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Local features are important building blocks for many computer vision algorithms such
as visual object alignment, object recognition, and content-based image retrieval. Local
features are extracted from an image by a local feature detector and then the detected
features are encoded using a local feature descriptor. The resulting features based on the
descriptors, such as histograms or binary strings, are used in matching to find similar
features between objects in images.
In this thesis, we deal with two research problem in the context of local features for
object detection: we extend the original local feature detector and descriptor performance
benchmarks from the wide baseline setting to the intra-class matching; and propose local
features for consumer video scene boundary detection.
In the intra-class matching, the visual appearance of objects semantic class can be very
different (e.g., Harley Davidson and Scooter in the same motorbike class) and making
the task more difficult than wide baseline matching. The performance of different local
feature detectors and descriptors are evaluated over three different image databases and
results for more advance analysis are reported.
In the second part of the thesis, we study the use of Bag-of-Words (BoW) in the video
scene boundary detection. In literature there have been several approaches to the task
exploiting the local features, but based on the author’s knowledge, none of them are prac-
tical in an online processing of user videos. We introduce an online BoW based scene
boundary detector using a dynamic codebook, study the optimal parameters for the detec-
tor and compare our method to the existing methods. Precision and recall curves are used
as a performance metric.
The goal of this thesis is to find the best local feature detector and descriptor for intra-class
matching and develop a novel scene boundary detection method for online applications.
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Paikalliset piirteet ja niiden kuvaajat ovat tärkeitä komponentteja monessa tietokonenä-
köön liittyvissä algoritmeissa kuten visuaalisten objektien kohdistamisessa, visuaalisten
piirteiden tunnistamisessa ja sisältöpohjaisen informaation haussa. Paikalliset piirteet ir-
roitetaan kuvasta piirreirroittimen avulla ja tämän jälkeen nämä piirteet koodataan piir-
rekuvaajan avulla. Piirrekuvaukset voivat olla esimerkiksi histogrammeja tai binäärisiä
merkkijonoja, joita käytetään samankaltaisten piirteiden tunnistamisessa objekteista kah-
den eri kuvan välillä.
Tässä opinnäytetyössä tutkimme kahta eri ongelmaa liittyen paikallisten piirteiden käyt-
tämiseen objektien tunnistamisessa: laajennamme alkuperäistä paikallisten piirteiden ha-
vaitsijoiden ja kuvaajien suorituskyvyn testausmenetelmää samasta objektista samaan
luokkaan kuuluvien objektien tunnistamiseen ja hyödynnämme paikallisia piirteitä leik-
kauskohtien tunnistamiseen videosta.
Saman luokan sisäisten objektien ulkomuoto voi olla hyvinkin eri näköinen (esimerkik-
si moottoripyöräluokan aliluokat Harley Davidson ja skootteri) ja täten tekee objektien
tunnistamisesta hankalempaa kuin saman objektin tunnistamisesta eri ympäristössä. Eri
piirteen havaitsijoiden ja kuvaajien suorituskyky arvioidaan työssä kolmen eri tietokannan
avulla ja tuloksia analysoidaan yksityiskohtaisesti.
Opinnäytetyön toinen osa koostuu "piirrelaukku-menetelmän tutkimisesta ja sen hyödyn-
tämisestä videon eri leikkauskohtien tunnistamisessa. Kirjallisuudessa on esiintynyt muu-
tamia menetelmiä tehtävän ratkaisemiseksi hyödyntäen paikallisia piirteitä, mutta mikään
niistä ei ole käytännöllinen online-järjestelmän kannalta. Seuraavien kappaleiden aikana
esittelemme uuden piirrelaukku-menetelmän videoleikkausten tunnistamiseen hyödyn-
täen muuttuvaa koodikirjastoa, etsimme optimaaliset parametrit menetelmälle ja vertaam-
me sitä jo olemassa oleviin menetelmiin. Suorituskyvyn mittaamiseen käytämme "preci-
sion and recall"käyrää.
Tämän opinnäytetyön tavoite on löytää paras piirrehavaitsin ja -kuvaaja tunnistamaan eri
objektit samasta luokasta ja kehittää uudenlainen leikkauskohtien tunnistusmenetelmä re-
aaliaikaisia järjestelmiä varten.
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1 INTRODUCTION

As humans, we have powerful ability to perceive the three-dimensional world around us.
You can immediately recognise different flowers from the vase and maybe even name
their sort. Looking at unfamiliar object, for instance an animal or food, you can draw a
conclusion of the target by comparing it to your earlier experiences with objects having
similar colour, texture or shape appearance. There have been a great deal of work trying
to understand how the human visual system works but the solution remain still unaccom-
plished [1].

Despite the difficulties in modelling human visual system, over the years there have been
significant progress in the field of computer vision [2, 3]. Development of computer vision
have given us great potential to change the way we interact with computers and help us to
augment the physical real-world. Researchers have developed mathematical techniques
which computers utilize for recovering the three-dimensional shape and appearance of
objects in images. We have already made reliable techniques to make panoramic view
of an environment from thousands of partially overlapping photographs. Another pop-
ular application is for instance face recognition which can be found from social media
applications and surveillance systems.

In Figure 1 is shown some active topics of the field of computer vision during different
decades. In the 1970s the computer vision was distinguished from the common image

Figure 1. Active topics over different decades on computer vision research [3].
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processing by the desire of recovering the three-dimensional structure of the world from
images and use this information to full scene understanding. The earliest attempts to ex-
tract information from the scene was extracting edges and then inferring the 3D structure
of an object or a "block world" from the topological structure of the 2D lines [4].

In the 1980s lot of efforts was putted to improve existing algorithms and mathematical
techniques. Moravec [5] introduced interest operator based on the intensity variation in
the local neighbourhood of a pixel. Harris and Stephen improved this method in 1988 by
presenting the Harris detector [6].

One of the most noteworthy result achieved in the 1990s was development in the area of
image-based modelling and rendering due to progress on computer graphics [7] which
lead to numerous image manipulation techniques such as image morphing and view in-
terpolation.

Interest points and other feature-based techniques have been the trend for object recogni-
tion during the 1900s and the 2000s. Many successful approaches have been presented,
such as SIFT [8], which was well accepted and is still used in many works as a baseline
for new approaches. One of the active topics of 2000s were category-level or intra-class

object recognition [9, 10, 11], where the problem is to classify an object to a particular
general class such as "dog", "car" or "bicycle". A popular algorithm for category recog-
nition is the Bag-of-Words (also noted as Bag-of-Features, Bag-of-Keypoints, and BoW)
approach, where the term bag of keypoints was first used in 2004 by Csurka et al. [9].
During this decade more and more interest have gained the deep neural architectures [12].

1.1 Object recognition using local features

In literature, the term recognition or generally detection refers to detecting an instance of
a particular object class under many viewing conditions in unconstrained settings (Figure
2). A common way is to extract local features by a feature detector, encode them into
descriptions by a feature descriptor, and use the descriptions as an input data for certain
task such as object categorization or image stitching.
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Figure 2. An example of object recognition.

1.1.1 Local features

A local feature is an image pattern which differs from its immediate neighbourhood [13],
for instance a point on an image where a small shift in multiple directions result large
intensity changes in the texture. In addition to texture, changes in other image properties,
such as colour, can result an interest point depending on an algorithm. These detected
interest points are then encoded by a feature descriptor to descriptions, which are ultimate
feature of an application.

Why someone should use local features? One could be interested in specific type of
features: in the earlier development of local features, they were used to detect corners
and edges, such as the Harris detector [6]. A typical application could be a detection
of road edges from an aerial image. Secondly, one might not be interested in the actual
representation of an interest point itself, more like the accurate location of it and that it
can be found under various transformations. Depending on a algorithm, local features
can provide different type of features and be robust to various image transformations
and hence local features are used as anchor points needed in many matching tasks, for
example, in object retrieval [10, 14, 15] and mosaicing [16]. Thirdly, slightly related to
the second point, using local features allows us to detect objects without segmentation
because local features are highly tolerant to occlusion and clutter which are the main
reason for segmentation.
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1.1.2 Local features in visual object categorization

In visual object categorization (VOC), the task is to find category for an object in a given
image. The task can be hard due to numerous transformations in the image (described
in Section 1.1.3) and presence of multiple instances of the same and different category
objects in the image. VOC methods can be divided into two different learning approaches:
unsupervised and supervised.

• Supervised: Before the actual detecting process, a subset of local features from
object category are used to train a model which represent instances of this object
category. The model should be as discriminative as possible in order to distinguish
two or more different categories.

• Unsupervised: In a unsupervised approach, we are not provided local features with
correct category labels to train the model. The task is to find the hidden characteris-
tics of the object category, which makes the unsupervised learning more challenging
task than supervised.

Why then to choose unsupervised learning? In real life tasks the common unambiguous
characters of some object category are not know or they are impossible or impractical to
attain. Also by unsupervised learning one can explore data that is considered to be purely
unstructured and find hidden patterns from there.

A typical unsupervised approach is to cluster unseen data to different clusters. Clustering
is a technique to group similar multidimensional data to the same group (cluster) by means
of some metric. One of the most influential approach in VOC which utilize clustering is
BoW. In VOC systems, BoW uses clustering as an initialization step (form codewords of
the codebook) and in the building process of code histograms. A codeword is calculated
from an unseen data set of feature descriptors usually by the k-means algorithm [3], which
searches k clusters from unpartitioned data. Then, a codeword is defined as the center of
the learned cluster. In the initialisation phase of a codebook, one calculates the mean value
of each cluster which are then selected to represent our codebook, a vector of length k.
Now, one can calculate a code histogram of an image by extracting local features from the
image and assigning the features to the nearest codeword in the codebook. This histogram
can then be compared to another image histogram calculated in the same way.
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1.1.3 Challenges in object recognition

In real life detecting things such as cars and traffic signs in a street image is often a
challenging task because of view point variation, difference of object scales or varying
illumination conditions (Figure 3). In Figure 4 is shown different instances of the object
class chair. Such a large intra-class variation in appearance and shape makes the detection
challenging and this is studied in Chapter 3. Other obstacles in object detection are oc-
clusion, where the object is partially hidden by some other object and background clutter,
where the background of the object can severely affect the detection performance (Figure
5). An ideal system, which output does not depend to these transformations is said to be
invariant, such as invariant to rotation or rotation-invariant.

Figure 3. Different objects under illumination change (top), view point variation (middle), and
scale change.
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Figure 4. Different instances of the same object category.

(a) (b)

Figure 5. a) Background clutter: A gecko is camouflaged to be part of the tree and thus hard to
detect [17]. b) Occlusion: A painting by Réne Magritte where a man face is occluded by an apple.
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1.2 Structure of the thesis

In section 1 we give the reader a general view of computer vision, visual object detection
and categorization. After that the thesis has two main parts.

