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System on Chip interconnections are gaining importance as many IP cores are being 

integrated on a single chip and interconnect is the bottleneck for design speed. In this 

paper an asynchronous design comprised of single master and multiple slaves connected 

via point-to-point topology is analysed. This design resulted in large multiplexer, poor 

timing closure and consumed large interconnect area in FPGA. The aim of the thesis is to 

evaluate the system on-chip interconnections and implement the system with the 

synchronous shared bus interconnection. Many system-on-chip interconnections are 

reviewed in the thesis, which includes study of major types of buses from different 

vendors. Synchronous shared bus system is proposed as solution for the interconnections 

between single master and multiple slaves. Shared bus for the single master and multiple 

slaves is implemented using WISHBONE architecture and protocols for shared bus 

system. A general model is designed and implemented which is flexible to be tested for 

single master and any number of slaves. Performance evaluation is done for the design in 

terms of resource utilization and timings performance. 
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INTRODUCTION  1 

1. INTRODUCTION 

Advancement in technology has made it possible to integrate millions of transistors on a 

single chip. To match the pace of integration, advancement and shrinking process 

technologies, designers and manufacturers are now trying to put the different Intellectual 

Property (IP) cores, general purpose processor cores, digital signal processor cores, on-

chip memory and other application specific circuits on a single chip known as 

Multiprocessor System-on-Chip (MPSoC) for a specific application. [1] Figure 1-1 shows 

an example of a small MPSoC, which has two ARM9 microprocessors, on-chip 

memories, Direct Memory Access (DMA), peripherals and external interfaces which are 

interconnected by on-chip bus architecture consisting of multiples shared buses. [2] 

 

 
Figure 1-1 Example of MPSoC [2] 

 

It is the responsibility of the on-chip architecture to make sure that data is routed correctly, 

reliably and efficiently from the source to the destination. It must also provide the required 

latency or bandwidth to meet the performance requirement. [2] These developments pose 

some challenges like Area/resource consumption, delay and power dissipation [3] but the 

significant challenge for the designers is on-chip communication architecture [4] amongst 

the modules. As the emphasis on design re-use is increasing, designing an interconnection 

is getting more complicated and complex [5].  

FPGA has in abundance, Programmable switches and programmable interconnect like 

local and global wire segments. Interconnection architectures which are built on top of 
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these elements should use them efficiently to improve system performance and make the 

system scalable. [6]  

Several methods like point-to-point communication, bus communication and 

Network on Chip (NoC) are used to provide interconnection solutions but each has its 

own advantages and disadvantages in terms of resource consumption, area, power 

dissipation, latency and throughput. On-chip communication is essential to provide high 

bandwidth and reliable data transfer between the processing modules and is directly 

related to the performance of the SOC. The bandwidth, latency and throughput plays 

significant role in deciding the overall performance of the system with increasing number 

of communicating components. [6] This increases the importance to improve the 

communication architectures for better performance. 

Many leading manufacturers like IBM [7], ARM [8] and ALTERA [9] are providing 

bus based interconnect solutions. 

1.1. Objective 

The goal of the thesis is to replace the asynchronous point-to-point interconnection of the 

design with suitable synchronous on-chip shared bus system. It includes the analysis, 

implementation and performance evaluation of the shared bus system with single master 

and multiple slaves. Simplicity, scalability, resource consumption and throughput are the 

constraints of the system. 

1.2. Thesis outline 

Thesis is organized as follows Chapter 1 has introduction, objective and outline of the 

thesis. Chapter 2 contains the theoretical background of the topic which contains the three 

types of interconnections which are point-to-point, bus interconnection and Network on 

Chip. There advantages, disadvantages and types are discussed. Types of buses are 

explained in more detail as they are under main focus. Chapter 3 contains the analysis of 

the interconnections. Chapter 4 contains the implementation of WISHBONE bus [10] 

architecture for a single master into many slaves. WISHBONE architecture signals and 

rules are explained in detail. Chapter 5 contains the results and discussion. Results are 

taken from the implementation from Chapter 4. Finally the Chapter 6 contains the 

conclusion of the overall thesis. It explains the reasons for selecting, implementing and 

testing a particular architecture and also proposes the possible future work 

. 
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2. THEORETICAL BACKGROUND 

This chapter develops the foundations for the key concepts used in this thesis. It discusses 

the theoretical details of these concepts. This chapter gives in detail explanation of the 

on-chip interconnects like point-to-point interconnect, BUS interconnect, Network on 

Chip (NoC) interconnect. It also includes different types of buses by companies like ARM 

[8], IBM [7] and ALTERA [9]. The chapter also covers the basic types of NoC and its 

implementation details. At the end, the chapter contains the summary of all type of 

interconnections. 

2.1. Field Programmable Gate Array (FPGA) 

FPGA is a special kind of Integrated Circuit (ICs), which can be programmed after 

manufacturing. The design is implemented using Hardware Description Language (HDL) 

such as VHSIC (Very High Speed integrated Circuit) Hardware Description Language 

(VHDL) or Verilog. It doesn’t contain any pre-determined functionality but it can be 

programmed to any digital design specific to the required application. It contains 

programmable logic blocks for implementing logic functions, programmable routing 

paths with switches to connect these logic blocks and I/Os as seen in Figure 2-1. The logic 

blocks and interconnects are programmable interconnects. Current FPGAs also contain 

some Hard Cores [12] like memory, DSPs and processors. Processors can also be 

implemented as Soft Core [12] on FPGA fabric using logic blocks and making the design 

bigger and complex. [13] 

 

Figure 2-1 FPGA Structure [13] 
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2.1.1.  FPGA Interconnection 

Figure 2-2 shows the FPGA interconnection architecture. FPGA interconnects takes the 

90% area of the total area while the logic blocks takes 10% of the total area. This 

interconnect plays major role in delay and area efficiency of the architecture. [14] Logic 

Blocks combine to form Intellectual Property cores (IP) like DSP, processor and 

memories. As the complexity of the circuit increases and more IP cores are put on FPGA, 

interconnect also becomes large and complex and the routing architecture becomes more 

important. Optimal use of this structure is important otherwise it will result in poor 

routing, speed or density and efficiency of the system decreases. [15] [16] 

 

 
Figure 2-2 FPGA Interconnect [13] 

2.2. On-Chip Interconnections 

Communication architecture amongst the different processing elements on a chip is called 

on-chip interconnection. Interconnection is nothing but physical set of wires which can 

connect the source and destination modules to each other by following different protocols 

and topologies. Topology is the way in which processing elements are connected to each 

other and the protocol means the way in which they communicate with each other. 

 

TYPES OF INTERCONNECTIONS 

Typical on-chip interconnections are point-to-point interconnection, bus based 

interconnection and network-on-chip. Figure 2-3 shows the types of on chip 

interconnections. Each type is explained in detail below. 
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Figure 2-3 Types of Interconnects 

2.2.1. Point-to-Point Interconnect 
 

In Point-to-point interconnect, the two modules or IP cores communicate with each other 

over a dedicated communication channel. This interconnect needs a set of dedicated wires 

according to the application to connect the modules. Figure 2-4 shows a typical example 

of neural networks where the communication link between two processing elements is 

dedicated. There are two types of point-to-point interconnect; Custom interconnect and 

uniform Interconnect. In Custom interconnect, interconnect is designed and processing 

elements are connected according to the need of the application while the uniform 

interconnect is well defined interconnect which can be explained with graphs or 

equations.  

Point-to-point communication stands amongst the simplest interconnection 

architectures and because of its simplicity it is deployed extensively in many applications 

worldwide [1]. Point to point communication for system having few components can run 

effectively with such light weight architecture. As there will be no sharing of the channel, 

its latency and performance can be calculated. [6] 

The communication channel between two nodes is a dedicated set of wires so as the 

number of nodes increases the use of wires increases exponentially and the routing 

becomes more difficult. Point-to-point scheme suffers from low wire usage efficiency for 

low bandwidth channels and also pose a high usage of hardware. In terms of scalability, 

the point-to-point interconnect is not a good choice. As the complexity of the systems is 

increasing, the requirements like low area overhead and higher bandwidth are demanding 

more efficient interconnection architectures. [6] [1] 

Speed performance of design depends upon the IP/Module internal delays in addition 

with the propagation delay through the interconnect. Latency and throughput of the 

design mainly depends upon the two communicating modules. In case of some shared 

medium, latency and throughput will also depend upon the arbitration technique. There 

is no extra arbitration logic required to connect the two modules 
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2.2.2. Bus Interconnect 
Bus is a single physical communication channel in which wires are grouped to form a 

single medium and shared amongst multiple entities. Each module communicates with 

other on the same physical interconnection. Typically one entity acquires the bus 

ownership (known as bus master) and places signal on the bus while the other entities 

response to the master. Bus can be synchronous in which transmission starts and ends on 

the edge of a clock while in asynchronous bus transmission starts and stops depending 

upon the acknowledgement signals. Figure 2-5 shows an example of a shared bus. An 

arbiter is deployed to control the access of the bus between the nodes. On the other hand, 

in the point-to-point interconnect each module communicates with the other module on a 

dedicated path.  Bus architecture clearly reduces the number of wires and also reduces 

overall area needed for communication and control [1]. 

 

 
Figure 2-5 Shared BUS 

 

Bus is widely accepted communication architecture amongst System-on-a-Chip 

(SoC) architectures and currently on-chip networks are made with buses. Bus based 

interconnection network provides design reuse and flexibility to the SoC designers. 

