
BISHWO PRAKASH ADHIKARI
CAMERA BASED OBJECT DETECTION FOR INDOOR SCENES

Master of Science thesis

Examiner: Prof. Heikki Huttunen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 28th March 2018

I

ABSTRACT

BISHWO PRAKASH ADHIKARI: Camera Based Object Detection for Indoor
Scenes
Tampere University of Technology
Master of Science thesis, 56 pages
May 2018
Master’s Degree Programme in Information Technology
Major: Data Engineering and Machine Learning
Examiner: Prof. Heikki Huttunen
Keywords: convolutional neural networks, deep learning, machine learning, object detec-
tion, TensorFlow Object Detection API

This master thesis describes a practical implementation of a deep learning frame-
work for object detection on the self-collected multiclass dataset. The research work
presents multiple perspectives of the data collection, labelling, preprocessing and
training popular object detection architectures. The challenges in the collection of
multiclass object detection dataset from the indoor premises and annotation process
are presented with possible solutions. The performance evaluations of the trained
object detectors are measured in terms of precision, recall, F1-score, mAP and pro-
cessing speed.

We experimented multiple object detection architectures that were available on
the TensorFlow object detection model zoo. The multiclass dataset collected from
the indoor premises were used to train and evaluate the performance of modern
convolutional object detection models. We studied two scenarios, (a) pretrained
object detection model and (b) fine-tuned detection model on the self-collected mul-
ticlass dataset. The performance of fine-tuned object detectors was better than the
pretrained detectors. From our experiment, we found that region based convolu-
tional neural network architectures have superior detection accuracy on our dataset.
Faster region-based convolutional neural network (RCNN) architecture with residual
networks features extractor has the best detection accuracy. Single shot multi-box
detector (SSD) models are comparatively less precise in detection. However, they
are faster in computation and easier to deploy in mobile and embedded devices. It is
found that the region-based fully convolutional network (RFCN) is the suitable al-
ternative for multi-class object detection considering the speed/accuracy trade-offs.

II

PREFACE

This master thesis research has been conducted at the Department of Signal Pro-
cessing of the Tampere University of Technology (TUT). I appreciate the support
of all people who helped me during my study and this thesis project. This thesis is
dedicated to everyone who will find this information useful.

At first, I would like to express my deep gratitude to my supervisor Associate
Professor Heikki Huttunen for allowing me to work at TUTMachine Learning Group
and introducing me to this interesting research area. This would not be possible
without his support and valuable advices throughout the process. I appreciate his
role as mentor, supervisor and examiner. I would like to thank Jukka Peltomaki
and other members of TUT Machine Learning Group for their support and valuable
advices.

I would like to thank my parents, family, relatives and colleagues for supporting
me throughout my studies and life in general. Many thanks to my girlfriend for her
encouragement, support and faith on me.

20 May 2018, Tampere, Finland

Bishwo Prakash Adhikari

III

CONTENTS

1. Introduction . 1

2. Methods . 4

2.1 Machine Learning . 4

2.2 Deep Learning . 8

2.3 Assessment Criteria . 15

2.3.1 Definition of a Detection . 15

2.3.2 Accuracy Metrics . 17

2.3.3 Mean Average Precision . 19

2.3.4 Detection Speed . 21

3. Object Detection . 22

3.1 Faster Region-based Convolutional Neural Network 25

3.2 Region-based Fully Convolutional Network 26

3.3 Single Shot MultiBox Detector . 27

3.4 Feature Extractors . 28

4. Implementation . 32

4.1 Dataset . 32

4.1.1 Data Collection . 32

4.1.2 Data Annotation . 34

4.1.3 Preprocessing . 36

4.2 TensorFlow Object Detection . 37

4.3 Environment Requirements . 39

5. Evaluations . 40

5.1 Results . 40

5.2 Discussion . 48

6. Conclusion . 50

References . 52

IV

FIGURES

2.1 Model error versus capacity graph 7

2.2 Typical division of dataset . 8

2.3 A simple model of artificial neuron 10

2.4 Activation functions . 10

2.5 Subsampling using maxpooling . 11

2.6 Feedforward neural network architecture 13

2.7 Convolutional neural network architecture 14

2.8 Definition of detection . 16

3.1 Object detection in computer vision 22

3.2 Examples of challenging images . 24

3.3 Faster RCNN architecture . 26

3.4 RFCN architecture . 27

3.5 SSD layer architecture . 28

3.6 Object detection model architecture 29

3.7 Inception module principle . 29

3.8 MobileNets principle . 30

3.9 Residual block principle . 31

4.1 Example images from dataset . 33

4.2 Imglab graphical user interface . 34

4.3 TFrecord read and write principle . 37

V

5.1 Precision-recall curve . 43

5.2 Training data versus accuracy . 44

5.3 Comparison between ground truth and detected objects 45

5.4 Comparison between ground truth and detected objects 46

5.5 Detections from mobile detector . 47

5.6 Amount of failures . 48

VI

TABLES

2.1 The 2× 2 confusion matrix . 17

2.2 Performance metrics . 18

4.1 List of objects in TUT dataset . 33

4.2 List of experimented models . 38

5.1 Performance on the single class dataset 41

5.2 Performance on the multi-class dataset 42

VII

LIST OF ABBREVIATIONS AND SYMBOLS

ACC Accuracy
AI Artificial Intelligent
API Application Programming Interface
CNN Convolutional Neural Network
CV Cross Validation
DNN Deep Neural Network
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
FPS Frames Per Second
GPU Graphical Processing Unit
IoU Intersection over Union
mAP Mean Average Precision
OpenCV Open Computer Vision
RCNN Recurrent Convolutional Neural Network
RFCN Region-based Fully Convolutional Network
SSD Single Shot Detector
TF Tensorflow
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
TUT Tampere University of Technology
XML Extensible Markup Language

Bgt Ground-truth bounding box
Bp Predicted bounding box

1

1. INTRODUCTION

Human can easily recognize various objects around our surrounding. However, it
is still a tedious job for a computer to recognize common objects correctly. For
example, it is easy for a mature human to differentiate apples and oranges but for
very children, it is difficult to distinguish which one is an apple and which one is an
orange. When we teach them several times with multiple examples of apples and
oranges, they will start to learn the object category structure and able to know the
difference. The same principle is applied to the computer. We teach a computer
using a large numbers of object images (data) then it will start to learn the structure
and predict the result based on its learning.

Human can precisely complete the challenging tasks that need intelligence, while
the robots can do risky and tedious tasks well. The interaction between a human
and a robot is profitable as together they can do complex, repetitive tasks apply-
ing intelligence. The interaction between humans and automated robots in working
places can be risky for work and workers because of the possible collision with the
robot and surrounding object. To reduce the possible damage, robot systems must
recognize humans, objects and get their locations precisely all the time. The auto-
mated system requires an intelligent way to recognize, localize and track an object
in real-time. This is a challenging task to achieve the good results in, regarding
that the work environment might be crowded, many objects might be occluding
each other, there might be a dissimilarity in illuminations, view angles and the same
object might appear in varied sizes [16].

The machine learning algorithm that is capable of localizing and classifying the
objects from image and video frames is an interesting topic in artificial intelligence
(AI), especially in computer vision. The long-time research in AI focuses on how to
make a computer work like a human [19]. The power of AI and machine learning
is automating the substantial number of computing tasks. The focus is to develop
an algorithm that can teach the computer how to recognize and track an object like
a human or better than a human. The demand of the deep neural network (DNN)
based approach for real-time object detection is increasing rapidly.

1. Introduction 2

Camera-based object detection is one of the fastest growing research areas in
the machine learning and computer vision [1]. The state-of-the-art technology is
heavily used in the industries and the production line to detect objects, localize,
track and inspect them in an automated and semi-automated environment. Object
detection on image and video has been studied and implemented in various places
such as computer vision, robotics, automation, construction and agriculture [9].
Well-functioning real-time object detection is the utmost goal for the object recog-
nition, localization, object tracking, navigation and work safety in an automated
environment.

An autonomous driving car is a well-known use case of real-time object detection
using a Lidar sensor camera [3]. Another example is car-manufacturing facilities
where humans and automated robots are working together. The real-time detection
with the precise and robust performance is crucial in those scenarios. A small error
might lead to a collision between humans and other objects. There is no room for
a single false alarm, which could lead to human casualties and other damages. It
is a hard job for a computer to detect objects in all environment regardless of the
background, size, occlusion and lighting conditions. This is the major challenge
in building a general-purpose object detector. The dataset that is used to train
the model has significant effects on the trained detector performance. It might not
detect the object which is collected from another environment.

The successful experiment of human detection in machinery working environment
was the inspiration for this thesis project. We experimented with classic Histogram
of Oriented Gradient (HOG), Convolutional Neural Network (CNN) implemented
in Dlib library1 and TensorFlow object detection application programming inter-
face (API) for human detection. We compared the pretrained model and specially
trained detector on the self-collected dataset from the real environment. It was found
that the performance of the fine-tune model on own dataset was far better than the
available pretrained models. From our experiment, we found that the object detec-
tion models available on TensorFlow object detection model zoo were better among
the tested methods. Deep learning object detection models were better than the
traditional HOG detector in detecting the human from the series of images/videos.

Object detection on the single class dataset is comparatively less challenging than
in multiclass. We aimed to experiment with a more challenging and demanding task
of object detection. We wanted to collect a multi-class object dataset from indoor
premises, train existing object detection frameworks and test the performance of
trained detectors on the self-collected dataset. In this thesis project, we focused more

1http://dlib.net

1. Introduction 3

on collecting the multi-class dataset and implementing deep learning object detection
models available on TensorFlow object detection model zoo. We experimented with
the state-of-the-art of the real-time object detection on self-collected images and
videos. Moreover, our goal was to know which object detection framework is better
in performance and computation in detecting objects from our multiclass dataset.

The structure of this thesis is as follows. Chapter 2 introduces the terms and
techniques used in machine learning, deep learning and neural networks. We discuss
the concepts that are needed to understand this thesis contents. In chapter 3, the
concept of object detection, popular deep learning object detection architectures,
feature extractors and challenges for automatic object detection are described. In
chapter 4, we provide information of the data collection, annotation, preprocessing,
purposed object detection models together with the environmental requirements to
train and evaluate purposed object detection models. Chapter 5 contains the exper-
imental results to demonstrate how well fine-trained detectors perform on detecting
objects and predicting their locations. The comparison of detectors on different eval-
uation subsets are discussed there. In chapter 6, we summarize our experimental
findings and present possible improvement proposals for future.

4

2. METHODS

This chapter describes the theoretical background of machine learning, neural net-
work, and deep learning. We discuss common assessment matrices that are used in
machine learning and for the performance assessment of object detection model.

2.1 Machine Learning

Machine learning is a branch of AI where an algorithm learns from data and results
a model from that data. Machine learning algorithm is able to learn from the data
rather than be explicitly programmed [11]. It can be used in various computing
tasks where designing and developing an explicit algorithm with good performance
is difficult or infeasible [2]. Machine learning uses representation learning to learn the
representation of the input object (data) automatically. The learned representation
is then used to predict the result of new unseen data.

