

ZHU WENSI
STUDY AND IMPLEMENTATION OF IEEE 1588 PRECISE TIME
PROTOCOL
Master’s thesis

Examiner: Professor Markku Renfors
 Professor Mikko Valkama
Supervisor: Manager Jouni Kemppainen
Examiner and topic approved by the
Faculty Council of the Faculty of Compu-
ting and Electrical Engineering on 10
September 2013.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250160081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 I

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY

Degree Programme in Information Technology

WENSI ZHU: Study and Implementation of IEEE 1588 Precise Time Protocol

Master of Science Thesis, 70 pages

August 2013

Major subject: Communications Engineering

Examiners: Professor Markku Renfors, Professor Mikko Valkama

Supervisor: Manager Jouni Kemppainen

Keywords: IEEE 1588, PTP, Base Station synchronization, NTP

The synchronization among Base Stations (BSs) in mobile communication systems is

such a vital technique that many services rely on it. IEEE 1588, also known as Precise

Time Protocol (PTP), is defined to enable precise synchronization of clocks in meas-

urement and control systems. As one of its targeted applications, the synchronization of

base stations by PTP has become an important and popular researching topic.

This thesis investigates the feasibility of BS synchronization with the PTP method. It

includes simulation based studies, implementation of PTP on practical BS cards, and

tests with practical network devices in a laboratory environment. The results indicate

that both frequency and time offsets are within the targeted range.

The thesis starts with a background discussion on BSs synchronization where reasons

and requirements are introduced. Then the thesis explains the implementation related

techniques. At last, the test results are presented and observations are analyzed.

II

PREFACE

This Master of Science Thesis, Study and Implementation on IEEE 1588 (PTP), has

been carried out in the Department of Communication Engineering at Tampere Univer-

sity of Technology, Finland. The work has been done during the second half in year

2012 - 2013 at the System Department at CASSIDIAN, Finland. Supervisors are Jouni

Kemppainen (manager) from CASSIDIAN, Finland, Markku Renfors (professor) and

Mikko Valkama (professor) from Tampere University of Technology.

Tampere, August 2013.

Zhu Wensi

zhu.wensi@hotmail.com

Orivedenkatu 8 F 134,

33720, Tampere,

Finland

Tel. +358 469096102

III

ACKNOWLEDGEMENT

I would like to first grant my sincere gratitude to my supervisor – Jouni Kemppainen, an

excellent manager from CASSIDIAN. When I was trapped in dilemmas, he was always

there ready to help. He used his full technical experience and knowledge to help me

locate the problems and gave me suggestions. His patience, experience, knowledge,

willingness to listen and understandings towards subordinates make him a very good

supervisor and manager. I would also like to show my gratitude to Professor Markku

Renfors, for his numerous fruitful discussions during the development of this thesis and

invaluable support. Further, thanks to Professor Mikko Valkama from whom I learned

to solve problems independently, and no matter how many difficulties I met and how

hard they are, being positive, independent and strong.

And I also must express my appreciation to everyone who helped me in CASSIDIAN.

Without Dimitri's help, it would have taken me far more time to adapt the kernel and

network driver; Antti, Lasse and Balazs helped me on codes design and optimization;

Jozsef helped me with algorithm analysis while Jari instructed me on HW. Besides,

there are lots of other employees in CASSIDIAN, whose names cannot be listed here

one by one due to the space limitation, shared their idea with me, and took care of tools

that I used, which made it a lot easier for me to focus on this topic area more effectively.

Together with these excellent senior engineers and experts, not only did I learn more on

professional skills, e.g., programming and communication system structures, but also

gained the attitudes as an IT worker. (For example only start lab work after equipped

with ESD protection and write logical codes carefully).

I also want to grant gratitude to OSCILLOQUARTZ company, who offered me a prod-

uct grandmaster clock (5331) as synchronizing source, and a product level slave clock

(5320), which I can test and compare my implementation. And during the observation,

the OSCILLOQUARTZ 5320 slave is very stable and its PPS had little time offset from

grandmaster PPS. Meanwhile, as an expert from OSCILLOQUARTZ, Gallet Laurent

helped me with IEEE 1588 standard understandings which are precious experience

gained from his practice.

The last but not the least, thanks to CASSIDIAN offered me such a great chance to con-

tact the industry closely, and learn directly from the engineers and experts.

Thanks to all these people so that I had a wonderful, enjoyable experience when doing

this master thesis in CASSIDIAN.

IV

ABBREVIATIONS

ADEV Allan deviation. One indicator to measure the clock quality.

BMC Best master clock. A set of algorithms show up in IEEE 1588-2008.

BS Base station. Offers radio interface for mobile phones.

BSC BS controller. Controls and coordinates BSs.

CDMA Code division multiple access.

DCXO Digitally controlled crystal oscillator.

DDS Direct Digital Synthesizer.

DHCP Dynamic host configuration protocol. A host does not assign IP address to

 itself, instead a DHCP server does this for it.

DSP Digital signal processing.

eTSEC Enhanced three-Speed Ethernet controllers. Ethernet controllers in P2020.

FCB Frame Control Block. Data structure used in P2020.

FDD Frequency division duplex.

FDMA Frequency division multiple access.

FIR Finite impulse response. One kind of digital filter.

FLL Frequency locked loop.

GPS Global positioning system.

GSM Global system for mobile communications. 2nd generation mobile system.

HW Hardware.

IGMP Internet group management protocol. Group management for multicast.

IIR Infinite impulse response. The other kind of digital filter.

IP Internet protocol. Third layer.

LAN Local area network.

LTE Long term evolution. 4th generation mobile system.

MAC Media access control. Second layer in OSI 7 layered computer network

 structure.

MIMO Multiple input and multiple output.

MS Mobile station. A user equipment such as mobile phone.

NTP Network time protocol. Synchronize computers through packet exchange.

OCXO Oven controlled crystal oscillator.

OS Operating system.

PDV Path delay variation. Packets transmitted in the computer network suffer.

V

PLL Phase locked loop.

ppb parts per billion.

ppm parts per million.

PPS Pulses per second.

PSN Packet switching network.

PTN Packet transport network. An optical transport network.

PTP Precise time protocol.

RF Radio Frequency.

RTC Real time clock.

SDH Synchronous digital hierarchy. Same as SONET, but used elsewhere.

SONET Synchronous optical networking. Standard for fiber optic transport. Used

 in North America

STM-N Synchronous transport module level N. Fiber optic network transmission

 standard.

TCP Transmission control protocol. Another transport layer protocol.

TCXO Temperature compensation crystal oscillator.

TD-SCDMA Time Division Synchronous code division multiple access.

TDD Time division duplex.

TDM Time division multiplexing.

TDMA Time division multiple access.

TETRA Terrestrial trunked radio. Professional radio system for security.

ToD Time of day.

UDP User datagram protocol. One of the transport layer protocols, above IP.

UTC Coordinated Universal Time. Widely used time standard.

WCDMA Wideband code division multiple access.

CONTENTS

1. Introduction ... 1

1.1. Background .. 1

1.2. Requirements .. 3

1.3. Crystal oscillators ... 5

1.4. Thesis outline ... 6

2. PTP theory ... 7

2.1. Definitions .. 7

2.2. Synchronization mechanism .. 11

2.3. Time offset in PTP ... 12

2.3.1. Delay asymmetry ... 12

2.3.2. Clock drift .. 14

2.4. PTP devices used in this thesis ... 15

2.4.1. Grandmaster – OSCILLOQUARTZ 5331 15

2.4.2. Product slave – OSCILLOQUARTZ 5320 16

2.4.3. Implemented slave processor – FREESCALE P2020 17

2.5. Summary .. 17

3. HW assisted PTP function .. 18

3.1. Slave clock structure .. 18

3.2. HW support and configuration ... 18

3.3. SW support for timestamp information .. 21

3.4. Phase aligned operation .. 25

3.5. Summary .. 25

4. PTP slave SW .. 26

4.1. Network handler ... 26

4.2. Tuple list ... 30

4.3. Filters .. 33

4.3.1. Offset thresholds .. 33

4.3.2. Packet selection .. 34

4.3.3. Digital filters .. 36

4.4. PI controller .. 40

4.5. Clock discipline methods ... 41

4.6. Summary .. 42

5. PLL method simulation ... 43

5.1. Polluted case ... 43

5.2. Ideal case .. 47

6. Results and discussions ... 51

6.1. FLL ... 51

6.1.1. Experimental evaluation .. 53

6.2. PLL ... 56

6.2.1. Experimental evaluation .. 57

7. Conclusions and future work .. 66

7.1. Conclusions .. 66

7.2. Future work .. 67

References ... 68

Appendix 1: PLL method simulation .. 71

Appendix 2: PI controller parameter study ... 78

1

1. INTRODUCTION

In mobile communication systems, Base Stations (BSs) are connected together indirect-

ly. The synchronization among them is very important, despite what technique the sys-

tem uses. They need to be synchronized in such a way that they offer the same carrier

frequency and/or precisely aligned carrier phases. This BS synchronization is so critical

that once the synchronization fails to meet its requirements, the Mobile Station (MS)

connections are dropped or offered a bad quality of service. MS handover, radio fram-

ing accuracy and interference control on cell boundaries require the BSs to be highly

synchronized. Figure 1.1 shows the three places where the synchronizations are possibly

required depending on the employed technique.

BSC

BS

BS

Radio interface
sync Network sync

Gbit switch router

Node Sync

Reference Clock

Figure 1.1. Synchronization positions in a typical system.

1.1. Background

In the legacy mobile communication system, the backhaul network was constructed

using Time Division Multiplexing (TDM) or Synchronous Optical Networking

(SONET)/Synchronous Digital Hierarchy (SDH). The TDM input frequency is traceable

to a reference clock usually located near the Base Station Controller (BSC) with an error

tolerance of 50 ppm. In the Global System for Mobile communications (GSM) system,

BSs are synchronized in an end-to-end way, i.e., TDM works as a source for BSs (as a

physical layer, SDH employs TDM technique). Later in 3G, depending on the employed

access network technique and the willingness of operators, BSs can receive synchroni-

zation information through the Global Positioning System (GPS). As what has been

commonly known, GPS usually offers time signal with an accuracy of 14 ns in theory

[7]. But GPS is not always a reliable time source. Besides, it requires strict line-of-sight

2

connections to the GPS satellites, which limits its application in Pico BSs (small-scale

BSs placed in crowded areas).

Figure 1.2. Three methods for BS synchronization – physical layer transport synchro-

nization signal, GPS receiver in each BS, and Ethernet time packets exchange.

To satisfy the rapidly growing demands on data communication capacity and to elimi-

nate the high expenses on SDH (both construction and maintenance), both operators and

solution providers are driven to replace SDH with Packet Switching Network (PSN).

Moreover, as PSN is based on the Ethernet technique, it inherits Ethernet's benefits,

such as low cost, easy maintenance and fast recovery. As part of the SDH, synchroniza-

tion signal is needed, as the data transmission relies on the precise frequency. In contrast,

the network transmission in PSN does not demand accurate frequency. Figure 1.2 shows

the three options for BSs synchronization – GPS, TDM (in SDN) type physical signal

and the Ethernet packet-switched time service. There are standardized protocols aiming

3

at the third method, such as Network Time Protocol (NTP) and Precise Time Protocol

(PTP).

PTP, also known as IEEE 1588, has been developed for ten years since the first version

of IEEE 1588 standard came out in 2002. The second edition was published in 2008. It

was developed to offer microsecond to sub-microsecond accuracy that is suitable to

apply in the mobile communication system. In fact, the time is actually an accumulation

of frequency, therefore in many references (especially ones for NTP) time and phase

show up equivalently. Similarly, time offset is often called as phase offset. In a short

duration, the time modification reflects frequency change. Many solution providers tune

Oven Controlled crystal oscillator (OCXO) according to the PLL input time reference.

Based on these ideas, evidently, sharing time packets over Ethernet enables both time

and frequency synchronization in BSs.

The PTP software (SW) in BSs builds a slave clock servo, which is in charge of control-

ling the local oscillator. The positive point for using PTP is that it does not need to

change the already existing Ethernet structure. Instead, it only adds SW and hardware

(HW), which assists SW to complete the timing service, in devices that need to be syn-

chronized. Besides, with PTP there is no need to install as many antennas as in the GPS

method, which makes PTP more cost-efficient. The negative point is that Ethernet is a

noisy communication path, and the potential multi-link and unpredictable Path Delay

Variation (PDV) lead to difficulties in designing reliable algorithms.

1.2. Requirements

On one hand, based on the way how different users share the communication resources,

techniques in mobile communication systems can be categorized as Frequency Division

Multiple Access (FDMA), Time Division Multiple Access (TDMA) and Code Division

Multiple Access (CDMA). On the other hand, the method that is used to distinguish

communication directions, i.e., uplink and downlink, can be divided into Time Division

Duplex (TDD) and Frequency Division Duplex (FDD). In TDD, reception and trans-

mission are operated on the same frequency but different timeslots. This requires the

inter-site timing to be accurate, so that when MS is talking (traffic on uplink), all BSs

are listening. In contrast, FDD uses two carrier frequencies for uplink and downlink

respectively, so accurate frequency needs to be guaranteed. [6, p. 2]

Moreover, CDMA has a wide signal bandwidth, i.e., shorter symbol (chip) duration.

Therefore CDMA exhibits time dispersive channels. Taking this benefit, Multiple Input

& Multiple Output (MIMO) and rake receiver are often used in CDMA, which require

precise inter-site timing phase.

4

The maximum frequency error and the time offset for some techniques are listed in Ta-

ble 1.1. The frequency accuracy is the tolerance on the frequency error. It is defined as

the difference between the actual BS transmission frequency and the assigned frequency

[12]. The value (50 ppb) is to ensure that mobile terminals are still connected, even if

they are traveling at a speed of 250 km/h (large Doppler shift) and need to handover to

another site [3].

Table 1.1 Accuracy requirements in mobile communication systems.[34]

Layer Sub Items Freq. accuracy Timing accuracy

Network Sync E1 50 Parts per Million (ppm) -

 Synchronous Transport

Module level N (STM-N)

4.6 ppm -

 Packet Transport Network

(PTN)

Not so strict -

Node Sync BSC-BS 50 Parts per Billion (ppb) (if

BS picks up time from other

BSC)

3 (if BS picks up

time from other BSC)

 Inter BS 50 ppb (if BS picks up time

from other BS)

3 (if BS picks up

time from other BS)

Radio inter-

face

GSM 50 ppb -

Terrestrial Trunked

Radio (TETRA) [11]

100 ppb 13.889

 Wideband Code Division

Multiple Access (WCDMA)

50 ppb -

 Time Division Synchronous

Code Division Multiple

Access (TD-SCDMA)

50 ppb 3

 Time Division Duplex -

Long Term Evolution

(TDD-LTE)

50 ppb 10

 FDD-LTE 50 ppb -

Although BSs designed by different solution providers have their own structures, it is

common to have a Phase Locked Loop (PLL) controlled OCXO as radio frequency gen-

erator in a BS. To ensure that the accuracy of the output Radio Frequency (RF) frequen-

cy reaches 50 ppb, the BS frequency reference signal is experimentally required to reach

16 ppb accuracy. This means that if the reference frequency of PLL has 16 ppb accuracy,

its control target – oscillator (OCXO) would have some head-room. This is shown in

Figure 1.3.

5

PLL OCXO
reference sig.

16 ppb
RF signal 50

ppb

control sig.
16 ppb

Figure 1.3. Cascaded frequency accuracy.

1.3. Crystal oscillators

In order to adjust the frequency in BSs, usually a controllable crystal oscillator is placed

in a BS. The main control parameters are the temperature and voltage depending on the

crystal oscillator features.

The principle of OCXO is to keep the temperature of OCXO at a predetermined value,

at which the XO frequency-temperature curve presents zero slope. This value is beyond

the temperature that the XO encounters without the heating oven. If XO is a SC-cut os-

cillator, the dynamic frequency-temperature stability is 100 times smaller than that of a

static type (Table I and II in [32]). The idea of dynamic and static is expressed in [32],

and shown in Figure 1.4. Moreover, in order to maintain the oven temperature, a servo

circuit is used. The primary device in such a circuit is a thermistor. Therefore, it takes

time to warm up the OCXO before it reaches the "zero-slope", which is the operating

temperature.

100 120 14080604020 160

0

-20

20

10

-10
Static frequency–temperature stability

dynamic frequency–temperature stability

Temperature (℃)

Fr
eq
ue
nc
y
dr
if
t
(p
pm
)

Figure 1.4. Dynamic and static frequency-temperature stability of an OCXO.