The first part consist of an introduction of well known and efficient detectors and descrip-
tors in Chapter 2. Performance of these detectors and descriptors in matching task for
visual objects classes is studied in Chapter 3. The second part of the thesis starts with de-
scription of Bag-of-Features object classification which is described in Chapter 4. Second
part ends to an application exploiting Bag-of-Features method in a video scene detection
in Chapter 5. A short conclusion of the work done is given in Section 6.

1.3 Goals and restrictions

In the first part, the main goal is to find the best methods for local feature detection
and matching. The evaluations is done for local feature detectors and descriptors. The
problem is to distinguish instances of the same class and instances from different class
from each other. This is a different task such as the wide-baseline matching where the
matching is performed for the same objects with different view points. Also for fair
comparison of local feature detectors and descriptors, the meta-parameters of different
approaches must be configured.

In the second part, the main interest is to develop a novel online video scene boundary
detector using local features and Bag-of-Features. The problem is to make a accurate
method which detects a cut location between two different scenes, for instance video
changing from a ballet to a basketball match, and works in online so that video manip-
ulation can be done at the same time while the video is processed. In literature there
have been different approaches to solve the problem and some of them have been already
successful, but none of them are practical for an online application.
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2 LOCAL FEATURE DETECTORS AND DESCRIP-
TORS

In this section we will briefly introduce the properties of local feature detectors and de-
scriptors. We will also give short descriptions of the methods which will be used in
Chapter 3 for visual object class matching.

2.1 Introduction

Local feature detectors and their descriptions are the building blocks of many computer
vision algorithms. A detector provides detected regions or points for a descriptor which
describes them in a certain form. Once we have obtained the features and their descrip-
tions from some query image we can compute features from another images and find
similar parts between the images (Figure 6). Local descriptors have been used success-
fully in many applications such as wide baseline matching [18], object recognition [19],
texture recognition [20], robot localization [21], image and video data mining [22], and
panoramic photography [16].

Figure 6. The process of finding similar features between two image.
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From an image one can extract two kind of low-level features: global features or/and
local features. Global features are usually computed from every pixel of the image and
they represents the whole image by a single feature element, such as a vector. These kind
of features are for example RGB histograms [15] (concerning the colour information of
the image) or calculating a Grey Level Co-occurrence Matrix of the image (concerning the
textural features of the whole image) [23]. On the other hand local features are computed
from multiple locations on the image and as a result we get multiple feature vectors from a
single image. One advantage of local features over global features is that they may be used
to recognize the object despite significant clutter and occlusion and thus do not require a
segmentation of the object from the background unlike many texture features. Advantages
of global features are simplicity of the implementation and a compact representation of
image features. Combining global and local features we can gain even a 20% boost to
performance than using features separately [24]. In this thesis we will now focus on local
features.

The terminology in the literature can be sometimes confusing because of the many dif-
ferent terms refer to the same thing. In this thesis, we will mainly use local features
and keypoints, but also interest points and interest regions are used in the literature. For
the descriptors there exists much less variety and often descriptors and descriptions are
used. In the thesis, we will use the term local feature descriptors for description of local
features.

2.2 Local feature detector properties

Feature detection is a low-level image processing operation which output serves as an in-
put for descriptor. Because feature detector is the initial component in the whole pipeline
process of object recognition, the overall result will be as good as the feature detector.
The detectors can be roughly divided into four different categories: edge detector, cor-

ner detector, blob detector, and region detector. In this thesis we are focusing on blob
detectors which are discussed in Section 2.4. The detector example images in follow-
ing sections are computed using VLFeat toolbox [25] by Andrea Vedaldi in Matlab and
OpenCV libraries.

In [13] are listed the following six properties (repeatability being the most important one)
what an ideal local feature has and what a good local feature detector should search:

• Repeatability: Between two images taken from the same scene (with various trans-



10

formations) the detector should extract the same visual features. Repeatability can
be obtained by two ways: either by invariance or by robustness.

• Distinctiveness/informativeness: Different detected features should be discrimina-
tive enough so they can be distinguished and matched easily.

• Locality: The features should be local enough to tolerate feature deformation such
as occlusion, noise, scale and rotation.

• Quantity: The number of detected features should be large enough, even from on
small object. Ideally the number of features should be adjustable by a threshold.

• Accuracy: The properties concerning the detected feature localization (location,
scale and shape) should be accurate.

• Efficiency: A faster implementation of a detector is always worth to pursue. In a
real-time application it is a crucial property.

In Figure 7 is shown extracted features on the same object in different images. From the
images we can see that exactly the same object characteristic features are found despite
scale, viewpoint and minor contrast changes.

Figure 7. The detected SURF [26] features on two different images. The yellow lines show which
regions match in descriptor space.
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2.3 Local feature descriptor properties

In the previous section we described local features which are used to extract features from
an image. After obtaining the features, we have to encode them into mathematical presen-
tation which is then suitable for feature matching. The feature needs to be unique i.e. if
a similar point is described in two or more images then that point should have similar de-

scription. Description or descriptor should have a proper size, a large descriptor will make
the computation demanding but if the descriptor is too small then it may not be discrimi-
native enough. Descriptors are divided into four classes: Shape descriptors (Contour- and
Shape-based), Colour descriptors, Texture descriptors and Motion descriptors. These can
be divided again roughly into family of Histogram of Oriented Gradient (HOG) methods
where a histogram is calculated from a patch or binary descriptors where a bit string rep-
resents the content of a patch. In this thesis we focus mainly on Texture descriptors and
both, HoG and binary descriptors.

An ideal local feature descriptor has the following properties [27]:

• Distinctiveness: Low probability of mismatch.

• Efficiency: Fast to compute.

• Invariance to common deformations: Matches should be found even if several of
the common deformations are present: image noise, changes in illumination, scale,
rotation and, skew.

2.4 Early work on local features

2.4.1 Hessian detector

Hessian detector proposed by Beaudet et. al [28] in 1978 is one of the first published
blob detection algorithms in the literature. Regions detected by the Hessian algorithm are
shown in Figure 8. The family of Hessian-based detectors consist of the original Hessian
keypoint detector, Hessian-Laplace, and Hessian-Affine. The Hessian detector is based
on the 2× 2 Hessian matrix H:
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H =

[
Lxx(x) Lxy(x)
Lxy(x) Lyy(x)

]
, (1)

where the terms Lxx, Lxy, and Lyy denote the second-order partial derivatives of L(x)
at location x = (x, y) i.e., the gradients in the image in different directions. Before we
calculate the second order derivatives the image is smoothed by taking the convolution
between the image I and a Gaussian kernel with scale σ:

L(x) = G(σ)⊗ I(x) (2)

To find keypoints, the determinant of the Hessian is computed as:

Det(H) = LxxLyy − L2
xy (3)

The determinant of the Hessian matrix is calculated in every point x in the given image.
After obtaining the determinant for every pixel, we search for points where the determi-
nant of the Hessian becomes maximal. This is done by using 3 × 3 window where the
window is swept over the entire image, keeping only pixels whose value is larger than the
values of all 8 immediate neighbours inside the window. Then, the detector returns all the
remaining locations whose value is higher than a pre-defined threshold value τ and these
will be selected as keypoints.

Figure 8. Local features detected by the original Hessian detector. Note the approach convention
to detect features from object contours and corners.

However this approach is not robust to various transformations in the images. The Hessian-

Laplacian detector was introduced to increase robustness and discriminative power of the
original Hessian detector. It combines the Hessian operator’s specificity for corner-like
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structures with the scale selection mechanism presented by Lindeberg [29]. The Linde-
berg mechanism searches for scale space extrema of a scale-normalized Laplacian-of-

Gaussian (LoG):
S = σ2(Lxx + Lyy), (4)

where σ2 is the scale factor. In the Hessian-Laplacian method we build separate spaces
for the Hessian functions and the Laplacian. Then we use Hessian to detect candidate
points from different scale levels and select those candidates to our keypoints which the
Laplacian simultaneously attains an extremum over scale. Now, the obtained keypoints
will be robust to changes in scale, image rotation, illumination and camera noise.

To achieve invariance against viewpoint changes an extended version of Harris-Laplacian
have been pronounced: Hessian-Affine detector [30, 31]. First, we use the scale-invariant
Hessian to find initial keypoints and estimate the shape of the region with the second
moment matrix M:

M = G(σ)

[
L2
x(x) LxLy(x)

LxLy(x) L2
y(x)

]
, (5)

where we can compute the eigenvalues λ1 and λ2 by the following equations:

Tr(M) = λ1 + λ2, (6)

Det(M) = λ1λ2. (7)

The obtained eigenvalues from Equations 6 and 7 gives us an elliptical shaped region, cor-
responding to a local affine deformation. The elliptical shape is normalized to circular one
and the point location and scale is recovered. Again the moment matrix is calculated from
the normalized region and this process is iteratively continued until the the eigenvalues of
the matrix are equal.

2.4.2 SIFT detector and descriptor

The SIFT (Scale-Invariant Feature Transform) detector was first introduced by David
Lowe in 1999 [8] and later improved in 2004 [32]. In contrast to Harris [6] method
where corners are localized when there is low auto-correlation in all direction, SIFT lo-
calizes features where there are "blob-like" structures in the image. Lowe aimed to create
a detector which would be a invariant to translation, rotation and scale. The SIFT al-
gorithm builds a scale-space representation of the original image. This is achieved by a
Difference of Gaussian (DoG) approach combined with interpolation over the scale-space
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which leads to the locations of stable keypoints in that scale-space representation of the
image. After the localization, each keypoint is assigned an orientation, which leads to the
desired rotation invariance. Below are listed the key steps in SIFT algorithm:

1. Scale-space extrema detection: Image is convoluted with Gaussian filters on differ-
ent scales and then the difference of successive Gaussian-blurred images are taken.
This is called Difference of Gaussians (DoG) can be written as:

D(x, σ) = L(x, kiσ)− L(x, kjσ), (8)

where L(x, kkσ) is the convolution of the original image I(x) with Gaussian blur
G(x, kkσ) at scale kkσ. Once we have obtained DoG images, keypoint candidates
are identified as local minima/maxima of the DoG images over all scales.

2. Keypoint localization: After the scale-space extrema detection we have gathered
lots of keypoint candidates and we have to perform an eliminations of the unstable
keypoints. A detailed fit to nearby data is performed to determine location, scale,
and ratio of principle curvatures. In Lowe’s first method the keypoints accurate
position and scale of a central sample point was acquired. In more recent work, the
author fit a 3D quadratic function to improve interpolation accuracy. In addition,
the Hessian matrix was used to eliminate edge responses with poorly determined
locations.