These days computer related tasks, businesses and systems are advanced by the
machine learning techniques [2]. The automatic detection of spam in email, rec-
ommendation systems for the online stores, fraud-detection systems for the banks
and insurance agencies, content filtering, classification, object recognition and fault
detection systems are using machine learning techniques to solve problems automat-
ically. Based on the learning principle, machine learning algorithms are divided into
supervised learning, unsupervised learning, semi-supervised learning and reinforce-
ment learning.

Supervised Learning

Supervised learning is the machine learning system that is trained under supervision,
learning with a teacher. The algorithm is trained using the labelled data and desired
outputs. The supervised learning algorithm builds the model based on labelled data
and tries to predict on the new dataset. For the input variables (x = x1, x2, .., xn)

and output variables or labels (y = y1, y2, .., yn) the algorithm uses a mapping
function from the input to the output as y = f(x). The idea is to approximate

2.1. Machine Learning 5

the mapping function f(x) well enough that when there is new input data x′, the
model can predict the output labels y′ of that data.

Classification and regression are the popular examples of supervised learning.
Classification is the process of predicting class category of input data. Identifying
cats and dogs from the dataset containing cats and dogs is an example of classi-
fication. In regression, the prediction of a continuous value is done based on the
trained data. The prediction of house prices based on house features is a typical
example of regression. Regression is identical to the classification task except for
its output, which is the numeric value rather than the categorical label. Decision
trees, linear regression, logistic regression, Naive Bayes classifier, nearest neighbour,
neural network and Support Vector Machines (SVMs) are examples of supervised
machine learning algorithm [11].

Unsupervised Learning

Machine learning systems that are trained without supervision or using the unla-
belled data is known as unsupervised learning. In this learning, we only have the
input data with no corresponding output variables (labels). The goal is to design
or find the pattern of the data to learn more about the data. Clustering, visualiza-
tion and dimensionality reduction are common examples of unsupervised machine
learning algorithms. Clustering is the method of making clusters of data based on
the similarity measure. The similar featured data are kept inside the same clus-
ter while different featured are kept separately. The process of representing the
unlabelled complex data into 2D or 3D visual representation is known as visualiza-
tion. Dimensionality reduction is the technique of reducing the dimension of the
data without losing the important information. During this process, correlated fea-
tures are merged into one feature. Association rule learning is another example of
unsupervised learning where the goal is to find the interesting relations between
attributes of data. [11]

Semi-supervised Learning

Semi-supervised learning is the mixture of both supervised and unsupervised learn-
ing. It is used to solve the problem where the dataset is partially labelled or missing
some of the labels. The collection of the large-scale dataset, annotating/labelling is
time consuming and expensive process. Including unlabelled dataset helps to collect
the large enough dataset within reasonable time and cost. Semi-supervised learning
is the best option to learn from partially labelled data. [11]

2.1. Machine Learning 6

Reinforcement Learning

Reinforcement learning is quite different than above-mentioned learning principles.
In reinforcement learning, an agent learns by interacting with the environment to
perform its task [11]. An agent notices the environment, takes some action to in-
teract with the environment and obtains the reward (positive or negative) based on
its actions. An agent learns from own experience and collects the training examples
through trial and error during its attempts to complete the task. This process is
continued until the agent gets the maximum reward and completes the task. Markov
Decision Processes and Q-learning are the examples of reinforcement learning. Re-
inforcement learning has been implemented in many deep learning models. [11]

Overfitting

The main challenge for the machine learning algorithm is to perform well on unseen
data. The ability to perform well on previously unseen data or data other than
training set is called generalization. The generalization error or test error is the
expected value of the error measure on new data. For the good performance of an
algorithm, the generalization error must be as low as possible. The training error
can be calculated from the training set. The factor that determines the performance
of machine learning algorithm is its aptitude to make the training error small and
generalization gap small. Generalization gap is the distance between the training
error and test error [18].

Underfitting and Overfitting terms are used to describe the machine learning
challenges. Underfitting occurs when the model has high training error. Underfitting
is the case when the model is not training well or model is too easy to learn patterns
of input data. Overfitting happens when the generalization gap is high. Overfitting
is the case when the model performs well on the input (train) data but poorly
generalize on unseen data. Regularization is a technique used to make modification
on the learning algorithm to mitigate the test error but not the training error.
Regularization tries to construct the model structure as simple as possible which
can avoid the effect of overfitting [18].

2.1. Machine Learning 7

Figure 2.1 The relationship between model capacity and error. [18].

The behaviour of training and test (generalization) error is different at the dif-
ferent level of model capacity as shown in Figure 2.1. Capacity is the ability of the
model to fit the wide range of functions. In the beginning, both the training and
generalization errors are high. This area is known as the underfitting zone. When
the capacity increases, the training error decreases but the generalization error starts
increasing. At the overfitting zone, the training error is lower but the generalization
error is higher, making the generalization gap bigger. The optimal capacity is the
boundary line to distinguish the underfitting zone and overfitting zone. [18]

Model Performance Evaluation and Cross Validation

To understand how well our machine learning model will generalize on the new data,
we need to try it with different instances of data than the data used to train the
model. The goal is to split the dataset into two disjoint subsets, training and testing
subsets. The model is trained with training subset and evaluate with the testing
subset. Model performance is calculated based on the training error and testing
error calculated using those subsets. The common practice in machine learning is to
use 80 percent of total data to train the model and 20 percent to test/evaluate the
model. Cross-validation (CV) is a technique to partition the dataset into disjoint
training and testing subset. Majority of data, the training subsets, is used to train
the machine learning model and the remaining data is used for model evaluation. K-
fold CV and stratified k-fold CV are common practices in machine learning. In k-fold
CV the dataset is divided into k subsets (folds) and each time one-fold is reserved
for the testing and the remaining k-1 folds are combined to form the training set.

2.2. Deep Learning 8

Stratified k- fold CV is the modification of k-fold CV where each k folds contain
approximately the same portion of the sample of target class as in the whole dataset.
Subsets created using stratified k-fold CV technique have equal representation of
each class as in the original dataset. [11]

Dataset

Train subset

Test subset

Training subset

Validation subset

Model training

Model validation

Model testing

Figure 2.2 A typical division of dataset in machine learning. Primarily the dataset is
divided into train and test subsets. The train subset is further divided into two disjoint
subsets: training and validation subset.

Validation is the technique used in machine learning to monitor the training
phase of the model. Validation dataset is used to check whether the trained model is
overfitting or not. It evaluates the generalization error during the training process or
after training is done. Validation set allows hyperparameter to update accordingly.
It helps to minimize the overfitting and the generalization error. Often some portion
of the training dataset is reserved to validate the model as shown in Figure 2.2.
Common practice in machine learning is to use 20 percent of the train subset to
validate the model and 80 percent for solely training the model. [18]

2.2 Deep Learning

Deep learning is the state-of-the-art technology and considered as the major player
in the field of AI, machine learning and big data for its outstanding performance.
Deep learning is a branch of machine learning. The traditional machine learning
techniques strongly influence deep learning [2]. Deep learning is inspired by the
concept of artificial neural network and usually consisting of a large number of
neural networks (NN). The NN computing systems are inspired by the structure
and function of the biological nervous system of an animal brain. Deep learning
framework consists of multiple layers of simple modules, the majority of them are
used for learning and many of these compute non-linear input-output mapping. The
multi-layer model architecture learns the representation of data with multiple levels
of abstraction.

Machine learning is good for the structured low dimensionality data and deep
learning is used for unstructured, high dimensional data and perceptual problems

2.2. Deep Learning 9

[2]. The limitation of linear model to solve high dimensional complex representation
has led to the development of more complicated deep models. Machine learning uses
single-level representation learning while deep learning uses combination of multiple
processing layers to learn the best features needed to represent the data. The higher
level of representation learning makes deep learning capable to solve complex task
on high dimensional data such as image recognition, text processing and speech
recognition [18].

In past, the challenges for the deep learning models were computing resources
and large enough datasets to train the model. Easy accessibility of large datasets,
availability of powerful computing devices and outperforming graphical processing
unit (GPU) plays a significant role behind the popularity of deep learning methods.
Modern deep learning models give impressive performance on computer vision, signal
processing, speech/audio recognition and natural language processing tasks. [2]

Neural Network

A neural network (NN) is a highly parallel distributed processor that has a natural
tendency of storing experimental knowledge and making it available for use. It is
related to the function of an animal brain. The principle behind the NN is that
knowledge is obtained by the network through a learning process, interconnection
strengths (weights) are used to store the knowledge [21]. Neuron, also known as
node or unit is the basic building block of artificial NN. The typical combination of
neurons is known as a layer. A neuron receives multiple inputs (xi) from sources
connected with it, multiplies each input by the weight of its connection (wi) and
sums them together as shown in Figure 2.3. Often a bias is added to this sum. The
sum calculated from the weighted connection is then processed via an activation
function. The result is normalized and the output (y) is produced. NN consisting
of a large number of hidden layers is known as a deep neural network (DNN).

2.2. Deep Learning 10

∑

W1

W3

W2 ᶲ
activation function

y

bias b

Inputs

Figure 2.3 A simple model of artificial neuron.

Activation

An activation function is used to introduce a non-linearity to the linear activations
produced by convolutional (neural) layers and it limits the output of a neuron.
Rectified linear unit (ReLU) is used as an activation function in modern CNN archi-
tectures. ReLU only passes the positive value and the negative values are mapped
to zero as shown in Figure 2.4. ReLU became a popular activation function over
sigmoid and hyperbolic tangent (tanh). Meanwhile, the sigmoid function maps the
input to values between 0 and 1. Sigmoid function is also known as logistic sigmoid.
The tanh function maps input to the value between 1 and -1. ReLU allows fast and
effective training of deep neural network on large and complex datasets [17].

4 3 2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0

1.5

2.0
Activation Functions

sigmoid
tanh
ReLU

Figure 2.4 The sigmoid (logistic), hyperbolic tangent (tanh) and rectified linear unit
(ReLU) are common activation functions used in Neural Network.

2.2. Deep Learning 11

Subsampling

Subsampling shrinks the dimension of input by an integer factor. Subsampling is
also known as pooling and is widely used in deep learning. Pooling layers reduce
the dimension and resolution of input while preserving the most important informa-
tion. Maxpooling, average pooling and L2-norm pooling are examples of sampling
technique used in machine learning. Maxpooling is the most commonly used sub-
sampling technique where the output is computed as maximum value of input. As
presented in Figure 2.5, a small window of dimension 2×2 with stride of 2 is sliding
across the two dimensions of data and taking the maximum value from the window
at each step. Here 4×4 input data is reduced along both width and height producing
output of size 2×2. Pooling reduces the data size and improves the spatial invari-
ance to reduce the number of parameters and computation complexity in network.
[18]

1 5

2 3

7 2

4 9

3 1

7 6

8 6

4 0

5 9

7 8

 X

Y

Input slice

Output slice

maxpooling with
2 x 2 filters

Figure 2.5 The original image data in X and Y coordinates are down-sampled to half of its
original dimension. The 2× 2 maxpooling window with a stride of 2 is applied to the input
slice of 4×4 matrix that reduces to 2×2 by taking maximum from each window frame. The
pooling window size and sliding steps can be changed according to user/application need.

