
TAPIO PIIPARI
DYNAMIC CONFIGURATION MANAGEMENT
Master of Science Thesis

Examiner: Prof. Tommi Mikkonen (TUT)
Supervisor: M.Sc. Petteri Kylliäinen
(Cargotec Finland Oy)
Examiner and topic approved in the Faculty
of Computing and Electrical Engineer-
ing council meeting on 3rd of October 2012

I

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma
TAPIO PIIPARI: Dynaaminen konfiguraationhallinta
Diplomityö, 42 sivua, 0 liitesivua
Maaliskuu 2013
Pääaine: Sulautetut järjestelmät
Tarkastajat: Professori Tommi Mikkonen
Avainsanat: konfiguraationhallinta, konfiguraation jakaminen

Viime vuosien aikana ohjelmiston määrä kontinkäsittelykoneissa ja niiden hallinnassa
on kasvanut ja automaatiolla on yhä suurempi rooli konttiterminaalien toiminnassa.
Automaatiojärjestelmän pitää pystyä mukautumaan muuttuvaan ympäristöön ja
asiakasvaatimuksiin. Mukautumisen lisäksi järjestelmän tilaa pitää pystyä tarkkaile-
maan, jotta voidaan varmistua että se on toteuttanut vaaditut muutokset onnis-
tuneesti.

Tässä diplomityössä tutkitaan Cargotec Finland Oy:n kehittämän kontinkäsit-
telykoneiden tiedonhajautusjärjestelmän, UniQ:n, konfiguraation hallintaa. Työssä
esitellään uusi ohjelmisto, UniConf, joka on suunniteltu konfiguraatiotiedostojen
muokkaamiseen. UniConf mahdollistaa konfiguraatiotiedostojen helpon muokkaamisen
graafisella käyttöliittymällä, osaa validoida luodut konfiguraatiotiedostot, sekä luoda
tarvittavan asennuspaketin jolla tiedostot voidaan asentaa kontinkäsittelykoneisiin.
Lisäksi konfiguraatiotiedostojen hajauttamisen toteuttamiseksi tutkitaan valmiita
konfiguraation hajauttamisjärjestelmiä. Tutkimus suoritetaan järjestelmien valmis-
tajien tarjoamien dokumentaatioiden avulla tutkimalla niistä järjestelmien keskeisim-
mät ominaisuudet kontinkäsittelykoneiden konfiguraation hajauttamisen kannalta.

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Signal Processing and Communications Engineering
TAPIO PIIPARI: Dynamic Configuration Management
Master of Science Thesis, 42 pages, 0 Appendix pages
March 2013
Major: Embedded Systems
Examiner: Prof. Tommi Mikkonen
Keywords: configuration management

During recent years, the amount of software in container handling equipment has
increased and automation has a greater role in container terminal operations. Au-
tomation systems must be able to constantly adapt to changing environments and
container operator requirements. In addition, it should be possible to monitor the
state of the system in order to confirm that it has adapted to the new configurations
correctly.

The focus of this thesis is on the configuration management of UniQ which is
a data distribution framework developed by Cargotec Finland Oy. Within this
thesis, a new piece of software, called UniConf, will be introduced for editing the
configuration files of UniQ. UniConf allows users to edit configuration files with
graphical user interface. UniConf can also validate the configuration files and cre-
ate necessary installation packages so that configuration files can be installed into
container handling equipment.

To accomplish distribution of configuration files, existing configuration distribu-
tion systems are studied herein. This research has been done by studying manu-
als and other documentation offered by manufacturers of configuration distribution
systems. The study focuses on the most crucial aspects concerning configuration
distribution for container handling equipment.

III

PREFACE

This thesis is made for Cargotec Finland Oy at Tampere Finland to solve the in-
creasing challenges with UniQ configuration management.

I would like to thank my colleagues at Cargotec Finland Oy for all the help I have
received, particularly the guidance from Petteri Kylliäinen and Aleksi Lehtonen. I
would also like to give thanks to Professor Tommi Mikkonen for the examination of
this thesis. In addition to the help from colleagues at Cargotec Finland Oy, I also
received help from Veijo Arponen from Arpotechno, who allowed me to use his code
in UniConf. Thanks also to Stephanie Levy for language briefing.

Tampere, March 2013

Tapio Piipari
Vaajakatu 5 E98
FIN 33720 Tampere
Tel.:+358 50 347 8533
tapio@piipari.fi

IV

CONTENTS

1. Introduction . 1

2. Configuration management . 3

2.1 Basic definitions . 3

2.2 Version Control . 5

2.3 Configuration management process . 6

3. Case study: UniQ . 11

3.1 Messaging layer . 12

3.2 Peers . 12

3.3 Examples of configuration files . 14

3.3.1 Commconf . 14

3.3.2 Tag map and data source map . 15

3.3.3 Text files . 16

3.4 Configuration management in UniQ customer project 17

3.4.1 Project workflow . 17

3.4.2 Requirements for configuration management tool 19

4. Configuration management of distributed applications 21

4.1 Local ConFiGuration system . 21

4.2 CFEngine . 23

4.3 Puppet . 24

4.4 Ansible . 26

4.5 Summary . 28

5. Configuration editor, UniConf . 30

5.1 Architecture and design . 30

5.2 Plugins . 31

6. Using UniConf . 34

6.1 The main layout . 34

6.2 Creating a new project . 35

6.3 Adding a new peer type . 35

6.4 Importing configuration item from csv file 36

6.5 Editing commconf . 37

6.6 Editing textfile . 38

6.7 Creating installation packages . 39

V

6.8 Creating a new template . 40

7. Conclusions . 41

7.1 Further development of UniConf . 41

7.2 Integration of the configuration management processes 41

7.3 Summary . 42

References . 43

1

1. INTRODUCTION

During recent years the amount of software in container handling machines has
grown, and operators are more often trusting automation in their container yards.
Automation improves the efficiency of container terminal, but also increase the com-
plexity of the automation system and the software. Container terminals are demand-
ing new features and are adding new equipment into the system. The automation
system must be able to dynamically adapt to this constantly changing environment.
In addition it should be possible to monitor the state of the system to confirm that
it has adapted the new configurations correctly.

The purpose of this thesis is to describe the needs of configuration manage-
ment during container terminal automation system delivery project. Also main-
tenance of old projects is considered. The thesis will focus mainly to how to manage
configuration files for UniQ system, which is a container terminal data distribution
system developed by Cargotec Finland Oy.

The thesis consist of a literature survey of existing configuration management
systems and developing a easy to use configuration file editor with capability to val-
idate configuration files automatically before deploying them. The literature survey
focuses on how to deploy new configuration settings to all the nodes in the net-
work and monitor the state of the system. The implementation of the configuration
deployment is not part of this thesis but suggestions are given about it.

The remainder of this thesis is structured as follows. Chapter 2 is a general intro-
duction of configuration management, and it includes explanation why configurable
is needed and how it can be done. Chapter 3 explains the challenges that this thesis
will answer. It will go through the structure of container terminal, the current pro-
cedure for configuration management, and the requirement set for the configuration
management system. Chapter 4 focuses on comparing existing configuration main-
tenance systems that can be used for configuration deployment and verification. At
the end of the chapter is a summary that collects the features and methods all the
software use. Target is to understand what can be done with existing systems and
what kind of methods they use. Chapter 5 explains the architecture and design
of configuration editor design in this thesis, the UniConf. Chapter 6 introduces
most essential features of UniConf and how to use them. Finally, Chapter 7 con-
cludes this thesis and considers the further developing goals as well as proposals

1. Introduction 2

for improvement. Also, some suggestions on how to integrate UniConf and UniQ
delivery project to the selected configuration maintenance system and to the related
development projects are given.

3

2. CONFIGURATION MANAGEMENT

The amount of software in automation devices has grown to the extent that it can
be the biggest single expense in the product. Although software is easy to copy after
it has been created, often that is not possible. Customers can have different needs
and they want tailored features to products they buy. Customers’ needs can be
fulfilled by reprogramming part of the software differently for every customer. This
solution is easy in beginning but can cause severe consequence later. Manufacturer
must keep the code updated separately for every customer and new features and
bug fixes needed to be tested separately for every customer. To reduce this extra
work, software should be designed to be configurable so that different features can be
switched on and off according to customers’ needs without reprogramming anything.
Configuration can be done during the compiling process or at runtime by loading
different configuration settings.

