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ABSTRACT 

THOMAS HEATH: Autonomous Industrial Machines and the Effect of Autonomy 
on Machine Safety 
Tampere University of Technology 
Master of Science Thesis, 62 pages 
March 2018 
Master’s Degree Programme in Automation Engineering 
Major: Fluid Power 
Examiner: Professor Kalevi Huhtala 
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Autonomous machines and vehicles are an increasing part of everyday life and industrial 

operations. These machines and vehicles have enjoyed rapid technological advancements 

in recent years, which has led to increasingly sophisticated functions and functionalities. 

The advancements in autonomous technologies have, however, given rise to questions 

and concerns relating to the safety of these machines and vehicles, and on how an 

adequate level of safety can be ensured when no dedicated operator or driver is present.  

This thesis looks at the main areas that affect the overall safety of autonomous industrial 

machines and civilian road vehicles, and presents the most prominent challenges faced in 

ensuring the safety of autonomous applications. The goal of the thesis is to give the reader 

an overview of the safety-related aspects of autonomy and to show what has to be 

considered when ensuring an adequate level of safety for autonomous machines or 

vehicles. This is achieved by an extensive literature review on autonomous applications 

in both industrial and automotive fields, and on the safety-related aspects of autonomy. 

Additionally, mining is used in the thesis as an example of autonomous machines in 

practice and on the challenges autonomy can face in industrial operations.  

Based on the research carried out, it can be said that the overall safety of machine 

autonomy is currently hindered by two main aspects: the lack of applicable standards, 

legislation and guidelines regarding the autonomy of machines and vehicles, and the 

paradox that arises from balancing the desired level of autonomy with the needed level 

of safety. This has led to a situation where, in theory, highly complex and sophisticated 

autonomous machines are possible from a technical standpoint, but they lack a common 

and thorough method for ensuring an adequate level of safety. 
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Autonomiset työkoneet ja ajoneuvot ovat kasvavissa määrin osana arkielämää ja 

teollisuutta. Lähivuosina nämä laitteet ovat hyötyneet soveltuvien teknologioiden 

nopeasta kehityksestä, mikä on johtanut hyvinkin kehittyneisiin toimintoihin ja 

toiminnallisuuksiin. Autonomisten teknologioiden kehitys on kuitenkin nostanut esille 

kysymyksiä ja huolia näiden laitteiden turvallisuuteen ja sen varmistamiseen liittyen 

etenkin tilanteissa, joissa laitteella ei ole käytännössä selkeää kuljettajaa.  

Tässä diplomityössä tutkitaan tärkeimpiä osa-alueita, jotka vaikuttavat autonomisten 

työkoneiden ja ajoneuvojen turvallisuuteen, sekä esitellään suurimmat haasteet 

autonomisten laitteiden turvallisuuden varmistamisessa. Työn päämääränä on tarjota 

lukijalle kattava katsaus autonomian turvallisuuteen liittyvistä osa-alueista, sekä osoittaa 

mitä tulee huomioida, jotta voidaan saavuttaa tarvittava turvallisuuden taso autonomiselle 

laitteelle. Työn päämäärän perustana on kattava kirjallisuustutkimus autonomisiin 

työkoneisiin ja ajoneuvoihin, sekä näiden turvallisuuteen liittyviin osa-alueisiin liittyen. 

Lisäksi työssä käytetään kaivosteollisuutta autonomian käytännön esimerkkinä, jonka 

avulla esitellään suurimpia haasteita, joita autonomia voi kohdata käytännön 

ympäristöissä.  

Tehdyn tutkimuksen perusteella voidaan todeta, että autonomisten laitteiden 

turvallisuutta jarruttaa tällä hetkellä kaksi pääasiallista seikkaa: sopivien lakien, 

standardien ja ohjeistuksien puute, sekä ristiriita, joka syntyy tasapainoilusta kehittyneen 

autonomian ja riittävän turvallisuuden tason välillä. Tämä on johtanut tilanteeseen, jossa 

teoriassa hyvinkin monimuotoiset ja kehittyneet autonomiset laiteominaisuudet ovat 

teknologian kannalta mahdollisia, mutta näiden toteuttamista varten ei ole olemassa 

yhtenäistä ja kattavaa menetelmää, jolla riittävä turvallisuuden taso voidaan varmistaa. 



iii 

PREFACE 

In late 2017, I was offered an interesting new career path at the company I work for. This 

was a great opportunity, but as I had not started work on my thesis yet, I was reluctant to 

accept. Luckily, my employer was generous enough to give me a few months off to finish 

my studies. This thesis is now the result of those dark winter months that were filled with 

long days and hard work. 

I would like to thank Professor Kalevi Huhtala from the Department of Intelligent Hy-

draulics and Automation for arranging a very interesting subject for my thesis on very 

short notice. I also give my heartfelt thanks to my family for their support over the years 

and to my girlfriend Heini. Lastly, I would also like to give separate thanks to my father 

Peter for proofreading and checking the grammar of this thesis. 

