

MUHAMMAD OMAIR FATIMI

COMPARISON OF MOBILE AND NATIVE TECHNOLOGIES FOR

MOBILE MES APPLICATIONS

Master of Science thesis

Examiner: prof. Kari Systä & AP.
Minna Lanz
Examiner and topic approved by the
Faculty Council of the Faculty of
Pervasive Computing
on 13th January 2016

i

ABSTRACT

MUHAMMAD OMAIR FATIMI: Comparison of Mobile and Native Technologies
for Mobile MES Applications
Tampere University of technology
Master of Science Thesis, 71 pages, 79-96 Appendix pages
May 2016
Master’s Degree Programme in Information Technology
Major: Pervasive Computing
Examiner: prof. Kari Systä & AP. Minna Lanz

Keywords: MES, mobile MES, portable MES, Web vs native, HTML5 vs android

The MES (manufacturing execution system) is mostly used from desktop based terminals

in a factory. These terminals are distant from the machines and materials used on the

factory floor. To access the information available through MES from anywhere in the

factory floor, use of mobile terminal instead of desktop computers has been proposed.

To evaluate two alternative implementation technologies, Web and native, we have de-

veloped and compared two prototypes of the MES application. In addition, we have

studied the advantages of native and Web approaches through the literature and survey.

Mobile devices are categorized by its different platforms and screen sizes. Android, iOS,

and Windows phone are most common among them. Mobile applications are platform

dependent and an application made for one platform does not work on others. Web ap-

plications are platform independent that work on all devices. HTML5 has introduced

some APIs through which a Web app can behave like a native app and can compete

with the native app. So, in this thesis we have tried to compare Web and native app and

tried to find out which is better for MES applications. A general answer to this question

is native because of its better performance. In this thesis, we have analyzed some of the

factors that are responsible for the performance difference between a Web app and na-

tive app. In addition to this, we have had an online survey to find out what developers

think about the development, testing, maintenance and deployment of Web and native

technologies.

Based on all the data, i.e. literature review, some experiments, feedback from partici-

pants and online survey, we made a conclusion that native app is the best solution for

mobile MES because native app is more responsive and more secure. However, native

apps require more time, effort, cost and skills to be developed and maintained.

ii

PREFACE

This thesis was done for TUT but the company case came from Finn Power to solve the

problem with their existing terminal-based MES system. During this thesis, I have been

able to broaden my knowledge on Web and native technologies. I have got some hands

on experience working on Java and AngularJS which seems to be quite promising for

my future. After this thesis work, I am able to analyze the factors on which the native

technologies can differ from Web.

I am so thankful to both of my supervisors, prof. Kari Systä & AP. Minna Lanz for giv-

ing me the opportunity to work with them on this topic. They were always there when

any kind of help was required. I am also thankful to all the friends and colleagues who

took part in online survey and heuristic evaluation test respectively. Last but not the

least; I am so grateful to my parents who supported me throughout my entire life and

kept me motivated during this whole period of thesis work.

Tampere, 25.5.2016

Muhammad Omair Fatimi

iii

CONTENTS

1. INTRODUCTION .. 1

1.1 Thesis Description .. 2

1.2 Research Question .. 2

1.3 Structure of the Thesis.. 3

2. MOBILE BASED MES .. 4

2.1 MES .. 4

2.1.1 LeanMES ... 4

2.1.2 Need of a Portable MES... 5

2.2 The FinnPower Case .. 6

2.3 Problems with the Existing System .. 7

2.4 Native or Web MES ... 7

3. APPLICATION PLATFORMS .. 10

3.1 Mobile Platforms and Their Market Shares ... 10

3.1.1 Architecture of the Android Platform .. 11

3.1.2 iOS ... 13

3.1.3 Windows Phone ... 14

3.2 Web Applications ... 16

3.2.1 Web Development Frameworks and Concepts 19

3.2.2 HTML4 vs HTML5 ... 21

4. IMPLEMENTATION OF MOBILE BASED MES ... 23

4.1 Manufacturing Process ... 23

4.2 High Level Architecture ... 24

4.2.1 Concept Diagram of Mobile MES ... 24

4.2.2 Sequence Diagram of the Processing of Manufacturing Order 27

4.3 Application Backend .. 29

4.4 Frontend ... 30

4.4.1 Web .. 31

4.4.2 Native ... 31

4.5 Features .. 32

4.5.1 User Profile .. 32

4.5.2 Location Using QRCode .. 33

4.5.3 Item Detection Using BarCode .. 33

4.5.4 UI Adaption (Non-Functional Property) .. 34

4.5.5 Filters ... 35

4.5.6 3D Visualization .. 36

4.5.7 Other Features .. 36

4.6 Application Usability Evaluation by Participants .. 37

4.6.1 Heuristic Evaluation ... 37

4.6.2 Extra Features .. 38

iv

5. COMPARISON .. 39

5.1 Performance ... 39

5.2 Frames per Second ... 42

5.3 Tap Delay ... 48

5.4 WebGL is Handy but Slow and a Potential Risk ... 51

5.4.1 WebGL ... 51

5.4.2 Performance ... 52

5.4.3 Security .. 52

5.4.4 OpenGL ES vs WebGL.. 54

5.5 Online Survey (the developer’s perspective) ... 55

5.5.1 Cross Platform Compatibility .. 55

5.5.2 Easy of Development, Maintenance and Testing 55

5.5.3 Access to Device Features ... 56

5.5.4 App Stores .. 56

5.5.5 Rating by Developers ... 56

5.6 Interface and Performance Evaluation by users ... 57

6. ANALYSIS ... 59

6.1 The MES Mobile Interface ... 59

6.2 Evaluation by Users ... 61

6.3 Performance (JavaScript vs Java) .. 62

6.4 Rendering Performance .. 63

6.5 WebGL, 3D Animations .. 65

6.6 Tap Delay ... 65

6.7 Device Features .. 66

6.8 Cross Platform Compatibility... 66

6.9 App Stores .. 67

6.10 Conclusion .. 67

7. SUMMARY .. 69

APPENDIX A: Online Survey (The developer’s perspective on web vs native technolo-

gies)

APPENDIX B: Evaluation Test by Participants

APPENDIX C: Screen Shots of Mobile MES

APPENDIX D: JavaScript Code for Peroformance Test

v

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Interface

APS Advance Planning and Scheduling

AJAX Asynchronous JavaScript and XML

AsyncTask Asynchronous Task

CSS Cascading Style Sheets

CPU Central processing Unit

CNC Computer Numeric Control

CLR Common Language Runtime

CORS Cross Origin Resource Sharing

DTD Document Type Definition

DAO Data Access Object

DoS Denial of Service

DOM Document Object Model

ERP Enterprise Resource Planning

EJB Enterprise JavaBeans

FPS Frames per Second

GPS Global Positioning System

GUI Graphical User Interface

GPU Graphics Processing Unit

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

iOS iPhone Operating System

IDC International Data Corporation

IDE Integrated Development Environment

IE Internet explorer

JS JavaScript

JSON JavaScript Object Notation

JVM Java Virtual Machine

MES Manufacturing Execution System

MVC Model-View-Controller

NT New Technology

NC Numeric Control

OS Operating System

ORM Object Relational Model

OpenGL Open Graphics Library

OpenGL ES OpenGL for Embedded Systems

PC Personal Computer

POJO Plain Old Java Object

QRCode Quick Response Code

REST Representation State Transfer

SMEs Small and Medium Size Enterprises

SCADA Supervisory Control and Data Acquisition

SGML Standard Generalized Markup Language

SVG Scalable Vector Graphics

UML Unified Modelling Language

UI User Interface

URL Uniform Resource Locator

vi

USB Universal Serial Bus

WHATWAG Web Hypertext Application Technology

WebGL Web Graphics Library

W3C World Wide Web Consortium

XML Extended Markup Language

XHTML Extended HTML

.

1

1. INTRODUCTION

Research work in the area of mobile technologies, networking technologies and lower-

ing of mobile data package cost have increased the use of smartphones and it is growing

day by day. People are using phones for online shopping, to find the route on GPS

(Global Positioning System)-enabled phones and for validating some coupons or tickets

[1]. Moreover, they are using their mobile devices for activity tracking, fitness purpos-

es, diet planning etc. Mobile devices have now become an integral part of people’s life.

The number of mobile phone users is growing by 42% every year but there is still much

room available [1].

The emergence and continuous advancement of HTML5 (Hypertext Markup Language

5) and other related technologies like CSS3 (Cascading Style Sheet 3) and various Ja-

vaScript development frameworks like AngularJS, ReactJS, BackboneJS, PolymerJS

etc. have brought revolution in the area of Web development. These inventions have

made Web technology more powerful that can compete with native applications in func-

tionalities, look and feel. However, HTML5 still cannot be compared to the native ap-

plications when it comes to the device feature accessibility and performance. According

to the CEO of Facebook, Mark Zuckerberg, “Betting too much on HTML5 was our

biggest mistake” [2].

The developer who is building a mobile app probably asks himself “how many devices

would be running my app?” [3]. Mobile devices are highly divided into fragments by

their operating systems, versions, manufacturer, and screen size. Every platform has its

own programming language, development tools, and app store. An application devel-

oped for one platform doesn’t work for others. Developing applications for each plat-

form takes time if it is supposed to work on all devices. One possible solution might be

to develop a Web app. The Web app is usually developed with HTML5 and JavaScript

APIs (Application Interfaces) that provides a cross-platform feature. Another solution is

the hybrid application, but hybrid applications were not taken into consideration in this

thesis.

So, generally, there are three types of mobile applications: native, Web or hybrid. Each

of them has its own benefits and drawbacks. Native apps are downloadable and devel-

oped for a specific operating system installed on the device and run directly on a mobile

device. The Web application doesn’t need to be downloaded, it runs on a browser and a

single Web app can work on all devices, it is not platform-dependent. Hybrid applica-

tions have properties of both native and Web. Hybrid apps are installed on a device just

2

like native app but they run in a platform’s Web view. Hybrid apps are platform inde-

pendent and run on all devices. They can access core hardware of the device; however

they have limited access to the device hardware as compared to the native applications.

But, can these cross-platforms tools provide all the features as native apps do, or Web

app can be an alternative solution of a native app? The thesis provides a detailed analy-

sis by comparing some core features of both technologies. The results achieved by this

comparison analysis will be used by Finn Power that will help them to develop their

MES (Manufacturing Execution System) system based on mobile.

1.1 Thesis Description

This thesis is the study of the mobile application development for the industry. Howev-

er, the main focus is to study the features of native and Web applications and compare

them using a set of criteria. A prototype of a client application was developed for a

MES system, this prototype is the part of the novel idea “LeanMES”. The prototype was

developed for a FinnPower MES system which already has a similar client application

for a desktop PC. FinnPower is one of the partners of the LeanMES project. They are a

leading manufacturer of laser systems for industrial application.

The thesis has basically two main parts: development of the mobile user interface for

the LeanMES concept and comparison of HTML5 and native technologies on the basis

of the test application developed for the Finn Power. So, two versions of the application

were developed: native and Web. The native version was developed for Android plat-

form while Web application is generic which means it can run on all platforms.

1.2 Research Question

The main area of research for this case study is to compare Web and native technologies

(as mentioned above) on the basis of some core features of MES system. In manufactur-

ing industries, the applications might have an intensive use of hardware like camera,

GPU (Graphics Processing Unit), Magnetometer etc. Also, offline operations are need-

ed since the network connection is not available everywhere in a factory floor. In some

cases, indoor navigation might be needed for someone who doesn’t know the map of the

factory. The performance of the application is also important since lots of manufactur-

ing processes run at the same time, so knowing the status of every process in real-time

is of primary importance. Thus, it is important to have smooth and deterministic respon-

siveness through UI (User Interface). In addition, push notifications are also an im-

portant part to get notifications about the status of the processes. In this research, we

will come up with the best solution that is best to implement all these features. We are

using design science research methodology in this research. We have created two apps:

3

Web and native, Web was created using HTML5 and native was created using Java in

Android studio. We have tested some features using this test application. Moreover, this

comparison is not limited to the implemented features in test application but also we

have taken into account other aspects that can play a vital role to differentiate both these

technologies.

1.3 Structure of the Thesis

This thesis is structured as follows: Chapter 2 is about the need of mobile based MES

and background study from literature. Chapter 3 gives an overview of mobile applica-

tion platforms. Chapter 4 consists of the implementation of MES in mobile: Web and

native. Chapter 5 discusses the differences between Web and native applications based

on the previous literature review, experiments, online surveys and usability evaluation.

Chapter 6 is the analysis of those aspects which we considered in chapter 5 that are re-

sponsible for differentiating the two technologies. Chapter 7 is the summary of the the-

sis.

4

2. MOBILE BASED MES

2.1 MES

According to Wikipedia [42], MES is computerized system that is used in manufactur-

ing to track and report all the information needed to transform raw materials into a fin-

ished product. MES is used to control and manage the workflow on a factory floor. It

keeps track of all the processes and up-to-date information coming from other available

sources like ERP, machine monitors, APS (Advance Planning and Scheduling) and oth-

ers. The goal of MES is to improve the efficiency and productivity of work-in-progress

in a factory floor.

2.1.1 LeanMES

LeanMES is one of the six sub-projects in the FIMECC MANU [78] program. The main

idea of the project is to develop a solution that provides a lean, scalable and extendable

solution for a new type of MES (Manufacturing Execution System) that supports the

human operator in a dynamically changing environment [4]. This allows SMEs (Small

and Medium Size Enterprises) to work together in a better way, in a dynamically chang-

ing production environment by making the full use of the skills and knowledge of the

operator through some flexible interfaces in his daily work on factory floor [4]. The

core features of LeanMES involve real-time tracking of manufacturing processes, trans-

parency of production orders and balance data of materials, human-centered production,

intelligent work orders and utilizing the capabilities and skills of operators working in a

factory.

The LeanMES is an extended concept of core Lean concept which is utilizing the Lean

principles in MES. The consideration of human in order management and processing is

the idea but the concept is more a process-oriented than human-oriented. Process-

oriented means LeanMES focuses on manufacturing processes and human-centered

means; it tries to maximize the performance of manufacturing processes by utilizing

humans efficiently.

Visibility of the information enables the system to process right order according to the

available amount of required resources in the factory. Consequently, it helps operators

to have right information of order at the right time and hence the transparency mecha-

nism proves to be most vital part in MES. In addition to transparency, LeanMES uses

5

some high-level interfaces to track and monitor the manufacturing processes. For exam-

ple, SCADA (Supervisory Control and Data Acquisition) is used for monitoring data

from the workstation and watch/mobile interface is used for visualization of the pro-

cesses. The LeanMES has an inner service layer which can be efficiently used for pro-

duction management on the factory floor. The common service layer is used by compa-

nies for supply chain management as shown in the figure given below.

Figure 1. LeanMES Concept Diagram [4]

2.1.2 Need of a Portable MES

The term ubiquitous means everywhere and when we talk in terms of technology then it

means technology is available everywhere. The technology can be in the form of tablets,

laptops, and mobile phones etc. which are portable and can be accessed from anywhere.

Field engineers or operators, working on a factory floor, have limited information

available to perform task [5]. Instant information is needed to find out the right

equipment needed to diagnose a certain problem [5].

LeanMES palvelukerros

Order
Plan

Item
data

Realiza-
tion

ERP

Order
Plan

Item
data

Follow-up
data

UI on workstation or
Machine

Intelligent
work order

Information storage cloud
Work instructions, NC-programs,

Manufacturing recipe,…

Request for work instructions
and NC-programs

Disturbances

Status

Company A Company B

Order

Plan

Item data Realiza-
tion

ERP

Company B inner services

Order
Plan

Item
data

Follow-up
data

UI on workstation or
Machine

Intelligent
Work order

Information storage cloud
Work instructions, NC-programs,

Manufacturing recipe,…

Disturbances

Status

Request for work
instructions

and NC-programs

Work instructions, NC-programs

Company A inner services

Common services
Order-delivery process management services

in production network
Plan and follow-up

information

Plan and follow-up
information

Requests for offers and offers
Purchase and sales orders and

aknowledgements

Requests for offers and offers
Purchase and sales orders and

aknowledgements

MES/APS MES/APS Request for work
instructions

and NC-programs

Information storage clouds act as information storages, from where the service layer gets and
distributes the relevant information to the workstations when needed. The actors on the

network may have their own clouds or other information storages, to where they may, or may
not, offer access to their partners.

LeanMES Service Layer is a collection of modular services, which acquire information from different systems from
different actors, perform reasoning based on that information and deliver information to those who need it.

INTELLIGENT WORK ORDER
Is generated to each workstation
dynamically based on the need. It takes
into consideration the status of the
product, what happened in previous
stations. It includes the information of the
needed NC-programs and work
instructions, and it calls them to the
workstation.

FOLLOW-UP INFORMATION
Start time
Finish time
Amount of completed items
Quality
Material and component
information
· ID
· Supplier
· Batch number
· Serial number
Amount of materials/components
Workphase information
· Workphase?
· Used machine and tool
· Worker
· Work instruction version
· NC-program

CONTROL INFORMATION
Intelligent Work Order
· Item/Production order
· Amount
· Planned start and finish times
· Materials and components
· Location of materials (if

collection needed)
· Tools, jigs, fixtures
· NC-program
· Work instructions ID

DISTURBANCES/ALARMS
Alarm ID
Time stamps
Duration
Tool
Material
NC-program

STATUS INFORMATION
Status: ”idle”, ”busy”,
”broken”, ”unavailable”
Ongoing job
Active NC-program

Information between MES/APS and the workstations

LEGEND:

ORDER
Item
Amount
Delivery date

ITEM DATA
Item
Structure
Phase sequence
Phase durations
Resources

REALIZATION
Realized orders (item,
amount)
Realized material
consumption

PLAN
Order/Item
Planned finishing
time

Information between ERP and MES/APS

SCADA

Monitoring
data

SCADA

Monitoring
data

LeanMES service layer

Common language:

LeanMES standards subset

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6758518

6

Mobile computing is a promising choice to access information to operators who would

be able to work smartly and remotely. The emergence of camera, digital maps, and

sound recorder in the mobile device has made them even more promising that can help

them perform daily work orders, service reports and documentation more efficiently [5].