3. Orientation assignment: In this step we achieve rotation-invariance by assigning to
each keypoint one or more orientations based on local image gradient directions.
We create a histogram of local gradient directions at selected scale. Histogram is
then smoothed by every sample’s gradient magnitude and by a Gaussian weighted
circular window. Finally canonical orientation is assigned at peak of smoothed
histogram where each key specifies stable 2 dimensional coordinates. In Figure 10
is shown detected SIFT features with the orientation.

The SIFT keypoint descriptor computation is shown in Figure 9. The left image of the
figure with small arrows represents the gradient magnitude and orientations at each sam-
ple locations. The circle around the samples is a Gaussian weighting function. It is used
to weight the gradient magnitudes of each sample point in a way that it gives less em-
phasis to gradients that are far from the center of descriptor. The right part of the figure
represents the 2× 2 descriptor matrix of the 8× 8 neighborhood. Every cell in the matrix
contains accumulated gradients to 8 directions from the corresponding 4× 4 subregions.
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However, the best results are typically achieved with 4×4 descriptor matrix with 8 orien-
tations [32]. In this case our descriptor has 4×4×8 = 128 dimension in total. Finally the
descriptor vector is normalized to enhance invariance to affine changes in illumination.

Figure 9. A 2× 2 SIFT descriptor (right) computed from 8× 8 sample neighbourhood (left).

Figure 10. Detected SIFT features and their orientations.

2.4.3 Dense sampling

Dense sampling is one of the most commonly used low-level image representation method,
which uses a fixed pixel interval (horizontally and vertically) between sample points i.e.,
points are sampled on a regular dense grid. The chosen length of the interval between
sample points determines the number of patches to be sampled from the image. The in-
terval is usually set that different patches are overlapping 50% [33]. Keeping the interval
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value same for same size images the "detector" generates constant amount of samples de-
spite for instance contrast shifts and thus dense sampling on a regular grid results in a good
coverage of the entire object or scene. Other benefit of dense sampling is a regular spatial
relationship between sampled patches where as local feature detectors find interest points
only from specific locations (corners, blobs, etc.) which makes it hard to model spatial
configuration of features (for instance the spatial relationship between eyes and mouth on
human face). However, dense sampling cannot reach the same level of repeatability as
local features do. In [34] it is shown that dense sampling outperforms local features on
Bag-of-Words based classification. In Figure 11 is illustrated the sampled patches having
50 pixel distance to each other.

Figure 11. Dense sampling.

2.5 More recent and efficient implementations

2.5.1 BRIEF descriptor

BRIEF (Binary Robust Independent Elementary Features) was one of the first published
binary descriptor by Calonder et al. [35]. Binary descriptors try to provide an alternative
method to the widely used floating point descriptors such as SIFT. BRIEF was originally
made to beat SURF [26] and U-SURF (upright version of SURF) descriptors on recogni-
tion performance, while only using a fraction of the time required by either. BRIEF can
produce a very good results with only 256 bits, or even 128 bits, which is a significant
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advantage when millions of descriptors must be stored.

The approach main assumption is that image patches could be effectively classified on the
basis of a relatively small number of pairwise intensity comparisons. The descriptors are
binary strings where each bit represents a simple comparison between two points inside a
patch. Before the binary tests we have to first smooth the patch using the Gaussian kernel
of size σ. More precisely, we can define test τ on path P of size S × S as

τ(P; x, y) :=

1 if P(x) < P (y)

0 otherwise
(9)

where P(x) is the pixel intensity in a smoothed version of P at x = (u, v)T . The BRIEF
descriptor is defined as a vector of n binary test:

fn(P) :=
∑

1≤i≤n

2i−1τ(p;x, y) (10)

where a typical value for n is 128, 256 or 512 [35]. The only properties that have to be
taken account when creating the descriptors are the kernels which are used to smooth the
patches and the spatial arrangement of the (x, y)-pairs.

Smoothing of the patches is a necessary step in the process of obtaining the BRIEF de-
scriptors. BRIEF is highly sensitive to noise due method’s pixel-to-pixel test protocol.
To make approach more robust and increase the stability and the repeatability different
smoothing kernel sizes were studied by Calonder et al. [35]. They found out that a prac-
tical value for Gaussian kernel was 2. Spatial arrangement of the binary tests were their
second experimented parameter. They tested five different sampling geometries, where
the Uniform (−S

2
, S
2
) and the Gaussian S(0, 1

25
S2) (S was the size of the image patch)

distributions were the best methods.

The authors reported the performance results of BRIEF against OpenCV implementation
of SURF. The performance rate histograms were almost superposed and there were no
significant differences in any categories. The speed comparison showed clear differences
among methods and BRIEF was 35- to 41- fold faster building descriptors over SURF
where the time for performing and storing the tests remains virtually constant. For match-
ing the speed-up was 4- to 13-fold. U-SURF computation time was between these two,
but still far away from the BRIEF results. However, BRIEF does not tolerate well orien-
tation and rotation and with a bigger test set of different objects it might not compete with
SIFT and SURF as it was noted by the authors.
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2.5.2 ORB detector

ORB (Oriented FAST and Rotated BRIEF) is a fast local feature detector first introduced
by Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary Bradski [36]. ORB is one of
the most efficient detector algorithm in the field of image processing [37] and it is based
on FAST (Features from Accelerated Segment Test) keypoint. ORB can also be used to
compute the visual descriptors and the approach is based on a steered version of BRIEF
with an additional learning step. The authors main idea was to develop a method which is
a computationally-efficient replacement to SIFT that has similar matching performance,
is less affected by image noise, and is capable of being used for real-time performance.

ORB starts the search of local features by FAST corner detector. It is a computationally
efficient and produces high quality features. After we have retrieved the features we apply
a Harris corner measure to find the top N features among them. We apply also a scale
pyramid to get multiscale-features. However, the FAST does not compute the orientation
so we do not have rotation-invariant features yet. Authors decided to use Rosin’s [38]
orientation measure, the intensity centroid, to include rotation invariance. First we define
the moments of a patch as:

mpq =
∑
x,y

xpyqI(x, y), (11)

and centroid can be determined as

C = (
m10

m00

,
m01

m00

). (12)

The corner orientation is then the angle of the vector
−→
OC, where O is the corner’s center.

The orientation is simply calculated as:

θ = atan2(m01,m10), (13)

where atan2 is the quadrant-aware version of arctan. To improve the rotation invariance
of this measure one should compute x and y remaining within a circular region of radius
r, where r is the size of the patch. Below (Figure 12) are shown the detected features by
ORB detector.
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Figure 12. Detected ORB features.
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3 COMPARISON OF FEATURE DETECTORS AND
DESCRIPTORS FOR VISUAL OBJECT CLASS
MATCHING

In Chapter 2 we presented local feature detectors and descriptors which are used in many
computer vision problems such as panorama image stitching [16], robot localization [39],
and wide baseline matching [18]. In all these cases, the feature correspondences are
needed to match several views of the same scene. Local feature detectors and descriptors
performance for these kind of problems have been already well covered by Mikolajczyk
[30], Mikolajczyk and Schmid [27] and in the more recent paper [37] by Miksik and
Mikolajczyk. Another interesting application would be to match two views of different
objects from the same class. For instance we want to classify a mountain bicycle and a
trial bike to be related because they are both from the same class bicycle. Although both
are objects from the same class, their visual appearance can be very different, and thus,
the original evaluation of detectors and descriptors are not directly applicable.

Various methods have been proposed for detecting interest points/regions and to construct
descriptors from them, most of which are designed with a different applications in mind.
In [30, 27] and [37] the authors evaluated and compared the most popular and recent de-
tectors and descriptors. The detector were evaluated by their repeatability rations and total
number of correspondences over several views of scenes and with various imaging dis-
tortion types. The descriptors were evaluated by their matching rates for the same views.
Comparisons concerning object classification tasks were reported in [20] and [19], but
in these works the evaluation was tied to a single methodological approach, namely vi-
sual Bag-of-Words (BoW). Moreover, many fast descriptors have been proposed recently:
SURF [26], FREAK [40], ORB [36], BRISK [41], BRIEF [35]

In this chapter we will extend the original detector and descriptor benchmarks in [30, 27]
to intra-class repeatability and matching. We evaluate the popular and efficient detectors
and descriptors and their various implementations with the proposed framework. The
detectors repeatability rates and the total number of correspondences for different objects
from the same class were evaluated over 750 image pairs from different image databases.
The descriptors were evaluated by their matching rate for the same data set. In addition,
we investigate the effect of using multiple best matches (K = 1, 2, ...) and introduce an
alternative performance measure: match coverage.
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3.1 Previous work

The evaluation method described in this chapter is basically an extension of the evaluation
framework from [30, 27]. The benchmark framework provides a fair way to compare
detectors and descriptors by evaluating the overlap of the detected areas of interest as well
as how well these regions actually match. We will follow the same evaluation principles
as in the framework in our experiments: repeatability for detectors and match count/ratio

for descriptors. Most of the results are included to the recent paper [42].

We refer to these repeating and matching regions as "category-specific landmarks". A
qualitative measure to visualise descriptors "(HOGgles)" was recently proposed by Von-
drick et al. [43], but its main use is in image-wise debugging of existing methods. More
quantitative evaluations were reported by Zhang et al. [20] and Mikolajczyk et al. [19],
but these were quite heuristic and tied to a single methodology, the visual Bag-of-Words
(BoW) [10, 9]. In this work, we show that the original evaluation principles can be
adopted to obtain similar quantitative performance measures in general, comparable and
intuitive forms used in the original works of Mikolajczyk et al., and not tied to any specific
approach.

3.2 Performance measurement protocol

We believe that the general evaluation principles in [30, 27] hold also in the visual object
categorization context:

1. Detectors which return the same object regions for class examples are good detec-
tors – detection repeatability.

2. Descriptors which match the same object regions between class examples are good
descriptors – match count/ratio.

For detectors the detector repeatability rate is the most important value to measure perfor-
mance of a detector [13]. We start the calculations by comparing all the detected regions
in two image pairs. If the overlap error is smaller than ε0 then two regions are deemed to
correspond:

1−
Rµα ∩R(HTµbH)

Rµα ∪R(HTµbH)

< ε0 (14)
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where Rµ represents the detected elliptic region defined by xTµx = 1 and H is the
homography relating the two images. Before calculating the overlap error we have to
normalize the corresponding areas. This is done because the bigger the ellipses are, the
smaller is the overlap error in the measurement and vice versa ( Figure 13). To compensate

Figure 13. Size of the ellipses have an effect on the overlap measurement [30].

for the effect of regions of different sizes, Mikolajczyk determined the scale factor that
transforms reference image into a region of normalized size (in the experiments normal-
ized to a radius of 30 pixels). After that, we apply the determined scale factor to both the
region in the reference image and the region detected in the other image which has been
mapped onto the reference image by an estimated unknown affine homography. Now, the
actual overlap error as stated in Equation 14, can be computed. In Mikolajczyk exper-
iment the overlap error was set to 40%. After we have obtained all the correspondence
regions, we can calculate the repeatability rate as:

repeatability rate =
# of correspondences

min(# of reg in img A,# of reg in img B)
∗ 100 (15)

Taking the minimum of detected regions in image A and B we will only include regions
that are found in both images.