Designing teams focusing on future modules can easily design the newer modules around 

the current standard bus. As more processing elements are deployed on a single chip, 

interconnection network is also gaining importance. [1]  

Figure 2-4 Point to Point Interconnect 
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BUS ARCHITECTURE 

Bus architecture has two major parts; bus topology and bus protocol. 

 
Figure 2-6 Parts of Bus Architecture 

BUS TOPOLOGY 

Bus based architecture has different types of bus topology where topology of the bus is 

the physical arrangement of the bus. It plays key role to determine cost, complexity, 

power and performance of the architecture. [2] The simplest scheme is the single shared 

bus, in which all components are connected to a single shared bus. A more efficient 

topology is the hierarchical bus, in which multiple shared buses are connected in parallel 

using bridges while allowing parallel data transfer. For further high performance systems 

full bus crossbar topology is used. In this topology each Master is connected to each slave 

with point-to-point interconnection providing superior parallel response. Finally Ring bus 

topology is used as high performance bus topology, in which components are connected 

in the form of a ring. [17] 

 

o SHARED BUS 

Shared bus is in which multiple entities share a common medium for communication. 

Figure 2-7 shows an example of a shared bus. Single/Multiple master and Single/Multiple 

slaves are connected to a shared bus and can communicate with each other. The arbiter in 

case of multiple masters examines the requests from multiple masters and gives access to 

a specific master on the basis of the protocol defined in arbiter. In case of a single master 

arbiter can be skipped. There are several advantages of a shared bus like the simplicity, 

extensibility, low area, easy to build and easy to manage. [1] [6]. As the number of 

masters on a shared bus increases its latency increases because bus is unavailable for 

transfers when it’s busy in serving one master. There also disadvantages of a shared bus 

which includes high energy consumption, latency and low bandwidth when load is high. 

Such configuration is good for small sized SoC having few components and it doesn’t 

scale well to handle large systems [18]. A system bus in computer is an example of a 

shared bus. 
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Figure 2-7 Shared Bus 

 

Shared bus topology can be multiplexed or non-multiplexed. Multiplexed bus is when 

data and address share same set of signal lines. This reduces the number of 

interconnections but also increases the latency. In non-multiplexed data and address has 

separate signal lines which increases the number of interconnection but can be moved in 

as little as one clock cycle and latency can be decreased. 

There are two types of bus interconnection; Tri-state based or multiplexer based. Tri 

state interconnection has tri state buffers. Tri state buffers give three logic levels as output 

which are “OFF”, “ON” and “HIGH IMPEDANCE” and high impedance means logical 

disconnection in the circuit. This interconnection works in the way when one 

MASTER(Sender) wants to send the data it turns its buffer “ON” while the rest of the 

MASTERs turn their buffer to high impedance. Similarly the SLAVE (Receiver) which 

wants to read the data turns its buffer ON. This approach has two drawbacks. It is slower 

than direct interconnection because switching buffer ON and OFF has some minimum 

timing limit which should be met [10]. Second, three state buffers are not available on all 

the devices like Xilinx Spartan-6 XC6SLX45T. Figure 2-8 shows the two masters and 

two slaves connected via four three state buffers shown as arrows on wires. While the 

other is multiplexer based interconnection; its advantage is that it can be implemented in 

any device unlike tri-state based interconnection, its disadvantage is it requires large 

number of logic gates and large number of routed interconnects. Figure 2-9 shows the 

multiplexor based interconnection in which each module gets the access to the bus via 

control signal and multiplexor. 

 

 
Figure 2-8 Tri-State interconnection [10] 
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Figure 2-9 Multiplexer Interconnection [10] 

 

o HIERARCHICAL BUS 

This architecture is made of several shared buses connected to each other through bridges. 

Modules are placed at a level according to their requirement. High performance 

components are placed on high performance buses while the low ones on low 

performance bus. This system keeps the two levels separately in which the low 

performance modules don’t load the high performance buses. Communication between 

the buses having different performance occur through bridges which also pose some 

overhead and latency. Multiple data transfers are possible in parallel. Buses can have 

different clock frequencies so bridge can get more complex for transactions amongst the 

buses [2]. Figure 2-10 shows the example of a hierarchical bus where three buses are 

connected to each other via bridges. Common example of such an architecture is AMBA 

[8] and CoreConnect Bus [7].  

 

 
Figure 2-10 Hierarchical Bus [2] 

 

o CROSSBAR BUS 

A crossbar circuit takes N inputs and connect each of them to the M outputs. Figure 2-11 

shows the crossbar bus with master and slaves. At each wire intersection there is a pass 

transistor which is called crosspoint connector which short circuit two wires to make a 

connection. Each wire is a bus with unique master. Centralized arbiter controls the 

crosspoint connector and depending upon the input and output requests it makes 

connections. An example of crossbar bus topology SoC is Niagra Multiprocessor SoC 

[17]. This bus is used for high performance system which needs parallel data transfer 
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while the solution can be excessive for smaller systems [19]. It takes large area, more 

power and to achieve routing closure is impossible [14]. 

 

 
Figure 2-11 CrossBar Bus [2] 

o RING BUS 

In a Ring bus topology each node communicate using an interface made in a ring manner 

and the protocol used is token pass protocol. A token is passed to each entity and if the 

entity wants to access the bus it can keep the token till the time it is communicating and 

then it passes the token to the next entity. Data is transferred in clockwise or anti-

clockwise direction. It is also a high performance ring topology. It takes less area while 

provides reasonable bandwidth [2]. 

 

 
Figure 2-12 Ring Bus [2] 

 

BUS PROTOCOL 

Bus arbitration protocols are the set of rules, in which the transaction occur on the 

channel. Arbitration protocols allow the master to access the bus and transmit. Entities 

send their request to transmit to the central arbiter and arbiter depending upon the 

implemented protocol allows the access or reject. It includes arbitration mechanisms like 

Round robin access, Time division multiplexed access or Priority based access protocols. 

Buses use several communication protocols for channel sharing and resource allocation. 

o STATIC PRIORITY 

Typically shared bus architecture uses this protocol, in which a central arbiter gives access 

to the masters on the list waiting for access. Priority number is given to each connected 

master and the master having the highest priority gets the first access and so on. 
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Transactions can be pre-emptive or non-pre-emptive. AMBA and CoreConnect Bus uses 

this protocol [8] [7]. 

 

o ROUND ROBIN PROTOCOL 

This protocol works as follows; each entity can access the shared media on its turn. It 

gives equal priority to all the entities. It grants access to the bus in rotating basis like a 

rotating switch as you can see in the Figure 2-13 . When an entity releases the bus, access 

is given to the next entity requesting for access and if some entity is not requesting it can 

skip. If currently served entity is Master#1 and the next entities requesting for access are 

MASTER#0 and MASTER#3. Access will be given to the MASTER#3. [10] 

 

 
Figure 2-13 Round Robin Arbiter [10] 

o TIME DIVISION MULTIPLEXED ACCESS (TDMA) 

Time is divided in slots and each slot is assigned to a particular master. Master can only 

get access to a channel in its given time slot. Several algorithms are made to cope up with 

the problem of unused slots.  

 

o LOTTERY 

In this protocol a centralized system collects the requests from entity for the ownership 

of shared channel. An entity getting the ticket will get access to the bus. A static or 

dynamic number Xlottery ticketsX is assigned to them [1]. 

 

o TOKEN PASSING 

Token passing protocol is used in the ring topology. A special data word token is passed 

to all the nodes on ring and the node which has the token can access the shared channel. 

When the node is done with its transaction it passes the token to its next neighbour in the 

ring and the node which doesn’t want to have access can simply pass the token to its 

neighbour. 

2.2.3. SoC Buses 

Advance Microcontroller Bus Architecture (AMBA) 

AMBA (Advance Microcontroller Bus Architecture) is a bus standard developed by 

ARM with an intention to introduce an efficient on chip bus for communication. This bus 

is divided into two main parts; one is for system communication and other is for 
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Figure 2-14 Example of AMBA Bus [1] 

peripheral communication and they are connected via a bridge. It has single edge clock 

protocol, split transactions, several BUS Master, pipelined operations and non-tri-state 

implementation. [8] [1] Buses defined with the AMBA system are 

 

 ASB (Advanced System Bus) 

This is one of the system buses which are used for cost effective and simple 

solutions and it supports many things like pipelining, multi master and burst 

transfer, non-multiplexed address and data bus and centralized decoder and 

arbiter. 

 

 AHB (Advanced High-performance Bus) 

This is also a system bus which is designed for high performance designs. It 

provided very high bandwidth and support processors, peripherals, RAM 

interfaces and APB Bridge. It supports multi master operation, burst transfer, split 

transactions, wide data bus, Synchronous no multiplexed bus, separate read data 

buses, and non tri-state multiplexed operations. 

 

 APB (Advanced Peripheral bus) 

It is used to connect low power and low speed peripherals. It is a secondary bus 

and it doesn’t have clock and data access is controlled by select and strobe. Bridge 

is the master and devices like Timer, parallel I/O, UART, keypad etc are slaves. 

It is a static bus with simple addressing, simple un-pipelined interface and latched 

address and control system.  

