karsiutuneet pois, kääntäjän toimintaa kokeiltiin
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muutamilla isommilla ohjelmilla. COFFEE RISC prosessori oli syntesoitu tarvit-

tavine oheislaitteineen Altera STRATIX:n FPGA-prototyyppialustalle. Alustalla

oli myös VGA-portti, joka mahdollisti gra�ikan esittämisen monitorilla. Projektin

ohessa oli kehitetty 3D gra�ikan tekemiseen tarvittavia algoritmeja, joita käytettiin

yksinkertaisen kuution pyörittämiseen ruudulla. Toinen sovellus oli H.264 videon

dekoodaus, joka toteutettiin C:llä ja käytettiin onnistuneesti dekoodaamaan lyhyt

video COFFEE:lla.

Tulevaisuudessa voisimme siirtyä käyttämään uudempaa versiota GCC:stä. Tällä

hetkellä käytössä on versio 3.4.4, ja siirtyminen 4.x versioon parantaisi koodin

tehokkuutta ja toisi tuen OPENMP-kielelle. Lisäksi C:n standardikirjastojen ja

Linuxin porttaus toisivat paljon uusia mahdollisuuksia COFFEE RISC-prosessorille.
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The department of computer systems in Tampere University of Technology has

created an embedded RISC processor, COFFEE, to be used as part of System-on-

Chips (SoC). These SoCs include all the hardware a device needs in a single solicon

chip. Typically a SoC is constructed from readymade Intellectual Property-blocks

(IP-blocks), which are designed to be reusable. A processor is on such block.

A processor itself is of very little use. To fully exlploit the potentials of processors,

they need a set of software development tools: compiler, assembler, linker, simulator

etc. The purpose of this thesis was to develop a high level language compiler for the

developed COFFEE RISC core.

At �rst, di�erent ways of reaching this goal was brie�y analyzed, and based on

that, the retargetable open source Gnu Compiler Compiler Collection (GCC) was

chosen to be retargeted to the COFFEE RISC core.

The process of retargeting GCC required the generation of a new back-end for

it. The back-end consists of a special machine description describing the basic

instructions of the processor and C code.

A new back-end for GCC was created, and the correctness and performance of the

created assembly code was analyzed with basic signal processing algorithms created

in C. After initial testing phase, we created some larger applications such as 3D

graphich algoriths and a H.264 decoder, which were tested on COFFEE RISC core

running in an Altera FPGA prototyping board.
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1. INTRODUCTION

Usage of processors in di�erent applications is constantly increasing and more and

more applications are implemented mainly in software instead of hardware. This

trend is justi�ed by the fact that silicon manufacturing technologies continue to

advance at the Moore's law rate. That is every two years the number of transistors

in integrated circuits is doubled. This law has led to a so called design productivity

gap, which means that traditional methods of designing integrated circuits are not

adequate anymore because the design productivity of an engineer is not increasing

at the same speed. New methods are therefore needed to ensure that design times

do not rise to unacceptable levels.

One solution to this problem is the Intellectual Property(IP) reuse methodology.

Instead of designing systems from scratch the trend is towards designing reusable

blocks, which can then be used again in di�erent applications. These blocks can

then be combined as needed in a so called System-On-Chip [10]. One integral part

of most SOCs is a general purpose processor. Modern manufacturing technologies

are able to produce processors in the GHz range so there is less demand for special

purpose hardware, because these high performance processors enable us to do a

larger proportion of the application in software. However to enable the powerful

properties of software one needs a high level language(HLL) compiler.

The purpose of the HLL compiler is to raise the abstraction level of software

development. In the early days computers were programmed in processor speci�c

languages (generic term: assembly language). Software written in these languages

were not portable to another processor and required detailed knowledge of the pro-

cessor and its instruction set architecture (ISA). HLL compiler hides the underlying

processor and provides a standard language for programming. This standard lan-

guage is used to develop applications, which can then be built on any processor for

which a similar compiler exists, without modifying the original source code.
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One of the �rst HLLs developed is the C language [2]. It was developed in 1970s

by Dennis Ritchie at the Bell Telephone laboratories. The main design goals of C

were:

• Straightforward compilation with a simple compiler

• Low-level access to memory

• Very little run time support required

• Machine independent programming

These properties were powerful enough to spur the reimplementation of the Unix

operating system in a language other than assembly. Also being a simple compiler to

implement, C compilers were developed for many other processors and its usage as a

principal programming language quickly spread. The quick adoption of C, its large

application base and its powerful properties make it the most widely used language

in embedded systems programming, even today.

The Department of Computer Systems in Tampere University of Technology has

developed a reusable processor core targeted to SOCs. This thesis describes the

development of a HLL compiler for this processor named the COFFEE RISC core,

the di�erent methods of realizing a compiler, what kind of method was chosen and

the results obtained during this process.

Chapter 2 gives a brief introduction to the COFFEE RISC core and the back-

ground of this project, focusing on properties which are relevant to a HLL compiler.

Then the third chapter reviews di�erent approaches for achieving this goal and

focuses on what approach was chosen. An important part of the compiler develop-

ment is the de�nition of the processors Application Binary Interface (ABI), which

describes the important conventions regarding data types and function calling se-

quences. The COFFEE ABI is the focus of chapter four. The �fth chapter describes

the details about porting GCC to a new architecture and its internal architecture

which enables it to be a portable HLL-compiler. The chapter tries to give a good tu-

torial into the porting mechanism of GCC, but most of the technical details are left

out. Because The COFFEE RISC core does not have byte loads and stores, it was

required to work around this limitation through other means. This mechanism is

described in the sixth chapter. Chapter seven focuses on the testing of the COFFEE

port of GCC. It introduces the platform used for testing the COFFEE RISC core

and the other software tools necessary for programming. During the project many

di�erent applications have been developed and run on the COFFEE RISC core. A

few of the applications and their results are introduced in this chapter. Finally we

have the conclusions which wrap up the experiences gained during this project, and
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give some information about the ideas for the future development of the COFFEE

GCC compiler port.
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2. THE COFFEE RISC CORE PROJECT

The goal of COFFEE RISC project was to develop a general purpose RISC core

to be used as an IP-block in SOCs. This means that COFFEE should be easy to

integrate and implement in many di�erent platforms, whether they are Field Pro-

grammable Gate Arrays(FPGA) or Application Speci�c Integrated Circuits(ASIC).

Such a processor should also have enough performance to support most applica-

tions, which are used in modern embedded systems. To accomplish these goals it

was implemented in textitRegister Transfer Level (RTL) VHDL (Very high speed

integrated circuit Hardware Description Language). In addition we decided to make

it freely available for anyone, in order to increase the number of users. This idea is

based on the open source principle used in software. Detailed information about the

core is available in M.Sc thesis [1] by Juha Kylliäinen, and a good brief overview of

the architecture and the consepts adopted can be found in [28].

A single processor core needs additional hardware and software components to

be used for application development. To develop software for a processor the typical

tools are the HLL compiler, assembler and linker. The HLL compiler creates as-

sembly code for the assembler, the assembler creates the actual machine code out of

assembly language text, and �nally the linker is used to combine di�erent software

components together as a single program.

Additional hardware components that increase the usability of a processor in-

clude: timers, �oating point co-processor, direct memory access-controller, etc.

During the years many applications have been developed for the COFFEE RISC

and some of the resulting work is publicly available for anyone to use and modify in

the COFFEE RISC core website http://co�ee.tut.�.
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2.1 COFFEE RISC core Overview

The di�erent technical decisions of processor design are very important from the

compilers point of view. Traditionally general purpose processors were not designed

to take into account the HLL compilers and their development. But as soon as

software development saw the �rst HLL compilers, processor development needed

to shift focus more on the support for HLL compilers instead of hand-coded assembly.

As COFFEE is a RISC processor it has a very clean and simple instruction set.

Before HLL compilers processors were mostly CISC (Complex Instruction Set Com-

puters, i.e., one instruction had many functions it could accomplish). When most

of the programming was done with hand-coded assembly it made sense to have such

instructions. However this approach has the drawback of increasing the complexity

to develop a HLL-compiler for these processors. As a result compilers tended to

only use a small subset of possible instructions available. Unused instructions only

waste resources in every sense: they increase power consumption and area occupied

on a silicon chip.