Fully Connected Layer

The fully connected (dense) layer contains weights associated with every input-
output pair. This layer combines inner product of weights and the input from every
node of the previous layer and translates them into votes. The multidimensional
spatial information received from the previous convolutional layers are converted
into single feature vector that will help to predict the class probability. This is the

2.2. Deep Learning 12

main block on deciding the class label by counting the vote. Usually one or two fully
connected layers are connected to learn more sophisticated features from the network
in order to make better prediction result. The flattening layer and dense layer
are considered as the fully connected layer preceding the output layer. Flattening
layer transforms the received multidimensional features into to one dimensional long
feature vector. The dense layer reduces the one-dimensional feature vector size and
normally makes same size as the number of class category in dataset.

Backpropagation

In NN, input data is passed via the network and the network produces the output.
The error is calculated by comparing the output produced by the network and an
actual output. The error is used to update the weights of the neurons in order to
gradually decrease the error. Backpropagation algorithm is used to solve this issue
in training. The goal of the backpropagation algorithm is to make the training error
as small as possible. This is done by iteratively passing batches of data through
the network and updating the weights. This mechanism is also known as stochastic
gradient descent [18].

Backpropagation learning can be implemented in sequential mode or batch mode.
In sequential mode, error adjustments are made to the free parameter of the network
on one by one basis. Sequential mode is good for classification problems. In batch
mode, adjustments are made to the free parameter of the network on an epoch by
epoch basis, epochs consist of an entire set of training samples. Batch mode is
good for nonlinear regression. Backpropagation algorithm is easy and efficient to
implement. However, it is computationally slow for difficult (heavy) tasks. [21, 18]

Feedforward Neural Network

Feedforward neural networks, also known as deep forward networks or multilayer
perceptron, are typical deep learning models. The number of layers in feedforward
NN ranges from three to thousands. Feedforward neural networks play a vital role
in machine learning/deep learning and have been used in many applications. The
convolutional neural networks used for object detection are specialized version of
the feedforward neural network. In the feedforward network models information
from the input flow through the intermediate computation and then result in the
final output. The aim of the model is to approximate some function that maps the
input to its output. For example, a classifier, y = f ∗(x) maps input x to a category

2.2. Deep Learning 13

y. The idea here is to design a mapping function y = f(x;θ) and learn the value
of the parameter θ that approximates the best function. In the feedforward neural
network, there are typically many different functions composed together which is
known as a layer of the network. Functions are connected in a chain forming a deep
model. [18]

Generally, the feedforward neural network consists of a large number of layers.
The very first layer is known as an input layer and the final layer is called the
output layer, which are shown in Figure 2.6. Layers between the input and the
output are known as hidden layers. The information flow in feedforward is always
in one direction (forward) input layer → hidden layer → output layer. In
feedforward network the output of the model is never fed back into the network. The
feedforward NN which includes feedback connection are known as recurrent neural
networks (RNN). Convolutional neural network (CNN) is an example of feedforward
neural network.

Input Layer Hidden Layer Output Layer

Output

Figure 2.6 Fully connected feedforward neural network with an input layer, two hidden
layers and an output layer.

The first layer, an input layer is used to prove the input data (features) to the
network. The output layer is the final layer in the network that results in the
prediction output. The activation function is used in this layer to get the desired
output for the problem. Hidden layers are the main block of the model that produces
the desired output based on the instruction provided by the learning algorithm.
Hidden layer applies various functions to the input. Series of simple functions can

2.2. Deep Learning 14

be cascaded to the hidden layers to compute highly complex functions. The number
of hidden layers is often termed as the depth of neural network [20].

Convolutional Neural Network

Convolutional neural network (CNN) is an artificial neural network consisting of
multiple layers also known as neurons. A typical structure of the CNN contains
convolution, nonlinearity, subsampling repeatedly connected with fully connected
layers. Modern CNN framework consists of a large number of layers (deep lay-
ers) containing convolutional and subsampling layers followed by one or more fully
connected layers.

Convolution is a mathematical operation on two functions that produces a third
function, which is the integral of the product of the two functions with one of them
flipped. Convolution is the main building block of the CNN. It is considered as
sliding a filter along its width and height. The convolution filter with desired kernel
size is applied in input data resulting in the feature maps. Convolution is done at
each point of input without overlap. Convolution filters are widely used in image
processing, digital signal processing.

Input Image

Feature maps
Output

Convolutions ConvolutionsMaxpooling Maxpooling Fully Connected

Figure 2.7 A multi-layer convolutional neural network. An input image is passed through
2 convolution layers followed by maxpooling layers and a fully connected layer and the
output layer.

The input image is put through the series of convolution and pooling operations
followed by the fully connected layer to produce the output. The convolution filter
of fixed size window is applied to each point of image avoiding overlap. The results
obtained from these filters are known as feature maps. Maxpooling is applied on
each position of these features maps to reduce the dimensionality. The convolution
filter is applied again followed by the maxpooling. These processes can be done
repetitively many times. Convolutional layers are typically linear, hence, they might

2.3. Assessment Criteria 15

not be able to express possible nonlinearity [48]. The activation function is applied
to the output of the convolutional layer to solve the issue of non-linearity. As shown
in Figure 2.7, the second last layer, fully connected layer, also known as the dense,
layer is used to stack multidimensional output data into a single list. The output
layer gets the information from the fully connected layer about the output class
associated with the score (frequency) of each class category. [27]

2.3 Assessment Criteria

In machine learning, accuracies measurements are important in order to know how
well the machine has learned and how well it performs on unseen data. There are
wide ranges of assessment matrices available to measure learning algorithm per-
formance. The performance assessment of the object detection model is done by
checking how well the model recognizes the object and how precisely it localizes
that object. The Intersection over Union (IoU) measure, also known as bounding
box overlap, is popular among other assessment approaches [6]. The performance
measurement of the object detection model is quantitative and explains to us how
many objects are detected correctly and how many objects are predicted wrongly
(false alarm).

The overall quality of the object detection model is calculated in terms of IoU,
precision, recall and F1-score. For a large scale multi-class dataset, the mean av-
erage precision (mAP) is used to measure the performance of the method in the
whole dataset [7]. Apart from the accuracy measure, computation complexity of
the model is of major concern. The performance of the trained detector on unseen
data, training time of the model and processing speed are major factors that need
to check while selecting the object detection model from the list of available models.

In this thesis, we consider an IoU, precision, recall, F1-score, mAP and frames
per second(FPS) as performance assessment criteria for experimented models. IoU,
precision, recall, F1-score and mAP are used to measure the correctness of the trained
detector while the FPS is used to measure the inference speed of the detector.

2.3.1 Definition of a Detection

The performance assessment of the object detection that uses the bounding box
localization method is based on the calculation of the intersection over union (IoU).
An IoU is calculated as the ratio of the area of overlap and area of the union. The
area of overlap is the total common area or overlap area (i.e. intersection) between

2.3. Assessment Criteria 16

the predicted bounding box (Bp) and the ground truth bounding box (Bgt). The
area of the union is the total area covered by both (Bp) and (Bgt).

Figure 2.8 Examples of detection of cup and clock with ground truth bounding box drawn
in red and predicted bounding box in green. In the left image, the IoU is 0.82 and in the
right image, the IoU is 0.73.

Figure 2.8 demonstrates the examples of the predicted bounding box and the
ground truth bounding box drawn in the cup and clock classes. The Bgt drawn
in red colour is from the annotation file and the Bp in green colour is predicted
from the trained detector. Unlike classification problems, object detection accuracy
calculation is rather complex. The exact match of the (X, Y) coordinates of the
ground truth box and predicted box is extremely rare [39]. For this reason, the
object detection performance assessment metric is defined in such a way that the
more the Bp overlap with the Bgt the better is the model performance.

An IoU can be calculated when we have the labelled dataset containing ground
truth bounding boxes for objects and received prediction for bounding boxes for
objects from the trained object detector. The formula to calculate the IoU is given
in an equation 2.1. In the numerator, we compute the common area of (Bp) and
(Bgt) which is the number of pixels covered by both boxes. In the denominator, we
compute total area covered by both boxes.

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
∈ [0, 1] (2.1)

An IoU is simply the ratio between these two areas. For the correct detec-
tion/prediction, the IoU must be greater than the detection threshold value. In
object recognition tasks, 0.5 is used as the most commonly acceptable threshold

2.3. Assessment Criteria 17

value above which it is considered as the correct detection [6].

2.3.2 Accuracy Metrics

In machine learning, precision is the fraction of retrieved items over all items that
are present. In object detection case, precision is the sum of the correctly detected
object divided by the total population of the object that is detected by the detector.
Precision takes all the detected object into account.

precision =
(relevant objects) ∩ (retrieved objects)

retrieved objects
∈ [0, 1] (2.2)

To understand the terms used in performance measurement, it is wise to consider
the binary classification problem. The output of the classifier is positive or negative
based on whether it is classified correctly or not. The detection of the single object
can be considered as classification task. The clear and concise way to understand
the idea behind the binary classification accuracy measure is using the confusion
matrix, it might be confusing at the beginning as the name suggest.

Table 2.1 visualizes the confusion matrix also known as contingency table. The
true class conditions are the ground truth of the data while predicted class conditions
are the prediction made by the classifier. The model prediction result will be one of
four outcomes, true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). Each instance holds two parts, the first part is whether the
prediction is true or false and the second part is the predicted class (positive or
negative). If the true class conditions and predicted class conditions are matched,
it is considered as TP. If both the real class and prediction class are negative than
the result is considered as TN. If the ground truth of the class is positive but the
prediction is negative than this instance is called FP. If the prediction is positive
but the ground truth is negative than that instance is called FN.

Table 2.1 The 2× 2 confusion matrix.

True Class Condition
Positive Negative

Positive True Positive (TP) False Negative (FN)Predicted Class
Condition Negative False Positive (FP) True Negative (TN)

The diagonal from the upper left to lower right filled with green colour is the
correct classification. While another diagonal in red colour is the false classification.

2.3. Assessment Criteria 18

A good classifier must have more instances in the green diagonal than the opposite
side, red diagonal. The population of positive class (P) is the sum of all positive
instances in data, calculated as, P = TP+FN . The population of negative class (N)
is the amount of real negative instances in data, N = TN + FP . Total population
is sum of positive and negative classes, Total(T) = P +N = TP +FN +FP +TN .
The amount of false prediction is, (F) = FN + FP .

Table 2.2 Calculation of various performance metrics based on the confusion matrix.