Advanced Extensible Interface (AXI) BUS 

AXI bus is introduced by AMBA; AXI3 in 2003 and AXI4 in 2010. AXI Interconnect IP 

Core is available in Xilinx ISE Design suite which can be used in the projects. It is suitable 

for low latency and high bandwidth designs. Unlike AMBA it provides high frequency 

operation without the use of bridges. It meets the interface requirements of large range of 

components and is suitable for memory controllers. It is flexible in the implementation of 

interconnections and is also backward compatible with AHB and APB interfaces of 

AMBA Bus. [20] [1] [21] 

 

AXI has three types of interfaces 
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 AXI4- for high performance memory mapped 

 AXI4-Lite- for simple, low-throughput memory-mapped communication 

 AXI4-Stream- for high speed streaming data 

 

AXI specification describes an interface between AXI Master and Slave. They are 

connected together using a structure called Interconnect block and in case of AXI4 and 

AXI4-Lite it is AXI Interconnect. It is used for memory mapped interfaces only while the 

AXI4-stream interconnect can be used for AXI-4 stream bus implementation. 

 
Figure 2-15 AXI Bus 

Both AXI4 and AX4-Lite has different channels between Master and Slave 

 

 Read Address Channel 

 Write Address Channel 

 Read Data Channel 

 Write Data Channel 

 Write Response Channel 

 

AXI interconnect can be implemented in two modes; 

 

Crossbar mode: Shared address and multiple data crossbar architecture with parallel 

lines for write and read data channel. This mode is optimized for performance. 

Shared Access mode: Shared write and read data and single shared address pathway. 

This mode is optimized for area. 

 

Some of the key features of AXI bus are 

 Separate address/control and data phases 

 Support for unaligned data transfers using byte strobes 

 Burst based transactions 

 Separate read and write data channels 

 Able to issue multiple outstanding addresses 

 Out of order transaction completion 

 Can add register stages to get timing closure 

 32,64,128,256,512 or 1024 bits data width for AXI and 32 bit data width for 

AXI4-Lite 
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 Connects 1-16 masters to 1-16 slaves 

 Optional register-slice pipelining and data path FIFO buffering 

AVALON BUS 

Avalon bus architecture is designed by Altera to connect its processor and peripherals in 

System-on-Programmable Chip (SoPC). It is designed for FPGA SoC design and used 

mainly by NIOS-II soft core processor by Altera. It has synchronous interface and it has 

pre-defined signals and timing to connect Master and Slave interface. It uses separate 

address, data and control lines. It supports multi-master and Master and salve interacts 

with each other in a technique called slave-side arbitration. Its other services are data-

path multiplexing, address decoding, dynamic bus sizing, latent transfer capabilities and 

a streaming read and write capabilities. Altera SOPC builder, a system development tool, 

automatically generates a switch fabric logic to support the transfers by Avalon interface. 

[9]. Altera also started using AXI Bus but Avalon bus is specifically designed for the 

NIOS-II Embedded processor and it is still using it. 

 

 
Figure 2-16 Example of Avalon bus [1] 

CORECONNECT BUS 

CoreConnect bus is developed by IBM. It is a hierarchical bus which is made of three 

buses each having its own functionality to make a complete System on Chip. [7] 

  

 PLB (Processor Local Bus) 

It is multi master and synchronous bus designed to achieve high performance and 

lower delays. Its separate address and data bus support simultaneous read and 

write transfer. Masters are attached to the bus through separate addresses, read-

data and write-data buses. Slaves are attached through shared and decoupled 

address, read data and write data buses. Arbitration unit supports 16 masters and 

any number of slaves. 

 

 

 OPB (On-chip Peripheral Bus) 
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It is designed to connect low performance and low speed peripherals like UART, 

serial and parallel ports. It is fully synchronous, dynamic bus size, separate 

address and data bus, multiple masters, single cycle data transfer between master 

and slave. Its uses distributed multiplexer. PLB is connected to OPB through OPB 

Bridge and the bridge acts as slave to PLB and master to OCB. 

 

 DCR (Device Control Register Bus) 

It is a single master bus with low speed data path. It is used for passing status and 

setting configuration information between the cores. It is also designed for 

testability purpose. It is a synchronous bus with ring topology. It has 10-bit 

address bus and 32 bit data bus. Its arbiter works on static priority function. 

 

 
Figure 2-17 CoreConnect Bus [1] 

 

WISHBONE BUS 

Silicore corporation designed SoC interconnect architecture for portable IP Core 

independent of FPGA and SoC. It is put on public domain by OpenCores in August 2002. 

This particular information is extracted from [10]. It offers following features 

 

 Simplicity, Reliability, Portability, Compact, non-hierarchical and Flexible 

 Supports structured design methodologies 

 Modular data bus width and operand sizes 

 Variable interconnection methods which support point to point, shared bus, data 

flow and crossbar switch 

 Single Clock data transfer 

 Modular address widths 

 Slave less redundant logic using partial decoding scheme 

 User Defined tags 

 Multi master capabilities 

 User defined arbitration methodology 

 Independent of hardware technology, delivery method, synthesis tools, router and 

layout technology 
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WishBone uses Master/Slave architecture. Master interface initiate the data transaction 

and slave responds to request. Master and slave communicate through an interface called 

INTERCON. This interconnection is variable and can be set according to the user needs 

like point to point, data flow, shared bus or crossbar switch. It is a large synchronous 

circuit and is designed to operate over an infinite range of frequencies and the only limit 

is the maximum frequency of the physical circuit.  

 

Types of WishBone Interconnection 

 

 
Figure 2-18 WISHBONE Bus [10] 

 

Point to Point interconnection is the simplest way to connect two WishBone IP cores. It 

allows connecting a single Master interface to a single Slave. For example master can be 

a microprocessor core and slave can be serial I/O port.  

Data flow interconnection is used when data flows in a sequential manner. Each single 

core has both Master and Slave interface. Data flows from one core to another and it 

exploits pipelining and speed up execution. Such architecture can be used e.g. signal 

processing.  

Shared bus interconnection is used when connecting more than one master with one 

or more than one slave. Master initiates a bus cycle and targets slave, an arbiter gives an 

access to a particular master and decides when and which master will gain access. Shared 

bus can use priority or round robin arbiter. Shared interconnection are compact and uses 

less resources but latency can increase as the number of master’s increase. Shared bus 

can be implemented with multiplexer or three state buses. 

 Crossbar switch interconnection is used when connecting two or more masters with 

two or more slaves. Master initiates a bus cycle and arbiter decided when a master can 

access a slave. And a dedicated link is established between master and slave. Overall data 

rate is higher than the shared bus but it requires more resources like the interconnection 

logic. Unlike shared interconnection more than one master can us the interconnection as 

long as two masters don’t access the slave at the same time. 
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Summary of On-Chip Buses 

 

This table summarizes and compares all the features of the important buses like 

WISHBONE, AMBA, AVALON, and CORECONNECT. [1] [5] [9] [8] [7] [10] 

 
Table 1 Summary of On-Chip buses 

 

Main feature Sub Feature WISHBONE AMBA AVALON CORECONNECT 

Status Open Yes Yes Yes 

(Partial) 

Yes 

Registration No Yes Yes Yes 

License No No Yes No 

Architecture Hierarchical No Yes No Yes 

Pipelined No Yes Yes Yes 

Multiplexed Yes Yes Yes Yes 

Topology Point to Point Yes No Yes No 

Shared Yes Yes Yes Yes 

Data Flow/ 

Ring 

Yes No No Yes 

Crossbar 

Switch 

Yes Yes No No 

Arbitration Static Priority Yes 

(Application 

Specific) 

Yes 

(Application 

Specific 

except APB) 

Yes (Slave 

Side) 

Yes 

TDMA Yes 

(Application 

Specific) 

Yes 

(Application 

Specific 

except APB) 

Yes (Slave 

Side) 

No 

Round Robin Yes 

(Application 

Specific) 

Yes 

(Application 

Specific 

except APB) 

Yes (Slave 

Side) 

No 

Lottery Yes 

(Application 

Specific) 

Yes 

(Application 

Specific 

except APB) 

Yes (Slave 

Side) 

No 

 

Token passing 

 

Yes 

(Application 

Specific) 

 

Yes 

(Application 

Specific 

except APB) 

 

Yes (Slave 

Side) 

 

No 

Bus Width Address Bus 

width(bits) 

1-64 1-32 1-32 8-256 

Clocking Synchronous Yes Yes Yes Yes 

Asynchronous No No No No 

Operating 

Frequency 

 User defined User defined User 

defined 

User defined 

2.2.4. Network on Chip (NoC) 
Network on chip’s idea is taken from computer networks formed by routers which are 

responsible for receiving and forwarding data packets and requests hence making a 

network of communication at Local or Global level. NoC is implemented within a System 
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on Chip or FPGA using micro routers, links and other components which are responsible 

for communication amongst the IPs and other routers on the chip. A NOC router in mesh 

NoC has five connections, one for connecting to the local processing element attached 

with the router and the other 4 for communication with its neighbouring routers on East, 

West, South and North. Network Adapters control the communication like packetizing 

and de-packetizing between the router and the core connected to that router. NoC links 

are inexpensive and length is short as compared to the computer networks. Area usage, 

power consumption and latency are very crucial for the NoC but the computer networks 

are more flexible with such things. NoC provides many advantages as compared to other 

on-chip communications. NoCs are scalable, more bandwidth, less latency, multiple 

connections amongst the cores, design re-usability, low area and low power consumption 

[13].  

 

 
Figure 2-19 Sample 4x4 Mesh NoC [13] 

NoC Router 

Router is the main component and backbone of NoC. Routers are used in network to 

receive data from the sender and forward it to the receiver. It receives the incoming 

pattern calculates it destination and finds out the best path for its delivery. NoC router is 

built on OSI model where each layer has its own job. A router usually has 5 ports in which 

one is dedicated for the local port and rest 4 are East, West, North and South to 

communicate with other routers. Figure 2-20 shows the example NoC router. Router 

mainly consists of parts like FIFOs, Crossbar and Arbiter. FIFO stores the incoming 

packets from the respective ports. Each port has its own FIFO. Crossbar directs the input 

to the appropriate output port Arbiter- Arbitration scheme is implanted in arbiter like 

round robin or static priority. Arbiter decides when and which input packet will be 

directed to its output port.  