2.1 Basic definitions

Configuration management (CM) organizes and groups configuration items, such as
source files, libraries and documentation. Configuration management is an essential
part in modern software projects since projects consist of great numbers of files
and libraries often collected from multiple sources. Accordingly, it is impossible to
organize all of them without any tool or guidelines. International Organization for
Standardization (ISO) defines that CM is [13]:

"A discipline applying technical and administrative direction and surveil-
lance to: identify and document the functional and physical character-
istics of a configuration item, control changes to those characteristics,
record and report change processing and implementation status, and ver-
ify compliance with specified requirements."

Every software project includes configuration items (CI). A CI is the smallest
item that configuration management can manage. Internal version control of the CI
is handled by a version control system, ISO defines CI as follows [13]:

"An aggregation of hardware, software, or both, that is designated for
configuration management and treated as a single entity in the configuration
management process."

2. Configuration management 4

CIs are often dependent upon each other. For example, module A depends upon
library B, meaning that module A needs library B in order to compile or uses it
in run time. Configuration management tools help developers to understand and
organize these dependencies. A example of a very simple configuration management
tool is Make. Make was built in the mid-1970s and has very simple syntax to
describe dependencies between modules. Make can also automate the compiling
process and make it faster by compiling only those modules that have changed since
a last compiling. [1]

Make uses a file called makefile which specifies how modules depend on each
others. The basic way to describe a dependency is shown in Listing 2.1. In the
example module5 depends on module7 and module8, stating that if module5 is out-
of-date respect to its dependencies, then the associated command sequence has to
be run to bring module5 up-to-date. [1]

1 module5: module7 module8

2 commandsequence

Listing 2.1: Basic dependency declaration in a Makefile [1]

The term baseline is often associated with CM but no common and universal
agreement exist on its meaning [11]. Therefore one should be careful and define it
well when using it to avoid misunderstandings. This thesis use baseline as defined
by ISO [13]:

"(1) specification or product that has been formally reviewed and agreed
upon, that thereafter serves as the basis for further development, and
that can be changed only through formal change control procedures (2)
formally approved version of a configuration item, regardless of media,
formally designated and fixed at a specific time during the configuration
item’s life cycle"

According to the definition, baseline can be understood in two ways. Baseline
can be a set of requirements that defines specific project milestone or a particular
approved version of CI. In both cases baseline and all the changes to it must be
formally approved via project’s change control process. Thus baseline and all the
approved changes to the baseline, represents the current approved configuration.

CM can also save information about the compiler and its version, preferred hard-
ware, and other things related to the code and its handling. CM can also include
hardware configurations, both electronic and mechanical. Traditional software de-
veloping does not care much about underlying hardware, however when producing
embedded systems, it is important to be aware of the compatibility of software and
hardware. [15]

2. Configuration management 5

2.2 Version Control

Version control can be considered as a subset of configuration management. While
configuration management controls the whole software project, version control fo-
cuses on a single configuration item and its history. Version control does not docu-
ment how modules depend upon each other, but instead focuses on internal structure
of a module and the associated change history over the life cycle of a module. Version
control tools are designed to describe change process and allow developers to inspect
older versions of configuration items. ISO defines Version Control as follows [13]:

"Establishment and maintenance of baselines and the identification and
control of changes to baselines that make it possible to return to the
previous baseline."

Even in simple software projects, there are often hundreds of small changes carried
out every day, and thus managing all these changes without a proper system would
prone a heavy challenge, both in time and effort, and could therefore be considered
impossible. Furthermore, if a project includes multiple persons in different locations
editing the same information at the same time, errors are likely to occur. In addition
to changes in information, version control also keeps track of who has made a change
and when. [23]

In industry environment, product’s life cycle can extend for very long durations.
For example, Cargotec products’ typical life-time can be over 10 years [16]. As
such, in order to be able to provide support, product manufacturers must know
which configuration has been delivered to the customer and which is the newest
configuration that can be delivered without effect to other systems. Therefore, it is
essential to keep track of all the changes in code and also in hardware to be able
to know which software version works in which hardware version. In this context,
hardware can mean both electronics and mechanics. During product development,
configuration management can feel like unnecessary bureaucracy, but later it will
reduce work enormously and offer better service for customers.

Version control is a rather well researched area, and many mature tools exist
which can be efficiently used [23]. The first real version control software was Source
Code Control System (SCCS), published in early 1970 by Marc J. Rochkind [23, 22].
The early version control software were designed to be used locally on one machine,
but when entering into the 1990’s, version control software like Concurrent Versions
System (CVS) started to support networking [23]. The first networking version
control software were based on centralized server-client model, but later it became
clear that server-client model did not scale easily for large distributed projects. To
solve this problem, distributed version control software were developed, such as

2. Configuration management 6

BitKeeper, Mercurial, and Git [4, 18, 10]. In distributed version control there is no
need for a centralized server and every developer can work independently and share
progress with the other developers. A benefit of distributed system is that it does
not have any single point of failure that could compromise the whole project.

Besides versioning project with respect to time, they also allow multiple parallel
versions of a project, enabling the users to easily see how a modification would
work without the need of changing the current main branch of the project. Tools
make it easy to later merge changes to the main developing branch by implementing
automatic merge functionality for text files. If two changes in the same file are in
different place, those files can be automatically merged. This works well with source
code files, however can raise problems when tried with structured files such as XML.

2.3 Configuration management process

This section will introduce a CM process as defined in the IEEE Standard for
Configuration Management in Systems and Software Engineering (IEEE Std 828),
which establishes the minimum requirements for processes for CM in systems and
software engineering. The latest reversion of the standard was published in 2012
and is targeted mainly to people responsible for planning, managing, and perform-
ing CM. [12]

There are numerous standards available, and often different books introduce their
own CM processes as well as the segregation of different CM styles for different areas
of industry. Standards and other guidelines reflect the experience of experts and can
provide inspiration on to how to handle CM [11]. More important than following a
specific standard is to define a CM process that is suitable for a company and its
needs, and accordingly, implement and follow the CM process plan strictly.

CM process in IEEE Std 828 consist of nine lower-lever process. They are re-
viewed and detailed in the following paragraphs. The lower-lever processes are (as
ordered in the standard):

• CM planning

• CM management

• configuration identification

• configuration change control

• configuration status accounting

• CM auditing

• interface control

2. Configuration management 7

• supplier configuration item control

• release management.

CM planning lower-level process produces a CM plan document and schedule
for the other lower-level processes. This plan includes what status information is
needed regarding CIs, how the information is to be reported, and how often reports
are created and distributed. The plan should also contain naming convention for
product builds, required resources (human and physical), CM tools and equipment,
estimated costs of activities, dependencies between CM activities and other project
activities, among others. In large organisations it can be practical to distribute the
CM planning and management amongst two or more functional units. In that case,
a streamlined organisation wide CM function is needed to maintain the standard-
ization between the units. [12, 24]

The purpose of CM management lower-level process is to implement, monitor,
control, and improve CM services. This includes monitoring of the CM activities
and tasks to ensure accuracy and that they are being carried out according to the CM
plan. All of the required personnel are to be informed of their responsibilities and
provided with proper training in order to carry them out efficiently and effectively.
CM management also takes care that all of the systematic tools and environments
needed for CM are properly installed and configured. If necessary, CM management
can modify the CM plan during the life cycle of the product. The CM plan should
be regularly reviewed and proposed changes evaluated. [12]

In configuration identification lower-level process main responsibilities are to es-
tablish the structure and hierarchy of CIs, identify CIs, name them, describe them,
and place them in CM repository. This process determines the naming convention
of CIs and what information is used to describe the CIs. The naming convention
ensures that every CI has a unique name and that different versions can be distin-
guished. Items that are commonly identified as CI include, but are not limited to,
interface specifications, design, code, builds, database schema and scripts tests, and
manuals. After the CIs are identified, any change to the CIs are performed only as
an outcome of the change control lower-level process. [12]

To enable placing CIs in CM repository, a CM repository must be established
and documented. If needed, a repository should be created for both electronic and
physical CIs. CM specifies procedures to backup baselined data and ensure that
procedures are deployed. [12]

A related article that should also be documented is the process by which baselines
are established, the events that establish a baseline, items that belong to the baseline,
and procedures to change the baseline. These must be defined and placed in the
CM plan. [12]

2. Configuration management 8

Configuration change control lower-level process’ purpose is to maintain the in-
tegrity of the product in all its states. Change control applies only to CI’s for which
a baseline has been established. Therefore, if the item has not yet been submitted
to a CM repository and baselined, the change control is not responsible for it. An
item should not be submitted to CM repository before it passes the organisation’s
internal quality requirements, typically developer’s own tests. [12]

Before changes are approved, they must be carefully examined by the configuration
control board (CCB) to determine how the change will effect other CIs. If the change
is not necessary, or does not have significant benefit, it should not be applied [14].
Changes should be clearly communicated to all affected parties, this is particularly
important for requirement and design changes. A basic change control process is
shown in Figure 2.1. [12]

Figure 2.1: A basic change control process.