Term Calculation
True Positive Rate (TPR), Sensitivity, Recall TPR = TP

P
= TP

TP+FN

True Negative Rate (TNR) TNR = TN
N

= TN
TN+FP

Positive Predictive Value (PPV), Precision PPV = TP
TP+FP

Negative Predictive Value (NPV) NPV = TN
TN+FN

Accuracy (ACC) ACC = TP+TN
P+N

Many performance measurement matrices can be calculated based on this con-
tingency table. Table 2.2 contains the list of most commonly used matrices and
their calculations. The calculation of TPR, sensitivity and recall are same. Also,
PPV and precision calculation are same. An accuracy (ACC) is the measure of the
fraction of correctly predicted instances over total population of instances. The high
ACC value is always good for the classification model but is not sufficient to prove
that the model is performing well [46]. Sometime the result might mislead. For
better performance assessments, we need to consider more accuracy matrices than
a single one.

Recall

Recall is the fraction of the relevant items that are successfully retrieved. In the
object detection case, recall is the sum of the correctly detected object divided by
the sum of actual objects. Recall take only the truly detected object into account.
It is also known as the sensitivity of the model.

recall =
(relevant objects) ∩ (retrieved objects)

relevant objects
∈ [0, 1] (2.3)

F1-score

Precision focuses on accuracy of the model while recall focuses on the robustness
of the model. Therefore, calculating the precision and recall alone is not enough

2.3. Assessment Criteria 19

to measure the performance of the model while calculating both gives the better
perception of the model performance. F-score combines both precision(PPV) and
recall (sensitivity, TPR) into the single measurement. F-score is the measure of the
accuracy of a classifier also known as F-measure. The formula to F-score based on
the confusion matrix is given in the Equation 2.4.

Fβ = (1 + β2)
PPV × TPR

(β2)PPV + TPR
β ∈ [0,∞) (2.4)

This can be represented as:

Fβ = (1 + β2)
precision× recall

(β2)precision+ recall
β ∈ [0,∞) (2.5)

where 0 ≤ β ≤ +∞ and 0 ≤ Fβ ≤ 1.

For β < 1, F-score is more precision oriented while for β > 1, it is more oriented
towards recall. For β = 1, precision and recall are weighted equally, this case is
known as F1-score and given by Equation 2.6. The value of β manages significance
of recall over precision. Different value of β can be used based on which metric
is important and by what amount. For example, if recall is less important than
precision, β < 1 is used and if recall is more important than precision, β > 1 is used
in the Equation 2.5 [46].

F1 = 2
precision× recall
precision+ recall

∈ [0, 1] (2.6)

F1-score is the weighted average of the precision and recall. Equation 2.6 can be
represented as the form of harmonic mean. The value of F1 is bounded between 0
and 1. This indicates that the F1-score is higher only when both precision and recall
values are higher. In multi-class case, it is always worthwhile to calculate the F1-
score as the harmonic mean of average precision and average recall than calculating
the mean of individual F1-scores [8].

2.3.3 Mean Average Precision

The mean average precision (mAP) has been widely used to compare the overall
accuracies of object detections models on multi-class dataset, since its first intro-
duction in Pascal VOC challenge 2007 [7]. The mAP is a single metric that gives the
idea about the object detection model performance on the whole dataset. The mAP
is not an absolute accuracy metric but it serves as the relative metric. At first, the

2.3. Assessment Criteria 20

average precision (AP) of each class based on different recall values are calculated
and then mean of these AP are computed to get mAP of the whole dataset. Dif-
ferent techniques are used to calculate the AP. In Pascal VOC, the precision values
over 11 values of recall (0.0,0.1 ...,1.0) is used. While in COCO, precision values are
computed over 101 different recall values. The calculation steps for mAP based on
Pascal VOC is as follow :

1. At first precision and recall are calculated based on the IoU. An IoU greater
than the threshold value (usually, 0.5) is considered as true detection.

2. AP is calculated by averaging the maximum precision value at different levels
of recall. This is normally taken from the precision-recall curve. The precision
values are collected from different recall (11) values ranging from 0.0 , 0.1,
...,1.0. Equations 2.7 - 2.9 show the AP calculation in Pascal VOC [25]. In the
COCO dataset, AP is calculated from the precision-recall curve drawn using
101 equally spaced recall values.

AP =
1

11
× (APr(0.0) + APr(0.1) + ...+ APr(1.0)) (2.7)

AP =
1

11

∑
r∈(0.0,0.1,...,1.0)

APr

AP =
1

11

∑
r∈(0.0,0.1,...,1.0)

pinterp(r) (2.8)

where,
pinterp(r) = max

r′≥r
p(r′)

The pinterp(r) is the optimal precision for recall values above r.

The simplified equation for AP calculation is:

AP =
1

11
× (pinterp(0) + pinterp(0.1) + ..+ pinterp(1.0)) (2.9)

3. Calculate the AP for all object classes present in the dataset.

4. Finally, calculate the mean average precision (mAP) by taking the mean of
AP over all the object classes.

The mAP value gives the overall performance of the detector over the dataset,
while the AP tells about the performance on a single class. It is obvious that some

2.3. Assessment Criteria 21

classes have higher AP and some classes have moderately low AP. This is due to
the number of training samples and (or) quality of samples for each class. The AP
result provides the information about whether we need to add/change the training
samples in some class or not.

2.3.4 Detection Speed

Computers integrated with high-end GPUs process graphical contents faster than
basic computers that only have CPUs or less powered graphics card [32]. Frames
per second (FPS) is the frequency of consecutive images, also known as frames,
appearing on display. FPS is the widely used metric in broadcasting, film, image
and video processing, game, and computer graphics. Computation complexity of the
model is one of the main concerns in real-time object detection. There is no clear
answer to how much inference speed is considered real-time detection. However, a
model is said to be real-time if, its output is faster than or as fast as to the input
[32]. The higher the FPS, the better the model performance, but a value less than
1 FPS is considered to be a slow performing model. The inference speed of 1 FPS
means every second a single frame is displayed and video of 1 minute contains 60
consecutive frames.

The processing time calculation gives the general information about the com-
putation complexity of the algorithm. Deep learning frameworks are complex in
nature and computationally heavy. Hence, it is hard to achieve real-time inference
on less powerful devices. We considered the FPS as the measure of the computa-
tional complexity of the model. As we are running all models in the same work-
ing environment, the FPS results give better understanding of computation cost of
experimented models. We compare the computation complexity of experimented
object detection detectors during training and evaluation on the test dataset.

22

3. OBJECT DETECTION

In this chapter, we discuss the concept of object detection and its applications in
modern computer vision. We discuss the convolutional neural networks based object
detection architectures and their challenges. Object detection meta-architectures
and feature extractors that are used in this thesis project are discussed here.

Background

In modern computer vision, object detection is considered together with the object
recognition (classification), localization, tracking, and extracting information from
the object. These processes are tightly related to the object detection. In clas-
sification, the aim is to find out the object class or recognize what the object is.
Localization finds the location of the object/s in the image or localizes the object
inside the frame. Object tracking in video or live recording is a way to get the move-
ment and status of the object. The goal of object detection system is to classify
and find the location of all objects that are present in an image. The input for the
detector is an image containing the object and the output is a list of the bounding
box. Figure 3.1 visualizes the tasks related to object detection. [40]

Figure 3.1 The collection of computer vision tasks related to an object, (a) the classifi-
cation (class label) of object in an image, (b) class label of the object and its location in an
image, (c) class and location of each object in an image, and (d) the precise pixels of each
object in an image.

3. Object Detection 23

Object detection was based on extracting the feature descriptors from the images
before the deep learning approaches became prevalent. HOG and scale-invariant
feature transforms (SIFT) [33] with support vector machines (SVMs) classification
were used for automatic object detection. Deep CNN based models outperform
the classical object detection models and are considered as the best performing
methods [12]. Faster region-based convolutional neural network(RCNN) [37], region-
based fully convolutional network (RFCN) [5] and single shot detector (SSD) [31]
have been used as major meta-architectures in object detection models. These
meta-architectures consist of the deep CNN together with the feature extractors.
Inception [43], MobileNet [23], NAS [47], ResNet [22] and VGG [42] are popular
feature extractors that can be implemented in above mentioned meta-architectures
depending on application type and its use in different case.

Object detection is the fast-growing field of research in machine learning and
computer vision. The number of problems that can be solved using object detection
algorithms is increasing rapidly. Camera-based real-time object detection is on top
priority for face detection, object counting, visual/image search, landmark recogni-
tion, satellite image analysis, autonomous driving, drone and agriculture productions
[9]. Detectron [13], Dlib [28], RetinaNet [29], TensorFlow [44] and You only look
once (YOLO) [36] are popular platforms that are used for object detection. Deep
convolutional network frameworks are implemented in all modern object detection
platforms/libraries.

Challenges

Object detection is known to be a challenging task in computer vision. Large number
of training datasets with big number of images from each class category is needed for
better learning and generalization. The collection of a large dataset with varieties
of objects, scalability of data, the computational complexity of the deep model and
the robustness of detector are the main challenges of object detection [35].

Robustness

Robustness refers to the challenges of the detector in detecting the object of different
appearances. The intra-class and inter-class difference are big challenges for auto-
matic object detection [35]. The intra-class difference is the difference between the
same class objects, while the inter-class difference is the difference between dissim-
ilar class objects. The variation in objects and variation in images are challenging

3. Object Detection 24

too. As shown in Figure 3.2, a chair can be of different colour, shape, size and
texture. The environments where the images of the chairs are captured are different
(background, lighting, and view-angle). The similar appearing object of the dif-
ferent class category is another challenge. For example, the inter-class differences
of moving chair, sofa chair, armchair and four leg chair are quite small and often
considered as common class chairs.

Figure 3.2 Examples of the chair class in our dataset. These are 8 different types of
chairs representing single class label (chair). They are captured in different backgrounds,
lightings and angles.

Large datasets

The detection model must be complex enough to solve the robustness problem.
This necessity motivates to have large dataset and deeper models. The necessity
of large-scale datasets to train and test the object detector has been solved by
available benchmark datasets. However, these datasets were collected on the specific
environment which might not work well in another environment. To make the
environment specific object detector, we need to collect a large number of samples
from the specific environment for each class category object.

3.1. Faster Region-based Convolutional Neural Network 25

Scalability and Complexity

Another challenge in object detection model is the scalability of high dimensional
data. High dimensional data is hard to represent, difficult to train the model and
learn the required information. The feature extractors help to solve these issues
by extracting only the required features from the data. Most of the modern object
detection models use the regional CNN filters to extract the object maps from the
input image. CNN architectures are computationally heavy to perform. The hard-
ware needed for heavy computation is another challenge in object detection. Easy
availability of powerful computing devices, high-end GPUs, parallel computing and
cloud-based computing services help to solve this challenge.

