

ADNAN SALEEM

Implementation and Performance Analysis of

Wishbone Shared Bus for Single Master-Multiple

Slaves

Master of Science Thesis

Examiner (s):

Prof. Timo D. Hämäläinen

Erno Salminen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250160258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

PREFACE

This Master of Science thesis work, “Implementation and Performance Analysis of

Wishbone Shared Bus for Single Master-Multiple Slaves” has been written to complete

my M.Sc. degree in Department of Pervasive Computing at Tampere University of

Technology (TUT), Tampere, Finland.

First I would like to pay my deepest gratitude to my mentor and supervisor Manuel vor

dem Brocke from TRUMPF Hüttinger GmbH + Co. KG. I want to thank him for his

support and guidance in my thesis work at the company. I would also like to thank

TRUMPF Hüttinger GmbH for hiring and trusting me for this thesis opportunity.

Secondly, I would like to express my deep appreciation to my examiners Timo D.

Hämäläinen and Erno Salmainen for their help in examining my work.

I would also like to thank my parents, siblings and fiancée. Their support, love and

encouragement gave me strength and motivation to complete my studies.

Finally, I would also like to thank all my friends in Finland especially Aitzaz Haider

Kazmi, Muhammad Ali Zaib, Hasib Raja, Mukesh Kumar, Naeem Tahir, Muhammad

Qutab-ud-din, Syed Ameen-ur-Rehman, Usama Mazhar, Waqas Ansari and Zohaib

Hassan for their encouragement and all the support. I would like to dedicate my thesis

work to my family and friends.

Tampere, April, 2015

Adnan Saleem

ii

ABSTRACT

ADNAN SALEEM: Implementation and Performance Analysis of Wishbone

Shared Bus for Single Master-Multiple Slaves

TAMPERE UNVIERSITY OF TECHNOLOGY

Master of Science Thesis, 55 pages

Month and year of completion: April 2015

Master’s Degree in Information Technology

Major: Digital and Computer Electronics

Examiner(s): Prof. Timo D. Hämäläinen, Erno Salminen

Keywords: Bus Architecture, FPGA, On-chip interconnection, On-chip

interconnection comparison, SoC, Wishbone Shared Bus, Xilinx

System on Chip interconnections are gaining importance as many IP cores are being

integrated on a single chip and interconnect is the bottleneck for design speed. In this

paper an asynchronous design comprised of single master and multiple slaves connected

via point-to-point topology is analysed. This design resulted in large multiplexer, poor

timing closure and consumed large interconnect area in FPGA. The aim of the thesis is to

evaluate the system on-chip interconnections and implement the system with the

synchronous shared bus interconnection. Many system-on-chip interconnections are

reviewed in the thesis, which includes study of major types of buses from different

vendors. Synchronous shared bus system is proposed as solution for the interconnections

between single master and multiple slaves. Shared bus for the single master and multiple

slaves is implemented using WISHBONE architecture and protocols for shared bus

system. A general model is designed and implemented which is flexible to be tested for

single master and any number of slaves. Performance evaluation is done for the design in

terms of resource utilization and timings performance.

iii

LIST OF FIGURES

Figure 1-1 Example of MPSoC [2] ... 1

Figure 2-1 FPGA Structure [13] .. 3

Figure 2-2 FPGA Interconnect [13] ... 4

Figure 2-3 Types of Interconnects .. 5

Figure 2-4 Point to Point Interconnect ... 6

Figure 2-5 BUS ... 6

Figure 2-6 Parts of Bus Architecture .. 7

Figure 2-7 Shared Bus .. 8

Figure 2-8 Tri-State interconnection [10] .. 8

Figure 2-9 Multiplexer Interconnection [10] ... 9

Figure 2-10 Hierarchical Bus [2] ... 9

Figure 2-11 CrossBar Bus [2] .. 10

Figure 2-12 Ring Bus [2] .. 10

Figure 2-13 Round Robin Arbiter [10] ... 11

Figure 2-14 Example of AMBA Bus [1] .. 12

Figure 2-15 AXI Bus ... 13

Figure 2-16 Example of Avalon bus [1] ... 14

Figure 2-17 CoreConnect Bus [1] .. 15

Figure 2-18 WISHBONE Bus [10] ... 16

Figure 2-19 Sample 4x4 Mesh NoC [13] .. 18

Figure 2-20 NoC Router ... 19

Figure 3-1 Block Diagram of Point to Point Design .. 22

Figure 3-2 Shared bus Block Diagram ... 23

Figure 3-3 Proposed Design with shared bus... 24

Figure 3-4 Shared bus interconnection .. 26

Figure 3-5 Wishbone Single Read Cycle .. 28

Figure 3-6 Wishbone Single Write Cycle .. 28

Figure 4-1 Proposed Shared Bus Design ... 30

Figure 4-2 WISHBONE Master Wrapper ... 31

Figure 4-3 WISHBONE Slave Wrapper .. 32

Figure 4-4 Slaves Address Space .. 33

Figure 4-5 Write Cycle.. 36

Figure 4-6 Read Cycle .. 36

Figure 5-1 Percentage of Resource utilization by each component 39

file:///C:/Users/RAMSAY/Desktop/Research/Research-2015-03-24/Master%20Thesis%20-%2007.07.docx%23_Toc424145792
file:///C:/Users/RAMSAY/Desktop/Research/Research-2015-03-24/Master%20Thesis%20-%2007.07.docx%23_Toc424145795
file:///C:/Users/RAMSAY/Desktop/Research/Research-2015-03-24/Master%20Thesis%20-%2007.07.docx%23_Toc424145816
file:///C:/Users/RAMSAY/Desktop/Research/Research-2015-03-24/Master%20Thesis%20-%2007.07.docx%23_Toc424145823
file:///C:/Users/RAMSAY/Desktop/Research/Research-2015-03-24/Master%20Thesis%20-%2007.07.docx%23_Toc424145824

iv

LIST OF TABLES

Table 1 Summary of On-Chip buses ... 17

Table 2 Total Resource Utilization ... 39

Table 3 Resource Utilization by Interconnect ... 40

Table 4 Resource utilization by Slaves ... 40

Table 5 Timing Analysis of design with empty FPGA... 41

Table 6 Timing analysis of design with 64% filled FPGA .. 41

v

LIST OF ABBREVIATIONS

MPSoC Multiprocessor System-on-Chip

IP Intellectual Property

DMA Direct Memory Access

FPGA Field Programmable Gated Array

NoC Network on Chip

SoC System on Chip

VHDL Hardware Descriptive Language

AMBA Advance Microcontroller Bus Architecture

TDMA Time division multiplexed access

RAM Read Access Memory

LUT Look up Table

CLB Configurable Logic Block

vi

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1. Objective .. 2

1.2. Thesis outline ... 2

2. THEORETICAL BACKGROUND .. 3

2.1. Field Programmable Gate Array (FPGA) ... 3

2.1.1. FPGA Interconnection ... 4

2.2. On-Chip Interconnections .. 4

2.2.1. Point-to-Point Interconnect .. 5

2.2.2. Bus Interconnect ... 6

2.2.3. SoC Buses .. 11

2.2.4. Network on Chip (NoC) ... 17

2.3. Summary of On-Chip Interconnects ... 20

3. ANALYSIS OF INTERCONNECTIONS 22

3.1. Analysis ... 22

3.1.1. Design with point-to-point interconnection 22

3.1.2. Design with shared bus interconnection .. 23

3.1.3. Benefits and Features of Shared bus design 24

3.2. WISHBONE Bus .. 25

3.2.1. WISHBONE shared bus .. 26

3.2.2. WISHBONE Master and Slave Signals ... 27

3.2.3. Wishbone General Single Read Cycle .. 28

3.2.4. Wishbone General Write Cycle ... 28

4. IMPLEMENTATION OF SHARED BUS 30

4.1. Shared Bus Design Implementation .. 30

4.1.1. Master of the Shared Bus .. 31

4.1.2. Slave of the Shared Bus .. 32

4.1.3. Interconnect of Shared Bus ... 33

4.2. Test Bench ... 35

4.2.1. Write Cycle .. 35

4.2.2. Read Cycle .. 36

4.3. FPGA filled with Dummy Logic .. 36

4.4. Clock Constraint .. 37

vii

5. EXPERIMENTAL RESULTS ... 38

5.1. Point to Point Design Results .. 38

5.1.1. Resource utilization ... 38

5.1.2. Timing Analysis ... 38

5.2. WISHBONE Shared Bus Design Results ... 38

5.2.1. Resource Utilization .. 38

5.2.2. Timing Analysis ... 40

5.2.3. Critical Path ... 41

5.2.4. Latency and Throughput ... 41

6. CONCLUSION ... 43

6.1. Conclusion ... 43

6.2. Future Work ... 43

REFERENCES .. 1

INTRODUCTION 1

1. INTRODUCTION

Advancement in technology has made it possible to integrate millions of transistors on a

single chip. To match the pace of integration, advancement and shrinking process

technologies, designers and manufacturers are now trying to put the different Intellectual

Property (IP) cores, general purpose processor cores, digital signal processor cores, on-

chip memory and other application specific circuits on a single chip known as

Multiprocessor System-on-Chip (MPSoC) for a specific application. [1] Figure 1-1 shows

an example of a small MPSoC, which has two ARM9 microprocessors, on-chip

memories, Direct Memory Access (DMA), peripherals and external interfaces which are

interconnected by on-chip bus architecture consisting of multiples shared buses. [2]

Figure 1-1 Example of MPSoC [2]

It is the responsibility of the on-chip architecture to make sure that data is routed correctly,

reliably and efficiently from the source to the destination. It must also provide the required

latency or bandwidth to meet the performance requirement. [2] These developments pose

some challenges like Area/resource consumption, delay and power dissipation [3] but the

significant challenge for the designers is on-chip communication architecture [4] amongst

the modules. As the emphasis on design re-use is increasing, designing an interconnection

is getting more complicated and complex [5].

FPGA has in abundance, Programmable switches and programmable interconnect like

local and global wire segments. Interconnection architectures which are built on top of

INTRODUCTION 2

these elements should use them efficiently to improve system performance and make the

system scalable. [6]

Several methods like point-to-point communication, bus communication and

Network on Chip (NoC) are used to provide interconnection solutions but each has its

own advantages and disadvantages in terms of resource consumption, area, power

dissipation, latency and throughput. On-chip communication is essential to provide high

bandwidth and reliable data transfer between the processing modules and is directly

related to the performance of the SOC. The bandwidth, latency and throughput plays

significant role in deciding the overall performance of the system with increasing number

of communicating components. [6] This increases the importance to improve the

communication architectures for better performance.

Many leading manufacturers like IBM [7], ARM [8] and ALTERA [9] are providing

bus based interconnect solutions.

1.1. Objective

The goal of the thesis is to replace the asynchronous point-to-point interconnection of the

design with suitable synchronous on-chip shared bus system. It includes the analysis,

implementation and performance evaluation of the shared bus system with single master

and multiple slaves. Simplicity, scalability, resource consumption and throughput are the

constraints of the system.