The purpose of configuration status accounting lower-lever process is to record
and report critical information about assets to management and the project team.
Status accounting can provide reports about project work during a given period and
develop estimates-to-complete. The CM plan contains what type of information
project members expect and how often the information is reported or can it be
required on demand. Each CI shall be accounted in each stage of its life, from its
initial identification to its end-of-life. At a minimum, the following data elements
must be included [12]:

2. Configuration management 9

• The status (such as changed, stable, archived) of each of the current CIs.

• Identification of the current baseline configuration of all items comprising the
product.

• The state of all the changes, whether implemented, rejected deferred, or pend-
ing.

• Relationship data from requirements to tests to implementation and vice versa.

CM configuration auditing lower-level process will objectively assess the integrity
of the product development process and the product itself. Auditing of development
process should be performed during the product development life cycle. Its purpose
is to inspect the traceability between requirements, other product models (use case,
design, deployment, implementation, etc.), test artefacts, and execution of the tests.
The auditing of the product itself should be performed at least once before releasing
the product to inspect that the right product is being properly assembled, and
changes are managed on the different product artefacts. If any nonconformities
are detected, it is the auditor’s duty to report them to the appropriate persons, as
defined in CM plan, for correction. [12]

Interface control lower-level process manages interfaces between CIs. An interface
may be between two CIs either developed internally to the project or between a
CI developed to the project and an external CI. An interface represents at least
three CIs: the interface specification itself and CIs on either side of the interface.
CIs can be software, hardware, or some other type of CI. For every interface, the
following must be defined: the nature of the interface (data, hardware, software),
the affected organizations, and the technical specifications. Specifications for each
interface shall be placed in designated repository and be subject to the project’s
CM control, audition and accounting lower-lever processes. [12]

Supplier configuration item control lower-level process manages the incorporation
of CIs developed outside of the project. The supplier of the CI can be a vendor, a
customer, another project, or other source. This process places the CI under CM
and defines how change management, auditing and accounting is handled for the
CI. Also, requirements regarding the supplier of the CI and plan how the supplier
is monitored are defined. [12]

Release management lower-level process ensure that the proper set of CIs are
delivered to the designated receiving party in the designated form to the designated
location. Release can mean either making the product available to the customer or
internally to other projects or testing groups, and is maintained for the life of the
product. After the release has reached its end-of-life, the CM authority archives
it and all CIs belonging to it, making the release unavailable via normal channels,

2. Configuration management 10

and then marks the release as archived. This final release itself is also considered a
CI. [12]

Worthy of note is that CM is not a project that has the begin and the end, but
rather a process that never ends. CM must always be considered in a company, it
is not suffice to organize it once and then forget it. CM must be developed and
continuously monitored and implemented in all concerning projects and processes.
There should be an assigned person or a group for maintaining and developing the
CM process and tools. It is both a historical and auditable trail of life cycle of a
product, and is thereby imperative that all responsible are actively performing the
required duties and adhere to the requirements as set out in the plan.

11

3. CASE STUDY: UNIQ

UniQ is a pervasive automation platform for container terminals, developed by Car-
gotec since 2009. The aim of UniQ is to improve the overall performance and
management of container handling equipment (CHE) in a container terminal. UniQ
is designed to be a highly customizable and modular system. It has the capability
to add new services later without the need to reconfigure the old system. UniQ
makes it possible for customers to buy the UniQ system in piece in order to lower
the threshold of starting to use the system. A standard communication interface
also guarantees that any future innovation is usable and compatible with existing
UniQ solutions. Figure 3.1 shows a simple physical structure of UniQ network in a
container terminal.

Figure 3.1: Example of possible UniQ system.

UniQ can be split into two parts; UniQ platform and UniQ graphical user inter-
face (GUI) framework. The main feature of UniQ platform is the messaging layer,
which introduces a common communication interface between independent services.
UniQ GUI framework offers a generic GUI to control and monitor services. It is an
application built on top of the UniQ platform. This chapter will focus on the UniQ

3. Case study: UniQ 12

platform, since the configuration of UniQ GUI framework is not part of this thesis.

3.1 Messaging layer

The service instances of UniQ platform are called peers. Peers are usually located
in separate computers, but it is possible to run multiple peers on a single computer.
Every message in UniQ platform must have a global identifier, that is, a name. The
naming process is called tagging, hence all the data is tagged. The term Tag stands
for message type whereas tagged item is the actual tagged data in the message. Due
to a limited network bandwidth, messages can not contain description, type, unit
etc., as strings. To solve this problem, all messages are enumerated as numbers and
delivered as such. In order for peers to be able to interpret the messages, they must
have a global enumeration map, and is known as the tag map. Tag map is one of
the most crucial configuration files in the UniQ platform system. [17]

UniQ platform implements messaging layer via a specific cross-platform software
component known as the tag facade. Tag facade is implemented as a dynamically
linked library and is written in Qt. Tag facade uses tag map for validation and
interpretation of the messages. Every peer in UniQ system uses its own instance of
tag facade to connect to the UniQ network. [17]

3.2 Peers

In the UniQ network there are many different types of peers. The most common
types are Data Acquisition Service (DAQ), Equipment Monitoring System (EMS),
Fleetview (FV), and gateway peers. UniQ system can also include access control of
the container terminal, i.e., ports.

DAQ is a service process running in computer called CHE Controller Unit (CCU),
which is an embedded computer on board of a CHE. CHE is a generic name for
container handling device which is used to lift and move containers in a container
terminal. DAQ’s task is to acquire data from the CHE and edit it to the form defined
in the tag map. The CHEs move around the container terminal while their DAQs are
typically connected to the UniQ network via a wireless local area network (WLAN).
However connection to the UniQ network is not reliable as container stacks and other
CHEs can block the WLAN signal temporarily. Figure 3.2 shows typical CHEs.

EMS is a GUI for monitoring a single CHE. It can be located in the cockpit of
the CHE or in the operation control room of the container terminal. EMS collects
data from other peers and shows it to the user, it does not store old data or create
new data by itself. FV is very similar to EMS, but it collects data from multiple
different CHEs and shows them to the user simultaneously on a single screen. Both
EMS and FV are based on the UniQ GUI framework.

3. Case study: UniQ 13

Figure 3.2: Examples of different types of CHEs.

Gateway peer acts as an interpreter between UniQ and another system. Gateway
peer creates a facade that is standard UniQ interface to UniQ side while hiding the
other system. Gateway peer translates UniQ messages into a form that is under-
standable for the other system, and vice versa. Typically, the other system is a
database or another network.

A peer can act as a publisher, a subscriber, or both, of the data. Peers communi-
cate by creating a communication channel i.e. a virtual two-way connection between
each other. After the channel is created, peers can send messages to the other peers
or order messages from the other peers. In order to be able to create a channel,
at least one of the two peers must know other’s name. To get this information, a
peer needs a configuration file called commconf, which contains the description of
the surrounding UniQ network and other peers.

Besides the tag map and commconf, peer also needs other configuration files.
The most commonly needed configuration files are listed in Table 3.1. In addition
to UniQ configuration files, peer might need several internal configuration files to be
able to work correctly. These files depend on the type of the peer and its underlying
hardware and operating system. Typically these files tells peer’s IP settings and
WLAN name and password.

UniQ configuration files are based on XML. Whereas non-UniQ files can in any
format, typically they are configuration files for the operating system. Some of the
files are exactly the same for every peer of a certain type, yet most of the files have
little variance between the peers. In the initial installation, all files are installed into
the peer simultaneously. For convenience all the files should be created using the
same configuration tool.

3. Case study: UniQ 14

Name Description
alarmlist.xml List of all the alarms that are known in the system.