Besides OC, Digitally Controlled (DC), Voltage Controlled (VC), Temperature Com-

pensation (TC) are widely used in different applications. It is commonly agreed that

OCXO is better than DC or VC. The stability of XO is usually expressed by (),

6

where is the observation duration in seconds. The short term stability could reach

 () [1]. Randomly consulting a few OCXO and DCXO product datasheets

on the Internet, the impression was that OCXO usually has sub-ppm stability while

DCXO has it at about 20 ppm over one year. TCXO is a VCXO plus a temperature sen-

sor [8]. Therefore, from the stability point of view, the best is OCXO, then come TCXO,

DCXO and VCXO.

When an OCXO is used in a BS, the temperature of the oven is slightly adjusted in or-

der to keep the frequency as expected.

1.4. Thesis outline

In this chapter, the background for the BSs synchronization and requirements were in-

troduced.

The following chapters focus on the PTP related topics.

In Chapter 2, firstly the PTP theory is illustrated with implementation related notes in

the IEEE 1588v2. Based on the time distribution mechanics, the synchronization diffi-

culties and possible solutions are discussed. The last part in this chapter introduces PTP

equipment used in this work.

In Chapter 3, HW assisted functions in FREESCALE P2020 processor, and the corre-

sponding Linux kernel modifications are introduced with examples.

Chapter 4 introduces the implementations of the slave clock, including the network

handler, data structure and digital control model.

Chapter 5 discusses the performance of digital control model introduced in Chapter 4

using simulated PLL method. The discussion is divided into two cases. The polluted

case studies the effect of path delays and the performance of filters. By assuming the

oscillator is stable and the network is free of delay variation, the behaviour of digital

control model is studied in the ideal case.

In the last two chapters, PTP slave implementations will be listed and explained, fol-

lowed by the results of experimental evaluations. At the end of Chapter 7, the analysis

of the designed PTP slave clock would be concluded.

Appendix 1 is a group of Matlab simulation scripts for PTP slave implemented with the

PLL method. Appendix 2 is another Matlab script studying about the behaviour of the

PI controller parameter effects on the slave clock.

7

2. PTP THEORY

PTP is defined to enable precise synchronization of clocks in measurement and control

systems. As one of its targeted usage, PTP used in dedicated networks, such as the

backhaul of mobile networks, is becoming more and more popular. Before PTP was

developed, NTP built a milestone on the computer synchronization in networks. It has

been improved and widely employed for 30 years. Published in 2006, [30] serves as a

very constructive guide about how to implement NTP. The latest NTP is Version 4

(NTPv4 for short) published in 2010, defined in RFC5905 [21]. The network environ-

ment that NTP was designed for was Wide Area Network (WAN), regardless of access

technique. Compared with the dedicated network, it suffers from both large delay and

delay variation, but has lower accuracy requirements.

2.1. Definitions

A clock in PTP is defined as a node that is capable of measuring the elapsed time from

the beginning of a predetermined epoch. This measurement can be done either in HW or

SW. Depending on the function and role of devices in a network, PTP categorizes them

into four main types:

Ordinary clock: A clock that has a single PTP port in a domain and maintains the time-

scale used in the domain, e.g., master and slave clocks.

Boundary clock: If an ordinary clock has multiple PTP ports in a domain, it is called

boundary clock). Typically, network devices embedded with PTP engines play such a

role.

Transparent clock: A device on the communication path, e.g., router and switch, which

can give timestamp at the moment that packets arrive and leave. So the delay caused by

the jitter in this device can be subtracted eventually. This jitter information is kept in the

correctionField in the PTP packet header.

Grandmaster clock: A clock that is the ultimate source of time within a domain, e.g., the

master clock in this implementation is synchronised to GPS, therefore it is a grandmas-

ter.

Figure 2.1 illustrates the positions of these PTP devices in a network.

8

Network A Network B

PTP support router
(Transparent clock, or

Ordinary clock)

Master clock

(Ordinary clock)

Slave clock

(Ordinary clock)

Figure 2.1.Typical network connection where PTP function is employed.

The synchronization is completed by exchanging PTP messages between a master clock

and a slave clock. The messages can be divided into two categories. The event messages

require time to be stamped in both master and slave, and the regular messages are pack-

ets that have configuration or timestamp in the data field. These message types are listed

in Table 2.1.

Table 2.1 Messages in PTP.

 Type Function

event Sync Sent by master, contains the egress time in master, and slave tags the

ingress time on it.

 Delay_Req Sent by slave, contains the egress time in slave, and master tags the

ingress time on it.

normal Follow_Up Delivers timestamp in Sync but more precise when it is used in two-

step mechanism.

 Delay_Resp Sent by master, it has the ingress time of Delay_Req.

 Announce The characteristics of a clock, e.g., how accurate it is.

 Signaling Configuration, such as request and grant.

 Management Configuration.

Follow_Up is only used in two-step mode. The PTP standard gives options on how to

deliver timestamp t1, one-step or two-step. In one-step, t1 is only carried by Sync mes-

sage. In two-step mode, Follow_Up also carries t1, but with a better accuracy. This is

because, depending on the specific master internal implementation, t1 carried by Sync

might be generated in the SW layer, resulting in a reduced accuracy. In this case, Fol-

low_Up has to be used because HW timestamp tagged at Media Access Control (MAC)

layer is not inserted into the Sync packet. For example, P2020 is such a chip that top

layer fills in Sync packet with an estimated egress time, so it requires SW to take out

timestamp from registers, and fill it in the corresponding Follow_Up packet. Compara-

tively, since one-step does not use Follow_Up packet, the timestamp in Sync would be

the only source for a slave to catch t1.

9

Announce message is only sent by a clock port which is interested in serving as a master

[20.p.122]. It contains grandmaster priority 1 and 2, clock quality, etc. For clocks that

are only willing to be slave, such as the slave clock implemented in the range of this

thesis, this message can be omitted. Instead of transmitting Announce message, these

slave-only clocks keep an ear on incoming Announce messages to choose the master as

stated in Best Master Clock (BMC) [20, p.109]. Figure 29 [20, p.116] in standard gives

a description of data set comparison algorithm in the form of a flow chart. The An-

nounce message contains the grandmaster data set, and it does not report the quality of

the clock that sends this message (unless the clock itself is a grandmaster). However,

this leads to two problems. The slave clock compares and chooses the master only based

on its grandmaster, instead of the quality of the master. If several master clocks use the

same grandmaster, which one should be considered as a better one and why the slave

clock cannot directly talk to the grandmaster? In [17, p. 17], it is said that if there exists

multiple hops from the grandmaster to the slave, the accuracy gained by using a bound-

ary clock in the middle is better than that gained by slave directly treating grandmaster

as its master. According to [16, p. 15], network devices, such as switches, could be di-

vided into three types, boundary clocks, end-to-end transparent clocks and peer-to-peer

transparent clocks. Taking boundary clocks as an example, and borrowing the conclu-

sion from [17, p.17], reasons for the above questions could be explained in Figure 2.2,

where the first situation is better than the second one. Some other constructive applica-

tion suggestions are given in [17].

Grandmaster 5 hops 5 hopsBoundary clock slave

PTP port1: Slave to the
grandmaster clock

PTP port2: master
to the slave clock

Grandmaster slave10 hops

Figure 2.2. Boundary clock in the middle offers better accuracy than slaves talking di-

rectly to the grandmaster.

Management message is described in [20, p.38] as a way to update the data set. Howev-

er, In IEEE 1588v2 standard Chapter 13, many data fields are claimed as not part of the

data set. Instead, items such as physicalLayerProtocol in CLOCK_DESCRIPTION [20,

p.161], are self-autonomous configurations. When a dedicated management node is

used, it may help to organize and administrate the PTP clock system, even to decide

which clock is the most accurate according to the CLOCK_ACCURACY management

10

message. OSCILLOQUARTZ can be configured through web easily by hand so this

message is not used. Besides, it is rational to believe that the Management messages

depend greatly on the communication terminals. Different clock vendors need to negoti-

ate and agree on the message format. Otherwise no one understands the Management

message from the other end. On the contrary, as NTP is used in large scale computer

networks, it is claimed in [28, p. 5] that the autonomous clock hierarchy in NTP is very

important. It is too risky to employ an autonomous administration in Telecommunica-

tion systems; otherwise a system engineer could not see what is going on in the clock

network.

The purpose of a Signaling message is to negotiate optional services, such as PTP over

unicast. In IEEE 1588v2 standard, both Signaling and Management message data are

called TLV (type, length, value), but not the same. Terminology "TLV entity specifica-

tion" and "management TLV" both exist. It is rational to believe that the "TLV entity

specification" is the data of Signaling message while "management TLV" specifies data

of Management message.

All PTP messages belong to a domain, which is assigned in the PTP common header.

Domain is a logically independent region to form clocks clusters. The idea is very simi-

lar to computers (i.e., clocks) belonging to a subnet (i.e., independent region) through

net masks and Internet Protocol (IP) addresses (i.e., subdomain number in PTP packet

header). For every PTP packet destined for this clock, if the domain number is not what

has been expected, this PTP messages will be discarded. And the difference between

subnet and subdomain is that they are from different network layers, so they work inde-

pendently. Figure 2.3 shows the domain field in the PTP packet header. This header is

common for all PTP packets. In Table 2.2, T.S., M.T., R. and V. means transport specif-

ic, message type, reserved and PTP version, respectively.

Table 2.2 PTP common message header.

 0 15 16 31

0 T.S. M.T. R. V. messageLength

4 domainNumber reserved flagField

8 correctionField

12 correctionField (continued)

16 reserved

20 sourcePortIdentity

24 sourcePortIdentity (continued)

28 sourcePortIdentity (continued) sequenceID

32 controlField logInterval

11

2.2. Synchronization mechanism

A slave clock (hereinafter, the slave) synchronizes itself to a master clock by exchang-

ing the packets that carry time information. Based on timestamps, the slave calculates

the time offset from master, and eventually adjusts its local time to be the same as that

in the master. Indirectly, the frequency of the slave clock thereafter is also adjusted.

Sync (event)

t1

t3

Follow_up (normal)

Delay_Resp (normal)

Delay_R
eq (eve

nt)

t1 t2

Precise t1 t2

[Precise] t1 t2 t3

[Precise] t1 t2 t3 t4

t2

t4

Master clock Slave clock Timestamp in slave

Figure 2.3. PTP packets exchange.

The synchronization mechanism is shown in Figure 2.3 where t1 is the egress moment

of Sync message in master, t2 is Sync message ingress moment in slave, t3 is Delay_Req

message egress moment in slave, and t4 is the time when the master receives it. All four

timestamps are generated according to each clock's local time. Assuming that the time

offset in slave is from the master and the master-to-slave delay suffered by a Sync

message is , we have

 (2.1)

In order to estimate the delay, the slave sends Delay_Req messages. Assuming that the

Delay_Req packet goes through a slave-to-master delay , we obtain

 (2.2)

Combining above two equations, and assuming that delays in both directions are the

same, d, the time offset from the master can be expressed as

 (2.3)

Based on , the slave knows how much its local time differs from that in the master.

Rewriting the above equation, (2.3) turns into

12

{

 (2.4)

When transparent clock is used, in the most simplified occasion (i.e., master, end-to-end,

and slave one-step clocks; no asymmetry correction corresponding to Figure C.1 in

[20]), (2.4) becomes

{

 (2.5)

 – correctionField in Sync message,

 – correctionField in Delay_Resp message.

2.3. Time offset in PTP

The time offset from the master clock is affected by two factors, namely delay asym-

metry and clock drift.

2.3.1. Delay asymmetry

As part of the time offset, delay asymmetry is introduced by the PTP protocol itself.

Packets transmitted through network generally suffer different delays in the two direc-

tions. There is no way to exactly measure one way delay, i.e., or . Based on

Section 2.3, the master-to-slave delay is assumed as the mean value of the delays in the

two directions, and this is unlikely to be the case in a real network. The calculated offset

would have an error that is equal to the difference of the mean delay and the master-to-

slave delay.

Mean Delay

dSM

dMS
t2-t1

Real offset

Biased offset

0

Figure 2.4. Asymmetric delay affects the calculated offset (arrow shows the vector di-

rection and length is the vector size).

In Figure 2.4., the biased offset is gained based on (2.4), and its relation with real offset

is

 - (2.6)

13

Since the age of NTP, the effect of asymmetric path delay on offset calculation has been

considered. One method claimed to be applicable is the so-called Huff-n'-Puff filter.

There are four main reasons that lead to asymmetric path delays. The first reason is the

operating system latency. Between the generation of a PTP event packet and its trans-

mission on the wire, the packet is manipulated and buffered by the protocol stack. Be-

sides, when a packet is received, it is delayed by another interrupt mechanism. In order

to avoid the OS latency, the event packets should be timestamped closer to the physical

layer, e.g., at the MAC layer. By doing this, the OS latency can be decreased from mi-

crosecond or millisecond to nanosecond scale.

The second factor is asymmetric link speeds, and the solution is to use the same link

speed for both directions. The third aspect lies in the network devices. No matter which

technique is used in a switch, store-and-forward or cut-through, buffering and queuing

packets raise delay. It is said that communication between multi-points and a single

point suffers from asymmetric delays [5].

To deal with the asymmetric delay, four main methods have been seen so far. The figure

in [13, p. 12] gives a very good outline for ITU-T suggestions on synchronization. It

includes a portion of how to deal with PDV.

The first possible solution is to employ devices that support PTP and act as transparent

clocks. Many router/switch manufacturers have already announced that their equipment

is embedded with PTP functions (the newer router of Cisco, e.g., Cisco 7600 can be

configured to support PTP). Figures C.1 to C.4 in [20] give very good instructions on

how to employ transparent clock in both one step and two-step PTP. It is noteworthy

that the time offset of transparent clock does not affect the delay and offset calculation

in the slave clock. Compared with the other clocks, correctionField in transparent

clocks contains not only the sub nanosecond residuals (for example, the egress time of

Sync message in master is 144 second and 7.4 ns, 0.4 would be in correctionField) but

also the residence time (during which the packet stays in network devices). This is the

easiest way from the point of telecommunication solution providers – they don't need to

consider the mechanisms to cancel asymmetry. Besides, the transparent clock method is,

in theory, the most accurate way compared with the other three. The negative side is

that these devices might be costly and not all customers are willing to update their de-

vices already in use.

The second method is to use boundary clocks. It is claimed in [17] that, if the same

number of intermediate devices is used, adding a boundary clock in the middle would

be helpful in reducing error. This method is less accurate than the use of transparent

clocks, although it still needs switches/routers to support the PTP function.

14

Compared with employing PTP supported switches/routers, packet priority is supported

by most modern network devices. The principle of this method is that the higher priority

packet is likely to suffer less switch delays. The adoption of priority shows up in [19].

There is a trend that the PTP header length would be adaptive for the priority usage in

the future [18, p. 134].

There is a discussion about the importance of priority in [33]. Th c c u “un-

der congestion, Transparent Clocks without prioritization struggle to maintain high-

accuracy clock synchronization. Including cut-through Enterprise Ethernet switches

with prioritization enabled results in better synchronization performance in congested

networks. However, they do not maintain the same sub-microsecond accuracy TCs have

when congestion is not present.” [33, p. 68]

The fourth method is called the PTP delay equalizer. It appoints a fixed delay to all PTP

event packets. Network devices would buffer the packet into a disciplined queue to en-

sure that every PTP packet experiences the same known delay. This method is described

as first disclosed under the name of "Controlled Delay"[5]. It is also proposed to add

delay onto the PTP event packets and make the delays constant in [23].

There are two terms often rising indiscriminately in PTP papers – delay variation and

delay. It is claimed that the high delay network usually also has a high delay variation

[9]. However, during the procedure of doing this master thesis, what was observed is

that the delay variation more likely leads to the frequency offset while absolute delay is

closely related with the time offset. In order to characterize the network features better,

many papers introduce the idea to use smaller interval between PTP Sync messages.

2.3.2. Clock drift

Another time offset is caused by the clock/oscillator itself. Many references depict the

time difference between that in a clock which counts the periods of oscillator and the

real time as

 ()

 ()

 (2.7)

 is the initial time error,

 is the fractional frequency offset between object oscillator and the reference oscilla-

tor,

 stands for the linear fractional frequency offset of the measured oscillator,

 () represents the random phase noise,

 is the nominal frequency of the reference oscillator.

