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Power consumption is a key aspect in contemporary processor design. Small pro-

cessor systems, such as mobile devices, bene�t from power optimization and smart

design in the form of increased battery life. Due to their small size, they often

have tight thermal constraints, which optimizing for power helps to meet. Power

optimization can be done on all design abstraction levels. On the architecture level,

choosing an optimal architecture for low power may not be straightforward. Trans-

port Triggered Architecture (TTA) processors utilize Instruction Level Parallelism

(ILP) e�ciently and are by nature a good choice for low power designs. They enable

the designer to implement various power and performance optimizations, some of

them unique to TTAs. In this thesis, a literary review of the most commonly used

power and energy optimization methods was carried out. Next, four power opti-

mizations on the Register Transfer Level (RTL) were implemented to TTA-based

Co-design Environment (TCE), a toolset for designing and programming TTA pro-

cessors developed at Tampere University of Technology (TUT). Synthesis was per-

formed with Synopsys Design Compiler to analyze the results. The e�ect of the

synthesis tool's automatic optimizations was also analyzed. The optimizations were

synthesized on three cores designed for di�erent use cases. All of the cores bene�ted

from the optimizations, yielding up to 26% decrease in power consumption with 3%

area overhead.
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Modernien prosessorien suunnittelussa tehonkulutuksen huomioonottaminen on tär-

keää. Pienet prosessorijärjestelmät, kuten mobiililaitteet, hyötyvät tehonkulutusop-

timoinnista pidemmän akunkeston muodossa. Optimointi auttaa myös vastaamaan

mobiililaitteiden usein tiukkoihin lämpösuunnittelurajoituksiin. Tehonkulutusopti-

mointeja voidaan tehdä kaikilla suunnittelun abstraktiotasoilla. Arkkitehtuurita-

solla, optimaalisen arkkitehtuurin valitseminen ei usein ole suoraviivaista. Siirto-

liipaisuarkkitehtuuria käyttävät prosessorit hyödyntävät käskytason rinnakkaisuut-

ta tehokkaasti ja ovat hyvä valinta matalan tehonkulutuksen sovelluksiin. Niitä

käyttäen prosessorisuunnittelijan on mahdollista toteuttaa erilaisia tehonkulutus-

ja suorituskykyoptimointeja, joista osa on siirtoliipaisuarkkitehtuurille yksilöllisiä.

Tässä diplomityössä tehtiin ensin kirjallisuuskatsaus yleisimmin käytetyistä tehon-

kulutus- ja suorituskykyoptimoinneista. Näistä neljä toteutettiin Tampereen Teknil-

lisessä Yliopistossa kehitettyyn TTA-based Co-design Environment (TCE) -kehi-

tysympäristöön, joka mahdollistaa TTA-prosessorien suunnittelun ja ohjelmoinnin.

Vaikutusten analysoimiseksi optimoinnit toteutetiin kolmeen eri tarkoitusta varten

suunniteltuun prosessoriytimeen, jotka syntesoitiin Synopsys Design Compilerilla.

Kaikki ytimet hyötyivät optimoinneista, saavuttaen parhaassa tapauksessa 26%

tehonkulutuspienennyksen, pinta-alan kasvaessa 3%.
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1. INTRODUCTION

Power consumption in today's integrated circuits and especially processors is a key

aspect when considering design constraints and parameters. The power density

of modern processor cores is often compared to be similar to the one of a rocket

combustion engine's. In mobile devices, space for cooling and battery capacity are

limited and power consumption directly a�ects the thermal constraints and battery

lifetime. In large scale data facilities such as server centers, cooling costs directly

a�ect the energy bill. Larger and larger amounts of data are required to be processed,

while the time-to-market of processor devices needs to be kept short. This creates

pressure for logic reusability and scalability for di�erent applications.

Transport Triggered Architecture (TTA) [5] processors are a simple and power-

e�cient type of statically scheduled processors, utilizing a high level of Instruction

Level Parallelism (ILP). Their aim is to minimize the amount of control hardware,

leading to low power consumption. Their modular structure and scalability make

them a good choice for low power applications. They also o�er room for various

power optimizations and even enable the use of some TTA-speci�c optimizations.

Synthesis tools automatically perform power and area optimizations on the logic

and transistor levels. However, for minimal power consumption, the choices of the

processor designer have a major impact. It is up to the designer, for example, what

type and number of logic blocks or buses are used in the design, or what kind of

instruction and data encoding is used. The e�ect of combining these choices on

the power consumption is not always clear and may not always be easy to estimate

beforehand. In this thesis, power consumption optimizations were reviewed from

literature and implemented on TTA cores. The optimizations were integrated to the

TTA-based Codesign Environment (TCE), a software toolset developed at Tampere

University of Technology (TUT) to design and program TTA processors, and are

now automatically included in the generated processors.

The structure of this thesis is as follows. Chapter 2 �rst describes the components

and fundamentals of power consumption in processors and in integrated circuits in

general. Next, di�erent processor types are explained. TTAs are presented as a
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subtype of statically scheduled processors. Chapter 3 provides a review of common

techniques and methods on di�erent design abstraction levels for reducing design

power consumption. Chapter 4 introduces the benchmark designs, programs and

synthesis tools used in the thesis. Initial power and area measurements are presented,

followed by measurements for automatic synthesis tool options. Chapter 5 describes

the power optimizations implemented in this thesis and presents the results in terms

of area usage, power consumption and program cycle count. Chapter 6 concludes

the thesis.
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2. POWER CONSUMPTION IN PROCESSORS

In order to understand how the power consumption of an integrated ircuit can be low-

ered, it is important to know how the power is dissipated. Modern integrated circuits

consists of Complementary Metal Oxide Semiconductor (CMOS) technology, which

consists of N-channel MOS (NMOS) and P-channel MOS (PMOS) transistors. The

power consumed on an integrated circuit depends on the electrical characteristics of

these transistors.

Figure 2.1 CMOS inverter. The voltage level at port 'In' determines the voltage seen at

load capacitance C (port 'Out').

To explain CMOS operation by means of a simple example, a CMOS inverter gate

is presented in Figure 2.1. An inverter is a simple gate, which implements the logic

not operation. When a voltage representing logic '1' is driven to port 'In', logic '0'

is seen at the 'Out' port. The inverter consists of an NMOS and a PMOS transistor.

In this inverter, like in all CMOS gates, when the NMOS is conducting, the PMOS

is not and vice versa. Hence the name complementary.

This chapter �rst describes di�erent categories of power consumption in integrated

circuits and processors implemented with CMOS technology. Next, di�erent pro-

cessor types and are presented, along with an explanation of TTAs. Then, energy

consumption and parasitic e�ects in power consumption are described.
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2.1 Components of Power Consumption

Power dissipation in integrated circuits is usually divided into two [16, p. 30] cate-

gories: static and dynamic power consumption. Dynamic power is further divided

into two categories: short circuit power and switching power. Static power can be

divided into two categories based on where in a CMOS the power dissipation occurs:

subthreshold leakage and gate leakage.

2.1.1 Dynamic Power

A CMOS gate changes its state by charging its load to the level of supply voltage,

or to ground. The amount of power consumed is proportional to the supply voltage,

frequency and the load capacitance.

Switching Power

Transistors can be modeled as switches having two states: open when not conducting

and closed when not conducting.

L L

Figure 2.2 CMOS inverter switching states.

In Figure 2.2 on the left side the NMOS is closed and PMOS is open, allowing

electrical current (direction shown by arrow) to charge the load capacitance C. This

means a logic '1' at the output. When the CMOS changes its output from logic '1'

to '0', the NMOS is opened and PMOS closed, allowing the discharging of the load

capacitance to ground level.

Power consumed in an integrated circuit due to switching activity can be written as

[16, p. 215]:
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Pdyn = CLV
2
ddf0→1 (2.1)

where transitions from logic '0' to logic '1' are considered, since electrical energy is

drawn from the power source at this time. Equation 2.1 only gives power consump-

tion for a CMOS that changes its output state every clock cycle. Usually this is true

for only the clock signal, since other signals usually have conditions for changing. If

the rate of state changes of the CMOS is considered, we get

Pdyn = αCLV
2
ddf0→1, (2.2)

where α is the activity of the CMOS. Activity can have a value between 0 and 1,

where 0 means the state is never changed and 1 means that the state changes on

every clock cycle.