3.1 Faster Region-based Convolutional Neural Network

A Region-based convolutional neural network (CNN) has three series RCNN [14],
fast RCNN [14] and faster RCNN. Faster RCNN is the latest architecture in the
RCNN series and one of the widely used architecture in object detection [37]. Faster
RCNN is composed of fully deep convolutional networks that propose regions and
the fast RCNN detector, that uses the proposed regions to detect the object. To
understand the concept of faster RCNN it is wise to go through the principle behind
the RCNN. RCNN is a three-stage process. At first, a selective search algorithm is
used to scan the objects in input image known as region proposal. The convolutional
neural network is run on top of each of these region proposals. The third stage is to
feed CNN output into support vector machine (SVM) to classify the object region
and a linear regression is used to tightened the bounding box of the object. [37]

In faster RCNN, slow selective search algorithm implemented in RCNN is replaced
with a fast-neural network. The detection in faster RCNN is a two-stage process.
At first, a convolutional filter is run through the entire image resulting in the feature
maps. The region proposal network (RPN) is applied on those featured maps and
output the set of object proposal boxes with scores. Image feature maps achieved
from the convolutional filter are used to predict the object proposal with scores.
Object proposal network is proposing boxes based on the intersection over union
(IoU) between the purposed object and the ground-truth object. In the next stage,
object proposal extracts the area of the object from the feature maps. This is done
by region of interest (RoI) pooling layer. The extracted features are applied to all
layers of feature extractors to get the prediction probability of the class and the
bounding box for each region proposal. The final stage is to classify the object and
its location (bounding box) found in the image. As shown in Figure 3.3, entire

3.2. Region-based Fully Convolutional Network 26

Figure 3.3 Single unified network for object detection implemented in faster region-based
convolutional network model [38].

operation occurs on the unified single network, that enables the system to apply
convolutional filters together with the detection network. It is proven that faster
RCNN meta-architecture with a good feature extractor has excellent performance
on complicated object recognition and classification challenges [9].

3.2 Region-based Fully Convolutional Network

The region-based fully convolutional network (RFCN) uses two-stage object detec-
tion strategy consisting of regional proposal and region classification. RFCN is
identical to faster RCNN but instead of cropping features from the predicted re-
gional proposals, features are taken from the last layer of features preceding the
prediction. This technique helps to minimize the quantity of memory applied in
region computation. It was mentioned that RFCN together with the ResNet101
feature extractor has competitive performance compared to faster RCNN [9, 5].

The architecture of RFCN is shown in Figure 3.4. At first, the convolutional
filter is applied over the input image. The fully convolutional layer is added to
generate a score of positive-sensitive score maps (feature maps). The fully convo-
lutional regional proposal network (RPN) generates the regions of interest (RoI)
from the previous layer output (feature maps). Each generated RoI is divided into
subregions (bins) as scored maps. The score bank of each bin is compared with the
corresponding position of the object. The process is repeated for all the bins and for
all the classes presented in the image. When these bins have an object matched with

3.3. Single Shot MultiBox Detector 27

Figure 3.4 Regional based fully convolutional network meta-architecture. Input image is
gone through the convolution and RPN proposes the possible regions of objects. RoI pooling
is applied to RPN outputs and finally classifier classify the object [5].

enough of sub-region of the object, the average score is calculated per class. At the
final stage, softmax pooling is used to classify the object class based on the previous
vote from the RoI layer. RFCN is fully convolutional and shares the computation
throughout the networks which make this model faster than the faster RCNN model
[5].

3.3 Single Shot MultiBox Detector

A single shot multi-box detector (SSD) meta-architecture solves the object detection
problem by using a single pass of a feedforward convolutional network. Unlike
other models, this does not generate region proposals nor do resampling of image
segments thus saving computational time [9, 31]. This network handles objects of
different sizes by using features maps from different convolutional layers as input to
the classifier. This network produces a large number of bounding boxes with the
scores of object class in those boxes. Non-maximum suppression is used to eliminate
boxes below a certain threshold so that only the boxes with higher confidence values
proceed for classification. SSD meta-architecture allows end-to-end training and
improving the speed of the detector. This meta-architecture does everything in
one shot, thus, it is faster than other meta-architectures but it lags the detection
accuracy.

3.4. Feature Extractors 28

body

class predictor

box predictor

down sample

class predictor

box predictor

input scale 0 scale 1

Figure 3.5 SSD layer is series of small convolutional layer that is added on top of base
layer [15].

The SSD layer architecture is built on top of a feedforward CNN that results a
fixed-size collection of bounding boxes and object class instances present in those
boxes. The input image is passed through a series of convolutional layers and down-
sampled via the SSD layer shown in Figure 3.5. This SSD layer is linked to the
output of the last convolutional layer of the base model. Multiple sets of feature
maps at different scales are achieved from the convolutional layers with the predic-
tion of object classes (from class predictor) and set of bounding boxes (from box
predictor). The predicted boxes are compared with the ground truth of the object
and the best one with higher IoU is selected together with the higher probability
score from class predictor.

3.4 Feature Extractors

The feature extractor is the major building block of the object detection model that
is used to extract the features of objects from the data. The object detection model
structure is composed of detection meta-architecture, feature extractor and classifier
as shown in Figure 3.6. The input image is passed through the feature extractor
that extracts features from the image. The extracted features are then forwarded
to the classifier that classifies the class and the location of the object in the input
image.

3.4. Feature Extractors 29

Feature
Extractor

ClassifierInput Image
Class

Localization

Metaarchitecture

Figure 3.6 Object detection model architecture is composed of the feature extractor and
classifier in meta-data architecture [9].

The feature extractor is a deep architecture that aims to increase the accu-
racy while reducing the computational complexity. AlexNet, Inception, Mo-
bileNet, NAS, ResNet and VGG are some popular feature extractors that
can be implemented in object detection meta-structures. We used the Inception,
MobileNet, ResNet and NAS feature extractors implemented in above-mentioned
meta-architecture.

Inception

The inception module works as multiple convolution filters that are applied to the
same input together with pooling and concatenation to get the result. Inception
architecture allows the model to gain advantage from the multi-level feature extrac-
tion.

1 x 1 convolutions 3 x 3 convolutions 5 x 5 convolutions 3 x 3 max pooling

Filter concatenation

Previous layer

Figure 3.7 Inception module, naive version [43].

Inception module uses a combination of compositions of different convolution
filters. At first, the 1× 1 convolution is followed by the various size of convolution

3.4. Feature Extractors 30

filters (3× 3 convolutions and 5× 5 convolutions) and maxpooling operation. The
output from these filters and pooling are concatenated to get the final result as shown
in Figure 3.7. Inception network is the combination of numbers of this inception
module. It is believed that getting multiple features from multiple filters improves
the performance of the network.

Mobile Network

Mobile network (MobileNet) is a lightweight deep neural network that is efficient
for mobile and embedded devices. The principle behind this architecture is the
division of the standard convolutional filter into two convolution filters, depthwise
convolution and pointwise convolution (1 × 1 convolution). The computation com-
plexity of the standard convolutional filter is higher than the combined computation
complexity of depthwise and pointwise convolutions.

. . .

. . .

. . .

 N

 N

 M

M

M

D

D

1
1

(a) Standard Convolution Filters

(b) Depthwise Convolution Filters

(c) Pointwise Convolution Filters

1

D

D

Figure 3.8 MobileNet feature extractor is based on the separation of the standard convo-
lutional filters into depthwise convolution and pointwise convolution [23].

The computation cost of the convolution depends on the input network (M),
size of the output network (N), feature map size (DF × DF) and the kernel size
(DK×DK). The computation complexity of the standard convolutional filter shown
in Figure 3.8 (a) is higher than the total computation cost of the depthwise (b) and
the pointwise (c) convolution filters. This division is optimized for the computation

3.4. Feature Extractors 31

speed. The reduction in accuracy is rather small in comparison to the to the standard
one. These are the parameters for balancing between speed and accuracy. [37]

Residual Network

Residual Network (ResNet) is based on the residual learning principle. The idea
is to learn a residual instead of the features. The deep residual network consists
of 152 residual blocks [22]. ResNet is the record breaker a single architecture for
classification, detection, and localization tasks. It surpasses a human on ILSVRC
2015, ImageNet and COCO 2015 competitions with an incredible accuracy and
is known as the best CNN architecture [26]. The increase in depth of the deep
NN increases the accuracies until some point and after that, it starts decreasing.
Residual learning tries to solve this issue of accuracy degradation in NN [22].

weight layer

weight layer

+

relu

X

relu

F(X)

y = F(X) +X

(b) A residual block

weight layer

weight layer

(a) Plain Block

relu

X

y = F(X)

Figure 3.9 F(X) is the residual function of non-linear CNN layers. In the plain block
(a), it is difficult to get identity mapping by pushing the residual function to zero. It is
easier to get identity mapping in the residual block (b) than in the plain block (a) [26].

The idea behind the ResNet architecture is to use a residual function instead of
direct mapping of input-output. The residual function is F (x) = H(x) − x where
F (x) is the stacked non-linear layers, H(x) is mapping function and x is identity
function. This residual function can be re-framed to H(x) = F (x) + x. It is easier
to get the residuals to zero than to fit an identity (input = output) mapping using
stacks of non-linear CNN layers as the function.

32

4. IMPLEMENTATION

This chapter presents information about data collection, annotation and preprocess-
ing needed to train the object detection models. The environmental setup needed to
train and test the object detection models from TensorFlow object detection model
zoo is discussed here. Data collection, annotation, preprocessing and the formation
of the train-test dataset are of major concern in object detection.

4.1 Dataset

Data is the core necessity to train, test and validate any kind of machine learning
task. Especially in supervised machine learning, we need labelled data that will
determine what our algorithm will learn and predict as a result. The training data
is the major factor that influences the model behaviour and performance on unseen
data. The data processing stage includes the collection of the datasets, the annota-
tion and formation of the train and test subsets. This section describes the methods
used for data collection, annotation and preprocessing to achieve our experimental
goal.

4.1.1 Data Collection

The data used in this project were collected during this project. The first stage of
data collection was recording videos in the university premises including corridors,
labs, meeting rooms and offices. From the series of recorded videos, interesting
frames were extracted. The deep learning implementation needs way more training
data than the basic machine learning algorithms. During the collection of our object
detection dataset, we faced some challenges. One of the major challenges was the
collection of common objects suitable for the dataset. The quality and clarity of
images and objects was an issue itself. This challenge was solved by using the better
quality video recorder. The collection of varied sets of images of the same object
was another challenging task during data collection. Manually annotating all objects
and their instances with the corresponding class labels was another challenge.

4.1. Dataset 33

We extracted 1100 frames from the series of recorded videos inside TUT premises.
In each captured frame there were one or many objects of single/multi-class instance.
In addition to self-collected data, 40 images of remote controls and 25 images of exit
signs were downloaded from Google image search.

Figure 4.1 Sample images with different objects from our dataset. These were captured
in various indoor premises at TUT.

Table 4.1 List of the objects in our dataset based on the class category.

Category Object Instance
Natural Human Plant Flower
Furniture Box Boxes Chair Door Drawer Sofa Table
Electronic Clock Printer Remote Screen Socket Switch
Other Bike Board Cup Exit Fire ext. Picture Trash bin

Our dataset contains 23 classes of interesting objects found at TUT indoor
premises such as human, small plants, furnitures, safety symbols (fire extinguisher
and exit) and electronics goods. Figure 4.1 presents some representative images from
our dataset. Table 4.1 lists class label of the objects in our dataset. These images
were taken from indoor TUT premises on diverse backgrounds, lighting conditions,
sizes and viewpoints.