This is a continuous-time expression. Its sampled version can be easily rewritten by

substituting in (2.7) t with kT, k = 0,1,2,...where T is the sampling period. The Fractional

15

Frequency Offset (FFO) between oscillator A (with frequency) and oscillator B is

defined as

 (2.8)

The values of and can thereafter be derived based on (2.8).

The frequency drift of an oscillator (represented by) is affected by the clock itself,

such as aging, and environmental issues, e.g., pressure and voltage. In the implementa-

tion, the oscillating source is an on-board oscillator in BS and the temperature is the

main factor. In [22] the random phase noise () is valued by 5 indicators, including

Allan deviation (ADEV). Basically, () is a collection of all the temporary and unob-

vious frequency errors that has not been included in . According to (2.7) and (2.8), in

the thesis simulation (Appendix), random phase noise is considered.

2.4. PTP devices used in this thesis

This thesis got support from the OSCILLOQUARTZ Company. In order to evaluate the

quality of the implemented slave, a test was conducted to compare OSCILLOQUARTZ

5320 slave and the designed slave. The slave was implemented in a computer whose

processor is FREESCALE P2020. The comparison was based on the fact that the

grandmaster should offer trustable reference time information, so a commercial product

level grandmaster was used – OSCILLOQUARTZ 5331. In order to better understand

the following chapters, the features of these two devices are explained in this section.

2.4.1. Grandmaster – OSCILLOQUARTZ 5331

Figure 2.5. 5331 management – Clock and PTP status screenshot.

16

5331 is a grandmaster, with GPS receiver embedded. It can support up to four PTP en-

gines, which means four isolated PTP domains (clock network subnet). It has two

Ethernet interfaces, one is for PTP, and the other one is for management. Before starting

to manage 5331, one needs to assign an IP address for the management interface on its

front panel. The management of 5331 includes two aspects – configuration and status

view. In configuration, engineers can log in through web (using the assigned manage-

ment IP address) to set, for example, transmission method (multicast or unicast), PTP

domain number, whether to use two-step mode, etc. In status view, one can see the

clock information and PTP overview, as shown in Figure 2.5. The capacity of 5331 de-

pends on the packet rate, it is designed to be, for each PTP engine, 50 PTP slaves at 64

pkt/s, 80 slaves at 32 pkt/s and 128 at 16 pkt/s. 5331 also supports many kinds of out-

puts, including the 10 MHz standard signal, and Coordinated Universal Time (UTC)

second aligned PPS (hereinafter, the GPS PPS), these are used in the test of this thesis.

2.4.2. Product slave – OSCILLOQUARTZ 5320

Figure 2.6. 5320 management – Clock and PTP status screenshot.

OSCILLOQUARTZ 5320 is the slave. In terms of operation, it differs from 5331 main-

ly in the way how the management IP address is obtained. The address is detected by a

SW which can be found in the product manual. If 5320 and the computer are in the

same network, SW would detect the management interface IP address. One could log in

5320 though web interface by using that IP address, and change it later. Like 5331, the

management of 5320 also includes two aspects – configuration and status view. In the

configuration, the IP address of 5320 could be assigned, and the master clock list can be

17

filled in manually. Besides, there are other configurable features regarding the method

used to synchronize. In the status view dialog, not only the slave clock situation but also

the status of the traced master is given, as shown in Figure 2.6. In "PTP OVERVIEW"

session, if PTP lock value is 1, the slave is best locked. Once slave lost the connection

with master, "MASTER STATUS" would be empty. One interesting point is in "DE-

LAY STATISTICS", it displays estimates of the delay and noise. In the two opposite

directions, different noise estimates are shown, which was claimed to be impossible in

many reference materials. How this is achieved? In the slave manual, a clue was given

as "The PLL and DDS designs are capable of smoothing out not only stationary noise

(jitter, wander), but they also behave well under all sorts of abnormal transient condi-

tions"[6].

2.4.3. Implemented slave processor – FREESCALE P2020

FREESCALE P2020 supports the HW assisted PTP. It has three sets of Ethernet con-

trollers, called eTSECs. However, only eTSEC1 has the ability to assist the PTP SW,

meaning that this interface must be enabled (e.g., in device tree) and write/read opera-

tion should be conducted in eTSEC1 registers. These registers cooperate to realize the

PTP function, including control and generate timestamp, clock adjustments and PPS

generation. By enabling the corresponding flags in a control register, this PPS could

also be phase aligned, i.e., the rising edge can be adjusted. This procedure would be

explained with examples in Section 3.2 HW support and configuration.

2.5. Summary

In this chapter, PTP was introduced from the practical point of view. Definitions from

IEEE 1588v2 standard are illustrated with practical meanings and operations. Therefore,

many other points of PTP, such as peer-to-peer mode and BMC, cannot be found here,

since they were not part of the thesis implementation.

We first introduced the definition of several key devices, such as boundary clock, ordi-

nary clock and transparent clock. PTP message types were illustrated one by one. Next

we discussed the PTP synchronization mechanism, i.e., how slaves know the grandmas-

ter time and calculate their time offset. Thirdly, the frequency wander, mainly due to

environmental and aging factors, was described as a reason why oscillators need to be

adjusted. Besides, the interferences that greatly affect the accuracy of PTP were ex-

plained together with possible solutions. At the end of this chapter, some devices used

in this thesis, i.e., OSCILLOQUARTZ 5331, 5320 and FREESCALE P2020 were in-

troduced.

18

3. HW ASSISTED PTP FUNCTION

In computer communications, after the application layer (a SW) generates the data, it is

encapsulated and passed through the TCP (or UDP), IP, MAC and PHY layers. The

message journey between different layers in OSs would meet a random and not a small

amount of delay. The unpredictable delay variation is called jitter. In order to gain better

accuracy, the jitter due to the system operation should be minimized. This requires that

the timestamp should be generated as close as possible to the bottom layer of the net-

work. This requires both HW and SW, which also includes OS to support it.

To enhance the readability, the processor register names and the SW components (e.g.,

functions and structures) are in italic font throughout this and the following chapters.

Besides, if an object is followed ck p h (“[]”), a specific field of this

object is referred.

3.1. Slave clock structure

A top-down approach to implement the HW assisted slave clock includes several

blocks. The first block is a user space SW. It handles the network packet exchanging

based on the service offered by the kernel layer; it maintains a data structure where the

necessary information to calculate the time offset is stored; it also contains a servo, that

uses a set of filters to optimally tune the local clock. The second block is a network

driver. It separates the PTP event packets from all the others, and indicates the HW to

generate timestamp on them; it maintains a circular buffer, which contains the event

packets ingress timestamps that are ready for the user space SW to request. The bottom

block is a set of HW registers, which form a clock, accompanied with a set of other ser-

vices, such as the alignment of output PPS signal, and timestamp storages. Without the

user space SW, the network driver and HW registers run freely. But with the user space

SW, the time difference between the master and slave could be minimized by control-

ling the HW registers.

3.2. HW support and configuration

The HW support and its configuration are explained from the point of an ordinary clock,

which is a slave using P2020 processor. Its structure is shown in Figure 3.1.

19

32 bits
Accumulator

64 bits
Counter

ADDEND

Down counter

64 bits
Alarm

Fs Fn

PPS signal

FIPER

Period

added added

Local time in ns

subtracted

loaded

Compare

trigger

Figure 3.1. P2020 HW clock structure.

 is the frequency of eTSEC system clock (i.e., system frequency). Other than this,

eTSEC1 transmit clock, external high precision timer reference clock

(TSEC_1588_CLK_IN, a signal pin on P2020) and Real Time Clock (RTC) function can

also be used, configured by TMR_CTRL[CKSEL]. This thesis was implemented while

only the eTSEC system clock and eTSEC1 transmit clock are available. The system

clock was used, because its frequency is higher (eTSEC1 transmit clock frequency is 25

MHz). And a higher offers better clock resolution. is the nominal frequency, both

in Hz, and their relation is:

 (3.1)

A – the value in TMR_ADD register, hereinafter, the addend.

The system clock is an oscillator that offers the frequency used by the processor. The

same clock can also be used for other chips on the same board. In this implementation,

its ideal frequency is 200 MHz. For every pulse from system clock, A is added into the

timer accumulator register (TMR_ACC). Once the accumulator overflows, it gives a

pulse as output. For example, if A is , meaning for every two pulses received by the

down counter, one pulse would be generated, so the nominal frequency would be half of

the system frequency. The TMR_CTRL[TCLK_PERIOD] holds the period value, which

is added into the timer counter register (TMR_CNT_H/L) at every incoming pulse. If the

nominal frequency is 100 MHz, the period value would be 10, to make TMR_CNT_H/L

20

have 1000 MHz (nominal frequency times the period value) frequency, having the same

meaning of nanoseconds (recall that one second is 1000 million nanoseconds). Because

of this, the period value is also the resolution – the minimum accuracy a clock can offer.

The counter register (TMR_CNT_H/L) therefore provides the time information, which is

compared with that in the master clock. The goal is to make the value in this counter as

accurate as possible to the master clock. Counter register is a 64 bit register (a pair of 32

bit ones).

Unlike these accumulators, the way to generate PPS signal in this processor is achieved

by down counting. Every pulse would cause one period being subtracted. When the val-

ue in down counter register is no bigger than one period, at the next pulse, it would gen-

erate a PPS signal. And one pulse after that, the value in the TMR_FIPER1 register is

loaded again, so the TMR_FIPER1 register holds the initial minuend. A tidy equation to

sum these descriptions and what value FIPER should have is

 (3.2)

 – nominal frequency,

 – value in TMR_FIPER1 register,

 – value in TMR_CTRL[TCLK_PERIOD].

For example, assuming the system frequency is 200 MHz, if one wants to use 100 MHz

as the nominal frequency (can be any value less than 200 MHz), TMR_FIPER1 and

TMR_CTRL[TCLK_PERIOD] should be 999999990 and 10 respectively.

The width of this PPS signal is twice the period value. This is because when value in the

down counter is no bigger than the period, PPS signal raises to high level. If the period

is in nanoseconds, the duration of PPS high level is ns. One needs to ensure that

the width is not too small for the following peripheral to catch it.

In order to get a phase aligned PPS signal, TMR_ALARM1 register is used. Once the

value in TMR_CNT_H/L reaches that in TMR_ALARM1, a down counter for PPS starts

to work. If TMR_CNT_H/L offers accurate enough time information, the PPS signal can

be phase aligned to the reference PPS with nanosecond accuracy.

Timer offset register (TMROFF_H/L) is a register that plays an important role after the

counter (TMR_CNT_H/L) overflows. If the 64 bit TMR_CNT_H/L register is not enough

to present current time, offset register is used to simplify the timestamp operation in

SW. Offset can also be used to form a time scale which has its own special epoch – let

offset register contain value that is the difference between origTime in PTP message,

and local clock time. When the SW compares the local clock time and the origTime in

PTP message, offset should be added to the local time. The benefit of doing this is mul-

tiple SW processes that need ToD (Time of day) can visit the register, which is easier

than using Inter-Process Communication (IPC) to get this value.

21

Without the support of clock driver or kernel, directly taking timestamp in TMR_TXTS

(transmitted timestamp) or TMR_RXTS (received timestamp) registers is easier and effi-

cient. TMR_TXTS-ID registers hold the value that can be used to distinguish

timestamped packets, while TMR_TXTS contains the timestamp for that packet, so are

the TMR_RXTS-ID and TMR_RXTS. The shortcoming by doing this is the PTP SW

must have a mechanism to handle the possible HW latency. No matter in which way the

timestamp of the packets is gained (by polling or interrupt), the HW doesn't touch any-

thing in the PTP message, i.e., no HW "pen" would fill in the timestamp in packets for

PTP SW – it is PTP SW's task to fill it in.

To enable the above registers, registers that control the PTP HW function are also nec-

essary to be correctly configured. For example, if the following parameters are used: 10

ns period, external storage for transmitted packet timestamps and using system clock,

the configuration of TMR_CTRL register would be 0xA8005. And the RCTRL[TS] in

receive control register (RCTRL) needs to be set. This processor offers other configura-

ble features as well, but since they are not so helpful for the purpose in this thesis im-

plementation, they are not listed here. One can find more information about P2020 chip

in [14] and especially its PTP specific issues in [15].

3.3. SW support for timestamp information

Since the HW support is achieved at the PHY layer or MAC layer (the processor used in

this thesis is at MAC layer), the kernel or network driver should offer solutions for:

1. How to inform the HW to timestamp the PTP message when it passes the MAC layer.

2. How to deliver the timestamp to the PTP SW.

The first issue also requires to distinguish what packets need to be timestamped, i.e., to

recognize the PTP messages.

The Linux kernel used in this implementation has Version 2.6.34.x. And the driver is

called Gianfar, made by P2020. Its code can be found in that version kernel tar ball, at

http://www.kernel.org/. Gianfar driver in newer kernel have functions to deal with the

above issues, but not the one in 2.6.34, so the driver needs to be modified.

Conventionally, data at PTP layer is named as message (as called in IEEE 1588v2

standard), UDP is message, IP is packet and MAC is frame.

22

Head room

Packet data

Tail room

struct sk_buff *skb
skb->data

FCB

MAC src, dst
addresses

0x0800
(IP packet)

...
0x11

(UDP protocol)
...

...
0x013f

(PTP event UDP port)
...

0 15

PTP

VLCTL/PTP_ID

MAC
Header

IP
Header

UDP
Header

PTP message and MAC
CRC

offset 0

6

2

4

Figure 3.2. The PTP sensitive items in the data field of sk_buff structure.

In order to tag and store timestamps in transmitted event packets (and also in the Fol-

low_up message), sk_buff plays an important role. sk_buff is such a structure that links

the kernel protocol stack (TCP, UDP and IP, etc) and the network driver no matter in

which direction data flows to (transmitting or receiving). It has a field called data that is

actually the MAC layer frame. PTP protocol uses reserved UDP port, 319, for its event

messages. The MAC frame at this moment already excludes the Start of Frame (SoF, a

special bit sequence defined in MAC). Checking the UDP port value, if not 319, this is

not a PTP message. The same check is done to the other sensitive bytes too. For exam-

ple, in our implementation, the slave SW uses, from top down, PTP, UDP, IP and

Ethernet, so checking the sensitive items is to see if it is UDP, and IP. sk_buff contains

Frame Control Block (FCB) and MAC frame. This structure and PTP sensitive items

that need to be checked are shown in Figure 3.2.

After a packet passes all these inspections, it is considered as a PTP event packet. The

network driver will then inform HW to give a timestamp on it. In P2020, this is done by

adding a FCB structure at the beginning of normal frame. And h “ ” operation is

done by writing sk_buff. FCB contains several items, when it comes to the PTP packet,

FCB[PTP] and FCB[VLCTL] are special fields compared with the other packets. Set-

ting FCB[PTP] to 1 is to turn on HW supported timestamp function for this packet (a

more correct way to say is “this sk_buff”). The TMR_TXTS would contain the value in

TMR_CNT_H/L exactly at this moment, and TMR_TXTS_ID would be filled in with

FCB[VLCTL]. FCB[VLCTL] is shared between Virtual Local Area Network (VLAN)

control word and PTP. FCB[VLCTL] can be assigned as a combination of subdomain

23

number, message type (for transmission, either Sync or Delay_Req) and sequence num-

ber to uniquely identify the packet. Because there are 2 pairs of TMR_TXTS, (recall that

TMR_TXTSn records timestamp for TMR_TXTS_IDn), and they are in turn filled in. We

can keep polling the TMR_TXTS_ID1/2 register until one matches, and its correspond-

ing TMR_TXTS_H/L1/2 register would have the expected timestamp. However, we can-

not be fully confident about the reliability of HW, so a counter in the SW is added to

avoid an endless loop when none of the TMR_TXTS_ID matches.

Network
driver

Circular buffer
Packet ID | timestamp

program
ioctl

TMR_TXTS
register

TMR_TXTS_ID
register

Incoming packets Outgoing packets

compare
Packet ID Packet ID

Figure 3.3. Method to get local timestamp for outgoing and incoming packets.

The PTP frame recognition in reception also relies on the sk_buff. However, unlike the

timestamp operation for transmitted packets (recall that the transmitted packets are only

given timestamp feature after the packet's sk_buff FCB[PTP] is set to 1), the processor

gives timestamp to all the incoming packets. Although the processor also has a

TMR_RXTS register to store the timestamp generated by HW, it is too harsh for a SW to

catch it up. Even with interrupt handler, the flood on incoming packets would make this

task tough.