Short Circuit Power

When the state of a CMOS gate changes, both the NMOS and PMOS are brie�y

in a conductive state at the same time, because real life transistors have �nite rise

and fall times. This leads to a direct path for electrical current to �ow from the

supply voltage to ground level. This is presented in Figure 2.3, where the curved

arrow shows the direction of the short circuit current.

L

Figure 2.3 A CMOS inverter in the middle of transition between states.

The current consumed by the CMOS during this time is called short circuit power,

or direct path power and can be written as [16, p. 220]:
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Pdp = tscVddIpeakf = CscV
2
ddf (2.3)

According to equation 2.3, power consumed during the short circuit period is directly

proportional to the time of the short circuit, supply voltage, and the peak current,

which is determined by the saturation current of the transistor [16, p. 221].

2.1.2 Static Power

Transistors can be thought of as switches, but being semiconductors, they are not

ideal. Due to their electrical qualities, static power is still consumed when they

are not switching states. This is due to leakage currents. Leakage power consump-

tion can be divided into subthreshold leakage and gate leakage, and the total power

consumption is [16, p. 223]:

Pstat = IstatVdd (2.4)

where Istat is the total current between supply voltage rail and ground voltage rail

when the transistor is in idle state, and Vdd is the supply voltage.

Subthreshold Leakage

As transistor technology size scales down, channel lengths are reduced, forcing their

threshold voltages to be lowered. This increases the subthreshold leakage, since the

transistor channel is always somewhat conducting.

Subthreshold leakage occurs below the transistor threshold voltage, that is, when

the transistor is in idle state. Electrons drift between the drain to source terminals,

forming a leakage current.

Gate Leakage

The gate is separated from the source and drain terminals by gate oxide. As tran-

sistor sizes get smaller, the gate oxide thickness must be reduced to maintain per-

formance. This increases gate leakage due to electron tunneling e�ect.

Gate leakage was signi�cantly lowered starting from 45 nanometer technology [13].
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This is due to development of insulators with a higher dielectric constant, known

as high-k dielectrics. Materials with a high dielectric constant reduce the e�ect

of tunneling and therefore leakage. Currently, the next transistor technologies for

low-power applications seem to be FDSOI [24] and FinFET [15].

2.1.3 Capacitive E�ects

In digital logic, fan-out is the number of gate inputs that a logic gate output is

connected to. Each connection adds to the total capacitance seen by the logic gate

and, therefore, increases the power consumption and delay of the gate. Fan-in is

the number of inputs going to a logic gate, and its e�ect on the intrinsic capacitance

of the logic is quadratic, due to the additional transistors needed to implement the

gate. Gates with a fan-in greater or equal to four have an excessive delay [16, p.

249] and should be avoided.

In addition to load capacitance, coupling capacitance (crosstalk) is present in inte-

grated circuits [16, p. 447]. If two wires are placed in parallel close to each other,

and only one of them changes its value, the other wire will see the state change as

noise. The power consumed in the two wires is more than it would take to charge a

single wire because of the capacitive coupling.

2.1.4 Energy Consumption

Energy consumed for a given period of time in a system is the time multiplied by

the average power consumption. Momentary power consumption is important when

considering safe operating temperatures for an integrated circuit. The energy con-

sumption becomes important when the chip is a part of a battery-powered system.

The less energy the chip consumes, the longer the battery will last, or the smaller

the energy bill will be.

Optimizing for low power consumption only, disregarding the impact on perfor-

mance, can lead to increased total energy consumption. For example, an architec-

ture with a small number of registers can consume less power than an architecture

with a larger number of registers. However, if the number of registers is too small

for typical programs run on the processor, the execution time of the program in

clock cycles can increase. This is due to the increased amount of memory writes

(spilling) and reads that are necessary to store the data that would have �tted to

the processor with more registers. The total energy used by a program may increase
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if the increase in the program cycle count is relatively larger than the decrease in

average power.

2.2 Processor Types and Power Consumption

Modernmultiple-issue processors exploit Instruction Level Parallelism (ILP). Multiple-

issue processors can be divided into two [9, p. 182] categories: superscalar and Very

Long Instruction Word (VLIW) processors. Depending on how the instructions are

scheduled, they can be divided into statically scheduled and dynamically scheduled

processors. This section �rst provides an overview of the building blocks found

in these two processor types. Next, dynamic and static scheduling are presented.

Then, Transport Triggered Architecture (TTA) processors are presented.

2.2.1 Common Components

At least to some extent, processors usually utilize similar building blocks. Here, the

basic components used in processors are presented.

Register Files

In order to avoid often expensive memory stores and loads, Register Files (RFs)

can be used to temporarily store data. They are a collection of registers inside a

processor core, that are fast to access. Register �les can have multiple input and

output ports that allow simultaneous access to the RF. At hardware level, register

�les consist mostly of �ip-�ops storing the data. For low-power applications, register

�le size should be carefully considered, as mentioned in Subsection 2.1.4

Function Units

The actual operations on data in processors are performed by Function Units (FUs),

that can often perform multiple operations. Typical FUs in processors are Arith-

metic Logic Units (ALUs), Load-Store Units (LSUs) and Floating Point Units (FPUs).

For low power consumption, the algorithms for FU operations should be e�cient.

Often, there is a trade-o� between power consumption and silicon area for di�erent

algorithms.
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Control Unit

The control unit (CU) is responsible for fetching instructions to the processor core

and decoding them into signals to control other parts of the core. The CU keeps

track of the Program Counter (PC) and handles program control operations such as

branching. Control unit design can have a large e�ect on core power consumption,

since it is continuously active when running a program.

Buses

Data and instructions in processors are transported on buses. Bus design has an

impact on both the performance and the power consumption in a processor. For

example, data can be transported with a serial or a parallel protocol. For a given

frequency, a parallel bus allows more data to be transported per time unit. However,

a parallel bus requires more wires and can consume unnecessary power if a serial or

a smaller bus would satisfy the transport need.

2.2.2 Dynamically Scheduled Processors

Scheduling a program means mapping the program operations onto the hardware re-

sources of the target machine and deciding in which order they are executed. Depen-

dencies between instructions a�ect the freedom of scheduling, when an instruction

uses the result of another instruction. A program can be scheduled di�erently to

di�erent processors, since the scheduling relies on the available hardware resources

on each processor. It is not uncommon for an instruction to take multiple cycles

to �nish, leaving clock cycles for instructions not dependent on it to be executed

meanwhile. Scheduling a program e�ciently usually leads to reduced runtime, since

the number of idle cycles is reduced. This may increase power consumption momen-

tarily, but is likely to lead to a reduced energy cost.

In dynamic scheduling [9, p. 181] instructions are scheduled runtime, in the hard-

ware. If an instruction stalls the pipeline in a processor, all instructions after it

are stalled. For example, reading data from data memory can stall the pipeline.

Processors often implement more than one level of memory hierarchy and a cache

miss can stall the processor for a longer period of time compared to a cache hit.

However, if the next instructions do not depend on the stalling instruction, they

could be executed. Dynamically scheduled processors address this with out-of-order

execution. where the instructions are executed in a di�erent order then they are
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fetched in. This way, some dependencies unknown at the compile time can can

be handled e�ciently. Dynamic scheduling allows good portability of code, since a

program compiled for one pipeline can e�ciently run on another pipeline.

Dynamic scheduling requires control logic, such as an instruction bu�er after the

fetch/decode units which, consisting mostly of registers to hold instruction values,

consumes a large amount of power. If a stall is present in the program code, the

control logic tries to avoid it by reorganizing the instructions, possibly leading to a

decrease in overall cycle count.

A superscalar processor can be dynamically or statically scheduled. Statical schedul-

ing and its di�erences to dynamic scheduling are presented next.

2.2.3 Statically Scheduled Processors

Static scheduling [9, p. 182] is done during compile-time of the program. Here the

responsibility of scheduling is given to the compiler, removing control logic from

the hardware and adding complexity to the compiler. However, all dependencies

cannot be determined during compile-time, for example if they involve a complex

dynamic memory reference. In terms of performance, dynamically scheduled pro-

cessors outperform statically scheduled processors when running general-purpose

code. In terms of power consumption, however, statically scheduled processors are

better due to the lack of expensive branch control logic and hardware needed for

out-of-order execution.