Stored in XML file but easy to represent in table format.
commconf.xml Describes the surrounding network and other peers. Sin-

gle file is simple but the whole network is hard to un-
derstand without a schema picture.

datasourcemap.xml Maps tagmap’s data items to a local data source. Easy
to represent in table format.

eventlist.xml List of events which can be sent from different actions.
Can be represented in table format but rows can have
different amount of columns.

eventfactoryconf.xml Descriptions of state machines that can create events
by combining data from multiple sources. File is hard
to understand in textual format, should have graphical
state machine editor.

interfaces Used only in CCUs. Contains the ip settings for network
adapter. Not part of the UniQ system, but necessary for
CCU to work.

parameters.xml Parameters for Interprocess Communication.
tagmap.xml Descripts every data item, its unit, structure (integer,

string, floating-point number, byte array) and name.
Easy to represent in table format.

Table 3.1: Description of the most commonly used configuration files

3.3 Examples of configuration files

Next, the most important configuration files for UniQ system will be represented.
While it is worth of note that there are also other configuration files, their structure
resembles the files described here and therefore they are not described here.

3.3.1 Commconf

Communication configuration file (commconf) describes the surrounding UniQ net-
work and other peers wich are available to connect. A commconf file must have at
least one connection for a peer to be able to use the network. Every connection holds
one or more gateway and zero or more peers for connection. Gateways are UniQ
messaging servers, usually running in localhost or in a centralized server. Gateways
can create networks between other gateways so that every peer does not have to
connect to the same gateway.

Listing 3.1 shows a typical example of a commconf file in a DAQ type of peer. It
tells that the peer’s name is SC0102, it connects to a gateway located at 10.45.51.20,
and has two channel peers; DATABASE and EMS. Channel to EMS peer is dynamic,
meaning that the EMS peer does not list peer SC0102 in its commconf file. In

3. Case study: UniQ 15

contrast, channel to the DATABASE is not dynamic, meaning the DATABASE
peer has to list SC0102 in its own commconf file in order for channel to able to open
successfully. It is possible to list more gateways for one connection, but only one
is used at a time. The other gateways are spare gateways, made available if peer
cannot connect to the first gateway.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <commconf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
3 <connection clientname="SC0102" >
4 <gateway daemon_ip_addr="10.45.51.20"/>
5 <peer clientname="DATABASE"/>
6 <peer clientname="EMS" dynamic_peer="true"/>
7 </connection>
8 </commconf>

Listing 3.1: A simple commconf.xml file

Although commconf is a relatively simple file, it is hard to validate on the system
level. Even if every peer uses the same gateway, the IP address of the gateway
depends on the logical structure of the network. It is impossible to know for sure if
the IP address is correct or not without knowing the exact structure of the underlying
network. Also, client names must be unique within one UniQ network, but according
to commconf file it is impossible to know if two peers are connected to the same
network or not.

3.3.2 Tag map and data source map

Tag map is crucial for the Tag Facade to be able to parse messages. Every peer must
have the same tag map to avoid misprocessing of the messages. Tag map consists of
tags, as shown in Listing 3.2. The tag describes a machine speed message, and the
message has a double type value, which tells machine speed in kilometers per hour.
Description text can be shown to the user to describe the data. Both the id and the
name must be unique globally.

1 <tag id="40003">
2 <name>MACHINE.SPEED</name>
3 <desc>Machine speed</desc>
4 <quantity>speed</quantity>
5 <struct>double</struct>
6 <unit>km/h</unit>
7 </tag>

Listing 3.2: One tag in the tag map

Data source map is used in DAQ peers to describe how the data should be read

3. Case study: UniQ 16

from the source of the data, which can be a Programmable Logic Controller (PLC)
or Controller Area Network (CAN) bus. Data source map describes how the data
read from the source must be interpreted and modified before publishing it for the
other peers. Listing 3.3 shows an example a data source map tag which is a pair for
tag map tag from Listing 3.2.

1 <tag id="40003">
2 <desc>Driving speed</desc>
3 <source>CCU_siemens_if</source>
4 <specifier>DB202</specifier>
5 <extractor>DBD50</extractor>
6 <modifier>float, *0.06</modifier>
7 <timeout>M2</timeout>
8 </tag>

Listing 3.3: One tag in the data source map

Listing 3.3 defines that the speed should be read from Siemens’ PLC and that
the PLC gives the value as a float. Modifier in line 6 says that the value must
be multiplied by 0.06 to convert its unit to km/h. In line 4 and 5 specifier and
extractor point to the exact location of the data. The content of these fields are
source specific. Id number connects data source map tags to tag map tags. [5]

3.3.3 Text files

The non-UniQ configuration files do not have any common type, so they are han-
dled as pure text files. Typically non-UniQ files are Shell scripts or Unix-style
configuration files, but they can be also something else. The Shell scripts are used
for starting up the system and installing applications. The Unix-style configuration
files are typically used by the operating system to initialize its own settings. List-
ing 3.4 shows a file named interfaces which is used to define the network interface
settings for CCUs.

1 # The USB network interface
2 # NOTE! If set static IP, remember update /etc/udhcpd.conf too for

DHCP-server lease area!
3 iface usb0 inet dhcp
4
5 # The primary network interface
6 iface eth0 inet static
7 address 192.168.100.101
8 netmask 255.255.255.0
9 gateway 192.168.100.1

Listing 3.4: A typical Unix-style configuration file

3. Case study: UniQ 17

The file in Listing 3.4 is a Unix-style configuration file. Because there is no
common standard for Unix-style configuration files they are defined here. Unix-
style configuration file has key-value pairs that are typically separated with equal
sign (’=’) or with space, as in Listing 3.4. Comments start with the hash sign (’#’),
meaning that the rest of the row is comment and not part of the configuration. The
file in Listing 3.4 contains network interface settings, namely IP numbers. It defines
two network interfaces, first one on line 3 use DHCP to obtain their IP settings and
later on lines 6 to 9 use static IP settings.

Validating this type of configuration files is hard, since they do not follow any
well defined schema and value types, such as string, integer, or a single character,
are not defined.

3.4 Configuration management in UniQ customer project

This section will go through how the CM and version control is handled currently
in UniQ customer projects and what kinds of improvements the process needs.
The first part explains the typical workflow of UniQ customer project and how
the configuration files are handled. The later part focuses on the requirements for
the configuration management tool that is created in this thesis.

3.4.1 Project workflow

Figure 3.3 shows the basic steps in the delivery process of the UniQ system from the
project engineer’s point of view. In the starting meeting of the project, the project
engineer receives the basic information concerning the project and the customer.
After the project starts, the project engineer confirms what data the customer wants
to be able to monitor, and, according to customer needs, designs the views, EMSs,
and Fleetview. The customer may also at this time require changes to the views
before accepting them. In this event, and following mutual concurrence between
the customer and Cargotec of the view specifications, the project engineer starts to
create configuration files for UniQ. This involves the need by the project engineer
of information from the customer about the infrastructure, such as IP addresses
and how the peers are connected to the physical network. The configuration files
are tested in Cargotec’s testing facilities before deploying them into the production
environment. The order of the stages can vary depending upon in which order the
customer provides the needed information. The basic information and issues of the
projects are stored using a project management system.

In the beginning of the project, the configuration settings are stored and modified
only in the project engineer’s own PC. This is viewed as an acceptable process as
it has not caused problems as it is the standard that every project has only one

3. Case study: UniQ 18

Figure 3.3: UniConf customer project workflow. [16]

project engineer in charge of creating the configuration files. Currently there is no
unified way to handle changes and version control. Information collected from the
customer and from other sources is stored in emails, Microsoft Excel or Microsoft
Word files locally in project engineer’s computer. Version control is typically handled
by adding an editing date and time to the name of the project directory. After the
project is finished the latest version of the related documents are copied and archived
to Document Management System (DMS), which includes a simple version control
system. Also, separated version control systems, such as Subversion and Git, are
available for backing up and to help the development of configuration files before
they are finished and added to the DMS. [19]

Since a common baseline does not exist for the configuration files, configuration
files from old projects are used as a baseline for new projects. Furthermore, every
project engineer has their own naming and numbering convention. The lack of
common standards makes sharing of configuration files problematic, since there is
no guarantee that files made by different engineers will work together. This creates
excess work, as all of the configuration files must be checked every time they are
used in a new project. [16]

The installation of the applications and configuration files takes place usually
in the container terminal of the customer and is done by using flash drivers with
automatic installation script. Installation over SSH is also possible, but it is not
usually used for initial installation because of often poor network and lack of au-
tomating tools. SSH is used mainly for monitoring the peers and update them after
the initial installation. The projects should end at commissioning stage, however,
as some of applications may not have yet reached the mature state, changes to the
applications and configuration files are often needed afterwards. Updates done after
the commissioning are carried out using SSH connection from Cargotec’s office to
reduce traveling expenses. [19]

3. Case study: UniQ 19

3.4.2 Requirements for configuration management tool

Requirements for the UniQ configuration management tool can be divided into
two main parts. The first more acute part is configuration editor and validator.
Configuration editor is used to collect all the needed configuration files together, keep
them organized and automatically validate them. The second part of configuration
management tool is configuration deployment and audition tool. It is needed for
sharing the configuration files and other CIs to the peers and monitoring the peers.