1.2. Thesis outline

Thesis is organized as follows Chapter 1 has introduction, objective and outline of the

thesis. Chapter 2 contains the theoretical background of the topic which contains the three

types of interconnections which are point-to-point, bus interconnection and Network on

Chip. There advantages, disadvantages and types are discussed. Types of buses are

explained in more detail as they are under main focus. Chapter 3 contains the analysis of

the interconnections. Chapter 4 contains the implementation of WISHBONE bus [10]

architecture for a single master into many slaves. WISHBONE architecture signals and

rules are explained in detail. Chapter 5 contains the results and discussion. Results are

taken from the implementation from Chapter 4. Finally the Chapter 6 contains the

conclusion of the overall thesis. It explains the reasons for selecting, implementing and

testing a particular architecture and also proposes the possible future work

.

THEORETICAL BACKGROUND 3

2. THEORETICAL BACKGROUND

This chapter develops the foundations for the key concepts used in this thesis. It discusses

the theoretical details of these concepts. This chapter gives in detail explanation of the

on-chip interconnects like point-to-point interconnect, BUS interconnect, Network on

Chip (NoC) interconnect. It also includes different types of buses by companies like ARM

[8], IBM [7] and ALTERA [9]. The chapter also covers the basic types of NoC and its

implementation details. At the end, the chapter contains the summary of all type of

interconnections.

2.1. Field Programmable Gate Array (FPGA)

FPGA is a special kind of Integrated Circuit (ICs), which can be programmed after

manufacturing. The design is implemented using Hardware Description Language (HDL)

such as VHSIC (Very High Speed integrated Circuit) Hardware Description Language

(VHDL) or Verilog. It doesn’t contain any pre-determined functionality but it can be

programmed to any digital design specific to the required application. It contains

programmable logic blocks for implementing logic functions, programmable routing

paths with switches to connect these logic blocks and I/Os as seen in Figure 2-1. The logic

blocks and interconnects are programmable interconnects. Current FPGAs also contain

some Hard Cores [12] like memory, DSPs and processors. Processors can also be

implemented as Soft Core [12] on FPGA fabric using logic blocks and making the design

bigger and complex. [13]

Figure 2-1 FPGA Structure [13]

THEORETICAL BACKGROUND 4

2.1.1. FPGA Interconnection

Figure 2-2 shows the FPGA interconnection architecture. FPGA interconnects takes the

90% area of the total area while the logic blocks takes 10% of the total area. This

interconnect plays major role in delay and area efficiency of the architecture. [14] Logic

Blocks combine to form Intellectual Property cores (IP) like DSP, processor and

memories. As the complexity of the circuit increases and more IP cores are put on FPGA,

interconnect also becomes large and complex and the routing architecture becomes more

important. Optimal use of this structure is important otherwise it will result in poor

routing, speed or density and efficiency of the system decreases. [15] [16]

Figure 2-2 FPGA Interconnect [13]

2.2. On-Chip Interconnections

Communication architecture amongst the different processing elements on a chip is called

on-chip interconnection. Interconnection is nothing but physical set of wires which can

connect the source and destination modules to each other by following different protocols

and topologies. Topology is the way in which processing elements are connected to each

other and the protocol means the way in which they communicate with each other.

TYPES OF INTERCONNECTIONS

Typical on-chip interconnections are point-to-point interconnection, bus based

interconnection and network-on-chip. Figure 2-3 shows the types of on chip

interconnections. Each type is explained in detail below.

THEORETICAL BACKGROUND 5

Figure 2-3 Types of Interconnects

2.2.1. Point-to-Point Interconnect

In Point-to-point interconnect, the two modules or IP cores communicate with each other

over a dedicated communication channel. This interconnect needs a set of dedicated wires

according to the application to connect the modules. Figure 2-4 shows a typical example

of neural networks where the communication link between two processing elements is

dedicated. There are two types of point-to-point interconnect; Custom interconnect and

uniform Interconnect. In Custom interconnect, interconnect is designed and processing

elements are connected according to the need of the application while the uniform

interconnect is well defined interconnect which can be explained with graphs or

equations.

Point-to-point communication stands amongst the simplest interconnection

architectures and because of its simplicity it is deployed extensively in many applications

worldwide [1]. Point to point communication for system having few components can run

effectively with such light weight architecture. As there will be no sharing of the channel,

its latency and performance can be calculated. [6]

The communication channel between two nodes is a dedicated set of wires so as the

number of nodes increases the use of wires increases exponentially and the routing

becomes more difficult. Point-to-point scheme suffers from low wire usage efficiency for

low bandwidth channels and also pose a high usage of hardware. In terms of scalability,

the point-to-point interconnect is not a good choice. As the complexity of the systems is

increasing, the requirements like low area overhead and higher bandwidth are demanding

more efficient interconnection architectures. [6] [1]

Speed performance of design depends upon the IP/Module internal delays in addition

with the propagation delay through the interconnect. Latency and throughput of the

design mainly depends upon the two communicating modules. In case of some shared

medium, latency and throughput will also depend upon the arbitration technique. There

is no extra arbitration logic required to connect the two modules

THEORETICAL BACKGROUND 6

2.2.2. Bus Interconnect
Bus is a single physical communication channel in which wires are grouped to form a

single medium and shared amongst multiple entities. Each module communicates with

other on the same physical interconnection. Typically one entity acquires the bus

ownership (known as bus master) and places signal on the bus while the other entities

response to the master. Bus can be synchronous in which transmission starts and ends on

the edge of a clock while in asynchronous bus transmission starts and stops depending

upon the acknowledgement signals. Figure 2-5 shows an example of a shared bus. An

arbiter is deployed to control the access of the bus between the nodes. On the other hand,

in the point-to-point interconnect each module communicates with the other module on a

dedicated path. Bus architecture clearly reduces the number of wires and also reduces

overall area needed for communication and control [1].

Figure 2-5 Shared BUS

Bus is widely accepted communication architecture amongst System-on-a-Chip

(SoC) architectures and currently on-chip networks are made with buses. Bus based

interconnection network provides design reuse and flexibility to the SoC designers.

Designing teams focusing on future modules can easily design the newer modules around

the current standard bus. As more processing elements are deployed on a single chip,

interconnection network is also gaining importance. [1]

Figure 2-4 Point to Point Interconnect

THEORETICAL BACKGROUND 7

BUS ARCHITECTURE

Bus architecture has two major parts; bus topology and bus protocol.

Figure 2-6 Parts of Bus Architecture

BUS TOPOLOGY

Bus based architecture has different types of bus topology where topology of the bus is

the physical arrangement of the bus. It plays key role to determine cost, complexity,

power and performance of the architecture. [2] The simplest scheme is the single shared

bus, in which all components are connected to a single shared bus. A more efficient

topology is the hierarchical bus, in which multiple shared buses are connected in parallel

using bridges while allowing parallel data transfer. For further high performance systems

full bus crossbar topology is used. In this topology each Master is connected to each slave

with point-to-point interconnection providing superior parallel response. Finally Ring bus

topology is used as high performance bus topology, in which components are connected

in the form of a ring. [17]

o SHARED BUS

Shared bus is in which multiple entities share a common medium for communication.

Figure 2-7 shows an example of a shared bus. Single/Multiple master and Single/Multiple

slaves are connected to a shared bus and can communicate with each other. The arbiter in

case of multiple masters examines the requests from multiple masters and gives access to

a specific master on the basis of the protocol defined in arbiter. In case of a single master

arbiter can be skipped. There are several advantages of a shared bus like the simplicity,

extensibility, low area, easy to build and easy to manage. [1] [6]. As the number of

masters on a shared bus increases its latency increases because bus is unavailable for

transfers when it’s busy in serving one master. There also disadvantages of a shared bus

which includes high energy consumption, latency and low bandwidth when load is high.

Such configuration is good for small sized SoC having few components and it doesn’t

scale well to handle large systems [18]. A system bus in computer is an example of a

shared bus.

THEORETICAL BACKGROUND 8

Figure 2-7 Shared Bus

Shared bus topology can be multiplexed or non-multiplexed. Multiplexed bus is when

data and address share same set of signal lines. This reduces the number of

interconnections but also increases the latency. In non-multiplexed data and address has

separate signal lines which increases the number of interconnection but can be moved in

as little as one clock cycle and latency can be decreased.

There are two types of bus interconnection; Tri-state based or multiplexer based. Tri

state interconnection has tri state buffers. Tri state buffers give three logic levels as output

which are “OFF”, “ON” and “HIGH IMPEDANCE” and high impedance means logical

disconnection in the circuit. This interconnection works in the way when one

MASTER(Sender) wants to send the data it turns its buffer “ON” while the rest of the

MASTERs turn their buffer to high impedance. Similarly the SLAVE (Receiver) which

wants to read the data turns its buffer ON. This approach has two drawbacks. It is slower

than direct interconnection because switching buffer ON and OFF has some minimum

timing limit which should be met [10]. Second, three state buffers are not available on all

the devices like Xilinx Spartan-6 XC6SLX45T. Figure 2-8 shows the two masters and

two slaves connected via four three state buffers shown as arrows on wires. While the

other is multiplexer based interconnection; its advantage is that it can be implemented in

any device unlike tri-state based interconnection, its disadvantage is it requires large

number of logic gates and large number of routed interconnects. Figure 2-9 shows the

multiplexor based interconnection in which each module gets the access to the bus via

control signal and multiplexor.

Figure 2-8 Tri-State interconnection [10]

THEORETICAL BACKGROUND 9

Figure 2-9 Multiplexer Interconnection [10]

o HIERARCHICAL BUS

This architecture is made of several shared buses connected to each other through bridges.

Modules are placed at a level according to their requirement. High performance

components are placed on high performance buses while the low ones on low

performance bus. This system keeps the two levels separately in which the low

performance modules don’t load the high performance buses. Communication between

the buses having different performance occur through bridges which also pose some

overhead and latency. Multiple data transfers are possible in parallel. Buses can have

different clock frequencies so bridge can get more complex for transactions amongst the

buses [2]. Figure 2-10 shows the example of a hierarchical bus where three buses are

connected to each other via bridges. Common example of such an architecture is AMBA

[8] and CoreConnect Bus [7].

Figure 2-10 Hierarchical Bus [2]

o CROSSBAR BUS

A crossbar circuit takes N inputs and connect each of them to the M outputs. Figure 2-11

shows the crossbar bus with master and slaves. At each wire intersection there is a pass

transistor which is called crosspoint connector which short circuit two wires to make a

connection. Each wire is a bus with unique master. Centralized arbiter controls the

crosspoint connector and depending upon the input and output requests it makes

connections. An example of crossbar bus topology SoC is Niagra Multiprocessor SoC

[17]. This bus is used for high performance system which needs parallel data transfer

THEORETICAL BACKGROUND 10

while the solution can be excessive for smaller systems [19]. It takes large area, more

power and to achieve routing closure is impossible [14].

Figure 2-11 CrossBar Bus [2]

o RING BUS

In a Ring bus topology each node communicate using an interface made in a ring manner

and the protocol used is token pass protocol. A token is passed to each entity and if the

entity wants to access the bus it can keep the token till the time it is communicating and

then it passes the token to the next entity. Data is transferred in clockwise or anti-

clockwise direction. It is also a high performance ring topology. It takes less area while

provides reasonable bandwidth [2].