 

NoC architecture has certain parameters to provide the desired functionality to a system. 

NoC Topology 

Distribution of nodes in the network and establishing links between them according to 

some scheme is topology. It also affects the area, power consumption, latency and 

frequency of the network. Popular topologies are Ring topology, Tree, Butterfly, Polygon, 

Mesh topology and torus. User can also define custom topology according to the 

requirements. 2D mesh is the common topology used in the FPGAs [22] [13]. 
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Figure 2-20 NoC Router 

 

Switching Techniques 

The mechanism which governs the passing of message from upstream to downstream is 

called switching. It directly affects the latency of the network. Circuit Switching and 

Packet switching are the common switching techniques. Circuit switching network 

reserves a dedicated physical path between the sender and receiver and it also needs setup 

time to establish or remove the path. Circuit switching advantage is that its bandwidth is 

predictable. On the other hand Packet Switching transmits packets without a dedicated 

path. Packet switching routers send data in packets called flits. Packet is delivered to the 

destination depending upon the routing information within the packet.  

Flow Control 

It lays down the policy the way network will provide resources for the message. 

Resources like buffers, channels, ports and control logic. Resource allocation depends 

upon the switching technique used. Packet switching requires buffers while circuit 

switching technique doesn’t. Handshaking and credit based protocols are popular. 

Routing Algorithm 

Routing algorithm describes and defines the path between the source and destination 

taken by the packet. The objective is to make the routing scheme efficient so that there is 

less area overhead and latency and high performance can achieved. An efficient algorithm 

will save the network from issues like deadlock, live lock and starvation and helps to 

control the congestion. XY algorithm is the most famous amongst the others as it is simple 

and area overhead is low. It is implemented using distributed routing, in which each node 

forwards the packet to the next node depending upon the routing information included in 

packet header. Packet is sent to the X axis of the node first from where it reaches the Y 
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axis of destination node and then from Y axis it is forwarded to the node. It is one of the 

cheapest algorithms to achieve deadlock free network and prevents live lock. 

Arbitration 

NoC routers receive simultaneous messages on all of its nodes. It is the job of arbiter to 

decide and grant the output port to the incoming packet. There are various schemes of 

arbitration Round robin, first come first serve, priority based, and priority based round 

robin. First two ensures best effort data delivery while the last two are used for guaranteed 

traffic. Static arbitrations are limited to specific order and easy to implement but they can 

suffer from starvation problem while the dynamic arbitrations take decisions at run time 

depending upon the network condition, but are more difficult to implement and will take 

more area. These are efficient, flexible and ensures starvation free network. 

NoC Evaluation Criterion 

Cost metrics 

Power consumption and area are the most focused criteria for NoC cost evaluation. Goal 

of the designer is to minimize them so that it can also be used in small applications where 

area and power is limited. When NoC is implemented in FPGA which has fixed logic 

units and routing paths more focus and techniques are required to lower these criterion. 

Buffers in the NoCs router are considered to be most area hungry items. Worm Hole 

switching technique is considered to be low cost because of their low buffering 

requirement. Dimensions and the amount of buffers in router play important role in the 

cost metrics of the NoC [22]. 

 

Performance Metrics 

Data transaction time is important in evaluating performance metrics. Message delivery 

speed is determined by the operating frequency but throughput and latency are also 

important metrics for NoC. Data transferred in period of time is throughput and can also 

be related with bandwidth. Throughput in NoC is divided into intervals like overall 

application, packet throughput measured per system, IP core and router calculated as an 

average. Latency is the time taken for sending data from a source node to a destination 

node. It is calculated as average packet delay/flit traversing in the network. The lowest 

bound of latency is the zero latency or best case latency; it is the latency when no 

congestion is present in network. Internal delay of the router and other parameters like 

serialization play important part in overall latency. Such delays can be reduced by looking 

and adjusting the parameters like switching techniques, flow control and reducing routing 

decision time [13]. 

2.3. Summary of On-Chip Interconnects 
 

Point to point architecture has direct connection between each module through a set of 

dedicated wires. It works for small systems but as the complexity increases they will need 

more dedicated wires for communication. The system won’t be scalable, routing will be 

difficult and there will be area overhead and hence the complexity increases. Point to 
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point communication for system having few components can run effectively with such 

light weight architecture. The communication channel between two nodes is a dedicated 

set of wires so as the number of nodes increases the use of wires increases exponentially 

and the routing becomes more difficult. Point-to-point scheme suffers from low wire 

usage efficiency for low bandwidth channels and also pose a high usage of hardware. If 

the system needs expansion in the future then this scheme may not be a good choice. As 

the complexity of the systems is increasing and requirements like low area overhead and 

higher bandwidth are demanding more efficient interconnection architectures. [1] [2] 

 

A Crossbar Bus can be used in multi core SoCs where more than one master can 

simultaneously access several slaves. There are multiple ways for data to be transferred 

between masters and slaves in a crossbar switch interconnection. Therefore two or more 

masters can communicate with slaves at the same time, as long as it isn't the same slaves. 

As compared to a shared bus, it leads to a higher data transfer rate. In this type of 

interconnection, there is always an arbiter to control the bus. Arbiter decides which master 

may communicate with which slave. There are number of shared bus architectures by 

different companies. Each of them has its own application, advantages and disadvantages. 

Shared bus is used when low area overhead and scalability are required. Shared bus is 

suitable for small systems, or more complex hierarchal multi buses, using sophisticated 

protocols and bridges, to serve larger systems. Bus is a shared interconnection where each 

module is connected to the bus and acquires the bus control based on bus protocol. The 

disadvantages are the bandwidth is limited and the scalability is restricted. As the number 

of (IPs) grows, the use of these techniques becomes a bottleneck because of scalability 

complications and efficiency. Buses have their own advantages and disadvantages but 

they are used if they are fitting in a particular application. Buses can be used when the 

complexity of the system is less and the requirement for maximum operating frequency 

is not very high. Many disadvantages are associated with bus interconnections. 

Noticeably, the bandwidth is limited, concurrent communications are not possible, and 

the scalability is restricted and causes speed degradation. [1] [2] [13] 

 

NOC is implemented using micro routers, links and other components which make 

the communication possible amongst the modules and other routers on the chip. NOCs 

have certain advantages but they are used for complicated and high end systems for 

specific applications. The basic concept of NoC is to communicate across the chip in the 

same way that messages are transmitted over the Internet today. Communication is 

achieved by sending message packets between blocks using an on-chip packet-switched 

network. NoCs work well for systems with large number of IPs which require high 

throughput and high operating frequency. However for smaller systems Area overhead, 

complexity and power dissipation won’t be optimal as compared to the SoC buses. [6] 

[13] [23] 
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3. ANALYSIS OF INTERCONNECTIONS 

This chapter gives an analysis about a SoC design, which is implemented with point to 

point interconnection and shared Bus. WISHBONE shared bus architecture is selected as 

a new way to implement the system. It is modified, implemented and analysed according 

to the design requirements in accordance with the WISHBONE rules. 

3.1. Analysis 
Analysis includes the discussion about the design implemented by point-to-point 

architecture and the problems caused by such interconnection. Shared bus architecture is 

implemented with WISHBONE standards using Master, Slave and interconnection 

scheme. Writing and reading of the master bus follows the WISHBONE standards. Pros 

and Cons of the new proposed design are discussed and also features of new design are 

listed. 

3.1.1. Design with point-to-point interconnection 

 

This design is asynchronous and has one Processor which is connected to around 400 to 

800 entities (Registers) through point to point interconnection as we can see in Figure 3-1. 

Processor is an external processor outside of the FPGA which is connected to the FPGA 

through an external bus. This design is one part of the large design of company’s project. 

 

 
Figure 3-1 Block Diagram of Point to Point Design 

The design resulted in large area as each connection between processor and registers is 

32- bits wide. This design was implemented on Xilinx Virtex-6 FPGA. The processor is 

directly connected to the registers without any logic in between. The design also resulted 

in a large multiplexer when Registers Write back to the processor as you can see in 

Figure 3-1. Pipelining cannot be implemented as the design is asynchronous. Large 

Processor

Multiplexer

Address

32-bit Data

Read Data 32-bit

Registers0 1 2 N

32-bit Data



ANALYSIS OF INTERCONNECTIONS  23 

multiplexer created timing issues in a multi clock domain and the design failed to fulfil 

the timing constraint of 100 MHz with FPGA filled around 65%. As the external 

processor is operating at very high speed so the requirement of the design is high speed. 

According to the Non-Disclosure Agreement with the company, the exact details of the 

design cannot be discussed here. 

3.1.2.  Design with shared bus interconnection 

 

There are several interconnection types available to solve the problems. Each of them has 

its own advantages and disadvantages. We will discuss them here and will find suitable 

interconnect which supports the architecture of our design of Single Master and Multiple 

Slave. 

As already discussed, the crossbar interconnect architecture is designed for good 

parallelism where several Master cores are communicating with the slaves simultaneously 

while the required design only includes one Master core with several slaves. Crossbar 

interconnect architecture doesn’t fit in this context. Crossbar bus can be used even with 

the single master when the master is required to access the different slaves simultaneously 

which is not our case. 