Instead of polling this register, in order to pick out the PTP packets among all the new

comers, the driver parses the sensitive fields that uniquely point to PTP packets. Once a

PTP packet passes this check, the driver stores the TMR_RXTS register value into a cir-

cular buffer along with an ID. The same as that in the transmission, ID is a combined

word with subdomain number, packets type (either Sync or Delay_Req) and sequence

number. If the RCTRL[TS] is set to 1, when the user SW needs to know this infor-

mation, it sends a request to the OS by using the system call function ioctl. The driver

chooses a unique constant that is required for this function from user's own defined con-

stant, e.g., SIOCDEVPRIVAT. The driver would then take the responsibility to look up

the list, and return the timestamp. The operation and maintenance on such a circular

24

buffer following normal steps – check if the buffer is empty, insert new item and look

up. The size of this circular buffer should be large enough so that even the PTP engine

runs at the maximum throughput, the fresh data would not be flushed. And in order to

make this lookup faster, Sync and Delay_Req could be stored separately (i.e., two circu-

lar buffers). Figure 3.4 shows the structure of stored ID, FCB[VLCTL] is the ID record

only for the transmitted packets, while the circular buffer is for received packets.

Subdomain number sequence number

0 15 16 31

ID for Received packets in circular buffer

 Subdomain TypeLSB sequence number
 number

0 3 4 7 8 15

ID for transmitted packets in FCB[VLCTL]

Figure 3.4. ID structure for transmitted and received packets.

TMR_CTRL and RCTRL registers are special in that they need to be initialized after all

the others. And writing to these two registers would reset the other related registers to

the default values.

Although the kernel used in this implementation does not support the PTP, versions

newer than 2.6.35 have PTP enabled Gianfar network driver. Since Version 3.0 it has a

new struct ptp_clock_info by which clock drivers can register themselves to the class

driver. Then the kernel treats the external clock (i.e., TMR_CNT_H/L registers) as a

character device. After the device is opened as a normal file descriptor, the clock control

operation in user space program can be done by system calls, such as clock_gettime and

clock_settime, are available since kernel Version 2.6. And the reading HW assisted

timestamp is done by reading functions, e.g. read. New features added to Version 3.0

and corresponding operations are shown in Figure 3.5. More detailed information can be

found at http://www.kernel.org/doc/Documentation/ptp/ptp.txt.

25

Clock driver

Clase
driver

Program

register

Events notified by

Message path

Character
device:
/dev/...

create

User space

clock_gettime/settime/adjtimeClock control:
Timestamp: read, poll

Kernel

Figure 3.5. New operation in kernel Version 3.0.

3.4. Phase aligned operation

As shown in Figure 3.1, without TMR_ALARM1, TMR_FIPER1 is enough to generate

the pulse signal. If the rising edge of pulse needs to be phase aligned to a reference

pulse, TMR_ALARM1 register is supposed to be configured. Although tuning OCXO

frequency is not based on the pulse rising edge, this operation helps tests. In order to

compare P2020 PPS signal against the GPS reference signal, the oscilloscope displays

both PPS in one screen. The way to achieve phase aligned output PPS signal is to follow

the instruction in [14. p, 787]. What deserves special attention is that the phase align-

ment enabling should be turned on before the timer starts, or the phase shift would be-

have abnormally.

3.5. Summary

At the beginning of the chapter, the PTP HW structure in the P2020 processor is intro-

duced, including how to calculate the proper value in registers and the way to generate

PPS signal. The second section explained how to adjust the network driver – Gianfar in

Linux kernel 2.6.34.x to adapt the PTP ancillary HW clock features, including:

1. Initialize registers;

2. Recognize PTP packets;

3. Notify HW to give timestamps on packets;

4. Store timestamps;

5. Deliver them to user space SW when requested.

Additionally, at the end of this section, it was explained shortly how the higher version

kernel manipulates these features.

After both the HW and the OS are ready to use, the user space SW that implements the

PTP slave clock is going to be explained next.

26

4. PTP SLAVE SW

The goal of this thesis is to see how PTP can be employed in mobile communication

systems, given a GPS connected, product level grandmaster acting as the most accurate

timing source. It is also important to understand, how harsh the network environment

can be until it heavily affects the synchronization of the slave. Because the slave SW

exchanges packets with the master, the first step is to implement the network handler.

4.1. Network handler

IEEE 1588v2 complies with both multicast and unicast. Not all routers support the In-

ternet Group Management Protocol (IGMP), which is necessary for multicast. The built

up instructions for general unicast communications is given in the standard Section 16.1.

The standard also offers several transport layer and network layer options. In this thesis,

unicast over UDP/IP is used.

As default, the master clock is not in the unicast mode, and the unicast mode needs to be

invoked by the slave. In other words, the master clock is unicast passive. The unicast

requests sent by slaves are suitable for three types of PTP messages. Figure 4.1 shows

the unicast negotiation for Announce messages in normal situation, as well as the De-

lay_Resp and Sync messages.

The unicast request contains key information – the unicast packet type (Announce, Sync

or Delay_Resp), the duration in which the request is valid and the log interval between

successive corresponding messages. If a slave expects to have only unicast PTP, it has

to resend the same request before the former one expires. Otherwise, the master clock

usually stops unicasting that type of message after the request expires. Although the

slave invokes the unicast request with a duration it expects, masters decide if a different

duration should be granted according to both its capacity and the regular routines. The

unicast response from master therefore has three possibilities:

 Grant is denied – duration field is 0.

 Granted, but duration is different from that in the request.

 Granted for the duration in request.

Upon reception of a unicast acknowledgement packet, slaves check if the duration is

different from its expectation, and set the correct timer for transmitting the next unicast

request.

27

Similarly, the item of log interval also needs to be checked. On the one hand, many PTP

studies claimed that the interval between Sync packets would be meaningless if it is big-

ger than 4 seconds. It is commonly considered that too slow event packets fail to feature

the complex network environment. On the other hand, the master clock has limitation

on how many, e.g., Sync packets, can be transmitted in one second. According to the

standard, the log interval items in the headers of Sync and Delay_Resp messages are not

used in the unicast mode.

Master Slave

REQ: unicast for Ann please in next
2^x seconds please

ACK: grant unicast for Ann
for next 2^x seconds 2^x

seconds

REQ: unicast for Ann please in next
2^x seconds please

.

.

.

REQ_CANCEL: stop unicast for Ann

ACK_CANCEL: unicast for Ann is stopped

Figure 4.1. Unicast Announce message negotiation.

The standard declares that a slave could send a “u c c c ” Signaling message to

inform the master that unicast is no longer needed. This design is mainly for decreasing

the network traffic amount, but since accurate timing protocol is usually crucial to en-

sure that machines function normally, it is always turned on. Therefore, in this thesis,

the network handler does not send such Signaling messages. Moreover, in the standard

there is another unicast negotiation service called "unicast enable" by exchanging Sig-

naling packets. However, the OSCILLOQUARTZ 5331 master used in this thesis can

be manually configured as unicast through web interface, so that th “u c ”

service was not built in the slave network handler.

28

It is worth mentioning that the unicast valid duration in request does not w ‘the

longer the better’ u , although longer duration might save some trouble from the slave,

such as processing speed. For example, in a dynamic network environment, with cas-

caded PTP functions, slaves need to decide the time source to synchronize to, which is

part of the BMC. The selection is completed by comparing clock quality information in

Announce message. If the duration is very long, and there are many clock sources to

choose from, one result would be that masters that are not chosen to be the best master

keep sending Announce messages until Announce unicast requests expire. This slows

the slave processing speed as it needs to look up master list, and drop the packets from

these masters. A better choice might be: before the best master clock is chosen, a shorter

duration is used for the Announce message. This is easier than sending “unicast cancel”

Signaling messages.

Because UDP is not reliable, it is the application layer's responsibility to ensure that the

packets are correctly delivered. For Signaling messages as introduced above, it is im-

portant to make sure that the master receives them. The slave SW could turn on a timer

that has an assumed Round Trip Time (RTT). If the slave fails in receiving any response

from the master before the timer expires, it retransmits that Signaling message and re-

starts the timer. The method to estimate RTT could be based on the Linux kernel code

of TCP. Alternatively, a method to calculate RTT from the network jitter is given in

[25]. On the contrary, it is meaningless to retransmit PTP event packets in case of pack-

et loss. Because event packets are sensitive to path delays, the "late" packets cannot be

used to adjust the local clock. They introduce big accidental errors. Arriving in a wrong

order can be detected by the sequence values in PTP headers. They are also indicators

for the network environment. Based on the above explanations, in the PTP slave SW,

losses of normal packets deserve retransmission, while reordered event packets can be

silently discarded.

Figure 4.2 is an example of unicast negotiation for an Announce message, but the same

mechanism also applies for the other two types. The first time a slave sends its unicast

request, it would blocked at waiting for the master acknowledgement as the communi-

cation link is not built up yet. After that, the slave would focus on handling the other

incoming PTP packets, until Timer2 triggers a signal to force the slave to retransmit

request packets. Moreover, in an implementation, one can replace multiple timers with a

timer event sequence.

29

Send Unicast
Request for
Announce.

Start Timer1
with RTT

Recv ACK before
Timer1 expires

N
Increase RTT

Stop Timer1 and
<double> eclipsed
time as next RTT

Handle ACK -- update
duration and log

interval

Start Timer2 with a
value smaller than

duration

Timer2 expires
Y

Y

Init RTT with
a big value

N

Figure 4.2. A flow chart of the Announce message handler.

30

4.2. Tuple list

As explained in Section 4.1, PTP over UDP is not reliable. PTP event packets, Sync,

Delay_Req and Delay_Resp, are collected for they contain time information that is used

as the local clock tuning basis. However, one or more packets’ loss would break this

information chain, which requires special treatments.

...

TUPLE[n] TUPLE[n+1] TUPLE[n+2]

...

Sync Seq Sync Seq Sync Seq

t1 t1 t1

accurate t1 accurate t1

t2 t2 t2

Delay_Req Seq Delay_Req Seq Delay_Req Seq

t3 t3 t3

t4 t4

Flag Flag Flag

Figure 4.3. Tuple structure.

The term “tuple” represents a set of collected information that is necessary to form an

adjustment basis, including timestamps and the calculated delays and offsets. Figure 4.3

shows three main cases how a tuple could be affected by the network: no packet loss in

TUPLE[n], loss of Follow_Up in TUPLE[n+1] and loss of Delay_Resp in TUPLE[n+2],

respectively. The former two cases do not affect the offset and delay calculation, but the

last situation fails to offer enough data. Every time a slave receives a valid event packet,

it turns on the corresponding bit in the Flag field, and fills in the corresponding

timestamp. t1 and t2 are filled in together like a timestamp pair at the reception of each

Sync message. Upon receiving a valid Sync message, the slave transmits a Delay_Resp

message and fills in t3 and the Delay_Req sequence ID (Delay_Req Seq). If a following

received Delay_Resp Seq matches the stored Delay_Req Seq, the received Delay_Resp

is considered as a valid Delay_Resp. t4 and Flag would be filled in and fixed respective-

ly. Because the master may never receive a Delay_Req sent by slave, it is not always

true that the received Delay_Resp is for the Delay_Req. Seq field plays such a role that

it checks if the received Delay_Resp belongs to the same tuple, i.e., t4 is a pair of t3.

After the slave fills in t4, it checks the Flag item to decide if all the necessary event

packets are received, and then calculates the offset and delay. If the type of Flag is an 8-

bit char, Figure 4.4 shows the used Flag structure.

31

Bit 3 2 1 047

SyncFollow_UpDelay_ReqDelay_Resp

Figure 4.4. Flag.

If all packets in Figure 2.3 are sent and received correctly, Flag is 0xF, offset and delay

calculation would be,

{

 ccu

 ccu

 (4.1)

If Follow_Up is missing, Flag is 0xD, and accurate_t1 is replaced by t1 in (4.1). After

delay and offset are obtained, the head of tuple is moved onto the next one, ready for

constructing new tuples; meanwhile the slave enters the servo phase.

In case of Delay_Resp losses or it arrives later than the Sync message (detected by

checking if the t1 in the head of tuple is already written), the head of tuple would direct-

ly move to the next one. However, this deserves a second thought, because when the

interval of Sync message is smaller than the slave-to-master delay, or at least these two

quantities are of the same order, a competition of sending Sync and sending Delay_Resp

may happen. It is a dilemma to set timing threshold to distinguish if a Delay_Resp is

still usable or it suffers too big network delay. Because of this reason, the length of tuple

list depends on the Sync interval. During the test of this implementation, when the fre-

quency of Sync is set to 64 pkt/s, the incomplete tuples that have lost t4 show up more

often than what has been observed when the frequency is 1 pkt/s.

As mentioned in Section 4.1, only the newest event packet is accepted – OrigTimestamp

field in a newly received Sync and Delay_Resp would be checked, if it is not newer than

the corresponding type message in tuple, it would be discarded. In this way, both dupli-

cated packet (same timestamps) and out-of-order packets would be discarded. The han-

dler for receiving event packets is shown in Figure 4.5.

Although Figure 4.5 only shows the Delay_Resp and Sync messages, in a tuple structure

as Figure 4.3, the Follow_Up message is handled in a similar way as Delay_Resp pack-

et. First, look up a matching Sync Seq, if such a tuple exists and Follow_Up bit is not set

in Flag, then write the accurate t1 and set the bit in Flag. In this implementation, the

delay and offset is calculated just after t4 is obtained, so the accurate t1 is only filled in

for the newest tuples.

32

t1 >
Tuple[head].t1

PTP domain
correct

SyncDelay_Resp

t3 >
Tuple[head].t3

Look up Seq
Fill in t4
Tix Flag

Head = next Tuple;
Tuple[head] = 0

Fill in t1 t2
Tix Flag

Send Delay_Rreq
Fill in t3
Fill in Seq

Seq =
Tuple[head].seq

delay
offset

Listen and receive

Tuple[head].t1!= 0

Head = next Tuple;
Tuple[head] = 0

N

Y

Y

Y

Y

Y

Y

N

N

NN

N

N

Y

Flag = 0xF
(or 0xD)

Y

N

Figure 4.5. Event packets organizer – tuple list operation.

Whether a two-step PTP should be employed mostly depends on the structure of proces-

sor. For example, the processor of our slave has timestamps tagged at the MAC layer,

but the OrigTimestamp field in Sync message needs to be handled at application layer. If

a same processor is also used in a master, the Follow_Up message must be used to carry

the accurate timestamp. Experimentally, it is observed that the accuracy is improved by

around 60 .

33

4.3. Filters

The goal of this subsection is to introduce methods that are tested in the thesis imple-

mentation for suppressing the effect of PDV. Large PDV of the network degrades the

performance of PTP. Lowpass filters (LPF) can be used to reduce the PDV. On the one

hand, it observed that the effect of PDV is much higher than the variation of clock wan-

der. On the other hand, HW faults would also cause the calculated offset to be much

larger than it actually is.

4.3.1. Offset thresholds

Step controllers and popcorn spike suppressors are used to filter out the samples over

thresholds. The former ones are used for samples which are likely to have suffered from

HW faults and the latter ones are used for samples with exceptionally large PDVs.

A step controller is to discard the tuples whose offset is more than 128 ms unless this

situation lasts for 15 minutes [4]. A single burst that stepped over the threshold was ob-

served during this implementation at the very beginning. First, this phenomenon was

caused by the HW structure. If the Delay_Req sequence ID is initialized to be the same

as the value already stored in the TMR_TXTS_ID1/2 registers (left by the previous run

of the SW), a race between HW updating and SW reading appears, and usually the latter

wins. This HW fault results in not only a huge offset but also a huge delay. It can be

recognized and thereafter discarded by setting two thresholds on offset and delay indi-

vidually. In order to avoid this ambiguous initialization, the SW may need to keep a log

where the status is read/written at the beginning/end of its execution. Secondly, if the

SW is turned on after a long silence, the clock bias easily steps over 128 ms. The solu-

tion is to step the TMR_CNT_H/L value forcibly, because writing to this register is to

directly change the time offset. Compared with the huge offset in the HW fault situa-

tion, there is no accompanied abnormal delay in the second scenario. Therefore, delay

threshold can be used to distinguish two cases, which are handled differently.

Unlike the step controller, the threshold (jitter) of the popcorn suppressor is dynamic

and determined by the calculated clock offsets. Popcorn spike suppressor is described in

NTPv4 as "Compare the difference between the last and current offsets to the current

jitter. If greater than SGATE (3) and if the interval since the last offset is less than

twice the system poll interval, dump the spike."[4]. Once a popcorn spike is detected, it

is dropped. The popcorn spike detector is characterized as:

 ∑

 (4.2)

 (4.3)

34

| | (4.4)

L – The length of widow,

J – Jitter,

 – Offset, is the current offset,

 – Difference between offset and its former offset.