Figure 2-12 Ring Bus [2]

BUS PROTOCOL

Bus arbitration protocols are the set of rules, in which the transaction occur on the

channel. Arbitration protocols allow the master to access the bus and transmit. Entities

send their request to transmit to the central arbiter and arbiter depending upon the

implemented protocol allows the access or reject. It includes arbitration mechanisms like

Round robin access, Time division multiplexed access or Priority based access protocols.

Buses use several communication protocols for channel sharing and resource allocation.

o STATIC PRIORITY

Typically shared bus architecture uses this protocol, in which a central arbiter gives access

to the masters on the list waiting for access. Priority number is given to each connected

master and the master having the highest priority gets the first access and so on.

THEORETICAL BACKGROUND 11

Transactions can be pre-emptive or non-pre-emptive. AMBA and CoreConnect Bus uses

this protocol [8] [7].

o ROUND ROBIN PROTOCOL

This protocol works as follows; each entity can access the shared media on its turn. It

gives equal priority to all the entities. It grants access to the bus in rotating basis like a

rotating switch as you can see in the Figure 2-13 . When an entity releases the bus, access

is given to the next entity requesting for access and if some entity is not requesting it can

skip. If currently served entity is Master#1 and the next entities requesting for access are

MASTER#0 and MASTER#3. Access will be given to the MASTER#3. [10]

Figure 2-13 Round Robin Arbiter [10]

o TIME DIVISION MULTIPLEXED ACCESS (TDMA)

Time is divided in slots and each slot is assigned to a particular master. Master can only

get access to a channel in its given time slot. Several algorithms are made to cope up with

the problem of unused slots.

o LOTTERY

In this protocol a centralized system collects the requests from entity for the ownership

of shared channel. An entity getting the ticket will get access to the bus. A static or

dynamic number Xlottery ticketsX is assigned to them [1].

o TOKEN PASSING

Token passing protocol is used in the ring topology. A special data word token is passed

to all the nodes on ring and the node which has the token can access the shared channel.

When the node is done with its transaction it passes the token to its next neighbour in the

ring and the node which doesn’t want to have access can simply pass the token to its

neighbour.

2.2.3. SoC Buses

Advance Microcontroller Bus Architecture (AMBA)

AMBA (Advance Microcontroller Bus Architecture) is a bus standard developed by

ARM with an intention to introduce an efficient on chip bus for communication. This bus

is divided into two main parts; one is for system communication and other is for

THEORETICAL BACKGROUND 12

Figure 2-14 Example of AMBA Bus [1]

peripheral communication and they are connected via a bridge. It has single edge clock

protocol, split transactions, several BUS Master, pipelined operations and non-tri-state

implementation. [8] [1] Buses defined with the AMBA system are

 ASB (Advanced System Bus)

This is one of the system buses which are used for cost effective and simple

solutions and it supports many things like pipelining, multi master and burst

transfer, non-multiplexed address and data bus and centralized decoder and

arbiter.

 AHB (Advanced High-performance Bus)

This is also a system bus which is designed for high performance designs. It

provided very high bandwidth and support processors, peripherals, RAM

interfaces and APB Bridge. It supports multi master operation, burst transfer, split

transactions, wide data bus, Synchronous no multiplexed bus, separate read data

buses, and non tri-state multiplexed operations.

 APB (Advanced Peripheral bus)

It is used to connect low power and low speed peripherals. It is a secondary bus

and it doesn’t have clock and data access is controlled by select and strobe. Bridge

is the master and devices like Timer, parallel I/O, UART, keypad etc are slaves.

It is a static bus with simple addressing, simple un-pipelined interface and latched

address and control system.

Advanced Extensible Interface (AXI) BUS

AXI bus is introduced by AMBA; AXI3 in 2003 and AXI4 in 2010. AXI Interconnect IP

Core is available in Xilinx ISE Design suite which can be used in the projects. It is suitable

for low latency and high bandwidth designs. Unlike AMBA it provides high frequency

operation without the use of bridges. It meets the interface requirements of large range of

components and is suitable for memory controllers. It is flexible in the implementation of

interconnections and is also backward compatible with AHB and APB interfaces of

AMBA Bus. [20] [1] [21]

AXI has three types of interfaces

THEORETICAL BACKGROUND 13

 AXI4- for high performance memory mapped

 AXI4-Lite- for simple, low-throughput memory-mapped communication

 AXI4-Stream- for high speed streaming data

AXI specification describes an interface between AXI Master and Slave. They are

connected together using a structure called Interconnect block and in case of AXI4 and

AXI4-Lite it is AXI Interconnect. It is used for memory mapped interfaces only while the

AXI4-stream interconnect can be used for AXI-4 stream bus implementation.

Figure 2-15 AXI Bus

Both AXI4 and AX4-Lite has different channels between Master and Slave

 Read Address Channel

 Write Address Channel

 Read Data Channel

 Write Data Channel

 Write Response Channel

AXI interconnect can be implemented in two modes;

Crossbar mode: Shared address and multiple data crossbar architecture with parallel

lines for write and read data channel. This mode is optimized for performance.

Shared Access mode: Shared write and read data and single shared address pathway.

This mode is optimized for area.

Some of the key features of AXI bus are

 Separate address/control and data phases

 Support for unaligned data transfers using byte strobes

 Burst based transactions

 Separate read and write data channels

 Able to issue multiple outstanding addresses

 Out of order transaction completion

 Can add register stages to get timing closure

 32,64,128,256,512 or 1024 bits data width for AXI and 32 bit data width for

AXI4-Lite

THEORETICAL BACKGROUND 14

 Connects 1-16 masters to 1-16 slaves

 Optional register-slice pipelining and data path FIFO buffering

AVALON BUS

Avalon bus architecture is designed by Altera to connect its processor and peripherals in

System-on-Programmable Chip (SoPC). It is designed for FPGA SoC design and used

mainly by NIOS-II soft core processor by Altera. It has synchronous interface and it has

pre-defined signals and timing to connect Master and Slave interface. It uses separate

address, data and control lines. It supports multi-master and Master and salve interacts

with each other in a technique called slave-side arbitration. Its other services are data-

path multiplexing, address decoding, dynamic bus sizing, latent transfer capabilities and

a streaming read and write capabilities. Altera SOPC builder, a system development tool,

automatically generates a switch fabric logic to support the transfers by Avalon interface.

[9]. Altera also started using AXI Bus but Avalon bus is specifically designed for the

NIOS-II Embedded processor and it is still using it.

Figure 2-16 Example of Avalon bus [1]

CORECONNECT BUS

CoreConnect bus is developed by IBM. It is a hierarchical bus which is made of three

buses each having its own functionality to make a complete System on Chip. [7]

 PLB (Processor Local Bus)

It is multi master and synchronous bus designed to achieve high performance and

lower delays. Its separate address and data bus support simultaneous read and

write transfer. Masters are attached to the bus through separate addresses, read-

data and write-data buses. Slaves are attached through shared and decoupled

address, read data and write data buses. Arbitration unit supports 16 masters and

any number of slaves.

 OPB (On-chip Peripheral Bus)

THEORETICAL BACKGROUND 15

It is designed to connect low performance and low speed peripherals like UART,

serial and parallel ports. It is fully synchronous, dynamic bus size, separate

address and data bus, multiple masters, single cycle data transfer between master

and slave. Its uses distributed multiplexer. PLB is connected to OPB through OPB

Bridge and the bridge acts as slave to PLB and master to OCB.

 DCR (Device Control Register Bus)

It is a single master bus with low speed data path. It is used for passing status and

setting configuration information between the cores. It is also designed for

testability purpose. It is a synchronous bus with ring topology. It has 10-bit

address bus and 32 bit data bus. Its arbiter works on static priority function.

Figure 2-17 CoreConnect Bus [1]

WISHBONE BUS

Silicore corporation designed SoC interconnect architecture for portable IP Core

independent of FPGA and SoC. It is put on public domain by OpenCores in August 2002.

This particular information is extracted from [10]. It offers following features

 Simplicity, Reliability, Portability, Compact, non-hierarchical and Flexible

 Supports structured design methodologies

 Modular data bus width and operand sizes

 Variable interconnection methods which support point to point, shared bus, data

flow and crossbar switch

 Single Clock data transfer

 Modular address widths

 Slave less redundant logic using partial decoding scheme

 User Defined tags

 Multi master capabilities

 User defined arbitration methodology

 Independent of hardware technology, delivery method, synthesis tools, router and

layout technology

THEORETICAL BACKGROUND 16

WishBone uses Master/Slave architecture. Master interface initiate the data transaction

and slave responds to request. Master and slave communicate through an interface called

INTERCON. This interconnection is variable and can be set according to the user needs

like point to point, data flow, shared bus or crossbar switch. It is a large synchronous

circuit and is designed to operate over an infinite range of frequencies and the only limit

is the maximum frequency of the physical circuit.

Types of WishBone Interconnection

Figure 2-18 WISHBONE Bus [10]

Point to Point interconnection is the simplest way to connect two WishBone IP cores. It

allows connecting a single Master interface to a single Slave. For example master can be

a microprocessor core and slave can be serial I/O port.

Data flow interconnection is used when data flows in a sequential manner. Each single

core has both Master and Slave interface. Data flows from one core to another and it

exploits pipelining and speed up execution. Such architecture can be used e.g. signal

processing.

Shared bus interconnection is used when connecting more than one master with one

or more than one slave. Master initiates a bus cycle and targets slave, an arbiter gives an

access to a particular master and decides when and which master will gain access. Shared

bus can use priority or round robin arbiter. Shared interconnection are compact and uses

less resources but latency can increase as the number of master’s increase. Shared bus

can be implemented with multiplexer or three state buses.

 Crossbar switch interconnection is used when connecting two or more masters with

two or more slaves. Master initiates a bus cycle and arbiter decided when a master can

access a slave. And a dedicated link is established between master and slave. Overall data

rate is higher than the shared bus but it requires more resources like the interconnection

logic. Unlike shared interconnection more than one master can us the interconnection as

long as two masters don’t access the slave at the same time.