However, the adaptability of a new technology won’t be too easy especially for those

who have less experience in using smartphones.

Indoor navigation is helpful for the new workers in a factory. The new workers usually

do not have idea about the map of the factory, so, this could help Operators to navigate

to any place in a large factory floor using indoor navigation in mobile MES. This helps

operators to find meeting rooms, stores, and other places in a factory.

There is always a high risk of working in plants like nuclear power plant where safety

precaution is most important. Some of the companies are very large in size and

comprised of many buildings located at different places. The GPS technology in a

mobile can facilitate managers and safety team to track the position of their employees

in a plant which is necessary to know how long they have been there [6]. GPS

technology in a factory can also be used to know if the operator is working correctly at a

correct place [6].

With the enormous amount of benefits of using smartphones for manufacturing,

companies are moving towards mobile technologies. In the near future, industries will

be relying more on mobile based system like mobile based ERP (Enterprise Resource

Planning) and MES. Manufacturers are gradually heading towards mobile applications

and in next three to five years, mobile applications will be adopted by most of the

manufacturers to offer value-added services to their clients [7].

2.2 The FinnPower Case

The existing MES system in FinnPower is named as Power Processing. The Power Pro-

cessing is used for order management, machine programming, and time scheduling. It

connects the centralized execution system to the user interface. The operator who is

responsible for order management controls all the order using this interface.

Power Processing is a desktop based MES that always requires a desktop PC to run. The

problems with the existing MES system, as described in section 2.2.1, made them think

to develop it with some other technology. Since most of the problems are associated

with mobility and ubiquity of the system, it was decided to implement MES using mo-

bile technologies but in mobile, we have two options: mobile Web app and native app.

The main goal of this case study is to compare both these technologies and to come up

with the solution that can overcome the problems in the existing system as discussed in

section 2.2.1. Besides implementing some core features of this current system, they also

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6758518

7

want some other features to make it more useful in a production environment. The test

application also includes those extra features as suggested by FinnPower

· QRCode: it was implemented to find places within factory. QRCodes can be

scanned using mobile device.

· 3d Visualization: it is for visualizing the image of item in an interactive 3d view.

· Indoor Map: the indoor map of the factory.

2.3 Problems with the Existing System

Desktop Based: Desktop based software which always requires a desktop PC to run.

Limited Terminals: Terminals are limited, so the operators do not have access to the

terminals all the time.

Terminal at Distance Locations: Terminals are located at distant locations, so an oper-

ator has to move a lot in order to access terminal.

Information Overflow: The instructions given by the MES, in order to perform a man-

ufacturing process cannot be memorized by the operator.

QRCode/Barcode: The system doesn’t have any implementation of QRCode/BarCode,

which is needed to detect an item in manufacturing industries.

3D Visualization: Interactive 3d view of product/part was not present in the current

system.

2.4 Native or Web MES

The decision of having the mobile based MES still leaves one question unsolved, i.e.,

whether to have a Web-based MES or a native MES app? Since mobile apps can be in

many forms: native, Web and hybrid. So, we continued exploring all these technologies

by studying some related work focusing the differences between native and Web

application.

HTML5 has its own advantages when it comes to cross-platform functionality and low

development effort. The cross-platform compatibility is actually the reason of low de-

velopment effort that saves developers’ time to build different versions of the applica-

tion for different platforms. The low development cost and platform independency can

attract several organizations who want to serve a huge number of customers without

writing several implementations for every platform [15].

8

Development of native app is not easy due to the huge fragmentation of mobile devices

according to mobile operating system, size and manufacturers. Each fragment requires

the application developer to develop a separate application, as every fragment has its

own development tools and language. Web application or hybrid applications do not

have this problem, since they require developers to know only HTML5 and JavaScript.

Learning Web app development using HTML5 has made programming very simple and

easy. Therefore, in the past years, HTML5 has gained some popularity among non-

programmers or less-experienced programmers. Integration of existing frameworks and

APIs like JQuery mobile and google map APIs has made programming much simple for

the less-experienced people [14].

Researchers found out benefits and drawbacks of each technology in the context of their

research topic, but still many of them believe that in the upcoming days, the Web

technology will take the place of native apps. According to researchers, due to the

continuous development of Web technologies, it is more likely that in the next few

years the Web technology will be the main development platform for developers [14].

Applications relying heavily on device hardware are mostly developed on native

platforms. This problem has been reduced to some extent after the emergence of the

hybrid app, but still, hybrid apps cannot be compared to the native app. A native

application can make full use of device hardware. Native applications are more effective

in accessing device hardware like GPS, cameras, gyroscopes, microphones, and other

device built-in applications like contact book and calendar [16]. Device file access, local

notification, and alarm manager are not possible in Web technologies using JavaScript

and HTML5 [16].

However, the decision to make the Web or native app does not only depend on the

functional requirements but also the available budget of the company and skills of their

employees and of course the time to complete project [16].

A different performance tools are available for measuring the performance of the Web,

for example, Google V8 Benchmark Suite and SunSpider JavaScript Benchmark are

very famous tools to minimize the execution speed of the Web [12]. Graphics rendering

is measured by measuring the frames per second (FPS) of different graphic objects on

HTML canvas [12]. However, the performance of graphics rendering can be different in

mobile and laptop browsers. Spaceports.io published a study that compares graphics

rendering in mobile and laptop browsers [13]. According to their results, the graphics

rendering on different mobile platforms browsers is, on an average, 889x times slower

than in laptop browsers.

One of the most attractive features of native applications is that they have their own app

stores. Using app store user can search and download an app with a single touch. This is

9

also helpful for those mobile users who have little or fewer skills in Web searching. In

Web searching, users go through different search engines and websites to find the

required app. App stores that work like a one-stop shopping center, through which a

user can buy the app with just a single click, has increased the market of mobile apps

[9]. Besides searching feature, the app store has also been a good source for developers

to monetize their applications. There are various methods available, to get payment

from users. A one-time payment method that asks the user to pay and unlock the

application for good, and in-app and subscription methods offered by some platforms

[10]. Besides these app payments, advertisements and sponsorships (tradition earning

method through websites) are the other ways to monetize the application.

The efficiency of GPS location was tested using a mobile Web app in Kenya. The result

shows that the GPS position shown by the mobile Web app was incorrect. According to

the result, the GPS location functionally was ahead a few hundred meters [8]. This was

due to the fact that GPS location jumped few meters away in different directions before

they actually started to run. So the distance app recorded the distance even before they

started the race and they eventually switched to the native application [8]. The test was

also held in Europe and the result confirmed the outcome of the test held in Kenya [8].

However, we believe that the result is probably due to some inefficient GPS algorithm

which would not accurately track your position. HTML5 provides an option which can

be enabled to have an accurate GPS location. This can be achieved by setting

enableHighAccuracy to true.

Applications that carry sensitive data like banking app, healthcare app, ERP application

etc. need a special care of their security. The most dangerous vulnerability in a Web app

is cross-site scripting; this threat is caused by the inadequate validation of data from

untrusted sources [11]. Firewall has been one of the solutions in this case but it is not a

complete solution since it can only block ports.

The most important thing in any kind of system is its ability to deliver the required ser-

vice or information in an efficient and responsive way. Most of the users don’t like to

wait for a screen or page to show up, so the speed of the applications is one of the most

prominent features that distinguishes Web and native applications. In general, it is the

common belief that native applications are faster than Web applications because Web

applications run on the browser and native app can talk to the device operating system

directly.

10

3. APPLICATION PLATFORMS

At present world, smartphones come with different operating systems including An-

droid, iOS, Windows, Symbian, Blackberry. Every platform has its own architecture,

framework, language and tool. In this chapter, we will discuss the architecture of An-

droid, iOS, and Windows mobile platforms.

3.1 Mobile Platforms and Their Market Shares

Today, the most well-known platforms are Android, iOS (iPhone Operating System),

Windows and Blackberry. Mobile operating systems were built on top of personal com-

puter operating systems by combining the features of PC operating system and some

features of mobile like touchscreen, GPS, magnetometer etc. Jean-Louis Gassée, the

former executive of Apple, argued that the operating system doesn’t matter anymore,

what matters is the user experience and the development ecosystem of particular mobile

platform [22]. The continuous growth of Android platform took away the market shares

of apple, Symbian and RIM (Blackberry OS) [22]. According to the data collection

from IDC (International Data Corporation), the Android leads the market with 82.8%

share in the second quarter of 2015 [23]. The data collected by IDC research is shown in

Table 1. According to them, the iOS market share has dropped by almost 3% in last

three years. Similarly, market shares of other platforms have dropped in the past three

years. However, the Windows platform has shown some promise in last 1 year and its

market share remained constant.

Because our goal is to compare native and Web technologies, it is better to understand

the architecture of native platforms and how the native applications are built using

available frameworks. The next section is about the architecture.

Table 1. Smartphone Market shares [23]

Time Android IOS Windows
Phone

BlackBerry Others

2015 Q2 82.8% 13.9% 2.6% 0.3% 0.4%

2014 Q2

22

84.8% 11.6% 2.5% 0.5% 0.7%

2013 Q2 79.8% 12.9% 3.4% 2.8% 1.2%

2012 Q2 69.3% 16.6% 3.1% 4.9% 6.1%

11

3.1.1 Architecture of the Android Platform

Android OS runs on top of Linux Kernel. Android is a stack of software components

divided into 4 layers as shown in Figure 2.

Display Driver Camera Driver Bluetooth Driver Flash Memory Driver Binder(IPC) Driver

USB Driver Keyboard Driver Wifi Driver Audio Drivers Power Management

Dalvik Virtual Machine

Core Libraries

Linux Kernel

Display Driver Camera Driver Bluetooth Driver

USB Driver Keyboard Driver Wifi Driver

Display Driver Camera Driver Bluetooth Driver

Android Runtime

Libraries

Activity Manager Window Manager Content Provider View System Notification Manager

Package Manager Telephony Manager Resource Manager Location Manager XMPP Service

Application Framework

Native Android Applications Third Party Applications

Applications

Figure 2. Architecture Diagram of Android OS [41]

Application layer lies on top of the stack. Android has a built-in set of core applications

including SMS program, email client, calendar, maps, browser, contacts etc. [17]. All

these applications and other applications developed for Android are installed on this top

layer of the Android framework.

Application Framework layer provides high-level services to the applications. The

framework was designed to simplify components reusability, i.e., any application can

publish its capabilities which can then be used by other applications [17]. The develop-

ers have full access to these services and can use in their applications. Some of the ma-

jor services include activity manager, content provider, view system, libraries, android

runtime and Linux kernel.

Activity Manager is responsible for controlling the lifecycle of the applications and

providing navigation back stack [18]. The back stack is a stack which contains all the

activities in background and user can navigate to the activity contained at the top of the

back stack. For example, a user navigates to the activity C starting from activity A, i.e.

A -> B -> C. The current active activity and top of the stack is C. Now, user presses the

12

back button, the current activity, which is C, is destroyed and top of the stack becomes

B. The activity Manager navigates user to activity B on pressing of back button.

Content Provider allows applications to publish their own data or share data with other

applications.

Resource Manager is used to access non-code resources like strings, color settings, and

layouts.

Notification Manager allows developers to develop their own custom display alerts or

notifications and show them to the user.

View System contains a set of views which can be used to develop graphical user inter-

faces.

Android platform has some C++ core libraries on top of Linux Kernel, which can be

accessed by developers through application framework. Some of the key libraries

include browser Web engine Webkit, Libc, SQLite database used to store application

data, media libraries for audio and video and security, 3D libraries such as OpenGL for

rendering 3d and vector objects.

Android runtime lies on the same layer as libraries. Android has Dalvik Virtual Ma-

chine which is very similar to JVM. JVM is platform independent execution environ-

ment. JVM is an abstract machine that converts java bytecode into machine code and

executes it. DVM was particularly designed for Android. DVM uses the core function-

alities of Linux like memory management and multi-threading, which enables every

Android application to run in its own process, i.e. every application has its own instance

of DVM.

Android also has a set of core libraries which offer the functionalities of Java core li-

braries [17]. This set of libraries enables developers to write Android applications using

Java programming language.

Linux Kernel layer lies at the bottom, which provides the level of abstraction between

device hardware and remaining software stack [17]. All hardware drivers are contained

in Linux Kernel, such as camera, keypad, sound, graphics etc. Linux Kernel is also re-

sponsible for memory management, network management, process management and

power management.

There are four basic components on which an Android application is based on. These

components include activities, services, broadcast receivers and content providers. Each

of these components is defined in the manifest file.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6182081

13

The service is an Android component that runs on a background. Services don’t have

any GUI, so they are often used with other components like activities [19]. Services are

used for a long running process to avoid blocking of user interaction with GUI, i.e. it is

a non-blocking process. One good example of a service might be the music running in a

background while the user is performing other tasks.

Content providers are used to manage data within application or share data with other

applications. Data can be stored in many ways, i.e. in a file system, database or some

other place. Applications use content provider through the methods of content resolver.

Broadcast Receivers respond to the broadcast message from other applications or from

the system itself. A typical example is updating the display on battery low broadcast

message from system [19].

Activity is one of the most important building blocks of Android application. Activity

object is responsible for creating windows where GUI (Graphical User Interface) is

shown up. An application may contain a single or many activities. If an application con-

sists of many activities, we need to define the activity that should show up when the

application is launched.

Other components include fragments, views, layouts, intent, resources and manifest.

Fragments represent the portion of an activity. An activity may have multiple fragments

or the same fragment can be used in multiple activities. Views are the UI elements that

show up on the layout. View can be added from code or it can be defined in XML (Ex-

tended Markup Language) files. Layouts are the hierarchies that manage the structure of

UI. Similar to views, it can also be defined in code at run time or it can be added to

XML files. Intent exactly meant what it describes, i.e. intention to do something [20]. It

is a messaging object that is used to request an action from another application

component [21]. Resources are the external elements that are kept separate from the

code, e.g. images, colors, string etc. and Manifest is used to configure the application.

3.1.2 iOS

IOS operating system of Apple was originally released by Apple in the year 2007. It

was built on top of MAC OS. IOS is not only limited to IPhone but also a platform for

iPad and iPod. Compare to the Android platform, iPhone is not so open to development

perspective. It restricts the developers to publish applications that use private APIs pro-

vided by iOS [24].

IOS is layer-based architecture with lower levels providing the core and fundamental

functionalities and services. iOS is a 4 –layered architecture.

14

Cocoa Touch is the top layer which contains the frameworks required to build iOS ap-

plication. It provides the infrastructure and other high-level services like push notifica-

tions, multi-tasking, inputs based on touch [25]. Media layer provides all the services of

graphics, audio and video. The core service layer provides fundamental services which

have no effect on the interface of the application. This layer contains services like

iCloud, networking, location etc. The lowest level layer is the core OS on which the

other technologies are built on. The core OS of iOS is Mach BSD UNIX Kernel [83].

iOS is basically based on OS X which is a variant of BSD unix kernel running of top of

Mach, a micro kernel.

Core OS layer is responsible for managing security, sockets, filesystems etc. These ser-

vices are essential parts in every application. Even if users don’t use them directly in the

application, they are used indirectly. The layer also includes core features like Bluetooth

access, image processing, algebra etc.

Cocoa Touch

Media

Core Services

Core OS

Figure 3. Architecture Diagram of iOS [82]

3.1.3 Windows Phone

The development of Windows phone started in the year 2008 when Microsoft reor-

ganized their Windows phone division. The first version of Windows phone, known as

Windows phone 7, was relased in the year 2010 by Microsoft [69]. The Windows phone

division started working on Windows phone with the aim of better user experience and

usability like the touch screen and social media [38]. The Windows phone comes with

the “METRO” theme which gives unique user experience to the user.

Windows phone 8 belongs to the second generation of Microsoft Windows phone which

uses Windows NT (New Technology) Kernel unlike Windows 7 which uses Windows

CE-based architecture. The architecture of Windows phone 8 is shown in the figure.

15

Package Manager Execution Manager Navigation Server Resource Manager

Platform Services

Shell

Connection Manager

System Applications

Windows Phone 8

Shared Core

DirectX

Multimedia

IE Trident

CoreCLR

Mobile Core

NT Kernel

Security

NTFS

Networking

Windows Core System

Windows Phone 8 Architecture

Figure 4. Architecture Diagram of Windows Phone 8 [39]

The shared core layer lies at the bottom which is a core part of Windows NT kernel.

This layer is further divided into two components, i.e. Mobile Core and Windows Core

System. Windows core system shares the basic functionalities like NTFS file system,

networking security and NT kernel of Windows. Mobile core component shares the

functionalities of the Windows which are not present in Windows core but still relevant

to smartphones [40]. These functionalities include multimedia, DirectX, core CLR

(which is similar to CLR (Common Language Runtime) of .NET environment) and IE

Trident (a layout/rendering engine for Microsoft internet explorer).

The Windows phone layer lies above Shared Core that is the top layer of the stack. It

contains all the external and built-in systems apps like music player, contact book,

alarm manager etc. It also contains connection manager, Windows shell and platform

services. Platform services are further divided into four parts, i.e. Package Manager,

Execution Manager, Navigation server and Resource Manager.

16

Package manager takes care of installation and uninstallation of the application and

maintains their metadata when they reside in the phone.

Execution manager, as the name suggests, is responsible for controlling all the logic

associated with application execution lifecycle. Application states messages such as

startup, shutdown or deactivation, and host processes are established by execution man-

ager [39].

The movements between all foreground apps are controlled by Navigation server [40],

i.e., it handles states of the applications by telling execution manager which application

to launch or reactivate. It is responsible for keeping the track of navigation stack [39].