Figure 3.4 shows the network where UniQ configuration distribution takes place.
On the right side of the figure the project engineer is located in Cargotec’s office,
which is the normal situation. The project engineer uses configuration editor to edit
the configuration files and then transports them to the configuration distribution
server. Before the configuration distribution server is setup in customer’s server
room, project engineer can use local version control server to store the configuration
files. The version control server can also act as a backup server so the configuration
distribution server can be restored. After the commissioning the main repository for
configuration files is in configuration distribution server and files in version control
server are not guaranteed to be up-to-date.

Figure 3.4: UniQ configuration network.

The peers in UniQ network will get their configurations from configuration distri-
bution server located in the same physical network. The configuration distribution
server is not a part of UniQ network so it can be used even if UniQ network fails for
some reason. It should also be possible to do the initial installation of UniQ net-
work using the configuration management tool and thus avoid unnecessary manual
work. The main target for configuration distribution server is to serve Linux based
embedded computers but if possible it can later be used also to configure Windows
PCs.

3. Case study: UniQ 20

The main direction to transfer the configuration item is from the configuration
editor to the configuration distribution server. However, because also customer can
edit some non-fatal configurations, it should be possible to fetch the configurations
from the configuration distribution server to the configuration editor. Because the
configuration distribution server does not exist in the early stage of the project, the
configuration editor should not depend on it.

The configuration editor should not require internet connection, since it can be
used in container terminals and it is not guaranteed that internet, or any other
network, connection is available there. Also, the configuration editor should not
depend on other software installed on the system and it should be capable to be run
from flash driver without installing it to the computer.

21

4. CONFIGURATION MANAGEMENT OF

DISTRIBUTED APPLICATIONS

Many configuration management software exists for distributed systems. This chap-
ter will go through some of the popular configuration management software. The
last section will summarise the functionalities that are implemented in every soft-
ware and the methods they are implemented. It should be noticed that there are
also other configuration management software available and only the ones that have
passed the pre-elimination process are introduced here. The main reasons to ex-
clude software were programming language used and inactivity of the community
of associated open source project. The main focus of this chapter is to learn how
configuration management is handled by popular software that are generally proven
to be good. The following list shows the essential aspects that are to be taken into
account while comparing software.

• Consumption of system resources, especially at the client machine.

• Software package management (install/remove/update).

• File handling (copy to/from server and remove from client).

• Management of daemonds/services on the client machine.

• Authentication of the server and the clients.

• Encryption of data transport between the clients and the server.

• Usability.

4.1 Local ConFiGuration system

Local ConFiGuration system (LCFG) was originally developed at University of Ed-
inburgh around 1993. Today, it still has an active community with weekly releases.
LCFG was originally developed under Solaris but is ported to Linux as Solaris ver-
sion is not supported anymore. LCFG is not designed to be a monitoring system
but it can collect basic information from the clients, such as are the new settings
adapted correctly and if there are any errors related to them. The architecture of
LCFG is shown in Figure 4.1. [2]

4. Configuration management of distributed applications 22

LCFG does not offer a configuration distribution channel. It is normally handled
by an external webserver. LCFG server can automatically create an access control
file and an authorization file that are compatible with Apache web server. In addition
also HTTPS protocol can be used instead of HTTP. The documentation of LCFG
does not mention if the LCFG client checks the validity of the SSL certificate of
the server. Furthermore, LCFG uses UDP packets for communication between the
server and the client. By using the UDP packets it is possibly to cause a denial of
service (DOS) attack. [2]

Figure 4.1: LCFG Architecture.

The most significant steps in LCFG workflow are the following [3]:

• Configuration of the entire system is described in source files. Source files are
written in LCFG specific language. Source files consist of resources which are
key/value pairs describing configuration parameters. Source file can include
other source files, allowing easy structuring of configuration information.

• Source files are compiled into profile files. LCFG uses C preprocessor and its
own compiler to produce the profile files. C preprocessor allows using macros
in source files to ease writing. One profile file corresponds to one machine
and contains all the configuration information for it. Profile files are in XML
format and published on a web server.

• Client machines retrieve the profile file for the web server and stores it locally.

• Client machine’s component scripts can read configuration parameters from
profile file and use them to create necessary configuration files and notifies
associated daemons.

LCFG supports software package management, daemon management as well as
file system management. Files can be edited row by row or as a whole file. LCFG
does offer a simple graphical editor for editing the source files. [9]

LCFG’s language does not support an easy way for creating a list of items, each
containing number of attributes. C preprocessor can also cause some problems if

4. Configuration management of distributed applications 23

source files contain C comment characters. Additional features can be added by
writing a new component in Perl. [2]

4.2 CFEngine

The development of CFEngine started in 1993 by Mark Burgess at Oslo University.
Today CFEngine is developed by a company named CFEngine AS. The current
version is 3. CFEngine is a vailable both, as an open source license and a commercial
version. The main differences between the open source and commercial version are
that while the commercial version has a better graphical reporting system of the
clients’ state and native support for Windows operating systems, the open source
version has only Linux support and is lisenced under GPL version 3. [7]

CFEngine is designed to be usable in both mobile and embedded devices. It is
lightweight, written in C, does not have many dependencies, and aims at reducing
unnecessary network usage. CFEngine clients can even continue working offline,
but of course cannot then receive new information from the server. However, offline
usability is important, especially with mobile devices which use unreliable networks
and can often be offline for long times. [7]

CFEngine clients and the server use private protocol that is based on OpenSSH for
communication. CFEngine uses RSA 2048 public key encryption for authentication.
Commercial version can also encrypt data transmission using AES 256 with 256 bit
random key. The CFEngine server can also be configured to allow only clients from
certain IP range to create connection. [6]

CFEngine uses its own knowledge-oriented language to describe the desired state
of the system. A single introduction is know as a promise. CFEngine offers contain-
ers called bundles for creating modular parts. Bundles are collections of promises and
can be independent or dependent from the other bundles. The whole configuration,
including all the promises and bundles, is known as the policy. The policy is stored
on the server and individual clients pull the new policy from the server at regular
intervals. The client will fetch the whole policy and determine which promises it has
to fulfil. While it is not possible to push the policy into the client, it is possible to
request the client to fetch the new policy from the server. A simple policy is shown
in Listing 4.1. [7]

Listing 4.1 shows a simple policy that makes sure that packages Apache2 and
Php5 are installed into the client whose IP address is 192.168.0.10. The installation
will be done using Yum package manager. In the example, there are three different
promise types, vars, classes, and packages. Vars are variables, and packages are the
software packages to be controlled. Classes are used for grouping clients, so that
different promises can be applied to different types of clients. Classes are evaluated
to boolean values to determinate if the given promises are for the client in question.

4. Configuration management of distributed applications 24

1 body common control
2 {
3 bundlesequence => { "packages" };
4 inputs => { "cfengine_stdlib.cf" };
5 }
6
7 bundle agent packages
8 {
9 vars:

10 "match_package" slist => {"apache2", "php5" };
11
12 classes:
13 "server" expression => iprange("192.168.0.10");
14
15 packages:
16 server::
17 "$(match_package)"
18 package_policy => "add",
19 package_method => yum;
20 }

Listing 4.1: Example of CFEngine policy.

The cfengine_stdlib.cf on line 4 is CFEngine’s standard library, providing some
often used bundles. [7]. On line 10 a variable named match_package is defined. The
variable is a string list, containing two strings. Class named server is defined on
line 13. Server class is evaluated as true if client’s IP address is 192.168.0.10. On
lines 16 to 19 software packages listed in variable match_package are installed to
the clients where class server is evaluated as true.