A traditional example of a statically scheduled processor is VLIW. In VLIW proces-

sors, it is up to the compiler to arrange the instructions so that there are no hazards

between them. The structure of a VLIW is presented in Figure 2.4(a). A VLIW

issues a �xed (usually large) number of instructions every clock cycle, even if some

of the instructions are No Operations (NOPs).

VLIWs usually implement a bypassing network [5, p. 86] to forward values between

FUs, when the result of an FU is needed by another FU. This reduces the program

cycle count because otherwise the intermediate result would need to be stored to the

RF and read from there to the next consumer. A challenge in scalability of VLIWs

is, that the bypass network grows quadratically [5, p. 92], when adding FUs to the

processors. This a�ects especially the area and power of large processors.

VLIWs present a good choice for implementing low-power applications. However,

they leave room for improvement. TTAs try to address some problems in VLIWs

and they are presented next.
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Figure 2.4 VLIW and TTA comparison.

Transport Triggered Architecture

In 1976, a control processor architecture using a �MOVE architecture� was presented

by Lipovski [11]. Here operations were triggered by moving operands to inputs of

FUs, making the operations transport triggered in contrast to the traditional design

paradigm, operation triggered execution. Corporaal [6] later studied TTAs exten-

sively and proposed them as an improvement to VLIWs. A software environment

for automatic generation of TTAs, TTA-Based Co-design Environment (TCE) [21],

is originally based on the Delft University of Technology MOVE project [20] and

can be used to design and program TTA-based processors. TCE development was

started in 2002 at Tampere University of Technology (TUT).

TTAs, like VLIWs, are a subclass of statically scheduled processors. However, TTAs

have an exposed datapath, where the Interconnection (IC) network can be controlled

by the programmer. Comparison to VLIW is presented in Figure 2.4. TTAs attempt

to address some issues in VLIWs, such as the scaling bottleneck. This means, that

when a VLIW is scaled up in size, RF complexity increases by requiring additional

RF ports when adding FUs. In TTAs the number of RF ports required to keep

the FUs busy does not depend directly on the number of FUs. TTAs also utilize

software bypassing, where bypassing is controlled by the compiler, in contrast to the
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bypass network in VLIWs. Software bypassing can allow reduced IC connectivity,

since the explicit programming model allows more precise control of data transports

compared to VLIWs.

In TTAs, the only machine instructions used are move and NOP. Moves happen

between component ports, that can be either inputs or outputs. At least one of the

input ports in a function unit must be triggering, which means that when data is

moved to that port, the operation de�ned will execute. This allows TTA scheduling

to have more freedom compared to a VLIW, since operands can be moved to and

from FU ports at di�erent times. A small example TTA is presented in Figure 2.5.

This particular TTA implements two FUs: an ALU and an LSU.

The instruction word size in a TTA depends on the size of move slots. Move slots

are de�ned for each bus separately. Their sizes are determined by the number of

FU input and output ports, RF sizes, number of connections to the data buses, size

of short immediates and the number of opcodes an the FUs implement. The size

of the slot must allow describing of all possible moves from source to destination

ports, that are connected through that bus.

In TTAs, an Interconnection (IC) network connects the CU, FUs and RFs in a

processor. The interconnection consist of data buses transporting data, which are

connected to other components by sockets. Interconnection design has an e�ect on

both the performance and the power consumption in a processor. For example,

an interconnection with an excessive amount of data buses consumes unnecessary

power. If the amount of data buses is too small, the scheduling freedom decreases and

program cycle count can increase, possibly leading to increased energy consumption.

For optimal power consumption, the IC connectivity must also be considered. In

TTAs, buses are connected to FUs and RFs by sockets. Too much of connectivity

is undesirable, since it increases the IC area and fan-in and fan-out of the logic

gates, and therefore power consumption. TCE implements the IC as a combinatorial

network and if it is very large, it can become the critical path in the design and

therefore lower the maximum clock frequency. A very small amount of connections

can also be harmful to the performance of the processor, because the compiler has

less opportunities to parallelize the source code and therefore execution time is

increased.

The TCE TTA template supports two ways to transport constant values in instruc-

tions [22, p. 12]. Short immediates are encoded into the move slot's source �eld

directly. Larger constant values are transported with long immediates. They are

written directly to the Immediate Unit (IU) by the CU, when it detects an instruc-
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Figure 2.5 An example TTA in TCE Processor Designer view.

tion containing a long immediate. The IU only has read ports, since writing to them

is done by the CU only.

Due to their low-power characteristics, modularity and simple structure, TTAs are

an excellent choice for mobile devices and data processing oriented applications,

where low power and high performance are crucial, such as accelerating operations

of Digital Signal Processing (DSP) and Software De�ned Radio (SDR).
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3. TECHNIQUES AND METHODS FOR

POWER-EFFICIENT PROCESSOR DESIGN

This chapter is a review of previously developed techniques and studies on power

optimizations in integrated circuits. Optimizations in an integrated circuit design

can be done on di�erent levels of abstraction. This chapter describes those levels and

gives examples of the most commonly used techniques on each one. The levels are

listed as separate sections starting from the highest abstractional level, the system

level, and ending on the lowest, transistor level.

Practical implementations of power-saving methods are often a trade-o� between

area, power consumption and speed. For example, extra control logic may need to

be synthesized, which consumes static and dynamic power, so care must be taken

not to increase the overall power consumption. Power optimizations can also have a

performance cost. A sequential system's maximum clock frequency depends on the

single longest path between two registers. If the extra logic increases the length of

this critical path, the highest possible clock frequency must be lowered.

However, power optimizations don't always come with a trade-o�. For example, an

ine�cient algorithm may waste power, speed and area and provides an opportunity

for optimization. Or at the logic level, wires may simply be routed in an e�cient

way minimizing parasitic components in power consumption.

3.1 System Level

System level is the highest abstractional level where power optimizations can be

done. Here the computational, communication and storage components of the sys-

tem are taken into account, in addition to the physical power and clock distribution

networks.
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Bus Segmentation

The idea of bus segmentation is to divide a large bus into several tree-structured

bus segments, taking advantage of local communication of function units [3]. This

reduces the bus power consumption, because now only a segment of the bus changes

its state at a time. The larger the bus is, the more load capacitance it will have,

and segmenting it will avoid charging unnecessary parts where data doesn't need to

be transmitted to at certain times.

Clock Frequency and Voltage Scaling

According to 2.1, The dynamic power of a CMOS circuit depends directly on clock

frequency and is proportional to the square of operating voltage. This means that

power and energy can be saved by reducing them, during both system design and

run-time. In this section, di�erent methods of voltage and frequency scaling are

explained.

In Static Voltage Scaling (SVS), separate supply voltages are �xed to each block

according to performance needs, forming di�erent voltage domains. The lower the

needed operating frequency, the lower the supply voltage can be set. For example,

a special function unit implementing a bottleneck function for a system might need

to operate at a high frequency and therefore need a high supply voltage.

Static voltage scaling brings design challenges, such as requiring level shifters when

signals go from one voltage domain to another, or the need for multiple voltage

regulators.

When high performance isn't needed, both the clock frequency and operating volt-

age of a design can be lowered to save energy. This is called Dynamic Voltage

and Frequency Scaling (DVFS). If the run-time clock frequency is lowered, the

throughput and power consumption of a block can be lowered. However, for a �xed

size task, energy used by the system will stay the same, or increase because leakage

current is still present. If we reduce both the operating voltage and clock frequency

at the same time, we can achieve both power and energy savings.

One approach to perform simultaneous voltage and frequency scaling in a system is

to de�ne a �xed amount of modes the system can operate in. For example, these

modes could be de�ned for low, moderate and high workloads. Each mode would

have a voltage-frequency pair to be used, where the voltage is selected based the
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on frequency required. Because the actual clock frequency of the system depends

on process variation, operating temperature and operating voltage, safe operation

requires a margin for the operating voltage. Because of this, voltages corresponding

to each frequency are larger than they could be.