For example, when a user taps app tile from start screen, he navigates from the starting

app to the app he just tapped for, and the navigation server asks the execution manager

to activate the chosen app. Similarly, when user presses back button, the navigation

server asks the execution manager to activate the app you started previously.

Resource manager manages all the resources of the active process to make sure that the

phone doesn’t get slow. It focuses the CPU (Central processing Unit) and memory us-

age of all the processes and if a certain application misbehaves and exceeds the allocat-

ed memory or space, it just terminates the application.

3.2 Web Applications

The Web applications are programs that reside on remote server and are delivered to the

internet on user’s request through browser interface. The programming language that is

used for the development of client is HTML and JavaScript, and for styling we use

HTML attributes or CSS. In order to fetch the page, the browser sends HTTP request to

the server which is mapped to the available resources in the server and then server sends

the HTTP response. The server typically has a three-tier architecture: data layer, busi-

ness layer, and presentation layer. The HTML tags represent the HTML elements while

CSS is used to format them.

DOM is cross-platform and language independent application interface which is used to

dynamically access and update the style, content, and structure of XML or HTML [27].

DOM defines the logical structure of the document which is quite similar to a tree

which allows the programmer to navigate, access, modify and delete elements in the

document. There are several DOMs exist, e.g. legacy, W3C (World Wide Consortium)

DOM and IE 4 DOM, however, W3C DOM is the standard set by W3C, that is able to

access and update all content in a document and is supported by all browsers.

17

The first version of HTML developed by W3C was HTML 3.2, which was followed by

HTML 4.0 and then HTML 4.01 [47]. After HTML 4.01, they developed XHTML 1.0

that was a new generation and more flexible version of markup language [47]. XHTML

stands for extended markup language that was developed by W3C. XHTML is an XML

form of HTML. It is a strict version of HTML which focuses on the structure of HTML,

e.g. proper closing of each HTML tag is required. The consistent structure of XHTML

allows browsers to easily parse web pages.

CSS3 is the extension of old CSS specifications and it is the latest version of CSS,

which provides additional features which were not included in previous versions of

CSS. Some of these new features include sliding, round corners, animations, text ef-

fects, shadows, transformations, rotations and many more. All modern browsers have

support for CSS3.

A JavaScript is a scripting language that was originally developed by Netscape. Script-

ing languages are interpreted whereas structured languages like C++ are compiled.

Moreover, scripting language is a bit slower than compiled C++ language, but very

handful for writing short programs [28].

JavaScript is the client-side language that runs in a browser and is used to enhance the

interactivity of Web pages. JavaScript is usually written in HTML page inside the head

tag of HTML or it may also be written in the separate JS (JavaScript) file. However, all

the external JS files must be included in HTML file under the head tag. JavaScript can

be used to manipulate HTML elements dynamically and access them through DOM.

After loading of DOM, the Web page is ready and shows up. JavaScript can be used to

implement event handlers that are fired up on user’s interaction with the page. For ex-

ample, event handlers for Web components like button, links and text input are defined

by JavaScript which effectively defines the functionality of the Web page after the user

interacts with Web page [30].

JavaScript can also be used to send HTTP requests to the server and update the Web

page accordingly with respect to response. Thus, allowing a Web page to update its

DOM content dynamically without reloading of the page. This approach is known as

AJAX (Asynchronous JavaScript and XML) call. AJAX sends HTTP request to web

server and receives JSON (JavaScript Object Notation) or XML response which is then

used to update DOM. Ajax call is typically used to access remote services. Earlier, Ja-

vaScript was used only on the frontend of the client, i.e. it executed on browsers only to

create interactive elements like slideshows and other interactive elements. But then Ajax

came into play, which allowed developers to do smart stuff with JavaScript like loading

the new content on a Web page without refreshing it [29]. AJAX request runs asynchro-

nously in the background, thus, it is a non-blocking call. Old fashion client and server

18

interaction consisted of accessing the static Web page from the server through specific

URL (Uniform Resource Locator) which always required the page refreshing.

Ajax Web Request

JavaSript
Code

Database
and

Bakcend

HTTP Server

HTTP Request

XML/HTML or JSON

Get data from
database

Retreive Data

Client Server

Web Page HTTP Server

Database
and

Bakcend

Get data from

database
HTTP Request

HTML/CSS/Script
Retreive Data

Traditional Web Request

DOM

Update DOM

Client Server

Web Page

Figure 5. A graphical representation of normal web request and Ajax web request

The client and server communication is mostly done through RESTful calls. REST

stands for Representational State Transfer. REST is not a protocol but an architecture

style. REST does not impose any restriction of the protocol on client-server communi-

cation, but HTTP (Hypertext Transfer Protocol) is the most commonly used protocol

because it has been a primary transfer protocol for Web [31]. The client-server commu-

nication in REST is stateless which means no client context is stored on the server be-

tween requests. One important principle of REST is CRUD operations which are carried

out by using HTTP commands to create data, read data, update data and delete data.

CRUD is based on basic operations which are done in a data repository. REST uses

URIs to access resources from the server, which is quite similar to access website from

the browser using URLs.

Most of the browsers have plugins to debug JavaScript that make it easier for develop-

ers to find and fix errors. The plugins also allow developers to analyze the code: which

portion of the code takes a lot of time and makes a bad user experience. For example,

the profiler tools allow developers to see the time taken by your JavaScript code. Simi-

19

larly, with the console tab in developer tools, users can debug the JavaScript code. In

addition, there also exist some tools that can automate the certain task. Grunt is one of

them [32], which is quite popular nowadays among developers. Grunt is a task runner

that can improve the flow of front-end development work dramatically [32]. Task such

as validating JavaScript code or HTML code, Sass and Coffee script compilation, and

validation of JS code using JSHint can easily be automated [32].

3.2.1 Web Development Frameworks and Concepts

The increasing popularity of Web applications and a vast range of mobile devices

through which we access Web, has made the life of developers a bit complicated. In

past, development was simple because Web pages were mostly accessed from a desktop

computer on large screen. But now, the device size is so dynamic which requires the

website to be responsive to open in the browser. Similarly, the idea of single page appli-

cations gives better user experience where Web app resides on a single page. These

Web apps are also called dynamic Web applications.

Single page applications are the Web apps that load a single HTML page and update its

content dynamically on interaction with the user. It gives a more fluid and responsive

user experience similar to a desktop application. Single page apps are usually imple-

mented by AJAX and HTML5.

Data bining is the process that synchronizes the data between model and view. If a value

changes in the model, the view is updated automatically and if the view changes, the

model is updated automatically. This is called two-way binding which is used by Angu-

larJS. In the past, when there were no frameworks available to bind views with model,

to populate container controls with data and to develop a modular website, the devel-

opment of dynamic Web applications required too much effort and time but fortunately,

now there are lots of Web frameworks available that were designed to support the de-

velopment of dynamic websites, Web applications, and Web services. Most of the Web

frameworks are open source and free to use. These frameworks help developers to write

faster, cleaner, structured and reusable codes. Some of the well-known front-end devel-

opment frameworks and tools are AngularJS, PolymerJS, ReactJS, KnockoutJS, Skele-

tonJS, EmberJS and many more but we will elaborate only AngularJS and ReactJS in

next two paragraphs since they are the most commonly used concepts/frameworks at the

present time. Results given below were extracted from Google trends, that shows that

the most popular frameworks over the last 5 years have been AngularJS, BackboneJS,

and ReactJS. However, the graph of backbone.js is decreasing since the emergence of

ReactJS. ReactJS was developed in the year 2013 and is quite new, that is why it is not

as popular as angularJS but in future it may become a more prominent framework

among developers.

20

Figure 6. Search Result of front-end Frameworks extracted from Google Trend

AngularJS was developed by google in the year 2009. AngularJS is an open-source

framework for Web applications that provides MVC (Model-View-Controller) architec-

ture to the website [33]. This is in contrast to the traditional implementation of MVC

architecture like Spring MVC, where MVC design patterns are implemented on the

server side, whereas, in AngularJS, View is created in the browser from Model that

holds the required data [33]. This helps developers to build rich internet applications.

The core features include two-way bindings between Model and View, MVC architec-

ture, filters, directives, templates and dependency injections. AngularJS works best with

HTML5 which makes it more dynamic and intensive in capabilities. The data driven

approach of AngularJS lets developers concentrate on application data only, i.e. pro-

grammers take care of data and data takes care of HTML [34].

ReactJS was developed by Facebook in the year 2013 and is quite new compared to

AngularJS. ReactJS is not a framework but it can be thought as a “VIEW” of the appli-

cation. It is a concept which focuses more on component driven development. It allows

developers to break down application in smaller components which may be used some-

where else in the applications. A component can also be built on another component.

React keeps the virtual DOM in memory which is used to detect the change in state of

the components using observer model rather than dirty data checking (continues check-

ing for data change) [35]. This virtual DOM concept enables ReactJS to render DOM

very fast. ReactJS re-renders the whole sub-tree when its parent node is updated by

marking it as dirty [35].

21

3.2.2 HTML4 vs HTML5

For many years, HTML4 has been the standard language set by W3C for the Web de-

velopment. However, it doesn’t fulfill the latest computing requirement of industries. In

past, HTML was mainly used for building static pages. Additional features like anima-

tions required additional plugins which was an extra effort for the developers and the

Web users. Secondly, installations of additional plugins also require memory and CPU

that was an overhead. Due to this problem, Apple removed flash support from their de-

vices [37].

To overcome these problems of limited functionality, WHATWAG Web Hypertext

Application Technology Working Group and W3C sat together and started working on

the new generation of HTML, i.e., HTML5.

WHATWG and W3C are the two organizations working on the development of

HTML5, before the year 2006 they were working separately but now they are working

together and they came up with the latest version of HTML known as HTML5. HTML5

has overcome the problems by having some additional and attracting features.

Here are some of the additional features that are offered by HTML5.

A SIMPLE DOCTYPE: In any HTML version, the first tag must be the <!Doctype>.

HTML4 was based on SGML and that is why it contains the reference to DTD in

<!Doctype> tag. Also, the doctype is not fixed in HTML4 and it can be strict, transac-

tional and frameset.

A doctype is simple and not lengthy in case of HTML5. Since it doesn’t depend on

SGML (Standard Generalized Markup Language), it doesn’t contain the reference to

DTD (Document Type Definition). Moreover, unlike HTML4, the doctype is common

for HTML5.

Audio and video tag: HTML4 does not have video or audio tags; therefore, embedding

multimedia in the browser was not easy in HTML4. Browser required additional soft-

ware to run and recognize multimedia. But HTML5 has included tags, like <audio> and

<video>, which provide native support to the browser, i.e., browsers don’t need addi-

tional softwares or plugins.

Vector graphics: with HTML4 browsers require additional plugins like Flash and Mi-

crosoft Silverlight for 3d graphics or animations. Vectors graphics has been integrated

into HTML5 [36]. For example, to draw 2D elements, we can use canvas or SVG (Scal-

able Vector Graphics) element in HTML5.

22

Geo Location: finding the location of the user doesn’t require any external library now.

HTML5 provides a feature to find your GPS location

Web sockets: We can have a full duplex communication with the server which can

easily be done through JavaScript. These socket connections are used for pusher ser-

vices and notifications. Pusher.js, a JavaScript library for real-time communication with

the server, uses this technology. We have also used this library in our prototype.

Web worker API: Before the invention of HTML5, the pages required some time to

show up, because of the intensive JavaScript code running. This means that in HTML4,

the browser and JavaScript code run in the same thread. But HTML5 runs JavaScript

code in a separate thread which does not block user interaction with UI of the web page.

So, we can say that HTML5 is a non-blocking technology.

Application Cache: HTML5 provides an application cache which was mainly devel-

oped to access the application in offline mode. Traditional browser cache can only

cache visited pages and it doesn’t guarantee the persistence of the pages, for example,

the cache can be cleared by the user, or it can automatically be removed by the browser

to make room for new pages. However, in application cache, we can define resources

that need to be cached. It works on the pre-fetch phenomenon meaning that it can cache

those page or resources which users have not yet visited. HTML5 also has WEBSQL

which is used to store relational data.

23

4. IMPLEMENTATION OF MOBILE BASED MES

This section describes the implementation of the mobile MES system. The implementa-

tion was done with native technology on Android platform and with Web technology. In

addition to implementation, this chapter also describes the manufacturing process, MES,

and mobile technology for MES system.

4.1 Manufacturing Process

Manufacturing is an economic term which involves the process of making goods and

services to satisfy customer needs [43]. This process is carried out by making use of

various computer aided software and machine tools. These machines are usually called

CNC (Computer Numeric Control) machines which are fed with NC (Numeric Control)

programs. NC programs are used to control machine tools. Manufacturing involves a

series of steps [43] which are listed below.

· Product design and development

· Material Selection

· Process Planning

· Inventory Control

· Quality assurance

· Marketing / Delivery to customer

In product design and development, the needs of the customers and all the requirements

that are needed to achieve the end-product are analyzed. This involves the designing and

simulation of the parts, product, and assemblies.

Material selection is the step which focuses on selecting the best material for the part. In

this step, manufacturers examine cost, performance and availability of different materi-

als required to develop a final product.

Process planning involves identifying all the processes that are needed to be done in

factory floor in order to produce a final assembly. These processes include nesting,

blanking, welding, forming etc. The sequence and need of all these steps are analyzed in

process planning.

24

Inventory control manages the stock of each item, raw material or product in a factory.

It also involves tracking the location of the item in factory storage. The availability of

raw materials needed for end-product is examined in this step.

Quality assurance ensures that the final product meets all the requirements and needs of

the customer by eliminating and reducing all the possible defects.

In the final step which is marketing / delivery, the end-product is ready to be shipped to

the customer and if the product was manufactured without the order from a customer,

then it can be sold in the market.

4.2 High Level Architecture

The high level architecture of the system is described using UML diagrams. UML

stands for Unified Modeling Language which is used to model the whole system. UML

diagrams are used by the software architecture, engineer or designer to analyze and vis-

ualize the system that is required to be developed. There are various types of UML dia-

grams. Some of them are class diagram, sequence diagram, use case diagram, activity

diagram etc.

4.2.1 Concept Diagram of Mobile MES

The concept diagram represents the attributes of objects or classes, relationship and

code dependencies between them. The concept diagram of MES application is shown in

Figure 7.

The Item can be of three types, i.e. subassembly, product, or part, therefore, item has “Is

a” relationship with “SubAssembly”, “FinalAssembly”, and “Part” objects. The TypeID

attribute determines the type of the item to determine whether it is SubAssembly, Fi-

nalAssembly (product) or a Part. Other attributes of Item are ItemID and Name. SubAs-

sembly is composed of one or more parts, so it has a 1-to-many relationship with Part.

Similarly, a Final Assembly is composed of one or many parts or sub-assemblies, so it

has a One-to-Many relationship with “Part” and “SubAssembly”.

Every item is placed in a store, so it has a many-to-many relationship with the “Storage”

object. Many-to-Many relationship means an item can be placed in several stores. For

example, an item “FP_006” has 20 quantities, out of which 10 quantities are placed in

store A1 and the remaining 10 is placed in store A2. Moreover, an item can be added to

store or it can be moved from one store to another. The “Store” object has two attributes

“ID” and “Place”, where Place is the name of the store.

25

Object “Order” has “has a” relationship with Item because every order must consist of

an item. However, the order can process several quantities of an item at one time but it

can process only one type of item at a time. The “Has a” relation is also known as

composition which is represented by a filled diamond shape at one end of the arrow.

Every “Order” has a work-step, so there is a one-to-one relationship of “Order” object

with “WorkStep”. WorkStep is defined as the type of work that is carried out in a manu-

facturing process. OrderID, OrderAmount, DueDate, and ERP_Reference are the attrib-

utes of the Order where OrderAmount is the quantity of the item which is required to be

produced.

The “Order” has also a relationship with “Operator” object because every order is exe-

cuted by an operator but placing an order is only done by an operator of type “Master

Operator”. Operators are categorized as “normal operator” and “master operator” that is

why Operator has an association relationship with “normal operator” and “master opera-

tor”. All the operators have UserID and password which they can use to log in and after

login they can edit/update their profile.

Similarly, “Process” object has “Has a” relationship with “Order” because every process

has an order associated with it. The Process has three operations in its object, i.e.

StartProcess (a process can be started or resume if it is stopped), StopProcess (a process

can be stopped if it is running) and FinishProcess (a process is completed and need to be

marked as finished, either failed or succeeded). The attributes of Process are OrderId,

StartedOn, OrderId, and StartQuantity. StartedQuanity is the amount of the item we

started with, for example, an order has 10 quantity but we started with 8 leaving out 2,

so StartedQuantity would be 2. StartedOn is the time on which we started the process.

OrderID is the id of the order which is currently being processed.

26

+SendOrdertoProcessList()

-OrderID
-OrderAmount
-DueDate
-ERP_Reference

Order

+AddItemtoStore()
+MoveItem()

-ItemID
-Name
-TypeID

Item

-parentID

SubAssembly
-ParentID

Part

+StartProcess()
+StopProcess()
+FinishProcess()

-OrderId
-StartedOn
-OrderId
-StartedQuantity

Process

1

1

-Id
-Place

Storage

-WorkStepId
-WorkType

WorkStep

1

1

-ChildID

FinalAssembly

1 1

+login()
+updateprofile()

-Name
-UserID
-password

Operator

+AddOrder()

MasterOperator Normal operator

1

1

1

1

1
*

1 *

1*

* *

Figure 7. Concept Diagram of Mobile MES

27

4.2.2 Sequence Diagram of the Processing of Manufacturing

Order

A sequence diagram is the interaction diagram that describes the order in which the pro-

cesses of the system are executed and how the processes operate with one another [44].

The sequence diagram shown in Figure 8 shows the steps to process an order using a

MES (all UML diagrams are based on assumption). In addition to the basic manufactur-

ing steps, the diagram also contains some additional features which are implemented in

mobile based MES, for example searching the order, moving the items, add or remove

items and others.