4.1. Dataset 34

4.1.2 Data Annotation

Data annotation is the process of labelling the data for supervised machine learning
method. In case of object detection, an annotation is a process of localizing the
object inside the given frame and labelling it. Bounding box approach and the
pixel-wise object segmentation are two methods used to annotate the object on the
image frame. We used the bounding box annotation approach where the bounding
box is drawn locating the object, a rectangular box is drawn around the object
boundary making object inside the drawn box. Dlib image annotation tools Imglab
1 was used to annotate the images. The information of the images and corresponding
boxes were stored in a file and saved in extensible markup language (XML) .xml
format. The XML file format created using the Imglab tool contains the image file
with the information of rectangular box around the object and the corresponding
class label of the object/s.

Figure 4.2 Screen capture of Imglab graphical user interface(GUI) during multi-class
object annotation.

The screen capture of Imglab graphical user interface (GUI) is shown in Figure
1https://github.com/davisking/dlib/tree/master/tools/imglab

4.1. Dataset 35

4.2. After we open the Imglab with the images, we can start annotating the desired
objects. At first, we need to give the class label and can start drawing the box around
the object. The rectangular bounding box is drawn around the object using the shift
and the left key of the mouse starting from the top-left, following height and width
of the object. When annotation process is done, it can be saved to the file using
the save option under the file menu. The location of drawn ground-truth bounding
box around the object is stored in the file and saved in the XML file format. The
annotated XML file contains top-left corner of bounding box with height and width
of the box and object class label. The XML file store the information of ground
truth bounding box on top of the object in an image frame. Once the annotation is
done, it can be changed or modify using the same technique.

The annotated XML file can be opened in the browser to visualize the object
with recently drawn ground truth bounding box. This is a handy way to figure out
whether there was a mistake during the annotation or not. More specifically when
the annotation is done in an automated way, viewing the generated annotation file
on the browser is a promising idea to observe the performance and check whether
there is a need to modify the annotation or not.

Data Augmentation

The amount of labelled data is the main factor that affects behaviour of the trained
model on new data. A large amount of annotated object samples are needed to train
the deep and robust object detection model. Data augmentation helps to overcome
the challenge of collecting a large amount of labelled dataset. Data augmentation is a
technique to produce new data by transforming and manipulating the original data.
It is widely used in image processing. The newly created data must hold the same
class label as the original data. The wide range of data augmentation techniques
are used for image data, scaling (resizing the images), flipping (horizontal/vertical
flip), rotation, adding noise (salt/pepper noise), and transformation. [34]

As the majority of the objects in our dataset are symmetric in nature, we used a
flipping technique to increase the size of labelled dataset. Imglab flip function was
used for the data augmentation. The annotated images and objects were flipped
horizontal left-right preserving the label of the object. We found that including
flipped data on training improved the performance of the trained object detector.

4.1. Dataset 36

Automatic Annotation

Data annotation for object detection is time and resource consuming. We need to
collect and annotate thousands of images with many objects to make our detector
model robust. It is wise to automate the process of annotation to reduce time and
complexity constraints for data labelling. We tested an automated way to anno-
tate the multi-class dataset. After we train the model on the manually annotated
dataset and get the trained model graph, we can use it to automatically generate
the annotation (XML) file from new images. Once the automatic annotation file is
created, we need to check the annotation and correct wrong annotation box/object
and label manually. The performance of the automatic annotation heavily relies on
the trained detector, the dataset used to train the model and the data that need
to annotate. The result will be good if the trained detector is well performing and
input images are of good quality with clear objects.

4.1.3 Preprocessing

After annotating all the frames, we have annotated datasets ready for our experi-
ments. The next step is to split the datasets into train and test/evaluation subsets.
In the experiment, we randomly divide our dataset into 80-20 split. The relation
between the training data and the performance of the detector is explained in the
result section. Train-test split can be done in multiple ways. However, it is better
for prediction if the distribution of classes on both subsets are balanced enough.
After splitting the dataset into two subsets we need to change the annotated XML
files to the file format that is supported by TensorFlow.

TensorFlow uses its native file format TFrecord (.record) to do the batch opera-
tion. Unlike other platforms which do most of the batch process directly from the
images, TensorFlow uses a single file for the batch operation. In TFrecord file, im-
ages are converted into Numpy array. This format for processing the large dataset
helps to mix-match dataset and network architecture as well as process the large
dataset that does not fit into the memory. This format is the record-oriented binary
format that is used for training and testing data in many TensorFlow applications.
There are different options available for data preprocessing. The training set and
testing split from the annotated dataset can be done before converting it to TFrecord
(splitting XML file) or after using TFrecord function. [45]

The training and testing XML files are needed to be in TFrecord file format. The
conversion from the Imglab XML format to the TFrecord format was done using

4.2. TensorFlow Object Detection 37

the TFrecord reading and writing principle shown in Figure 4.3. As shown in the
figure, the first step is to convert the image and labels into the proper data type.
Then, it is further converted into feature sets. The feature sets are converted into
serialized data and finally written to TFrecord file format using TFRecordWriter
function. The reading process, or extracting the data from the TFrecord file is the
reverse way back to data.

Data to TFrecord

TFrecord to Data

Data Featured set Serialization TFRecord

TFRecord Unserialization DataFeatured set

Figure 4.3 The principle behind the data conversion to TFrecord file format and retrieving
the information from the TFrecord file.

Imglab XML format files were converted into TFrecord file format using the
conversion script written in Python. TensorFlow uses the google protobuf text
format (.pbtxt) to store the information of class label information.

4.2 TensorFlow Object Detection

TensorFlow is an open-source machine learning framework released in 2015 by
Google [44]. Google Brain team originally developed it to conduct the machine
learning and deep learning research and implemented in wide variety of Google ap-
plications such as speech recognition, search, Gmail, and photos. The library is
implemented in C++ and has good Python bindings. It became the most popular
platform among deep learning practitioner and researcher soon after it was released
to the public. [44, 41]

In TensorFlow library the numerical computations are done with information
stream (data flow) graphs. In these graphs, nodes mean mathematical operations
and the edges mean the multidimensional data array also known as tensors that are
communicated between edges. TensorFlow has its interactive visualization environ-
ment known as TensorBoard. This tool visualizes a flowchart of the data transfor-
mations, visualize summary logs over time, traces the performance of algorithm and
computation graph before and during runtime. The interesting thing in TensorFlow

4.2. TensorFlow Object Detection 38

library is that computations are expressed as flowcharts, separating design from im-
plementation. The same design can be implemented on powerful computing devices
with large numbers of processors and on mobile devices. TensorFlow provides a wide
range of functions and classes that allow users to build the desired models from the
scratch. [44, 41]

TensorFlow Object Detection API

The TensorFlow object detection API is deep learning framework built on top of
TensorFlow used for object detection. It is popular among the researcher commu-
nity because of its easiness to build, train and deploy. There are various models
of pretrained object detection models trained on the COCO (Common Objects in
Context) dataset, Kitti datasets and open-image datasets. The COCO dataset con-
sists of 328,000 images of 90 common objects classes with a total of 2.5 million
labelled instances [30]. Kitti dataset is collected from roads in Germany, consisting
of different classes on road environment [10].

TensorFlow model zoo provides numbers of pretrained models trained on COCO
dataset and few models trained on other datasets. Among the available pretrained
models, we experimented eight different models on the self-collected dataset. Table
4.2 contains models that were experimented from the list of available models. In the
model zoo, the pretrained models are listed with their speed of execution, accuracy,
and the type of output. We used the default configuration and pipeline provided in
the model zoo and fine-tuned our training using provided pretrained models.

Table 4.2 List of models that were downloaded from the TensorFlow object detection
model zoo and experimented on our dataset. We found that these six models were the most
interesting.

Model Name Speed(ms) COCO mAP Output
ssd_mobilenet_v1 30 21 Boxes
faster_rcnn_inception_v2 58 28 Boxes
faster_rcnn_resnet50 89 30 Boxes
faster_rcnn_resnet101 106 32 Boxes
rfcn_resnet101 92 30 Boxes
faster_rcnn_nas 1833 43 Boxes

The execution speed is measured in milliseconds(ms) in and the accuracies are
measured in mean average precision (mAP). As we annotated the data using bound-
ing box approach, our interest was on boxes output models rather than the masks

4.3. Environment Requirements 39

output. At the time of this experiment, there were 17 different pretrained models
trained on COCO dataset, one pretrained model trained on Kitti dataset and two
models trained on open-image dataset [4]. In addition to models that are shown
in Table 4.2, we fine-tuned and evaluated faster_rcnn_inception_resnet_v2 and
ssd_inception_v2 models from the model zoo.

4.3 Environment Requirements

The system requirements to work with object detection models may vary depending
on the operating system and version of the libraries. Basic requirements to train and
deploy the TensorFlow object detection API are described in this section. Following
is the list of common libraries and tools that are necessary for the object detection
using TensorFlow object detection API.

• Python, version 3.5 or higher is preferred

• Open Computer Vision (OpenCV) libraries

• Imglab annotation tools

• CUDA library

• CUDA Deep Neural Network (cuDNN) libraries

• TensorFlow Object Detection API libraries

• Pretrained object detection models from the model zoo

• Good GPU/computing source to train deep learning models

All of our experiments were done on Lenovo ThinkStation with an Intel Xeon
CPU E5 2.10 GHz, 32 GBs of RAM and Ubuntu 17.10 operating system. Nvidia
GeForce GTX 1080 Ti 11 GBs was used for training and evaluation. This GPU
is considered as best performing GPU at the time of our experiment. More im-
portantly, TensorFlow GPU version 1.6 was installed on the working machine and
object detection API library was configured on top of it. Note that the FPS pre-
sented in this thesis is single frame processing speed of detector computed during
the evaluation process.

40

5. EVALUATIONS

In this chapter, we discuss the results of our experiment based on precision, recall,
F1-score, computational speed and mean average precision. We test the relation
between the number of training samples and the performance of the trained detector.
In addition to automatic accuracies calculation, we present visual observation of
fine-tuned detector performance and a discussion of our findings.

5.1 Results

We discuss the findings of our experiments in this section. The accuracy and com-
putation complexity measure of trained and tested object detection models are com-
pared. Automatic calculation of the assessment matrices of experimented models
on single and multi-class cases are discussed.

To evaluate the performance of our detectors, we used three disjoint subsets from
our dataset. TUT test dataset randomly selected from the dataset, a single class
dataset containing cup images (cup test dataset) and small test dataset that is used
only for testing purpose. In cup test dataset, we have 72 images containing 104 cup
instances. The small test dataset contains 86 images of 210 multi-class instances.
There are 367 images and 1210 object instances in TUT test dataset. The TUT test
dataset might differ slightly as each random split produces different scenarios.

Single-class Comparison

The performance measures of six fine-tuned models evaluated on the single class
dataset are shown in Table 5.1. The default configuration is used to train the model
based on the provided fine-tune checkpoints. In this experiment, the models are
trained with 80 percent of the total dataset containing 1455 sample images with
4266 object instances and tested on cup test dataset. The precision, recall and FPS
of all experimented models are 100 percent on testing with single (cup) class dataset.
However, there are significant differences in processing speed. The ssd_mobilenet
model is the fastest one and nearly twice as fast as the rest of the models. In the

5.1. Results 41

single-class case with clear and identical objects, SSD with MobileNet architecture
is preferable in terms of computation. It is found that all of the trained models
perform well in the simple single class object. The accuracy gets distinguishable in
the multi-class object and for difficult objects.