THEORETICAL BACKGROUND 17

Summary of On-Chip Buses

This table summarizes and compares all the features of the important buses like

WISHBONE, AMBA, AVALON, and CORECONNECT. [1] [5] [9] [8] [7] [10]

Table 1 Summary of On-Chip buses

Main feature Sub Feature WISHBONE AMBA AVALON CORECONNECT

Status Open Yes Yes Yes

(Partial)

Yes

Registration No Yes Yes Yes

License No No Yes No

Architecture Hierarchical No Yes No Yes

Pipelined No Yes Yes Yes

Multiplexed Yes Yes Yes Yes

Topology Point to Point Yes No Yes No

Shared Yes Yes Yes Yes

Data Flow/

Ring

Yes No No Yes

Crossbar

Switch

Yes Yes No No

Arbitration Static Priority Yes

(Application

Specific)

Yes

(Application

Specific

except APB)

Yes (Slave

Side)

Yes

TDMA Yes

(Application

Specific)

Yes

(Application

Specific

except APB)

Yes (Slave

Side)

No

Round Robin Yes

(Application

Specific)

Yes

(Application

Specific

except APB)

Yes (Slave

Side)

No

Lottery Yes

(Application

Specific)

Yes

(Application

Specific

except APB)

Yes (Slave

Side)

No

Token passing

Yes

(Application

Specific)

Yes

(Application

Specific

except APB)

Yes (Slave

Side)

No

Bus Width Address Bus

width(bits)

1-64 1-32 1-32 8-256

Clocking Synchronous Yes Yes Yes Yes

Asynchronous No No No No

Operating

Frequency

 User defined User defined User

defined

User defined

2.2.4. Network on Chip (NoC)
Network on chip’s idea is taken from computer networks formed by routers which are

responsible for receiving and forwarding data packets and requests hence making a

network of communication at Local or Global level. NoC is implemented within a System

THEORETICAL BACKGROUND 18

on Chip or FPGA using micro routers, links and other components which are responsible

for communication amongst the IPs and other routers on the chip. A NOC router in mesh

NoC has five connections, one for connecting to the local processing element attached

with the router and the other 4 for communication with its neighbouring routers on East,

West, South and North. Network Adapters control the communication like packetizing

and de-packetizing between the router and the core connected to that router. NoC links

are inexpensive and length is short as compared to the computer networks. Area usage,

power consumption and latency are very crucial for the NoC but the computer networks

are more flexible with such things. NoC provides many advantages as compared to other

on-chip communications. NoCs are scalable, more bandwidth, less latency, multiple

connections amongst the cores, design re-usability, low area and low power consumption

[13].

Figure 2-19 Sample 4x4 Mesh NoC [13]

NoC Router

Router is the main component and backbone of NoC. Routers are used in network to

receive data from the sender and forward it to the receiver. It receives the incoming

pattern calculates it destination and finds out the best path for its delivery. NoC router is

built on OSI model where each layer has its own job. A router usually has 5 ports in which

one is dedicated for the local port and rest 4 are East, West, North and South to

communicate with other routers. Figure 2-20 shows the example NoC router. Router

mainly consists of parts like FIFOs, Crossbar and Arbiter. FIFO stores the incoming

packets from the respective ports. Each port has its own FIFO. Crossbar directs the input

to the appropriate output port Arbiter- Arbitration scheme is implanted in arbiter like

round robin or static priority. Arbiter decides when and which input packet will be

directed to its output port.

NoC architecture has certain parameters to provide the desired functionality to a system.

NoC Topology

Distribution of nodes in the network and establishing links between them according to

some scheme is topology. It also affects the area, power consumption, latency and

frequency of the network. Popular topologies are Ring topology, Tree, Butterfly, Polygon,

Mesh topology and torus. User can also define custom topology according to the

requirements. 2D mesh is the common topology used in the FPGAs [22] [13].

THEORETICAL BACKGROUND 19

Figure 2-20 NoC Router

Switching Techniques

The mechanism which governs the passing of message from upstream to downstream is

called switching. It directly affects the latency of the network. Circuit Switching and

Packet switching are the common switching techniques. Circuit switching network

reserves a dedicated physical path between the sender and receiver and it also needs setup

time to establish or remove the path. Circuit switching advantage is that its bandwidth is

predictable. On the other hand Packet Switching transmits packets without a dedicated

path. Packet switching routers send data in packets called flits. Packet is delivered to the

destination depending upon the routing information within the packet.

Flow Control

It lays down the policy the way network will provide resources for the message.

Resources like buffers, channels, ports and control logic. Resource allocation depends

upon the switching technique used. Packet switching requires buffers while circuit

switching technique doesn’t. Handshaking and credit based protocols are popular.

Routing Algorithm

Routing algorithm describes and defines the path between the source and destination

taken by the packet. The objective is to make the routing scheme efficient so that there is

less area overhead and latency and high performance can achieved. An efficient algorithm

will save the network from issues like deadlock, live lock and starvation and helps to

control the congestion. XY algorithm is the most famous amongst the others as it is simple

and area overhead is low. It is implemented using distributed routing, in which each node

forwards the packet to the next node depending upon the routing information included in

packet header. Packet is sent to the X axis of the node first from where it reaches the Y

THEORETICAL BACKGROUND 20

axis of destination node and then from Y axis it is forwarded to the node. It is one of the

cheapest algorithms to achieve deadlock free network and prevents live lock.

Arbitration

NoC routers receive simultaneous messages on all of its nodes. It is the job of arbiter to

decide and grant the output port to the incoming packet. There are various schemes of

arbitration Round robin, first come first serve, priority based, and priority based round

robin. First two ensures best effort data delivery while the last two are used for guaranteed

traffic. Static arbitrations are limited to specific order and easy to implement but they can

suffer from starvation problem while the dynamic arbitrations take decisions at run time

depending upon the network condition, but are more difficult to implement and will take

more area. These are efficient, flexible and ensures starvation free network.

NoC Evaluation Criterion

Cost metrics

Power consumption and area are the most focused criteria for NoC cost evaluation. Goal

of the designer is to minimize them so that it can also be used in small applications where

area and power is limited. When NoC is implemented in FPGA which has fixed logic

units and routing paths more focus and techniques are required to lower these criterion.

Buffers in the NoCs router are considered to be most area hungry items. Worm Hole

switching technique is considered to be low cost because of their low buffering

requirement. Dimensions and the amount of buffers in router play important role in the

cost metrics of the NoC [22].

Performance Metrics

Data transaction time is important in evaluating performance metrics. Message delivery

speed is determined by the operating frequency but throughput and latency are also

important metrics for NoC. Data transferred in period of time is throughput and can also

be related with bandwidth. Throughput in NoC is divided into intervals like overall

application, packet throughput measured per system, IP core and router calculated as an

average. Latency is the time taken for sending data from a source node to a destination

node. It is calculated as average packet delay/flit traversing in the network. The lowest

bound of latency is the zero latency or best case latency; it is the latency when no

congestion is present in network. Internal delay of the router and other parameters like

serialization play important part in overall latency. Such delays can be reduced by looking

and adjusting the parameters like switching techniques, flow control and reducing routing

decision time [13].

2.3. Summary of On-Chip Interconnects

Point to point architecture has direct connection between each module through a set of

dedicated wires. It works for small systems but as the complexity increases they will need

more dedicated wires for communication. The system won’t be scalable, routing will be

difficult and there will be area overhead and hence the complexity increases. Point to

THEORETICAL BACKGROUND 21

point communication for system having few components can run effectively with such

light weight architecture. The communication channel between two nodes is a dedicated

set of wires so as the number of nodes increases the use of wires increases exponentially

and the routing becomes more difficult. Point-to-point scheme suffers from low wire

usage efficiency for low bandwidth channels and also pose a high usage of hardware. If

the system needs expansion in the future then this scheme may not be a good choice. As

the complexity of the systems is increasing and requirements like low area overhead and

higher bandwidth are demanding more efficient interconnection architectures. [1] [2]

A Crossbar Bus can be used in multi core SoCs where more than one master can

simultaneously access several slaves. There are multiple ways for data to be transferred

between masters and slaves in a crossbar switch interconnection. Therefore two or more

masters can communicate with slaves at the same time, as long as it isn't the same slaves.

As compared to a shared bus, it leads to a higher data transfer rate. In this type of

interconnection, there is always an arbiter to control the bus. Arbiter decides which master

may communicate with which slave. There are number of shared bus architectures by

different companies. Each of them has its own application, advantages and disadvantages.

Shared bus is used when low area overhead and scalability are required. Shared bus is

suitable for small systems, or more complex hierarchal multi buses, using sophisticated

protocols and bridges, to serve larger systems. Bus is a shared interconnection where each

module is connected to the bus and acquires the bus control based on bus protocol. The

disadvantages are the bandwidth is limited and the scalability is restricted. As the number

of (IPs) grows, the use of these techniques becomes a bottleneck because of scalability

complications and efficiency. Buses have their own advantages and disadvantages but

they are used if they are fitting in a particular application. Buses can be used when the

complexity of the system is less and the requirement for maximum operating frequency

is not very high. Many disadvantages are associated with bus interconnections.

Noticeably, the bandwidth is limited, concurrent communications are not possible, and

the scalability is restricted and causes speed degradation. [1] [2] [13]

NOC is implemented using micro routers, links and other components which make

the communication possible amongst the modules and other routers on the chip. NOCs

have certain advantages but they are used for complicated and high end systems for

specific applications. The basic concept of NoC is to communicate across the chip in the

same way that messages are transmitted over the Internet today. Communication is

achieved by sending message packets between blocks using an on-chip packet-switched

network. NoCs work well for systems with large number of IPs which require high

throughput and high operating frequency. However for smaller systems Area overhead,

complexity and power dissipation won’t be optimal as compared to the SoC buses. [6]

[13] [23]

ANALYSIS OF INTERCONNECTIONS 22

3. ANALYSIS OF INTERCONNECTIONS

This chapter gives an analysis about a SoC design, which is implemented with point to

point interconnection and shared Bus. WISHBONE shared bus architecture is selected as

a new way to implement the system. It is modified, implemented and analysed according

to the design requirements in accordance with the WISHBONE rules.

3.1. Analysis
Analysis includes the discussion about the design implemented by point-to-point

architecture and the problems caused by such interconnection. Shared bus architecture is

implemented with WISHBONE standards using Master, Slave and interconnection

scheme. Writing and reading of the master bus follows the WISHBONE standards. Pros

and Cons of the new proposed design are discussed and also features of new design are

listed.

3.1.1. Design with point-to-point interconnection

This design is asynchronous and has one Processor which is connected to around 400 to

800 entities (Registers) through point to point interconnection as we can see in Figure 3-1.

Processor is an external processor outside of the FPGA which is connected to the FPGA

through an external bus. This design is one part of the large design of company’s project.

Figure 3-1 Block Diagram of Point to Point Design

The design resulted in large area as each connection between processor and registers is

32- bits wide. This design was implemented on Xilinx Virtex-6 FPGA. The processor is

directly connected to the registers without any logic in between. The design also resulted

in a large multiplexer when Registers Write back to the processor as you can see in

Figure 3-1. Pipelining cannot be implemented as the design is asynchronous. Large

Processor

Multiplexer

Address

32-bit Data

Read Data 32-bit

Registers0 1 2 N

32-bit Data

ANALYSIS OF INTERCONNECTIONS 23

multiplexer created timing issues in a multi clock domain and the design failed to fulfil

the timing constraint of 100 MHz with FPGA filled around 65%. As the external

processor is operating at very high speed so the requirement of the design is high speed.

According to the Non-Disclosure Agreement with the company, the exact details of the

design cannot be discussed here.

3.1.2. Design with shared bus interconnection

There are several interconnection types available to solve the problems. Each of them has

its own advantages and disadvantages. We will discuss them here and will find suitable

interconnect which supports the architecture of our design of Single Master and Multiple

Slave.

As already discussed, the crossbar interconnect architecture is designed for good

parallelism where several Master cores are communicating with the slaves simultaneously

while the required design only includes one Master core with several slaves. Crossbar

interconnect architecture doesn’t fit in this context. Crossbar bus can be used even with

the single master when the master is required to access the different slaves simultaneously

which is not our case.