Adaptive Voltage Scaling (AVS) extends DVFS by adding a control loop to the

system. This addresses the problem with large safety margins in supply voltage.

In AVS, the system's actual clock frequency and operating voltage are constantly

monitored and fed back to a power management unit, which in turn adjusts the

voltage to optimal for a given frequency. Because of the need to monitor the actual

clock frequency, AVS is more complex to implement than DVS and therefore used

less.

Power Gating

In order to eliminate both dynamic and leakage power consumption, the supply

voltage to an unused block in a system can be disconnected. Power gating uses

transistors implemented into the power distribution network to accomplish this.

The designer needs to evaluate an enable condition for the logic blocks to be turned

o�.

Power gating causes registers in the powered down region to lose their states, which

may need to be stored somehow when power is connected again. This can be done

with a retention memory, where all the states of registers are stored just before

power-down. Another method to store the values is by retention registers. They

are special registers close to the actual register that store their value, when logic

is powered down. Both of these methods cause area overhead and therefore add to

power consumption.

3.2 Algorithm Level

A way to reduce switching activity and thus power consumption in a processor is

to optimize di�erent algorithms. At the Algorithm level for example instruction

decoding, encoding and fetching can be implemented in various manners, that may

be optimized for speed, area or power consumption. An algorithm can also be

ine�cient in a way that an ine�cient implementation could occupy more area and

take more clock cycles than an e�cient implementation.
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Instruction Encoding

Various methods have been used for power-e�cient instruction encoding. Instruc-

tion encoding can be aimed to reduce instruction word length and therefore instruc-

tion memory size, to minimize instruction bus switching activity and to minimize

crosstalk between parallel bus lines. E�ciency of instruction encoding depends

on the program being executed, so it may not be always bene�cial to implement,

because both encoding and decoding have to be implemented and the extra logic

required by this consumes both static and dynamic power.

Reducing the instruction word size (instruction compression) can a�ect power con-

sumption indirectly, since it can lead to reduced instruction memory size and smaller

instruction bus width. Smaller memory size means less leakage power when idle and

less dynamic power when fetching instructions. This applies for both the instruction

memory and instruction bus. Various approaches to instruction compression have

been applied, for example dictionary compression [8], [10] or Hu�man [1] encoding.

Reducing the amount of switching activity on the instruction bus can lead to sig-

ni�cant power savings. The hamming distance of two consecutive instructions is

the amount of bits that change between the instructions. Each bit change corre-

sponds to a wire charged from ground level to supply voltage, or the opposite. If the

hamming distance of consecutive instructions can be minimized, power and energy

consumption of the instruction bus can be reduced. Various encoding algorithms to

minimize these bus signal changes exist and their e�ectiveness usually depends on

the program being executed. These include bus invert encoding [17], Gray encoding

[18] and Beach encoding [2].

Reducing the parasitic coupling capacitance is one target of optimization in an IC.

As mentioned in 2.1.3, At the algorithm level, some approaches [12] to reducing the

coupling capacitance have been developed.

3.3 Architecture Level

At the architecture level, the choice of function units and buses, memories and caches

has an impact on power consumption. Optimal performance and power consumption

on this level requires experience from the designer, since the combined e�ect can be

di�cult to predict.
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Pipelining

In a pipelined processor, di�erent stages of an operation are executed in parallel.

For example, in a processor with a pipeline depth of �ve, up to �ve instructions can

be executed simultaneously. This increases the latency (amount of clock cycles) of a

single operation, but also increases throughput (amount of data processed per clock

cycle). Throughput is the amount of output produced by a component in a given

time. Pipelined processors have better throughput than single-cycle processors, since

less time is needed to execute a single operation. However, the time from triggering

an operation to receiving the result increases with pipelining, if we assume the same

clock frequency in both cases.

However, pipelining adds complexity to the control logic, because of hazards which

lead to stalling of the pipeline. Data hazards can occur when an instruction depends

on the result of a previous instruction. A Structural hazard means that the archi-

tecture of the processor can't support some combination of instructions. Control

hazards occur when a branch is taken. If a branching condition is met, the program

counter is increased or decreased by some value. To resolve a hazard, a stall stops

the pipeline.

The increased complexity of control logic and pipeline registers leads to area over-

head and an increase in power consumption. Pipelining can allow higher clock

frequencies for increased performance, since the critical path of a single operation

can be lowered. This way, the throughput can be increased with the increased max-

imum clock frequency. However, pipelining combined with increasing parallelism,

can also be used to reduced overall power consumption, if the supply voltage can

be lowered along with lowering the clock frequency [4, p. 55]. It may be applicable,

if there is only a requirement for the throughput, or Instructions Per Clock Cycle

(IPC), and not for the time of a single operation. For example, if an operation form-

ing the critical path can be divided into pipeline stages, the stages will have timing

slack, possibly allowing the supply voltage to be lowered. Or, if we can add another

function unit implementing the same operation in parallel, the clock frequency can

be lowered.

In TTAs, pipelining is done in function units. Function units can be single-cycle,

multi-cycle or pipelined. Single-cycle FUs output the result after one clock cycle after

an operation is triggered, whereas multi-cycle FUs take more clock cycles. Multi-

cycle FU may not accept new input operands if an operation is being executed. A

pipelined FU can start an operation every clock cycle and in a function unit with

n stages, n operations can be executed simultaneously, in di�erent stages of the
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operation. An FU can also be partially pipelined.

Loop Caches

The purpose of a cache is to provide a small, fast-to-access memory located close

to the function unit fetching data from a memory or a cache. An instruction cache

stores instructions that are about to be executed and is useful, when a program

contains loops or instructions that are repeated often.

A loop cache, or a loop bu�er stores a loop, which is executed repeatedly in a

program. This means that the instructions are fetched from the main instruction

memory or a cache only once and decoded, after which they will be held in the loop

cache until the next loop needs to be fetched. Decoding can also be done after the

loop cache. A loop cache can reduce the power consumption, since there will be less

memory accesses and less instruction decoding. Choosing the optimal size for the

loop cache requires consideration of typical programs executed and the amount and

length of loops they have, since a loop cache of excessive size can waste power. A

loop cache of insu�cient size may not work optimally with large loops. Combined

with power gating of the instruction fetch and decode units, loop caches can provide

an e�cient way to save power. However, implementing a loop cache in a design has

some area overhead, which leads to an increase in the power consumption.

3.4 Register Transfer Level

At the Register Transfer Level (RTL), the designer's decisions determine, what kind

of logic will be synthesized. This allows various power-saving opportunities.

Clock Gating

In sequential logic, the value of register outputs can change only on the clock edge.

When the output of a register changes, energy is dissipated because of load capaci-

tance seen by the register. When the clock is gated o�, the registers timed with that

clock will keep their state and not dissipate any dynamic power. However, unlike in

power gating, leakage power is still consumed because the logic is still connected to

supply voltage. Clock gating also reduces the clock tree power consumption, because

it stops the clock signal switching inside gated logic blocks.

During synthesis, gating components are placed into the clock tree. The number of
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gating components depends on the size of the logic block each component controls.

Extreme case of clock gating would be to add a gating component to each register

in the design. Each of these components needs an enable condition for stopping the

clock signal. Inserting gating components to the clock tree a�ects the timing of the

design, because they have a �nite propagation delay and therefore increase the skew

of the clock signal. Therefore the clock tree must be balanced in the place and route

phase of the design �ow.

Clock gating can be implemented as AND gates, NOR gates, latch based AND

gates, latch based NOR gates, and multiplexer based clock gating. Synthesis soft-

ware tools use Integrated Clock Gating (ICG) cells found in technology libraries to

automatically implement gating. For this, the software needs to determine a con-

dition when a clock signal can be stopped. An RTL designer can instantiate the

ICG cells manually for single registers or logic blocks, if enable conditions for gating

can be determined. This can lead to increased power saving, because the number of

gating components can be reduced.

Logic Selection

Synthesis tool implementation of logic in a design depends on the RTL code. In a

Very high speed integrated circuit Hardware Description Language (VHDL) process,

for example, an if-else statement will be inferred as a priority encoder, whereas a

case statement will be inferred as a multiplexer. The RTL code written by the

designer a�ects the inferred logic and therefore the area, performance and power

consumption of the design.