As we stated earlier a good descriptor should be discriminative to match only correct
regions and also it should be robust to some small appearance variations between the ex-
amples. The descriptor performance were obtained in the Mikolajczyk and Schmid paper
[27] by computing statistics of the correct and false matches. Our descriptor performance
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will be evaluated by the average number of matches and the median number of matches.
In our work descriptors results are expected to be weaker due to increased appearance
variance. For instance, scooter and road bikes are both found in the Caltech-101 motor-
bike category, but their pair-wise similarity is much weaker than between two scooters or
two road bikes.

3.3 Data

Both detectors and descriptors were evaluated using three different image databases:
Caltech-101 [44], R-Caltech-101 [45] and ImageNet [46]. Caltech-101 image database
contains images and annotations for bounding boxes and outlines enclosing each object.
We chose Caltech-101 because it is popular in papers related to object categorization
and contains rather easy images for benchmarking. We selected ten different classes
from the database to get good view of the performance over different content. Every
image is scaled not to exceed 300 pixels in width and height. The classes are watch,

stop_sign, starfish, revolver, euphonium, dollar_bill, car_side, air planes, Motorbikes

and Faces_easy.

The Caltech 101 database however has some weaknesses: the objects are practically in
a standard pose and scale in the middle of the images and background varies too little in
certain categories making it more discriminative than the foreground objects. To make our
benchmark process more challenging we will use the randomized version of the Caltech-
101 database where we use the same classes but with randomized background, object
orientation and locations. Annotations for bounding boxes and outlines are provided.

To experiment our detectors and descriptors with more recent images, we chose to in-
clude ImageNet image dataset to our evaluation. ImageNet provides over 100,000 dif-
ferent meaningful concepts and millions of images. However, bounding boxes, outline
coordinates, and landmarks for the objects were not provided and we had to mark them
manually. We selected Watch, Sunflower, Pistol, Guitar, Elephant, Camera, Boot, Bird

and Aeroplane object categories to be in our testing process.
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3.4 Comparing detectors

3.4.1 Annotated bounding boxes and contour points

In our experiment annotations for object bounding boxes and contour points are given for
each images. Box coordinates are given as vector of 4 elements describing the top left
and bottom right corner of the box. The outlines of objects for Caltech-101 and ImageNet
image set are 2 × n matrices containing n (x, y)-pairs for contour points. Since we are
only interest of benchmarking how well detected features found from the objects match to
different object from the same category, detected features outside the object contour are
discarded. With more challenging randomized Caltech-101 we only used bounding boxes
so some background features around the objects will be detected. In Figure 14 is shown
the bounding box and the contour of an image from Caltech-101 dataset, all the detected
SIFT features and the remaining ones after the elimination process.

3.4.2 Annotated landmarks and affine transform

For every image there are manually annotated landmarks (5-12 landmarks per category)
which are marked to the sample image locations, which are semantically similar between
the same category images. By these landmarks and estimating the pair-wise image trans-
formations using the direct linear transform [47] we can establish affine correspondence
between image pairs. In Figure 15 is shown two examples of landmark locations on an
object and how well they match with other object’s landmarks.

3.4.3 Selected local feature detectors

The detectors for the experiment were selected from the earlier study [48] where the
performance of different detectors and descriptors were evaluated. Detector evaluations
included nine publicly available detectors:

1. Detectors from Zhao’s Lip-vireo toolkit 1: difference of Gaussian (dog-vireo), Lapla-
cian of Gaussian (log-vireo) and Hessian affine (hesslap-vireo).

2. Three implementations by Mikolajczyk2: Hessian-affine detectors (hessaff ) and

1http://code.google.com/p/lip-vireo
2http://featurespace.org
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(a)

(b) (c)

Figure 14. Elimination of the features outside the object: a) the bounding box (yellow line) and
the contour (red line) of the face, (b) the detected SIFT features, and c) the remaining features
after elimination.

(hessaff-alt) and Speeded-up robust feature detector (surf ).
3. Two detectors from VLFeat toolbox3: Maximally stable extremal regions (mser)

and SIFT (sift).

The results indicated that hesslap-vireo, dog-vireo and surf were the best detectors based
on the repeatability rate which was over 30% with all the methods. However, the hesslap-

vireo provided much more correspondences (57) on average compared to for instance
the highest repeatability rate (30%) dog-vireo which had 16 average on correspondences.
Considering the repeatability rate and the average correspondences equally the best detec-
tors were hesslap-vireo (30.6%, 57.4), hesaff (25.4%, 47.8) and log-vireo (26.3%, 46.5).

3http://vlfeat.org
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(a) (b)

(c) (d) Subfigure 3 caption

Figure 15. Two objects from different classes with annotated landmarks (the leftmost images) and
50 examples (affine) projected into a single space (denoted by the yellow tags).

In this thesis, we report the results for the hesaff detector (hesaff ) and VLFeat implemen-
tation of SIFT.

In additions to these we were interested to evaluate some of the more recent and efficient
detectors from [37]: BRIEF [35], BRISK [41] and ORB [36]. The best results were
obtained using the ORB OpenCV implementation 4 which results are reported in this
thesis. Moreover, dense sampling has replaced detectors in the top methods (Pascal VOC
2011 [49]) and we added the dense SIFT in VLFeat toolbox to our evaluations (dense).

3.4.4 Performance measures and evaluation

For the detector performance evaluation, the test protocol is similar to Mikolajczyk bench-
mark [30] which main points were discussed in section 3.2. Because we are focusing on

4http://opencv.org/
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object matching more than a general feature similarity measurement, we will make an
exception to the protocol that only interest points inside the contour will be selected. For
each image pair, points from the first image are projected onto the second image by the
affine transformation estimated using the the annotated landmarks described in the sec-
tion 3.4.2. The interest points (regions) are described by 2D ellipses and if a transformed
ellipse overlaps with an ellipse in the second image (more than a selected threshold value)
a correct correspondence is recorded. The reported performance numbers are the average
number of corresponding regions between image pairs and the total number of detected
regions. The detector performs well if the total number of detected regions is high and
most of them overlap with the second image corresponding regions. We adopt the pa-
rameter setting from [30]: 40% overlap threshold and normalization of the ellipses to the
radius of 30 pixels. The normalization is required since the overlap area depends on the
size of the ellipses. The algorithm for evaluating detectors is shown below:

Algorithm 1 The detector benchmark procedure
1: for all image pairs do
2: Extract local features
3: Use foreground masks to filter out features outside the object
4: Compute the true transformation matrix H for image pairs
5: Transform all detected regions onto the second image using H
6: for all regions do
7: if Overlap is more than a threshold t with some of the regions in the other

image then
8: Increment the correspondency score ci
9: end if

10: end for
11: Calculate the repeatability rate rj using ci
12: end for
13: Return the correspondences c and repeatabilities r

3.4.5 Results

It is noteworthy that this evaluation differs from the earlier studies [48] in the sense that in-
stead of using the default parameters for each detector we adjusted their meta-parameters
to return on average 300 regions for each image. This makes the evaluation fair for all
the detectors because of the number of detected regions will surely have an effect to num-
ber of correspondences between image pairs. The adjustment of the meta-parameters is
discussed more in section 3.4.6. The results of the detector experiment are reported in
Table 2 and Figure 16. From the results we can see that the starfish and the revolver
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categories were the hardest ones for all the detectors. Performance of dense sampling in
Faces_easy category is very good: it provides a lot of correspondence regions compared
to other methods and the same regions are mostly found in both images.

With the adjusted meta-parameters the difference between the detectors is less significant
than in the earlier evaluation [48] and the previous winner, Hessian-affine, is now the
weakest. With the default parameters Hessian-affine returns almost five times more fea-
tures than for instance SIFT, which made the evaluations too biased against the other de-
tectors. The original SIFT detector performance without the parameter adjustment would
be by order of magnitude worse. The new winner in the detector benchmark is clearly
the dense sampling with a clear margin to the next best detector ORB. However, when
computational time is crucial, the ORB detector seems attempting due to its speed.

Table 2. The Overall result table of detector evaluation.

Detector Avg # of corr. Avg. rep. rate

vl_sift 127.5 41.6%
fs_hessaff 79.3 26.0%
cv_orb 132.0 43.5%
vl_dense 192.3 64.6%

3.4.6 Detecting more regions

In the previous section, we adjusted detector meta-parameters to return on average 300
regions for each image. That made detectors produce very similar results while using
the default parameters in our previous work lead to completely different interpretation.
It is interesting to study whether we can exploit meta-parameters further to increase the
number of corresponding regions. For ORB we adjusted the edge threshold, for Hessian-
affine the feature density and the Hessian threshold, for SIFT the number of levels per
octave, and for the dense the grid step size. We computed the detector repeatability rates
as the functions of the number of detection regions and the results are reported in Fig-
ure 17. Figure also shows the number of returned regions by default parameters with the
black dots. As expected the meta-parameters have almost no effect to the dense detection
while Hessian-affine, ORB and especially SIFT clearly improve as the number of the re-
gions increase (SIFT regions saturate to the same locations approximately at 600 detected
regions). For the most difficult classes (starfish and revolver) the performance of the de-
tectors could be increased by a iterative search of the optimal parameters but this could
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(a)

(b)

Figure 16. Detector evaluation in object class matching. Meta-parameters were set to return on
average 300 regions. (a) average number of corresponding regions and (b) repeatability rates.
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compromise the performance of other category classes.

Figure 17. Detector repeatability as the function of the number of detected regions adjusted by
the meta-parameters

3.5 Comparing descriptors

A good region descriptor for object matching should be discriminative to match only cor-
rect regions, and also tolerate small appearance variation between the examples. These
are general requirements for feature extraction in computer vision and image process-
ing. The descriptor performance were obtained in the original work [27] by computing
statistics of the correct and false matches. Between different class examples, descriptor
matches are expected to be weaker due to increased appearance variation.