NoC is the most recent development in the domain of SoC interconnect, which is

designed to handle large number of IP cores, large bandwidth and scalability but suffers

from high area overhead and complex design interface issues [24]. As this interconnect

architecture is designed for multi master cores, it doesn’t fit into the design requirements

of the required design architecture, which is with single master core.

There are several versions of the bus architecture like shared bus, crossbar bus, ring

bus and hierarchical bus. Crossbar bus, hierarchical bus and ring bus are used for

parallelism and multi cores. Shared bus is rather simple to implement, takes less resources

and is scalable up to a certain point [6] [1]. The only choice left behind to solve this

particular issue will be possible by the shared bus interconnect because it supports the

architectures single master into single slave, multiple master into multiple slave and

finally Single Master x Multiple Slave architecture, which is the architecture of our

problem.

Figure 3-2 Shared bus Block Diagram

MASTER

SHARED BUS

SLAVE 1 SLAVE 2 SLAVE 3 SLAVE N

ANALYSIS OF INTERCONNECTIONS 24

Shared bus block diagram can be seen in Figure 3-2 which is the architecture of the

proposed solution. It shows that Master/Processor is connected to the slaves through a

shared bus. Design is further explained later with design in detail.

The detailed block diagram of the proposed design with shared bus can be seen in

Figure 3-3. Master / External processor is connected to the multiple slaves. Unlike the

design with point-to-point architecture, total number of registers are divided and put

inside the slaves and also big multiplexer is divided. There will be n- number of registers

and N- number of slaves. Writing the data takes one clock cycle while reading the data

takes two clock cycles as read back is divided into two pipeline stages. Register A

represents the first stage and the Register B is the second stage of pipeline. Interconnect

includes control signals, address signal and data signal. Interconnect also includes other

logic and address decoder which will be explained in later section. Each slave contains a

fixed number of registers or memory spaces in case slave is realized as a memory. The

number of slaves and registers within each slave is decided by the designer. Designer will

take into account that the timing and resource consumption depends upon the total number

of slaves and number of registers within slaves. It is shown in the Chapter Results. Data

is written to each slave via shared data, address and control lines through shared bus while

data is read using two stages of multiplexers.
Figure 3-3 Proposed Design with shared bus

Slaves also contain write back multiplexers which selects the data Register A based upon

the address from the Master and the second Register B is a part of a shared bus which

selects the slave based upon the address. Detailed description of this new block diagram

is in section 3.1.3.

3.1.3. Benefits and Features of Shared bus design

Benefits of Shared bus design

 Interconnect sharing by the entities will reduce the overall utilization of

interconnect area.

 Synchronous design will lead to pipelining and increase the overall efficiency of

the system.

Master

Reg

M1

Reg

M2

Reg

Mn

Register

A

Reg

M1

Reg

M2

Reg

Mn

Register

A

Reg

M1

Reg

M2

Reg

Mn

Register

A

Register

B

Multiplexer

Slave 1 Slave 2 Slave N

M
u
lt

ip
le

x
er

M
u
lt

ip
le

x
er

M
u
lt

ip
le

x
er

Data, Address and Control Signals

Data

ANALYSIS OF INTERCONNECTIONS 25

 Shared bus will make it easy to Add/Remove the entities hence making the system

scalable and flexible.

Features of Shared bus design

 Bus Architecture for the new design will be a shared bus which will support the

design of single master and multiple slaves.

 Bus Topology in proposed shared bus design will be non-multiplexer based

topology in which data and address interconnections are separate and not shared.

It uses more wires but average latency can be reduced compared to asynchronous

point-to-point topology.

 Bus Interconnection type will be multiplexer based as tri-state interconnections

are not portable and also tri-state buffers are not available in all the devices.

 Synchronicity is a feature of clocking in the bus. Single clock will be used for

communication medium and connected entities. The new design will be

synchronous and makes it possible to do pipelining.

 Bus Protocol for data transfer is handshaking. Read and Write cycle are explained

in detail in the WISHBONE bus section below.

 Address and Data Bus WISHBONE data bus width can be 8, 16, 32 or 64 bits

and the address bus width is 1 to 64 bits.

3.2. WISHBONE Bus
The proposed shared bus design will be realized by the Wishbone shared bus standard.

WISHOBONE bus standard is chosen as we have seen in Chapter 2 Table 1 the

comparison between the important interconnects. WISHBONE bus appears to be simple,

flexible and portable because of certain factors. WISHBONE bus is open standard and it

requires no registration or license. It is in the public domain and maintained by Open

Cores and its IP cores are free to use in any product. It can be used in projects and designs

without any royalty payment and financial issues.

CoreConnect and AMBA are hierarchical buses made for complex designs for multi

masters. AMBA is hierarchical, Avalon is point to point and CoreConnect is a hybrid

structure. WISHBONE bus is more flexible in terms of architecture and topology. It

supports, point to point, dataflow, crossbar and shared bus architecture.

Latency in WISHBONE bus is user defined and application specific. In multi master

interconnection latency depends upon the arbitration technique and number of masters.

In our project there is a single master and many slaves so 1 clock cycle latency can be

achieved but the results would be different for pipelining vs. non pipelined designs.

ANALYSIS OF INTERCONNECTIONS 26

3.2.1. WISHBONE shared bus
WISHBONE shared bus interconnection is designed to connect two or masters with one

or more slaves. As the general idea of the WISHBONE shared bus is already given in

Chapter 2 but it will be discussed in more detail in this section. For further rules and

standard specification, WISHBONE standard specification document can be consulted at

[10]. General diagram for multi master and multi slave architecture can be seen in

Appendix 1. It comprises of components like Master, Slave, Arbiter, Interconnect and

Simple System Controller (SYSCON).

This architecture has memory mapped addressing. It’s an architecture which allows

the data to be stored and recalled in memory at unique addresses. A unique address range

will be assigned to each slave for addressing. “Master” is an entity or IP core that initiates

the data transaction with the “Slave” entity. Master provides address and control signals

and slave responds to the particular master. “Slave” is an entity which is responsible for

responding to the Master signals and slave is implemented as a memory module to make

it memory mapped architecture. “Arbiter” is an entity that works like a traffic cop in a

multi master architecture which grants access to one master at a time to the bus. Different

arbiter protocols are discussed in Chapter 2 which can be implemented in the arbiter.

 “Interconnect” consists of wires and logic gates that provides interface to the master

and slave to communicate with each other. Other than the Master, Slave, System

Controller and Arbiter, all the things like wires, logic gates, multiplexers and address

comparator that we see in Appendix 1 figure combine to make interconnect. WISHBONE

shared bus interconnection general block diagram can be seen in Figure 3-4.

Figure 3-4 Shared bus interconnection

SYSCON called as system controller which generates clock [CLK] and reset [RST]

signals which are compatible with WISHBONE. The clock output signal is directly

connected to the input clock signal but the reset signal [RST] is a single clock pulse

generator in accordance with the WISHBONE reset timing rules. [EXTTST] signal is a

RESET signal input from the user. Detailed Rules for reset are listed in the WISHBONE

specification document [10] in Chapter 3 section 3.1.1. State diagram and state machine

explanation can be found in Appendix 2.

These components are explained in more detail in the example implementation of a multi

master and multi slave shared bus.

WISHBONE

SLAVE

WISHBONE

MASTER

WISHBONE

MASTER

SHARED BUS

WISHBONE

SLAVE

WISHBONE

SLAVE

ANALYSIS OF INTERCONNECTIONS 27

3.2.2. WISHBONE Master and Slave Signals

WISHBONE Master and Slave shared bus comprises of many signals but the signals

relevant to the shared bus and the ones, which fit in our design are listed here. There are

some common signals between Master and Slave like Clock, Data In, Data Out and Reset.

Clock: Clock input signal coordinates with all the activities in the Master, Slave and

interconnect. At the rising edge of clock all WISHBONE output signals are registered.

All input signals should be stable before the rising edge of Clock.

Data In: Data In signal is binary data array used to accept the data which is being read

from the Slave. Maximum supported port size is 64-bits.

Data Out: Data Out signal is used to send binary data to the slave. The data port is for

data output and the maximum size can be 64-bits.

Reset: The reset signal is used to reset or restart the WISHBONE interface. This signal

resets the whole WISHBONE interface but excluding the other cores in a system. It can

be connected to them if required.

MASTER SIGNALS

WISHBONE shared bus master are listed here

 ACK_I: The Acknowledgement signal is asserted to indicate the successful

response of the SLAVE and normal termination of the bus cycle.

 ADR_O: This binary address signal is used to send the address to the SLAVE.

The size of the signal depends upon the size of data port.2n=Size of the data port,

where n will be the width of address port.

 STB_O: The strobe output signal [STB_O] shows a valid data transfer cycle.

SLAVE responds with [ACK_I] signal in response.

 WE_O: The Write Enable Output signal [WE_O] shows whether the current

signal is READ/WRITE. Signal is LOW on Read and signal is HIGH on Write.

SLAVE SIGNALS

WISHBONE slave signals are listed here

 ACK_O: The acknowledge output [ACK_O] is asserted for the normal

termination of the signal in response to strobe signal of MASTER.

 ADR_I (): The address input signal [ADR_I ()] is used as an address for the

SLAVE in a memory mapped structure.

 STB_I: The strobe input [STB_I], when asserted, indicates that the SLAVE is

selected. A SLAVE shall respond to other WISHBONE signals only when this

[STB_I] is asserted. The SLAVE asserts either the [ACK_O] signals in response

to every assertion of the [STB_I] signal.

 WE_I: The write enable input [WE_I] indicates whether the current local bus

cycle is a READ or WRITE cycle. The signal is negated during READ cycles,

and is asserted during WRITE cycles.

ANALYSIS OF INTERCONNECTIONS 28

3.2.3. Wishbone General Single Read Cycle

Wishbone single read cycle for master can be seen in Figure 3-5. The figure is taken from

the datasheet of the Wishbone bus and unnecessary signals are removed.

CLOCK EDGE 1

MASTER presents a valid address on [ADR_O ()].

MASTER negates [WE_O] to indicate a READ cycle.

MASTER asserts [STB_O] to indicate the start of the phase.

CLOCK EDGE 2

SLAVE decodes inputs, and responding SLAVE asserts [ACK_I].

SLAVE presents valid data on [DAT_I ()].

SLAVE asserts [ACK_I] in response to [STB_O] to indicate valid data.

CLOCK EDGE 3

MASTER receives data on [DAT_I ()].

MASTER negates [STB_O] to indicate the end of the cycle.

SLAVE negates [ACK_I] in response to negated [STB_O].

3.2.4. Wishbone General Write Cycle

Wishbone single write cycle for master can be seen in Figure 3-6. The figure is taken

from the datasheet of the Wishbone bus and unnecessary signals are removed.

Figure 3-6 Wishbone Single Write Cycle

Figure 3-5 Wishbone Single Read Cycle

ANALYSIS OF INTERCONNECTIONS 29

CLOCK EDGE 1

MASTER presents a valid address on [ADR_O ()].