Operand Isolation

In a digital design, unused parts of the data path consume unwanted power if its

signals change their state. For example, a logic block in a design may not be used

during some time period, but its inputs may still be toggled, which can propagate

unwanted switching activity into that block. To stop this switching activity, operand

isolation can be implemented with AND gates, latches or multiplexers. To stop

toggling of inputs, an enable condition has to be determined.

Operand isolation adds extra logic to the design. This leads to an increase in the

total area of the design. Extra logic in turn consumes both dynamic and static

power, so care must be taken not accidentally increase the total power consumption
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when implementing operand isolation.

Pulse Latching

Generally clock triggered �ip-�ops are used as registers to store values in digital

designs. This is because �ip-�op timing can be analyzed with Static Timing Anal-

ysis (STA). An alternative to �ip-�ops are latches. Unlike �ip-�ops, latches are

not synchronous. Pulse-latches can be used similarly to �ip-�ops to achieve syn-

chronous operation while reducing the dynamic power consumption. They require

a pulse generator to generate pulses from a clock signal. The inputs of the latch are

updated only when the pulse signal is active.

3.5 Logic Level

At the logic level, power optimizations are done for logic gates formed by CMOS

transistors. Optimizations can be replacing logic gates with more e�cient ones,

optimizing placement of gates, or changing the hierarchy of logic blocks. In this

section, the most commonly used techniques are reviewed.

Hierarchy Ungrouping

Large digital designs usually have di�erent levels of hierarchy, meaning that they

have a top level block, which has the inputs and outputs for the design, and consists

of smaller logic blocks implementing some functionality. These can consist of more

logic blocks, forming the hierarchy of the design. Ungrouping removes the hierar-

chy in a design, allowing software tools to optimize designs across the logic block

boundaries and improving resource sharing between blocks.

Wire Length

The longer a wire is in an integrated circuit, the more load capacitance it has.

This o�ers an opportunity for power optimization, because high activity wires can

be shortened, reducing their load capacitance and therefore power consumption

according to 2.1. Optimizing wire length also means optimizing logic placement, as

the logic gates connected by a high activity wire need to be close to each other in

order to shorten the wire.
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Software tools can automatically perform logic placement optimizations during the

place & route phase. For this they need information about the switching activity

in a design, which can be produced from RTL or gate level simulation. Di�erent

simulations may result in di�erent switching activity depending on the simulated

software and its input data.

Wire Spacing

As mentioned in Section 3.2, the distance between wires running in parallel a�ects

the power consumption because of coupling capacitance. Place & route tools can

perform wire placement optimizations on the logic level by avoiding long wires side

by side.

3.6 Transistor Level

This section focuses on techniques used in transistor fabrication. From a system

designer's point of view, transistor level optimizations are limited to selecting ap-

propriate technology libraries. Silicon manufacturers o�er various processes and

libraries, which de�ne how the design will be implemented physically.

Choice of Process

In integrated circuit fabrication, process is the physical method used to implement

a design onto silicon. Silicon manufacturers o�er various processes for di�erent use

cases, usually optimized for low power, high performance, small area or a combi-

nation of these. It is up to the ASIC system designer to choose the appropriate

process for a given application. Development of process technology scales transistor

gate lengths downwards, with smallest gate length in commercial applications being

14nm [14].

Multi Channel Length libraries

Optimization with multiple libraries can be done for transistor channel length. Tran-

sistors with a short channel can change their state at higher frequencies than a tran-

sistor with a long channel, but the trade-o� for performance is high leakage current.

Synthesis software can be used to map the implemented logic to transistors with
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short channel, when high performance is needed. When timing is not critical, longer

channel transistors can be used to reduce power consumption.

Multi Voltage Threshold libraries

The threshold voltage, Vt is the level of voltage needed for a transistor to become

conductive. In low-Vt transistors, the leakage power consumption is large, but per-

formance is high. That is, the transistor can be run at higher frequencies and still

meet timing requirements. In high-Vt transistors, the leakage power consumption is

small but performance is low.

Multi-Vt optimization can be done with synthesis software tools. Standard cell

libraries with di�erent threshold voltages are given to the tool. The software cal-

culates critical paths in the design and, for logic that requires high performance,

maps that logic to low-Vt standard cells. By default, High-Vt cells are used where

the performance requirements aren't high, because they o�er smaller leakage power

consumption.

Number of Tracks

Standard cell libraries can include implementations for di�erent number of tracks

for a cell, for example 8-track or 12-track cells. Number of tracks is the amount of

wires that can pass through it. For example, supply voltage and ground would need

a track in a cell. A higher number of tracks corresponds to higher driving strength,

that is how much logic is the cell able to feed power to from it's output.

Cells with a high number of tracks can also run at higher clock frequencies, but have

a higher leakage power consumption than ones with a lower track count. Cells can

have varying widths, but have a �xed height according to the number of tracks, so

that they can be organized into even rows during the place & route phase.
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4. BASELINE MEASUREMENTS AND

AUTOMATIC SYNTHESIS TOOL

OPTIMIZATIONS

This chapter presents the initial synthesis results for three benchmark architectures.

First, the baseline measurements with no options implemented are examined. After

this, the e�ect of the synthesis tool, Synopsys Design Compiler, are observed.

4.1 Benchmark Architectures, Programs and Initial Measure-

ments

In order to measure the e�ects of power optimizations, three di�erent TTA proces-

sors designed using TCE were used. Di�erent use cases were targeted when choosing

the architectures. The �rst processor, is meant for Micro Controller Unit (MCU)

usage and is targeted to have the lowest power consumption and area. The second

processor's use case is in Digital Signal Processing (DSP) and is larger in both power

consumption and area. The last and largest processor is the Software De�ned Radio

(SDR), Single Instruction Multiple Data (SIMD) processor with support for hard-

ware �oating point operations. These processors will be referred to here as MCU,

DSP and SDR.

Table 4.1 Summary of the benchmark architectures.

processor MCU DSP SDR
target clock frequency 50 MHz 500 MHz 1GHz
instruction width 40b 335b 128b
transport buses 3x32b 18x32b 3x32b, 4x512b
registers 2x1b, 16x32b 6x1b, 3x14x32b 2x1b, 32x32b, 32x512b

The measurements for power consumption were performed for synthesized designs

using a 28 nm Fully Depleted Silicon On Insulator (FDSOI) standard cell Application

Speci�c Integrated Circuit (ASIC) technology. Details for the used architectures are

listed in Table 4.1.
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For power estimations, Power Compiler [19], used internally by Design Compiler,

separates power usage to tree categories: Static power, switching power and internal

power.

4.1.1 Initial Results

Initial area distributions after synthesis for the benchmark architectures can be

found in Figures 4.1 (MCU), 4.2 (DSP), 4.3 (SDR).
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Figure 4.1 Baseline area distribution for MCU

From these Figures can be seen that FU and RF components occupy most of the

area, in our benchmark architectures FUs occupy between 25.7% to 52.3% and RFs

between 32.6% to 39.3%. The proportion of control logic, instruction fetch and

instruction decoder (and decompressor), seems to depend greatly on the size of the

instruction word.

The measurements here for power consumption should be observed with caution,

since in real world designs, automated synthesis tool optimizations have a great

e�ect on the power consumption and area occupation. Results here are for later

comparison to the e�ect of the automatic optimizations.

The baseline power distributions for each benchmark architecture and program are

presented in Figures 4.4 for MCU core, 4.5 for DSP core and 4.6 for SDR core.

From these can be seen, that the power consumption consist mostly of internal
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Figure 4.2 Baseline area distribution for DSP
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Figure 4.3 Baseline area distribution for SDR.

power consumption. This is due to the cells not being gated and burning up power

unnecessarily when not needed.

Table 4.2 lists the total baseline area and power for each architecture. the DSP core

is 2.5 times larger than the MCU core and the SDR core 39.5 times larger than the

MCU core.
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Table 4.2 Baseline area and power for the benchmark architectures.

processor MCU DSP SDR
area (µm2) 6073 17011 239991

power (mW)

Coremark 0.42
DSPStone matrix 0.43

AES 10.7
JPEG 10.5
FFT 10.4

SDRkernel1 257
SDRkernel2 252

4.2 Power Optimizations in Design Compiler

This section describes di�erent power optimizations in Synopsys Design Compiler.