Here is a list of the main features of the COFFEE RISC core which a�ect the

HLL-compiler in some way:

• Six-stage pipeline

• Harvard architecture

• Separate modes for user and privileged mode for operating systems

• Two register banks, 32 32-bit registers each for user and privileged user

• Up to four coprocessors can be connected to speed up di�erent applications

• 16-bit and 32-bit instructions encodings

• Conditional execution of instructions

2.2 Processor Properties Relevant to the Compiler

All the decisions made in the design phase of a processor impact the compiler devel-

opment immensely, and it is advisable to have tight integration between the hard-

ware and software designers right from the beginning. Compiler development is the

more demanding part of the process nowadays, and the task of creating an e�cient

compiler should not be made more di�cult without properly analyzing the pros and

cons of all the hardware properties and processor instructions. As COFFEE is a

RISC processor at heart it is a good target for compilers in general.
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2.2.1 Pipeline Data Hazards

The pipeline and its possible data hazards are one of the most important features

from the compiler's perspective. Every time an instruction entering the pipeline

requires a result from a earlier instruction, there is a possibility of a data hazard.

A data hazard occurs when a result is not ready before the instruction that uses it.

Without taking these data hazards into account (in the compiler or the hardware)

you have data corruption, which can eventually crash the whole program.

In the hardware you can address these data hazards with a dedicated detection

logic. When a data hazard is noticed in the instruction �ow you have two choices:

either stall the pipeline or forward the data inside the pipeline to a previous stage.

Stalling the pipeline means that the instruction using a previous instruction's result

is not allowed to proceed in the pipeline before the result is available for it to use.

Forwarding means that the result is rerouted inside the processor to a previous

stage so that the next instruction can use it before the previous instruction has gone

through the whole pipeline. Forwarding is the best choice but this is not always

possible. Then you have to stall the pipeline. This is done by forcing a no-operation

instruction in the pipeline and stopping the progress of previous stages.

If the hardware is not designed to handle these situations then the compiler has

to do it. In particular the compiler has to know all the possible data hazards and

either insert su�cient number of nops between instructions to avoid data corruption,

or change the instruction sequence without altering the meaning of the program.

2.2.2 Delay Slots

Many processors have so called delay slots. These delay slots are associated with

the branch instructions of a processor. If a processor has a delay slot in a branching

instruction, it means that the instruction following the branch instruction is always

executed. When the branch instruction is conditional, this has to be taken into

account by the compiler.

There are two ways to handle this problem: either put in a no-operation instruc-

tion after every branch instruction, or �nd a suitable instruction to be put there.

Fortunately GCC has an integrated method of describing the possible delay slots

of a processor, and it is used in the COFFEE compiler port also. The GCC can

be noti�ed that an instruction has a delay slot, so it can automatically �nd an

instruction to be placed in the delay slot. If the compiler cannot �nd a suitable

instruction it places a no-operation instruction in the delay slot.
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2.2.3 Registers

The number of registers on a processor has signi�cant e�ects on the performance

of the compiled code. Having a large amount of registers helps to reduce memory

accesses, which is the usual bottleneck in modern systems. With a large amount of

registers the compiler can keep variables and intermediate results inside the registers

and reduce stack accesses, which in turn reduces memory accesses and improves

performance.

The COFFEE has large register banks for both the regular user and the superuser

from the compilers point of view, and helps the allocation of registers to di�erent

purposes and reduces the usage of stack between function calls.

2.2.4 Separate Modes for Superuser and Regular User

To support modern Operating Systems(OS) COFFEE has two di�erent sets of regis-

ters and operating modes: one for superusers and one for regular users. The regular

user has limited access to memory and certain instructions are forbidden, which

prevents applications from con�icting with each other's data or code accesses. Vio-

lations result in an exception and the execution is given to the superuser to �nd the

problem and possibly �x it, or terminate the o�ending application.

Typically C code is written to be executed in regular user mode, and programming

in superuser mode is very rare and requires special procedures from the programmers

point of view. The common way of switching modes of a processor from regular user

to superuser goes through a special instruction. The mode switching instruction is

not needed to create executable programs from C, so the switching of modes in C

has to be done either by embedding assembly code in to C, or to call a function

written in assembly from C.

Only the OS is typically run in superuser mode and all applications are run in

regular user mode to have the bene�t of memory protection and multitasking. Of

course, on systems without OSs the applications are executed in superuser mode

to have full hardware access to peripherals, but the default is to assume that the

applications are run in control of an operating system.

2.2.5 Predication

COFFEE supports predicated execution of instructions, which means that most

of the instructions can be coded with a condition to check whether to execute it

or discard it. This speeds up the execution of small loops and conditional code

because branching is reduced. Usually a conditional block is skipped by jumping

over it if the condition is false, but conditional execution removes this jump and

all the instructions are passed through the pipeline without executing them. Also
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looping over a code block bene�ts from this. However, this is only true for a small

conditional/loop blocks. While eliminating jumps and the resulting pipeline �ushes

are bene�cial, feeding useless instructions increases the global latency and power

consumption. By experience we can say that only a very small conditional/loop

block bene�ts from conditional execution of instructions, while a loop with more

than 4 instructions is faster to execute without conditional instructions. As a result

the COFFEE compiler port does not support this feature.

2.2.6 Instruction Coding Size

During the early stages of designing the COFFEE RISC core, memory on embedded

systems was limited, and it was bene�cial to have a 16-bit encoding of instructions

to save precious memory. But with the increase of available memory on-chip the

usefulness of this feature has reduced and it is not used much anymore. Also the

limitations introduced with shorter encoding of instructions results in a reduced

performance.

2.2.7 Floating Point Coprocessor

As part of the COFFEE RISC project a �oating point coprocessor (MILK) was

developed to boost the performance of some applications, for example 3D graphics.

MILK provides many arithmetic operations for the IEEE standard 754-1985 for

single precision �oating point numbers. The COFFEE RISC core supports the

MILK coprocessor. Supported instructions and their explanation is in appendix I.

Some of the instructions of MILK are not supported by the compiler because of

their marginal usage.

Later, when larger FPGAs were introduced we decided to integrate the �oating

point coprocessor into the COFFEE core. This gave us better performance, because

the data transfers between the COFFEE core and the coprocessor were left out

completely. This version of COFFEE RISC core was named CAPPUCCINO.
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3. INTRODUCTION TO C COMPILERS AND

GCC

The �rst C compiler was developed in the Bell Telephone Laboratories in the early

1970s [12]. Its roots are in the B and BCPL programming languages and the DEC

PDP-11 computer. The B language was not suitable for developing operating sys-

tems so it went under many improvements and modi�cations. By 1973 it was so

di�erent that the resulting language was renamed as C. After that it was retargeted

to other machines and the UNIX OS was written with it. But it was not until 1978

when the �rst book about C language was published [13].

During the 1980s the popularity of C started to grow rapidly and it was available

to almost all processors and OSs. A language this popular was necessary to be

standardized so in 1982 the standardization process started. This resulted in the

ANSI standardization in 1989 [14].
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3.1 Compilation Flow

Producing an executable program from the C language requires many steps. This

�ow is presented in �gure 1.

Figure 1: C language compilation �ow

The �rst step is the preprocessing phase. The job of the preprocessor is to strip

out comments and replace # include directives with the contents of the correspond-

ing source �le. Also macros are expanded by the preprocessor. Preprocessed source

�le is then given to the actual compiler, which produces assembly code from it. Then

the assembler generates object �le from the assembly. Object �le is actual machine

code but can contain external function calls or variables, which are de�ned in other

source �les. In the �nal phase the linker is used to combine these di�erent object

�les together in a single executable �le.

3.2 Di�erent Implementation Strategies

There are three di�erent approaches to develop a C compiler today. First one is the

traditioonal method of designing and implementing it from scratch. Compared to
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other modern languages C language is a relatively simple language to implement.

In fact all the basic language constructs have a corresponding operation in assembly

language, but the porting requires still a lot of work. Depending on how much

optimization routines you want to have, the actual source code can become as large

as 100k lines. Also as processors have become more complex, compiler development

becomes more demanding too.

Another approach is to use an existing compiler. There are two distinct parts in

compilers: the source language scanner&parser and the assembly generating part,

typically called front-end and back-end. The scanner is responsible for reading

the source language text and recognizing the language constructs (reserved words,

variables, arithmetic statements) and creating so called tokens for the parser. Then

the parser analyzes these tokens and checks whether the source code is semantically

correct. Finally the statements are stored in a tree-like data structure. This data

structure then goes through many optimization procedures before it is passed on to

the assembly generator.

The front-end in a standards compliant compiler is not dependent on the target

architecture and therefore it is possible to reduce signi�cantly the design time if you

can use an existing compiler. To do this access to the source code is needed and the

compiler should be designed with retargetability in mind. This is where the emerging

of open source software(OSS) has its advantages. There are also commercial software

which give acces to the source code and permission to modify them. However, they

have strict limitations on the distribution of the modi�ed source code and they are

not free for use (as in speech).