The manufacturing process starts with an order from a customer. The order from the

customer then goes to the ERP (Enterprise Resource Planning) system. The MES sys-

tem can see all the orders from ERP system. The operator who has the MES either a

mobile based or a terminal based can see the orders. The first step of manufacturing is

the nesting. The nesting is a process to arrange parts in a pattern that produce minimum

raw material waste, where parts are produced from the raw materials such as sheet metal

[45]. The nesting is done by CNC machine, so the parts are sent to the machine. After

the machine produces parts from nesting process, the operator picks it from there and

stores these parts in a store. The operator might want to move a part from one store to

the other depending on the needs. Similarly, more stores can be added to the system by

the admin if needed. Once the order is in the MES, the operator can search the orders.

The operator then selects and processes an order. An order may be an order of sub-

assembly or a final assembly. This step is recursive because an assembly might consist

of several sub-assemblies and operator keeps processing sub-assembly orders until the

final product is achieved. The sub-assembly is a part or combination of different parts

but not a final product. The sub-assembly may consist of different work steps like

blanking, forming, welding etc. The final assembly may also go through several steps

like forming, blanking and others, before a final end-product is achieved. Once the final

assembly has gone through all the required processes, it is recorded in a MES and ERP,

and end-product is delivered to the customer.

28

ERP/MESCustomer Operator

Place Order

Receieve Order

Power Processing

Send part lines to nesting

NC Program

Send request to NC program

Receive Parts

Storage

Add parts to storage

Add/Edit storage Places

Move parts from one store to another

Work Place

Send parts for processing

Returns SubAssembly

LOOP

Final Assebly

Customer Delivery

Record parts completed(failed/succeed)

Search for the task list for a specific work step

Receieve Task list that needs to be done in work step

Figure 8. Sequence Diagram of Mobile MES

29

4.3 Application Backend

The backend was implemented with Java using Spring [79] as a framework and Hiber-

nate [80] as ORM (Object Relational Model). The PostgreSQL 9.4 [81] was used as a

database .The database was filled with the dummy data since we didn’t get any real data

from the company. Apache Tomcat was used as an application server to deploy

backend. RESTful Web service was used for communication between client and server.

Spring is a Java application development framework which provides easy and fast de-

velopment and provides an opportunity for code reusability. Spring works with POJO

(Plain old Java Object) rather than EJB (Enterprise JavaBeans) which has some over-

head. Spring also provides dependency injection that allows building decoupled applica-

tions.

The server application is divided into 4 layers, i.e. Model, Controller, Dao (Data Access

Object) and Service. Controller is used to handle HTTP request from REST client. The

Controller maps the HTTP request to the corresponding request handler.

The model layer contains all the POJO classes with Hibernate annotations because we

are using Hibernate as ORM (object relational model). ORM is the conversion of data

between incompatible type systems in object-oriented programming languages [46]. In

this server application, it is used to map the Java class objects into database (PSQL)

objects and vice versa. Using Hibernate, developers don’t need to write stored proce-

dures in the database. Hibernate annotations can be used to map, filter and join data

from database.

Then there is a Dao layer which contains Dao and Dao implementation classes. Dao

classes define the interface of the operations which are performed on the model objects

while DaoImpl classes actually contain the concrete functions of the interface defined in

Dao classes.

The Service layer invokes Dao methods. The Service layer lies between Dao layer and

Controller, so Controller has access only to those methods which are available in the

Service layer. Similar to Dao layer, Server layer has two types of classes, i.e., Service

interface and Service implementation classes which just call the method of Dao in its

implementation.

The architecture diagram is shown in Figure 9. The client sends the request to the Con-

troller that is handled by request handler. After mapping the request to the request han-

dler, it calls the corresponding Service interface which calls data access layer Dao. Dao

30

calls the database which returns data in DataTable format which is then mapped to the

class object by Hibernate. Dao, after converting DataTable into a data object, sends data

to the service and then service sends it to the Controller. The controller then sends the

JSON data to the client who made the request.

PSQL Database

Dao

Service

Controller

Rest Client

Da
ta

Ac
ces

s L
aye

r
Se

rvi
ce

Lay
er

HT
TP

 Re
qu

est
 ha

nd
ler

DaoImpl

HTTP Get Request

Call to Service

Call to Dao

Call to Database

ServiceImpl

Datatable

Data Object

Data Object

JSON Data

Figure 9. Architecture Diagram of Mobile MES Backend

4.4 Frontend

Two frontend applications were developed, i.e. native and Web. Native is based on An-

droid platform that will work only on Android devices while Web is cross platform

which should work on any platform and any browser. Both applications use the same

backend and REST API.

31

4.4.1 Web

The Web application was implemented with HTML5 and AngularJS as development

framework. AngularJS is based on MVC (Model-View-Controller) pattern. So, there are

Models, Views and Controllers modules in this application. Bootstrap was used for styl-

ing and to make our Web app responsive. The service module contains all the REST

calls. The controller calls the service methods and binds the returned data with the mod-

el. The model then binds up with the HTML controls. AngularJS provides two-way

binding features, so we don’t need to worry about binding. Besides these, there are ex-

ternal JavaScript libraries for implementation of other features. The table below gives

an overview of the frameworks and libraries we used for our web implementations.

Table 2. Libraries/Frameworks used in Web App

4.4.2 Native

Native application was built for Android platform using Java language and Android

studio as IDE (Integrated Development Environment). The MES native application con-

tains the same features as of Web app. The application has one activity and many frag-

ments. We have used fragment navigation drawer, so the application loads the

corresponding fragment when user clicks on the side menu. Fragment navigation drawer

is the side menu control in Android. The calling of REST service methods is done in

fragment as an AsyncTask (Asynchronous Task). The AsyncTask after fetching data

from server binds it with the layout. The application also contains the model layer

which contains the classes.

Features Description Library/Framework

Development The frontend development framework AngularJS

Responsive

22

 The layout that can adjust in any screen size Bootstrap

BarCode This is used to detect item QuaggaJS

QRCode

 This is used to find location WebCodeCam

3D Visualization This is used to view item in 3D X3Dom

2D Map 2D map of the factory floor HTML Canvas

Real-time Updates Real-time data coming from server Pusher.js

32

Table 3. Libraries/Frameworks used in Native App

4.5 Features

The list of features implemented in Web and native app are listed in this section.

4.5.1 User Profile

The first section that appears to the user is profile page. The user is asked to fill the pro-

file. Profile has two section, interest and skills. Skills are those tasks; in which operator

is good at, while interest is those tasks which operator wants to learn. On the basis of

selected interest and skills in the profile, the operator can filter the task list in “Order”

section.

Figure 11. Profile Page

Features Description Library/Framework

Platform The operating system support Android

Language

22

 Language used for development Java

BarCode/QRCode Barcode for item detection, QRCode for location Xing

3D Visualization This is used to view item in 3D Min3d

2D Map 2D map of the factory floor Java Canvas Object

Real-time Updates Real-time data coming from server Pusher Java Client

33

4.5.2 Location Using QRCode

The QRCode is used to find the location of places in the factory floor. The operator,

who has a task to pick something from the store, can decode the QR code placed at cer-

tain location, to find the location of the store. The app, after scanning, shows the dis-

tance and direction from the current position to the destination. In Figure 10, left picture

is the screenshot taken before scanning the QRCode while right picture is the screenshot

taken after QRCode scanning.

Scan QR
Code

Map View
After

Scanning

Figure 10. Location Finding using QRCode

4.5.3 Item Detection Using BarCode

The barcodes written on the item can be used to detect and identify the item. The opera-

tor can use it when he is not able to identify a part, subassembly or final assembly on a

factory floor. One example could be the use of barcode detection while storing an item

in the item store. In Figure 11, left picture is the screenshot taken before scanning the

BarCode while right picture is the screenshot taken after BarCode scanning. In the left

picture, “pp_Part2” is selected in the dropdown but after scanning the item using Bar-

Code, the application automatically selects “Box” in the dropdown. The right picture

has “Box” selected in the dropdown.

34

Figure 12. Item detection using barcode

4.5.4 UI Adaption (Non-Functional Property)

The responsiveness of the app is its ability to adjust in the screen of different sizes.

Figure 13 shows the view of the page in three different screen sizes. The top left image

was taken from the screen of size 320 x 480, the top right from the screen of size 800 x

1280 and the bottom was taken fxrom the screen of size 1920 x 900. Note that, how the

screen is changing its layout according to the screen size. The 320 x 480 screen actually

transforms the horizontal layout into vertical. The screen shot only displays the running

processes section in the top left image, remaining part can be shown up by scrolling.

35

Figure 13. Application view in different screen sizes

4.5.5 Filters

User can filter the task list according to his skills, interests or both. Task list can also be

filtered by using keywords in the search bar. In Figure 14, the correcponding screen

display and screenshot documents that the unfiltered task list is on the left side, and then

after the filtrations, it shows only those tasks which the user is good at. The right

screenshot shows the list of tasks filtered by operator’s skills. ElectricWork is the only

task out of the available orders that is in accordance with the operator skills.

Filter By Skills

Figure 14. Filter By Skills

36

4.5.6 3D Visualization

This is used to visualize the items in 3D view. Touch gesture motion is used to rotate

the 3D object. Multi-touch can be used to enlarge the image.

Figure 15. 3D Interactive Visualization

4.5.7 Other Features

In addition to the features described above, we have also implemented other features.

Using mobile MES, users can add new manufacturing order in the system. To add a new

order, go to the order screen by clicking “Orders” from side menu. Then using the but-

ton “Place an Order”, users can add new manufacturing orders in the system. On click-

ing the “Place an Order” button, a popup will show up where users can enter order de-

tails. Then user can start processing the order by selecting any order from the order list

and sending it to processing list. User can start processing an order by clicking “Start

Work” button in the order list. Once the order is started, it appears on the processing

list. The orders in the processing list can be “stopped”, “finished” or “started” by the

users. There are two cases of finished order i.e. successful and failure. Once the user

clicks the “Finish” button to finish the order, a popup is appeared where he/she marks

the process with failure or successful. In case successful process, users don’t have to

enter any comments. But in case of a failed process, user marks the process with failure

and gives the reason of failure in the comment box. A progress bar is attached with eve-

ry process which shows the percentage of completion for every process.

37

Users can also add items to store. To add item in a store, go to the “Item Store” page by

clicking “Item Store” from side menu. The item store screen will show the list of all

items placed in store. For adding item in store, press the button “Add item to store”

which will open a popup. In the popup, user selects the item, work step and store and

enters the quantity of item. Item can also be read using barcode as explained in section

4.5.3. The item added to store, starts to appear in the list. Similarly, user can move the

item from one store to other. User presses the “move” button which opens up the popup.

User selects the target store and enters the quantity of item he wants to move.

4.6 Application Usability Evaluation by Participants

We conducted the usability test of our two applications, native and Web version. Five

participants took part in this task. Four of them were mechanical engineers from the

background and had good idea about how manufacturing is done in industries while one

was a pure IT guy. They gave their feedback based on their understanding and they also

gave suggestions on how could we make the better GUI of application. In addition to

that, they gave us ideas about the extra features that could be added in MES interface.

4.6.1 Heuristic Evaluation

For one of the users who had completely no idea about this idea of MES on mobile, it

was a bit difficult for him to understand the interface. He didn’t like the idea of side

menu, i.e., he said everything should be visible on the screen. He didn’t want to open

the side menu to navigate to the required screen.

For another user, the search bar was not clear and he had no idea about how to search,

i.e. the searching is generic in our app but he thought it was according to the name of

the item. He also said the Web app doesn’t ask for confirmation when the user taps the

button to change the status of running process. In native, an alert box is appeared asking

for the confirmation of the action.

One participant suggested that the items that are finished successfully should be visible

somewhere in the system but we just hide the item from the list whenever it gets com-

pleted. Also, adding an item in item store contains a list of all items in a factory but ac-

cording to one of the participants, the dropdown should only show completed items in

the list. Some participants didn’t like the idea of manually storing the item in the store;

they suggested that it should only be done using bar codes which can detect the item

name and the number of items in a lot/box. And yes, we already have this barcode fea-

ture in our app which can detect the item name.

38

4.6.2 Extra Features

Participants also suggested the additional features that might be added in future. One of

the participants suggested that the barcode must be used for lot tracking, i.e. it should be

able to detect batch number, the processed work step, next work step, quantity and other

product details. Operators should be able to see manufacturing instruction on his tab-

let/mobile, i.e. the work step hierarchy and the next step. It should also have a link to

the product documents which can be used to see the complete specification of products.

In addition to entering the reason for the failure of failed product, the operator should

also be able to upload the picture of failed product.

Warning notification may appear in case of slow machine processing or when there is a

risk of delay in the manufacturing process. Notifications should also appear if a process

is failed for some reason. There must be some option for higher authorities to see the

status of all operators i.e. who is doing what. However, this might increase the pressure

on workers as they will always have in their mind that they are being watched by some-

one. The indoor navigation might also be helpful to locate places on the factory floor.

This might be helpful for those factories which have large factory floors.

39

5. COMPARISON

In the last chapter, we developed two variants of MES client application: Web and na-

tive. In this chapter, we will evaluate both of these alternative implementation based on

our research criteria. Our research is based on following methods.

· Experimental Testing

· Users’ feedback

· Online survey

· Literature review

We tried to evaluate four important aspects in our research. These aspects include user

experience, development perspective, limitations, and performance.

5.1 Performance

In order to measure the computing speed of JavaScript and Java (Android development

language for this thesis), we ran a very simple benchmark program. The program simply

generates a sequence of n random numbers, sorts them with bubble sort sorting algo-

rithm and then displays the total time spent in executing the code. The user gives the

number of random numbers that he wants to sort in a textbox. When he clicks the but-

ton, the application displays the alert box which shows the amount of time (in millisec-

2

4

6

8

10

12

private class MyRandom
{
 double seed=0;
 public MyRandom(double seed)
 {
 this.seed=seed;
 }
 private Double next() {
 this.seed *= 1103515245;
 this.seed += 12345;
 this.seed /= 65536;
 this.seed %= 20;
 return (long)Math.floor(this.seed);
 }
}

Program 1. Program used for random number generation.

40

onds) spent to execute the code. To ensure that the input data was same for both tech-

nologies, we wrote our own random number generator function. The code for random

number generator is given in program 1.

The Web application was written with JavaScript and native application with Java. Both

the codes have same time complexity, i.e. O (n^2) which is the average time complexity

of bubble sort algorithm. The program written in Java can be found in Program 2. Vari-

able “n” is the number of random numbers that user wants to generate and sort. The

same code was written for Web with JS. The seed value that we used in our custom ran-

dom number function is 27. The Javascript version for this performance test can be

found in Appendix D in Program 4.

The experiment was performed on 2 mobile devices with different specifications. The

specifications of these devices are given in Table 4. Each experiment was performed 5

times for every mobile and an average result was taken. We generated 10,000 random

numbers and performed (10,000^2) comparisons on an average. Chrome47 and Mozilla

43 were used in all mobiles/tablets for computation speed comparison testing.

2

4

6

8

10

12

14

16

n = Integer.parseInt(txt.getText().toString());
long startTime = System.currentTimeMillis();
MyRandom rand=new MyRandom(27);
for (int i = 0; i <= n - 1; i++) {
 arr.add(rand.next());
}
for(int i=0;i<(n-1);i++){
 for(int j=i+1;j<n;j++)
 {
 if(arr.get(j) < arr.get(i))
 {
 temp = arr.get(i);
 arr.set(i, arr.get(j));
 arr.set(j,temp);
 }
 }
}
long estimatedTime = System.currentTimeMillis() - startTime;

Program 2. Program used for the calculation of computation speed.

41

Table 4. Specification of devices used in Experiment

Device Model Number CPU Android Ver-

sion

Chipset Internal

Memory

Samsung Gal-

axy Express 2

SM-G3815 1.7 GHz Krait 4.4.2 (Jelly

Bean)

Qualcomm

Snapdragon S4

1.5 GB RAM

Samsung Gal-

axy Tab 4 10.1

SM-T530 Quad-core 1.2

GHz

5.0.2 (Lollipop) Qualcomm

Snapdragon

400

1.5 GB RAM

Table 5. Comparison of Computation time

Device Avg. time (MS) for

Mozilla Firefox

Avg. time (MS) for Google

Chrome

Avg. time (MS) for Native

Android App

Samsung Gal-

axy Express 2

9.8 7.5 6.5

Samsung Gal-

axy Tab 4 10.1

28 20 25

42

Figure 16. A bar graph representing the execution time of native and web ap-

plication taken by each device

The bar graph shows the execution time for each platform in different devices. The re-

sult is quite expected for the device Samsung Express 2, as it shows that the native Java

code runs fastest. But, for Samsung Galaxy Tab 4 Chrome is faster than native. This is

due to the fact that android Dalvik and JavaScript virtual machines have different im-

plementations which might show different result for different benchmark test. However,

Java seems to be faster for most of the benchmark tests [73].

The execution times for Android native, Chrome and Firefox are quite close for our

algorithm. The difference seems to be very small but this is a very simple program. We

also checked another algorithm [65], Sieve of Eratosthenes, to find out prime numbers

where the difference was minor just like our algorithm. This small difference can be

bigger if more complex algorithm is used. For example in binary tree test [63], the dif-

ference is too big because it constantly allocates and deallocates the trees. The binary

tree algorithm executed in 48.92 in JavaScript v8, but in Java, it executed much faster in

5.75 seconds. The comparison is mainly between JavaScript and native code. The small

difference is also due to the fact that most of the modern Web browsers implement JIT

for JavaScript which makes JavaScript code faster. Chrome is using v8 JavaScript en-

gine while Mozilla is using SpiderMonkey JavaScript engine.

5.2 Frames per Second

The browser has to do a lot of things in order to render a page on the screen. These tasks

include download HTML and CSS from the server, checking out the style of HTML

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

43

elements defined in CSS or inline styling, rechecking the styles if modified by JavaS-

cript code, making the subset of layers of Web page and then finally sending it to GPU

to composite these layers [50].