For every newly calculated offset, its difference from the former one is calculated as

(4.3). The result is applied to equation (4.2) to get an updated jitter value. If an offset is

changed more than three times of the current jitter value, it is considered as a popcorn

spike. As what has been explained in Section 4.2, it is possible that there is one missing

tuple. Therefore, the popcorn spike suppressor acts only if the previous two tuples have

been received in sequence, i.e., if is increased only by 1.

The popcorn spike suppressor is very useful in practice. In our tests, a single offset

spike was randomly observed and thereafter dropped.

4.3.2. Packet selection

In NTPv4, before the estimated offset is finally used to discipline the clock, it is passed

through clock filter, selection, cluster, and combine algorithms. They act like LPFs by

dropping the aberrant samples that have large delays.

The clocks A, B, C... are candidates for a slave to synchronize to. For each of them, the

slave maintains a tuple list and every time a new tuple arrives, the smallest delayed one

within the processing window survives, and is passed to the selection stage. In the selec-

tion algorithm, the offset and its variation would be used to calculate the upper and low-

er limits. It compares the other offsets and counts how many of them fall within these

two boundaries. The clock that has most other clocks in its boundaries is considered as

the best, and clocks within the intersection zones survive. The selection of the intersec-

tion clocks is completed in the cluster algorithm. The offsets from these survived clocks

are merged in the combine algorithm as a weighted average:

 ∑

∑

 (4.5)

where N is the number of clock survivors, d is the root distance and f is the offset. The

root distances are calculated based on both the physical distance and the jitter of each

clock obtained by (4.2).

The idea of NTPv4 filters are shown in Figure 4.6, with details omitted. For example, in

NTPv4, in order to simplify the detection of the smallest and newest delay, the tuple list

is sorted first. f.A in Figure 4.5 means offset from clock A, v.A represents variation of A.

35

Newest and smallest delay
and corresponding offset

variation

Newest and smallest delay
and corresponding offset

variation

Newest and smallest delay
and corresponding offset

variation

A B C

Tuple list C

Clock C

Variation C

Tuple list B

Clock B

Variation B

Tuple list A

Clock A

Variation A

f.A

v.A
f.B

f.C

f.D

Clock A B C survive,
D is discarded

Weighted average of
f.A and f.B ...

Clock filter
algorithm

Selection

Cluster

Combine

Figure 4.6. Filters in NTPv4.

Because in this implementation only one master clock was used, selection and combine

algorithms were not used. However, in a robust telecommunication system, there would

be for sure more than one master clock for slaves to synchronize to. Besides, the BMC

algorithm stated in PTP gives another method to choose the master clock, based on the

maste ’ "self-confidence". If every master clock describes itself as the best one (carried

in the Announce message), methods introduced in NTP could be used.

The modified clock filter algorithm is shown in Figure 4.7. Every time a tuple is gener-

ated, it is inserted into a sorted array (according to its generation time). Then the tuple

whose delay is the smallest is passed to the next stage. The other tuples are not used but

still remained in the array. During our experiments, the update took place typically eve-

ry four tuples (when the length of array is 10). In NTPv4, the array length L is 8.

36

Fill in array A until it is full,
A[L] the oldest and A[0] newest

Init

Find j that A[j].d is smallest

New tuple is generated

Rightshift A,insert new tuple as
A[0] (A[L] is removed)

A[0].d <= A[j+1].d

j=L

Find j that A[j].d is smallest

j=0

Deliver A[j] to next stage

j=j+1

N Y

N Y

Figure 4.7. Clock filter algorithm.

In NTPv4, the array length L = 8. The real clock filter in NTPv4 is a little different from

the one shown in Figure 4.7. Especially, every time a new tuple arrives, it is filled in the

array sorted by the arriving time, and then array is sorted again according to the ele-

 ’ .

4.3.3. Digital filters

The huff-n'-puff filter was claimed to be the only method that helps to reduce the

asymmetric delay. It has three prerequisites – severe asymmetry, multiple links availa-

ble but only one of them is relatively slow, and the slave clock offset is very small [29,

p.54]. Figure 4.8 shows the concepts of Huff-n'-puff filter. Among all the offset-delay

pairs, the filter first selects the one that has smallest delay, i.e., the vertices of the scat-

37

tergram. The other pairs are compared with the selected vertices. If the offset is bigger

than that of the vertices, half of the delay difference is subtracted from the calculated

offset, and vice versa. However, the author did not quantify the used descriptions, e.g.,

"small offset" and "severe asymmetry". The author also claimed that “ h wedge scat-

tergram plots sample points (x, y) corresponding to the measured delay and offset” [29,

p.44 Figure 3.4], which serves as the filter basis. However, by analysing the test result

of the slave SW, the phenomena were not like that. Offset-delay graph is not a wedge,

offsetChange-delayChange is instead. Also by examining Figure 2.4, delay and offset

do not have a direct relation. For example, if all delays in Figure 2.4 remain without

change, which means the "Mean Delay" will not change, t2-t1 becomes bigger, and the

biased offset would be bigger – same delay but bigger offset. Besides, implementations

with and without Huff-n'-puff filter did not show obvious performance difference. It is

highly possible that the test of this thesis implementation did not satisfy the entire pre-

requisite. But based on the description and the Huff-n'-puff filter’ p c in the filter

chain (after clock filter algorithm), I venture to guess that this filter would be helpful if

the heavy asymmetric path delay has lasted for up to tens of minutes or even hours

(clock filter gives the apex of wedge with a window of several seconds). Because of the

above reasons, Huff-n'-puff filter is not used in the thesis implementation.

Delay(ms)

offset(ms) f1>f =>f1=f1-0.5(d1-d)

(d,f)

(d1,f1)

0.5

-0.5

(d2,f2) f2>f =>f2=f2+0.5(d2-d)

Figure 4.8. Huff-n'-puff offset processing.

The PTP daemon (PTPd) is an open source project of PTP [24]. In PTPd, the delay and

offset are filtered separately. After delays are calculated according to (2.4), they are

processed by an Infinite Impulse Response (IIR) filter. Substituting the processed delay

into the second equation in (2.4), the derived offset will be passed to an FIR filter. Fig-

ure 4.9 presents this procedure.

38

Delay IIR
filter

Offset FIR
filter

t2-t1

t4-t3

time error

0.5

Figure 4.9. PTPd offset and delay filtering structure.

The difference equation of an IIR delay filter is

 []
() []

 [] []

(4.6)

in which [] and [] are current and former delay samples, [] is the for-

mer IIR filter output and is a positive integer which stands for the stiffness.

Its transfer function is

 []
 []

 []

 (4.7)

This is a first-order IIR filter and it has one single zero at -1, and only a single pole

 (4.9)

Based on (4.9), because s is positive, the pole is always within the unit circle, meaning

this filter is always stable. Moreover, the amplitude response of the filter would have a

peak at frequency 0. The bigger s is the closer z is to the unit circle, resulting in a sharp-

er amplitude response. Additionally, because -1 is the zero point, the frequency has

zero amplitude response. This is shown in Figure 4.10.

w=pi/2

w=0
w=pi

z=(s-1)/s

Smallest amplitude response Largest amplitude response

Imaginary axis

Real axis

z=-1

Figure 4.10. Zero and pole of the first-order IIR filter.

39

With the following Matlab code, simulated amplitude response is shown in Figure 4.11

x = [1 1];

s = 4;

y = [2*s -2*(s-1)];

[X,w] = freqz(x,y);

plot(w/pi, abs(X));

grid;

Running the simulation with different s, the result that is shown in Figure 4.11 confirms

the above assertion – the bigger s, the better frequency selectivity.

Figure 4.11. Amplitude response with different values of coefficient s.

The output of the offset filter is simply an average of two consecutive inputs. Taking the

mid value of two inputs would decrease the difference between two samples, making it

a LPF. Its time domain expression is

 []

 [] []

 (4.10)

Its transfer function is

 []
 []

 []

∑

 ∑

 (4.11)

Based on (4.11), its amplitude response is

40

Figure 4.12. Amplitude responses of the FIR filter (4.10).

4.4. PI controller

The filtered offset is then delivered to the PI controller. The integrator was not consid-

ered when FLL was implemented in this thesis, which could be one reason that results

in an unstable clock. One over adjustment followed by another overshoot (opposite di-

rection) was often observed. The PLL method contains integrations. Overshoot still ap-

peared, but a lot less. This comparison shows that the integration in PI controller helps

to reduce residual error. The time domain expression of a discrete PI controller is

 [] [] ∑ []

 (4.12)

 [] – Filtered offset,

 [] – Adjustment,

 – Proportional gain,

 – Integral gain.

Its transfer function is

 []

 []

 []

 (4.13)

Because the pole is on the unit circle, the PI controller is conditionally stable. A thor-

ough analysis of the PI controller stability can be found in [10, p. 152].

41

4.5. Clock discipline methods

Similar to that in NTP, clock discipline algorithm is a method used to adjust the local

clock, based on the processed error (offset).

In NTP, the discipline algorithm adopts FLL and PLL [27]. PLL is used to directly ad-

just the clock phase and is shown in Figure 4.13.

PD LPF1

Reference phase

phase

Clock

offset

Figure 4.13. PLL.

According to [26, p. 12], in the simplest occasion, a PLL is formed by a Voltage Con-

trolled Oscillator (VCO), i.e., clock, and a Phase Detector (PD). In order to suppress the

jitter and fluctuation, an LPF can be added into the PLL. This is type I PLL. And in or-

der to minimize the residual error (similar to the residual error in a filter stop band), an

integral component is added, which makes it a type II PLL. A type II PLL is imple-

mented in NTP.

The FLL method is described in [27, p. 2, 3]. Basically, as shown in Figure 4.14, the

FLL method is to gain the clock frequency drift by observing the relative offset within a

period (up to several minutes). This method is only helpful when the clock frequency

wander dominates. Longer update interval makes the FLL more stable.

PD LPF2

Reference phase

phase

Clock

offset
Division by Tau

Frequency drift
indicator

Figure 4.14. FLL.

The difference between FLL and PLL is that in FLL, instead of fixing the phase error

directly, it adjusts the frequency of the clock by counting how much the phase wanders

42

during the interval (Tau in figure). For example, at the moment of , the time

offset is . The frequency shift can be calculated from the time offset during as

{

 (4.14)

It is claimed in [14] that the NTP clock discipline algorithm was designed independent-

ly from the clock structure, which can be a VCO or a SW clock. A precise time keeping

method for SW clocks is given in [26] as a kernel model. And based on the demo code,

Linux has a fixed tick rate (the macro HZ defined in the kernel). Then tuning the OS

SW clock becomes changing the tick length, which is derived based on the above disci-

pline methods. This is also the principle for adjtimex function.

4.6. Summary

In this chapter, according to their places in the slave SW, three main aspects were intro-

duced. They are network handlers, data organizations and the data processing.

PTP was built over Ethernet, so the network handler was firstly introduced, this step

contains the network connection control (i.e., handshake on Signaling message for

unicast negotiation), and the reliability analysis of each PTP message type.

The tuple list section gives a flow graph on how to handle/store each received PTP mes-

sages using unreliable UDP. The goal of this tuple list is to ensure that enough infor-

mation is gained to calculate the offset and delay.

The offset and delay offer the inputs for filters. Several interesting filters were discussed

in a sequence of their position in the slave clock servo. They are:

 Filters that discard input according to thresholds,

 NTP algorithms that pick offset with less PDV,

 PTPd IIR delay filter and FIR offset filter,

 PI controller that finally generates the control signal.

If the tuning indicator of the system is the time offset, it is a PLL. For the FLL method,

the indicator is the variation of time offsets.

This chapter, in combination of the P2020 HW registers introduced in Section 3.2, com-

pletes the introduction on how to build a slave servo.

43

5. PLL METHOD SIMULATION

In order to study the system behavior, and find the effect of parameters of the PI con-

troller, the PLL method is simulated in Matlab. Besides, simulations could also evaluate

the asymmetric path delay effect which is seen as an impossible task by the experi-

mental evaluation.

The simulations were conducted in two cases:

 The polluted case where the delay effect on time offsets is simulated,

 The ideal case in which the delay does not exist and the system frequency does
not vary.

The polluted case simulation is to inspect how PDV affects the synchronization ac-

curacy. The one for the ideal case is to study how the system characteristics affect the

slave clock performance.

5.1. Polluted case

The Matlab simulation program is given in the Appendix 1 .

The main.m file simulates the network handler and tuple list, and it offers the interfaces

for the other files – decision.m and updateofs.m. In order to evaluate the effect of PDV

or asymmetric path delay on the slave clock offsets, the first step is to generate path

delays in two directions – dms and dsm. The statistical features of the simulated delays

are drawn based on the real network delays, collected in one experimental test. Delays

in two directions are generated separately (i.e., two random processes), their sum satis-

fies the derived expectations and variance (according to the Central Limit Theorem and

variance properties). Moreover, considering the delay spikes in the experimental tests, a

uniform distribution () array (peak_on_delay) is used. Once its element

exceeds 0.99, the corresponding delay is amplified by 5, so the delay spike rate is 1%.

More detailed considerations, e.g., the calculations of statistical features (variance and

expectation) are explained in the comments in the Appendix 1. The second half of this

script simulates the time offsets. The unbiased offset is equal to the time in the slave

minus that in the master, and the biased offset differs from the unbiased offset in that it

takes the asymmetric path delays into account. The unbiased offsets are then passed to

the updateofs.m and the decision.m files. The second half of the main.m script, i.e., the

servo process, is encapsulated in an iterator with its times stored in loopcnt. The loopcnt

44

is also the number of simulation samples. At last, the script also initializes the state and

parameters (Sync rate, PI controller parameters and the initial unbiased time offset).

The script updateofs.m simulates the IIR filter on delays and the FIR filter on offsets.

The script takes the master-to-slave delay, the average delay and the unbiased offset

from the main.m file as inputs, and returns the filtered delay and offset. Firstly, the vari-

able s in this file is the stiffness in (4.6). The script adjusts the stiffness based on the

estimated delays: the biggest exponent that makes 2
s

just less than the delay. This is

because the stiffness s not only sharpens the LPF amplitude response, but also helps to

avoid the overflow in the multiplication operation. Secondly, according to the Figure

4.9, the input of the FIR offset filter can be characterized as

 (5.1)

 – unbiased offset,

 – delay from master to slave,

 – filtered delay.

The decision.m file simulates the PI controller and the plant. The function receives the

unbiased offset and filtered offset from the main.m. The filtered offset is the base to

derive the addend adjustment, while the unbiased offset is used to calculate the time

difference between the slave and the master. In order to achieve this, a PI controller is

implemented, with ai and ap as its integrator and proportional coefficients. At the end of

this file, the new unbiased offset for the moment when next "Sync message" arrives is

calculated. The simulation assumes the "UDP connection" to be perfect with neither

packet loss nor misordering.

In order to compare the effects of the asymmetric delay location, the simulation firstly

generates delays in two directions (i.e., dms and dsm)separately, and stored them in

files. And the random delay spikes are handled as

 for the case of dms heavier than the dsm, the dsm is loaded from the file, but the

dms is equal to the difference between the stored average delay and dsm. (variance

of dms is 4.1660e+5, dsm is 6.775e+5)

 in the case of dsm heavier than the dms, the above procedure is repeated with dms

and dsm exchanged. (variance of dms is 7.090e+3, dsm is 4.17320e+5)

 for the case that delays are uniformly distributed in the two directions, the random

delay spikes in the average delay are added to dms and dsm evenly. (variance of

dms is 1.0613e+5, dsm is 1.0633e+5)

Figure 5.1 shows the biased offset and the unbiased offset as simulation results, and

they conflict the experimental results by having spikes that are against the filtered delay.

The proportional and integral parameters for the PI controller are 0.01 and 0.05. The

biased offsets are heavily affected by the asymmetric path delays. Moreover, if the de-

45

lay spikes are contained in the master-to-slave direction, the unbiased offset is more

affected compared with the other two cases. This is because in equation (5.1), the

timestamp t2 is equal to the sum of the unbiased offset and the master-to-slave delay.

When the master-to-slave delay is not the main issue in the link, as in both

 and cases in Figure 5.1, the unbiased offsets show equal fluctuations.

Figure 5.1. Simulation results for three cases, offsets collected from an experiment (up-

permost left), simulated filtered delays (uppermost right) followed by biased & unbiased

offsets for each case.