There were two retargetable compilers to choose from: The GNU C Compiler

(GCC) and the Local C Compiler (LCC). The LCC was developed for educational

purposes and it is well-documented in the book �A Retargetable C Compiler: Design

and Implementation� by Chris Fraser and David Hanson. It is also available free of

charge, but it is not open source, so sticking to the open source philosophy we chose

the GCC for our purposes.

In the last years also commercial software tools o�er retargetable compilers. As

SOCs and the usage of processors in applications is increasing there is a demand for

tools in designing application-speci�c processors and software development tools for

them. One of the �rst ones in this area is the CoWare LISATek [3] software suite.

With LISATek you can easily design di�erent processor architectures and analyze the

performance of di�erent instruction sets. The tool provides a simulator and software

tools based on a description resembling a programming language. However being

commercial software it was not suitable in the end for our open source philosophy.

Also the tools were still in development stage during the critical time of this project.
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3.3 Bene�ts of Open Source Software and GCC

One of the most famous and successful software projects in recent years has been

the GNU Linux [4] operating system. It was originally started by Linux Torvalds

as a hobby but due to the thousands of volunteers and enthusiasts it has grown

as a serious competitor in the operating system market. The Linux Operating Sys-

tem (OS) is nowadays even backed up by such industry giants as IBM and Nokia.

The GNU addition in the name is because the tools provided by the Free Software

Foundation's (FSF) GNU project are a very integral part in the development of the

commonly known Linux OS. This OS and the tools are completely distributed as

open source without any charge. One is free to use them as they wish provided that

he/she agrees to provide modi�cations or improvements in the software to everyone

else under the same Gnu General Public License [5].

Part of these tools is the GCC; a set of compilers mostly used under UNIX like

OSes. Originally it started as a C compiler only but after 20 years of development

it has grown to support also C++, Fortran, Objective-C, Java and ada. During

these years hundreds of motivated and talented people have been contributing to

this project and this has resulted in a very diverse and powerful HLL compiler

suite. Because of the open-source nature it is able to produce highly optimized code

comparable to commercial compilers. It is true that highly specialized commercial

compilers (not intended to be retargetable) have some advantage in overall code

quality. However, as a free, retargetable compiler it has no competitor. GCC has

been ported to almost 100 di�erent processors and several di�erent OSes. Almost

every new processor arriving to market will, at some point, have a port of GCC (and

usually that is the only compiler available).It is also able to cross-compile (meaning

that the target architecture is not the same as the development architecture).

The biggest advantage in our approach is that when you have the whole software

development toolchain ported from these GNU tools (GCC, GAS, linker) you have

access to a very large set of other applications, which require in the ideal case only

a recompilation for your new architecture. The only applications that require some

porting e�orts are the Linux kernel and the standard C library but they have only

a small portion dependent on the target architecture.
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4. THE COFFEE ABI

This chapter describes the COFFEE RISC Application Binary Interface (ABI) used

by the COFFEE GCC compiler. The purpose of the ABI is to document all the

important conventions that the compiler uses to call functions, store data and how

the stack is organized. Using the same conventions makes the interaction of programs

written in di�erent languages possible. It is also usable when debugging applications

with aid of a special debugger, such as the GNU GDB.

4.1 Basic Data Types

Table 1 shows how the scalar types de�ned in the ANSI C standard are mapped on

the COFFEE compiler port. The default signedness of the type (signed/unsigned)

is implicated by enclosing it in parenthesis, they can be omitted from actual C code.

C type Size(bytes) Alignment(bytes) COFFEE type
(unsigned) char 1 1 Unsigned byte
signed char 1 1 Signed byte

Unsigned short 2 2 Unsigned halfword
(singed) int/long, enum 4 4 Singed word

Unsigned int/long 4 4 Unsigned word
(singed) long long 8 8 Signed double word
unsigned long long 8 8 Unsigned double word

Pointer 4 4 Unsigned word
�oat 4 4 Single precisions �oat
double 8 8 Double precision �oat

Table 1: Size and alignment of basic C data types

The COFFEE type sizes are 8, 16 and 32 bits for byte, halfword and word respec-

tively. Floating point numbers use the IEEE-754 standard for the �oat and double

C data types and they are 32 bits and 64 bits in size. The COFFEE has hardware

support only for the single precision �oats and the double precision is supported by

emulation.

Alignment shows on what memory address the respective data type should be

aligned to. Each data type is to be stored on an address that is divisible by their
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alignment number, i.e., every int type has to start on an address that is divisible by

four.

4.2 Structures and Unions

Memory for structures and unions is allocated in the order they appear in the dec-

laration and the structure or union starts at the word aligned address. Padding

may be needed to align the next member of the structure or union to its required

alignment.

For example, the following struct:

struct

{

int number;

char letter;

float single;

double double;

}

would be allocated into memory as follows:

address 1 byte 2 byte 3 byte 4 byte

0x100 number number number number

0x104 letter padding padding padding

0x108 single single single single

0x10c padding padding padding padding

0x110 double double double double

0x114 double double double double

and the following struct:

struct

{

short s;

int i;

char c1;

char c2;

}
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would be allocated in the following layout:

address 1 byte 2 byte 3 byte 4 byte

0x100 s s padding padding

0x104 i i i i

0x108 c1 c2 padding padding

4.3 Function Calls

This section describes the conventions used by the COFFEE compiler port when

calling functions in C. It covers register allocation, stack layout and the way it uses

to pass parameters and return values from functions.

4.3.1 Register Allocation

The COFFEE RISC has two register banks with 32 registers each. The COFFEE

compiler port only use the regular users register bank and assumes it is in use by

default. The compiler does not know what register bank is in use if it is changed,

e.g by the use of embedded assembly code, and it is left to the user to keep track

that the right bank is in use. The register allocation scheme of COFFEE compiler

is shown in table 2.

Register Usage
R0 Incoming argument and return value

R1-R4 Incoming arguments
R5-R14 Temporary values, saved across function calls
R15-R26 Temporary values, not saved across function calls
R27 Stack pointer
R28 Frame pointer

R29-R30 Reserved for superuser
R31 Link register

Table 2: Register allocoation scheme of COFFEE compiler

4.3.2 Function Calling Sequence

Before making a function call the COFFEE compiler port places the outgoing ar-

guments in registers R0-R4 so that the �rst argument in the function de�nition is

placed in R0, then it calls the function. If there are more then 5 outgoing argu-

ments, the rest are placed on the stack in the calling functions stack frame, which

has reserved place for them during the entry of the calling function.
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All the arguments are extended to 32 bits. If the argument is bigger than 32

bits, it has two register slots assigned to it in the big endian fashion. Structures and

unions are passed as pointers only.

On the entry section of a function the link register and the frame pointer are

saved on the stack if the function makes other function calls. Also all the temporary

registers, which need to be saved across function calls used by the function are saved

on the stack. If the function has a variable number of arguments then it has to store

the register arguments �rst to the stack frame below the regular incoming arguments

so that all the arguments are placed on the stack and can be accessed with the aid

of the frame pointer.

On the exit of a function the possible return value is placed in the R0 register. If

the return value is a structure or a union, the calling function has assigned space for

it in its own stack frame and has passed the location in register R0 as an invisible

�rst argument. The called function then copies the struct to this address. Saved

temporary values are stored in their respective register slots, and the stack pointer

and frame pointer are recovered from the stack, and then returns to the calling

function.

4.3.3 Stack Frame Layout

Each function allocates a frame from the run-time stack. The stack is a full de-

scending stack so it grows from high addresses to low addresses. The stack pointer

points to the end of the last allocated stack, and the frame pointer points to the end

of the previous functions stack frame. The incoming function arguments are then

found with the aid of the frame pointer, if there are more than �ve or the function

has a variable number of arguments, and they have a positive o�set from the frame

pointer. The place for outgoing arguments is reserved based on the function that has

the biggest amount of arguments. If the return value from a function is structure

or a union then the place for this is located in the area of stack reserved for local

variables and temporaries.
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Table 3 shows the details of the COFFEE compiler stack frame.

Position/size Contents notices
FP + Incoming arguments If needed

N*pretend arguments excl. the �rst �ve
FP + 0 Possible pretend arguments For variable

argument functions
FP - 4 Return address If not a leaf function
FP - 8 Saved previous frame pointer
N*4 Place for callee's saved registers If needed

Place for local temporaries If needed
and variables

SP + 0 Place for outgoing If not a leaf function
arguments above the �rst �ve

Table 3: The stack frame organization of the COFFEE compiler

A function that does not call other functions (a leaf function) does not have to

allocate a stack frame if it does not need to save any registers to the stack, or reserve

space for its own variables.
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5. PORTING PROCESS

GCC is a very complex and large program, and it is divided into three distinctive

sections. This is because GCC was designed to be portable both for di�erent source

languages and for di�erent instruction sets. For these reasons GCC has a front-end,

a target machine independent section and a back-end.