It is also possible to use CFEngine as front-end for cron to run certain jobs on
a periodic basis. CFEngine allows complicated statements in order to define the
time intervals. This interval definition can also contain conditional statements. For
example, a job’s interval can vary depending on whether it is morning, afternoon,
or night. [7]

4.3 Puppet

Puppet is a cross-platform configuration management software developed by Puppet
Labs. Puppet supports multiple Unix and Linux platforms, as well as Microsoft Win-
dows, although support for Windows is limited when compared to the other operat-
ing systems. Puppet hides the underlying platform so that the same configuration
settings can be used in different platforms without the need to rewrite them. Puppet
is available via both open source and commercial version. The open source version
is licensed under the Apache 2.0 license. Puppet has good online documentation

4. Configuration management of distributed applications 25

and an active community to provide new modules. Figure 4.2 presents the workflow
of the Puppet system. [21]

Figure 4.2: Puppet workflow.

Puppet is normally used in a server-client environment. The server is known as
master and the clients as agent nodes. The administrator uses Puppet’s own declar-
ative language to write manifest files. Manifests contain resources which describe
a state of a single configuration item. A configuration item can be a file, software
package, a running service, or something similar. Manifests are kept in the master
and resources are shipped to nodes in a catalog file. Puppet then compiles manifest
files into a single catalog file after the node requests its configurations from the mas-
ter. Puppet uses facts to customize manifests for the node. Facts are information
about the node, such as the operating system, IP address, and hostname. After the
node gets the catalog, the node applies it by using providers, which are platform
specific implementations of resources. Listing 4.2 presents a very simple manifest
file. [21]

In Listing 4.2 three resources are declared. The first resource type, declared in line
1, is a software package, that checks to whether the software in question is installed

4. Configuration management of distributed applications 26

1 package { ’openssh-server’:
2 ensure => present,
3 before => File[’/etc/ssh/sshd_config’],
4 }
5
6 file { ’/etc/ssh/sshd_config’:
7 ensure => file,
8 mode => 600,
9 source => ’/root/learning-manifests/sshd_config’,

10 }
11
12 service { ’sshd’:
13 ensure => running,
14 subscribe => File[’/etc/ssh/sshd_config’],
15 }

Listing 4.2: Example of Puppet resource

in the system and, if not, installs it. The installation must take place before the
second resource, declared in line 6, is applied. The second resource is a settings file
for the installed software. It ensures that the file exists and then sets its privileges
and content. In line 12 the third resource guarantees that the installed service is
running and is applied every time the settings file changes.

4.4 Ansible

Ansible is developed by Michael DeHaan. The project was published in February
2012. Ansible server is written in Python and licensed under GPL version 3. The
latest version is 0.8, released in October 2012. Even though Ansible is compatively
new, it already supports wide range of features. Ansible takes somewhat differ-
ent approach to the configuration management than the other introduced software.
It does not require any agent on the client machine, only SSH connection is re-
quired between the server and the client. Architecture of Ansible is presented in
Figure 4.3. [8]

Instead of requiring agent software running on the remote machine Ansible tran-
fers the script or software to the remote machine when they are needed. The script
or software is called module. After the module is transferred to the remote machine
Ansible runs it with given arguments. After module is finished Ansible invokes pos-
sible callback plugins on the server side. Callback plugins can create log files, send
emails, or do something else. Afterwards Ansible does not need the module on the
remote machine anymore, it will delete the module. [8]

Ansible does not set any limitation for the programming language used for writing
the modules, only the client machine can set limitation for the language. For example

4. Configuration management of distributed applications 27

Figure 4.3: Ansible architecture.

if remote machine does not have Python, Ansible cannot run modules written in
Python on it. The only requirement for module is that if it has any output, it
must be printed to the standard output in JSON format. All the modules shipped
with Ansible are written in Python and therefore require that Python is installed
into the remote machine. Execption to this is module called Raw, which can be
used to execute SSH commands on the remote machine even if there is no Python
installed. [8]

By default Ansible uses Paramiko (SSH2 module for Python) to connect to the
remote machines. Ansible also supports native SSH, local execution and fireball
connection. In fireball connection mode Ansible launches a temporary ØMQ dae-
mon, which by default lives 30 minutes. Fireball mode requires that its dependency
Python modules are installed on the remote machine. Also other connection modes
can be added to tha Ansible via connection plugins. [8]

To describe the wanted state of the remote machine Ansible uses YAML (YAML
Ain’t Markup Language). Description files are called playbooks. A simple playbook
with one play is shown in Figure 4.3. Every playbook consist of one or more plays
which are list of tasks to perform. A play defines the remote host(s) it will effect and
what remote user to complete the tasks as. A task is a call to an Ansible module.
The modules are executed in the remote host and they interact with the system.
Modules can be written in any programming language. [8]

In Listing 4.3 the play is targeted to machines belonging in group called web-
servers. The host groups are defined in other file, that file is not covered here since
it is only a simple list of groups and hosts. On the third and fourth lines the variables

4. Configuration management of distributed applications 28

1 - hosts: webservers
2 vars:
3 http_port: 80
4 max_clients: 200
5 user: root
6 tasks:
7 - name: ensure apache is at the latest version
8 action: yum pkg=httpd state=latest
9 - name: write the apache config file

10 action: template src=/srv/httpd.j2 dest=/etc/httpd.conf
11 notify:
12 - restart apache
13 - name: ensure apache is running
14 action: service name=httpd state=started
15 handlers:
16 - name: restart apache
17 action: service name=httpd state=restarted

Listing 4.3: Example of Ansible playbook

are defined. The remote user to be used to run the tasks is root, as defined on line 5.
It would also be possible to log in as another user and then which to root user or use
sudo command. There are three tasks in the tasks list. Tasks ensures that remote
machine has the latest version of Apache, Apache has correct configuration file and
that Apache is running. If Ansible updates the configuration file, Apache will be
restarted. If configuration file’s template contains variables, they will be replaced
with equivalent values. Ansible uses Jinja2 templating language in templates. [8]

For configuration management of small embedded devices, Ansible could be a
good choice. It can be used to configure any device that supports SSH connection.
Due to the lack of agent software Ansible does not require cross-compiling the soft-
ware for the client machines. The main challenge with Ansible is how it can handle
unreliable networks with low bandwidth, which is often the case with mobile devices.
Ansible itself is not designed for that so it must be take into account while writing
modules. [8]

4.5 Summary

Every introduced CM software use idempotence language to describe the desired
state of the system. Idempotence language makes it easier for system administrator
to apply configurations, since it does not matter how many times the rules are
applied, the result will always be the same. This makes it easier to recover after a
failure or from unknown state of the system. Even though every software has similar
type of needs for the language, they all use different language. Different languages
make it harder to use another software after selecting one.

4. Configuration management of distributed applications 29

Besides using idempotence languages most of the software also share same kind
of structure. The structure is shown in Figure 4.4. On the server side there is
a manager software and every client machine runs an agent software. The agent
software uses modules to interact with the underlying system. The manager and
agent software are portable and only modules have to be rewritten for new platform.
A common interface for modules makes it easy to extend the functionality of CM
software and allows to use same syntax to describe operations for every module. The
only exception is Ansible, which does not require agent software, but uses modules
directly to interact with the client machine.

Figure 4.4: Architecture commonly used in configuration management systems.

None of the introduced software handle version control. Therefore external ver-
sion control software is needed to handle change management of configuration database.
Software does not restrict which version controls can be used, if any.

30

5. CONFIGURATION EDITOR, UNICONF

UniConf is a modular configuration editor designed for UniQ system configuration.
It aims at helping engineer to organize and understand structure of the project
and relations of peers and configuration items. Besides UniQ configuration it also
supports editing configurations of other systems, often needed with UniQ. UniConf
is meant to be used by project engineer in customer projects to maintain and create
configuration files. UniConf is also usable in testing and product development.
The most common location of UniConf in the configuration management network is
marked with red circle in Figure 5.1.

Figure 5.1: The most common location of UniConf.

UniConf is written using the Qt Framework. Qt offers powerful cross-platform
support for GUI and XML handling among others. Qt also has built-in support for
plugins and cross-platform file system handling capabilities. Qt is licensed under
LGPL version 2.1. [20]

5.1 Architecture and design

UniConf introduces baselines to ease the creation of a new project. Baseline consists
of two parts, the template and the plugins. The template describes the data of
configuration files and the plugins the functionality of the configuration files as well
as the functionality of the configuration item groups (CIGroup). A new baseline
can change the behaviour of UniConf as well as add more ready made peer types

5. Configuration editor, UniConf 31

and configuration files. This makes it possible to add new features and support for
future releases of UniQ without breaking the backward compatibility.