3.5.1 Available descriptors

In this experiment we used detector-descriptor pairs. The earlier studies included the
following detector-descriptors combinations:

1. Hessian-affine and SIFT
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2. Hessian-affine and steerable filters
3. Vireo implementation of Hessian-affine and SIFT
4. Original SIFT detector and SIFT descriptor
5. Alternative (Vireo) implementation of SIFT and SIFT
6. SURF and SURF

Within their default parameters the combinations 1) and 2) utilizing Mikolajczyk’s im-
plementation of Hessian-affine detector were clearly superior to other methods [48], but
here we adjust the same meta-parameters as described in section 3.4.6 to return the same
average number of regions (300).

To these experiments, we also include the best fast detector-descriptor pair: ORB and
BRIEF. The following combinations will be reported: vl_sift+vl_sift (FeatureSpace im-
plementation), fs_hessaff+fs_sift (FeatureSpace implementation), cv_orb+cv_brief

(OpenCV implementation), cv_orb+cv_sift (OpenCV, to compare SIFT and BRIEF),
vl_dense+vl_sift (VLFeat implementation). It should be noted that available descriptors
are not guaranteed to work well with different implementations of detectors. Thus we will
use in our evaluation pair-wise detector-descriptor combinations only. Because the cho-
sen detector has also impact on the performance of the descriptor, we wanted to test vl_sift

descriptor with two different detectors. We also tested the RootSIFT descriptor from [50]
which should lead to performance boost of SIFT by using a square root (Hellinger) kernel
instead of the standard Euclidean distance. In their experiment this led to a notable per-
formance increase but in our case it provided insignificant difference to the original SIFT
(mean: 3.9→ 4.2, median: 1→1).

3.5.2 Performance measures and evaluation

In the earlier work [48] they used a simplified version of the Mikolajczyk’s descriptor
performance measure: the ellipse overlap was replaced by normalized centroid distance
of the matching regions. However, the results by the simplified rule turned out to be too
optimistic and in this work we adopt the original measure.

The rule is the same as with the detectors, if the best matching regions have sufficient over-
lap the match is correct. Descriptors are computed for all detected regions (foreground
only). Images are processed pair-wise and the best match for each region is selected from
the full distance matrix. It is worth noting that the rule proposed in [32] for discarding
"bad regions" (ratio between the first and the second best is less than 1.5) is not used
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Algorithm 2 Descriptor performance evaluation procedure
1: for all image pairs do
2: Extract local features
3: Use foreground masks to filter out features outside the object
4: Compute the true transformation matrix H for image pair
5: Transform all detected regions onto the second image using H
6: for all regions do
7: Find the N closest descriptors associated with the region
8: if region overlap is more than a threshold t then
9: Increase the number of matches for mi

10: end if
11: end for
12: end for
13: Return the total number of matches m

since it results complete failure. We used the default ellipse overlap threshold 50% from
[27] which is little bit looser than in detector evaluation, but also more strict threshold
were tested. Our performance numbers are the average number of matches and median
number of matches. In [27] recall versus 1-precision was used for quantitative evalua-
tion of descriptor matching. Our case however is different to the wide baseline matching
where image pairs are tested one by one. We decided to report the average number of
matches that is more compact and intuitive for a large set of image pairs containing cat-
egory instances and the average numbers of matches were also reported by Mikolajczyk
and Schmid. The Algorithm 2 also provides an alternative measure, coverage, which mea-
sures the number of images "covered" with at least the given number of correspondences
N (coverage N). In the detector evaluation the mean and median numbers were almost the
same, but here we report the both since for the descriptors there is significant discrepancy
between the mean and median numbers.

3.5.3 Results

The average number of matches for the descriptor evaluation is shown in Figure 18 and
the overall results including the median, the results for more strict overlap, and compu-
tation time are reported in Table 3. For many classes, the mean and median numbers
are very low, and for instance the starfish category is extremely hard for every descriptor.
However, with dense grid sampling coupled with SIFT we get decent results for most of
the categories and its performance is superior compared to all other descriptors, achiev-
ing the average of 23.0% matches per class and median of 10.0% matches. The second
best descriptor is FeatureSpace implementation of fs_hessaf+fs_sift and the rest of the
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descriptors are near behind with minor performance decrease. The more strict overlaps,
60% and 70%, provide almost the same numbers verifying that the matched regions do
match well also spatially.

Figure 18. The average number of matches per class in descriptor evaluation when using the
default threshold overlap 50%.

Table 3. Overall result table of description evaluation. The default overlap threshold is 50% [27],
60% and 70% results demonstrate the effect of the more strict overlaps. The computation time are
average detector and descriptor computation times for one image pair.

Detector+descriptor Avg # Med # Avg # (60%) (70%) Comp. time (s.)

vl_sift+vl_sift 3.9 1 2.8 1.6 0.15
fs_hessaff+fs_sift 6.5 2 5.9 4.9 0.22
vl_dense+vl_sift 23.0 10 22.3 20.2 0.76
cv_orb+cv_brief 3.0 1 2.9 2.7 0.11
cv_orb+cv_sift 5.4 2 4.8 4.1 0.37

The best results were obtained for the stop signs, dollar bills and faces, but the overall
performance is poor. The best discriminative methods could still learn to detect these
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categories, but it is difficult to imagine naturally emerging "common codes" for other
classes except the three easiest. It is surprising that the best detectors, Hessian-affine and
dense sampling, were able to provide 79 and 192 repeatable regions on average, but only
roughly 10% of these match in the descriptor space. Despite the fact that the SIFT detector
performed well in the detector experiment, its region do not match well in this experiment.
The main conclusion is that the descriptors that are developed for wide baseline matching
do not work well in the matching regions between different class examples.

3.5.4 The more the merrier

Similar to Section 3.4.6 we studied how the average number of matches behaves as the
function of the number extracted regions. This is justified as some work [34] claim that
the number of interest points extracted from the test images is the single most influential
parameter governing the performance. The result graph is shown in Figure 19.

Figure 19. Descriptors’ matches as function of the number of detected regions controlled by the
meta-parameters (default values denoted by black dots).

The results show that adding more regions by adjusting the detector meta-parameters
provides only minor improvement to the average number of matches. Clearly, the "best
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regions" are provided first and the dense sampling performs much better indicating that
what is "interesting" for the detector is not necessarily a good object part.

3.6 Advanced analysis

In this section, we address the open questions raised during the detector and descriptor
comparisons in Section 3.4 and 3.5. The important questions are: why only a few matches
are found between different class examples and what can be done to improve that? Why
dense sampling outperforms all interest point detectors and does it have any drawbacks?
Do our results generalize to other data sets.

3.6.1 ImageNet classes

To validate our results, we selected 10 different categories from the state-of-the-art object
detection database: ImageNet [46]. The configuration set up was the same as in the
section 3.5: the images were scaled to the same size as the Caltech-101 images, the
foreground areas were annotated and the same overlap threshold values were tested. The
results for the ImageNet classes are reported in Figure 20 and overall results in Table 4.
The average number of matches is roughly half of the number of matches with Caltech-
101 images which can be explained by the fact that the data set is more challenging due to
3D view point changes. However, the ranking of the methods is almost the same: dense
sampling and SIFT is the best combination and the SIFT detector and descriptor pair is
the worst. The results validate our findings with Caltech-101.

Table 4. Overall result table of description evaluation using ImageNet dataset. The default overlap
threshold is 50% [27], 60% and 70% results demonstrated the effect of the more strict overlaps.

Detector+descriptor Avg # Med # Avg # (60%) (70%)

vl_sift+vl_sift 1.2 0 0.7 0.3
fs_hessaff+fs_sift 3.4 2 2.8 1.9
vl_dense+vl_sift 12.4 7 11.6 10.2
cv_orb+cv_brief 2.2 1 1.9 1.5
cv_orb+cv_sift 3.9 2 3.3 2.5
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Figure 20. Average number of matches per class using ImageNet database images (overlap thresh-
old 50%).

3.6.2 Beyond the single best match

In object matching, assigning each descriptor to several best matches, "soft assignment"
[51, 52, 53], provides improvement and we want to experimentally verify this finding
using our framework. The hypothesis is that the best matches in descriptor space are
not always correct between two image pairs, and thus, not only the best, but a few best
matches can be used. This was tested by counting matches as correct if they were within
theK best and the overlap error was under the threshold. To measure the effect of multiple
assignments, we establish a new performance measure: coverage. Coverage corresponds
to the number of image pairs for which at least N matches have been found (coverage-N)
and this measure is more meaningful than the average number of matches since there was
strong discrepancies between the average and median numbers. We tested the multiple
assignment procedure by accumulating matches over n = 1, 2, ..., K best matches. The
corresponding coverage for K = 1, 5, 10 are shown in Figure 21 and Table 5. Obviously,
more image pairs contain at least N = 5 than N = 10 matches. With K = 1 (only the
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Table 5. Average number of image pairs for which N = 5, 10 matches were found using K =
1, 5, 10 nearest neighbors.

Coverage-(N = 5) Coverage-(N = 10)
Detector+descriptor K=1 K=5 K=10 K=1 K=5 K=10

cv_orb+cv_sift 7.9 16.7 23.0 3.6 11.1 15.7
vl_dense+vl_sift 16.0 19.5 19.8 12.9 18.1 19.6
cv_orb+cv_brief 4.5 13.3 17.9 2.1 9.5 13.2
fs_hesaff+fs_sift 7.3 17.9 20.4 3.5 12.7 17.7
vl_sift+vl_sift 4.3 8.0 11.3 2.5 4.3 6.0

best match) the best method, VLFeat dense SIFT, finds at least N = 5 matches in 16 out
of 25 image pairs and 13 for N = 10. When the number of best matches is increased
to K = 5, the same numbers are 19 and 18, respectively, showing clear improvement.
BeyondK = 5 the positive effect diminishes and also the difference between the methods
is less significant.

3.6.3 Different implementations of the dense SIFT

During the course of work, we noticed that different implementations of the same method
provided slightly different results. Since there are two popular implementations of dense
sampling with the SIFT descriptor, OpenCV and VLFeat (two options: slow and fast), we
compared them. The result corresponding to the previous experiments in section 3.5 are
shown in Figure 22. There are slight differences in class results due to implementation
differences, but the overall performances are almost equal. However, the computation
time of the VLFeat implementation is much smaller compared to the OpenCV. In addition,
the VLFeat fast version is roughly six times faster than the slower version of SIFT.