Underneath Design Compiler's user interface, Synopsys Power Compiler does opti-

mizations regarding power consumption.

Certain optimizations require information about the switching activity to generate

accurate power estimations. Switching Activity Interchange Format (SAIF) �les [19,

p. 63] can be used for this. For user de�ned signals in a design, the SAIF �le provides

a summary of time spent at logical 0, time spent at logical 1, time spent at unknown

state, total toggle count and toggle count to/from unknown state.

SAIF �les can be produced from Value Change Dump (VCD) �les, or from simulation

directly. For user de�ned signals, a VCD �le contains the status of the signal at

every clock cycle. The size of a VCD �le depends on the size of the design and

duration of the simulation, so it can become very large compared to a SAIF �le of

the same simulation.

The e�ects of optimizations are not always visible in the logic block they are targeted

to. For example, the reduction in power when gating an FU for switching activity

may be seen only in the FU, or both the IC and the FU. Therefore, it is often best

to observe the total e�ect on the core.

4.2.1 Design Compiler Options

The di�erent optimizations for power and area found in Design Compiler are intro-

duced here one by one, after which power and area measurements are presented.

The commands and switches to enable the optimizations are �nally summarized in

Table 4.3.
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Figure 4.4 Baseline power distribution for MCU core with Coremark 4.4(a) and DSPStone

matrix 4.4(b)

Leakage Power Optimization

For non-critical paths in a design, Power Compiler can perform leakage optimization

by replacing low-Vth, high leakage cells with high-Vth, low leakage cells. Leakage

power optimization is automatically enabled for Design Compiler tools, except for

DC Expert. This optimization requires multi-Vth libraries to be de�ned.
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Figure 4.6 Baseline power distribution for SDR core with SDRkernel1 4.6(a) and

SDRkernel2 4.6(b)

Dynamic Power Optimization

If not annotated by the designer, Power Compiler will use default values for switching

activity information. For better dynamic optimization, SAIF �les should be used,

otherwise the tool will assign a default toggle rate value for all input ports. Requires

switching activity information. This optimization requires multi-Vth libraries to be

de�ned.
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Table 4.3 Options and switches to enable power optimizations in Design Compiler.

†: requires Multi-Vth libraries

optimization command switch default

leakage † set_leakage_optimization true true
dynamic † set_dynamic_optimization true true

clock gating
set compile_clock_gating
_through_hierarchy true false

compile_ultra -gate_clock disabled

hierarchy ungroup
-no_autoungroup enabled

ungroup -start_level n

Clock Gating

Power Compiler can automatically insert clock gating to a design. This will infer

clock gating elements speci�c to the standard cell library used. Power Compiler

performs clock gating only to registers, whose enable signal is synchronous with its

clock.

Hierarchy Ungrouping

Design Compiler Ultra removes design hierarchy by default. This can make the

design schematic hard to read, since boundaries of logic blocks, such as register �les

or function units in a TTA processor, will be removed and the logic inside them

placed onto the same hierarchy level. However, this can allow logic to better use

shared resources. This option is enabled by default, but can be disabled, or enabled

only for design hierarchy levels below a level given as an argument to the switch.

This may be useful, when for example e�ect of an optimization needs to be analyzed

for a single module. For this thesis, this option was disabled to observe optimization

e�ects for individual components.

Operand Isolation

Design Compiler supports automatic insertion of operand isolation logic. However,

this feature was not used in this thesis due to it requiring a separate license. Instead,

this optimization was implemented manually and will be presented later in the thesis.
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Figure 4.7 E�ect of Design Compiler optimizations on power and area for MCU core with

Coremark (0) and DSPStone matrix (1)

4.2.2 E�ect of Design Compiler Optimizations

Results for power consumption and area occupation after synthesis for MCU, DSP

and SDR core are presented in Figures 4.7, 4.8 and 4.9 respectively. Observing the

power consumption with all Design Compiler optimizations applied serves as a good

starting point, since these optimizations can be assumed to be used in all reasonable

designs.

In general, leakage and dynamic power optimizations seem to have a small e�ect

compared to clock gating in a design. Alone, the automatic clock gating more than

halves the power consumption in all the test cases for all designs measured here.

For the MCU core, the components consuming most of the power are RFs, FUs
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Figure 4.8 E�ect of Design Compiler optimizations on power and area for DSP core with

AES (0), JPEG (1) and FFT (2)

Table 4.4 Area and power with Design Compiler optimizations applied.

processor MCU DSP SDR
area (µm2) 5422 15390 234846

power (mW)

Coremark 0.0889
DSPStone matrix 0.0993

AES 3.11
JPEG 2.90
FFT 2.79

SDRkernel1 74.5
SDRkernel2 67.0
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Figure 4.9 E�ect of Design Compiler optimizations on power and area for SDR core with

SDRkernel1 (0) and SDRkernel2 (1)

and instruction fetch unit (Fig. 4.7(c)). This is good, since RF and FU utilization

should be high for e�cient core usage. This way, power is consumed in the actual

computation instead of control logic. The instruction fetch unit is active on every

clock cycle for the MCU core and therefore consumes a relatively large portion of

the total core power.

For the DSP core, instruction fetch, instruction decoder and FUs take up most of the

power consumption. This is due to the core having 18 data buses, therefore, having

a 335-bit instruction word. The unit stores this word into a register and because the

consecutive instructions can be very di�erent, the register's value changes frequently,

burning up power.

For the SDR core, IC, FU and RF components dominate the power consumption.

Here the instruction fetch and decode's portion of the power consumption is rela-
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tively small, although having an 128-bit instruction word. This can be explained

due to the core having a 32x512b register and four 512-bit data buses, as listed in

Table 4.1. In addition, the core has a 32-way, 16-bit �oating point FU. Compared

to these, the instruction fetch power consumption is small.

From Figures 4.7(b), 4.8(b) and 4.9(b) can be seen that the area occupation increases

when using leakage and dynamic power optimization. This is due to the synthesis

tool replacing high-leakage standard cells with larger but slower low-leakage cells.

This is only possible, if there is enough slack in the timing of the logic to be replaced.

High FU power consumption in all three designs is a good indicator of e�cient FU

utilization in TTAs. Avoiding large control logic by static scheduling helps in ac-

complishing this. After the Design Compiler optimizations, it seems that the power

optimizations should be targeted to the instruction fetch, RF and FU components.

Moreover, optimizing the instruction fetch power consumption often has an impact

on the instruction memory consumption, which can be more than the total core

power consumption.
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5. IMPLEMENTED POWER OPTIMIZATIONS

This chapter describes the power optimizations that were implemented to TCE, or

individual HDL modules. First, the individual optimizations are presented along

with instructions on how to enable them. Results for individual optimizations are

presented. The chapter is concluded with a summary of all optimizations combined

and their results.

5.1 Function Unit Operand Isolation

Function units in TTAs often implement more than one possible operation. For

example, a standard ALU shipped with TCE can contain around 20 di�erent opera-

tions. Depending on the implementation, changes in input operands to an FU may

be propagated to all the operations in it, although only one operation's result is used.

This means unwanted switching activity that can be eliminated. Depending on the

opcode input, unwanted operations can be determined. In TTAs produced with

TCE, the opcode signal can be used to determine if the input should be propagated

to an operation or not.

Operations can have varying levels of complexity, using di�erent amounts of logic.

Depending on the power consumption of the logic implementing the operation, it

may not be useful to gate the operation. For example, simple logic operations such

as OR, NOT or AND of the input operands are simple in terms of logic and seemed

unwise to be gated.