Table 5.1 Performance of models evaluated on the single class, cup test dataset.

Model Precision Recall F1-score FPS
ssd_mobilenet_v1 1.00 1.00 1.00 20.19
faster_rcnn_inception_v2 1.00 1.00 1.00 13.87
faster_rcnn_resnet50 1.00 1.00 1.00 10.91
rfcn_resnet101 1.00 1.00 1.00 10.03
faster_rcnn_resnet101 1.00 1.00 1.00 9.40
faster_rcnn_nas 1.00 1.00 1.00 1.09

The cup instances are easily detected by all the tested models without a single
false prediction. The interclass variation of the cup is quite less and there is no
such object in our dataset that looks similar to the structure of a cup. There are
clearly recognizable cups in the dataset that helped to achieve the perfect result for
all models trained detectors.

Multi-class Comparison

An automatic object detector needs to detect the wide range of objects in the varied
environment with optimal accuracy. The performance of the trained detector model
on the multi-class dataset is the major concern in the real use case of object detector.
In this experiment, 80 percent of the total dataset containing 1455 sample images
with 4266 objects were used to train the models and tested on TUT test dataset.
All models were trained using the default configuration and provided fine-tuned
checkpoints for 100k train steps. The result of the fine-tuned trained models detector
on this test dataset with their accuracy measures are shown in Table 5.2.

5.1. Results 42

Table 5.2 Performance of models evaluated on the multi-class, TUT test dataset.

Model Precision Recall F1-score FPS
ssd_mobilenet_v1 0.962 0.719 0.823 20.19
faster_rcnn_inception_v2 0.936 0.922 0.929 13.87
faster_rcnn_resnet50 0.936 0.954 0.945 10.91
rfcn_resnet101 0.952 0.934 0.943 10.03
faster_rcnn_resnet101 0.943 0.965 0.954 9.40
faster_rcnn_nas 0.803 0.901 0.849 1.09

It is obvious that ssd_mobilenet is the fastest in training and testing. How-
ever, the accuracy measures are not the best among other models. Three mod-
els faster_rcnn_resnet50, rfcn_resnet101 and faster_rcnn_resnet101 have almost
similar performance in terms of F1-score. Faster RCNN with a ResNet50 architec-
ture is slightly faster but less accurate than RFCN and faster RCNN architecture
with ResNet101 feature extractor. ResNet101 contains more residual layers than
ResNet50, hence it is computationally more complex than ResNet50 architecture.
The performance of faster_rcnn_nas is poor in both: accuracies and computation
speed. Only recall of this model detector is slightly better than SSD MobileNet with
the cost of almost 20 times slower computation. Based on these results, we continue
rest of our experiments using faster_rcnn_resnet101 model.

We used the threshold value 0.5 for the calculation of these accuracy metrics.
F1-score gives the single accuracy measure as it is harmonic mean of precision and
recall. The value of precision, recall and F1-score calculated on single threshold value
do not generalize the performance of the object detector well in all threshold val-
ues. Average precision, average recall calculated from the precision-recall curve give
better accuracy measure. The mAP would be the suitable metric to calculate the
overall performance of the detector on detecting multi-class objects in the dataset.

Mean Average Precision

The mAP is widely used in object detection to measure the performance of detection
model. The higher the value of mAP the better the detection model is in detecting
multi-class objects. It is the mean of average precision over all classes. In our
experiment, we computed the AP overall found detections on the test dataset. As
we used the random split to divide the dataset into train-test subset, it is most likely
that every next frame from the same video is placed in the different subset. This
results in high precision and recall as they are almost identical to each other. The

5.1. Results 43

stratified k-fold cross-validation for train-test split might change this scenario.

Figure 5.1 The precision-recall curve with the mAP calculation in left and average pre-
cision value of each class shown in right. This calculation is based on the faster RCNN
ResNet101 model detector.

The precision-recall curve together with the average precision of each class is
shown in Figure 5.1. It is found that the average precision of bike, clock, door,
drawer and socket are quite less than other object classes. These five classes from
our dataset are the most difficult for the trained detector. The reason behind the
lower accuracy on clock class is that the model over learned the specific time shown
on clock (location of the hour and minute hands) rather than structure of clock.
While in the case of door and drawer, there are different type of handles and dif-
ferent backgrounds. In the case of switch, the background colour of the wall makes
it difficult to detect. Our dataset does not have enough samples with intra-class
and inter-class variations from these classes. Meanwhile, the human, cup, fire ex-
tinguisher, remote and trash bin classes are easy to detect. These classes have
comparatively more samples also their structures are almost identical in every case.

Effect of Data Size

The amount of data needed for the robust object detection model is an important
question. There is no clear answer to the question of how much training samples does

5.1. Results 44

it require to train the object detection model to get a robust detector. We tried to
solve this question by using our limited dataset. We divided the dataset randomly
into the different portions of training and testing subsets. Each time randomly
selected 50, 60, 70, 80, and 90 percent of total dataset were used as training set.
Faster RCNN ResNet101 model is trained individually with this disjoint data subset
for 100k train steps. The performance of the trained detector is evaluated on the
new dataset which was never seen to the model before. The small test dataset was
used to evaluate the performance of detector trained on each training subset.

900 1000 1100 1200 1300 1400 1500 1600
Amount of training sample

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

Data versus accuracies
Precision
Recall
F -score

Figure 5.2 Precision, recall and F1-scores over the different amount training samples
size.

As shown in Figure 5.2, the number of images on training data have the significant
effect on the performance of the detector. As we increase the size of the training
samples, the precision, recall and F1-score of the detector on unseen evaluate dataset
increase. Even though the increase on accuracies is not smooth, we can generalize
that the accuracies of detector trained on more samples are better compared to
less training samples. As the density of objects in the dataset is not balanced, the
random split generates the unbalanced subsets. The fluctuation of accuracies is due
to unbalanced distribution of objects on the training dataset.

5.1. Results 45

Visual Comparison

We describe manual experiment and analysis on the performance of the fine-tuned
object detector in this section. Detection results are compared with the ground
truth data from annotation file. We compared the various prediction cases with
their ground truth labels.

Figure 5.3 The top image from the annotated dataset contains three humans and a screen
in the red bounding box. The down image contains two humans predicted by the detector
with the confidence of 99 percent.

Overlapping objects are the major challenge for an automatic object detection. If
there are many occluding object instances in training samples, the trained model on
that dataset cannot learn the object map perfectly and hence, the trained detector
can not generalized well on unseen images. It is obvious that the prediction of auto-
matic object detection is not 100 percent correct in all cases. The false prediction or

5.1. Results 46

prediction error is the case where trained detector found more or fewer objects than
in the original annotated image. As shown in Figure 5.3, the number of detected
objects (down image) are less than that are in ground truth annotation (upper im-
age). The human on the left hand and the screen between two detected humans
are not detected. This is due to the clarity of human and the screen. Changing the
detection threshold value and image quality might change this scenario.

Figure 5.4 The left image contains two annotated objects: a human and an exit sign.
The right image is resulting image of the detector. It found two humans and an exit sign.

Another case in false prediction is when there are more objects predicted than
that are in ground truth. As shown in Figure 5.4, the detector detects the partial
body of the human with the confidence of 99 percent that is not in ground truth
label. This is one of the most needed ability of the detector to find the partial
or occluded object. If the model is trained well with enough data, it outperforms
a human as shown in Figure 5.3. Even though the person on the right corner is
not clear and some part of him is missing, the detector is able to detect him with
excellent confidence. It is more likely to have a human error during data annotation
process. We can conclude that, if the well-performing object detection model is
trained well with large samples of object instances, it will outperform a human in
detecting difficult cases.

5.1. Results 47

We implemented the detector on the mobile device and tested it on university
premises. The performance of the SSD MobileNet model deployed on Samsung
A3 is quite good. However, the generalization of the model and the confidence
level on the correctly detected object is not good compared to detection from the
videos. The detector inferences on recorded video have better performance than the
deployed detector on a mobile device. The possible reason behind this is quality
of the camera, background noise and the view angles. Figure 5.5 visualizes two
examples of the detection from our mobile detector.

Figure 5.5 Screenshots captured from the TUT mobile detector application.

Prediction Error

The false positive and false negative cases are considered as the false prediction. It is
one way to check how well the model detector generalizes on testing data. However,
this is not the optimal way to compare the goodness of detection models. Note that
the changes in threshold might give different results. The amount of failures shown
in this section is obtained from the TUT small test dataset. Out of these 86 images,
we wanted to know how many images will be predicted incorrectly from different
model detectors.

Based on our accuracy calculation given in Table 5.2, it is obvious that the amount
of false prediction is lower in rfcn_resnet101 and faster_rcnn_resnet101, and higher
in ssd_mobilenet. The false prediction on the RCNN and RFCN architecture with

5.2. Discussion 48

0 1 2 3 4 5
Model

0

5

10

15

20

25

30

35
Am

ou
nt

 o
f p

re
di

ct
io

n
er

ro
r

Prediction errors
faster_rcnn_resnet101
rfcn_resnet101
faster_rcnn_resnet50
faster_rcnn_inception
faster_rcnn_nas
ssd_mobilenet

Figure 5.6 The graph shows the total number of failure cases from each model detectors.
There were 86 images on the test dataset. The minimum number of failures is 12 while,
the maximum is 36.

residual network feature extractors are lower in compared to other architectures.
Among these failure cases, there are some cases where more objects than the anno-
tated object (more Bp than Bgt) were found by the faster_rcnn_resnet101 detec-
tor. While the ssd_mobilenet detector failed to detect many ground truth objects
(less Bp than Bgt). The false predictions of different models are diverse when us-
ing the same threshold value for all. When using the detection threshold 0.5, the
faster_rcnn_resnet101 and rfcn_resnet101 models gave the least false predictions
(12 frames) while ssd_mobilenet model false prediction was three times higher than
those (36 frames) as shown in Figure 5.6. The detection threshold can be changed
to change the definition of correct detection that might decrease the amount of false
detection. Also changing the training configuration might change the detection per-
formance of models.

5.2 Discussion

Considering the accuracies and speed of detector, it is the difficult job to select one
object detection model from the list of different models. In addition to the detection
meta-architecture, the feature extractor plays the vital role in the object detection

5.2. Discussion 49

performance. Regional based CNN commonly considered as outperforming object
detection model architecture. We experimentally found that regional based convo-
lutional networks are excellent for the object detection in terms of accuracies even
though they are computationally complex than traditional methods. It was found
that faster RCNN and RFCN architecture have the almost identical accuracies with
the slight difference in computation cost. Faster RFCN with ResNet101 feature
extractor is slightly faster than the faster RCNN ResNet101, while the RCNN ar-
chitecture gives quite good accuracies. As shown in comparison Tables 5.1 and 5.2,
SSD architecture is faster to train and have better inference time. Easy deployment
ability on a mobile and embedded devices is the big plus point of this model.