NoC is the most recent development in the domain of SoC interconnect, which is 

designed to handle large number of IP cores, large bandwidth and scalability but suffers 

from high area overhead and complex design interface issues [24]. As this interconnect 

architecture is designed for multi master cores, it doesn’t fit into the design requirements 

of the required design architecture, which is with single master core. 

There are several versions of the bus architecture like shared bus, crossbar bus, ring 

bus and hierarchical bus. Crossbar bus, hierarchical bus and ring bus are used for 

parallelism and multi cores. Shared bus is rather simple to implement, takes less resources 

and is scalable up to a certain point [6] [1]. The only choice left behind to solve this 

particular issue will be possible by the shared bus interconnect because it supports the 

architectures single master into single slave, multiple master into multiple slave and 

finally Single Master x Multiple Slave architecture, which is the architecture of our 

problem. 

 
Figure 3-2 Shared bus Block Diagram 

MASTER

SHARED BUS

SLAVE 1 SLAVE 2 SLAVE 3 SLAVE N
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Shared bus block diagram can be seen in Figure 3-2 which is the architecture of the 

proposed solution. It shows that Master/Processor is connected to the slaves through a 

shared bus. Design is further explained later with design in detail. 

 

The detailed block diagram of the proposed design with shared bus can be seen in 

Figure 3-3. Master / External processor is connected to the multiple slaves. Unlike the 

design with point-to-point architecture, total number of registers are divided and put 

inside the slaves and also big multiplexer is divided. There will be n- number of registers 

and N- number of slaves. Writing the data takes one clock cycle while reading the data 

takes two clock cycles as read back is divided into two pipeline stages. Register A 

represents the first stage and the Register B is the second stage of pipeline. Interconnect 

includes control signals, address signal and data signal. Interconnect also includes other 

logic and address decoder which will be explained in later section. Each slave contains a 

fixed number of registers or memory spaces in case slave is realized as a memory. The 

number of slaves and registers within each slave is decided by the designer. Designer will 

take into account that the timing and resource consumption depends upon the total number 

of slaves and number of registers within slaves. It is shown in the Chapter Results. Data 

is written to each slave via shared data, address and control lines through shared bus while 

data is read using two stages of multiplexers.  
Figure 3-3 Proposed Design with shared bus 

Slaves also contain write back multiplexers which selects the data Register A based upon 

the address from the Master and the second Register B is a part of a shared bus which 

selects the slave based upon the address. Detailed description of this new block diagram 

is in section 3.1.3. 

3.1.3. Benefits and Features of Shared bus design 

Benefits of Shared bus design 

 Interconnect sharing by the entities will reduce the overall utilization of 

interconnect area. 

 Synchronous design will lead to pipelining and increase the overall efficiency of 

the system. 
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 Shared bus will make it easy to Add/Remove the entities hence making the system 

scalable and flexible. 

 

Features of Shared bus design 

 

 Bus Architecture for the new design will be a shared bus which will support the 

design of single master and multiple slaves. 

 

 Bus Topology in proposed shared bus design will be non-multiplexer based 

topology in which data and address interconnections are separate and not shared. 

It uses more wires but average latency can be reduced compared to asynchronous 

point-to-point topology. 

 

 Bus Interconnection type will be multiplexer based as tri-state interconnections 

are not portable and also tri-state buffers are not available in all the devices. 

 

 Synchronicity is a feature of clocking in the bus. Single clock will be used for 

communication medium and connected entities. The new design will be 

synchronous and makes it possible to do pipelining.  

 

 Bus Protocol for data transfer is handshaking. Read and Write cycle are explained 

in detail in the WISHBONE bus section below.  

 

 Address and Data Bus WISHBONE data bus width can be 8, 16, 32 or 64 bits 

and the address bus width is 1 to 64 bits. 

3.2. WISHBONE Bus 
The proposed shared bus design will be realized by the Wishbone shared bus standard. 

WISHOBONE bus standard is chosen as we have seen in Chapter 2 Table 1 the 

comparison between the important interconnects. WISHBONE bus appears to be simple, 

flexible and portable because of certain factors. WISHBONE bus is open standard and it 

requires no registration or license. It is in the public domain and maintained by Open 

Cores and its IP cores are free to use in any product. It can be used in projects and designs 

without any royalty payment and financial issues. 

CoreConnect and AMBA are hierarchical buses made for complex designs for multi 

masters. AMBA is hierarchical, Avalon is point to point and CoreConnect is a hybrid 

structure. WISHBONE bus is more flexible in terms of architecture and topology. It 

supports, point to point, dataflow, crossbar and shared bus architecture. 

Latency in WISHBONE bus is user defined and application specific. In multi master 

interconnection latency depends upon the arbitration technique and number of masters. 

In our project there is a single master and many slaves so 1 clock cycle latency can be 

achieved but the results would be different for pipelining vs. non pipelined designs. 
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3.2.1. WISHBONE shared bus 
WISHBONE shared bus interconnection is designed to connect two or masters with one 

or more slaves. As the general idea of the WISHBONE shared bus is already given in 

Chapter 2 but it will be discussed in more detail in this section. For further rules and 

standard specification, WISHBONE standard specification document can be consulted at 

[10]. General diagram for multi master and multi slave architecture can be seen in 

Appendix 1. It comprises of components like Master, Slave, Arbiter, Interconnect and 

Simple System Controller (SYSCON). 

This architecture has memory mapped addressing. It’s an architecture which allows 

the data to be stored and recalled in memory at unique addresses. A unique address range 

will be assigned to each slave for addressing. “Master” is an entity or IP core that initiates 

the data transaction with the “Slave” entity. Master provides address and control signals 

and slave responds to the particular master. “Slave” is an entity which is responsible for 

responding to the Master signals and slave is implemented as a memory module to make 

it memory mapped architecture. “Arbiter” is an entity that works like a traffic cop in a 

multi master architecture which grants access to one master at a time to the bus. Different 

arbiter protocols are discussed in Chapter 2 which can be implemented in the arbiter. 

 “Interconnect” consists of wires and logic gates that provides interface to the master 

and slave to communicate with each other. Other than the Master, Slave, System 

Controller and Arbiter, all the things like wires, logic gates, multiplexers and address 

comparator that we see in Appendix 1 figure combine to make interconnect. WISHBONE 

shared bus interconnection general block diagram can be seen in Figure 3-4. 

 

 
Figure 3-4 Shared bus interconnection 

SYSCON called as system controller which generates clock [CLK] and reset [RST] 

signals which are compatible with WISHBONE. The clock output signal is directly 

connected to the input clock signal but the reset signal [RST] is a single clock pulse 

generator in accordance with the WISHBONE reset timing rules. [EXTTST] signal is a 

RESET signal input from the user. Detailed Rules for reset are listed in the WISHBONE 

specification document [10] in Chapter 3 section 3.1.1. State diagram and state machine 

explanation can be found in Appendix 2.  

These components are explained in more detail in the example implementation of a multi 

master and multi slave shared bus. 
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3.2.2. WISHBONE Master and Slave Signals 

WISHBONE Master and Slave shared bus comprises of many signals but the signals 

relevant to the shared bus and the ones, which fit in our design are listed here. There are 

some common signals between Master and Slave like Clock, Data In, Data Out and Reset. 

 

Clock: Clock input signal coordinates with all the activities in the Master, Slave and 

interconnect. At the rising edge of clock all WISHBONE output signals are registered. 

All input signals should be stable before the rising edge of Clock. 

Data In: Data In signal is binary data array used to accept the data which is being read 

from the Slave. Maximum supported port size is 64-bits. 

Data Out: Data Out signal is used to send binary data to the slave. The data port is for 

data output and the maximum size can be 64-bits. 

Reset: The reset signal is used to reset or restart the WISHBONE interface. This signal 

resets the whole WISHBONE interface but excluding the other cores in a system. It can 

be connected to them if required. 

 

MASTER SIGNALS 

WISHBONE shared bus master are listed here 

 ACK_I: The Acknowledgement signal is asserted to indicate the successful 

response of the SLAVE and normal termination of the bus cycle. 

 ADR_O: This binary address signal is used to send the address to the SLAVE. 

The size of the signal depends upon the size of data port.2n=Size of the data port, 

where n will be the width of address port. 

 STB_O: The strobe output signal [STB_O] shows a valid data transfer cycle. 

SLAVE responds with [ACK_I] signal in response. 

 WE_O: The Write Enable Output signal [WE_O] shows whether the current 

signal is READ/WRITE. Signal is LOW on Read and signal is HIGH on Write. 

 

SLAVE SIGNALS 

WISHBONE slave signals are listed here 

 ACK_O: The acknowledge output [ACK_O] is asserted for the normal 

termination of the signal in response to strobe signal of MASTER. 

 ADR_I (): The address input signal [ADR_I ()] is used as an address for the 

SLAVE in a memory mapped structure. 

 STB_I: The strobe input [STB_I], when asserted, indicates that the SLAVE is 

selected. A SLAVE shall respond to other WISHBONE signals only when this 

[STB_I] is asserted. The SLAVE asserts either the [ACK_O] signals in response 

to every assertion of the [STB_I] signal. 

 WE_I: The write enable input [WE_I] indicates whether the current local bus 

cycle is a READ or WRITE cycle. The signal is negated during READ cycles, 

and is asserted during WRITE cycles. 
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3.2.3. Wishbone General Single Read Cycle 

Wishbone single read cycle for master can be seen in Figure 3-5. The figure is taken from 

the datasheet of the Wishbone bus and unnecessary signals are removed. 