The Front-end is responsible for reading the source language, it performs semantic

analysis and creates a parse tree out of the program written in the source language.

This tree is then converted to a language independent format (another tree struc-

ture) used inside the compiler. This way the compiler can use the same optimization

algorithms on all the source languages that have been integrated to GCC. Moreover,

the addition of new optimization algorithms bene�ts all the languages at once with-

out any modi�cations. Then the compiler converts the language independent tree to

a list of instructions (called insns in short). The insns describe in an algebraic form

what the instruction does and the format is called the Register Transfer language

(RTL). These patterns are part of the back-end of the processor, and they are also

used to output the assembly instructions, which accomplishes the same task in the

processors assembly language.

To port GCC to a new processor it is needed to write a new back-end for it (called

the machine description). The machine description consists of a special �.md� �le

which describes all the useful instructions of the processor in a RTL language format

and handles the conversion of RTL to actual assembly instructions. Also a C header

�le is needed for macro de�nitions. If the macro is very large, then it is recommended

to move those macros to a �.c� �le and make functions out of them for the purpose

of readability.

The macro de�nitions in the header �le describe some general properties of the

processor,e.g. the number of registers, data type sizes, addressing schemes, and so

on. A description of the possible macros can be found in the GCC internals manual

[11].

It is best to choose a similar processor description from the GCC source tree

and use that as your starting point in developing a new port. With the COFFEE

RISC core we had many choices for the starting point, and during the development

process we did not use just one but many, for example ARM, Picochip, MIPS and

OpenRISC.
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5.1 Basic Instructions

There is a hard-coded list of basic instructions inside the compiler, which are used in

the RTL insn list creation process, and they are described in the standard pattern

names chapter [7] of the GCC porting guide. To develop a working compiler, only a

certain subset of these names are required to be implemented, so most of them can

be left out of the machine description, but the more you have the better in terms of

performance because the compiler automatically synthesizes the required operations

from the ones you have given, or expects to have assembly routine for it if it needs

this type of instruction. So unless there is a speci�c reason not to use the processor

instruction in the machine description, it is not advisable to leave it out.

The standard pattern names described in the manual have a stub for the machine

mode of the instruction. This mode is in m/n at the end of the name, and it is to

be replaced with the respective mode of the instruction described(qi, hi, si, di, sf,

df etc). De�ning a pattern name with the size qi does not prevent the de�nition of

other sizes, i.e., if the processor has an addition instruction for bytes and words the

machine description should de�ne both of them, even though the compiler can use

the byte addition to implement addition for larger data types. The actual bit-sizes

of these modes are described in the C header �le like this:

#define BITS\_PER\_WORD 32

#define BITS\_PER\_UNIT 8

The de�nition BITS_PER_UNIT is the size of the smallest addressable data

(usually a byte) and BITS_PER_WORD is the size of the internal register of the

processor. In theory these could be set to whatever size is proper, but according to

the manual the compiler internally expects the byte size to be 8, and setting it to a

di�erent value is not recommended.

Regarding the mode in the standard pattern names, the byte is qi and the word is

si. All others have default de�nitions calculated from these values, but they can be

set to any other value as long the sizes are meaningful (i.e., di (double integer) is not

smaller then si (single integer)). All the possible data types and their descriptions

are found in the GCC internals manual [16].

5.2 Machine Description

The most important part of back-end is the �.md� �le. The de�nitions (de�ne_insn,

de�ne_expand, de�ne_split, de�ne_peephole) in this �le are used to convert the

internal parse tree to a machine independent RTL format and do some necessary

modi�cations so that the RTL conforms better to the processor in question. After

all the modi�cations and optimizations, the �nal phase consists of the matching of
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the created insns and producing assembly language out of them. Other important

�les are the macro de�nitions in the C header �le and possible helper functions in

the C source �le. Also others can exist but they are not used in the actual compiler

generation.

The di�erent type of patterns in the �.md� �le are used in di�erent phases of

compilation. Their relation to the compilation process is shown in �gure 2.

Figure 2: Usage of di�erent insns in the compilation

First the named patterns, i.e., de�ne_insn �addsi3� and de�ne_expand �iorsi2�,

are matched against the standard names [7] in the internal parse tree to create the

RTL representation of the C language program. All the patterns can be named

for commenting purposes, but names conforming to the standard names list have

a special purpose in the RTL creation phase. The names intended for commenting
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must start with an asterisk(*), so that they are not mixed with the standard pat-

tern names. After the RTL creation the compiler optimizes the resulting insn list

with a set of internal optimization routines and also uses the possible de�ne_split

de�nitions.

After all these phases the RTL list is converted into assembler instructions. In this

phase only de�ne_insn type de�nitions are used. The created RTL list is matched

against all the de�ne_insn patterns and the assembly code is output according to

the output templates. Output assembly code can be described with regular assembly

code strings or with C code for more complex ones. All the de�ne_insn patterns are

used in this phase whether they have a name corresponding to the standard names

or not. In other words the compiler looks for similar insn patterns from the created

RTL and the .md �le, and executes the C code used to output assembly instructions

or just outputs the assembly strings found in the template.

5.2.1 Example of de�ne_insn

This type is used in the RTL generation phase if the name is part of the standard

names list. All of the de�ne_insn type patterns are used to generate assembly code

whether it has a name or not. If the pattern is used only in the assembly generation

phase and is named for commenting purposes, the name has to start with an asterisk.

As an example below is the de�nition of the single integer addition of the COFFEE

compiler port:

(define_insn "addsi3"

[(set (match_operand:SI 0 "register_operand" "=r,r,r")

(plus:SI (match_operand:SI 1 "register_operand" "r,r,r")

(match_operand:SI 2 "nonmemory_operand" "r,I,M")))]

""

"@

add\\t%0,%1,%2

addi\\t%0,%1,%2

addiu\\t%0,%1,%2"

[(set_attr "type" "arith,arith,arith")

(set_attr "cc" "unchanged,unchanged,set")

(set_attr "slottable" "yes,yes,yes")

])

First is speci�ed the name of the pattern (addsi3) which tells us that this op-

eration de�nes how to make an addition of single integers (SI) with three operands

on the target machine (the number at the end of the name). Other possible types

are: QI (quarter integer), HI (half integer), DI (double integer), SF (single �oat),
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DF (double �oat). Also other types are possible but these are enough for almost all

applications. When the name is part of the standard pattern names list [7] it is used

in the RTL list creation phase and in assembly generation phase, as it is considered

nameless at that phase.

Next is the RTL code de�ned, which the compiler adds to the RTL list whenever

the compiler needs to do this operation, starting with the opening bracket. The

keyword set de�nes that this operand receives the result of the plus operation and

the plus operation itself has two operands.

The register_operand keyword tells the compiler that this operand must reside

in a register. If it is not then the compiler outputs other RTL instructions to load it

inside a register before this operation is performed. Other possible operand types are

for example memory_operand and immediate operand. All of them are documented

in the GCC internals manual [8].

The following single letters are used to indicate the type of register, i.e., �oat-

ing point or integer. Also other types can be de�ned depending on the proces-

sor, or in case of immediates di�erent immediate value ranges. Standard letters

that can be used are de�ned in the GCC internals manual [8]. If you need other

types then you have to de�ne them in the header �le (i.e., co�ee.h). The macro

REG_CLASS_FROM_LETTER returns the proper register class as described

in another macro REG_CLASS_NAMES.

After the RTL expression the place with the empty string "" is reserved for

possible run time checks. Usually these are used to distinguish between di�erent

architectures of the same processor family.

The part starting with an @-sign is the actual assembler output. Di�erent lines

separate the three cases in the RTL expression. The %0, %1, %2 etc. are marks for

the compiler to replace the numbered operand in this position of the instruction. A

set of output attributes are available to modify the details of the output operand

in the internals manual [15], and there is a way to de�ne additonal ones if the

readymade ones are not suitable.

The assembler output can also be described as regular C code, as is the case

in many of the COFFEE compiler ports instructions. Using C code the output is

written as assembler instruction strings with a regular return-statement.

In the end we have set_attr type of statements. These are used to give assembly

instructions attributes to de�ne for example their type or their e�ects on the pro-

cessors internal state. Their purpose and usage are explained in more detail later in

this chapter.
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5.2.2 Example of de�ne_expand

This type of de�ne_ is only meant for the RTL creation phase. It takes no part

in the assembly language output phase. As an example here is one de�ne_expand

de�nition from the COFFEE compiler port.