The computation speed and the prediction accuracy are the central issues in
object detection [24]. The detection of multiple objects in real-time is rather chal-
lenging and it is hard to get the perfect result. However, the single class detection
was perfect and all experimented models have 100 percent performance accuracy on
the easy single class object dataset. Camera-based automatic object detection is
challenging due to the large number of objects, intra-class and inter-class variation
and object variations. In our experiment, the difficult classes for the detection are
chair, printer and sofa. As we discussed in chapter 3, there are eight different type
of chairs in our dataset. There are not enough images from each chair type that re-
sulted in less accuracy in chair class. The detection of the cup, exit, fire extinguisher
and human were easy as these object instances were almost identical in all cases.
Often the printer was detected with multiple classes, printer, screen and box. This
was due to the parts of printer matched with the screen and box classes. We found
that the data augmentation, especially the horizontal flipping of images increases
the accuracies of the detectors by 3 to 4 percentages.

50

6. CONCLUSION

In this thesis project, we experimented with the popular object detection models
from the TensorFlow object detection model zoo. Deep object detection models were
trained and tested on the self-collected dataset. We collected the multiclass object
dataset from the university premises, labelled it, trained object detection models on
it and evaluated the performance using the most common accuracy metrics used in
object detection.

We experimented faster RCNN, RFCN and SSD architectures integrated with
Inception, MobileNet and NAS, ResNet50 and ResNet101 feature extractors. From
this experiment, we found that the performance of fine-tuned models using pre-
trained configuration on the self-collected dataset is far better than directly using
pretrained models. This is obvious because a large number of environment specific
dataset is the main necessity to train one’s own detector for better detection re-
sult. It is very important to do the annotation and preprocessing flawlessly. It was
found that data augmentation slightly improves the performance and accuracy of
the trained detector.

From our experiment, we conclude that region-based convolutional neural net-
works are better for object detection. The faster RCNN meta-architecture with
ResNet101 feature extractor has superior accuracies in terms of precision, recall and
F1-score, considering its high computation cost. The SSD MobileNet and RFCN-
ResNet101 models are faster but they stay below faster RCNN ResNet101 in terms
of accuracies. The SSD MobileNet model is good to deploy on mobile and embed-
ded devices while the accuracy is not at top level. Faster RCNN ResNet50 model is
the suitable alternative for automatic object detection considering accuracy versus
speed trade-offs. The computation complexity of the model is directly proportional
to the number of object classes in the dataset, the bigger the number of classes, the
more it takes to fine-tune the model.

6. Conclusion 51

Future Work

This research experiment is a step towards the real-time object detection of multi-
class objects using a camera. The performance of the detector on datasets, demo
videos and the mobile implementation are the inspiration to continue the research
furthermore. The scope of object detection is wide, there is a broad road to continue
from this stage. The future research can consider pixel-wise segmentation of object
in dataset instead of bounding box annotation approach. This might give better
performance accuracy than the current bounding box annotation approach.

The amount of data in our dataset is not enough and not balanced well to general-
ize all collected object classes. More images with intra-class and inter-class variation
are needed to get better generalization result. Automatic annotation might be good
practice for data annotation to reduce the time constraint during the collection of
the labelled dataset. More data can be collected and trained to improve the current
accuracy score of detectors. Other object detection architectures can be trained and
evaluated using the collected dataset. The deployment of well-performing detec-
tion models to the mobile and embedded devices is another interesting thing to see
in the future. Real-time object tracking, counting interesting objects, localization
of object using indoor navigation can be investigated in the future. As accuracy
and computational complexity are all time concerns for real-time object detection,
we can shift our focus on it by modifying the detection model architecture. The
collected dataset can be used in other research projects.

52

REFERENCES

[1] T. Bottger, P. Follmann, and M. Fauser, “Measuring the accuracy of object
detectors and trackers,” CoRR, vol. abs/1704.07293, 2017. [Online]. Available:
http://arxiv.org/abs/1704.07293

[2] F. Chollet, Deep Learning with Python. Shelter Island, New York, United
States: Manning Publication, Nov 2017.

[3] D. Coldewey. (2018) Here’s how uber’s self-driving cars are supposed to
detect pedestrians. [Online]. Available: https://techcrunch.com/2018/03/19/
heres-how-ubers-self-driving-cars-are-supposed-to-detect-pedestrians/

[4] T. Community, “Tensorflow detection model zoo,” https://github.com/
tensorflow/models/blob/master/research/object_detection/g3doc/detection_
model_zoo.md, 2018.

[5] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based
fully convolutional networks,” CoRR, vol. abs/1605.06409, 2016. [Online].
Available: http://arxiv.org/abs/1605.06409

[6] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,”
International Journal of Computer Vision, vol. 111, pp. 98–136, Jan 2015.
[Online]. Available: https://doi.org/10.1007/s11263-014-0733-5

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 303–338, Jun 2010. [Online]. Available:
https://doi.org/10.1007/s11263-009-0275-4

[8] G. Forman and M. Scholz, “Apples-to-apples in cross-validation studies:
Pitfalls in classifier performance measurement,” SIGKDD Explor. Newsl.,
vol. 12, no. 1, pp. 49–57, Nov 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1882471.1882479

[9] A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, “A robust
deep-learning-based detector for real-time tomato plant diseases and
pests recognition,” Sensors, vol. 17, no. 9, 2017. [Online]. Available:
http://www.mdpi.com/1424-8220/17/9/2022

REFERENCES 53

[10] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012. [Online]. Available: http:
//www.cvlibs.net/datasets/kitti/

[11] A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow.
O’Reilly Media, Inc., 2017.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional
networks for accurate object detection and segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 38, Jan 2016.

[13] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He, “Detectron,”
https://github.com/facebookresearch/detectron, 2018.

[14] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. [Online].
Available: http://arxiv.org/abs/1504.08083

[15] Gluon. (2017) Object detection using convolutional neural networks.
[Online]. Available: http://gluon.mxnet.io/chapter08_computer-vision/
object-detection.html

[16] A. A. Godil, R. V. Bostelman, W. P. Shackleford, T. H. Hong, and M. O.
Shneier, “Performance metrics for evaluating object and human detection
and tracking systems,” NIST Interagency/Internal Report (NISTIR), 2014.
[Online]. Available: https://dx.doi.org/10.6028/NIST.IR.7972

[17] V. V. Gomez, “Object detection for autonomous driving using deep learning,”
Dec 2015. [Online]. Available: http://www.iri.upc.edu/files/academic/thesis/
98-Research-Plan.pdf

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org

[19] A. Gopnik, “Making ai more human,” vol. 316, pp. 60–65, 06 2017.

[20] V. GUPTA. (2017) Understanding feedforward neural net-
works. [Online]. Available: https://www.learnopencv.com/
understanding-feedforward-neural-networks/

[21] S. Haykin, Neural Networks and Learning Machines, 3rd ed. New York: Pear-
son Prentice Hall, Nov 2009.

REFERENCES 54

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.
[Online]. Available: http://arxiv.org/abs/1704.04861

[24] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs
for modern convolutional object detectors,” CoRR, vol. abs/1611.10012, 2016.
[Online]. Available: http://arxiv.org/abs/1611.10012

[25] J. Hui. (2018) map for object detection. [Online]. Available: https:
//medium.com/@jonathan_hui

[26] P. Jay. (2018) What problem does resnet solve? [Online]. Available:
https://medium.com/@14prakash

[27] P. Kim, MATLAB Deep Learning With Machine Learning, Neural Networks
and Artificial Intelligence. Apress, Berkeley, CA, 2017. [Online]. Available:
https://doi.org/10.1007/978-1-4842-2845-6

[28] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learning
Research, vol. 10, pp. 1755–1758, 2009.

[29] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” CoRR, vol. abs/1708.02002, 2017. [Online]. Available:
http://arxiv.org/abs/1708.02002

[30] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
COCO: common objects in context,” Computing Research Repository, vol.
abs/1405.0312, 2014. [Online]. Available: http://arxiv.org/abs/1405.0312

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in Computer Vision – ECCV 2016,
B. Leibe, J. Matas, and M. Sebe, Nicuand Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 21–37.

[32] S. Murray, “Real-time multiple object tracking - A study on the
importance of speed,” CoRR, vol. abs/1709.03572, 2017. [Online]. Available:
http://arxiv.org/abs/1709.03572

REFERENCES 55

[33] T. Nguyen1, E.-A. Park1, J. Han1, D.-C. Park1, and S.-Y. Min2, “Object de-
tection using scale invariant feature transform,” vol. 238, 2014.

[34] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” CoRR, vol. abs/1712.04621, 2017. [Online].
Available: http://arxiv.org/abs/1712.04621

[35] C. B. Rasmussen, “R-fcn object detection ensemble based on object resolution
and image quality,” Master’s thesis, Aalborg University, Aalborg, Denmark,
Jun 2017.

[36] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv,
2018.

[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, June 2017.

[38] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks,” CoRR, vol. abs/1506.01497,
2015. [Online]. Available: http://arxiv.org/abs/1506.01497

[39] A. Rosebrock. (2016) Intersection over union (iou) for object de-
tection. [Online]. Available: https://www.pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/

[40] F. Shaikh. (2017) 10 advanced deep learning architectures data scientists
should know! [Online]. Available: https://www.analyticsvidhya.com/blog/
2017/08/10-advanced-deep-learning-architectures-data-scientists/

[41] N. Shukla and K. Fricklas, Machine Learning with TensorFlow. Shelter Island,
New York, United States: Manning Publication, Jan 2018.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,
vol. abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[44] G. B. Team. (2018) About tensorflow. [Online]. Available: https://www.
tensorflow.org/

References 56

[45] Tensorflow. (2018) Programmer’s guide. [Online]. Available: https://www.
tensorflow.org/programmers_guide/datasets

[46] T. Tikkainen, “Cell detection from microscope image using histogram of ori-
ented gradients,” Master’s thesis, Tampere University of Technology, Tampere,
Finland, Nov 2014.

[47] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” CoRR, vol. abs/1611.01578, 2016. [Online]. Available: http:
//arxiv.org/abs/1611.01578

[48] G. Zoumpourlis, A. Doumanoglou, N. Vretos, and P. Daras, “Non-linear
convolution filters for cnn-based learning,” CoRR, vol. abs/1708.07038, 2017.
[Online]. Available: http://arxiv.org/abs/1708.07038

	Introduction
	Methods
	Machine Learning
	Deep Learning
	Assessment Criteria
	Definition of a Detection
	Accuracy Metrics
	Mean Average Precision
	Detection Speed

	Object Detection
	Faster Region-based Convolutional Neural Network
	Region-based Fully Convolutional Network
	Single Shot MultiBox Detector
	Feature Extractors

	Implementation
	Dataset
	Data Collection
	Data Annotation
	Preprocessing

	TensorFlow Object Detection
	Environment Requirements

	Evaluations
	Results
	Discussion

	Conclusion
	References