 

CLOCK EDGE 1 

MASTER presents a valid address on [ADR_O ()]. 

MASTER negates [WE_O] to indicate a READ cycle. 

MASTER asserts [STB_O] to indicate the start of the phase. 

 

CLOCK EDGE 2 

SLAVE decodes inputs, and responding SLAVE asserts [ACK_I]. 

SLAVE presents valid data on [DAT_I ()]. 

SLAVE asserts [ACK_I] in response to [STB_O] to indicate valid data. 

 

CLOCK EDGE 3 

MASTER receives data on [DAT_I ()]. 

MASTER negates [STB_O] to indicate the end of the cycle. 

SLAVE negates [ACK_I] in response to negated [STB_O]. 

 

3.2.4. Wishbone General Write Cycle 

Wishbone single write cycle for master can be seen in Figure 3-6. The figure is taken 

from the datasheet of the Wishbone bus and unnecessary signals are removed. 

 

 
Figure 3-6 Wishbone Single Write Cycle 

 

 

 

Figure 3-5 Wishbone Single Read Cycle 
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CLOCK EDGE 1 

MASTER presents a valid address on [ADR_O ()]. 

MASTER presents valid data on [DAT_O ()]. 

MASTER asserts [WE_O] to indicate a WRITE cycle. 

MASTER asserts [STB_O] to indicate the start of the phase. 

 

CLOCK EDGE 2 

SLAVE decodes inputs, and responding SLAVE asserts [ACK_I]. 

SLAVE prepares to latch data on [DAT_O ()]. 

SLAVE asserts [ACK_I] in response to [STB_O] to indicate latched data. 

 

CLOCK EDGE 3 

SLAVE receives data on [DAT_O ()]. 

MASTER negates [STB_O] to indicate the end of the cycle. 

SLAVE negates [ACK_I] in response to negated [STB_O]. 

 

 

These timing diagrams show the general Read and Write cycles for the Wishbone shared 

bus. The timing diagram from the actual implementation of the design will be shown in 

the next chapter. There are some signals which will be skipped for our shared bus 

implementation because they don’t fit in the context of single master-multiple slave 

design. 
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4. IMPLEMENTATION OF SHARED BUS 

This chapter has the complete implementation of the wishbone shared bus. Wishbone 

shared bus for multiple Master and multiple slave design is used as a base design to start, 

which is in Appendix 1. It is modified according to the requirements of the single master 

and multiple slave design. Short snippets of code are included and discussed. There are 

also timing diagrams of Read and Write cycle from ISim simulator. 

4.1. Shared Bus Design Implementation 

 

 
Figure 4-1 Proposed Shared Bus Design 
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The proposed shared bus design can be seen in Figure 4-1. Bus and Interconnection 

topologies are already discussed in Chapter 2 Shared bus. With only single master, design 

will be simpler than multi master design and there is no need of arbiter. Data, address and 

control interconnections are shared unlike the point-to-point interconnections. The design 

consists mainly of the following components Master, Slaves, Strobe generator, 

Acknowledgement generator, Address Comparator, System Controller and Write Back 

Multiplexer. The figure shows a top level block diagram of the design with necessary 

details. There is also a separate block, which shows the inside structure of the Slave. 

 

4.1.1. Master of the Shared Bus 

Figure 4-1 shows the idea of the general block diagram of the proposed design. There is 

a single master in this design and signals shown here are the WISHBONE standard 

signals. For the testing purpose WISHBONE Master Wrapper is made and can be 

connected to any Master and in this case it’s DMA. The Master (DMA) will communicate 

with the WISHBONE Master Wrapper and the wrapper will communicate outside with 

slaves using standard WISHBONE handshake protocols. Master Wrapper and its 

interface with Master under test can be seen in Figure 4-2. WISHBONE standard input 

signals are Acknowledgement (ACK), Clock (CLK), Data (DAT) and Reset (RST) while 

the output signals are Address (ADR), Strobe (STB), Write/ Read Enable (WE) Signal. 

Details of these signals are already described in the explanation of the WISHBONE 

Master Signals. Address and Data bus width are made generic in VHDL design which is 

passed on to the Master from the Top level entity. Master has five signals Address out, 

Data out, Write / Read, Enable and Data In and except Enable signal all the other signals 

are directly connected to the corresponding WISHBONE signals. 

 
Figure 4-2 WISHBONE Master Wrapper 

Enable signal is used to enable the Master wrapper to start the Write or Read cycle. Master 

is implemented as synchronous Direct Memory Access (DMA) unit to Read / Write data 

in the memory. For testing purpose Write/Read, Address, Data and Enable signals are 

provided from test bench either from the input file or VHDL test bench. As the Enable 

signal goes HIGH the DMA depending upon the Read/ Write signal starts to Write or 

Read from the Slave. 
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4.1.2. Slave of the Shared Bus 

WISHBONE Slave wrapper is designed which can be connected with any slave. Standard 

WISHBONE signals are shown in the Figure 4-1. WISHBONE Slave interface and Slave 

connection can be seen in Figure 4-3. Slave is implemented as synchronous/asynchronous 

Read RAM which can be distributed or block.  

Distributed RAM is made by using Look up Tables (LUTs) which are available in 

throughout of the FPGA. Maximum of 401Kb of Distributed RAM can be implemented 

in Xilinx Spartan-6 XC6SLX45T Device. SLICEM within the Configurable Logic Block 

(CLB) of the FPGA can be configured to be implemented as Distributed RAM. Such 

RAM is synchronous Write and asynchronous Read but can be also configured as 

synchronous Read. DRAM is fast, local and better for small memory requirements. Block 

RAM is a dedicated two port memory in FPGA. This device discussed above has 116 

block RAMs of size 18Kb. Block RAM is synchronous Write and Synchronous Read. It 

also has the feature of pipelining with the output register and cab be used for large 

memory space requirements. 

RAM can be also implemented as Xilinx IP Core RAM and connected to the Slave 

wrapper. Slave is implemented as a generic model as it takes the address and data size 

from the top level and also the size of the memory is passed from the top level which 

makes it generic and flexible model for testing. Xilinx tool can infer the type of RAM 

whether block/distributed from the modelling style or this slave is designed as we can 

force the tool to make it block or distributed using the VHDL code as 

 

attribute ram_style: string; 

attribute ram_style of REG : signal is "<Block/Distributed>"; 

 

Memory Read & Write operation is synchronous with clock. As this memory poses no 

wait state so Acknowledgement signal is tied to the Strobe signal. As we will see in the 

later sections the type of RAM and ratio between number of slaves and memory size with 

each slave affects the resource usage and timing parameters. 

 

 
Figure 4-3 WISHBONE Slave Wrapper 
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4.1.3. Interconnect of Shared Bus 

Interconnect consists of wires connecting entities, Address comparator, Read back 

multiplexer, Acknowledgement generator and strobe signal generator to enable the 

relevant slave as we can see in Figure 4-1.  

Address comparator takes the most significant bits which are reserved for Slave 

addressing from the Master Address. It analyses the address and assert the relevant ACMP 

(N) output pin which is connected to the corresponding Slave. Address comparator and 

this WISHBONE bus protocol implementation uses partial address decoding. It uses one-

hot encoding scheme for the output where only relevant bit for particular slave is HIGH 

and rest are LOW. 

Partial Address Decoding Registers are now divided into different blocks called Slaves. 

Slaves can also be implemented as memory rather than individual registers. Address bus 

is logically divided into two groups. Most significant bits are reserved to address each 

individual slave. Each slave is assigned a pre-determined static address. Address bus goes 

to the address comparator which depending upon the address decoding table, decodes the 

address and assert the HIGH signal for relevant slave. For example if we have four slaves 

and each slave has eight registers the address decoding table will be like as seen in 

Figure 4-4. Address bus will be 5 bits in which two most significant bits are reserved to 

address the slave while the least significant 3 bits are used by each slave to address the 

registers or memory location within slave. 

 
Figure 4-4 Slaves Address Space 

Strobe Generators are AND gates which acts as Enable for the slave. They take 

Strobe, and ACMP(N) signal from the address comparator. Slave is active if all signals 

are in logic HIGH state.  

Acknowledgement Generator; ACK_O signals from the slaves are connected to the 

OR gate and output is connected to the Master ACK_I signal. Data out from the slaves is 

multiplexed through a write back multiplexer whose select pin is the most significant 

address bits from the master. Acknowledge (ACK) signals from the slaves are connected 

to the OR gate and its output is connected to the input of the master Acknowledgement 

input pin. 

 

Interconnect entity in VHDL Top level is designed in such a way that it makes the 

overall design generic. Width of the data and address bus can be provided and will be 

passed to the other entities from the Top Level block called as interconnect. Address bus 
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width is divided into two sections. MSBs are reserved to address individual slaves and 

LSBs are reserved to address unique partitions within slave. For example, if we have 4 

Slaves each having 8 partitions/registers, then 2 MSBs are reserved for 4 slaves and 3 

LSBs are reserved for partitions and the total length of address bus width will be 5 bits.  
-- TOTAL ADDRESS BITS 
1 ADR_BITS_LENGTH             : integer: =5;  

-- TOTAL DATA BITS 

2 DATA_BITS_LENGTH            : integer: =32; 

-- Bits reserved to Address Slaves 

3 SLAVE_ADR_BITS_LENGTH       : integer: =2; 

-- Bits reserved to Address partitions within slaves 

4 SLAVE_PARTITIONS_LSB_LENGTH : integer: =3; 

-- Optional to select different no of slaves otherwise 2^no.bit for 

slave 

5 NO_OF_SLAVES                : integer: =4 

-- Optional to select different no of partitions with each slave 

otherwise 2^no of partitions within each slave 

6 NO_OF_REGISTERS_SLAVE       : integer: =8   

 

The code snippet of the top level entity to implement and test a generic model is shown 

above. The numbers can be changed to implement the desired configuration.  