MASTER presents valid data on [DAT_O ()].

MASTER asserts [WE_O] to indicate a WRITE cycle.

MASTER asserts [STB_O] to indicate the start of the phase.

CLOCK EDGE 2

SLAVE decodes inputs, and responding SLAVE asserts [ACK_I].

SLAVE prepares to latch data on [DAT_O ()].

SLAVE asserts [ACK_I] in response to [STB_O] to indicate latched data.

CLOCK EDGE 3

SLAVE receives data on [DAT_O ()].

MASTER negates [STB_O] to indicate the end of the cycle.

SLAVE negates [ACK_I] in response to negated [STB_O].

These timing diagrams show the general Read and Write cycles for the Wishbone shared

bus. The timing diagram from the actual implementation of the design will be shown in

the next chapter. There are some signals which will be skipped for our shared bus

implementation because they don’t fit in the context of single master-multiple slave

design.

IMPLEMENTATION OF SHARED BUS 30

4. IMPLEMENTATION OF SHARED BUS

This chapter has the complete implementation of the wishbone shared bus. Wishbone

shared bus for multiple Master and multiple slave design is used as a base design to start,

which is in Appendix 1. It is modified according to the requirements of the single master

and multiple slave design. Short snippets of code are included and discussed. There are

also timing diagrams of Read and Write cycle from ISim simulator.

4.1. Shared Bus Design Implementation

Figure 4-1 Proposed Shared Bus Design

ADR_I DAT_O
DAT_I ACK_O

WE_I RST_I
STB_I CLK

ACMP1 ADR
ACMP2

ACMP(n)

DAT_I ADR_O
ACK_I DAT_O

RST_I STB_O
CLK WE_O

ADR_I DAT_O
DAT_I ACK_O

WE_I RST_I
STB_I CLK

ADR_I DAT_O
DAT_I ACK_O

WE_I RST_I
STB_I CLK

Master

Slave 2

Slave 1

Slave (n)

Address
Comparator

RST_O

CLK_O

RST

CLK

SYSCON

Write Back
Multiplexer

Acknowledgement
Generator

Strobe
Generators

Reg

M1

Reg

M2

Reg

Mn

Register

A

M
u

lt
ip

le
x
er

Slave Inside
Structure

IMPLEMENTATION OF SHARED BUS 31

The proposed shared bus design can be seen in Figure 4-1. Bus and Interconnection

topologies are already discussed in Chapter 2 Shared bus. With only single master, design

will be simpler than multi master design and there is no need of arbiter. Data, address and

control interconnections are shared unlike the point-to-point interconnections. The design

consists mainly of the following components Master, Slaves, Strobe generator,

Acknowledgement generator, Address Comparator, System Controller and Write Back

Multiplexer. The figure shows a top level block diagram of the design with necessary

details. There is also a separate block, which shows the inside structure of the Slave.

4.1.1. Master of the Shared Bus

Figure 4-1 shows the idea of the general block diagram of the proposed design. There is

a single master in this design and signals shown here are the WISHBONE standard

signals. For the testing purpose WISHBONE Master Wrapper is made and can be

connected to any Master and in this case it’s DMA. The Master (DMA) will communicate

with the WISHBONE Master Wrapper and the wrapper will communicate outside with

slaves using standard WISHBONE handshake protocols. Master Wrapper and its

interface with Master under test can be seen in Figure 4-2. WISHBONE standard input

signals are Acknowledgement (ACK), Clock (CLK), Data (DAT) and Reset (RST) while

the output signals are Address (ADR), Strobe (STB), Write/ Read Enable (WE) Signal.

Details of these signals are already described in the explanation of the WISHBONE

Master Signals. Address and Data bus width are made generic in VHDL design which is

passed on to the Master from the Top level entity. Master has five signals Address out,

Data out, Write / Read, Enable and Data In and except Enable signal all the other signals

are directly connected to the corresponding WISHBONE signals.

Figure 4-2 WISHBONE Master Wrapper

Enable signal is used to enable the Master wrapper to start the Write or Read cycle. Master

is implemented as synchronous Direct Memory Access (DMA) unit to Read / Write data

in the memory. For testing purpose Write/Read, Address, Data and Enable signals are

provided from test bench either from the input file or VHDL test bench. As the Enable

signal goes HIGH the DMA depending upon the Read/ Write signal starts to Write or

Read from the Slave.

DMA

Wishbone Master Wrapper

Master

Address Out

Data Out

Write/Read

Enable

Data In
DAT_I

ACK_I

CLK

RST

ADR_O

DAT_O

WE_O

STB_O

IMPLEMENTATION OF SHARED BUS 32

4.1.2. Slave of the Shared Bus

WISHBONE Slave wrapper is designed which can be connected with any slave. Standard

WISHBONE signals are shown in the Figure 4-1. WISHBONE Slave interface and Slave

connection can be seen in Figure 4-3. Slave is implemented as synchronous/asynchronous

Read RAM which can be distributed or block.

Distributed RAM is made by using Look up Tables (LUTs) which are available in

throughout of the FPGA. Maximum of 401Kb of Distributed RAM can be implemented

in Xilinx Spartan-6 XC6SLX45T Device. SLICEM within the Configurable Logic Block

(CLB) of the FPGA can be configured to be implemented as Distributed RAM. Such

RAM is synchronous Write and asynchronous Read but can be also configured as

synchronous Read. DRAM is fast, local and better for small memory requirements. Block

RAM is a dedicated two port memory in FPGA. This device discussed above has 116

block RAMs of size 18Kb. Block RAM is synchronous Write and Synchronous Read. It

also has the feature of pipelining with the output register and cab be used for large

memory space requirements.

RAM can be also implemented as Xilinx IP Core RAM and connected to the Slave

wrapper. Slave is implemented as a generic model as it takes the address and data size

from the top level and also the size of the memory is passed from the top level which

makes it generic and flexible model for testing. Xilinx tool can infer the type of RAM

whether block/distributed from the modelling style or this slave is designed as we can

force the tool to make it block or distributed using the VHDL code as

attribute ram_style: string;

attribute ram_style of REG : signal is "<Block/Distributed>";

Memory Read & Write operation is synchronous with clock. As this memory poses no

wait state so Acknowledgement signal is tied to the Strobe signal. As we will see in the

later sections the type of RAM and ratio between number of slaves and memory size with

each slave affects the resource usage and timing parameters.

Figure 4-3 WISHBONE Slave Wrapper

Memory

Wishbone Slave Wrapper

Slave

Address Out

Data Out

Write/Read

Data Out
DAT_O

ACK_O

ADR_I

DAT_I

WE_I

STB_I

CLK

RST

IMPLEMENTATION OF SHARED BUS 33

4.1.3. Interconnect of Shared Bus

Interconnect consists of wires connecting entities, Address comparator, Read back

multiplexer, Acknowledgement generator and strobe signal generator to enable the

relevant slave as we can see in Figure 4-1.

Address comparator takes the most significant bits which are reserved for Slave

addressing from the Master Address. It analyses the address and assert the relevant ACMP

(N) output pin which is connected to the corresponding Slave. Address comparator and

this WISHBONE bus protocol implementation uses partial address decoding. It uses one-

hot encoding scheme for the output where only relevant bit for particular slave is HIGH

and rest are LOW.

Partial Address Decoding Registers are now divided into different blocks called Slaves.

Slaves can also be implemented as memory rather than individual registers. Address bus

is logically divided into two groups. Most significant bits are reserved to address each

individual slave. Each slave is assigned a pre-determined static address. Address bus goes

to the address comparator which depending upon the address decoding table, decodes the

address and assert the HIGH signal for relevant slave. For example if we have four slaves

and each slave has eight registers the address decoding table will be like as seen in

Figure 4-4. Address bus will be 5 bits in which two most significant bits are reserved to

address the slave while the least significant 3 bits are used by each slave to address the

registers or memory location within slave.

Figure 4-4 Slaves Address Space

Strobe Generators are AND gates which acts as Enable for the slave. They take

Strobe, and ACMP(N) signal from the address comparator. Slave is active if all signals

are in logic HIGH state.

Acknowledgement Generator; ACK_O signals from the slaves are connected to the

OR gate and output is connected to the Master ACK_I signal. Data out from the slaves is

multiplexed through a write back multiplexer whose select pin is the most significant

address bits from the master. Acknowledge (ACK) signals from the slaves are connected

to the OR gate and its output is connected to the input of the master Acknowledgement

input pin.

Interconnect entity in VHDL Top level is designed in such a way that it makes the

overall design generic. Width of the data and address bus can be provided and will be

passed to the other entities from the Top Level block called as interconnect. Address bus

0x00

0x07
0x08

0x0F
0x10

0x17
0x18

0x1F

SLAVE 1

SLAVE 2

SLAVE 3

SLAVE 4

IMPLEMENTATION OF SHARED BUS 34

width is divided into two sections. MSBs are reserved to address individual slaves and

LSBs are reserved to address unique partitions within slave. For example, if we have 4

Slaves each having 8 partitions/registers, then 2 MSBs are reserved for 4 slaves and 3

LSBs are reserved for partitions and the total length of address bus width will be 5 bits.
-- TOTAL ADDRESS BITS
1 ADR_BITS_LENGTH : integer: =5;

-- TOTAL DATA BITS

2 DATA_BITS_LENGTH : integer: =32;

-- Bits reserved to Address Slaves

3 SLAVE_ADR_BITS_LENGTH : integer: =2;

-- Bits reserved to Address partitions within slaves

4 SLAVE_PARTITIONS_LSB_LENGTH : integer: =3;

-- Optional to select different no of slaves otherwise 2^no.bit for

slave

5 NO_OF_SLAVES : integer: =4

-- Optional to select different no of partitions with each slave

otherwise 2^no of partitions within each slave

6 NO_OF_REGISTERS_SLAVE : integer: =8

The code snippet of the top level entity to implement and test a generic model is shown

above. The numbers can be changed to implement the desired configuration.

1. Size of the address bits is the log2 (NO_OF_SLAVES x NO_OF_REGISTERS_SLAVE)

2. Data bits size is the size of the data bus

3. It is log2 (NO_OF_SLAVES) address bits reserved to address the slaves.

4. It is log2 (NO_OF_REGISTERS_SLAVE) address bits reserved to address the slaves.

5. This parameter gives the flexibility to set different number of slaves otherwise by

default 2^ NO_OF_SLAVES number should be entered.

6. This parameter gives the flexibility to set different number of partitions within

each slave otherwise by default 2^ NO_OF_REGISTERS_SLAVE with each slave number

should be entered.

Top level entity takes the number for total number of slaves and generates them in for

loop using generate statement. As we can see in code below component “Memory” is port

mapped using for loop. The tool automatically generates the required number of slaves

depending upon the input number “NO_OF_SLAVES”. This saves us from writing

redundant code for port mapping each slave.