But definitely animations or scrolling doesn’t need all these steps. However, animations

and scrolling go through most of the steps defined above [71]. For example, JavaScript

code, responsible for visual changes such as animation function or adding or removing

the element to DOM, is executed. Then it finds out which CSS rules apply to which

element and final style of each element is calculated. After that, the browser finds out

how much space and what position would every element take on the screen. Then the

actual painting process of filling out the pixels is carried out. Finally, the compositing

process takes place in which the browser renders the layers on screen in correct order.

Normally, the elements of the page are drawn on multiple layers and during rendering

the browser put them on screen in the right order so that the page renders correctly. If

we want to achieve 60 FPS, then all of the tasks defined above need to be done in 16ms

which is not possible to achieve at the present time. The performance is worst if the

page has lots of long running JavaScript code and at the same time image resizing and

decoding takes more time. If a device takes more than 16 ms then users will miss some

of the frames and will see a janky display.

Scrolling the listview at 60 FPS is difficult to achieve because the DOM structure of

Web doesn’t allow Webs to achieve 60 FPS [52]. This is due to the fact that DOM is a

retained mode API which keeps the hierarchy of objects drawn on it [72]. The ad-

vantage of retained mode is that we can draw and reconstruct complex scenes [72].

However, performance often becomes an issue since extra memory is needed to main-

tain the scenes and updating the scene could be slow [72]. This is in opposition to the

canvas which is an immediate mode API which means that it doesn’t retain the infor-

mation of object drawn on drawing surface [72]. So, we can make use of the hardware

accelerated canvas to improve the performance of animation [72]. For example, hard-

ware accelerated CSS is one of them [60]. But it should be used smartly and can be used

for 2D animations but not for the whole Web content. Utilizing the GPU unnecessarily

can cause execution issues because of large memory usage. It can also influence the

battery life of mobile.

During scrolling, the browser paints some of the pixels in layers [51]. By grouping ele-

ments into layers, we need to update only that specific layer which undergoes change.

So, if you are damaging most of the layers while scrolling, e.g. in parallax website when

you have things moving as you scroll, the page needs lots of painting which causes the

pauses in the display. So, in general, less painting is good for better scrolling. The per-

formance becomes even worse due to unnecessary events during scrolling like CSS

44

change during hovering which requires extra painting. Also, the execution of long and

inefficient JavaScript code on hovering brings performance issues.

In our MES application, we have a long scrolling list of production orders and running

processes, we used this list to find out the FPS in our Web application and Android na-

tive app.

 The FPS of the native application was more consistent and it has higher values than

Web app. The FPS of the mobile native app was taken by turning on the “Profile GPU

Rendering”. The Profile GPU rendering, shown in Figure 17, was displayed using bar

graphs. The horizontal axis shows the elapsed time while the vertical axis represents the

time (milliseconds) taken by each frame to render. Each vertical bar represents one ren-

dering frame which means the higher the vertical bar the longer it took to render. More-

over, each vertical bar consists of four colors, i.e. blue, purple, red and orange [70]. The

green horizontal line represents 16 ms. To achieve 60 FPS, each of the vertical lines

must be below this green line. If a vertical bar crosses the green line then we will see a

pause in animations or a janky screen. The blue segment of the bar represents the time

used to create and update view’s display list. The purple segment represents time

elapsed in transferring resources to the render thread. The red line represents the time

taken by 2D renderer to send commands to OpenGL to draw and redraw display list.

The orange line is the time for which the CPU waits for GPU to finish its work. The

max FPS value is 60 because most of the display devices have a refresh rate of 60 FPS.

The screen captures of our Android app were taken at 4 different instances as shown in

Figure 16. It is clear the native application is achieving 60 FPS in the top left and top

right image. However, in the bottom left and bottom right, there are few points where

the vertical bar crosses the green horizontal lines which means that there were some

pauses when we were scrolling the list. However, these lines are very few as compared

to the lines which are below green line, so the overall effect is that we get a smooth

scrolling in native application.

45

Figure 17. A bar graph representing GPU rendering of MES (native applica-

tion) at four different scrolling instances

46

The FPS for Web app was calculated in Chrome 46 by enabling USB debugging in de-

veloper tools. Here USB debugging means remote debugging which let us debug the

content of Web app, running on Chrome browser of mobile, on a development machine

or a desktop PC. Debugging the Web app on mobile using developer tool is not possible

on mobile. Therefore, we used USB debugging to calculate Web app FPS. Remote de-

bugging is done by following the steps given below.

· Connect the mobile device with PC

· Go to the developer option in android setting and enable “USB debugging”

· Open the link “chrome://inspect/#devices” on chrome browser of PC.

· Check the option “Discover USB devices” to find out the connected device with

the PC

Similar to the mobile app, screenshots of Web app with FPS meter were taken 4 times

as shown in Figure 18. The white line in the graph shows the maximum FPS which is

60 FPS. The graph for Web app is quite low and has more inconsistencies as compared

to native app. Some of the lines in the second graph show few frames achieving 60 FPS

but the overall performance is low. The worst performance can be seen in the 3
rd

 graph

where most of the instances are touching 0 borderline. The FPS meter shows the FPS

measured value is 14.5 which is quite low.

If we take a look at the graph of native app, then it is quite clear that the native has more

consistent lines and it achieves 60 FPS most of the time. First three frames are quite

consistent while the fourth graph has some janky frames where it crosses over the limit

of 16 ms for some frames. However, overall the rendering frequency of native app is

higher and consistent than Web.

Hence we conclude that the native has better rendering performance, since it is fast and

consistent. We proved this by measuring the FPS of native and Web at four instances.

The bar graph showed that native Android app had more consistant and higher FPS.

47

Figure 18. A graph representing GPU rendering of MES (web application) at

four different instances

48

5.3 Tap Delay

Mobile devices have capacitive touch sensor screen which is able to respond to user’s

interaction with fingers. One of the main reasons for the popularity of mobile devices is

the gesture based interaction. For mobile, gestures can be divided into touch mechanics

and touch activities [53]. Touch mechanics are the specific gestures with your fingers on

the screen while touch activities are the result of the specific gesture [53]. Some of the

examples of gesture mechanics are touch, double-touch, swipe, multi-touch, pinch

zoom-in (drag two fingers away), pinch zoom-out (drag two fingers towards each oth-

er), long press and many more.

One of the reasons of slow Web performance is the 300 ms delay between tapping on

the screen and releasing tap. Mobile browsers have the double tap gestures which they

use to zoom anything on the screen. Single tap does not fire before 300 ms because the

browsers wait for the second tap till 300 ms. So the touch event works in this flow [54].

· Touch Start

· Touched

· Wait until 300 ms

· Triggering the click event

This was the huge problem in terms of user experience. The users don’t like to wait to

get the response and especially in the games where user experience matters the most.

So, Chrome and Firefox for Android came up with the solution to remove this at the

cost of losing zooming feature [54].

However, zooming feature is important to enlarge the content to take a closer look. For

example, the buttons or links are placed together and user needs to click a specific link,

without zooming it is most probably that he might click a wrong link because of a small

area. Sometimes users also want to zoom in text or images. Google Chrome team came

up with a better idea, i.e. setting the content width to the width of the device. Doing this,

the viewport of the browser is set to the same size as device [54]. This is the way,

Chrome implemented zooming features rather than relying on double tap which is the

cause of 300 ms delay in browsers. Users can zoom the content of the sites using pinch-

zooming gesture. Chrome announced that Chrome 32 and later versions will have dou-

ble tap disabled while zooming would still be available [54].

<meta name="viewport" content="width=device-width">

49

The above solution works with Firefox and chrome but IE handles this issue using

touch-action CSS property. This is achieved by applying CSS to all elements that are

clickable, e.g. buttons. The touch-action property is set to manipulation or none.

<style> button { touch-action: manipulation; }</style>

IOS Safari has not been able to remove this click delay completely. However, Patrick H.

Lauke [55] found some interesting facts about iOS Safari. He found out that, the delay

doesn’t exist anymore for slow taps in iOS 8 Safari but for faster taps it still exists. The

speed of tapping is determined by how long you keep your finger on mobile screens.

In order to verify above claim, we made a simple Web page which contains a button.

When the user taps this button on his mobile he gets the delay time (in milliseconds)

between the touch-end event and triggering of actual click event. The code is given in

Program 3. The JavaScript code to find time delay can be found under the script tag.

The web page was opened in Firefox, Mozilla and Chrome and button was tapped ten

times on each browser. The result was quite expected, i.e. iOS Safari didn’t perform

well and took the longest time to execute click event of the button. The performance of

Chrome, iOS, and Android native was almost same.

2

4

6

8

10

12

14

16

18

20

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width;">
<title>Delay Checking</title>
</head>
<body>
<button id='btn'>Tap to findout delay</button>
<script>
 var btn = document.getElementById("btn");
 var delay=0;
 btn.addEventListener("touchend", function() {

 delay = new Date().getTime();
 });
 btn.addEventListener("click", function() {
 alert(new Date().getTime() - delay + ' milliseconnds');
 });
</script>
</body>
</html>

Program 3. Program to find tap delay of Web applications.

https://twitter.com/patrick_h_lauke
https://twitter.com/patrick_h_lauke

50

Table 6. A comparison table of tap delay

Brows-

er

Time(MS)

1st Try

Time(MS)

2nd Try

Time(MS)

3rd Try

Time(MS)

4th Try

Time(MS)

5th Try

Time(M

s) Avg.

Chrome 11 8 7 5 3 6.8

Firefox 11 7 12 6 8 8.8

Safari 291 254 236 261 244 257.2

Native

Android

6 2 2 2 3 3

The bar graph is drawn based on the average time taken by each browser and Android

native application.

Figure 19. A graph representing Time delay of Web and native MES applica-

tion

51

5.4 WebGL is Handy but Slow and a Potential Risk

5.4.1 WebGL

Before HTML5, adnvance animations and graphics were implemented with plugins to

display 2d or 3d animations. These browsers plugins were necessary in past because

there was no other way to render 3d animations or video on browsers. One of the main

reasons for relying on plugin was slow development of Web browsers [56]. Microsoft

launched ie6 in 2001 and at that time Microsoft was the leader and had won the brows-

ers war so they stopped developing browsers anymore [56]. The next version of IE

came in the year 2006, i.e. 5 years later after the launching of IE6 [56]. Microsoft re-

leased Silverlight to support video and animations in 2007. However, these additional

plugins had some serious problems. Some of the problems are security issues, i.e. there

was no sandboxing which allows it to access user’s account and operating system,

cross-platform issues because of different plugins by different vendors that will work on

their specific platform [56]. Netflix was based on Silverlight so it relied on the external

plugin. However, they soon switched to HTML5 and ditched Silverlight for Google

chrome [57]. Soon after the transition to HTML5 for chrome, Netflix did it for Safari.

However, for Firefox, it took some time but luckily in December 2015 Netflix an-

nounced that their HTML5 player is now working in Firefox.

After the rise of HTML5, the Web doesn’t look same any longer. Html5 provides the

HTML canvas element which can be used to draw 2d elements using canvas 2d context

or 3d object using WebGL. WebGL is a JavaScript API to render 3D graphics without

using additional plugins. It is based on the subset of OpenGL which is called OpenGL

ES. WebGL is supported by almost all modern browsers including IE 11 and its later

versions. The WebGL makes use of HTML5 canvas to draw graphics. At the present

time, we have too many options available for graphics display. We can use CSS, can-

vas, SVG and other external plugins like Silverlight and Flash. But WebGL has some

advantages over other APIs [57].

When there was no HTML5, developers were forced to use div with filled colors to

draw shapes. Moreover, they had to implement their own functions in JavaScript to an-

imate them, e.g. rotating, moving, scaling etc. But then HTML5 canvas made imple-

mentation of 2d graphics a lot easier. The canvas is a DOM element and is supported by

almost all modern browsers. HTML canvas is highly interactive which can respond to

user’s interaction with it, for example, it can respond to click or touch events. Moreo-

ver, it can be animated and can be used for any kind of drawing such as shapes, images,

and text. However, all the shapes that are drawn on canvas don’t form DOM tree which

compels developers to redraw the whole canvas whenever he wants to modify it.

52

The WebGL can perform some complex 3d scenes which are not easily doable with

other APIs. WebGL can fully utilize hardware acceleration. Others can also but WebGL

was designed to keep performance in mind. WebGL is the best choice for 3d animations

but for simple 2d games Canvas 2D might be a better choice because it provides more

2D focused libraries [57].

5.4.2 Performance

Since WebGL is based OpenGL ES so it holds the semantics of OpenGL ES. Therefore,

theoretically there should be no differences but there are some facts about WebGL per-

formance. The OpenGL when used on the desktop computer, then the fast C++ lan-

guage can use the fast GPU quite efficiently. However, OpenGL ES when used with

mobile, then the fast programming language usually accesses a slow GPU (mobile GPU

is slow) [58].

WebGL doesn’t have the capacity to reach a wide range of users because it is not sup-

ported in older versions of browsers. For example, it is only supported in IE 11 and not

in other previous IE versions. Even Opera and older versions of Safari (pre version 8.0)

have disabled this feature by default. WebGL is controlled by JavaScript engine which

is not as fast as native compiled code which makes it slower.

The bad performance of 3d in WebGL application has two reasons, i.e. one is when the

process becomes CPU limited and GPU is just waiting for work to do and the other is

GPU limited when GPU does all but CPU waits for the work to do [59]. It’s not easy for

WebGL to become GPU limited because JavaScript ordinarily isn't capable of drawing

cells fast enough to overpower the GPU [59]. However, the complex scripting in your

Web app can cause your application to become CPU limited which is one of the reasons

for the slowness of WebGL apps [59]. One of the great features of WebGL is that it can

be fit together with other Web elements to give better overall visual effects which mean

WebGL has to synchronize itself with other Web elements which certainly results in

low frame rates and it can easily be seen in large canvases [59].

The performance of WebGL also depends on the way we use the API. If we have a large

number of draw calls then the rendering would be slow. Similarly, the unnecessary and

redundant draw calls make it slow too. The performance also depends on how efficient-

ly we use the two shaders, i.e. vertex and fragment shaders of WebGL.

5.4.3 Security

In addition to slow performance, WebGL APIs have some security vulnerabilities. It

can directly access video card to run the code on GPU which is a major risk involved

with WebGL. That means any untrusted site can access your video card without your

53

permission and they can run some malicious code with your GPU. Everybody was hap-

py after the launching of WebGL with the support from Mozilla, Google, Apple and

Opera [67]. However, soon after the launching of WebGL, Microsoft stated that

WebGL is a big risk that anyone can easily pour virus and WebGL is even open to DoS

(Denial of Service) attacks [67]. However WebGL was immature at that time like every

new technology is immature in beginning. KHRONOS group, who developed WebGL,

identified those security issues and came up with the possible solutions which are de-

scribed below [68].

In native application if a read pixel call contains pixels that are not in frame buffer then

it would return undefined. This is not acceptable in Web since it can return the content

of another application. So WebGL returns (0,0,0,0) for the pixels residing outside

buffer.

There might a possibility that the vertex shader buffer has some invalid index of buffer

which can cause out of range exception. The APIs for trusted native code like OpenGL

and OpenGL ES didn’t implement any check to find out the invalid indexes of the

vertex. Since it doesn’t have any implementation of “out of range” index checking, so it

performs faster. But, on the other hand, this was necessary for websites where an un-

trusted code makes 3d graphics call. The WebGL specifications check for invalid index

at the performance cost. But the new API like OpenGL extension GL_ARB_robustness

can reduce this impact on performance while guarantying the out of range memory ac-

cess.

In order to achieve maximum performance, 3D APIs for native do not clear the content

of newly allocated resources. But for untrusted code in Web, it is not wise to not clear

the resource content, thus, allowing them to view the content of other windows on the

screen. This overhead of zeroing the GPU resources is also the cause of slow perfor-

mance of WebGL.

If a draw call is complex, i.e. the shader buffers are expensive to compute, it takes a

long time to execute. Consequently, the system may become unresponsive if the compu-

tation call takes too long. Some OS like Windows Vista and later versions reset the

graphic driver once it becomes unresponsive due to malicious draw call. The WebGL

using GL_ARB_robustness notifies the user that the graphics card has been reset, and

do you still want to continue with this Web content. However, GPU reset might have a

side effect that one application can have on other.

In OpenGL, texture image data e.g. glTextImage2D or glTexSubImage2D, can come

from any source [74]. It can be read from a file, an external server or it can be generated

with code. But, WebGL doesn't allow image data from the external server. The server

and image must be at same domain if we want to get image data for WebGL texture. In

http://www.opengl.org/registry/specs/ARB/robustness.txt

54

this way, WebGL prevents other sites from using user's browser as a proxy to access

images that are private or behind firewall. WebGL only reads external images if it is

CORS (Cross Origin Resource Sharing) allowed.

5.4.4 OpenGL ES vs WebGL

Just like WebGL, Android also provides support for high-performance 2d and 3d ani-

mations using an API OpenGL ES. OpenGL ES is a subset of OpenGL specification

made specifically for embedded devices. WebGL is based on OpenGL specs so techni-

cally functionality wise there should be no difference between them but there are differ-

ent ways to implement functionalities. Some of the differences are described below

[75].

Android provides GLSurfaceView to draw and manipulate objects. GLSurfaceView

provides a surface that handles the creation of framebuffer and composites it on the

view system of Android. GLSurfaceView.Renderer interface in Android provides the

functionalities needed to draw objects on GLSurface. We override the GLSur-

faceView.Renderer’s functions like onDrawFrame, androidSurfaceCreated, onSurface-

Changed function, which are called on a separate thread.