1. Size of the address bits is the log2 (NO_OF_SLAVES x NO_OF_REGISTERS_SLAVE) 

2. Data bits size is the size of the data bus 

3. It is log2 (NO_OF_SLAVES) address bits reserved to address the slaves. 

4. It is log2 (NO_OF_REGISTERS_SLAVE) address bits reserved to address the slaves. 

5. This parameter gives the flexibility to set different number of slaves otherwise by 

default 2^ NO_OF_SLAVES number should be entered. 

6. This parameter gives the flexibility to set different number of partitions within 

each slave otherwise by default 2^ NO_OF_REGISTERS_SLAVE with each slave number 

should be entered. 

 

Top level entity takes the number for total number of slaves and generates them in for 

loop using generate statement. As we can see in code below component “Memory” is port 

mapped using for loop. The tool automatically generates the required number of slaves 

depending upon the input number “NO_OF_SLAVES”. This saves us from writing 

redundant code for port mapping each slave. 
 

 

GEN_SLAVE:  

For I in 0 to NO_OF_SLAVES -1 generate 

  SLAVE: Memory  

  GENERIC MAP (ADR_BITS_LENGTH =>SLAVE_PARTITIONS_LSB_LENGTH, 

        NO_OF_REGISTERS =>NO_OF_REGISTERS_SLAVE, 

        DATA_BITS_LENGTH=>DATA_BITS_LENGTH) 

  Port map ( 

        ACK_O   => ACK_SLAVE (I), 

        ADR_I   => ADR (SLAVE_PARTITIONS_LSB_LENGTH-1 

downto 0), 

        CLK_I   => CLK, 
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        DAT_I   => DWR, 

        DAT_O   => DAT_OUT (I), 

        STB_I   => STB_SLAVE (I), 

        WE_I    => WE);  

End generate GEN_SLAVE; 

 

4.2. Test Bench 
A simple Test bench is written in VHDL to provide the stimulus to the Master. For the 

simulation purpose stimulus to the Master are address, data, enable and Write Enable. 

Clock period is 10 ns.  

Write Data 

A code snippet from test bench for writing the data is 

 

Enable <=’1’; 

WE_O<=’1’; 

Temp_Address<=”b00000001”; 

Temp_Data<=”xAAAAAAAA” 

 

Read Data 

A code snippet from test bench for reading the data is 

 

Enable <=’1’; 

WE_O<=’0’; 

Temp_Address<=”b00000001”; 

 

4.2.1. Write Cycle 

During the single write cycle the Master puts the data on [dat_o] and address on [adr_o] 

signal and asserts the Strobe out signal [stb_o]. Master asserts the Write Enable signal 

[we_o] to inform the slave that it is write operation. As slave in this implementation is 

RAM, which operates on zero wait state it replies by asserting acknowledge signal. In 

this case [ack_i] signal from slave is tied to the Strobe signal so it’s the responsibility of 

the Master to negate the strobe signal when it’s done with writing the data. This design 

takes only one clock cycle to write the data in the RAM. Latency for writing the data is 

one clock cycle. Timing diagram for write cycle can be seen in Figure 4-5. 

The adr_o = XXX_XXXXX means the most significant 3 bits are for the 8 slaves and 

least significant 5 bits are for the memory within the slaves. In this timing diagram the 

first data “0xaaaaaaaa” for address “0b00000001” is written in the 1st slave and its 2nd 

memory location and the second data “0xbbbbbbbb” for address “0b00100001” is written 

in 2nd slave and its 2nd memory location 
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Figure 4-5 Write Cycle 

4.2.2. Read Cycle 

Read cycle is initiated by the Master. During the single read cycle Master puts the address 

on [adr_o] signal at Clock Edge 0 and similarly like Write cycle asserts the [stb_o] signal. 

[we_o] signal is negated to show the read operation. Slave asserts the [ack_i] signal and 

in response Master pulls down Strobe. This design takes two cycles to read the data 

because reading the data from the slaves is pipelined to make the clock fast. RAM in slave 

takes one clock cycle for reading the data and one extra cycle is added by Read Back Mux 

register. Data being read is same as the data written in the previous section from same 

address. 

4.3. FPGA filled with Dummy Logic 

 

FPGA is filled with dummy logic so that when timings of the design are tested, the design 

is close to the practical case. This logic fills the Xilinx Spartan-6 XC6SLX45T Device up 

to 60-65 %. 

 

PORT 

 

DUMMY_IN :  in std_logic_vector(49 downto 0) 

DUMMY_OUT: out std_logic_vector(49 downto 0) 

 

ARCHITECTURE 

CONSTANT NO_OF_DUMMY_STAGES: Integer: = 700; 

Figure 4-6 Read Cycle 
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Type t_dummy_array is array (NO_OF_DUMMY_STAGES-1 downto 0) of 

std_logic_vector(DUMMY_IN'range); 

Signal dummy_array: t_dummy_array := (others => (others => 

'0')); 

 

PROCESS (EXTCLK)  

Begin 

If (rising_edge(EXTCLK)) then 

  DUMMY_OUT <= dummy_array(NO_OF_DUMMY_STAGES-1); 

  dummy_array(0) <= DUMMY_IN; 

  For i in 1 to NO_OF_DUMMY_STAGES-1 loop   

  

   If i<2 then     

    dummy_array(i) <= dummy_array(i-1); 

   End if;     

    

   If i>=2 then     

dummy_array(i) <= dummy_array(i-1) xor 

dummy_array(i-2); 

   End if; 

     

  End loop; 

 End if;   

END PROCESS; 

 

4.4. Clock Constraint 

Clock Constraint is added for the clock in the constraints file with TIMESPEC. Design is 

tested with 10 ns, 5 ns and 4 ns. 

 

NET "EXTCLK" TNM_NET = EXTCLK; 

TIMESPEC TS_EXT_CLK = PERIOD "EXTCLK" 4 ns HIGH 50%; 

 

This WISHBONE shared bus design for single master and multiple slaves is tested by 

changing the number of slaves and partitions within the slaves. The results are discussed 

in the next chapter. This design saved the interconnect utilization as compared to the 

point-to-point design also achieved higher timing constraints. 
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5. EXPERIMENTAL RESULTS 

We will discuss the resource consumption and timing analysis of the design implemented 

by the point to point system and wishbone shared bus system. 

5.1. Point to Point Design Results 

The design was implemented using point to point interconnection on Xilinx Spartan-6 

FPGA. The design had one Master which was connected to around 400 to 800 registers. 

5.1.1. Resource utilization 

Resource utilization in this particular design was more based on the interconnect 

utilization. There is no logic utilization for the interconnection as we have for the bus and 

NoC design. In this case, resource utilization is calculated in terms of the interconnect 

utilization or simply the utilization of routing resources like wires and switches. It is 

difficult to calculate the wire utilization but we can approximate with some numbers. If 

data bus is 32-bit wide then 32 dedicated wires are going to each register. Total wires can 

be approximately 32 times the number of registers. 

5.1.2. Timing Analysis 

This design failed to achieve the timing constraint of 100MHz in a multi clock design 

with FPGA filled around 60-65%. The exact details of the design cannot be discussed as 

thesis is completed with a company and NDA is signed. 

5.2. WISHBONE Shared Bus Design Results 

 

This design is implemented in Xilinx Spartan-6 FPGA XC6SLX45T Speed grade -3. The 

results for the proposed design consist of one Master and multiple slaves. The design was 

tested for each slave having 8-64 registers and the overall design was tested for 8-32 

slaves. Slaves are implemented in several different ways like distributed or block RAM. 

The design was also tested with empty FPGA containing only the wishbone shared bus 

design and the other case in which extra dummy logic is added to the design and the 

FPGA is filled 65%. Results of the proposed design include the resource utilization and 

timing analysis of the different design models. 

5.2.1. Resource Utilization 

In this section, I have discussed the total design resource utilization and also the resource 

utilization of individual components like master, slave and interconnect. Logic utilization 

for interconnect is important here, which is very low. Resource utilization for other 

entities like master and slave depends upon the design and implementation. 
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Total Resource Utilization 

Table 2 shows the resource utilization of the total design in terms of Slice Reg and LUTs. 

It includes the Master, Slaves, Interconnect and System Controller. We can observe that 

if we double the number of slaves the total resource utilization doubles but if we keep the 

slave number constant and only increase the number of registers the total resource 

utilizations increases slowly. 

 
Table 2 Total Resource Utilization 

No. of Slaves No. of Registers 

32 bit 

Slave with DRAM  

Slice Regs 

Slave with DRAM  

LUTs 

8 8 374 535 

8 64 382 644 

    

16 8 636 952 

16 64 670 1287 

    

32 8 1242 2336 

32 64 1355 2810 

Figure 5-1 shows the average percentage of resource utilization of each component. 

Detailed table for each component is in Appendix 4. We can see that slave utilizes the 

major area while the interconnect and master uses the least. 