46

The absolute frequency drift corresponding to the simulations in Figure 5.1 are shown in

Figure 5.2. The frequency stability depends on the networking PDV in the direction of

master to slave. The large PDV in the master-to-slave link degrades the frequency sta-

bility in the slave. It is also observed during the experimental evaluation that the PPS

signal from the slave clock wanders in steps, and the damping oscillation in Figure 5.2

testifies this.

Figure 5.2. Observed frequency offset in simulations.

Figure 5.1 - 5.2 show that when the large PDV takes place in the master to slave direc-

tion, both the unbiased time offset and frequency drift exhibit serious fluctuation. More-

over, when the link in one direction is more delayed than the other one, the biased offset

shows larger fluctuation is because of the asymmetric delay, namely the dms is incom-

parable with the filtered delay. However in the case of equal delay, the fluctuation in the

offset related with delay spikes is due to the delay filter. Moreover, with parameters

0.01 and 0.05, the system is over damped in terms of time offset and frequency drift.

In another aspect, the simulated delay and filtered delay relation are different from what

was observed during the experimental evaluation by having spikes. In the experiment, it

47

was observed that as the observing duration increased, the delay spikes were more sup-

pressed by the FIR delay filter.

Another point that is also valuable to study is the IIR delay filter effect. Figure 5.3

shows a comparison between the raw delays and filtered ones in simulations. Even the

filtered delays exhibit spike effects. However, in the experiments, after the IIR filter ran

for a while, spikes were suppressed, only those encountered at the beginning will appear

after being filtered.

Figure 5.3. The Simulated delay (upper) and filtered delay (lower).

5.2. Ideal case

To test how the PI controller parameters affect the system, the system was simulated

without any delays. And the system frequency is exactly 200 MHz. Given these condi-

tions, in terms of time offset, the mathematical expression of the system is

{

 [] []

 []

 [] [] ∑ []

 (5.2)

where [] is the current time offset in ns, is the Sync rate in pkt/s, [] is the output

of the PI controller, and , are the proportional and integral parameters of the PI

controller. Rewriting (5.2) into one equation gives

 [] []

 []

∑ []

 (5.3)

The constant in (5.3) decides the oscillation phase and amplitude. It also makes the sys-

tem oscillate when the initial condition [] is 0. The coefficients of [] affect both

48

the envelope and the period. And the initial condition [] only affects the oscillation

initial phase. The Sync rate expressed by affects the oscillation by changing the coef-

ficients of []. Based on these, if the constant is not considered, and use

equation (5.3) becomes

 [] [] [] ∑ []

 (5.4)

As can be seen from (5.4), in terms of time offset, the PLL system could be simplified

into a system that only contains proportional and integral blocks.

With the help of Matlab, the above equations are drawn in form of 3D images with dif-

ferent and . The parameters are configured as such: [] is 0, the constant is 10

and the loop size () is 500. The ranges of and are identical, i.e., 0.01 to 1 in steps

of 0.01. Figure 5.4 shows the number of harmonic peaks, the fewer peaks the bigger

damping ratio.

Figure 5.4. The number of harmonic motion peaks. ai and ap are in the range of 0.01 to

1, in 0.01 increments.

49

Figure 5.5. The climbing durations from two different views.

When the number of peaks is 1, it is either over damped or critical damped. Figure 5.5

shows the climbing duration with the same simulation parameters. The more samples it

takes to reach the stable condition, the bigger damping ratio it has. And in the simula-

tion, the under damped condition is described as 0 climbing duration. Comparing Figure

5.5 and the left graph in Figure 5.6, the parameters that make system under damped are

identical, i.e., they are located within a quadrant (approximately).

We randomly choose the and pairs that are outside the quadrant (either

overdamped or critical damped), and run the polluted simulation program. The result is

that the clock does not behave underdamped any more, and when the slave to master

PDV is heavier, the synchronization performance is improved. However, if the large

PDV resides in the master to slave direction, the PI controller sharps the time offset

peaks. This is shown in Figure 5.7 (the parameters and are 0.01 and 0.19). Be-

sides, by examining simulations with bigger climbing period and pairs, we ob-

served that a higher damping ratio is accompanied with a larger frequency variation. As

shown in -Figure 5.7, for the case that the PDV in the slave to master is heavier, 0.4

has bigger damping ratio, but larger frequency and time variations. The larger Sync rate

 improves the frequency and time stability, with a prerequisite that the PI controller

parameters are fixed. However, this is more likely because the larger Sync rate decreas-

es the coefficients of the time offset as in (5.3) and thereafter suppresses the time offset

variations. Moreover, in some cases (depending on the PI controller parameters), a cer-

tain Sync rate changes the harmonic conditions, e.g., from over damped to under

damped.

50

Figure 5.6. The absolute value of frequency drifts for two scenarios: large PDV resides

in the slave to master direction (top) and in the master to slave direction (bottom).

51

6. RESULTS AND DISCUSSIONS

This chapter will show how the issues discussed in former chapters are combined and

the corresponding results and analysis. Section 6.1 and 6.2 introduce the experimental

evaluations of the FLL and PLL methods respectively. The evaluation for the PLL was

conducted in two different ways, i.e., using a frequency counter or an oscilloscope indi-

vidually.

6.1. FLL

Figure 6.1 shows these procedures in a flow chart. r is short for ratio, and d is the offset

difference in duration . The right side of the flow chart gives a zoom out of the used

filters.

First, the clock data set is initialized in the Init phase. Some information is assigned

manually by the SW user, such as the message exchanging rate. This will be negotiated

between the slave and master through Signaling messages. Some other configuration

can be read from files, e.g., the last sequence number sent by the slave clock.

Secondly, a tuple contains four timestamps, the flag and sequence ID, which serves as

the basis to indicator whether a newly received PTP message (Sync and Delay_Resp

messages) is fresh enough to use. This step ensures that the timestamps are valid and

reliable. PTP event packets heavily delayed are discarded.

Thirdly, the derived offset and delay are inputs of filters. FLL was also implemented in

NTP, so filters in NTP, in terms of a single master clock, are used. Step controllers filter

out the offset that exceeds a predefined threshold, unless this aberrant situation lasts

more than 15 minutes. The popcorn suppressor removes the suspicious offsets if they

exceed three times of a weighted average of the last n samples (such as 10). The clock

filter algorithm selects the newest tuple whose delay is also the smallest. If the least

delayed tuple is not newer than the last one passed through filters, the process returns to

the network handler.

52

Network handler

Tuple list

Connection built

Step controller

Popcorn suppressor

Clock filter
algorithm

offset delay pairs

r = d/Tau

A_new = A_current*(1+mean_r)

offset > boundary

Init

Predict and write TMR_CNT register

N

Y

Huff-n’-puff

Filters

Harder

Soft

newer

Hard

N

Y

10 r have been
colleted

N

Y

filtered offset
delay pairs

Figure 6.1. Flow chart of an FLL based slave SW.

The frequency error is calculated by dividing the offset difference and the correspond-

ing duration. For example, if the two consecutive slave-to-master time offsets are 100 ns

and -200 ns, and the duration is 10
9
 ns, the oscillator frequency drift is

Recall that the frequency could be changed by TMR_ADD register, so the new factor is

(1+30 ppb).

53

The FLL only fixes the clock frequency drift, it does not directly affect the phase (e.g.,

if the clock is ahead of the master clock by several hours). The solution is to set an up-

per limit. If the time offset steps over the limit, the value in TMR_CNT_H/L register

would be directly changed. In practice, it is noticed that the adjustment of frequency

drift gains a better stability if the average drift is used. Another point is that in NTP the

period to tune clock frequency could be as long as 4.5 hours. It is observed in this thesis

that, when the oscillator ran freely, the frequency performed a certain trend in duration

T, and then wandered to another direction in the next T' duration, like a 'V' shape. This

means that the tuning period should not be too long, or the FLL will be too slow to

compensate the frequency drift. This is consistent with what has been explained in NTP-

related materials, where the Allan Deviation (ADEV) was used as a parameter of FLL.

ADEV indicates whether the clock frequency drift, other than the large PDV, is the

main cause for the frequency drift. ADEV is a constant defined in NTP and in the Linux

kernel, although the value is changed in newer kernel versions. A step-by-step guide on

how to calculate ADEV is given in [22, p. 20].

If the Sync message rate is 1 pkt/s and the clock filter algorithm has length 10, the ad-

dend value would be adjusted based on its currently stored value, every 50 seconds.

6.1.1. Experimental evaluation

The devices used in the test are:

 Grandmaster clock – OSCILLOQUARTZ 5331 (includes GPS accessories)

 CISCO 100M switch.

 Slave clock – a computer with processor P2020.

The grandmaster and the slave are directly connected by a switch, which is part of a

LAN including around 100 devices. Figure 6.2 shows the network connections.

Network

Grandmaster clock Slave clock

Figure 6.2. Network connection used in the test of FLL method.

The slave-to-master time offsets were collected from the output of the tuple list, so they

are what the slave believes it has. It does not reflect the asymmetric path delay if there is

any. The Sync message rate is 2 pkt/s and the whole test lasted about 2 hours. The test-

ing results are drawn in Figure 6.3, in which the corresponding packet delays are pre-

54

 c (. ., h ‘ p ’ Figure 6.1). The figure shows that

the offset is heavily affected by the delay, i.e., a peak on the delay is accompanied with

a peak on the offset in the opposite direction.

Figure 6.3. Offset and delay observations in a two-hour test using the FLL method.

Figure 6.4 shows the observed frequency drift, which is equal to the relative offsets di-

vided by the observing duration. The obvious symmetry represents that the adjustment

of oscillator frequency would cause a predictable adjustment in the near future, but in

the other direction.

Figure 6.4. Observed frequency drift – the difference of offsets divided by the time in-

terval.

55

Figure 6.5 shows values in the TMR_ADD register. The samples form a down slope but

still can be predicted. When the oscillator frequency increases (mainly due to the envi-

ronment), the addend value decreases to compensate for the frequency drift.

Figure 6.5. Observed values in the TMR_ADD register.

The number of collected addend (and frequency) values is 409, which is almost one

fifth of the collected offset values (i.e., 2351).

As mentioned before, in NTP, the Huff-n'-puff filter is claimed to have a prerequisite

that the delay and offset have wedge edges. However, as seen in Figure 6.6, the relative

offset (difference between two consecutive offsets) has a certain relation with the rela-

tive delay (difference between two successive delays), while the absolute offset and

delay do not present such a relation. In one test, the correlation between relative delay

and relative offset is -0.867 while it is -0.596 between absolute delay and offset.

In Figure 6.6, the relative delay and offset exhibits a negative correlation, which satis-

fies their inverse relation in equation (2.4).

56

Figure 6.6. Comparison of the relations between relative/absolute delay and offset.

6.2. PLL

The PLL method resembles the FLL method in the first three steps.

In PLL, the clock filter algorithm is replaced by an IIR delay filter and a FIR offset filter

in PTPd. and in the PI controller are equal to 0.01 and 0.05 respectively. Tests

with some other values did not show an obvious difference. Because it takes about 10

adjustments for the controller to go back to its normal status for every large input fluc-

tuation, the input of the PI controller is clamped at a threshold adj_max. Compared with

the FLL method, the tuning target of PLL is the initial addend value.

The frequency is not calculated in the PLL method, so the time interval between two

sampled offsets is not involved in obtaining the addend adjustment. The effect, if any,

that laying on the PI controller deserves a future study.

Other than this, the experiments show that the PLL is better than the FLL in terms of

oscillator stability. Figure 6.7 gives a flow chart of the PLL implementation.

57

Network handler

Tuple list

Connection built

Step controller

Popcorn suppressor

Delay filter

offset, delay

A_new = A_init + A_adj

Init

Offset filter

Filters

Harder

soft

Plant

A_adj

filtered offset

adj = adj_max

Offset > threshold

N Y

PI controller

adj

Figure 6.7. Flow chart of the slave using PLL.

6.2.1. Experimental evaluation

The connection is shown in Figure 6.8.

Network5331 grandmaster

Slave clock

5320 slave clock

Figure 6.8. The network set up for the PLL method.

58

The devices used in the test are:

 Grandmaster clock – OSCILLOQUARTZ 5331 (includes GPS accessories).

 CISCO 100M switch – big capacity

 switch2 100M – small capacity

 Slave clock – computer with processor P2020.

 Slave clock – OSCILLOQUARTZ 5320.

 TEKTRONIX oscilloscope.

 Frequency counter.

To test the PLL method, not only the offsets and delay from the slave were collected,

but also the phases of the PPS signals were compared. Both the grandmaster and slave

clock can output phase aligned PPS signals. The phase of grandmaster 5331 is aligned

with the UTC time carried in the GPS message. The 5320 slave clock helps to monitor

the network. If both 5320 and the designed PTP slave exhibit a large offset fluctuation

simultaneously, the PDV could be recognized as the reason.

6.2.1.1 Frequency counter

To test the slave PPS against the grandmaster PPS, a frequency counter was used. Alt-

hough it does not give any phase offset information, the frequency counter senses the

input signal frequency with a very high precision. The experiments used the internal

oscillator of the frequency counter as the frequency generator. The other choices would

be using the standard 10 MHz signal or the PPS signal from the grandmaster as the fre-

quency counter reference. Because the frequency counter was calibrated recently, they

did not show a difference during tests. The set up for 3 methods is shown in Figure 6.9.

Slave clock 5331 grandmasterFrqeuency counter

PPS GPS PPS

Slave clock 5331 grandmaster
Frqeuency counter

PPS 10MHz

Slave clock Frqeuency counter

PPS

Figure 6.9. GPS PPS reference signal (upmost), 10 MHz calibration signal (middle),

internal oscillator freely running (lowest).

Because the width of the slave PPS is 20 ns (2 times TMR_CTRL[TCLK_PERIOD]),

the trigger mode of frequency counter was turned on and the sensing sensitivity was set

59

to a proper threshold. Thereafter, the figure displayed on the front panel was not affect-

ed by the wide band noise.

Because the frequency counter was too old to support modern storage media, in order to

evaluate the slave PPS frequency, we randomly observed the figure on the screen. The

longest period was 1 s and 23 ns (-23 ppb), while the shortest was 25 ns to 1 s (+25 ppb).

Using a frequency counter has its own shortages. First, due to the lack of the storage

media, the results have to be logged by random observations, i.e., the sample space is

not intact enough to be convincing. Secondly, the result does not reflect the effect of

accidental network spikes on the PPS. Thirdly, only frequency accuracy is reflected in

the results, but not the accumulative frequency error – phase error.

6.2.1.2 Oscilloscope

With the help of an oscilloscope, the PPS phase offsets can be easily observed on the

graph. The slave clock PPS is compared with the GPS PPS. Additionally, in order to

figure out the reason of slave PPS offsets, the PPS of 5320 slave clock is used as a ref-

erence. If both slaves present drifts, the network PDV or GPS PPS might be the reason.

If only one slave shows drift, the PDV in its link or the clock tuning algorithm could be

the reason. Figure 6.10 shows the set up.

Designed slave

5331 grandmaster

5320 slave

GPS PPS
PPS1

PPS2

Figure 6.10 Connections between oscilloscope and clocks.

The slave PPS signal is shown in Figure 6.11, with a pulse width of 20 ns and a voltage

of 2 V. The distortion of the PPS signal is caused by the signal reflection introduced by

the test cable. In an earlier test, there were 2 test lines (simultaneous frequency counter

and oscilloscope methods), the distortion was larger and showed up at symmetrical

places. The distortion may cause ambiguities to the following electronic components,

but is believed that once all the probes are removed, the PPS signal would not have such

a reflection effect.

60

Figure 6.11. The slave PPS signal with one test line (left) and two test lines (right).

The width of the GPS PPS from the grand master 5331 is 200 ns, so the trigger mode is

turned on. In Figure 6.12, GPS PPS is shown in purple and it also served as the trigger

source. The blue and green pulses stand for the designed slave and the 5320 slave, re-

spectively. From this figure one can see that the phase difference between slave and

grandmaster is about 700 ns (the oscilloscope scale is 200 ns per division) and about

100 ns between slave 5320 and grandmaster. The ripple distortion in the slave PPS is

caused by the test line. The large offset between the GPS PPS and the designed slave

PPS was because the TMR_ALARM1 register was not properly configured as described

in the manual.

Figure 6.12. 5331 GPS PPS (purple), slave PPS (blue), 5320 slave PPS (green).