The Figure 5.2 shows the hierarchy of the items in UniConf. A project consist of
peers, which are grouped by their type. Every peer has its own configuration files
but those files can be identical for all the peers in a certain group. For example
datasourcemap.xml is the same for every peer in a group and tagmap.xml is the
same for every peer in the whole project. For this reason it is also convenient to edit
such files as a single entity. UniConf enables to edit file only once and automatically
applies the changes every peer necessary.

Figure 5.2: The logical structure of a project in UniConf.

Figure 5.3 shows the simplified class diagram of UniConf. The target of the
design of UniConf is to keep the basic structure of the project in the main program
to simplify the development of the plugins. All the data from the main program
is exposed to the plugins via the standard model view architecture of Qt. This
simplifies the development of new plugins, since view classes provided by Qt can be
used directly to view the data to the user. Together with the main program also
some convenience classes were made for plugin developers, including filter models
and a table view with Microsoft Excel type of functionality.

The main program also offers the needed search functionality to the configuration
data. The data of configuration file can be searched and edited not only by the
configuration file plugin that owns the data but also other configuration file plugins.
The benefit of this is that configuration files can be merged into the same view, if it
makes editing simpler for the user. A drawback is that badly behaving configuration
file plugins can break also other configuration files. However, this should not be a
major problem since all the plugins are developed by a trusted party.

The main program handles saving of the data and also undo/redo functionality.
Currently all the data is saved in a single XML file. The benefit of this is easy data
recovery after data corruption. The configuration data is also easily readable even
if UniConf software is not available for some reason. Since customers can require
support after decades it is important to be prepared for this situation.

5.2 Plugins

Plugins work as factories to create the functional part of CIGroup and CI classes.
The main program defines the interface the plugins must implement. For the
CIPlugin the main functionalities are creating the view, validating, and exporting

5. Configuration editor, UniConf 32

Figure 5.3: Simplified class diagram of UniConf.

the configuration file. The view is a graphical representation of the configuration
file, usually a table of data. Validate function validates the data of configuration
item and export function returns the file content as a string. ProjectPlugins and
PeerTypePlugins also need to create the view and export all the configuration items
belongin to the CIGroup.

The export function can also do some additional work, such as calculating check-
sums and packing the configuration files into an installation package. Export func-
tionality is designed to be handled by peerType. Exporting cannot be handled
solely by a configuration file plugin because exporting may need to collect multiple
configuration files in the same package to create the correct output.

Plugin architecture allows various modifications of configure files and peer types,
without changing the main program. With plugin architecture, it is easy to add,
remove, or modify a single configuration file without an understanding of the main
program. Plugin structure also allows easy outsourcing of part of the programming
work without exposing the rest of the code.

The plugins are loaded at runtime from a directory specified by the user, so

5. Configuration editor, UniConf 33

new baselines can be added without reinstalling the whole software. For now new
baselines are distributed via a new installation package of the software but in the
future some automatic tool can be used for that.

34

6. USING UNICONF

This chapter will explain the basic functionalities of UniConf configuration editor.
The following examples are based on the current main program and the plugins
made in this thesis. Since the developing of new plugins is not controlled tightly, it
can not be guaranteed that all the future plugins follow the same logic. However, it
is recommended for plugin developers to follow same logic as example plugins.

6.1 The main layout

As the Figure 6.1 shows, the main window of UniConf is divided into four main
items. Item 1 contains menu and tool bar which includes the actions provided by
the main program. If configuration items provide some additional actions, they will
be located in configuration item’s view which is located in item 2.

Figure 6.1: Main window of UniConf.

Item 3 is a tree view, containing all the configuration items arranged according
to the peer types they belong to. From the tree view, the user can select which
configuration item’s view is displayed. Tree view has three levels; project, peer

6. Using UniConf 35

type, and configuration item. Configuration item can be located under the project
directly and under peer type. Modification done to a configuration item under the
project will have effect to the whole project, and modifications done to configuration
items under the peer type has effect only to that peer type. This is only a rough
rule, as the configuration item plugin can decide the exact behaviour. Item 4 is
message box which will show error messages and warnings created by the plugins.

6.2 Creating a new project

Creating a new project is very simple. First, the user selects to create a new project
from the menu and then choose the baseline for the project. Baseline defines which
configuration items and peer types are available and can also affect to the behaviour
of the configuration items. The steps to create a new project are shown in Figure 6.2.
After the creation, the new project will open in UniConf without any peers but the
project may contain global configuration items, defined by the baseline.

Figure 6.2: Creating a new project.

After creating a new project the user should also set correct information for the
project. The user should at least change the name of the project so that projects
are easy to distinguish from each other. Also filling the name of the customer and
the name of the site is strongly recommended. There is also a text field reserved for
notes related to the project, such as what has been done, what needs to be done,
and why something is done in the way it is done.

6.3 Adding a new peer type

A new peer type can be added to the open project by clicking button "Add peer
type" and selecting the wanted type. A new peer group will appear to the project’s
tree view. Peer type will have the configuration files according to the baseline. If
all the configuration files are not needed in the project in question, the unnecessary
file can be unchecked from file list on peer type’s view.

6. Using UniConf 36

By default, the name of the peer type is the same as its type, and, therefore, the
name should be changed to be more descriptive. For example, peer type CHE should
be named after the type of the CHE such as SHC, CSC, ESC. It is not possible to
add two peer type with same name, so an earlier added peer name must be changed
before adding a new peer type of same type.

6.4 Importing configuration item from csv file

Certain configuration files allow user to import them from csv file. Figure 6.3 shows
the steps for importing a data source map. Importing can be done for configuration
files presented as a table in UniConf.

Figure 6.3: Importing a file.

Importing begins by clicking "import" button, as shown in step 1 in Figure 6.3.
In step 2 user selects the csv file using normal file dialog. In step 3 user must input
correct field separation character. The default value is ";" which is the same charac-
ter than Microsoft Excel uses in Finnish localization. Finally, in step 4 UniConf asks
the user to select which columns will be imported. On the left side UniConf shows
the available columns in the csv file and right side columns that can be imported.
The item on the right list can be dragged with mouse to match the column in csv
file. If csv file contains columns that are not to import a blank item can be drag
for their pair. Only the columns that have a pair on both lists will be imported to
UniConf.

6. Using UniConf 37

6.5 Editing commconf

The commconf file is very different from all the other files. It is presented as a draw-
ing expressing the peers, connections and channels to other peers. Peers’ properties
can be edited both in drawing mode and in table mode. It is possible to change
to table model by selecting "table" tab. Gateways and connection can be added
and removed only in drawing mode, but the values of existing ones can be edited
in table model. Channels can be edited only in drawing mode. Figure 6.4 shows a
commconf file in a very simple project.

Figure 6.4: Editing commconf in drawing mode.

By default all the peers are placed on top of each others in the drawing, but
they can be moved by dragging them with the cursor. In Figure 6.4 the commconf
file contains three CHEs, EMS for them, and a FMDS server. Every peer has one
connection but more can be added via context menu. Context menu can be opened
by clicking the right mouse button on the top of the peer box. Context menu actions
will vary depending on the placement of the cursor. Context menu allows user to
add and remove connections and gateways. Channels between peers can be added
by selection "Add channel" from tool bar, located in item 1 in Figure 6.4.

6. Using UniConf 38

6.6 Editing textfile

Figure 6.5 shows the view of the text file. View is divided into three items, the first
item contains the configuration data for peers, item 2 the text file itself. Item 3
contains buttons needed if XML schema validation is used. The text file shown in
the view works as a template containing placeholders to be replaced with the values
given in the upper table during the export. The placeholder pattern is "${NAME}",
where "NAME" is the name of the placeholder. Placeholders are automatically
recognized, highlighted in red, and corresponding column added to the table. A file
may contain the same placeholder multiple times, in which case only one column is
added in the table and every instance of the placeholder is substitute with that value.
Since UniConf does not a have way to know the intended type of the placeholders,
it cannot validate the values. However, UniConf will give a warning if the value is
empty.

Figure 6.5: Example of generic textfile.

If the text contains XML tags, they will be highlighted. Also XML Schema can
be defined for the file by clicking the "Edit XML schema" button located in item 3.
If the schema is defined, then it will be used for validate the file during the export.
Validation can be triggered also manually by clicking the "Validate" button in the
item 3. Validation will show the first error found from the file in item 3.