(define_expand "negsi2"

[(set (match_operand:SI 0 "register_operand" "=r")

(xor:SI (match_dup 0) (match_dup 0)))

(set (match_dup 0)

(minus:SI (match_dup 0)

(match_operand:SI 1 "register_operand" "r")))]

""

"")

All expander de�nitions have to have a name corresponding to the standard pat-

tern name [7] list. This has the name negsi2, which means that this insn handles the

RTL-generation for a negation instruction for single integers (32-bit in COFFEE).

As there is no negation for integers in the COFFEE instruction set this has to be

handled by two di�erent sequential insns. In this case two expressions are output:

one to zero the target register (with a xor) and then subtracting the source operand

from zero. It has to be noted that all expressions a de�ne_expand outputs (both

set expressions in this case) has to be matched by some de�ne_insn pattern. In

the COFFEE compiler port they are the standard pattern names de�ne_insn xorsi3

and de�ne_insn subsi3 respectively.

The match_dup expression means that this operand is the same as operand 0.

Every operand can only be described by one match_operand statement and further

references to this same operand has to be done with the match_dup statement.

5.2.3 Example of de�ne_split

The Purpose of these de�nitions is to split complex insns into several simpler ones.

Sometimes these complex insns require more than one machine instruction to be

output. These cannot then be used to �ll possible delay slots, so it makes sense to

split them so that the scheduler can use the instructions resulting from the splitting

in the delay slots.
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Here is an example of one de�ne_split de�nition:

(define_split

[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]

""

[(set (match_dup 0)

(ashift:SI (match_dup 1)

(const_int 16)))

(set (match_dup 0)

(ashiftrt:SI (match_dup 0)

(const_int 16)))]

"

{ operands[1] = gen_lowpart (SImode, operands[1]); }

")

Di�erently from other de�nitions, de�ne_splits cannot be named. These de�ni-

tions are used at the end of the compilation phase before assembly code is generated.

The compiler uses these whenever it encounters an insn that is not matched by any

de�ne_insn pattern. At the moment the COFFEE compiler port does not have any

de�ne_split de�nitions.

First there is the RTL expression which needs to be split. Then the sequence of

RTL-expressions replacing the original is described. In this case a sign extension

operand is converted to a series of arithmetic shifts. This example is from a another

processor description. The de�ne_split can also be used to optimize the instruction

so these descriptions might have some use in the COFFEE compiler port in the

future.

5.3 Instruction Attributes

As seen in the de�ne_insn example we can also give special attributes to instruc-

tions, e.g. type, e�ects on condition code or their applicability in delayed branch

slots.

Attributes are like enumeral types in regular C code. You give a name to a

attribute and the values it can have in a list. For example here is the de�nition of

the type-attribute in the COFFEE compiler port:

(define_attr "type" "load,store,arith,branch,unknown,cmp,fadd,fmul,

fdiv,fload,fstore,fconv,fsqrt,fcmp,fabs,fmov,fneg"

(const_string "unknown"))
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The �rst name in quotes is the name of the attribute, after that is the list of

possible text values it can have. Last we have the default value if none is given in

set_attr section of insns.

There is a special attribute to describe the delayed branch slots. It is de�ned

with a special de�ne_delay de�nition. The COFFEE RISC core has one delayed

branch slot after every branch instruction and it is de�ned like this

(define_attr "slottable" "no,yes,has_slot" (const_string "no"))

(define_delay (eq_attr "slottable" "has_slot")

[(eq_attr "slottable" "yes") (nil) (nil)])

The attribute slottable(whose de�nition is given �rst) is tested and if an insn

has the value has_slot then this instruction has a delayed branch slot. There

can be a maximum of three delayed branch slots and the section with the square

brackets is used to describe which instructions are suitable to be placed in this slot.

The COFFEE has only one slot and every instruction with the attribute slottable

with an value of yes can be placed in the �rst delayed branch slot. If no suitable

instructions are found the compiler automatically outputs a nop-instruction into the

delayed branch slot.

5.4 The Handling of Function Calls

In chapter four we introduced the ABI for the COFFEE RISC core. The conventions

regarding the function calling sequence in the ABI need to be implemented in the

COFFEE compiler port also. The implementation of the function calling sequence

is spread between the �les �co�ee.c� and �co�ee.h�, and it is handled by a few macros

and functions shown here.

5.4.1 Register Allocation

The parts that de�ne the register allocation in the COFFEE compiler port are

handled by the macros in the �co�ee.h� �le. The arguments that are passed by

registers are de�ned like this:

#define FIRST_ARG_REG 0

#define MAX_ARGS_IN_REGS 5

These macros de�ne the �rst argument register and the number of sequential

registers available to pass function parameters. They can be de�ned very freely, as

long as they are real physical registers of the processor. The number of argument

registers, however, reduces the amount of registers available for variables and other
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temporary values, so it is an important decision to make and has a considerable

e�ect on the performance of compiled code.

The function return value is placed in the �rst argument register or the stack, if

it is a structure or a union. The following macro

#define FUNCTION_VALUE(VALTYPE, FUNC) \

gen_rtx (REG, TYPE_MODE (VALTYPE), FIRST_ARG_REG)

tells the compiler to use the �rst argument register as the place for the return values.

If the return value is a stack, the following macros are de�ned to tell the compiler

to pass them on the stack of the caller function and the address of this is placed in

the �rst argument register as a invisible �rst argument.

#define RETURN_IN_MEMORY(TYPE) (TYPE_MODE (TYPE) == BLKmode)

#define STRUCT_VALUE 0

The registers that need to be saved across function calls are handled by the macro

#define CALL_USED_REGISTERS { \

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, \

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

and it is de�ned as an array with the size of the amount of physical registers the

processor has, and if the value in the register is lost after a function call, then the

value 1 is assigned to that registers slot in the array. The value 0 indicates the

compiler to save that register in the stack during the function entry, and restoring

it back before returning from the function.

The macro CALL_USED_REGISTERS can also be freely modi�ed. The

only things to consider are the argument registers and the stack pointer and frame

pointer registers, which need to be de�ned as lost after function calls. Otherwise, it

only a�ects the e�ciency of the compiled code, and the best way to �nd the optimal

number temporary registers and the call saved registers is by pro�ling some bench-

mark code with di�erent number of call saved registers and temporary registers.

5.4.2 Stack Frame

The frame pointer and stack pointer are de�ned with the use of two macros in the

�co�ee.h� �le. They are

#define STACK_POINTER_REGNUM 27

#define FRAME_POINTER_REGNUM 28
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which de�ne the real physical register number reserved for them.

The function entry is handled in the �co�ee.c� �le and corresponding function is

void coffee_expand_prologue(void)

this function calculates the size of the stack frame needed for the current function

under compilation, and allocates it by subtracting it from the value of the current

stack pointer. Then the function saves the link register and the previous frame

pointer to the stack, before updating the frame pointer to re�ect the newly allocated

frame. The last procedure of the function prologue is to the save the registers that

need to be saved across function calls to the stack to their designated place.

The function that handles the exit is

void coffee_expand_epilogue(void)

and it recovers the saved registers and the frame pointer and the stack pointer,

before returning from the function.

5.5 The GCC Low Level Runtime Library

Whenever the compiler encounters an operation, of which it does not know how to

emit RTL code for, or there is no hardware support for it, it emits a library call to

execute this operation. Typically these are arithmetic operations, e.g. integer divi-

sion or �oating point operation. Some of these operations are supported via machine

independent C code, which is part of the GCC, but some of these operations have

to be written in processor-speci�c machine code. This is only if your applications

need these operations. Not supplying them does not hinder the compiler in any way

if they are not needed.

All the possible library calls are documented in the GCC internals manual [17].

For the COFFEE compiler port the library calls to integer division(signed and un-

signed) and the modulo operation are supported with machine coded libraries.

GCC can also emit library calls to certain C library routines, such as memcpy

and memset. They are integrated into the GCC for the purpose of optimization.

All the possible C library functions GCC might emit a call for are explained in

the GCC user manual [18] (not the internals manual). These also have machine

independent versions, but some have to be supported with processor speci�c machine

code. Currently only memcopy, bzero, bcopy have COFFEE speci�c versions.
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6. HANDLING OF SUB-WORD ACCESSES IN

THE COFFEE COMPILER PORT

Since every processor has its own peculiarities, usually there are some obstacles in

the porting process. The GCC has an ideal processor behind its porting architecture

and di�erences between this ideal processor and the real processor create di�culties.

In the COFFEE case one major di�erence is the lack of sub-word accesses. Sub-word

accesses are loads and stores with values that are smaller than the internal register

size of the processor.

6.1 Synthesized sub-word access

In the COFFEE port we had to emulate the half-word and byte accesses. The

algorithm itself is quite simple but implementing it in the machine description was

a tedious task. The pseudo algorithms for loading and storing a byte from a 32-bit

word are described below. The same algorithm is easily converted to the half-word

case.