3.6.4 Challenging dense sampling: r-Caltech-101

With dense sampling the main concern is its robustness to changes in scale and, in partic-
ular, orientation, since these are not estimated similar to interest point detection methods.
In this experiment, we replicated the previous experiments with the two dense sampling
implementations and the best interest point detection method using the randomized ver-
sion of the Caltech-101 data set: r-Caltech-101 [45]. R-Caltech-101 contains the same
objects (foreground), but with varying random Google backgrounds and the objects have
been translated, rotated and scaled randomly. These are illustrated in Figure 23. An ex-
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Figure 21. Number of image pairs for which at least N = 5, 10 (left column, right column)
descriptor matches were found (Coverage-N). K = 1, 5, 10 denotes the number of best matches
(nearest neighbours) counted in matching (top-down).
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Figure 22. Average number of matches per class using ImageNet database images (overlap thresh-
old 50%) and different dense SIFT implementations.

ception to the previous experiments is that we discard features outside the bounding boxes
instead of using the more detailed object contour. The detector and descriptor results of
this experiment are reported in Figure 24. Now it is clear that artificial rotations affect to
the dense descriptors while Hessian-affine is unaffected (actually improves). It is note-
worthy that the generated pose changes in r-Caltech-101 are rather small ([−20◦,+20◦])
and the performance drop could be more dramatic with larger variation. An intriguing
research direction is detection of scaling and rotation invariant dense interest points.

3.7 Discussion

In this chapter, the well accepted and highly cited interest point detector and descriptor
performance measures by Mikolajczyk et. al [30, 27], the repeatability and number of
matches, were extended to measure intra-class performance with visual object categories.
The most popular state-of-the-art and more recent efficient detectors and descriptors were
compared using the Caltech-101, r-Caltech-101 and ImageNet image datasets. Interest
points and regions have been the low-level features in visual class detection and classi-
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Figure 23. The r-Caltech-101 versions of the original Caltech-101 images (original bounding box
shown by green).

fication for a decade [10]. Recently, supervised low-level features, such as convolution
filters in deep neural networks [12], have gained momentum, but we believe that the
unsupervised detector-descriptor approach can be developed further by identifying and
improving bottlenecks.

With our proposed framework we identified that dense sampling outperforms interest
point detectors with a clear margin. It is the most reliable in the terms of repeatability
rate and it also has the highest number of correspondences between image pairs. One of
the most interesting finding was the number of detected features’ relationship to the detec-
tion performance. The earlier winner Hessian-affine was surprisingly the weakest detector
because of the adjustment of meta-parameters. The descriptor experiment showed that the
original SIFT is the best descriptor including the recent fast descriptors. The descriptor
experiment also showed that the choice of the detector which will be paired with the
descriptor has a large impact to the results.

Generally, the detectors performed well, but descriptors’ ability to match parts over visual
class examples collapse. Also it is noteworthy to say that despite the fact that dense
sampling performed well in the general evaluations, the method is fragile to object pose
variation, while the Hessian-affine is the most robust against pose variations. With an
alternative performance measure, coverage-N, it was shown that all the methods converge
to perform equally and using multiple, even a few, best matches instead of the single best
match provides significant performance boost.

The findings advocate new research on i) optimization of the detector meta-parameters
for each visual class, ii) specialized descriptors for visual class parts and regions, iii)
dense scaling and rotation invariant interest points, and iv) alternative matching methods
for multiple best matches. Some results already exist. For example, BoW codebook de-
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Figure 24. R-Caltech-101: detector (top) and descriptor (bottom). The detector results are almost
equivalent to Fig. 16. In the descriptor benchmark (cf. with Fig.18) the Hessian-affine performs
better (mean: 3.4 → 5.2) while both dense implementations, VLFeat (23.0 → 13.1) and
OpenCV (23.3→ 15.0) are severely affected.
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scriptors can be enhanced by merging descriptors based on co-location and co-activation
clustering [54] or by learning [55], dense interest points have been proposed [33], and
soft-assignment (to have less detected features, but assign each local feature to multiple
best matches or codes) has been shown to improve BoW codebook matching [51]. More-
over the success of the standard SIFT in our experiments justifies further development of
more effective visual class descriptors. Investigating these potential research directions
benefits from our evaluation framework that can be used for automatic validation and
optimization.
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4 VIDEO SCENE BOUNDARY DETECTION USING
BAG-OF-WORDS

In this chapter, the local features are adopted in the domain of video scene boundary
detection, which is the second main application in this thesis. The shot and scene level
boundary detection is used usually as a preprocessing step before higher level process-
ing, such as video summarization [56] and content based retrieval [10]. In the following
sections, a brief introduction to previous shot boundary detection methods is given and
detection based on visual Bag-of-Words is introduced. An experimental Bag-of-Words
approach is tested in experiments on scene boundary detection in the next chapter.

4.1 Introduction

In the recent years, development of software, cameras (especially small cameras such
as mobile or action cameras) has enabled creation of a large amount of digital video
content. Services like Youtube5 and Vimeo6 provide ways for people to upload their own
home videos for everyone to see, but they lack possibilities for automatic video editing.
Video applications, which are considerably growing, have initiated growing demand for
innovative technologies and tools for indexing, browsing, summarization, and retrieval of
video data. Automatic video tools do not necessary provide anything that humans can not
do, but the tools can save us a lot of time. For instance one can ask an application to search
shots where a certain object appears. Another useful applications would be detection of
sudden content variation, which are already well exploited in surveillance systems [57].

In order to automate the indexing, retrieval, and management of videos, a great deal of
research has been done on content-based video retrieval over the last decade [58, 15, 14].
Structural analysis of the video is usually the first processing step and thus the perfor-
mance of the detection algorithm has a big impact to the outcome of the whole pipeline of
the process. Among the various structural levels (i.e., frame, shot, scene, etc.), shot level
organization has been regarded suitable for browsing and content-based retrieval [59]. In
simple terms idea of boundary detection is to find all the possible positions from a video
where consecutive shots or scenes have different visual content.

5http://www.youtube.com/
6http://www.vimeo.com/
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4.2 Hierarchy of video

Figure 25. Hierarchical compositional structure of a video.

In Figure 25 is illustrated the composition of the video. A video is a stream of frames,
usually combined with an audio stream. When frames are frequently changing in a speed
of 20-30 frames per second, it will give us an illustration of a moving picture. The number
of images displayed in a second is called the frame rate or frames per second (fps). A
typical frame rate of a video is 25 fps. A higher frame rate indicates more accurately
flowing motion but as a drawback it requires more storing capacity. An edited video is
composed of multiple scenes, which are separated from each other by a change of a time
or location. A video shot is defined as a sequence of frames captured by one camera in a
single continuous action in time and space [60]. A scene is typically an event where for
instance two people are having a conversation. Now two different shots here could be a
camera movement or zooming from one person to another. Different scenes are usually
easier to detect than different shots due to bigger variations in the visual content.

Adjacent scenes can be separated from each other by an abrupt transition (hard cut) or a
gradual transition (soft cut) as shown in Figure 26. In an abrupt transition a frame n from
the scene k is immediately followed by a frame n+ 1 from the scene k + 1. In a gradual
transition scenes or shots k and k + 1 are concatenated in a milder manner such as fade-
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out/fade-in, dissolve, geometrical transition (zooming out or in, camera movement etc.),
or artistic transition (computer effects). Research for detecting hard cuts have yield good
results but detecting different gradual transition classes have been much more challenging
task [22].

(a)

(b)

(c)

(d)

Figure 26. Examples of transitions: a) hard cut is an instant transition from one scene to the
next with a clear cut point, while a soft cut as for example b) fade-in, c) dissolve or d) an artistic
transition, where the scene changes gradually and the exact cut point is harder to determine.
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4.3 Scene boundary detection

The basis of the scene boundary detection is to detect visual discontinuities along the time
domain. In the detection process, it is necessary to extract visual features that measure the
degree of similarity between frames. The measure, denoted as d(n, n+k), is related to the
difference or discontinuity between a frame or a frame set n and n+k where k ≥ 1. Then
the difference value between n and n + k is compared against a threshold T and if the
the threshold is exceeded, a scene boundary between n and n + k is detected. To be able
to draw reliable conclusion about the presence or absence of a scene boundary between
n and n + k, we have to use methods that are as discriminating as possible. This means
that our method should report us a clear separation between measurements performed
within scenes and at scene boundaries. The problem of separating a true scene boundary
from dissimilarity peaks within the scene is illustrated in Figure 27. In the scene 2 (in
Figure 27) when using a loose threshold value there can exists multiple scene boundaries
due to high amount of dissimilarity peaks within the scene. On the other hand, using a
more strict threshold value, the boundary between scenes 3 and 4 will be missed. Varying
values d(n, n + k) inside a single scene make it difficult to decide about the presence or
absence of scene boundaries without detection mistakes, i.e., missed or falsely detected

boundaries. There is a large selection of different methods for computing the value of
d(n, n+ k) and these methods are discussed in more detail in the next section. The most
common way to compare frames or frame sets is to use histogram based methods with
some distance-metric which calculates the content difference between n and n+ k.

4.4 Previous work

One of the first published studies about different shot boundary detection techniques were
by Boreczky et. al [14] and Rui et. al [61], including such as full image pixel differ-
ences, statistical differences, histograms, edge tracking, motion vectors and feature-based
methods. These methods can be combined to get multiple feature information about the
video.

The pixel difference method compares pixel difference between consecutive frames by:

D(x) = Ii(x)− Ii+1(x), (16)

where D is the difference value, Ii and Ii+1 are consecutive frames, and x = (x, y). The
method declares two frames to be different if the pixel difference value D(x) between
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Figure 27. The problem of finding the true cut boundaries by thresholding distance values d(n, n+
k).

consecutive frames is above threshold value T1 and the number of pixels above T1 exceed
some another threshold value T2 . Pixel-based methods are very sensitive to motion and
object movement in some direction which causes large pixel differences. Thus some kind
of motion compensation should be used with the method. The statistical approach ex-
tends the idea of the previous method by breaking the images into regions and comparing
statistical measures of the pixels in those regions. This compensates the camera motion
and noise to certain degree.

In the histogram method, we make a vector where each entry stores the number of certain
pixel values in the given image. Consecutive frames’ histogram dissimilarity is measured
and then compared against a threshold value. A typical method is to use colour histogram,
such as RGB histogram, which assumes that color content of various scenes is different.
The colour histogram distance is calculated as:

D =
2B−1∑
r

2B−1∑
g

2B−1∑
b

(Ii(r, g, b)− Ii+1(r, g, b)), (17)

where r, g, b are color components. Each color component is quantized to 2B different
values. Small values of B (2 or 3) [15] are already good to make the method rather
robust to noise, lighting and view point changes while having a small memory storage
requirement. Drawback of the color histogram is that it does not take into account the
space information concerning the color. For instance, an image containing a red flower
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surrounded by green grass will have a similar RGB histogram with an image containing
a person with red shirt playing golf in a golf course.