To draw vertices in Android, we simply define an array or floats and then pass it to

VertexArributePointer function. Whereas, in WebGL we create vertex buffer object,

bind it, copy data and then render it. The main thing to be noted here is that, unlike An-

droid, JavaScript provides dynamically typed array to define vertices array, this gives

flexibility from coding perspective at performance cost. So, better is to use

Float32Array right from the starting which helps to avoid conversion overhead before

loading it to WebGL because WebGL applications use Float32Array [76]. JavaScript

types array is very fast as it exists as a fixed memory block whereas a regular array is

slow, which uses a hashed array tree data structure [77].

Android uses native texture loaders to load and unload images which are supported by

these loaders. However, we can also use external libraries to load images which are not

supported by native texture loaders. In WebGL, loading a texture image is as easy as

putting an image on a Web page using the image tag. The main difference with OpenGL

ES is that instead of creating ID using glGenTextures, we use gl.createTexture() in

WebGL which returns WebGLTexture Object. Then DOM image object is applied to

this texture which is responsible for loading and unloading of all native browser image

formats.

Another difference is to handle asynchronous texture loading in WebGL. For example,

we are loading a texture that will be drawn as a button, so we would like to set the size

of the widget equal to the texture size. But, since the image is uploaded asynchronously

http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html

55

in JavaScript, we don’t know the size of the image beforehand in JavaScript. To handle

this, we use callback function which is passed to the loadTexture function.

In order to set the camera in OpenGL ES, we specify viewport size and doing this

should be same for all devices. But for WebGL, we specify the size of the canvas to

scale the view.

To animate the view, Android apps create another thread to run 3d rendering loop. The

separate thread for 3d rendering loop is important to avoid UI thread stalls. But in Web,

we use RequestAnimationFrame to call update function from our view at the best avail-

able time. This is very important for smooth animations, also it allows browsers to call

update view function only when it is needed, e.g. if a user is on another tab then there is

no need to call update function.

5.5 Online Survey (the developer’s perspective)

We conducted an online survey to find out the developers’ opinions about mobile Web

and native app development. 18 developers took part and filled the online survey. All of

them were professionals and currently working in a software industry. Half of the de-

velopers had more than 3 years of working experience while others were less in experi-

ence as software developers. 70 % of them mostly work on Android application devel-

opment, so answers from this survey will be based mostly on Android platform. How-

ever, most of them were more skillful in Web app development rather mobile applica-

tion development.

5.5.1 Cross Platform Compatibility

They think that in native, developers have to take care of cross-platform compatibility,

i.e. developing different version of native app for different platforms which would take

time while in Web we only have to take care of different browsers and most of the mod-

ern Web browsers have the same behaviour so there is not much work to do in Web as

compared to native.

5.5.2 Easy of Development, Maintenance and Testing

Most of the developers think that the Web app is easier to develop because we can make

a responsive Web app using frontend frameworks and Bootstrap CSS very easily while

native apps require more training and learning. Also, HTML5 has made the Web devel-

opment very easy. However, some believe that development totally depends upon expe-

rience, if you have more experience of Web development; you would go for Web oth-

erwise native.

56

They also think that testing a Web app is very easy but in native every time you want to

test, you have to build the code and start emulator or connect a real device which is very

time-consuming.

Web apps have common code base across multiple mobile platforms, so it is much easi-

er to maintain. On the other hand, maintaining native app is difficult because users use a

different version of the app on different platforms, so maintenance and offering a sup-

port to all users is pretty difficult. Some believe that although native has cross platform

issues but it can be overcome by make hybrid apps.

5.5.3 Access to Device Features

Although native app takes more time to be developed but it can easily be integrated with

device features. Developers will love to work with native app if requirements are to take

full advantage of all device features. For Web, you have to rely on API's to access

hardware. For native, though, the features are built in, hence it is much easier to use

intent on native applications. And they think that Web still has some limitations when it

comes to hardware accessibility.

5.5.4 App Stores

Native applications are easier to find and download using app stores. Some believe that

app stores are a good source to show experience of the developer, i.e., app stores can

tell you who developed this application and what are the other applications developed

by this developer / company. This is also useful to check the download of the applica-

tions and reviews from users that are quite helpful to make improvements. Also, all the

big names have their product on app stores that say a lot about app stores. You can pro-

vide your services to as many users as you want, i.e. more download more outreach.

However, many of the developers believe that there are no differences when it comes to

deployment and both are essentially equal to deploy. One of the iOS developers said

that, in iOS, deployment is not easy and takes some time. Some believe that native apps

should get permission first to deploy on the app store. In this way, we can avoid fake

apps.

5.5.5 Rating by Developers

In addition to answering the questions, developers also rated Web and native technology

based on the given criteria. The set of criteria that we chose to evaluate technologies are

given below. Each developer rated the criteria with a score from 1 to 5, with 1 is the

lowest (worst) and 5 is the highest (best) score.

57

· Development Effort

· Hardware access capability

· App stores for monetization

· App stores for distribution

· Cross platform compatibility

· Maintenance

· Deployment

· Troubleshooting

Figure 20. 3D Interactive Visualization

5.6 Interface and Performance Evaluation by users

The two user interfaces were evaluated by users as mentioned in section 4.6. In addition

to the application evaluation, they also evaluated the two technologies and gave their

opinions about the performance and interface of Web and native app.

Regarding the look and feel of GUI, some voted in favor of native while others voted in

favor of Web. Those who favored native said that the controls and colors look more

58

natural while those who voted Web suggested that it has more advanced and attractive

GUI, may be because of the use of advance CSS to make it look better.

They were asked to rotate the 3d interactive image of items. They all were agreed that

the 3d animated image performed must faster and smoother in native, i.e. they were able

to rotate image very smoothly with their tap gestures in native application but in Web it

was slow. They also noticed that the native responded much quickly on swipe gesture.

Then they evaluated the scrolling performance of both apps and as expected, they were

all convinced that the Web was slow in updating the screen while native was lightning

fast. Some also noticed the delay in button click firing, when they inspected it carefully

by tapping the button to stop / run / finish the running process. They said the native app

responded immediately. Some also noticed the performance of barcode API and said

that barcode scanning is faster in native, but it should depend on the API we used.

However, the API (quaggJS) we used in Web was better in a sense that it was able to

localize the barcode but native API (Zxing) was not able to do so.

Finally, at the end, they said if they are asked to choose one, then they will choose na-

tive because of the overall performance and responsiveness.

59

6. ANALYSIS

In this chapter, we summarize the advantages and disadvantages of having a mobile

MES app and then we will analyze all the comparison aspects that we took into account

in the previous chapter. We will discuss why Web or native technology is better at one

aspect but not at other. We will talk about ways to overcome problems if Web or native

has some issues with particular comparison factor. In addition to these, we will also find

out the importance of every comparison factor for MES.

6.1 The MES Mobile Interface

In the first part of our thesis, we developed MES interface which was developed for

Web and Android mobile app. The demo is useful and can be shown to those industries

that are still relying on paperwork or desktop based technologies and are reluctant to use

modern technologies.

The operators have limited information on a factory floor, but using MES on mobile,

they can access documents whenever they want. Moreover, hardware components like

camera, GPS, gyroscopes make it more fascinating. Mobile MES can be used to avoid

high risk, e.g. there is always a high risk involved while working in a plant like a

nuclear plant. In the case of any emergency, the operators/workers position can be

tracked using GPS feature in mobile and it can also be used to find out if he is working

in a right place. The camera could be used as barcode/QRCode scanner which elimi-

nates the use of separate scanning devices.

The mobile application can benefit the operators to work remotely, however internet

connection is mandatory to get updates from the server. In order to use mobile based

MES, the company must have a good internet connection which can be accessed

through Wi-Fi all over the factory.

The mobile applications are not only useful for doing work remotely but also to monitor

the statuses of ongoing processes. Moreover, information will be highly available at

fingertips in contrast to traditional desktop based MES where users need to access desk-

top based terminals in order to get required information about a product or the orders.

The indoor positioning is one of the most attractive features that can be associated with

mobile based MES. The operators working in a large factory floor can locate the store

rooms to place the item and they can also find the meeting rooms.

60

The MES applications having barcode scanning feature can reduce the cost by eliminat-

ing the need of separate barcodes scanning devices. The barcodes and QR Codes can

benefit operators in many ways: The barcodes can be used to overcome the possibility

of human error. For example, it can be used to extract item information which can be

fed to the system directly after the mobile device scans the item. In addition to this, bar-

codes can be used for the inventory control which is very useful to find out if an item is

out of stock or not. Similarly, QRCodes has many advantages; one benefit is to find

places in factory floor (if not using location services). For example, an operator who has

to go somewhere in a factory to do a task but he is not aware of the place, so he can use

his mobile to detect QRCode placed at some point in a factory. On detection of QRCode

the system detects the current location of the operator and based on this current location,

it gives the direction and distance that he has to travel to reach the required place where

he has to do his task.

Sometimes, in manufacturing industries, the operator needs to see the part or assembly

which he is going to manufacture. Using desktop based MES, it is difficult to view the

dimensions or shape of the part/assembly frequently because of the limited amount of

terminals. In mobile MES, they can always view the 3d interactive image of the item

which can show the dimensions and shape of the part.

Operators can get intelligent work orders according to their skills and interests. Every

operator must fill his profile once he starts the application. The profile is saved on the

server and then the server can generate work orders based on their skills and interests.

The operators should be able to work more efficiently and with full of interest if the

tasks they are doing involve their interests.

On the other hand, it might be too costly for some small companies to invest in the MES

system. Moreover, it will be hard to use a smartphone for those users who do not prefer

to use smartphones. And, it will be necessary to train every operator about how to use

the application because it will be a new technology for most of the companies who still

rely on desktop based MES or does not use MES at all. Another risk is the security of

the information that can be caused if mobile phones are lost or stolen. All confidential

data of the company will be at high risk. We suggest biometric authentication to avoid

this kind of possible risks. Another solution is that the application is used only within

the premises of factory floor. Using location services, we can track the location from

where the application is being used.

61

6.2 Evaluation by Users

Those participants who took part in the evaluation test were quite satisfied with the

overall idea and performance of the applications. Only one of them had some difficul-

ties in understanding the interface, but he was able to use it without any difficulty after

some explanations.

All of them were agreed that the native was good in overall performance and they said

that the response time is very fast in native application. The observations from them

were quite expected and were according to our experiments. Due to low FPS, it is diffi-

cult to get smooth scrolling in Web. The participants experienced some stuttering while

they were scrolling the list very fast in Web. Evaluation test also confirmed our findings

that the web button tapping is slow and other gestures like swiping or sliding are also

slow and interactive 3d animations were smoother to rotate in native, i.e. OpenGL ES

(for Android) performed better as compared to WebGL.

In addition to performance evaluation, they gave some suggestions. One suggestion was

to add lot tracking with barcodes that is quite common in every manufacturing industry.

Our demo application is detecting only the item name with the barcode. We will add the

lot tracking feature in future.

Another suggestion was to add a link to the document, i.e. the production hierarchy of

an item. That could be a good option for operators to see what to do next and to check

the other details of production steps. For now, our assumed database has items hierar-

chies in it. For example, if someone places an order of Mailbox then it inserts all the

orders that are needed to manufacture the final product Mailbox. These related orders to

manufacture mailbox are filled using that hierarchy data of Mailbox. So, this could be

used to show the production hierarchy to the users which will help them to not memo-

rize production steps.

One major flaw noticed by participants was that when they add the processed item in

the item store then the dropdown shows the list of all items in the store but actually it

should display only those items that were processed but not all the item in the factory.

This could be solved by having another dropdown which will contain the list of pro-

cessed items which have not been added to the store.

There were some other good suggestions like having alarm notification in case of any

delay or problem in production, the interface to track tasks of an operator, i.e. who is

doing what. These extra features might also be added in our future work.

62

6.3 Performance (JavaScript vs Java)

The performance of JavaScript was quite close to the Java for the benchmark algorithm

we used. The reason for the improved performance of browsers is the JavaScript engine

that they use. Chrome uses the v8 engine, Mozilla uses SpiderMonkey and Safari uses

Nitro engine. These JavaScript engines are based on JIT (Just in time) compiler. The

JIT compilation is the runtime compilation of the code which compiles the code into

machine code whenever the code needs to be compiled rather prior to execution. The

Chrome engine has performed best as compare to other engines in our experiment. In

our experiment, we took the average of execution times in our result; but during testing

in some cases, the chrome execution time was exactly equal to the Java in native code.

In old days, the performance of JavaScript was not good enough when JavaScript code

used to be interpreted. But things have been changed now and JIT has changed the

world of Web by making it faster. Another problem is the performance of mobile

phones which makes it slow. The algorithm in our experiment, when used on the

desktop computer, executed in 2 seconds. So once the performance of mobile phones

gets better, the performance of Web app will consequently be increased.

The performance of the application leaves a heavy impact on the user experience. The

slow performance of the website makes the users less likely to visit the websites again.

For example, the business website like e-commerce depends heavily on the performance

of the website to increase their business and sales. The slow performance results in few-

er visits which affect the business. The online shoppers expect website to be loaded

within 2 seconds and if it is more than 3 seconds than 40% of the visitors will close the

website [64]. According to Gomez’s study, the page abandoned rate is increased by

38% if the response time increases from 2 to 10 seconds [64]. Single page apps like our

MES Web app can have the same impact on user experience if the loading of the con-

tent takes too much time.

This performance matters only in business promotion and sales? The answer is NO. The

time consuming and more CPU intensive scheduling and smart work orders are done in

the server, so it’s not a problem. But, does the mobile Web app have enough perfor-

mance that operators would choose mobile Web app over a desktop terminal or mobile

native app? What about just-in-time production scheduling which can add any item dy-

namically to the production order list. The operators might not see it in time and might

miss it due to the slow response of web page and then the order which was on priority

stays unprocessed.

63

In some type of manufacturing process, the machine automatically inspects the pro-

cessed item and during that time the machine ceases and operator waits to see the re-

sponse from the machines. So, in general, we believe that operators would want to see

the result of the process as quickly as possible and would like to go for the next produc-

tion step; but if the application has some delay in rendering the result then it can affect

the mood of the operator which can put a negative impact on the overall performance of

the operator. The communication between client and server is also important if we want

the production process to be speed up. The slow performance can be caused by a slow

request from Web client, for example, we have checked that the browsers have some

delay especially Safari when triggering the click action of the button. This slow action

from mobile Web app gestures will also result in slow communication which will con-

sequently affect the production performance. However, the difference of delay is small

but it can have a huge impact on the overall performance.

6.4 Rendering Performance

The major time spent by the users on Web apps is the time spent on interacting with

content. Unlike old days, the Web doesn’t depend on the frequent request from the serv-

ers. The user enters the URL on the address bar, the HTML pages and all required re-

sources associated with it are downloaded from the server. If a loading takes time then it

might be due to the slow network or slow response from the server but if the user leaves

your site after loading then it is probably due to bad design or bad front-end code that

slows down the performance.

The browsers do a series of complex steps in order to render the content on it. It starts it

by making DOM from HTML, creating CSS tree from CSS, creating render trees and

layers and then finally send it to GPU to paint it. These paintings are needed when there

is a need to change in page visuals which can happen as a result of scrolling, rendering,

content added or changed as a result of some action from users or content added without

any action from the user, i.e. updating view based on data being updated from the server

using pusher services. Not just this, but it also needs to execute JavaScript function and

event handlers on all HTML elements. Due to all these complex operations achieving

60 FPS is difficult but we can improve the rendering and scrolling performance and

make a Web app to perform like native if we take necessary actions.

The first thing that comes is the page rendering and if the page rendering contains too

many dirty DOM nodes then you might end up recalculating the whole DOM tree which

is very expensive. So we can avoid this by keeping the count of dirty nodes as less as

possible. It can be achieved by avoiding unnecessary style changes, applying style

changes to the required elements only, e.g. in some cases if most of the child elements

need a style changes then we do style changes in the parent container which is not good.

64

For example, an element is contained in a div and we do styles changes in div rather

than that specific element[66].

Layout thrashing is the phenomenon where the layout becomes invalid. The whole Web

page can be crashed in appearance if that happens constantly in a loop. If the layout

becomes invalid it recalculates the layout. So, once all the intensive calculation work is

done by the browser, the bad thing is to invalidate it [66]. The situation becomes worst

when you do that in the loop. This occurs as a result of the continuous read-write-read-

write cycle [66]. We could avoid this by doing all our reads first and then writes [66].

Then we can use hardware accelerated CSS to make use of GPU and divide the work-

load between CPU and GPU. The GPU is exceptionally effective at performing essen-

tial drawing operations like moving layers around with respect to one another in 2d and

3d space, rotating and scaling layers, and drawing them with changing opacities [50].

There are many ways through which can force CSS to use GPU, e.g. transform, opacity

[50]. However, these techniques are needed to be used very carefully, otherwise, it can

slow down the overall performance, so, therefore, in this case, high Web development

skills are required.

The browser repaints all those nodes which it marked dirty. The dirty DOM nodes will

be repainted to the screen. In general, browsers make a smallest possible rectangle re-

gion which covers all the dirty nodes [2]. So, if top left corner and bottom right corners

of the layout are dirty then the whole page will be repainted. We can overcome this

problem by making sure that every element is rendered in different layers [50]. Image

resizing is also the factor that could be avoided to make Web faster. So, the best solu-

tion is to give the source of the actual size of the image rather than resizing it.

Then we can omit some unnecessary JavaScript events to make the page rendering fast-

er. For example, If all the elements have the hover event on it, then during scrolling,

these hover events will be executed before the repainting of the elements. There are

many other ways that could be used to improve the performance of Web page.

So, do you remember, what did the developers say in online survey? Yes, they said,

Web development is easy. We agree with them but developing Web keeping perfor-

mance in mind is not easy and it really requires some good skills and performance tools

to analyze and improve the performance.

In MES applications, the scrolling and page rendering really matters, since the operator

constantly wants to see the process updates, process status and new orders coming from

ERP. Doing this, he might also navigate to different screens frequently and if he feels

jerks or stuttering then he might be frustrated. Consequently, it will affect his overall

performance.