GEN_SLAVE:

For I in 0 to NO_OF_SLAVES -1 generate

 SLAVE: Memory

 GENERIC MAP (ADR_BITS_LENGTH =>SLAVE_PARTITIONS_LSB_LENGTH,

 NO_OF_REGISTERS =>NO_OF_REGISTERS_SLAVE,

 DATA_BITS_LENGTH=>DATA_BITS_LENGTH)

 Port map (

 ACK_O => ACK_SLAVE (I),

 ADR_I => ADR (SLAVE_PARTITIONS_LSB_LENGTH-1

downto 0),

 CLK_I => CLK,

IMPLEMENTATION OF SHARED BUS 35

 DAT_I => DWR,

 DAT_O => DAT_OUT (I),

 STB_I => STB_SLAVE (I),

 WE_I => WE);

End generate GEN_SLAVE;

4.2. Test Bench
A simple Test bench is written in VHDL to provide the stimulus to the Master. For the

simulation purpose stimulus to the Master are address, data, enable and Write Enable.

Clock period is 10 ns.

Write Data

A code snippet from test bench for writing the data is

Enable <=’1’;

WE_O<=’1’;

Temp_Address<=”b00000001”;

Temp_Data<=”xAAAAAAAA”

Read Data

A code snippet from test bench for reading the data is

Enable <=’1’;

WE_O<=’0’;

Temp_Address<=”b00000001”;

4.2.1. Write Cycle

During the single write cycle the Master puts the data on [dat_o] and address on [adr_o]

signal and asserts the Strobe out signal [stb_o]. Master asserts the Write Enable signal

[we_o] to inform the slave that it is write operation. As slave in this implementation is

RAM, which operates on zero wait state it replies by asserting acknowledge signal. In

this case [ack_i] signal from slave is tied to the Strobe signal so it’s the responsibility of

the Master to negate the strobe signal when it’s done with writing the data. This design

takes only one clock cycle to write the data in the RAM. Latency for writing the data is

one clock cycle. Timing diagram for write cycle can be seen in Figure 4-5.

The adr_o = XXX_XXXXX means the most significant 3 bits are for the 8 slaves and

least significant 5 bits are for the memory within the slaves. In this timing diagram the

first data “0xaaaaaaaa” for address “0b00000001” is written in the 1st slave and its 2nd

memory location and the second data “0xbbbbbbbb” for address “0b00100001” is written

in 2nd slave and its 2nd memory location

IMPLEMENTATION OF SHARED BUS 36

Figure 4-5 Write Cycle

4.2.2. Read Cycle

Read cycle is initiated by the Master. During the single read cycle Master puts the address

on [adr_o] signal at Clock Edge 0 and similarly like Write cycle asserts the [stb_o] signal.

[we_o] signal is negated to show the read operation. Slave asserts the [ack_i] signal and

in response Master pulls down Strobe. This design takes two cycles to read the data

because reading the data from the slaves is pipelined to make the clock fast. RAM in slave

takes one clock cycle for reading the data and one extra cycle is added by Read Back Mux

register. Data being read is same as the data written in the previous section from same

address.

4.3. FPGA filled with Dummy Logic

FPGA is filled with dummy logic so that when timings of the design are tested, the design

is close to the practical case. This logic fills the Xilinx Spartan-6 XC6SLX45T Device up

to 60-65 %.

PORT

DUMMY_IN : in std_logic_vector(49 downto 0)

DUMMY_OUT: out std_logic_vector(49 downto 0)

ARCHITECTURE

CONSTANT NO_OF_DUMMY_STAGES: Integer: = 700;

Figure 4-6 Read Cycle

IMPLEMENTATION OF SHARED BUS 37

Type t_dummy_array is array (NO_OF_DUMMY_STAGES-1 downto 0) of

std_logic_vector(DUMMY_IN'range);

Signal dummy_array: t_dummy_array := (others => (others =>

'0'));

PROCESS (EXTCLK)

Begin

If (rising_edge(EXTCLK)) then

 DUMMY_OUT <= dummy_array(NO_OF_DUMMY_STAGES-1);

 dummy_array(0) <= DUMMY_IN;

 For i in 1 to NO_OF_DUMMY_STAGES-1 loop

 If i<2 then

 dummy_array(i) <= dummy_array(i-1);

 End if;

 If i>=2 then

dummy_array(i) <= dummy_array(i-1) xor

dummy_array(i-2);

 End if;

 End loop;

 End if;

END PROCESS;

4.4. Clock Constraint

Clock Constraint is added for the clock in the constraints file with TIMESPEC. Design is

tested with 10 ns, 5 ns and 4 ns.

NET "EXTCLK" TNM_NET = EXTCLK;

TIMESPEC TS_EXT_CLK = PERIOD "EXTCLK" 4 ns HIGH 50%;

This WISHBONE shared bus design for single master and multiple slaves is tested by

changing the number of slaves and partitions within the slaves. The results are discussed

in the next chapter. This design saved the interconnect utilization as compared to the

point-to-point design also achieved higher timing constraints.

EXPERIMENTAL RESULTS 38

5. EXPERIMENTAL RESULTS

We will discuss the resource consumption and timing analysis of the design implemented

by the point to point system and wishbone shared bus system.

5.1. Point to Point Design Results

The design was implemented using point to point interconnection on Xilinx Spartan-6

FPGA. The design had one Master which was connected to around 400 to 800 registers.

5.1.1. Resource utilization

Resource utilization in this particular design was more based on the interconnect

utilization. There is no logic utilization for the interconnection as we have for the bus and

NoC design. In this case, resource utilization is calculated in terms of the interconnect

utilization or simply the utilization of routing resources like wires and switches. It is

difficult to calculate the wire utilization but we can approximate with some numbers. If

data bus is 32-bit wide then 32 dedicated wires are going to each register. Total wires can

be approximately 32 times the number of registers.

5.1.2. Timing Analysis

This design failed to achieve the timing constraint of 100MHz in a multi clock design

with FPGA filled around 60-65%. The exact details of the design cannot be discussed as

thesis is completed with a company and NDA is signed.

5.2. WISHBONE Shared Bus Design Results

This design is implemented in Xilinx Spartan-6 FPGA XC6SLX45T Speed grade -3. The

results for the proposed design consist of one Master and multiple slaves. The design was

tested for each slave having 8-64 registers and the overall design was tested for 8-32

slaves. Slaves are implemented in several different ways like distributed or block RAM.

The design was also tested with empty FPGA containing only the wishbone shared bus

design and the other case in which extra dummy logic is added to the design and the

FPGA is filled 65%. Results of the proposed design include the resource utilization and

timing analysis of the different design models.

5.2.1. Resource Utilization

In this section, I have discussed the total design resource utilization and also the resource

utilization of individual components like master, slave and interconnect. Logic utilization

for interconnect is important here, which is very low. Resource utilization for other

entities like master and slave depends upon the design and implementation.

EXPERIMENTAL RESULTS 39

Total Resource Utilization

Table 2 shows the resource utilization of the total design in terms of Slice Reg and LUTs.

It includes the Master, Slaves, Interconnect and System Controller. We can observe that

if we double the number of slaves the total resource utilization doubles but if we keep the

slave number constant and only increase the number of registers the total resource

utilizations increases slowly.

Table 2 Total Resource Utilization

No. of Slaves No. of Registers

32 bit

Slave with DRAM

Slice Regs

Slave with DRAM

LUTs

8 8 374 535

8 64 382 644

16 8 636 952

16 64 670 1287

32 8 1242 2336

32 64 1355 2810

Figure 5-1 shows the average percentage of resource utilization of each component.

Detailed table for each component is in Appendix 4. We can see that slave utilizes the

major area while the interconnect and master uses the least.

Resource Utilization by each Component

Interconnect

The most important results are of interconnect utilization because other components are

implementation dependant but the resource consumption for interconnect will remain the

same. Interconnect resource utilization consists of the write back multiplexer, address

comparator and some logic gates. Logic utilization for interconnect is negligible and wire

utilization as compared to the design with point-to-point connection is very low. 32-bits

for data, 1-bit for strobe, 1-bit for Write Enable and in the maximum case of 32-slaves

and 64-registers the address is 11- bits. This makes in total 45-bits which means 45 wires

Figure 5-1 Percentage of Resource utilization by each component

10%

78%

12%

Resource Utilization

Master

Slave

Interconnect

EXPERIMENTAL RESULTS 40

from Master to slaves. And those wires are shared by each slave. The important point to

note here is such large design would be impossible with point-to-point interconnection.

Table 3 shows the resource consumption of interconnect for each design.
Table 3 Resource Utilization by Interconnect

Slaves Registers LUTs

8 64 64

16 64 128

32 64 328

Master

Master uses a very small number of resources and irrespective of the number of slaves it

uses only 50-70 LUTs. The reason for such low resource consumption is that Master here

only takes address and data from the test bench and forwards it to the slave. It acts as

Dynamic Ram Access entity.

Slave

Table 4 shows the resource utilization for each design. Slave when implemented as

synchronous read distributed memory. Detailed resource consumption can be found in

Appendix 4.

Table 4 Resource utilization by Slaves

Slaves Registers Slices Slice Regs LUTs LUT

RAM

8 8 128 256 423 148

8 64 152 256 531 256

16 8 282 512 851 278

16 64 347 512 1083 512

32 8 606 1024 1950 565

32 64 746 1024 2417 1024

5.2.2. Timing Analysis

Timing analysis of the design is done by implementing slave as distributed RAM

(DRAM) and Block RAM (BRAM) to analyse the impact of slave side on the timing of

the design. Also as discussed earlier, the design was implemented on empty FPGA and

the FPGA which was 64% filled with extra dummy stuff. Timing parameters are observed

after the Place and Route.

Table 5 shows the timing analysis of the design in which slave is implemented with

synchronous read DRAM and also BRAM on an empty FPGA. The design failed the

timing constraint of 250 MHz when the number of slaves reaches 32 and the registers are

64. The critical path which failed the timing constraint is the Write Enable signal from

Master to the slaves. The design with 32-slaves and 64- registers passed the target timing

constraint of 200 MHz.

EXPERIMENTAL RESULTS 41

Table 5 Timing Analysis of design with empty FPGA

No of Slaves No of Registers

32-bit

Slave with DRAM

 250MHz

Slave with BRAM

 250MHz

16 8 Passed Passed

16 64 Passed Passed

32 8 Passed Passed

32 64 Failed Failed

Table 6 shows the timing analysis of the design when target FPGA is filled with dummy

stuff and FPGA is filled up to 64% and then following designs are implemented on the

FPGA. This also shows the design containing 32-slaves with each having 64-Registers

which makes in total 2048 registers passed the timing constraint of 200MHz even if the

FPGA is 64% filled.

Table 6 Timing analysis of design with 64% filled FPGA

No of

Slaves

No of

Registers

32 bit

Slave with

DRAM

200MHz

Slave with

BRAM

 200MHz

Slave with

DRAM

 250MHz

8 64 Passed Passed Passed

16 64 Passed Passed Failed

32 64 Passed Failed -

Timing Analysis Results

The design with point to point interconnection failed with the timing constraint of 200

MHz when the design only had 400 registers. As we can see in Table 6, wishbone shared

bus design with 32-slaves and 64-registers which makes in total of 2048 registers passed

the timing constraint of 200 MHz.