Byte load algorithm

1. Mask the 2 least signi�cant bits of the byte address

2. Load a 32-bit word from this aword aligned address

3. Multiply the 2 least signi�cant bits of the original byte address by 8, denoted

x

4. Shift the loaded word 24-x bits to the right (logically so that the byte is not

sign extended)
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Byte store algorithm

1. Mask the 2 least signi�cant bits of the byte address

2. Load a 32-bit word from this aligned address

3. Multiply 2 least signi�cant bits of the original byte address by 8, denoted x

4. Shift the byte to be stored 24-x bits to the left

5. Zero the bits, the byte starting from bit position 24-x, in the loaded word

where the shifted source byte is to be stored.

6. OR the shifted source byte and the target word together

7. Store this resultant word back in the masked word aligned address

From these descriptions you can already see that not having a byte access in

hardware results in signi�cant performance penalty when handling bytes (or half-

words). Loading a byte is not a big problem but storing a byte is almost double in

code size versus loading a byte. Depending on the application this might cause a

memory bottleneck.

Similar algorithms as the ones described above are also used in the 16-bit accesses.

6.1.1 Implementation of sub-word Accesses

As sub-word access requires several assembler instructions, it has to be created with

an expander de�nition. The COFFEE compiler port de�nes de�ne_expand �movqi�

and de�ne_expand �movhi� for 8-bit and 16-bit accesses respectively. These patterns

implement in RTL the same algorithm as described above.

The implementation of the sub-word accesses are handled in The C code part

of a de�ne_expand only. The C code section outputs the necessary insns in the

RTL creation phase, and they are matched by regular de�ne_insns in the assembly

creation phase.

There is, however, some additional code required to fully support the sub-word

accesses. The compiler has a phase called reload where all the moves between the

stack and registers are output. If a variable has no room to be in a register during

the lifetime of a function, then it has a stack slot assigned to it. Every time when

a variable is needed the compiler outputs the instructions to move this variable to

a register or, if the variable has a new value written to it, outputs the instructions

to move the value to the assigned stack slot.

In this reload phase the used patterns are called de�ne_expand "reload_inqi",

de�ne_expand "reload_outqi", de�ne_expand "reload_inhi", de�ne_expand "re-

load_outhi" for byte load, byte store, halfword load and halfword store respectively.
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The reason for these additional de�ne_expand de�nitions is that the reload phase

is handled after the RTL creation, and after that no new registers can be created for

scratch values. In the RTL creation phase, every time a value or a variable is created

it is assigned to a new register, even though there might not be enough physical

registers in the processor. Later these extra registers are assigned to stack slots and

further creation of additional registers is forbidden. So when a scratch register is

needed later in the compilation phase, the compiler uses temporary register slots for

these when it needs to move values in and out of the stack.
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Below is the pattern for reload_inqi used in the COFFEE port:

(define_expand "reload_inqi"

[(parallel [(match_operand:QI 0 "register_operand" "=r")

(match_operand:QI 1 "picochip_reloadqi_memory_address" "r")

(match_operand:DI 2 "register_operand" "=&r")])]

""

{

rtx scratch, seq, addr;

addr = XEXP(operands[1], 0);

if (GET_CODE (operands[1]) != MEM)

abort ();

if (coffee_word_aligned_memory_reference(XEXP(operands[1], 0)))

{

/* Aligned reloads are easy, since they can use word-loads. */

seq = gen_synthesised_loadqi_aligned(operands[0], operands[1]);

}

else

{

/* Get the scratch register. Given an DI mode value, we have a

choice of two DI mode scratch registers, so we can be sure that at

least one of the scratch registers will be different to the output

register, operand[0]. */

if (REGNO (operands[0]) == REGNO (operands[2]))

scratch = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);

else

scratch = gen_rtx_REG (SImode, REGNO (operands[2]));

/* Ensure that the scratch doesn't overlap either of the other

two operands - however, the other two may overlap each

other. */

if (REGNO(scratch) == REGNO(operands[0]))

abort();

if (REGNO(scratch) == REGNO(addr))

abort();

/* Emit the instruction using a define_insn. */

seq = gen_synthesised_loadqi_unaligned(operands[0], addr, scratch);

}

emit_insn (seq);

DONE;

})
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As the actual RTL insns are output only using C code the RTL instruction pat-

tern (the three lines after the de�ne_expand) consists of only the operands needed

by this pattern. The DONE statement at the end of the C code section, as men-

tioned previously, indicates that this pattern should not output any more RTL insns,

everything was handled with C code.

At �rst there is a sanity check to see that we have been given proper operands

(the second operands is a memory reference). Then it checks whether the memory

address is aligned or not (32-bit aligned), and depending on that it creates di�erent

insn sequences. At the end we have the function emit_insn(), which adds the

created sequence to the insn list.

As the unaligned access requires scratch registers for address calculations and

data manipulations, there is a macro in the C header �le to inform the compiler

about this situation. In the COFFEE port it is de�ned as follows:

enum reg_class

coffee_secondary_reload_class (enum reg_class class ATTRIBUTE_UNUSED,

enum machine_mode mode,

rtx x ATTRIBUTE_UNUSED,

int in ATTRIBUTE_UNUSED)

{

if ((mode == QImode) || (mode == HImode))

return TWIN_REGS;

return NO_REGS;

}

Every time the compiler needs to move a byte (QImode) or half word (HImode)

between the stack and the register �le, this tells the compiler to supply a scratch

registers for the reload_ patterns, otherwise no scratch register is needed and the

compiler can use regular move insns in the reload phase also. The register class

named TWIN_REGS is a special register class, which supplies two 32-bit registers

for the reload_ patterns because the scratch register might end up being the same

as the destination register. This way we can be sure to have at least one register,

which does not overlap with it. This de�nition is found in the co�ee.c �le, and it is

used through the macro de�nitions in the co�ee.h �le. Below is their de�nition:

#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \

coffee_secondary_reload_class((CLASS), (MODE), (IN), 1)
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#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \

coffee_secondary_reload_class((CLASS), (MODE), (OUT), 0)

The same function is used in both cases because there is no di�erence whether

we are loading or storing data between the stack and the register �le.

6.2 Other Support Routines for sub-word Accesses

There are also two important C functions in the co�ee.c �le, which are used in the

emulation of subword accesses:

void get_si_aligned_mem()

This function takes an unaligned memory address and converts it to a word

aligned address and a bit o�set from that address to the data (8 or 16-bit) in

question. The bit o�set is used to shift the data to the lower part of the register

during load, and to move the data to the correct position for the store. These are

then used in the reload_ patterns to output the insns to handle the data transfer

between the register and the stack.

The second function:

int coffee_word_aligned_memory_reference()

Checks if the memory reference is a word aligned reference to the stack. In this

case loading and storing sub-word values is easier compared to unaligned cases.

6.2.1 Performance Impact of sub-word Accesses

The lack of dedicated instructions to access sub-word data on the COFFEE core

causes a performance penalty, and depending on the application it can create severe

problems to reach the required performance or timing (in for example real-time

systems). It is advisable to consider carefully whether this can be a problem in

your application, and if there is plenty of memory available, then it recommended

to reduce the amount of sub-word data.

The current implementation uses 3-15 instructions per data access. The lowest

amount is achieved when loading a byte from a word (32-bit) aligned address and

the worst case is storing a byte to an unaligned address.
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7. TESTING

The process of testing a compiler is very big task and represents a signi�cant portion

of the whole development process. It is not possible to guarantee that a compiler

works 100%. The nature of compilers is that that they have unlimited amount

of test cases (i.e., programs) and depending on optimization levels, many possible

outcomes.

Compared to the amount of work that compiler testing requires it has quite little

coverage in standard literature. For example the most known book about compilers

(compilers:Principles, Techniques and Tools [20]) does not have any section about

this process, but does bother to mention it brie�y in a quote �Optimizing compilers

are so di�cult to get right that we dare say that no optimizing compiler is completely

error-free! Thus, the most important objective in writing a compiler is that it is

correct.�

GCC includes a huge collection of many test cases, but these only test the features

related to actual compilation process, i.e., whether it compiles standard compliant

code without any errors or not. If the resultant assembly code is correct or not is

not part of these tests. Running this test is automated and can be invoked from the

build tree by running the make program with the command make test.

As the goal of this project was to develop a new processor with a completely

new instruction set, there were a lot of problematic situations during the early

development phase. As the development of the compiler started when there was

only a HDL-description of the processor available (which was still under testing),

the �rst tests of the compiler had to be done manually. This consisted of making

small pieces of C code and then analyzing the assembly code by hand and trying to

�nd incorrect code sequences.