For the thesis, this optimization was implemented for the ALUs of MCU and DSP

cores. SDR core was left out because its ALU's portion of the power consumption

was very small, around 1.7% for the vector ALU and only around 0.3% for the scalar

ALU with both test programs. Thus, the e�ect would have been quite insigni�cant

for the total power consumption. In addition to the ALUs, the SDR core had a vector

�oating point unit, but this optimization was not applicable to it, since many of its

operations shared computation logic already. The best results for operand isolation

were obtained by leaving the simple operations, such as AND, OR, XOR, as they

were and by grouping similar operations together. When an operation was not used
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Figure 5.1 Isolating the input operands in TTA function units. No operand isola-

tion 5.1(a) and operand isolation applied 5.1(b)

Table 5.1 E�ect of operand isolation on core total power and area.

processor MCU DSP
∆(%) ∆(%)

area (µm2) 5453 +0.6 15618 +1.48

power (mW)

Coremark 0.0857 -3.60
DSPStone matrix 0.0970 -2.31

AES 3.02 -3.05
JPEG 2.82 -3.00
FFT 2.74 -1.58

(according to the opcode), logic '0' was fed to it, minimizing the bit switches. An

example of grouping operations in the DSP core is joining ADD and SHIFT-LEFT-

ADD operations. Both of these utilize an adder, with the latter shifting its input

data logically left before the addition. Thus, it makes sense to isolate the inputs to

the adder as a group.

Table 5.1 summarizes the results for this optimization. For the MCU core, achieved

savings in total core power consumption were 3.60% with Coremark and 2.31% with

DSPStone matrix, with a total area increase of 0.6%. Although the total core savings

aren't large in proportion, the ALU power consumption decreased 13.4% and 10.9%

for the test programs. With possible later optimizations and power savings, these

reductions will become more signi�cant.

For the DSP core, power savings of 3.05%, 3.00% and 1.58% for AES, JPEG and

FFT programs, respectively. This brought an area increase of 1.48%. ALU power
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decreases for the test programs were 14.4%, 14.3% and 13.4%.

5.2 Register File Input Port Data Gating

Register �le and function unit inputs in TTAs can be connected to the same data

buses, generating spurious input switching when it is not wanted. New values to

register �les and function units are loaded when their load is set active. In [7], RF

input data was gated with the load signal using AND gates to reduce the switching

capacitance of the IC network. RFs are usually utilized quite heavily. The more the

RF operations there are in a program, the less e�ective RF data gating becomes,

since the gating logic becomes less e�ective and is just consuming power itself.

However, for all of the benchmark programs used the data gating resulted e�ective

in reducing the dynamic power consumption.

Table 5.2 E�ect of register �le datapath gating on core total power and area.

processor MCU DSP SDR
∆(%) ∆(%) ∆(%)

area (µm2) 5436 +0.26 15579 +1.22 240276 +2.31

power (mW)

Coremark 0.0845 -4.95
DSPStone matrix 0.0933 -6.04

AES 3.09 -0.77
JPEG 2.87 -1.00
FFT 2.76 -0.80

SDRkernel1 68.8 -7.73
SDRkernel2 62.4 -6.87

Datapath gating was implemented to the TCE's processor generator and is now

included in the generated processors automatically. The gating block is inserted

between the IC sockets and RFs during processor generation. This type of datap-

ath gating was also tried on function units, but it did not always decrease power

consumption. Therefore, the datapath gating was implemented only for RFs. The

implementation idea is presented in Fig. 5.2, where each bus wire is fed through an

AND port to reduce switching activity. Using multiplexers was also tried in the RTL

code, but the synthesis result was still an AND gate, leading to the same results.

The RF power consumption for the MCU core decreased 44.1% when running Core-

mark and 46.4% with DSPStone Matrix. Decrease for the DSP core was 38.6% with

AES, 41.0% with JPEG and 42.3% with FFT. Decrease for SDR core was 21.8%

with SDRkernel1 and 18.2% with SDRkernel2.
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Figure 5.2 Register �le datapath gating using AND gates.

5.3 Pipelined Function Unit Clock Gating Enablement

This optimization was only implemented for the SDR core, since it featured a three-

stage pipelined �oating point function unit. Before the enhancement, this FU alone

consumed around 29% of the total TTA core power with the SDRkernel1 and SDRk-

ernel2 test programs.

Table 5.3 E�ect of enhancing the clock gating enablement on core total power and area.

processor SDR
∆(%)

area (µm2) 233880 +0.73

power (mW)
SDRkernel1 67.2 -9.85
SDRkernel2 59.9 -10.6
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1 ...

2 load : IN std_logic;

3 ...

4 signal load_delay1_r , load_delay2_r : std_logic;

5 ...

6

7 stage1: PROCESS (clk , rstx)

8 BEGIN -- PROCESS stage1

9 IF (rstx = '0') THEN

10 load_delay1_r <= '0';

11 ELSIF (clk'event AND clk = '1') THEN

12 IF (glock = '0') THEN

13 load_delay1_r <= load;

14 IF load = '1' THEN

15 ...

16 END IF;

17 END IF;

18 END IF;

19 END PROCESS stage1;

20

21 stage2: PROCESS (clk , rstx)

22 BEGIN -- PROCESS stage2

23 IF (rstx = '0') THEN

24 load_delay2_r <= '0';

25 ELSIF (clk'event AND clk = '1') THEN

26 IF (glock = '0') THEN

27 load_delay2_r <= load_delay1_r;

28 IF load_delay1_r = '1' THEN

29 ...

30 END IF;

31 END IF;

32 END IF;

33 END PROCESS stage2;

34

35 stage3: PROCESS (clk , rstx)

36 BEGIN -- PROCESS stage2

37 IF (rstx = '0') THEN

38 ...

39 ELSIF (clk'event AND clk = '1') THEN

40 IF (glock = '0') then

41 IF load_delay2_r = '1' THEN

42 ...

43 END IF;

44 END IF;

45 END IF;

46 END PROCESS stage2;

Program 5.1 Propagating the load signal to three individual pipeline stages for e�cient

clock gating.
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Figure 5.3 Clock gating enhancement of a pipelined FU. In (a), the load signal is used to

clock gate the input registers. Later stages are only gated by global lock. In (b), the load

signal is propagated to the pipeline stages for more accurate clock gating.

In [5], several pipeline latching disciplines were proposed for TTAs, out of which Semi

Virtual-Time Latching (SVTL) was proposed optimal for pipelined function units.

In SVTL, only moves to a trigger input port start operations as opposed to True

Virtual-Time Latching (TVTL), where moves to all input ports start operations.

Initially in our design, only the �rst pipeline stage was clock gated using the load

signal in addition to the global lock signal. This is presented in Fig. 5.3(a). The

latter stages were gated using only the global lock signal, resulting in ine�cient clock

gating. This could be �xed by propagating the load signal to the latter pipeline

stages. This requires a one bit wide register for each pipeline stage and an AND

port to determine the clock gating enable condition. This is presented in Fig. 5.3(b).

A VHDL code example of enabling clock gating individually for pipeline stages is

presented in Program 5.1. Similar to Fig. 5.3, the pipeline has three stages, which
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are here separated into their own VHDL processes for the sake of clarity. the load

signal is an input port to the FU, indicating loading of input data and the start of an

operation. This signal is then propagated to the latter stages with load_delay1_r

and load_delay2_r signals. During reset (rstx, active low), they are assigned to '0'.

The synthesis tool automatically deduces the clock gating condition from IF-THEN

clauses in each sequential process, for example for process stage1, these are on lines

12 and 14. Registers, that are written into inside these to clauses are gated.

5.4 Register File Banking

In contemporary ASICs, using custom RF cells instead of standard cells is usually

advisable due to their optimized structure for area, delay and power consumption.

These custom cells, when ordered from a semiconductor manufacturer, might already

be banked for optimal performance. However, in some cases it might not be possible

to achieve the optimal RF size with the custom cells, since in TTAs the RF size can

have a great impact on the program cycle count. Too small size may cause extra

write operations to memory and too large can cause extra power consumption.

TTAs produced with TCE take the register write address from the opcode port. The

Most Signi�cant Bits (MSB) were used to determine the bank number to write into.

A VHDL generic bank_size was introduced to de�ne the size of a single bank in the

RF. Since RFs in TCE can have arbitrary depths, the banking algorithm divides

the �rst banks into equal sizes and leaves the last one smaller, if the RF size is not

divisible by the de�ned bank size.