65

6.5 WebGL, 3D Animations

We know that WebGL has some overhead which is a reason for its slow performance.

However, if we use it carefully and efficiently then we can improve its performance. For

example, the draw calls of all the models sharing the same shaders can be called once

[62]. Avoiding unnecessary and redundant draw calls can also increase performance. On

every rendering pass, the fragment shaders execute many times, so move your calcula-

tion that could be done in vertex shaders. Once you are done with calculation move it to

fragment shader [61]. Don’t use “#ifdef GL_ES” in shaders because it will always re-

turn true [61]. Textures with small size are faster, so use mipmap to boost performance.

There are many more other techniques that can be used to enhance WebGL perfor-

mance.

The security of WebGL is a big concerned but Khronos is working on it and they have

been able to figure out some of the problems and in upcoming versions of WebGL, it

will be more secured.

The security vulnerability is not safe for industries where security of information is on

top priority. We know that these industries have been facing security issues like DoS

attacks and Web app attacks. The industrial cyber attack is very common nowadays

where the hackers try to access industry data through the network. We have checked in

chapter 6, how many ways the information on your graphic card can be accessed by an

external entity. But, graphics cards don’t necessary contain the company’s sensitive

data. So, using WebGL for MES is safe to some extent.

6.6 Tap Delay

The native application was fractionally faster than Chrome and Firefox but this small

difference can be neglected. We can conclude that native, Chrome and Firefox do not

have any tap delay. But for Safari, we observed a long delay between tap and firing of

the click event. The responsive tap is very important in terms of user experience. The

operators using a mobile MES would not like to wait for some action to happen. Due to

the delay in tap, the operators might end up tapping the button several times which will

cause nothing to happen but only enlarging a button, at least in the case of Safari brows-

er. The operator might get annoyed due to this behavior of browser and that will certain-

ly affect the overall performance of operators working in a factory. However, switching

between browsers is not an issue. So, even if the operator is using Safari, he can start

using Chrome or Firefox for better and responsive tap gesture. So, we believe that this

tap delay is not critical in the comparison analysis of the two technologies.

66

6.7 Device Features

The response from the developers is based on their own perspective. Most of them had

worked on Web technologies more than native, so we were expecting that they will

speak in the favor of Web. However, the result was completely different and was ac-

cording to background theory but we got some interesting comments from them. They

said that native would be best for those applications which require intensive device fea-

tures and If we think about mobile MES then what hardware we make use, camera (very

important) for scanning, GPU (very important) since every item is 3d, GPS is important

for tracking employees, WI-FI very important to get internet connection as this interface

is not stand-alone interface but constantly requires updates from server. Gyroscope and

accelerometer important for indoor navigation, touch gesture important for interactive

images, but sim card not very important. So we believe that the MES application can

use enough device features, so it can be a hardware intensive application.

6.8 Cross Platform Compatibility

When we asked about cross-platform compatibility from developers in the online survey

then they rated native approx. 2.5/5 and for Web 4/5. So, why native even got 2.5 if it is

platform dependent and needs to be developed for every OS?

Because of the hybrid solution, that can be developed at once and can be built for multi-

ple platforms. They can be hosted in a device using Web view and thus are capable of

accessing device features. However, comparing hybrid apps with native or Web was not

the part of our research work.

Developers also said that the native applications require more development effort and

maintenance time. If we have to fix something in our application then we must do it for

all platforms, but for Web, fixing it for one should work for all. Also, developing native

applications for more than one platform takes much more time as compared to Web.

But, this platform dependency of native apps should not be a big problem for manufac-

turing industries as long as they wish to use MES application for their internal use.

However, If the employer wants to sell their MES solutions to other companies where

the requirement might be to use different platforms. Then Web, a platform independent

technology, might be a good option for those firms who sell their MES to other compa-

nies and wish to serve a huge number of their customers with their services.

67

6.9 App Stores

The developers think that app stores are very important feature of mobile applications. It

is good for distribution purposes, developers can get feedback of the application they

developed and they have their own profile in app stores which might be good for show-

ing their experience.

 However, if we think in terms of MES application then most of the MES applications

are usually customized according to the industry needs. It would be slightly different for

a company that manufactures product A than the company that manufactures product B.

Both companies might be interested in having their customized MES that would benefit

more based on their business. And, the app store is generally for distribution, i.e. to sell

the software to a large number of audience, which might not be so important in the case

of MES applications. Firstly, the app store usually has general applications that might

be useful in daily life and secondly you can’t just know the requirement of a manufac-

turing company beforehand and put it in app stores. Thirdly, if you are developing the

MES application for a company then no need to put it on app store due to the copyright

problem.

6.10 Conclusion

The portable MES, like the mobile interface of MES, can benefit workers in several

ways. Mobile MES would help and facilitate operators in manufacturing industries to

perform manufacturing tasks in a more efficient and better way on a factory floor. The

application takes operators’ interest into account that will definitely motivate operators

to perform their tasks on the factory floor. Also, the easiness of performing manufactur-

ing task would increase production efficiency in manufacturing industries. The MES in

mobile device helps operators to use their time efficiently that can result in high produc-

tivity. Having MES on own mobile device gives freedom to the operators that allows

them to use the application whenever they want. This freedom of use is not possible in

desktop based terminals which are available in limited amounts in a factory.

The criteria to choose a technology for the development of specific software like MES

are based on certain factors, i.e. cost (time, funds), available resources, requirements

and target audience. One technology is not better than the other but it has several bene-

fits and drawbacks over one another. The Web technology is best suited to target a large

number of audience and to target multiple platforms, i.e. you develop it once and it

works on all platforms. Users don’t need to download and install it from app stores, but

they can access it directly by just typing URL on browsers. Deploying a Web app is

easier than native apps, i.e. they are not uploaded to app stores and no approval is

needed, unlike native apps.

68

On the other hand, the native technology, performance wise, is better than Web. JavaS-

cript performs slower than Java but the difference is not that big, and in future, we be-

lieve that with the improvement in JavaScript engines like Chrome V8, Spider Monkey,

and others, the JavaScript engine will soon be able to compete with native code engines

like JVM (Java Virtual Machine) and others. The native applications perform very

smoothly whenever we scroll the list and move the 3d animated objects with fingers.

This is because the FPS rate in native application is greater than Web. But we have seen

that there are some hardware accelerated CSS and other techniques through which we

can achieve a better FPS rate in Web. WebGL API in Web has some security vulnera-

bilities due to untrusted code. Native applications respond faster than Web on button

tapping. It is possible that if something working in one browser, it might not work in

other. One common example is that the appearance of Web page very often looks dif-

ferent in different browsers due to different rendering engines that every browser has.

So, even though Web is platform independent but the browsers behave differently in

few cases. Thus, cross compatibility of browsers is a problem in Web technology. Na-

tive apps are installed on device, so it can access device hardware more efficiently

whereas Web has some limitations on accessing device features. App stores of native

apps are a good source for monetization and distribution, but for MES applications, app

stores are not important.

Keeping the requirements of MES application in mind, we believe that native applica-

tion would be a better choice for MES interface development because it’s more respon-

sive and more secure than Web. The fast response of native application gives a better

user experience to operators which help them to perform better. No company would

want any external entity to attack and access its data from outside world, so native is the

best solution for more secured application. In addition to these factors, we have seen

that the MES interface needs a heavy use of device features like camera, magnetometer,

GPS, GPU, Wi-Fi etc. This factor also becomes a reason to choose native over Web for

MES applications. However, the time and cost of developing a native application are

more than Web, so industries would have to invest much more in order to have more

responsive and more secure MES interface.

69

7. SUMMARY

In this thesis, we have tried to find out the best technology, i.e. Web app or native app,

for mobile MES. The thesis has two parts, one is to develop prototypes for MES and the

other is evaluating the two technologies. In the first part, to evaluate the two technolo-

gies, we developed two prototypes, i.e. Web and Android native applications. In the

second part, we compared HTML5 and native technologies.

MES stands for Manufacturing Execution System which is used in manufacturing in-

dustries to control and manage workflow. It also keeps tracking of all information com-

ing from other sources like machine monitors and ERP. Mobile MES is a part of the

LeanMES concept. The concept was designed to improve manufacturing processes in

industries.

The existing desktop based MES in FinnPower has some functional limitations and ac-

cessibility problems. The terminals are limited in quantity and placed at distant location

from machines and raw materials used in a factory. The operators working in a factory

have limited information about orders and product specifications. Therefore, we chose

and developed a portable mobile-based MES technology. Mobile technology has some

extra features which can be used in MES system to enhance the productivity and effi-

ciency of work in the factory floor. The GPS feature can be used to track the position of

workers. The WI-FI or gyroscope can be used for indoor navigation. The camera is used

for barcode/QRCode detection that can be used for item lot tracking.

We performed simple benchmark test to compare the performance of JavaScript and

Java. We made a very simple app which generates the random number and sorts them

using bubble sort which has n
2

average time complexity. The application calculates the

time (in milliseconds) taken to generate and sort random numbers. The result was a bit

different than what we expected. The difference of computation time was not that big

due to the JIT (Just-In-Time) compilers that modern browsers use nowadays. The Web

app was tested on Chrome and Mozilla.

Then we found out that native app has better FPS (Frames per Second) than Web app.

The FPS of native app was more consistent and higher than of Web app. But, there are

some hardware-accelerated CSS which make use of the GPU that could be used to in-

crease the rendering performance of Web app.

70

The 300 millisecond tap delay is also one of the factors that is responsible for the

performance difference between Web and native app. This is due to the fact that brows-

ers used to rely on double tap for zooming of images and other Web contents. So, they

wait 300 milliseconds for the second tap. But fortunately, Google Chrome, Mozilla

Firefox, and IE have resolved this problem by enabling the zooming feature using pinch

gesture. However, Safari browser still has 300 milliseconds delay. We wrote a very

simple app which calculates the delay between tap event and firing of the actual click

event. The result confirmed our study from literature and showed that Safari has maxi-

mum tap delay. The delay was about 270 milliseconds for Safari.

HTML5 provides WebGL API for rendering 3D objects. Before WebGL, browsers had

to rely on external plugins like Silverlight and Flash. For example, Netflix relied on

Silverlight for a long time. So, WebGL is a good feature to avoid the use of an external

plugin. However, WebGL has some security vulnerabilities, which make it unsafe as

compared to OpenGL ES which is used in mobile devices platform. The untrusted Web

page can use your GPU card without having your permission. The WebGL has two

buffers, i.e. fragment shader and vertex shader. If the vertex shader has some invalid

index then it can cause out of range exception. Similarly, if shader is expensive to com-

pute and takes a long time to compute, then GPU card becomes unresponsive and stops

working. In addition to these, Using of uninitialized memory allows them to access the

content of other windows opened on your screen. Khronos group is working on the

security of WebGL and they have been able to resolve some of the security problems of

WebGL while some of them are still left.

Then we had an online survey to find out the differences w.r.t development and mainte-

nance of technologies. 18 professional software developers, who are working in compa-

nies, took part and filled the online survey. HTML5 is cross platform compatible which

works on all devices while the native app is platform dependent. So, developers said

that HTML5 is easier to develop and maintain because we have to develop a separate

version of the native app for different platforms which require more effort and time.

They rated native application high in hardware accessibility because they think that na-

tive applications can use device features more efficiently than a Web app. In addition to

this, they said app stores are good for making money from your app; however, sharing

the revenue with the app store is a problem. App stores are a one-stop shop which

makes easy for users to download and install the app. That is why; all big names have

their app on app stores. They also said that app stores are good to show the experience

that we have.

Due to the security and performance of the native app, we suggest native app would be

the best choice for mobile MES. But, relatively high development skills would be need-

71

ed to develop native applications and it will also need more time and budget for devel-

opment and maintenance.

72

REFERENCES

[1] Olson, P. 2012. “5 Eye-Opening Stats That Show The World Is Going Mobile”.

Forbes. [http://www.forbes.com/sites/parmyolson/2012/12/04/5-eye-opening-

stats-that-show-the-world-is-going-mobile/]. Retrieved: 15.12.2015

[2] Colao, J.J. 2012 “Facebook's HTML5 Dilemma, Explained”. Forbes.

[http://www.forbes.com/sites/jjcolao/2012/09/19/facebooks-html5-dilemma-

explained/]. Retrieved: 15.12.2015

[3] BURD, B. “Mobile operating systems and fragmentation: the insider’s point of

view”, androidauthority, [http://www.androidauthority.com/fragmentation-the-

insiders-point-of-view-618427/]. Retrieved: 15.12.2015

[4] Lanz, M. & Jaervenpaeae, E. 2015. “LeanMES”. Tampere University of Technol-

ogy. [https://wiki.tut.fi/LeanMES/]. Retrieved: 15.12.2015

[5] Tesfy, W.B., & Aleksy, M. & Andersson, K. & Lehtola, M. “Mobile Computing

Application for Industrial Field Service Engineering: A Case for ABB Service

Engineers” in “The 7th IEEE LCN Workshop On User MObility and VEhicular

Networks”, Sydney. NSW. 2013. pp. 188-193

[6] Lyer, V. 2015. “5 Reasons to Build Mobile Apps for the Manufacturing Industry”,

appsFreedom, [http://www.appsfreedom.com/5-reasons-build-mobile-apps-

manufacturing-industry/], Retrieved: 15.12.2015

[7] Katz, J. 2012. “Mobile Apps Break Into Manufacturing”, IndustryWeek,

[http://www.industryweek.com/companies-amp-executives/mobile-apps-break-

manufacturing]. Retrieved: 15.12.205

[8] Jobe, W. “Native Apps vs. Mobile Web Apps” In International Journal of Interac-

tive Mobile Technologies (iJIM), vol 7. 2013 pp 27-32

[9] Holzer, A., Ondrus. “Mobile Application Market: A Developer’s Perspective” In

Telematics & Informatics. Elsevier. 2011, pp. 22-31

[10] Mahemoff, M. 2011 “HTML5 vs Native: The Mobile App Debate.

[http://www.html5rocks.com/en/mobile/nativedebate/]. Retrieved: 15.12.2015

[11] Avancini, A., Ceccato, M., 2011. “Security Testing of Web Applications: a Search

Based Approach for Cross-Site Scripting Vulnerabilities” In 11th IEEE Interna-

tional Working Conference on Source Code Analysis and Manipulation, Wil-

liamsburg, VI, 2011, PP. 85-94.

http://www.forbes.com/sites/parmyolson/2012/12/04/5-eye-opening-stats-that-show-the-world-is-going-mobile/
http://www.forbes.com/sites/parmyolson/2012/12/04/5-eye-opening-stats-that-show-the-world-is-going-mobile/
http://www.forbes.com/sites/jjcolao/
http://www.forbes.com/sites/jjcolao/2012/09/19/facebooks-html5-dilemma-explained/
http://www.forbes.com/sites/jjcolao/2012/09/19/facebooks-html5-dilemma-explained/
http://www.androidauthority.com/author/barryburd/
http://www.androidauthority.com/fragmentation-the-insiders-point-of-view-618427/
http://www.androidauthority.com/fragmentation-the-insiders-point-of-view-618427/
https://wiki.tut.fi/LeanMES/
http://www.appsfreedom.com/5-reasons-build-mobile-apps-manufacturing-industry/
http://www.appsfreedom.com/5-reasons-build-mobile-apps-manufacturing-industry/
http://www.industryweek.com/companies-amp-executives/mobile-apps-break-manufacturing
http://www.industryweek.com/companies-amp-executives/mobile-apps-break-manufacturing
http://www.researchgate.net/journal/1865-7923_International_Journal_of_Interactive_Mobile_Technologies_iJIM
http://www.researchgate.net/journal/1865-7923_International_Journal_of_Interactive_Mobile_Technologies_iJIM
http://www.html5rocks.com/en/mobile/nativedebate/

73

[12] Erkkila, J.P., “Web and Native Technologies in Mobile Application Develop-

ment”, M.S. Thesis, Dept. CSE., Aalto Univ., Espoo, 2013

[13] Burlingame, CA. “HTML5 Performance 8X Slower On Mobile Than Desktop,

According to PerfMarks II Study By spaceport.io”, prweb,

[http://www.prweb.com/releases/2012/5/prweb9531647.htm], Retrieved:

15.12.2015

[14] Sin, D. & Lawson, E. & Kannoorpatti, K., “Mobile web apps – the non-

programmer’s alternative to native applications” In 5th International Conference

on Human System Interactions, Perth, WA, 2012, pp. 8-15

[15] Juntunen , A., Jalonen, E., & Luukkainen, S., “HTML 5 in Mobile Devices –

Drivers and Restraints” In 46th Hawaii International Conference on System Sci-

ences, Wailea, Maui, HI, 2013, pp. 1053-1062

[16] Selvarajah, K. & Craven, M.P. & Massey, A. & Crowe, J. & Vedhara, K. &

Raine-Fenning, N., “Native Apps versus Web Apps: Which is Best for Healthcare

Applications?”, In 15th International Conference, HCI International, Application

and Services , Las Vegas, NV, 2013, pp 189-196

[17] Wang, Chao. & Duan, W. & Ma, J. & Wang, Chenhui., “The research of Android

System architecture and application programming” In International Conference on

Computer Science and Network Technology, vol 2, Harbin, 2011, pp. 785-790

[18] Android developers official site. [http://developer.android.com/sdk/index.html]

Retrieved: 15.12.2015

[19] Smith, S. 2013, “Android SDK: Common Android Components”, envatotuts+,

[http://code.tutsplus.com/tutorials/android-sdk-common-android-components--

mobile-20873], Retrieved: 15.12.2015

[20] Raval, C. & Shubham. 2015. “What is Intent in Android”, Stackoverflow,

[http://stackoverflow.com/questions/6578051/what-is-intent-in-android], Re-

trieved: 15.12.2015

[21] Android developers official site, “Intents and Intent Filters”,

[http://developer.android.com/guide/components/intents-filters.html], Retrieved:

15.12.2015

http://code.tutsplus.com/tutorials/android-sdk-common-android-components--mobile-20873
http://code.tutsplus.com/tutorials/android-sdk-common-android-components--mobile-20873
http://stackoverflow.com/questions/6578051/what-is-intent-in-android
http://developer.android.com/guide/components/intents-filters.html

74

[22] Warren, C. 2010, “5 Platforms that Defined the Mobile Space in 2010 [Mashable

Awards]”, Mashable, [http://mashable.com/2010/10/15/defining-mobile-

platforms/#Kxm46bnJ2iqc], Retrieved: 15.12.2015

[23] International Data Corporation, “Smartphone OS Market Share, 2015 Q2”,

[http://www.idc.com/prodserv/smartphone-os-market-share.jsp], Retrieved:

15.12.2015

[24] Mohsen, A. & Jansen, S., “Evaluating Architectural Openness in Mobile Soft-

ware Platforms” In 4
th

 European Conference on Software Architecture: Compan-

ion Volume, Copenhagen, 2010, pp. 85-92

[25] iOS Developer Library, “iOS Technology Overview”,

[https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual

/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html],

Retrieved: 15.12.2015

[26] Wikipedia, “Web Application”, [https://en.wikipedia.org/wiki/Web_application],

Retrieved: 15.12.2015

[27] W3C official site, “Document Object Model (DOM)”,

[http://www.w3.org/DOM/], Retrieved: 15.12.2015

[28] Rouse, M. “Javascript Defination”, SearchSOA,

[http://searchsoa.techtarget.com/definition/JavaScript], Retrieved: 15.12.2015

[29] Birnir, A. 2014, “The first programming language you should learn is JS”,

[http://searchsoa.techtarget.com/definition/JavaScript], Retrieved: 15.12.2015

[30] Bajaj, K. & Pattabiraman, K. & Mesbah, A., “An Empirical Study of Client-Side

JavaScript Bugs”, 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, Baltimore, MD, 2013, pp. 55-64

[31] Belqasmi, F. & Glitho, R. & Chunyan Fu, “RESTful web services for service pro-

visioning in next-generation networks: a survey” In IEEE Communications Mag-

azine, vol 49, 2011, pp. 66-73

[32] West, M., 2013, “Getting Started with Grunt”, treehouse,

[http://blog.teamtreehouse.com/getting-started-with-grunt], Retrieved: 15.12.2015

[33] Balasubramanee, V. & Wimalasena, C. & Singh, R. & Pierce, M., “Twitter boot-

strap and AngularJS: Frontend frameworks to expedite science gateway develop-

ment” In 2013 IEEE International Conference on Cluster Computing (CLUS-

TER), Indianapolis, IN, 2013, pp. 1.

http://mashable.com/2010/10/15/defining-mobile-platforms/#Kxm46bnJ2iqc
http://mashable.com/2010/10/15/defining-mobile-platforms/#Kxm46bnJ2iqc
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html
https://en.wikipedia.org/wiki/Web_application
http://www.w3.org/DOM/
http://searchsoa.techtarget.com/definition/JavaScript
http://searchsoa.techtarget.com/definition/JavaScript
http://blog.teamtreehouse.com/getting-started-with-grunt

75

[34] Airpair, “AngularJS Tutorial: A Comprehensive 10,000 Word Guide”,

[https://www.airpair.com/angularjs], Retrieved: 15.12.2015

[35] RisingStack blog, “The React.js Way: Getting Started Tutorial”,

[https://blog.risingstack.com/the-react-way-getting-started-tutorial/], Retrieved:

15.12.2015

[36] Techsutram, 2010, “HTML VS HTML5”,

[http://www.techsutram.com/2010/09/html-vs-html5.html], Retrieved: 15.12.2015

[37] Lee, J. 2013, “What Is HTML5, And How Does It Change The Way I Browse?

[MakeUseOf Explains]”,[http://www.makeuseof.com/tag/what-is-html5-and-how-

does-it-change-the-way-i-browse-makeuseof-explains/], Retrieved: 15.12.2015

[38] Wikipedia. 2012. “Windows Phone”,

[http://en.wikipedia.org/wiki/Windows_Phone] Retrieved: 25.12.2016.

[39] Nevalainen, J., 2012, “Windows Phone 8 Kernel Architecture”,

[http://j4ni.com/blog/?p=107], Retrieved: 15.12.2015

[40] WhiteChapel, A. & McKenna, S., “Vision and Architecture” In Windows Phone 8

Development Internal, 1
st
 ed., Microsoft, pp. 8-17

[41] Tutorials Point, “Android - Architecture”,

[http://www.tutorialspoint.com/android/android_architecture.htm], Retrieved:

15.12.2015

[42] Wikipedia, “Manufacturing Execution Systems”,

[https://en.wikipedia.org/wiki/Manufacturing_execution_system], Retrieved:

15.12.2015

[43] Rajput, R.K., “Concept of Manufacturing” In Manufacturing Technology, pp. 1-

37

[44] Wikipedia, “Sequence Diagram”,

[https://en.wikipedia.org/wiki/Sequence_diagram], Retrieved: 19.12.2015

[45] Wikipedia, “Nesting(process)”, [https://en.wikipedia.org/wiki/Nesting_(process)],

Retrieved: 19.12.2015

[46] Wikipedia, “Object-Relational mapping”, [https://en.wikipedia.org/wiki/Object-

relational_mapping], Retrieved: 19.12.2015

https://www.airpair.com/angularjs
https://blog.risingstack.com/the-react-way-getting-started-tutorial/
http://www.techsutram.com/2010/09/html-vs-html5.html
http://www.makeuseof.com/tag/what-is-html5-and-how-does-it-change-the-way-i-browse-makeuseof-explains/
http://www.makeuseof.com/tag/what-is-html5-and-how-does-it-change-the-way-i-browse-makeuseof-explains/
http://j4ni.com/blog/?p=107
http://www.tutorialspoint.com/android/android_architecture.htm

76

[47] WebStandards, “HTML Versus XHTML”,

[http://www.webstandards.org/learn/articles/askw3c/oct2003/], Retrieved:

17.12.2015

[48] CodeAurora, “Measuring FPS on the web”,

[https://www.codeaurora.org/blogs/mbapst/measuring-fps-web], Retrieved:

25.12.2015

[49] Lawson, N., 2012 , “The Quest for Smooth Scrolling”,

[http://www.pocketjavascript.com/blog/2015/2/3/the-quest-for-smooth-scrolling],

Retrieved: 25.12.2015

[50] JT, 2014, ”Optimising for 60fps Everywhere”,

[https://engineering.gosquared.com/optimising-60fps-everywhere-in-javascript],

Retrieved: 27.1.2015

[51] Lewis, P., 2012, “Scrolling Performance”,

[http://www.html5rocks.com/en/tutorials/speed/scrolling/], Retrieved: 28.12.015

[52] Weil, A., 2015, “Native app or Mobile app, Where do Customers Spend More

Money?”, [http://www.luxurydaily.com/native-app-or-mobile-web-where-do-

consumers-spend-more-money/], Retrieved: 28.12.2015

[53] Google, “Patterns - Gestures”,

[https://www.google.com/design/spec/patterns/gestures.html], Retrieved:

28.12.2015

[54] Archibald, J., “300ms tap, gone away ”,

[https://developers.google.com/web/updates/2013/12/300ms-tap-delay-gone-

away?hl=en], Retrieved: 3.1.2016

[55] VanToll, TJ., 2015, ”The 300ms Click Delay and iOS 8”,

[http://developer.telerik.com/featured/300-ms-click-delay-ios-8/], Retrieved:

4.1.2016

[56] Hoffman, C., 2014, “Why Browsers plug-Ins Are Going Away and what’s Re-

placing Them”, [http://www.howtogeek.com/179213/why-browser-plug-ins-are-

going-away-and-whats-replacing-them/], Retrieved: 10.1.2016

[57] Roettgers, J., 2014, “No blackout ahead: Netflix already ditched Silverlight for

chrome”, [https://gigaom.com/2014/11/26/netflix-silverlight-chrome/], Retrieved:

10.1.2016

https://www.codeaurora.org/blogs/mbapst/measuring-fps-web
http://www.pocketjavascript.com/blog/2015/2/3/the-quest-for-smooth-scrolling
https://engineering.gosquared.com/optimising-60fps-everywhere-in-javascript
http://www.html5rocks.com/en/tutorials/speed/scrolling/
http://www.luxurydaily.com/native-app-or-mobile-web-where-do-consumers-spend-more-money/
http://www.luxurydaily.com/native-app-or-mobile-web-where-do-consumers-spend-more-money/
http://jakearchibald.com/
https://developers.google.com/web/updates/2013/12/300ms-tap-delay-gone-away?hl=en
https://developers.google.com/web/updates/2013/12/300ms-tap-delay-gone-away?hl=en
http://developer.telerik.com/featured/300-ms-click-delay-ios-8/
http://www.howtogeek.com/179213/why-browser-plug-ins-are-going-away-and-whats-replacing-them/
http://www.howtogeek.com/179213/why-browser-plug-ins-are-going-away-and-whats-replacing-them/
file:///C:/Users/systa/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/0QSPC9OC/Roettgers
https://gigaom.com/2014/11/26/netflix-silverlight-chrome/

77

[58] Tamats, 2014, “Things I hate about WebGL”,

[http://www.tamats.com/blog/?p=604], Retrieved: 10.1.2016

[59] Jones, B., 2010, ”WebGL’s greatest challenge as gaming platform”,

[http://blog.tojicode.com/2010/07/webgls-greatest-challenge-as-gaming.html],

Retrieved:15.1.2016

[60] Hernandez, G., 2012, “Increase your Site’s Performance with Hardware- Accel-

erated CSS”, [http://blog.teamtreehouse.com/increase-your-sites-performance-

with-hardware-accelerated-css], Retrieved: 17.1.2016

[61] Mozilla, 2015, ”WebGL best practices”, [https://developer.mozilla.org/en-

US/docs/Web/API/WebGL_API/WebGL_best_practices], Retrieved:7.1.2016

[62] Lorenzo, DC., “WebGL™ Optimizations for Mobile”,

[http://malideveloper.arm.com/downloads/GDC14/Thursday/10.30amWebGL.pdf

], Retrieved: 20.1.2016

[63] Gomez, “Why Web Performance Matters: Is Your Site Driving Customers

Away?”,

[http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance

_matters.pdf], Retrieved: 25.1.2016

[64] Benchmarksgame,”The Computer Language Benchmarks game”,

[http://benchmarksgame.alioth.debian.org/u64q/performance.php?test=binarytrees

], Retrieved: 25.1.2016

[65] Geekregator, 2015, “Benchmarking C, Java, JavaScript and FreePascal”,

[https://geekregator.com/2015-01-15-

benchmarking_c_java_javascript_and_freepascal.html], Retrieved: 15.1.2016

[66] Lewis, P., 2013, “The Runtime Performance Checklist”,

[http://calendar.perfplanet.com/2013/the-runtime-performance-checklist/], Re-

trieved: 14.1.2016

[67] Peddie, J., 2011, “WebGL Security – Kill it before it grows”,

[http://jonpeddie.com/blogs/comments/webgl-security-kill-it-before-it-grows/],

Retrieved:

[68] KHRONOS, “WebGL Security”, [https://www.khronos.org/webgl/security/], Re-

trieved:14.1.2016

[69] Wikipedia, “Windows Phone”, [https://en.wikipedia.org/wiki/Windows_Phone],

Retrieved: 9.2.2016

http://blog.tojicode.com/2010/07/webgls-greatest-challenge-as-gaming.html
file:///C:/Users/systa/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/0QSPC9OC/Hernandez
http://blog.teamtreehouse.com/increase-your-sites-performance-with-hardware-accelerated-css
http://blog.teamtreehouse.com/increase-your-sites-performance-with-hardware-accelerated-css
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_best_practices
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_best_practices
http://malideveloper.arm.com/downloads/GDC14/Thursday/10.30amWebGL.pdf
http://malideveloper.arm.com/downloads/GDC14/Thursday/10.30amWebGL.pdf
http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf
http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf

78

[70] Android developers official site,

[http://developer.android.com/tools/performance/profile-gpu-

rendering/index.html] Retrieved: 14.2.2016

[71] Android developers official site,

[https://developers.google.com/web/fundamentals/performance/rendering/?hl=en]

Retrieved: 14.2.2016

[72] Johnston, M., 2015, “60 FPS on the Mobile Web”,

[http://engineering.flipboard.com/2015/02/mobile-web/], Retrieved: 15.2.2016

[73] Benchmark Games,

[http://benchmarksgame.alioth.debian.org/u64q/javascript.html], Retrieved:

15.2.2016

[74] Cozzi, P., & Riccio, P. “OpenGL Insights”, Taylor & Francis Group, LLC, pp. 27-

46

[75] Cozzi, P., & Riccio, P. “OpenGL Insights”, Taylor & Francis Group, LLC, pp. 47-

60

[76] Empaempa, “Using Float32Array slower than var”,

[https://github.com/empaempa/GLOW/issues/3], Retrieved: 16.2.2016

[77] Macdonald, A., “JavaScript Typed Arrays”,

[https://bocoup.com/weblog/javascript-typed-arrays], Retrieved: 16.2.2016

[78] Fimecc, [https://www.fimecc.com/content/manu-future-digital-manufacturing-

technologies-and-systems], Retrieved: 5.5.2016

[79] Spring, [https://spring.io/], Retreived: 6.5.2016

[80] Hibernate, [http://hibernate.org/orm/], Retreived: 6.5.2016

[81] Postgresql, [http://www.postgresql.org/], Retreived: 6.5.2016

[82] Apple,

[https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual

/iPhoneOSTechOverview/Introduction/Introduction.html], Retreuved: 8.5.2016

[83] Apple,

[https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/Kern

elProgramming/BSD/BSD.html#//apple_ref/doc/uid/TP30000905-CH214-

TPXREF101], Retreived: 8.5.2016

79

APPENDIX A: ONLINE SURVEY (THE DEVELOPER’S PER-

SPECTIVE ON WEB VS NATIVE TECHNOLOGIES)

Figure 21. Questionnaire for Online survey, page 1/5

80

Figure 22. Questionnaire for Online survey, page 2/5

81

Figure 23. Questionnaire for Online survey, page 3/5

82

Figure 24. Questionnaire for Online survey, page 4/5

83

Figure 25. Questionnaire for Online survey, page 5/5

84

APPENDIX B: EVALUATION TEST BY PARTICIPANTS

Table 7. List of steps performed during usability test by participants

Steps Description

1 Login with username “janne” and password “operator”.

2 Fill up the profile with your interests and skills.

3 Go to the order screen and search the order by keyword

4 Filter Order list by interest and then by skills

5 Remove filters on list

6 Place an order of part “pp_part3” with work type “Bending” and the

quantity should be 5

7 Start that order; select the amount of items you want to start with, let’s

say 3

8 Go to the process list and check if the order you started is running?

9 If it is running then stop it. Wait for 5 seconds and then resume it again

and wait till the process ends.

10 Finish the process that just completed. Mark it as successful if it suc-

cessfully completed otherwise mark it as failure and give the reason of

failure.

11 Go the Item store screen and add the finished item to the store. Select

the type of work that the item went through. Add the item in store A1

with quantity 2 (although we processed 3 quantity of item)

12 Add the remaining one part of “PP_PART3”.

13 Move 2 quantities of item from store A1 to B1.

85

14 View the item, rotate it, zoom it.

15 Go to the map screen and scan the QRCode to check the map. What

does the map say?

16 Logout

Table 8. List of questions that were asked from participant after they performed all steps of

usability test

Have you been able to perform all steps smoothly?

Was the process updates from the server smooth? The progress bar was run-

ning smooth? Did the stop, finish and hold button respond quickly or there was

any delay? Compare web and native tap gesture.

How well is the interaction with 3d image of the items? Are you able to en-

large the image in web and in native? How smooth is the rotation of the image

both in web and native?

The barcode responded quickly? Did it localize the bar code by itself? How

quickly did the scanning process take place?

Scroll the order screen as fast as you can. Was the update of the screen

smooth?

Is the web page rendering fast enough as compare to native?

86

GUI: intuitive, responsive, Clear, consistent, Attractive. Compare web and na-

tive.

Overall which app was better in terms of performance?

What are the extra features that MES interface could have?

87

APPENDIX C: SCREEN SHOTS OF MOBILE MES

Figure 26. Login Screen

88

Figure 27. Side Menu for navigation

89

Figure 28. Popup that appears when you add item to Store

90

Figure 29. Popup that appears when you finish the processed item

91

Figure 30. Item store screen which shows where the item is placed, what is the

quantity and with what manufacturing step it went through

92

Figure 31. Popup that appears when you move an item from one store to an-

other

93

Figure 32. Popup that appears when we place an order

94

Figure 33. Popup that appears when we start to process an order

95

Figure 34. Filter order list by typing a keyword on search bar

96

Appendix D: JavaScript Code for Performance Test

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

<script>
 var arr = [];
 function MyRandom(myseed) {
 this.seed = myseed;
 }
 MyRandom.prototype.next = function() {
 this.seed *= 1103515245;
 this.seed += 12345;
 this.seed /= 65536;
 this.seed %= 20;
 return Math.floor(this.seed);
 };
 var mysort = function(n) {
 for (var i = 0; i < (n - 1); i++) {
 for (j = i + 1; j < n; j++) {
 if (arr[j] < arr[i]) {
 temp = arr[i];
 arr[i] = arr[j];
 arr[j] = temp;
 }
 }
 }
 }
 function a() {
 var n = document.getElementById('txtbx').value;
 var start = new Date().getTime();
 var rand = new MyRandom(27);
 for (var i = 0; i <= n - 1; i++) {
 arr.push(rand.next());
 }
 mysort(n);
 var end = new Date().getTime();
 var time = end - start;
 alert('Execution time: ' + time);
 }
 </script>

Program 4. Javascript code for performance test.