 

 

 

Resource Utilization by each Component 

Interconnect 

The most important results are of interconnect utilization because other components are 

implementation dependant but the resource consumption for interconnect will remain the 

same. Interconnect resource utilization consists of the write back multiplexer, address 

comparator and some logic gates. Logic utilization for interconnect is negligible and wire 

utilization as compared to the design with point-to-point connection is very low. 32-bits 

for data, 1-bit for strobe, 1-bit for Write Enable and in the maximum case of 32-slaves 

and 64-registers the address is 11- bits. This makes in total 45-bits which means 45 wires 

Figure 5-1 Percentage of Resource utilization by each component 
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from Master to slaves. And those wires are shared by each slave. The important point to 

note here is such large design would be impossible with point-to-point interconnection. 

Table 3 shows the resource consumption of interconnect for each design. 
Table 3 Resource Utilization by Interconnect 

Slaves Registers LUTs 

8 64 64 

16 64 128 

32 64 328 

 

Master 

Master uses a very small number of resources and irrespective of the number of slaves it 

uses only 50-70 LUTs. The reason for such low resource consumption is that Master here 

only takes address and data from the test bench and forwards it to the slave. It acts as 

Dynamic Ram Access entity. 

 

Slave 

Table 4 shows the resource utilization for each design. Slave when implemented as 

synchronous read distributed memory. Detailed resource consumption can be found in 

Appendix 4. 

 
Table 4 Resource utilization by Slaves 

Slaves Registers Slices Slice Regs LUTs LUT 

RAM 

8 8 128 256 423 148 

8 64 152 256 531 256 

16 8 282 512 851 278 

16 64 347 512 1083 512 

32 8 606 1024 1950 565 

32 64 746 1024 2417 1024 

 

5.2.2. Timing Analysis 

Timing analysis of the design is done by implementing slave as distributed RAM 

(DRAM) and Block RAM (BRAM) to analyse the impact of slave side on the timing of 

the design. Also as discussed earlier, the design was implemented on empty FPGA and 

the FPGA which was 64% filled with extra dummy stuff. Timing parameters are observed 

after the Place and Route. 

 

Table 5 shows the timing analysis of the design in which slave is implemented with 

synchronous read DRAM and also BRAM on an empty FPGA. The design failed the 

timing constraint of 250 MHz when the number of slaves reaches 32 and the registers are 

64. The critical path which failed the timing constraint is the Write Enable signal from 

Master to the slaves. The design with 32-slaves and 64- registers passed the target timing 

constraint of 200 MHz. 
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Table 5 Timing Analysis of design with empty FPGA 

No of Slaves No of Registers 

32-bit 

Slave with DRAM  

 250MHz 

Slave with BRAM 

 250MHz 

16 8 Passed Passed 

16 64 Passed Passed 

32 8 Passed Passed 

32 64 Failed Failed 

 

Table 6 shows the timing analysis of the design when target FPGA is filled with dummy 

stuff and FPGA is filled up to 64% and then following designs are implemented on the 

FPGA. This also shows the design containing 32-slaves with each having 64-Registers 

which makes in total 2048 registers passed the timing constraint of 200MHz even if the 

FPGA is 64% filled. 

 
Table 6 Timing analysis of design with 64% filled FPGA 

No of 

Slaves 

No of 

Registers 

32 bit 

Slave with 

DRAM  

200MHz 

Slave with  

BRAM   

 200MHz 

Slave with 

DRAM   

 250MHz 

8 64 Passed Passed Passed 

16 64 Passed Passed Failed 

32 64 Passed Failed - 

 

Timing Analysis Results 

The design with point to point interconnection failed with the timing constraint of 200 

MHz when the design only had 400 registers. As we can see in Table 6, wishbone shared 

bus design with 32-slaves and 64-registers which makes in total of 2048 registers passed 

the timing constraint of 200 MHz. 

 

5.2.3.  Critical Path 

I will discuss the critical path of the design which failed to pass the timing constraint of 

250 MHz. Critical path in most cases is the control signals going from the Master to the 

slaves. Critical path for the design with 32-Slaves and 64-Registers is Write Enable signal 

going from Master to all the Slaves. This signal has big fan out as compared to the other 

signals and connected to all the slaves directly without any logic in between. Otherwise 

the goal of the design is to fulfil the timing constraint of 200 MHz which it did 

successfully. 

5.2.4. Latency and Throughput 

Latency 

Latency for writing is one clock cycle and for reading from RAM is one clock cycle. If 

write back path from slave to master with multiplexer in between is registered / pipelined 

than latency for reading is two clock cycles. 

 



EXPERIMENTAL RESULTS  42 

Throughput 

Writing 

Throughput for writing 32-bit data, latency is one clock cycle and clock is 200 MHz 

 

Throughput= (Frequency/Latency)*Data size per cycle 

                   = ((200x106 Cycles/sec) ÷1) ×32- bits/ Cycle 

        = 762 MB/s 

If clock is changed to 250 MHz then  

Throughput = 953 MB/s 

 

Reading 

Also throughput for reading 32-bit data, one clock cycle latency and 200 MHz clock 

Throughput = 762 MB/s 

 

And for 250 MHz clock  

Throughput = 953 MB/s 

If latency is two clock cycles then throughput will reduce to 381 MB/s.  

 

Combined for Reading and Writing 

Combined throughput for complete writing and reading process is when you write in one 

cycle and read in next cycle. Latency is 2 clock cycles for complete process and clock is 

200 MHz. 

 

Throughput= (Frequency/Latency)*Data size per cycle 

                   = ((200x106 Cycles/sec) ÷2) ×32- bits/ Cycle 

        = 381 MB/s 

 

This ends the discussion of the performance analysis and the timing constraints of the 

design. 
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6. CONCLUSION 

This chapter summarizes the master thesis work and it also includes the future direction 

and room for improvement in this work 

6.1. Conclusion 

 

In this thesis, on chip communication architectures are analysed, which included point to 

point interconnection, shared bus and Network on Chip. Important on chip shared buses 

like Wishbone, CoreConnect, Avalon, AXI and AMBA are discussed and compared with 

each other. Company’s previous design was implemented using point-to-point 

interconnection and causing timing problems. It is analysed in this thesis and alternate 

approaches like shared bus and Network on Chip’s feasibility are discussed to solve the 

timing problems and interconnect resource utilization. Shared bus is identified as 

potential interconnect to solve the problem. There are different shared bus models 

available like single shared bus, ring bus and hierarchical bus. The single shared bus 

model is selected because design consisted of single master and multiple slaves. There 

were different shared bus standard available for single master and multiple slave design. 

Out of the different shared bus standards, Wishbone bus is selected to solve the particular 

problem because it is simple, flexible and open source.  

 

Wishbone shared bus based design is implemented, which can support the design of 

one Master connected to Multiple Slaves. The design with point-to-point interconnection 

failed to meet the timing constraint of 200MHz with 400 registers. New proposed 

Wishbone shared bus design successfully met the timing constraint of 200MHz with 5 

times the number of registers than the previous design. Interconnect utilization by the 

wishbone shared bus is significantly lesser than the point-to-point design, which used 

dedicated connection to each entity while the new design used the shared bus. A shared 

bus uses more logic resources than point to point interconnection, but it improves the 

timing, reduce interconnect utilization and is scalable. 

6.2. Future Work 
 

Shared bus design is optimized to achieve a timing constraint of 200 MHz but it can 

be further optimized in future to pass timing constraint of higher frequencies. The control 

signals from Master to slaves are the critical path and bottleneck which can be pipelined. 

Built-in tool features for optimizing can also be used. 
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APPENDIX 1 

WishBone MxN Shared Bus 

 

 



 

APPENDIX 2 

Area utilization by each component 
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8 8 32 64 56 118 48 17 32 54 19 128 256 423 148 

8 16 32 64 62 132 45 17 32 54 19 128 256 423 148 

8 32 32 64 58 118 49 16 32 53 18 123 256 417 142 

8 64 32 64 62 126 49 19 32 67 32 152 256 531 256 

               

16 8 32 128 57 124 39 26 32 62 17 282 512 851 278 

16 16 32 128 59 137 48 26 32 62 17 284 512 851 278 

16 32 32 128 59 146 56 26 32 62 17 284 512 851 278 

16 64 32 128 65 158 49 30 32 76 32 347 512 1083 512 

               

32 8 181 328 75 218 58 32 32 91 17 606 1024 1950 565 

32 16 177 328 87 246 52 31 32 91 17 603 1024 1950 565 

32 32 174 328 94 294 73 31 32 91 17 604 1024 1960 575 

32 64 172 328 106 331 65 35 32 106 32 746 1024 2417 1024 

 

Timing Report for the whole design 

 

No of 

Slaves 

No of 

Registers 

(32 bit) 

Slave 

with 

DRAM 

10ns 

Slave 

with 

BRAM 

10ns  

Slave 

with 

DRAM 

5ns  

Slave 

with 

BRAM 

5ns 

Slave 

with 

DRAM  

4ns  

Slave 

with 

BRAM 

4ns  

8 8 6.393 5.864 4.728 4.937 3.952 3.870 

8 16 6.604 6.684 4.879 4.897 3.944 3.925 

8 32 5.482 7.041 4.760 4.759 3.927 3.938 

8 64 5.639 6.537 4.926 4.957 3.964 3.927 

16 8 6.136 5.377 4.915 4.939 3.958 3.963 

16 16 6.219 7.421 4.942 4.949  3.969 3.939 

16 32 7.511 6.727 4.856 4.917  3.891 3.969 

16 64 7.288 6.813 4.957 4.918  3.955 3.956 

32 8 8.974 6.164 4.969 4.922  3.961 3.966 

32 16 6.961 6.665 4.965 4.889 3.975 4.612 

32 32 8.884 9.499 4.953    4.962 3.980 4.644 

32 64 8.857 8.397 4.961 4.968 5.318 4.691 

 