At some point a larger program was compiled and analyzed with the aid of pen

and paper. This is of course a very error prone and it is not a good method of testing

a compiler, but given the circumstances we had very little choice. The program in

question was an implementation of the DVD-decryption algorithm called deCSS [19].

This piece of software was very controversial when it was �rst released, but after 10

years from the release it is considered legal to use (at least for research purposes).

The reason for the use of this lawsuit prone software was the fact that it did not

need any libraries to compile, it is mostly just mathematics and logical operations.
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It is also reasonably small, so analyzing it by hand was not too tedious. It has not

been actually run on the COFFEE core platform as doing that would require actual

data from a DVD to be available in some way to our platform, but this has not been

implemented and was not very high on the priority list.

To actually test the compiler in a more meaningful way requires a lot of other

supporting software. As with all UNIX software GCC only does what is required,

and relies on other software to do the rest. These jobs are handled by the assembler

and the linker. Another important tool is the simulator, where you can run the code

generated by these tools on virtual machine. The simulator executes a program on

the processor and gives detailed information about the contents of the registers, the

processors internal state, and how many cycles has the processor been executing.

This way you can verify that your compiled programs are run correctly and provide

the expected results.

7.1 Simulator Tests

Many di�erent programs and pieces of code were run with the aid of the simulator.

Most of them were not meaningful programs, but a few of them had some real world

value and they were tested to evaluate the performance of the compiler. We run two

widely used algorithms on the simulator, recorded the cycle count and compared the

results against two other processors, which have a GCC based C compiler available.

The processors in question are the Intel Pentium IV desktop processor and the

current market leader in embedded processors, the ARM RISC processor.

7.1.1 FIR algorithm

A widely used algorithm in signal processing applications is Finite Impulse Response

(FIR) Filter. It described in mathematical form as follows:

y[n] =
N−1∑
i=0

bix[n− i]

Where y[n] is the output signal, x[n] the input signal and bi are the �lter coef-

�cients. N is the order of the �lter, i.e., how many coe�cients the �lter has. FIR

�lter is basically just the weighted sum of N number of previous inputs, and if all the

coe�cients are set to the reciprocal of N, you get the average of N previous inputs.

The main advantage of the FIR �lter is that it is inherently stable, but it requires

a lot of computational power.
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The FIR �lter was implemented with C, the code shown below:

int fir(void)

{

int i,j,sum;

j = data_index - FIR_WEIGHTS;

if(j < 0)

j = j + MAX_DATA_SAMPLES;

sum = 0;

for(i=0; i<FIR_WEIGHTS; i++) {

sum = sum + weights[i] * data_buffer[j];

j = j + 1;

if(j >= MAX_DATA_SAMPLES)

j = 0;

}

return sum;

}

The resulting program was compiled and run on the previously mentioned pro-

cessors and checked that the results were the same and the cycle counts were

compared. The results are shown in table 4. These results are with values

FIR_WEIGHTS=8 and MAX_DATA_SAMPLES=16. On all the proces-

sors we used the same optimization level (-O1).

processor cycles
COFFEE 137
ARM7 81
P4 86

Table 4: FIR �lter cycle counts

The performance of COFFEE is clearly the worst. It is however reasonable con-

sidering that the whole COFFEE project has had only a handful of people working

on it compared to the ARM and Intel processors and on the compilers. They have

a much more complex instruction set, and in this case one advantage is in the ad-

dressing modes of instructions and the usage of conditional move instruction (which

could be introduced to the COFFEE compiler port also). These instructions reduce

especially the size of the main loop, which is the most critical part of this FIR algo-

rithm. For example COFFEE needs 3 instructions to access each new weights and

data_bu�er value: one to shift left the loop variable to make it word aligned, one

to add this value to the starting address of the array, and one to load the value from
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the resulting address. Both ARM7 and P4 need only one instruction for this task

and this gives them already a 24 instruction advantage in overall execution time.

7.1.2 Discrete Fourier Transform

Another algorithm run on the simulator to check the compiler correctness and eval-

uate the performance of COFFEE was the Discrete Fourier Transform (DFT). This

algorithm transforms a signal from the time-domain to the frequency-domain, and

it is a fundamental algorithm in signal processing used in, for example, data com-

pression. In mathematical form it is written as:

X(k) =
N−1∑
n=0

xne
− 2πi

N
kn, k = 0, ..., N − 1

Where:

• x(n) is an array of complex time-domain data

• n is an index of time steps

• X(k) is an array of complex frequency-domain data

• N is the size of the data arrays
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The DFT algorithm was implemented in C, as shown below, and it was compiled

with GCC on all processors with the same optimization levels(-O1).

void dft1()

{

float pi2 = 2.0 * M_PI;

float a,ca,sa;

float invs = 1.0 / SIZE;

for(unsigned int y = 0;y < SIZE;y++) {

output_data[y].re = 0;

output_data[y].im = 0;

for(unsigned int x = 0;x < SIZE;x++) {

a = pi2 * y * x * invs;

ca = cos(a);

sa = sin(a);

output_data[y].re += input_data[x].re * ca - input_data[x].im * sa;

output_data[y].im += input_data[x].re * sa + input_data[x].im * ca;

}

}

}

This implementation of the DFT is very heavy computationally, and it is not a

recommended way of calculating it. It was used because of the ease of implementa-

tion, and meant only for testing the COFFEE compiler.

We run the resulting code on the COFFEE simulator and checked that the results

were the same. Then we compared the cycle counts, which are shown on table 5.

The SIZE was set to 10 in these examples. We did not have proper trigonomet-

ric functions implemented at that time so they were simply replaced with a con-

stant value on all processors. This also removed the e�ect of the implementation

of trigonometric functions from our examples as they can be very di�erent on each

processor/compiler.

processor cycles
COFFEE 3971
ARM7 4598
P4 3350

Table 5: DFT cycle counts

This algorithm performed quite well on the COFFEE and its compiler. The

performance is halfway between the ARM7 and P4. The ARM su�ers compared to

the COFFEE because it cannot load and store values from �oating-point registers

directly to the stack, and they need to pass through general purpose registers �rst.
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P4 does not su�er from this and its powerful addressing modes provide the best

results in this test.

As we were quite happy with the preliminary performance and correctness results,

we moved next to actual hardware tests.

7.2 The COFFEE Platform

For the purpose of prototyping the COFFEE RISC core we developed an FPGA

platform. This platform includes a lot of other hardware peripherals, which are

needed to run programs and handle I/O. Also the COFFEE RISC core was modi�ed

to include the MILK coprocessor directly in the pipeline of the processor, and not

as an external co-processor. This removed the overhead of moving data between the

COFFEE and MILK processors. The resulting core was renamed as CAPPUCCINO.

The platform was realized on an ALTERA StratixII EPS2S180F FPGA device.

Programming was done on a regular desktop PC, where we had our software de-

velopment tools installed. The development tools consist of the COFFEE compiler

port of GCC and the GNU binutils, which was also ported to the COFFEE RISC

core and includes the assembler, linker, disassembler and many other utilities that

are used to handle low-level object �les. The source codes were cross-compiled and

the resulting binaries were transferred to the platform using a regular serial port.

The device also had an VGA port and that was used to display graphics and text

on a monitor.

7.2.1 3D Graphics

As a part of his PhD research Fabio Garzia developed a set of algorithms in C for to

be used in 3D graphics applications [26]. These algorithms were used for testing our

platform and software development tools. After some debugging of the compiler and

the hardware we could run a simple 3d graphics animation, consisting of a single

rotating cube, on our platform.

The picture in �gure 3 shows the FPGA prototyping board, and the monitor used

to display the output of applications. In the �gure 4 is a more detailed picture of

the rotating cube.

The rendering of the cube was quite slow, but the main reason for it was the

speed of the synthesized COFFEE RISC core on the FPGA device. It was run at

an approx. speed of 50MHz, but an ASIC version could be about four times faster

according to synthesis results [28].
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Figure 3: The COFFEE platform and the 3D cube animation running on it

Figure 4: Close up of the rotating 3D cube
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7.2.2 H.264 Codec

The H.264 [29] codec is a recent addition into the world of video codecs and it is used

widely in di�erent multimedia applications, such as the di�erent internet streaming

services and the Blue-Ray disc.

The baseline codec of the H.264 standard was implemented on the COFFEE

platform and the focus was on the decoding part of the codec. It was coded in C and

compiled using the COFFEE compiler port and the GNU binutils, and the resulting

application was successfully used to decode a short video, which was displayed on

the monitor connected to our platform.

7.2.3 Fast Fourier Transform

The COFFEE RISC core has been used in the development of a multi-processor

SOC [25]. As a part of this research is the implementation of the Fast Fourier

Transform [24], or FFT in short, for COFFEE platform. It is an algorithm used to

calculate the DFT of a signal, but it is signi�cantly faster than the one described

earlier in this chapter.