In edge tracking shot boundaries were detected by looking for large edge change percent-
ages (percentage of edges that enter and exit between the two frames). The edge change
ratio (ECR) is defined as:

ECRn = max(X in
n /σn, X

out
n−1/σn−1), (18)

where σn is the number of edge pixels in frame n, X in
n and Xout

n−1 the number of entering
and exiting edge pixels in frames n and n−1 respectively. By discarding edges that appear
in one image which have edge pixels nearby in the other image we can tolerate some
object motions. In addition, edge tracking should provide distinguish patterns between
different type of transitions in a video.

Motion vectors have been used successfully for detecting camera zoom or pan from the
scene. The block motion vectors can be extracted from the MPEG compressed video, but
the selected features are usually inappropriate for image processing purpose. Boreczky et.

al [14] came to the conclusion that simpler algorithms outperformed more complicated
ones, because the complicated algorithms’ parameters had to be tuned and the algorithms
were sensitive to the threshold value. Also combining multiple methods could provide
more accurate results.

Local features have been used in video shot boundary detection. Local features computed
from an image are usually feature vectors, and the scene change is detected by computing
vector dissimilarity between consecutive frames. The approach somehow overlaps with
previously introduced methods because feature vector can represent a histogram. Baber
et. al [62] used SURF features in shot boundary detection and the method was found
robust to various transformations (such as camera and object motion), but its performance
suffered in extreme light or dark scenes. Li et. al [63] introduced a local feature based
SIFT shot boundary detector which utilize SVM after feature extraction to match local
features in consecutive frames. Luo et. al [64] presented another approach which used
the Kernel PCA and clustering based feature extraction coupled with the SIFT Flow al-
gorithm. Many authors [65, 66, 67, 62] have also presented a moving window approach
where the cut is usually determined from pre- and post-frames related to the current frame.
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4.5 Visual Bag-of-Words

Bag-of-Words (BoW) or Bag-of-Features (BoF) is a popular visual descriptor used for
visual data classification. In general, Bag-of-Words is a sparse vector of occurrence counts
of words; that is, a sparse histogram over the vocabulary. In a computer vision related task,
a bag of visual words of features is a sparse vector of occurrence counts of a vocabulary
of local image features. Publications in computer vision uses a codebook and a codeword
terms instead of vocabulary and word. In this thesis we adopt them as well.

The seminal works of the visual Bag-of-Words (BoW) are presented in [10] and [9].
The codebook generation and utilization with the visual Bag-of-Words in visual object
categorization can be seen in Figure 28. In general, the process with visual Bag-of-Words
can be separated into two parts: 1) obtaining the visual codebook and 2) building the code
histogram. In the first part of BoW, the salient local image features (interest points) are
first extracted with a special detector (e.g. SIFT) or fixed size patches are selected using
dense sampling on a regular grid. Then, these keypoints are described with a descriptor,
the SIFT descriptor being the most popular one. Finally, a codebook is generated by
clustering the descriptors into a fixed number of codes, typically by the k-means algorithm
[3]. In the second part, after the feature extraction, an image feature (code histogram) is
generated by computing the histogram of the codes appearing in the image. This is done
by assigning every descriptor from the image to the closest codeword in the codebook.
Now, the matching between two images (frames), can be performed by calculating the
histogram similarity.

The scene boundary detection methods using local feature histograms is only a few. Li et

al. [63] computed SIFT regions and descriptors and [62] used SURF descriptors to detect
cuts, but both of them did not utilize a codebook. They searched the matches directly
between consecutive frames or within a query window. Similar approaches which utilize
a codebook were proposed by Sivic and Zisserman [10] and Lankinen and Kämäräinen
[69]. Sivic and Zisserman, and also Li approaches however are extremely time consuming
due to random sampling based matching. Sivic and Zisserman run the matching only for
key frames of every shot as their application was content retrieval and Li et al. [63] did not
report the computation time for their method. Lankinen and Kämäräinen [69] and Sivic
and Zisserman [10] built a statistic visual vocabulary from a big subset of frames (about
5 − 10% of the entire frame count) from the given video. Thus building the codebook
in the beginning of the processing will be very time consuming and will be devastating
property concerning any online applications.
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Figure 28. The visual object classification with Bag-of-Words.[68]

In the next chapter, we present an experimental BoW method, which will use a dynamic
visual codebook. Idea is to develop a novel initial step for a parallel video editing system
where an end user can manipulate a given video simultaneously while the system is still
processing the video incrementally. The codebook will be initialized with a small amount
of features in the beginning of the processing and the codebook is re-estimated when a
cut is detected.
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5 EXPERIMENTS ON DYNAMIC BAG-OF-WORDS
FOR SCENE BOUNDARY DETECTION

In the previous chapter a brief introduction to Bag-of-Words approach was given and the
commonly used video shot boundary detection algorithms were described. In this chapter,
a novel BoW method is introduced for processing massive amounts of frames from a
video: dense sampling and SIFT descriptor for feature detection and representation, k-
mean clustering for codebook generation, a brute-force matcher to find closest codewords
for descriptors, L1-normalization of codebook histogram, and the Euclidean distance for
code histogram matching. The method is evaluated using the TRECVid 2007 dataset.
Our main target is to present a customer-level scene boundary detector which is useful in
online applications, such as being a pre-processing step in an online video summarization
software. We evaluate our method with different codebook sizes, which is one of the most
important parameters in BoW categorisation. The algorithm processes a given video by
moving query window and in the experiments, we will use different window sizes and
study the window size relation to the cut accuracy. In addition, we tune our algorithm to
work as fast as possible by searching the minimum feature number that is needed to build
the codebook and the code histogram. In the experiments recall and precision curve is our
choice of accuracy metric. Finally the presented method is compared against the similar
approach by Lankinen and Kämäräinen [69] which uses a static codebook.

5.1 TRECVid 2007 dataset

The TREC Video Retrieval Evaluation7 (TRECVid) 2007 represents the seventh running
of a TREC-style video retrieval evaluation, which goal is to encourage research in infor-
mation retrieval by providing a large test collection via open, metrics-based evaluation.
The TRECVid consist of The Netherlands Institute for Sound and Vision (NIST) gathered
400 hours of news magazine, science news, news reports, documentaries, educational
programming and archival video in MPEG-1 format. TRECVid also provides a forum for
the organizations for comparing results and for submitting the results of the experiments
back to the coordinator. NIST collects all the submitted results for automatic evaluation
and eventually the overall results are made publicly available on the TRECVid webpage.

TRECVid 2007 uses approximately 100 hours of data from the whole TRECVid archive
and the test data was the first time distributed via the Internet. The TRECVid 2007 eval-

7http://trecvid.nist.gov/
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uation was divided into three different categories: shot boundary detection, high-level
feature extraction, and search task. The data was divided as follows:

• 6 hours for the shot boundary task

• 50 hours for development of search/feature detection

• 50 hours for test of search/feature detection

The shot boundary task is included in TRECVid as an introductory problem, the output of
which is needed for most higher-level tasks. The number of videos for the shot boundary
detection task in TRECVid 2007 is 17, containing 6 hour of video and approximately 4.4
GB of data [22]. The test videos contained a total of 637 805 frames, having 25 frame
rate and 2317 shot transitions (abrupt or gradual) [70]. Thus the 2007 shots are 275.3
frames long on average which is over 100 frames per shot longer than than in TRECVid
2006 shot boundary task (157.7 frames/shot). The TRECVid 2007 dataset contains also
the ground-truth which describes all the transitions and divides each of them to one of the
following categories:

• cut: no transition, i.e., the last frame of one shot followed immediately by the first
frame of the next shot with no fade or other combination.

• dissolve: shot transition takes place as the first shot fades out while the second shot
fades in.

• fadeout/in: shot transition takes place as the first shot fades out and then the second
fades in.

• other: everything not in the previous categories e.g., diagonal wipes.

The distribution of transition types was 90.8%, 5.4%, 1%, and 3.7% for hard cuts, dis-
solves, fades to black and back and others respectively [70].

Over the years, the following measures for evaluating a shot boundary detection algorithm
were calculated by the NIST software: inserted transition count, deleted transition count,

correction rate, deletion rate, insertion rate, error rate, quality index, correction proba-

bility, recall, and precision. From these precision and recall were the primary measures
used in the presentation of results at TRECVid and those will be used in our evaluations
too. In [22] five frame difference for abrupt and gradual transitions was allowed between



53

the estimation and the ground-truth data. Because in our implementation a given video is
processed by a small window, we make an exception to the performance protocol and the
estimated cut location is counted as correct if the ground-truth location of the cut is less
than a frame window length away. If we are interested of a single measurement value,
recall (R) and precision (P) were combined with equal weights in the F-measure:

F =
2×R× P
R + P

(19)

5.2 Experiment

In this section we give a brief introduction to our experimental Bag-of-Words approach,
describe the optimal configuration set-up and report the results. The experiments were
conducted with the TRECVid 2007 Shot Boundary data set including all the 17 videos.
In the evaluation, the precision and recall curves were calculated using the ground-truth.
The evaluation curves were computed by iteratively testing all the possible values of the
threshold. The implementation was programmed by using C++ and OpenCV [71] libraries
that provided optimized algorithms for large data sets and for high dimensional feature
processing.

5.2.1 Dynamic visual codebook approach

In [69] and [10] the use of BoW on shot boundary detection was utilized by a visual
codebook which was created from a huge junk of features in the beginning of processing
a given video. This however is not ideal for a customer-level application because the
training phase of the codebook will take a lot of time before we even can start the actual
cut detection. Thus we will introduce a dynamic codebook approach where the codebook
will be trained only by a small portion of the features which other proposed approach
used. The dynamic codebook will be rebuilt every time algorithm detects a cut and the
frames from the new scene will be used in the construction phase. Processing the video
in this manner, we can in parallel show the already processed material while at the same
time the method continues to process the video. The scene boundary detection algorithm
is given in Algorithm 3.
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Algorithm 3 Scene boundary detector
1: Initialize_codebook = true
2: for i← 1 to video_length step window_size do
3: for Frames j ← i to i+ window_size do
4: Extract dense interest points
5: Form the descriptors
6: Store the descriptors desc_all← descriptors
7: end for
8: Select a subset of all the descriptors: desc ⊂ desc_all
9: if Initialize_codebook = true then

10: Train the codebook cb using desc
11: Form the comparison histogram compHist
12: Set Initialize_codebook to false and continue
13: end if
14: Form the histogram hist using codebook cb and the descriptor vector desc
15: Calculate the distance d = hist-compHist
16: if d ≥ T then
17: Mark a scene boundary to the first frame of the window: cut(k):=i-

window_size
18: Set Initialize_codebook to true
19: end if
20: end for
21: Return the vector of scene boundaries cut

In the algorithm we will process the given video by a moving sliding windows which has
the length of window size. We resize the images (frames) to be 300 × 300 and transform
them to gray scale images. From the frames in the window we extract interest points
using dense sampling. Our decision to use dense sampling instead of local features (such
as corners or blobs) is based on the comparative evaluation of detection methods by Fei-
Fei et. al [72]. They showed that dense features work better for scene classification and
thus it should be a suitable approach for scene boundary detection. Distance between two
patch is set to 10 pixels and patch size to 20 pixel giving us approximately 850 features
per each frame. Dense sampling coupled with SIFT descriptor provided promising results
in Section 3 and we will form descriptors for the interest points by using SIFT. Using
SIFT each descriptor is a 128-vector. When we are using other detection method than
dense sampling (for instance SIFT detector) a situation can occur, where the algorithm
has not find enough visual feature candidates for the codebook.