Table 5.4 E�ect of register �le banking on power and area.

processor MCU DSP SDR
∆(%) ∆(%) ∆(%)

area (µm2) 239881 +2.10

power (mW)

Coremark 0.0827 -6.97
DSPStone matrix 0.0898 -9.57

AES 3.03 -2.63
JPEG 2.81 -3.07
FFT 2.71 -2.84

SDRkernel1 66.3 -11.0
SDRkernel2 59.4 -11.3

Results for the total core power consumption for the test designs with RF banking

are presented in Table 5.4.
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Figure 5.4 E�ect of banking the 32x512b register �le on the SDR core power consumption.

Number of banks on the x-axis.

The lowest total core power consumption for the MCU core's 16x32b RF were

achieved with bank size of four and, thus, number of banks being eight. With this

con�guration, the RF power consumption decreased by 46.1% with Coremark and

44.0% with DSPStone matrix.

The optimal bank size for the SDR core's 32x512b register �le was found to be

two, thus, the number of banks being 16. The total power consumption decreased

by 11.0% for SDRkernel1 and 11.3% for SDRkernel2, while total area increased

by 2.10%. The RF power consumption decreased 34.2% and 35.6% for the two

benchmark programs. The SDR core bene�ted from RF banking the most. In

Fig. 5.4, power consumption core with di�erent RF bank sizes is compared. It can

be seen, that not only the RF power decreases, but the IC power as well, due to the

smaller load capacitance seen by the IC.

For the DSP core's 14x32b RF, optimal bank size was two, having seven banks.

The RF power consumption for the benchmark programs decreased as follows: AES

35.3%, JPEG 33.6 and FFT 36.9%
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5.5 Loop Bu�er

The total energy saved by using a loop bu�er in this particular case can be estimated

if we assume that for a design without a loop bu�er, an instruction is fetched from

the instruction memory (SRAM) on every clock cycle. Estimating the instruction

memory read energy with Cacti [23] for a 1024-byte, 1-bank, 32nm 64-bit Static

Random Access Memory (SRAM), we got 1.5pJ per read. For the loop bu�er read

energy, for a bu�er depth of 32 and instruction width of 40, from synthesis results

we obtained 0.28pJ. This was reached by synthesizing the MCU core and providing

switching activity data from the loop bu�er active time. The energy for a given

number of instructions read from the loop bu�er was calculated and divided by the

amount of instructions read. The cost of energy per read for the instruction memory

can be estimated to be more than �ve times larger compared to the loop bu�er in

this case.

Modeling an L1 cache with Cacti, using a 1-bank, 1024-byte, 40-bit, 32nm cache

with direct associativity and 1 read/write port, we get a read energy consumption

of 12.0nJ. This is 42.9 times higher than the loop bu�er read energy.

At the time of writing this thesis, programs for architectures with a loop bu�er

could only be scheduled using the TCE bubble�sh2 scheduler. Therefore, the design

without loop bu�er was also scheduled with it. With the DSPStone matrix bench-

mark, using the loopbu�er, the cycle count decreased from 466627 to 369011, over

20%. However, using the default TCE scheduler, a cycle count of 293794 can be

reached. The decrease in cycle count for the bubble�sh2 scheduled programs can be

explained due to missing jump condition examination at the end of the code loops.

Also, the jump operation by default has a latency of four. If the schedule is not

optimal, these delay slots can add to the program cycle count when comparing to

one with a loop bu�er.

Now, taking into account the reduced cycle count with a loop bu�er and that the

loop bu�er is read approximately 87% of the time in this benchmark and the rest is

reads from the instruction memory, we can estimate the total energy consumption

to be 4.3 times larger when not using a loop bu�er. The loop bu�er control logic of

course adds some power consumption and should be taken into consideration, but

at the same time instruction fetch power consumption decreases.

As a conclusion, using a loop bu�er seems to reduce total energy consumption when

comparing to using an SRAM or a cache to fetch instructions from. However, care

should be taken when choosing the loop bu�er depth, since larger depth infers more

registers to it.
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5.6 Summary of Results

This section lists the results for all of the previous optimizations implemented to-

gether. The e�ect of using a loop bu�er was not included to get comparable results,

since the TCE default scheduler is not compatible with it at the moment.
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Figure 5.5 Summary of implemented power optimizations for the three cores. 0 - Baseline,

1 - RF input port datapath gating, 2 - RF banking, 3 - FU operand isolation, 4 - VFPU

clock gating enhancement, 5 - All optimizations combined.

The e�ect of power optimizations was the smallest for the DSP core. In the best

case with JPEG benchmark, its power consumption decreased by 4.31% with an area

overhead of 4.18%. The relatively low decrease is due to to the large instruction word

size and, thus, large instruction fetch and decode power consumption. The MCU

and SDR core had initially larger RF and FU power consumption and since the op-

timizations were targeted to these components, bene�ted proportionally more. The

SDR bene�ted most of the optimizations. This is due to it having a rather large

RF word size. It was also the only core to which the pipelined FU clock gating

enhancement was implemented. The SDR core's power consumption decreased by

26.1% in the best case with SDRkernel2, with an area overhead of 3.09%. Synthe-

sizing all optimizations together lowered the power consumption more than any of
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Table 5.5 Results for all power optimizations combined. 1 - RF input port data gating,

2 - RF banking, 3 - FU operand isolation, 4 - VFPU clock gating enhancement

processor MCU DSP SDR

optimization

1

2

3

4

∆(%) ∆(%) ∆(%)

area (µm2) 5558 +2.51 16061 +4.18 242339 +3.09

power (mW)
Coremark 0.0796 -10.45

DSPStone matrix 0.0867 -12.7

AES 3.00 -3.76

JPEG 2.78 -4.31

FFT 2.68 -3.73

SDRkernel1 56.4 -24.8

SDRkernel2 50.1 -26.1

the optimizations individually. This is good, since synthesis can sometimes have

e�ects that are di�cult to predict beforehand. Results for the cores are summarized

in Table 5.5.

Future Work

Research regarding automatic power optimizations for TCE is ongoing. After the

power optimizations implemented in this thesis, all the cores still have quite high

instruction fetch and decode power consumption, which is typical for programmable

designs. Next, reducing the instruction fetch power consumption will be investigated

by implementing some of the instruction encoding algorithms mentioned in 3.2. The

less complex encoding algorithms will be tried out �rst, possibly followed by the more

complex but possibly more e�cient algorithms. At the compiler level, loop bu�er

utilization is being optimized.
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6. CONCLUSIONS

In this thesis, a literature review of the most commonly used techniques and meth-

ods for power optimizations on design abstraction hierarchy levels was carried out

�rst. Next, four optimizations on the register transfer level were implemented to

three Transport Triggered Architecture cores, which were chosen to represent use

cases in microcontrollers, digital signal processing and software de�ned radio. The

e�ect of optimizations was analyzed by synthesizing the cores with Synopsys Design

Compiler.

Function unit operand isolation prevents input data from being propagated to un-

used operations in function units. Operations similar to each other were grouped

together for best results. Example for implementation was presented in this the-

sis. Register �le input port data gating decreases the interconnection network load

capacitance by preventing unnecessary switching activity in register �les and was

implemented to the TTA-based Co-Design Environment processor generator. Clock

gating for individual pipeline stages was enabled for the software de�ned radio core

and an example of the implementation was presented in this thesis. Register �le

banking was implemented and best power consumption was achieved with bank

sizes two and four, depending on the core. For best results, cores should be synthe-

sized with various bank sizes to compare results. However, the di�erences in power

consumption between bank sizes are small and banking the register �le at least once

helps.

Power consumption for all the cores decreased with the implemented optimizations.

The best case reduction was 26%, with an area overhead of 3%. The worst case

reduction was 3.7% with an area overhead of 4.2%. After the implemented opti-

mizations, instruction fetching and decoding consume majority of the power in the

microcontroller and digital signal processing cases. For the software de�ned radio

case, the function units consume majority of the power, indicating good hardware

utilization. Next, to address the instruction fetching and decoding power consump-

tion, the focus of work will be on instruction (and data) encoding.

The actual work and writing the thesis took eight months. A large portion of the
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time was spent on automating the synthesis of the cores. This required a lot of trial

and error, since the author was not familiar with Design Compiler and there did

not seem to be much hands-on information on using it available publicly. The work

could have been accelerated by more carefully specifying what was needed from the

automatic synthesis and plot generation in the beginning of the project.
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