The FFT was used to evaluate the performance of this algorithm on multi-

processor platform that has 9 COFFEE RISC cores connected via a Network-On-

Chip [27], also developed in Tampere University of Technology, but for comparison

the results were generated for a single COFFEE RISC core using the COFFEE

compiler port of GCC, and they are shown in table 6.

64-point FFT cycles
radix-2 22,214
radix-4 10,937
radix-8 10,282

Table 6: Performance of 64-point FFT on COFFEE

7.3 Results

From the compiler development point of view the goal of all the applications and

algorithms run on the COFFEE RISC core was to verify that the COFFE compiler

port produced correct assembly code from C. After some debugging this goal was

eventually reached.

The performance of the compiler was a secondary objective, as the GCC will

produce decent code for all processors it has been ported to, because of the machine

independent optimization algorithms. The performance of GCC is mostly a�ected
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by the processors instruction set and the number of registers. Optimizing the back-

end will not have much of an impact on the performance penalties introduced by a

poor instruction set, or a limited number of registers.

The COFFEE RISC core has a good instruction set regarding its portability to

GCC, and the results we have gained are quite good. The only negative point is

the lack of sub-word accesses. The compiled C code according to the results is not

severely lacking behind other, more optimized versions of GCC ports, and here lies

the bene�t of machine independent optimizations.

Some of the features of the COFFEE RISC core were also left out for the sake

of simplifying the compiler port. One of them is the support for 16 bit encoding of

instructions. Support for this would give a smaller memory footprint, but it also

reduces the amount of registers and instruction available for the compiler to use,

and this would result in a much slower performance. Especially the lack of registers

in 16 bit mode would increase stack usage signi�cantly, as there is not much room

to keep variables inside the registers, or to pass parameters.
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8. CONCLUSIONS

The purpose of this thesis was to develop a C compiler for a new RISC processor.

Di�erent ways of reaching this goal were analyzed, and based on this research we

chose the open source compiler GCC, and decided to port it to our COFFEE RISC

core.

The process consisted of developing an ABI for the COFFEE RISC core. Then a

new back-end for GCC was developed, that followed this ABI and created assembly

code for the COFFEE RISC CORE. The resulting compiler was tested by running

C programs on a simulator, and later on real hardware.

Overall, the process has been a di�cult one. There are many reasons to this,

in particular the author's limited knowledge of compilers in the beginning of the

project was a severe hindrance. The fact that the documentation of open source

software is usually incomplete and not very user friendly, did not help either. The

only way to really learn about the porting mechanism of GCC is to hack something

together, compile code with it, and run it on a debugger and look at the di�erent

debugging outputs GCC provides when it encounters a problem.

The whole process of developing a compiler for a new processor architecture

has been a good opportunity to gain detailed knowledge about compilers, di�erent

processor architectures, operating systems and everything that is required to put

even a single character on screen in modern mobile systems, and they require a lot

of supporting software and hardware, which one might never even have thought of,

or the work it takes.

Despite all the troubles encountered, the compiler was developed successfully in

the end and we used two di�erent signal processing algorithms (he FIR and DFT al-

gorithms) to evaluate its correctness and performance against other processors. The

compiler produced correct code and we were decently satis�ed with its performance

compared to other processors.

8.1 Future Work

The work on the compiler is not over and there are several places for optimizations

or new features. One future goal is to transfer the port to a 4.x version of GCC. This

version has many more optimization routines than our current version, and it would

give support for OpenMP [21] Application Program Interface (API). The OpenMP
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is a parallel programming API, which is designed to be platform independent, and it

can be used inside C/C++ code. The performance of the compiler can also be sig-

ni�cantly improved by introducing, for example, the conditional move instructions,

as was seen with the FIR-algorithm.

The whole COFFEE compiler port source code could also use some clari�cation,

as it is �lled with obsolete code resulting from the debugging process. Also the

version of GCC source code was transferred during the course of this project from

the 2.x to 3.x. The porting API of GCC has usually changed between major revi-

sions, and this caused some additional work and the code became even more messier

because of this.

Currently there is no support for the addition of debugging code in the code

produced by the COFFEE compiler port. This would be a good addition to the

whole COFFEE project, as the possibility of debugging the code run in the actual

COFFEE platform would be much easier. Also, adding support for C++ code might

be useful in the future, as it is gaining ground on embedded systems constantly.

As we have a complete GNU based toolchain we could also port the Linux kernel

to our platform in the future. As the COFFEE does not have amemory management

unit (MMU) our choice would be the ucLinux [23]. This kernel is designed for very

small embedded processors who do not have an MMU, and the porting e�ort would

be smaller than for a fully featured Linux kernel. On top of this we could then port

the C Standard Libraries. There is a special version of the C libraries for embedded

processors called ucLib, which is optimized to have a small memory footprint, but

it does not have all the functions a full C library would have. It would, however,

serve as good starting point and this would open up a lot of new possibilities for the

whole COFFEE RISC project.
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APPENDIX 1: COFFEE RISC CORE

INSTRUCTIONS

The list of COFFEE RISC core instructions used by the COFFEE compiler port.

Instruction Description Notes

add dr,sr1,sr2 dr = sr1 + sr2

addi dr,sr1,imm dr = sr1 + imm imm is a 15-bit signed im-

mediate constant

and dr,sr1,sr2 dr = sr1 and sr2

andi dr,sr1,imm dr = sr1 and imm imm as in addi

bc cr,imm branch to PC + imm if

carry

begt cr,imm branch to PC + imm if

equal or greater than

belt cr,imm branch to PC + imm if

equal or less than

beq cr,imm branch to PC + imm if

equal

bgt cr,imm branch to PC + imm if

greater than

blt cr,imm branch to PC + imm if less

than

bne cr,imm branch to PC + imm if not

equal

cmp cr,sr1,sr2 Comparison between sr1

and sr2, and set the �ags in

cr accordingly

cmpi cr,sr1,imm Comparison between sr1

and imm, and set the �ags

in cr accordingly

imm is a 16-bit signed im-

mediate constant

conb dr,sr1,sr2 Combine lower bytes from

sr1 and sr2 to dr

conh dr,sr1,sr2 Combine lower half words

from sr1 and sr2 to dr
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Instruction Description Notes

jal imm Jump to PC + imm and

store PC to link register

imm is 25-bit signed imme-

diate

jalr sr1 Jump to address in sr1 and

store PC to link register

jmp imm Jump to PC + imm imm as in jal

jmpr sr1 Jump to address in sr1

ld dr,sr1,imm Load dr with value from ad-

dress sr1 + imm

imm is 15-bit signed imme-

diate

ldri dr,imm Load dr with immediate

value imm

Pseudo instruction

ldra dr,label Load dr with the address of

label

mov dr,sr Move value from sr to dr

mulhi dr Store the upper 32-bits from

32-bit multiplication in dr

Only use after a 32-bit mul-

tiplication instruction

muli dr,sr1,imm dr = sr1 ∗ imm imm is 15-bit signed imme-

diate

muls dr,sr1,sr2 dr = sr1 ∗ sr2
muls_16 dr,sr1,sr2 dr = sr1 ∗ sr2 Uses the lower 16-bits of sr1

and sr2

nop No operation

not dr,sr dr = not sr Logical not

or dr,sr1,sr2 dr = sr1 or sr2 Logical or

ori dr,sr1,imm dr = sr1 or imm imm is 15-bit unsigned im-

mediate

sexti dr,sr,imm Sign extend sr and store to

dr

imm is 5-bit unsigned im-

mediate, indicates the posi-

tion of the sign bit

sll dr,sr1,sr2 dr = sr1 � sr2 sr2 contains the shift

amount

slli dr,sr,imm dr = sr � imm imm is 5-bit unsigned im-

mediate

sra dr,sr1,sr2 dr = sr1 � sr2 sr2 contains the shift

amount

srli dr,sr,imm dr = sr1 � imm imm is 5-bit unsigned im-

mediate
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Instruction Description Notes

st sr2,sr1,imm Store sr2 to address sr1 +

imm

imm is 15-bit signed imme-

diate

sub dr,sr1,sr2 dr = sr1 − sr2

xor dr,sr1,sr2 dr = sr1 xor sr2 Logical xor

fadd dr,sr1,sr2 FP addition

fsub dr,sr1,sr2 FP subtraction

fdiv dr,sr1,sr2 FP division

fmul dr,sr1,sr2 FP multiplication

fsqrt dr,sr FP square root

fconv.s dr,sr Convert 32-bit integer to

single precision FP

fconv.w dr,sr Convert single precision FP

to 32-bit integer

fneg dr,sr FP negation

fabs dr,sr FP absolute value