The visual codebook is generated using the extracted descriptors from the frames in the
current window and using the k-means algorithm. The histograms (compHist and hist) are
constructed using the brute-force matcher which finds the best matches in the codebook cb
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for every extracted descriptor. It is worth to mention that the matcher parameter normType

should be set to NORM_L1, what increases the results by 0.05 − 0.3 when using SIFT
descriptors. For each frame the histogram is normalized by:

hn =
number of descriptors closest to n

total number of descriptors
n = 0, 1, .., L− 1 (20)

where n denotes a histogram bin. Normalization is a necessary step and without it for
instance a visual code histogram of an image containing a human face differ a lot from an
image containing multiple faces of the same person.

The distance between two code histograms is calculated using the Euclidean distance:

D(A,B) =

√√√√L−1∑
i=0

(hi(A)− hi(B)) (21)

The parameters for the method are the threshold value T , size of the visual codebook,
and the window size. The low values of T result to high recall but low precision and vice
versa.

5.2.2 Optimal window size

The window size determines which frames will be included into the training phase of the
codebook and how many frames will be used in the building process of code histograms.
More precisely the size of the window tells how wide is our comparison angle in the
time domain. All the TRECVid2007 videos are displayed at 25 frames per second and
thereby with frame sizes 25, 50, and 100 we will use approximately 1, 2, and 4 second
time intervals from the video respectively. In the experiments, all frames inside a window
were used, but we randomly selected 1000 features among them to reduce the computation
time. Figure 29 shows the results of varying frame sizes. The bigger frame size indicates
better results, but it makes the comparison biased: bigger the frame, higher the probability
that a true cut will be "accidentally" included. For instance an arbitrary video having
scenes duration smaller than 100 frames and selecting the smallest possible threshold
value with a frame size 100, the algorithm will "detect" all the possible cut locations.
However, increasing the frame size over 400 we can no longer detect all the possible cut
location with TRECVid 2007 dataset because a frame will eventually contain multiple cut
location and only a one of them will we noticed. In the following experiments we will use



56

the window size of 25 to get the most accurate view of the functionality of the algorithm
with different parameter settings.

Figure 29. Scene boundary detector with varying frame size.

5.2.3 Optimal codebook size

One of the biggest bottlenecks of the algorithm is the size of the codebook. The computa-
tion time increases linearly with the codebook size (Table 6). The codebook is generated
using the k-means algorithm which returns us the center points (codewords) for the code-
book. To make our method as efficient as possible we try to find the smallest possible
codebook size that is still discriminative enough to distinguish different scenes.

Table 6. Computation times of OpenCV implementations of k-means algorithm for 84100 SIFT
features.

# centers 10 20 50 100 1000 2000

Comp. time (s.) 0.632 2.813 7.905 14.994 144.665 282.151

In Figure 30 is shown the results and the k-means algorithm was run with three different
number of centers: 10, 100, and 1000. In the experiment, window size was set to 25



57

and due to time limit for the work only a subset (2/3 of the videos) were used in the
evaluations. The result indicates that bigger codebook sizes do not necessarily mean better
results and even using only ten centers the algorithm still works well. It was however
noted that the same threshold value does not work well with different codebook sizes:
smaller the codebook, greater the threshold value needs to be to prevent false alarms.

Figure 30. Scene boundary detection method with different codebook sizes.

5.2.4 Optimal number of features

In addition to the codebook size, the number of features used in the k-means algorithm
to build the codebook affects the computation time a lot. Also with the knowledge of
optimal number of features, we can reduce the feature extraction time. In this experiment
we find the smallest feature number to build the codebook (the codebook size determines
the minimum possible feature number) and the code histograms which gives us reliable
results. The experiment was run with three different number of features: 100, 1000, and
10000. The same configuration settings were used as in the earlier experiments and the
codebook size was fixed to 100 centers. The result are reported in Figure 31. The results
indicate that using only 1000 features (from total of 21025 features) we can still achieve
good results. Below that, the algorithm performance starts to degrade significantly.
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Figure 31. Scene boundary detection method with different number of features for a window size
25.

5.2.5 Comparison to existing methods

In the final experiment the method was compared against the statistical codebook Bag-
of-Words approach by Lankinen et. al [69]. Both methods were evaluated using all the
TRECVid 2007 videos. The choice of the codebook size was the same for all the methods:
100. The general codebooks in [69] were generated using features from the ImageNet
database whereas the specific codebooks were generated using selected features from the
given video. Again, the window size of 25 was used and 1000 features were randomly
selected from the frames. The scene boundary detection results are shown in Figure 32.

The results indicate that our method cannot compete against the specific codebook ap-
proach in the low recall area. The reason for this is perhaps that the specific codebooks
in the beginning of the processing are constructed using features extracted from selected
frames over the whole video content (one frame per second) and thus the codebook comes
very universal. In our implementation the codebook is typically generated (when the cut
happens) using features of a specific video scene, for instance hiking in the Alps, making
the codebook represent only a fraction of the content of the video. However, because we
are more interested in the approaches performance in the high recall area, our method
outperforms the general codebook clearly and when the recall is over 0.9, dynamic BoW
method has the highest precision value.
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Figure 32. Scene boundary detector comparison with the existing methods.

5.3 Discussion

In this chapter video scene boundary detector using dynamic visual codebook was intro-
duced and iterative search of optimal parameters for the method was done. Rapid evolve
of smartphones, tablets, and outdoor activity purposed cameras have created great need of
customer-level video applications. Shot and scene level boundary detectors serve as the
initial step in variety of applications (such as video summarization and object retrieval)
and thus their performance is crucial. A 20 minute video contains roughly 35000 frames
which makes the processing very time consuming. The performance of the method was
measured by the precision and recall curve. The parameter search was conducted using a
subset of the videos (2/3 of total number) in TRECVid 2007 dataset and the final compar-
ison with existing methods was evaluated using the whole dataset (17 different videos).

During our experiment we found out that codebook size of 100 or even 10 is enough to
make the method as discriminant as possible. Raising the codebook size above 100 did
not bring any notable performance increase. It was also noted that lowering the number
of features used in codebooks and code histograms building below 1000 starts to reduce
the performance gradually. Frame size impact for the accuracy was hard to determine
because short scene duration time of the videos. This made longer windows seem to work
better but with a lengthy video having long scene cuts the performance of algorithm with
different frame sizes is likely to be equal. Judging by our results, our method precision
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lacks behind the state-of-the-art methods on average in the lower recall area. However,
when the methods were tuned to be more sensitive, the dynamic BoW method achieves
the best results. The dynamic BoW performance in the low recall area could be compen-
sated by optimizing dense sampling (the grid size and the distance between two patches)
and SIFT (number of octave levels, size of Gaussian kernel etc.) parameters but due to
time constraints it will be left as future work. A true cut was typically missed between
similar scenes having lots of similar features (people, background etc.) and where the
camera has zoomed or the same scene is shot from another direction. In our case we are
interested in distinguish two different scenes which are shot in different time and place
(eating breakfast, driving a car etc.), and thus missing cuts between shots like illustrated
in Figure 33) is irrelevant. Typically false cut was detected when a camera focus changed
from a view to another within a single shot. To prevent this kind of false alarms (Figure
34a) would require much more advanced algorithm. Also in some videos there existed
false cuts within an evident single shot (Figure 34b).

(a)

(b)

Figure 33. Missed cuts from the TRECVid 2007 videos a) BG_35187 and b) BG_36537.

Because of development of video editing applications, cameras and the entire video in-
dustry the characteristics of today’s video materials have changed significantly. TRECVid
2007 contains rather poor quality videos without modern video effects, thus existing meth-
ods should be re-evaluated against more sophisticated data sets.
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(a)

(b)

Figure 34. False alarms from the videos a) BG_2408 and b) BG_36028.



62

6 CONCLUSION

In this thesis, two applications of local features were investigated. The first goal was
to find the best local feature detector and descriptor for visual object categorization task
by extending the well known benchmark by Mikolajczyk et al. [30, 27]. The second
task was to implement a customer-level video scene boundary detector using the visual
bag-of-words method.

For the local detector and descriptor evaluation for intra-class matching the evaluation
framework was set up and the meta-parameters of different detectors and descriptors were
investigated. The detector evaluation provided several important findings with regard to
object class matching: 1) dense sampling outperformed its rival interest point detectors
with a clear margin; 2) object pose variation degrades dense sampling performance while
the best interest point detector (Hessian-affine) is unaffected; 3) with the adjustment of
the detectors’ meta-parameters, the detectors produce very similar results. The descrip-
tor evaluation showed that performance of descriptors to match similar features between
intra-class objects is poor and the following conclusions were made: 1) the original SIFT
is still the best descriptor; 2) only a fraction of the corresponding regions match in the
descriptor domain; 3) using multiple, even a few, best matches instead of the single best
has significant effect on the performance. In addition to investigations of descriptors for
intra-class matching, future work include research on combinations of interest points and
dense sampling [33] and alternative matching methods for multiple best matches.

A scene boundary detector using dynamic visual codebook was implemented to respond
to the need of customer-level initial stage procedure for video applications, such as video
summarization. During the experiments the optimal configuration set up was iteratively
searched by plotting recall and precision curves and the following discoveries were made:
1) bigger codebook size does not necessary mean better performance; 2) only a fraction
of the features used inside the query window is enough to give good results; 3) dynamic
codebook can still achieve good precision on the high recall area. The evaluations indi-
cated that dynamic codebook does not outperform on average the state-of-the-art methods
in retrieving only a few key scenes but when the algorithms are configured to be more
sensitive against dissimilarity peaks, the dynamic BoW method outperforms all the other
methods.

In the future work one should focus on improving the dynamic BoW approach. For in-
stance does an iterative search of optimal parameters for the dense sampling and SIFT
improve the results. Also the testing process is very time consuming due to fact that
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the TRECVid 2007 video set has 17 videos having tens of thousands of frames each and
collection of more sophisticated video test material is advised.
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