61

In accordance with Figure 6.7, addend, offset, filtered offset, delay and filtered delay

were collected. The analysis was conducted with the following configurations:

 Sync rate: 0.5 per second

 Sample size: 9797 tuples.

 Test time: about 5pm to 8am (day+1).

Figure 6.13. Observed mean addend (top) and unfiltered offset (bottom) over an obser-

vation interval of about 1.5 hours.

Figure 6.13 shows the shifted addend and unfiltered offsets. In order to keep the offset

close to 0 ns, the adjusted addend exhibits a shape of "V" from time to time, the most

obvious one is located between the tuple 5000 to 9000. Because the clock actually is the

system clock divided by the addend, the "V" of addend means "A" of the system clock

frequency.

Figure 6.14 shows the relation between the delay and offset. The same as in the case of

FLL, differences between two consecutive samples are closely related, but a lot less on

the absolute values. Two important phenomena differ from those in FLL. Firstly, the

correlation is 0.477 (relative) and 0.347 (absolute) – both positive. Secondly, in the de-

lay-offset figure, a second "area" shows up. The reason for this second circle has not

been identified yet. After checking Figure 6.15, the delays do not exhibit a second level.

Besides, there was no obvious interference, such as a connection failure or HW faults,

introduced to the system between samples 100 to 9000. And that excludes the possible

existence of a second steady-state establishing process, where the system tries to recov-

er from a huge interference.

62

Figure 6.14. Comparison of the relations between relative/absolute delay and offset.

Figure 6.15. Delay and filtered delay for four different Sync rates.

The biggest challenge in terms of slave clock design is how to get the reliable time off-

set as the system input. Because the time offsets are the adjustment basis, they should be

trustable to reflect only the oscillator information, instead of the network PDV. Howev-

er, both Figure 6.6 and 6.14 show that the variation of the offset is more or less affected

by that of the delay. And this is harmful to the system, especially in the case of FLL. If

PDV cannot be removed from the offset, PLL would be a better choice. It can be seen

63

from Figure 6.15 that the PDV in PLL is already dramatically suppressed. The correla-

tion between the relative filtered-offset and delay is -0.441.

Figure 6.16 shows that the clock is adjusted more than its actual frequency drifts. In the

next several periods, it is tuned to an opposite direction. For example, if currently the

clock is tuned downwards, resulting in a negative spike in addend, the addend would

exhibit a positive spike at the next adjustment. But how much is it over-adjusted? If A

is the addend value, its relation with system clock frequency satisfies

 (6.4)

Assume difference on A would lead to 1 ns difference:

 (6.5)

 (6.6)

If the system frequency is 200 MHz, addend value is , every 2.15 change made to

addend would cause the clock frequency to wander by 1 ns. Since the system clock fre-

quency varies, the actual figure depends on the instantaneous system clock frequency.

In Figure 6.16, the maximum addend variation is 545; correspondingly, the maximum

frequency variation is 253 ppb (545 divided by 2.15)

Figure 6.16. The observed shifted addend, offsets and delays.

The effect of PI controller on offset/addend is shown in Figure 6.17. Although the initial

phase was not controlled to be the same during the test, it takes almost the same time for

the system to reach a steady state regardless of the Sync rate (about 50, 120, 450, 1700

64

and 4000 samples for the Sync rate of 0.5, 1, 4, 16 and 64 pkt/s respectively). This is

because the system bandwidth is remained the same when the sampling rate changes.

Figure 6.17. Offset start-up for 5 Sync rates.

In another test, the performance of different Sync message rates is studied. The statisti-

cal features are given by the oscilloscope. Because of the unstable connection between

the pin on the slave and the oscilloscope probe, it was difficult to conduct the test. The

slave PPS failed to be sensed by the oscilloscope from time to time and this brought

tremendous impact on all the statistical features (variance, average and minimum). Due

to this reason, the oscillator observation period was not more than 10 minutes each time,

before features were recorded.

The results are shown in Table 6.1. Higher rate of the Sync messages usually brings a

smaller variance, but larger mean phase error. Regardless of the network type, when the

Sync message rate is 0.5, the slave encounters the largest variance. The minimum Sync

rate is 0.25 allowed by the grandmaster.

Table 6.1 Sync message rate effect.

Sync packet rate

[pkt/s]

average offset

Min. offset

Max. offset

Standard deviation

[ns]

Cisco switch, LAN with about 100 hosts.

64 3.645426 3.498 3.841 68.19

16 3.5703562 3.48 3.686 57.62

4 3.4023047 3.207 3.602 124.0

65

1 3.2802392 3.197 3.516 59.24

0.5 3.3465021 3.015 3.7 232.5

Switch 2, LAN with 3 hosts.

4 729.09863 ns 689.8 ns 782.6 ns 21.27

1 719.42054 ns 658.2 ns 781.5 ns 25.73

0.5 742.42115 ns 651.0 ns 822.2 ns 49.59

The slave is adjusted every time a valid tuple is received and not discarded by filters.

When the achieved adjustment is much more fluctuated than the oscillator frequency

drift, the PDV introduces bigger error in the slave calculated offset. When the Sync rate

is 64 pkt/s, the addend would be updated 64 times in one second. This is beyond the

short-period frequency drift due to the temperature fluctuation (not to mention the oscil-

lator aging speed). The clock is more likely to be tuned based on the PDV other than its

own frequency drift. An optimized slave SW should have the ability to evaluate the

quality of its local oscillator (frequency wander) out of the level of path noise. Figure

6.18 shows Table 6.1 in graph, it is easy to recognize that 1 Sync message per second is

the optimum.

Figure 6.18. Plot of the results of the first scenario in Table 5.2.

66

7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

Based on the tuning information source, there are two methods to adjust the clock – the

phase and the frequency. They both share a feedback control structure, except that FLL

method also takes the time interval into account. In general, FLL is a good idea if the

clock frequency drift is dominant, instead of the PDV. And since it directly changes the

clock frequency, and indirectly changes the phase (recall that phase is an accumulation

of frequency), it needs to step the clock when the phase offset is too big.

Stability of an oscillator mainly refers to its frequency accuracy. The FLL method ex-

hibits a better stability when the frequency information is gained by averaging several

(such as 10) frequency samples. Too many samples would fail to characterize the oscil-

lator, while too few samples would invoke huge fluctuation. The FLL method uses the

NTP loop filter. The legendary Huff-n'-puff filter seems not to be helpful on reducing

the asymmetric path delay. This is probably because the network environment is differ-

ent from what it was designed for. Huff-n'-puff usage was claimed to be based on the

positive correlation between the delay and offset. In fact, the positive correlation was

observed between their deviations.

The PLL method is better than FLL in both the frequency accuracy (stability) and the

phase accuracy. PLL method only measures the phase offset. Both delay and offset are

handled not only by step controller and popcorn spike suppressor that are introduced in

NTP, but also by IIR filter (on delay) and FIR filter (on offset) that are introduced in

PTPd. In the PLL method, because the TMR_ALARM1 register was not properly config-

ured as described in the chip manual, a big offset between GPS PPS phase and designed

slave PPS signal appeared. In a better implementation, the ideas of [14, p 787] should be

followed to generate a phase aligned PPS in P2020. Other than this, three conclusions

can be made:

 The absolute delay causes the phase offset, while the PDV causes frequency er-

ror.

 PPS variations of the designed slave and OSCILLOQUARTZ 5320 slave ap-

peared at the same time on the oscilloscope screen, meaning that they were

caused by large PDV and/or unstable GPS signal (unlikely).

 The predictable variation of "offset" and "addend" shows up from time to time.

The 3
rd

 item was also observed on the oscilloscope screen. The slave PPS stepped to-

wards the grandmaster PPS for continuous N triggers, and then stepped away from

67

grandmaster PPS for next continuous M triggers. During this process, one can almost

predict where it is walking to. Moreover, the relative offset and relative delay show an

obvious relation. That means, the offset which should only reflect the clock bias, is pol-

luted by the PDV. The effect of different Sync rate was also analyzed at the end of this

section. The conclusion is that, higher Sync message exchange rate is better to describe

the network link condition. But adjusting the local oscillator more frequently than it is

affected by the environment or aging, would lead to a poor result. Therefore it should be

avoided.

No matter which method is used, the adjusting target is the frequency of clock through

the addend value that is stored in TMR_ADD register. By writing to the TMR_CNT_H/L,

the clock can also be directly stepped. Stepping the clock is equal to changing the phase

of the clock. And this only happens when the phase deviation is too big in both methods.

7.2. Future work

The effect of missing event packets deserves a future study. As can be seen from the

PLL method, the interval between obtained offsets is not involved in tuning the clock.

However, it is claimed in [18] that, when SYNC messages are missing, the PLL method

is worse than the FLL method. The implementation of [18] is based on the Kalman filter.

Because the methods are different, the effect of losing SYNC should be studied on the

PLL of this thesis, with the help of traffic generator and network simulator.

The phase alignment in P2020 was not configured properly as guided in the chip manual.

The operation in this thesis was enabling the HW timing, followed by writing the

TMR_ALARM1 register. According to the reference manual, this should be the other

way round.

The recognition of the PTP event packets should remain in the network driver, while

register operations should be put into an independent clock driver. In this thesis imple-

mentation, the registers are visited in the PTP slave SW.

The OSCILLOQUARTZ 5320 has the ability of estimating the path delay on two direc-

tions separately. There are a dozen of papers which have studied this approach. For ex-

ample, [31] describes the use of the statistical average offset (collected in a group) to

recover the path delay in each direction.

Moreover, there are many other methods and different filters (such as the Kalman filter

mentioned above) are claimed to be helpful for enhancing the accuracy. Some of them

are not compatible with the IEEE 1588 recommendation. Implementations of PTP need

not only vertically deeper, but also horizontally wider studies.

68

References
[1] “Time and frequency division,” NIST. [Online]. Available:

http://tf.nist.gov/general/enc-no.htm#ocxo

[2] “Wireless backhaul synchronization,” Ceragon Networks Ltd. [Online].
Available: http://www.ceragon.com/files/Ceragon%20-%20Synchronization%20-
%20Technical%20Brief.pdf

[3] “Deployment of precision time protocol for synchronization of GSM
and UMTS base stations,” Symmetricom Inc, 2008. [Online]. Available:
http://www.symmetricom.com/resources/downloads/white-papers/IEEE-1588-
PTP-Solutions/Deployment-of-Precision-Time-Protocol-for-Synchronization-of-
GSM-and-UMTS-Base-Stations/

[4] “Popcorn and step control (clock discipline algorithm) (computer network
time synchronization),” 2008. [Online]. Available: http://what-when-
how.com/computer-network-time-synchronization/popcorn-and-step-control-clock-
discipline-algorithm-computer-network-time-synchronization/

[5] “Asymmetric networks (xPON etc.) – timing solutions,” Calix Inc.,
2010. [Online]. Available: http://www.chronos.co.uk/files/pdfs/itsf/2010/Day3/02-
Asymmetric Network Timing Solutions.pdf

[6] “Support for IEEE 1588 protocol in PowerQUICC and QorIQ processors,” Network-
ing and Multimedia Group Freescale Semiconductor, Inc., Austin, TX, Sep 2010.
[Online]. Available: www.freescale.com/files/32bit/doc/app note/AN3423.pdf

[7] D. W. Allan, N. Ashby, and C. C. Hodge, The Science of Timekeeping Appliction
Note 1289. Hewlett Packard, 1997.

[8] J. Bausch, “TCXO vs. OCXO,” Aug 2011. [Online]. Available:
http://www.electronicproducts.com/Passive Components/Oscillators Cry
stals Saw Filters/TCXO vs OCXO.aspx

[9] L. Cosart, “IEEE 1588 frequency and time transfer measurements and analysis:
Clock, PDV, and load,” in Proc. of the 42nd Annual Precise Time and Time Interval
(PTTI) Meeting.

[10] J. C. Eidson, Measurement, Control, and Communication Using IEEE 1588. Lon-
don, UK: Springer-Verlag, 2006.

[11] Terrestrial trunked radio (TETRA); Voice plus data (V+D); Part 2: Air Interface
(AI), ETSI Technical Specification 100 392-2 Version 3.3.1, 2008.

[12] Universal Mobile Telecommunications System (UMTS); Base station (BS) radio
transmission and reception (FDD), ETSI Technical Specification 125 104 Version
8.6.0, 2010.

[13] J.-L. Ferrant and S. Ruffini, “ITU-T q13/15 updates,” Paris, FR, Mar 2012. [Online].
Available: http://www.ietf.org/proceedings/86/slides/slides-86-tictoc-8

[14] P2020 QorIQ Integrated Processor Reference Manual, Freescale, 2010.

69

[15] Support for IEEE 1588 Protocol in PowerQUICC and QorIQ Processors, Freescale
Semiconductor, Inc., 2010.

[16] T. Frost, “IEEE-1588 standard version 2 tutorial,” Agilent Technologies Inc., 2006.
[Online]. Available: http://www.webcitation.org/5qaJpYqCH

[17] ——, “Deployment considerations for IEEE1588 in telecommunication networks,”
in Proc. The 5th Intenational Telecoms Sync Form (ITSF), London, UK, Nov. 13–15,
2007, pp. 1–21.

[18] G. Giorgi and C. Narduzzi, “Robustness to SYNC packets loss in network syn-
chronization,” in Precision Clock Synchronization for Measurement Control and
Communication (ISPCS, International IEEE Symposium on)), Munich, Sep. 12–16,
2011, pp. 120–125.

[19] Standard for a Precision Clock Synchronization Protocol for Networked Measure-
ment and Control Systems, IEEE Std. 1588-2002, 2002.

[20] Standard for a Precision Clock Synchronization Protocol for Networked Measure-
ment and Control Systems, IEEE Std. 1588-2008, Rev. IEEE1588-2002, 2008.

[21] Network Time Protocol Version 4: Protocol and Algorithms Specification, IETF
RFC 5905, 2010.

[22] Design objectives for digital networks – definitions and terminology for synchro-
nization networks, ITU-T Recommendation G.810, 1996.

[23] J. Jaspernetite, K. Shehab, and K. Weber, “Enhancements to the time synchroniza-
tion standard IEEE1588 for a system of cascaded bridges,” in Factory Communica-
tion Systems. Proc. IEEE International Workshop on, Sep. 22–24, 2004, pp. 239–
244.

[24] T. Kovacshazy and B. Ferencz, “Performance evaluation of ptpd, a IEEE 1588 im-
plementation, on the x86 linux platform for typical application scenarios,” in Instru-
mentation and Measurement Technology Conference (I2MTC), 2012 IEEE Interna-
tional, May 13–16, 2012, pp. 2548–2552.

[25] Q. Li and D. L. Mills, “Jitter based delay boundary prediction of wide area net-
works,” Networking, IEEE/ACM Transactions on, vol. 9, pp. 578–590, Oct. 2001.

[26] D. L. Mills, “Modelling and analysis of computer network clocks,” Electrical En-
gineering Department at University of Delaware, Newark, DE, Tech. Rep. 92-5-2,
Sep. 1992.

[27] ——, “Adaptive hybrid clock discipline algorithm for the network time protocol
1,2,” Networking, IEEE/ACM Transactions on, vol. 2, pp. 505–514, Oct. 1998.

[28] ——, “A brief history of ntp time: confessions of an internet timekeeper,” ACM
Computer Communications Review, vol. 33 (2), pp. 9–22, Apr. 2003.

[29] ——, Computer Network Time Synchronization: The Network Time Protocol, 1st ed.
Boca Raton, FL: CRC Press, 2006.

70

[30] ——, “Network time protocol version 4 reference and implementation guide,” Elec-
trical Engineering Department at University of Delaware, Newark, DE, Tech. Rep.
06-06-1, Jun. 2006.

[31] T. Murakami, Y. Horiuchi, and K. Nishimura, “A packet filtering mechanism with
a packet delay distribution estimation function for IEEE 1588 time synchronization
in a congested network,” ISPCS 2011. IEEE International Symposium on, pp. 114–
119, Sep. 2011.

[32] F. L. Walls and J. R. Vig, “Fundamental limits on the frequency stabilities of crystal
oscillators,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions
on, vol. 42, pp. 576–589, Jul. 1995.

[33] R. Zarich, M. Hagen, and R. Bartos, “Transparent clocks vs. enterprise ethernet
switches,” in ISPCS 2011. IEEE International Symposium on, Munich, Sep. 2011,
pp. 62–68.