6. Using UniConf 39

6.7 Creating installation packages

Configuration items can be exported from UniConf in a format suitable to be used
in the final product. Before exporting the files, user should check that correct files
are selected for export and that file paths are correct. Figure 6.5 shows the "Files"
tab of peer type, which shows all the file that can be exported. All possible files
for the peer in question are listed in item 1. The files are defined by the baseline.
File can be selected to be exported by checking the check box in item 2. Path for
the exported file can be set in item 3. If peer requires application package, it can
be selected in item 4. Application package is not copied into the project. Instead
only the path to the package is saved. During the export process the application
package will be copied to the user selected export directory. If installation package
is needed, it can be created by selecting it in item 5 and setting a name for it. If
installation package is selected all the files are placed there. The inner structure of
the installation package is defined by the baseline.

Figure 6.6: Exporting configuration items

Since file name and path can vary depending on the peer name and type it is
possible to use placeholders in the file paths. Valid placeholders are listed and
described in Table 6.1 File path is the path where the file is placed in export. Path
must be given in Unix-style, meaning that file separator is "/", path can contain
spaces. File name must be included in the path, the name can be different from the

6. Using UniConf 40

Placeholder’s name Description
${projectName } Name of the project
${peerType} Peer’s type (E-One, SMC, CSC, etc.)
${peerName} Name of the peer
${MAC} MAC address of the CCU, applicable only for the CCU

peers.
${SN} Serial number of the CCU, applicable only for the CCU

peers.

Table 6.1: Possible placeholders to be use in file paths.

name shown in item 1.
UniConf will automatically validate the configuration items before exporting

them. Errors will not prevent exporting, but error messages are shown in the mes-
sage area. Errors are allowed since during the project it is convenient to test the
configurations even if they are not completely ready yet.

6.8 Creating a new template

UniConf has baseline menu in the main windows menu bar. Menu allows user to
add and remove configuration files and peer types of the currently open project.
The project can be saved as a baseline from baseline menu by selection "save as
baseline". Saving the project as baseline will create a template file containing peer
types and configuration files of the current project. Created template file can be
added to the baseline library by designated baseline manager. A normal project
engineer should have no need to ever create a new baseline and therefore they shall
ignore this menu.

41

7. CONCLUSIONS

The configuration editor developed in this thesis, the UniConf, is designed to be
only a demo version and a base for development of the actual configuration editor.
The demo version is used for research on how configuration files can be edited user
friendly and efficiently. Also new things were learnt about CM in general that can be
beneficial in further development of configuration editor and other related systems.

7.1 Further development of UniConf

Currently there are two main concerns related with UniConf. The bigger issue is how
to integrate UniConf with the chosen configuration distribution server. Since the
server software has not yet been chosen, the detailed integration design is impossible
to do. Only the basic outlines can be given here.

UniConf should be able to read the configuration files from the format that
configuration distribution server is using for storing them. This should not be hard
since all the studied server software stored the files using normal file systems, not
database. The files stored in the configuration distribution server should be orga-
nized in the same kind of hierarchy as is used in UniConf. Then it would be easy
for UniConf to read the existing configuration files from the server and restore the
project back to UniConf.

The minor issue is the file format that UniConf uses internally. Currently it is
XML file, that stores all the configuration data in a single file mimicking a database.
Until now it has worked well; however, if the size of the project increases significantly
then XML can turn to be too slow and memory consuming. Instead of XML it
would be possible to use ready-made relation database to store the data. Other
option could be to use archive type of file, containing the same directory structure
as the configuration distribution server uses.

The integration with configuration distribution server is essential, since other-
wise the configuration information would be stored and edited in multiple locations
simultaneously causing incompatible configurations.

7.2 Integration of the configuration management processes

UniQ customer project has multiple interfaces to other CIs, such as product de-
veloping projects and customer. Product developing projects are typically done by

7. Conclusions 42

Cargotec or by its subcontractor, but it is possible that one or more of CIs are
developed by some other company not related directly with Cargotec. The most
important interfaces are presented in Figure 7.1.

Figure 7.1: UniQ customer project interfaces to other projects.

In order to achieve a comprehensive CM system, it is not enough to implement just
the configuration file management and distribution of UniQ, but the process should
be integrated with other CM processes in Cargotec. Configuration file management
depends on multiple application development projects as well as CHE developing
projects. All these should be bring together and managed under unified CM process
and rules. Currently especially the interfaces between different projects are prob-
lematic, since all of them are not documented well, or at all, and information is
provided by emails.

A common CM environment and tools should be chosen and implemented into
use. A common set of tools would ease the personnel to learn and understand the
CM process and would make information sharing between different projects easier.
Also monitoring that correct practise and procedures are applied would be easier.

7.3 Summary

UniConf has been tested in one customer project. Although the project has not yet
been finished, the output of UniConf has been tested and proven to be correct. By
using UniConf, it is possible to create all the UniQ framework configuration files and
installation packages for CCU peer needed in a typical customer project. Creating
the configuration files using UniConf is faster and simpler than using the older tools.

43

REFERENCES

[1] V. Ambriola, L. Bendix, and P. Ciancarini. The evolution of configuration
management and version control. Software Engineering Journal, 5(6):303 –310,
November 1990.

[2] P. Anderson. The complete guide to LCFG. http://www.lcfg.org/doc/
guide.pdf. June 2005. University of Edinburgh. Internal documentation.

[3] P. Anderson and A. Scobie. LCFG: The Next Generation. http://www.lcfg.
org/doc/ukuug2002.pdf. January 2002. UKUUG.

[4] BitMover, Inc. BitKeeper - The scalable Distributed Software Configuration
Management System. http://www.bitkeeper.com. November 2012.

[5] Cargotec Finland Oy. UniQ Framefork Architecture Specification. December
2010. Internal documentation.

[6] CFEngine AS. CFEngine Architecture and Security, A CFEngine Special
Topics Handbook. https://cfengine.com/manuals_files/SpecialTopic_
Security.pdf. July 2012.

[7] CFEngine AS. Open source configuration management - CFEngine. https:
//cfengine.com. December 2012.

[8] M. DeHaan. Ansible - Advanced System Orchestration. http://ansible.cc.
November 2012.

[9] C. Devlin. A GUI interface for LCFG. http://www.lcfg.org/doc/devlin.
pdf. June 2003. University of Edinburgh. Undergraduate project report.

[10] Git project. Git. http://git-scm.com. November 2012.

[11] A. Hass. Configuration Management Principles and Practice. Agile Software
Development Series. Prentice Hall, 2003.

[12] Institute of Electrical and Electronics Engineers. IEEE Standard for
Configuration Management in Systems and Software Engineering. IEEE Std
828-2012 (Revision of IEEE Std 828-2005), March 2012.

[13] International Organization for Standardization. Systems and software engineer-
ing – Vocabulary. ISO 24765:2010, 2010.

[14] J. Keyes. Software Configuration Management. Taylor & Francis Group, 2004.

REFERENCES 44

[15] R. Krikhaar, W. Mosterman, N. Veerman, and C. Verhoef. Enabling system
evolution through configuration management on the hardware/software bound-
ary. Systems Engineering, 12(3):233–264, 2009.

[16] P. Kylliäinen. Engineering Manager, Projects. Cargotec Finland Oy. Interview.
November 2012.

[17] A. Lehtonen. Data distribution protocol for container handling equipment in-
terface. Master’s thesis, Tampere University of Technology, November 2009.

[18] Mercurial community. Mercurial SCM. http://mercurial.selenic.com/.
November 2012.

[19] J. Niva. Project Engineer. Cargotec Finland Oy. Interview. November 2012.

[20] Nokia Oyj. Qt - cross-platform application and UI framework. http://qt.
nokia.com. August 2012.

[21] Puppet Labs. Puppet Labs: IT Automation Software for System Administra-
tors. http://puppetlabs.com. October 2012.

[22] M. Rochkind. The source code control system. Software Engineering, IEEE
Transactions on, SE-1(4):364 –370, dec. 1975.

[23] T. Roponen, A. Roponen. Avoimen lähdekoodin versionhallintaohjelmat. Mas-
ter’s thesis, University of Jyväskylä, November 2007.

[24] F. Watts. Engineering Documentation Control Handbook: Configuration Man-
agement and Product Lifecycle Management. William Andrew Publishing. El-
sevier Science, 2011.