5.2.3. Critical Path

I will discuss the critical path of the design which failed to pass the timing constraint of

250 MHz. Critical path in most cases is the control signals going from the Master to the

slaves. Critical path for the design with 32-Slaves and 64-Registers is Write Enable signal

going from Master to all the Slaves. This signal has big fan out as compared to the other

signals and connected to all the slaves directly without any logic in between. Otherwise

the goal of the design is to fulfil the timing constraint of 200 MHz which it did

successfully.

5.2.4. Latency and Throughput

Latency

Latency for writing is one clock cycle and for reading from RAM is one clock cycle. If

write back path from slave to master with multiplexer in between is registered / pipelined

than latency for reading is two clock cycles.

EXPERIMENTAL RESULTS 42

Throughput

Writing

Throughput for writing 32-bit data, latency is one clock cycle and clock is 200 MHz

Throughput= (Frequency/Latency)*Data size per cycle

 = ((200x106 Cycles/sec) ÷1) ×32- bits/ Cycle

 = 762 MB/s

If clock is changed to 250 MHz then

Throughput = 953 MB/s

Reading

Also throughput for reading 32-bit data, one clock cycle latency and 200 MHz clock

Throughput = 762 MB/s

And for 250 MHz clock

Throughput = 953 MB/s

If latency is two clock cycles then throughput will reduce to 381 MB/s.

Combined for Reading and Writing

Combined throughput for complete writing and reading process is when you write in one

cycle and read in next cycle. Latency is 2 clock cycles for complete process and clock is

200 MHz.

Throughput= (Frequency/Latency)*Data size per cycle

 = ((200x106 Cycles/sec) ÷2) ×32- bits/ Cycle

 = 381 MB/s

This ends the discussion of the performance analysis and the timing constraints of the

design.

CONCLUSION 43

6. CONCLUSION

This chapter summarizes the master thesis work and it also includes the future direction

and room for improvement in this work

6.1. Conclusion

In this thesis, on chip communication architectures are analysed, which included point to

point interconnection, shared bus and Network on Chip. Important on chip shared buses

like Wishbone, CoreConnect, Avalon, AXI and AMBA are discussed and compared with

each other. Company’s previous design was implemented using point-to-point

interconnection and causing timing problems. It is analysed in this thesis and alternate

approaches like shared bus and Network on Chip’s feasibility are discussed to solve the

timing problems and interconnect resource utilization. Shared bus is identified as

potential interconnect to solve the problem. There are different shared bus models

available like single shared bus, ring bus and hierarchical bus. The single shared bus

model is selected because design consisted of single master and multiple slaves. There

were different shared bus standard available for single master and multiple slave design.

Out of the different shared bus standards, Wishbone bus is selected to solve the particular

problem because it is simple, flexible and open source.

Wishbone shared bus based design is implemented, which can support the design of

one Master connected to Multiple Slaves. The design with point-to-point interconnection

failed to meet the timing constraint of 200MHz with 400 registers. New proposed

Wishbone shared bus design successfully met the timing constraint of 200MHz with 5

times the number of registers than the previous design. Interconnect utilization by the

wishbone shared bus is significantly lesser than the point-to-point design, which used

dedicated connection to each entity while the new design used the shared bus. A shared

bus uses more logic resources than point to point interconnection, but it improves the

timing, reduce interconnect utilization and is scalable.

6.2. Future Work

Shared bus design is optimized to achieve a timing constraint of 200 MHz but it can

be further optimized in future to pass timing constraint of higher frequencies. The control

signals from Master to slaves are the critical path and bottleneck which can be pipelined.

Built-in tool features for optimizing can also be used.

REFERENCES

[1] M. Mitic and M. Stojcv, "An Overview of On-Chip Buses," FACTA

UNIVERSITATIS, Niš, 2006.

[2] S. Pasricha und N. Dutt, On-Chip Communication Architectures: System on Chip

Interconnect, Morgan Kaufmann, 2010.

[3] R.UMA, V. Vijayan, M. Mohanapriya and S. Paul, "Area, Delay and Power

Comparison of Adder Topologies," International Journal of VLSI design &, vol.

3, no. 1, p. 161, February 2012.

[4] H. W.H. and P. T.M., "A Design Methodology for Efficient Application-specific

on-chip," IEEE Trans. Parallel Distributed System, vol. 17, no. 2, pp. 174-179,

February 2006.

[5] M. Sharma and D. Kumar, "WISHBONE BUS ARCHITECTURE – A SURVEY

AND COMPARISON," International Journal of VLSI design & Communication

Systems (VLSICS), vol. 3, no. 2, pp. 107-124, April 2012.

[6] T. S. Mak, P. Sedcole, P. Y. K. Cheung and W. Luk, "ON-FPGA

COMMUNICATION ARCHITECTURES AND DESIGN FACTORS,"

Department ofComputing, Electrical and Electronic Engineering, London, 2006.

[7] IBM, "IBM Microelectronics," [Online]. Available:

http://www.ibm.com/chips/products/coreconnect. [Accessed 29 05 2014].

[8] ARM, "Arm. amba specifications v2.0. ARM," [Online]. Available:

http://www.arm.com.

[9] ALTERA, "www.altera.com," [Online]. Available:

www.altera.com/literature/manual/mnl_avalon_spec.pdf. [Accessed 24 06 2014].

[10] OpenCores, "WISHBONE OpenCores," 2014. [Online]. Available:

http://cdn.opencores.org/downloads/wbspec_b4.pdf. [Accessed 14 May 2014].

[11] Open Cores, "Open Cores," [Online]. Available: http://opencores.org/. [Accessed

14 August 2014].

[12] W. Wong, "Electronic Design," Penton Electronics Group, 17 July 2012. [Online].

Available: http://electronicdesign.com/fpgas/understanding-fpga-processor-

interconnects. [Accessed 01 June 2014].

[13] A. Imbewa, "Design Space Exploration of FPGA-Based NoC Routers," University

of Windsor, Windsor, 2012.

[14] Z. Marrakchi, H. Mrabet, U. Farooq and H. Mehrez, "FPGA Interconnect

Topologies Exploration," International Journal of Reconfigurable Computing,

vol. 2009, no. 259837, p. 13, 2009.

[15] J. Rose und D. Hill, „Architectural and physical design challenges for one-million

gate,“ in s Proceedings of ACM/SIGDA International Symposium on Field

Programmable, 1997.

[16] M. I. MASUD, „FPGA ROUTING STRUCTURES: A NOVEL SWITCH

BLOCK AND DEPOPULATED INTERCONNECT MATRIX

ARCHITECTURES,“ The University of British Columbia, Columbia, 1998.

[17] S.Phillips, „VictoriaFalls: Scaling highly-threaded processor cores,“ in s

HotChips, 2007.

[18] J. Shandle, „EETIMES,“ 24 09 2002. [Online]. Available:

http://www.eetimes.com/document.asp?doc_id=1275901. [Zugriff am 01 06

2014].

[19] S.Brini, D.Benjelloun und F.Castanier, „A flexible virtual platform for

computational and communication architecture exploration of DMT VDSL

modems,“ in s DATE, 2003.

[20] M. Harnisch und Doulos, „DOULOS,“ 2010. [Online]. Available:

http://www.doulos.com/knowhow/arm/Migrating_from_AHB_to_AXI/. [Zugriff

am 2014].

[21] XILINX, „AXI Reference,“ Xilinx, 2012.

[22] Diolan, „Diolan,“ 2013. [Online]. Available:

https://www.diolan.com/dln_doc/spi-bus-interface.html. [Zugriff am 2014].

[23] M. K. Namork, „Development of a test system for Network on Chip,“ Norwegian

university of Science and Technology, 2011.

[24] Arteris, "A comparison of Network-on-chip and Busses," Arteris, Guyancourt

Cedex, 2005.

[25] J. Alam, „Academia,“ 2005. [Online]. Available:

https://www.academia.edu/4102154/DESIGN_AND_IMPLEMENTATION_OF

_EFFICIENT_BUS_ARCHITECTURE_FOR_SYSTEM-ON-CHIP. [Zugriff am

2014].

[26] Silicore Corporation, "OpenCores," October 2001. [Online]. Available:

http://opencores.org/websvn,filedetails?repname=uart_block&path=%2Fuart_blo

ck%2Ftrunk%2Fdocs%2FWishbone+Public+Domain+Library%2FWBVHDLIB

.zip. [Accessed June 2014].

[27] M. Khellah, S. Brown and Z. Vranesic, "Minimizing Interconnection Delays in

Array-based FPGAs," IEEE 1994 Custom Integrated Circuits Conference, San

Diego, 1994.

APPENDIX 1

WishBone MxN Shared Bus

APPENDIX 2

Area utilization by each component

SL

AV

ES

R

E

GI

ST

E

RS

INTERCON

NECT
MASTER SLAVE 1 TOTAL SLAVES

S

li
ce

s

L
U

T
s

S
li

ce
s

S
li

ce
 R

eg

L
U

T
s

S
li

ce
s

S
li

ce
 R

eg

L
U

T
s

L
U

T

R
A

M

S
li

ce
s

S
li

ce
 R

eg

L
U

T
S

L
U

T

R
A

M

8 8 32 64 56 118 48 17 32 54 19 128 256 423 148

8 16 32 64 62 132 45 17 32 54 19 128 256 423 148

8 32 32 64 58 118 49 16 32 53 18 123 256 417 142

8 64 32 64 62 126 49 19 32 67 32 152 256 531 256

16 8 32 128 57 124 39 26 32 62 17 282 512 851 278

16 16 32 128 59 137 48 26 32 62 17 284 512 851 278

16 32 32 128 59 146 56 26 32 62 17 284 512 851 278

16 64 32 128 65 158 49 30 32 76 32 347 512 1083 512

32 8 181 328 75 218 58 32 32 91 17 606 1024 1950 565

32 16 177 328 87 246 52 31 32 91 17 603 1024 1950 565

32 32 174 328 94 294 73 31 32 91 17 604 1024 1960 575

32 64 172 328 106 331 65 35 32 106 32 746 1024 2417 1024

Timing Report for the whole design

No of

Slaves

No of

Registers

(32 bit)

Slave

with

DRAM

10ns

Slave

with

BRAM

10ns

Slave

with

DRAM

5ns

Slave

with

BRAM

5ns

Slave

with

DRAM

4ns

Slave

with

BRAM

4ns

8 8 6.393 5.864 4.728 4.937 3.952 3.870

8 16 6.604 6.684 4.879 4.897 3.944 3.925

8 32 5.482 7.041 4.760 4.759 3.927 3.938

8 64 5.639 6.537 4.926 4.957 3.964 3.927

16 8 6.136 5.377 4.915 4.939 3.958 3.963

16 16 6.219 7.421 4.942 4.949 3.969 3.939

16 32 7.511 6.727 4.856 4.917 3.891 3.969

16 64 7.288 6.813 4.957 4.918 3.955 3.956

32 8 8.974 6.164 4.969 4.922 3.961 3.966

32 16 6.961 6.665 4.965 4.889 3.975 4.612

32 32 8.884 9.499 4.953 4.962 3.980 4.644

32 64 8.857 8.397 4.961 4.968 5.318 4.691