[34] A. Zhou and X. Duan, “Requirements and viewpoints for back-
haul synchronization,” China Mobile Ltd., 2008. [Online]. Available:
http://tools.ietf.org/agenda/71/slides/tictoc-6.ppt

APPENDIX 1: PLL METHOD SIMULATION

%% main.m:

% % delay(d) samples are colleted from the real network
% % t2 = t1 + delta + dMS
% % t4 = t3 - delta + dSM
% % d = 0.5 * (dMS + dSM)
% % all in nanoseconds
%
close all
clc
clear all
format long;

load '.\11.19\offset.txt'
% % for delay simulation
% load '.\11.19\delay.txt'

% State variable
DMSHEAVIER = 1;
DSMHEAVIER = 2;
EQUALDELAY = 3;

% %result analyze
%
% %
% @init stands for the whole system input, the system properties are
% examined by changing the value here. It is defined as:
% [initial_offset, ai, ap, p, state loopcnt]
init = [30000 0.01 0.19 1 1 3000];
initial_offset = init(1);
ai = init(2);
ap = init(3);
p = init(4);
state = init(5);
loopcnt = init(6);

%% oscillator offers system frequency
% system frequency fs
global fs
% oscillator frequency error estimation
D_scale = 10 * rand(1);
D = D_scale * 10^-11;
% nominal system frequency
fs_nominal = 200000000;
% biased system frequency
fs = fs_nominal + D*fs_nominal;

%% delay simulation based on the live collected delays
%* 1) Basic statistical calculations are made to achieve the independ-

ent
%* two direction delays, and their sum satisfies the variance and ex-

pectation
%* of the live collected delays;
%* 2) Because the status variable for every simulation could be only

one,
%* in order to test all the three cases, they should use the same sim-

ulated

%* delays. Thereafter, using function dlmwrite() to store them. And

call
%* function load() to read the stored delays in every simulation.
%* Therefore, this block (i.e., delay simulation) runs only one time

by
%* uncomment.
% [a b] = max(delay);
% new_d = [delay(1:(b-1)); delay((b+1):end)];
% var_delay = var(new_d, 1); %var_delay is variance
% e_d = mean(new_d);
% % Assume dms and dsm are independent, (in real case impossible)
% % each satisfies Gausian distribution with expectation: e_dms or

e_dsm
% % variance var_dms or var_dsm, and standard deviation: c_dms or

c_dsm
% % although it would be naturaly asymmetric already in this way, but

there
% % can be one direction more traffic than the other, and this is con-

trolled
% % by r
% % dms = r*dsm
% % E[(dms+dsm)/2] = e_d
% % <=> (e_dms + e_dsm) / 2 = e_d (1)
% % e_dms = r*e_dsm (2)
% % => e_dsm = 2*e_d / (r+1) , e_dms = 2*e_d - e_dsm
% %
% % D[(dms+dsm)/2] = var_delay
% % <=> var_ms + var_sm + 2*cov(dms,dsm)= 4*var_delay , assuming dms

and dsm
% % are independent, so cov(dms, dsm) = 0
% % var_ms = r*r*var_sm
% % => var_sm = 4*var_delay / (r*r+1), var_ms = 4*var_delay - var_sm
% r = 1; % dms / dsm = r
% e_dsm = 2*e_d / (r+1);
% e_dms = 2*e_d - e_dsm;
% var_sm = 4*var_delay / (r*r+1);
% c_sm = sqrt(var_sm);
% var_ms = 4*var_delay - var_sm;
% c_ms = sqrt(var_ms);
% dms = e_dms + c_ms * randn(1,loopcnt);
% dsm = e_dsm + c_sm * randn(1,loopcnt);
%
% d = 0.5*dms + 0.5*dsm;
% % peak_on_delay is used to control the percentage of peaks that are
% % observed during the live test. Because of this operation, the var-

iance
% % the final simulated delays would be much bigger than that in the

live
% % test.
% peak_on_delay = rand(1,loopcnt);
% for i=1:length(d)
% if peak_on_delay(i) > 0.992
% d(i) = d(i) *(1+rand(1)/5);
% end
% end
% figure, plot(d),title('simulation d')

% %% – 2013.5.12
% dlmwrite('simulateddms.txt', dms', 'delimiter', '\t', ...
% 'precision', 6)
% dlmwrite('simulateddsm.txt', dsm', 'delimiter', '\t', ...

% 'precision', 6)
% dlmwrite('simulatedD.txt', d', 'delimiter', '\t', ...
% 'precision', 6)
disp('2013.6.7');
load '.\simulatedDsm.txt'
load '.\simulatedDms.txt'
load '.\simulatedD.txt'

dms = simulatedDms;
dsm = simulatedDsm;
d = simulatedD;

%%
ofs = zeros(1,loopcnt);
biased_ofs= zeros(1,loopcnt);
filtered_delay= zeros(1,loopcnt);
% loopcnt is the number of loops, which is also the number of

% simulated samples

if (state == DMSHEAVIER)
 dms = 2*d-dsm;
 dsm = dsm;
end
if (state == DSMHEAVIER)
 dms = dms;
 dsm = 2*d-dms;
end
if (state == EQUALDELAY)
 dms = dms + 2 * (d - 0.5*(dms+dsm)) * 0.5;
 dsm = 2*d - dms;
end

for i = 1:loopcnt
 if i==1
 % unbiased offset starts with initial_offset
 unbiased_ofs = initial_offset;
 end
 ofs(i) = unbiased_ofs;
 biased_ofs(i) = unbiased_ofs + (dms(i) - dsm(i))/2;
 [flt_ofs, flt_delay]= updateofs(unbiased_ofs, dms(i), d(i), i);
 filtered_delay(i) = flt_delay;
 unbiased_ofs = decision(flt_ofs, unbiased_ofs, i, ai, ap, p);
end

diff = ofs(2:end) - ofs(1:(end-1));
figure, subplot(2,1,1), plot(ofs), title('unbiased offset'), ylim([-

3000 3000])
subplot(2,1,2), plot(ofs), ylim([-12000 12000])
figure, subplot(2,1,1), plot(diff, 'black'), title('unbiased freq off-

set')
subplot(2,1,2),plot(abs(diff), 'black'),
% The adjustments of zoom-in on y:
if state == DMSHEAVIER
 ylim([0 500]),
 title('dms >> dsm'),
end
if state == DSMHEAVIER
 ylim([0 100]),
 title('dsm >> dms'),
end

if state == EQUALDELAY
 ylim([0 300]),
 title('dsm = dms'),
end
xlim([1 loopcnt]), ylabel('abs(unbiased freq offset) [ppb]')
xlabel('samples')
figure, plot(biased_ofs), title('biased_ofs')
figure, plot(filtered_delay), title('filtered_delay')
%% – 2013.8.15
figure,
subplot(2,2,1), plot(abs(diff), 'black'), xlabel('sample'), yla-

bel('abs(frequency drift) [ppb]')
if (state == DSMHEAVIER)
 title('dsm >> dms'),
 ylim([0 100]),
end
if (state == DMSHEAVIER)
 title('dsm << dms'),
 ylim([0 500]),
end
subplot(2,2,2), plot(ofs, 'black'), xlabel('sample'), ylabel('unbiased

time offset [ns]')
if (state == DSMHEAVIER)
 title('dsm >> dms'),
 ylim([-1000 1000]),
end
if (state == DMSHEAVIER)
 title('dsm << dms'),
 ylim([-5000 5000]),
end

%% – 2013.5.12 for thesis change the pictures
figure,
subplot(2,2,1), plot(offset, 'black'), ylim([-2000 2000]), xlim([0

0.5*length(biased_ofs)])
title('real offset'),xlabel('samples'), ylabel('Time offsets[ns]')

subplot(2,2,3), plot(biased_ofs, 'black'), xlim([0

0.5*length(biased_ofs)]), ylim([-8000 8000]),
xlabel('samples'), ylabel('Time offsets[ns]')
if state == DMSHEAVIER
 if ap == 0.05
 ylim([-2000 7000]),
 else
 y_range = ylim;
 end
 title('dsm << dms (simulated biased offset)')
end
if state == DSMHEAVIER
 if ap == 0.05
 ylim([-7000 2000]),
 else
 y_range = ylim;
 end
 title('dsm >> dms (simulated biased offset)')
end
if state == EQUALDELAY
 ylim([-2000 2000]),
 title('dsm = dms (simulated biased offset)')
end

subplot(2,2,4), plot(ofs, 'black'), xlim([0 0.5*length(biased_ofs)])
if ap == 0.05
 ylim([-2000 2000])
else
 ylim([y_range(1) y_range(2)]);
end

xlabel('samples'), ylabel('Time offsets[ns]')
if state == DMSHEAVIER
 title('dsm << dms (simulated unbiased offset)')
end
if state == DSMHEAVIER
 title('dsm >> dms (simulated unbiased offset)')
end
if state == EQUALDELAY
 title('dsm = dms (simulated unbiased offset)')
end

subplot(2,2,2), plot(filtered_delay, 'black'), xlim([0

0.5*length(biased_ofs)])
title('filtered delay'),xlabel('samples'), ylabel('Filtered de-

lays[ns]')

%% –-2013.6.4
figure, subplot(2,1,1), plot(abs(diff), 'black'),
ylim([0 50]),
xlim([1 loopcnt]), ylabel('abs(unbiased freq offset) [ppb]')
title('dms >> dsm'), xlabel('samples'), xlim([0 length(biased_ofs)])
subplot(2,1,2), plot(filtered_delay, 'black'),
xlabel('samples'), ylabel('Filtered delays[ns]')

%%–2013.6.7
figure, subplot(2,1,1), plot(d, 'black'),title('delay'), xla-

bel('samples'), ylabel('simulated delay[ns]')
subplot(2,1,2), plot(filtered_delay, 'black'),
title('filtered delay'),xlabel('samples'), ylabel('Filtered de-

lays[ns]')

var(dms)
var(dsm)

%% decision.m:

function [new_ofs] = decision(flt_ofs, unbiased_ofs, loop_no, ai,

ap, p)
%
global fs
persistent base_addend;
persistent base_adjust;
persistent drift; % I
base_addend = 2147483648; % aka, 2^31
base_adjust = base_addend / (1000000000 / 1024);
if loop_no == 1
 drift = 0;
end
drift = drift + ai * flt_ofs;
adj = flt_ofs * ap + drift;

etemp = base_adjust - adj;
%
% new_adjustment = etemp*base_adjust/1024;
% new_addend = base_addend + new_adjustment;
%
if etemp > 0
 new_adjustment = etemp*base_adjust/1024;
 new_addend = base_addend + new_adjustment;
end
if etemp < 0
 new_adjustment = -etemp*base_adjust/1024;
 new_addend = base_addend - new_adjustment;
end
if etemp == 0
 new_addend = base_addend - new_adjustment;
end

% when next time receive sync message the offset would be using
% biased_ofs here is wrong, because the judgement is made on observed
% offset – biased_ofs, but the tuning is made to the unbiased offset

% – unbiased_ofs because the tunning is done to the addend, it has

% nothing to do with the asymmetric delay
new_ofs = unbiased_ofs + (fs* new_addend / 4294967296 *10 -

1000000000)*1/p;
end

%% updateofs.m:

function [flt_o, flt_delay] = updateofs(unbiased_ofs, dms, lo_d,

loop_no)
% updateofs takes the real offset as input, plus the asynmmetric

% delays and pass delay to delay filter, and takes the minus as
% biased_ofs and return it

persistent flt_d;
persistent last_d;
persistent last_ofs;

if loop_no == 1
 flt_d = lo_d;
 last_d = lo_d;
end
if loop_no >1
 k = lo_d; % s – start
 s = 0; %
 while (k>=2) %
 k = k / 2; %
 s = s+1; %
 end %
 if s==0 %
 s=1; %
 end % s – end
 flt_d = (lo_d + last_d)/2 + (s-1)*flt_d;
 flt_d = flt_d/s;
 last_d = lo_d;
end
flt_delay = flt_d;
% delay filter end

% offset filter begin

lo_ofs = unbiased_ofs + dms - flt_delay;

if loop_no == 1
 last_ofs = lo_ofs;
 flt_o = lo_ofs;
end
if loop_no > 1
 flt_o = (lo_ofs + last_ofs)/2;
 last_ofs = lo_ofs;
end
% ofset filter end
end

APPENDIX 2: PI CONTROLLER PARAMETER STUDY

% calculate the B and C in the notebook
close all
clear all
clc
format('long');
% state
POS_PEAK = 1;
NEG_PEAK = -1;
p = 64;
fs = 2e8;
c2 = 2^32;
c1 = 2^31;
c0 = 2^10;
A = c1 * c0 /1e9;
B = 1/p *(fs*10/c2*(c1+A*A/c0)-1e9)
C = 1/p *(fs*10/c2*(-A)/c0)
% d[n] = d[n-1] + A/p - 1/p*(kp*d[n-1]+kiSIGMAm=0 to m=n-1 d[m])
testStepsI = 0.01:0.01:1;
testStepsP = 0.01:0.01:1;
od_PairsI = zeros(1,length(testStepsI)*length(testStepsP));
od_PairsP = od_PairsI; % testStepsP and I must have the same length
od_nonzeroSum = od_PairsI;
od_Sum = 0;

ud_PairsI = zeros(1,length(testStepsI)*length(testStepsP));
ud_PairsP = ud_PairsI;
ud_peakSum = ud_PairsI + 1;
ud_Sum = 0;

all_PairsI = zeros(1,length(testStepsI)*length(testStepsP));
all_PairsP = all_PairsI;
all_nonzeroSum = all_PairsI;
all_peakSum = all_PairsI + 1;
all_index = 0;
loopcnt = 500;

for ai = testStepsI
 for ap = testStepsP
 d = zeros(1,loopcnt+1);
 d(1) = 0;
 sum_d = 0;
 % ai = ki/p; ap = kp/p;
 for i = 1:loopcnt;
 sum_d = sum_d + ai*d(i);
 % d(i+1) = d(i)+2199 - ap*d(i) - sum_d, because A/p is

too big
 % to plot a clear 3D figure, 10 is to used here to re-

place it
 % for a clear 3D figure
 d(i+1) = d(i) + 10 - ap*d(i) - sum_d;
 end
 [ymin xmin] = min(d);
 %% overdamped or crytical damping
 if (ymin == 0)
 % all
 all_index = all_index + 1;
 all_PairsI(all_index) = ai;
 all_PairsP(all_index) = ap;

 [ymin_t xmin_t] = min(d(2:end));
 all_nonzeroSum(all_index) = xmin_t+1;
 % all_peakSum(all_index) should be 1, therefore it is not

changed
 % overdamped only
 od_Sum = od_Sum + 1;
 od_PairsI(od_Sum) = ai;
 od_PairsP(od_Sum) = ap;
 od_nonzeroSum(od_Sum) = xmin;
 end
 %% underdamped
 if (ymin ~= 0)
 all_index = all_index + 1;
 all_PairsI(all_index) = ai;
 all_PairsP(all_index) = ap;
 all_nonzeroSum(all_index) = 0; %% TODO
 % all_peakSum is assigned after the "underdamped only"
 % underdamped only
 ud_Sum = ud_Sum + 1;
 % ud_peakSum = 1; % for the xmax %% This is already writen

in the inilization phase
 [ymax xmax] = max(d); %% because of the existence of the

constant in the differential expression, the max(d) would for sure not

be the d[1]
 halfT = abs(xmin - xmax); % d[1]= 0 and positive con-

stant makes this positive forever, but for the calculation precision

reason, it could be negative
 peakIndex = xmax + halfT;
 state = POS_PEAK;
 if (peakIndex <= (loopcnt+1))
 while (d(peakIndex)*state < 0)
 peakIndex = peakIndex + halfT;
 state = -1*state;
 ud_peakSum(ud_Sum) = ud_peakSum(ud_Sum) + 1;
 if (peakIndex > (loopcnt+1))
 break
 end
 end
 end
 all_peakSum(all_index) = ud_peakSum(ud_Sum);
 ud_PairsI(ud_Sum) = ai;
 ud_PairsP(ud_Sum) = ap;
 end
 end
end
[x,y] = meshgrid(testStepsI,testStepsP);
z = griddata(all_PairsI,all_PairsP,all_peakSum,x,y);
mesh(x,y,z)
hold
plot3(x,y,z)
hold off
xlabel('ai'), ylabel('ap'), zlabel('number of peaks'), title('')

figure,
[x,y] = meshgrid(testStepsI,testStepsP);
z = griddata(all_PairsI,all_PairsP,all_nonzeroSum,x,y);
mesh(x,y,z)
hold
plot3(x,y,z)
hold off
xlabel('ai'), ylabel('ap'), zlabel('climbing duration'),