 

Tampere, 30.3.2018 

 

Thomas Heath 

 



iv 

CONTENTS 

1. INTRODUCTION .................................................................................................... 1 

2. AUTONOMOUS MACHINES IN GENERAL ....................................................... 4 

2.1 Definition of an autonomous machine ........................................................... 4 

2.2 Standards and legislation ................................................................................ 5 

2.2.1 Standards on safety integrity levels ................................................. 6 

2.2.2 Other standards for industrial autonomy .......................................... 8 

2.2.3 The current state of autonomous road vehicle legislation ................ 8 

2.3 Classifications for autonomous machines ...................................................... 9 

2.3.1 Road vehicles ................................................................................... 9 

2.3.2 Industrial perspective ..................................................................... 13 

3. AUTONOMY SAFETY CHALLENGES .............................................................. 17 

3.1 The nature of autonomous safety hazards .................................................... 18 

3.2 Civilian and industrial differences ............................................................... 19 

3.3 System architectures ..................................................................................... 19 

3.3.1 Problem areas ................................................................................. 21 

3.3.2 Preventing hazards on an architecture level ................................... 23 

3.3.3 Separate safety layers ..................................................................... 24 

3.4 Localisation and motion planning ................................................................ 26 

3.4.1 Localisation .................................................................................... 26 

3.4.2 Motion planning ............................................................................. 28 

3.5 Situational awareness ................................................................................... 30 

3.6 Risk assessments .......................................................................................... 32 

3.7 System verification challenges ..................................................................... 34 

3.8 Moral and ethical challenges ........................................................................ 36 

3.9 Autonomy-safety-paradox ............................................................................ 39 

4. AUTONOMOUS INDUSTRIAL MACHINES IN PRACTICE: MINING ........... 41 

4.1 Mining and the benefits of higher autonomy ............................................... 41 

4.2 Autonomy challenges in mining .................................................................. 43 

4.3 Current developments in autonomous mining ............................................. 44 

4.3.1 Autonomous underground haulage ................................................ 45 

4.3.2 Safety of autonomous haulage machines and standard ISO 17757 47 

4.3.3 Other autonomous mining machines.............................................. 49 

4.3.4 Mining systems and the mine of the future .................................... 50 

4.4 Safety challenges in autonomous mining ..................................................... 52 

4.5 Other industrial autonomous machines ........................................................ 54 

5. CONCLUSIONS ..................................................................................................... 55 

REFERENCES ................................................................................................................ 58 

 



v 

LIST OF TERMS AND ABBREVIATIONS 

ASIL Automotive Safety Integrity Level 

AV  Autonomous Vehicle 

AVC Autonomous Vehicle Control 

AVO   Autonomous Vehicle Operation 

AVP Autonomous Vehicle Protection 

AutoMine A mine automation system offered by Sandvik Mining & Rock 

Technology 

CPU Central Processing Unit 

DDT Dynamic Driving Task 

ECU Electronic Control Unit 

GPS Global Positioning System 

GPU Graphics Processing Unit 

IEC International Electrotechnical Commission 

ISO International Organization for Standardization 

I/O Input/Output  

LHD Load-Haul-Dump (Machine) 

NHTSA National Highway Traffic Safety Administration 

ODD Operational Design Domain 

POSE Position and Orientation 

SAE Society of Automotive Engineers 

SFS Finnish Standards Association 

SIL Safety Integrity Level 

 



1 

1. INTRODUCTION 

The nature of industrial machines and the role of their operators is currently in a state of 

change. Traditionally, industrial machines have been human-operated machines that 

perform either manual or automatic functions while requiring almost constant control and 

monitoring of their actions. Therefore, the machines require the presence of an operator, 

which at times requires the operator to expose themselves to hazardous environments and 

other risks. A vision of a machine that can perform these actions autonomously, without 

the need for an operator, has been in the minds of researchers and manufacturers for the 

past several decades. Similarly, in automotive fields, the idea of a completely self-driving 

car has been a vision of the future for a number of years. Due to the advancements in 

technology in recent years, the idea of self-operating machines and self-driving vehicles 

is no longer a distant vision, but rather a possibility of the very near future.  

The automation of machines and their features is, however, nothing new. Numerous 

different automatic functions and features have been available for machines and vehicles 

for years, which have been used to lessen the workload on operators and drivers and in 

some cases to minimise exposure to hazards they might be faced with. The impact of 

autonomy on machines, however, is far more complex. Autonomy offers a way for 

machines or vehicles to gather information on themselves and on their surroundings, and 

importantly, to use this information to make decisions and actions to fulfil a goal they 

have been set – without the need for intervention from the operator or driver, and thus 

eliminating exposure to risks and hazards completely.   

Autonomous machines are therefore highly complex machines that are able to perform 

independent decision-making and to operate without the supervision of an operator. 

Ensuring the safety and safe operation of such a machine is therefore a challenge that has 

not been previously faced that requires new methods and new ways of thinking. The safe 

operation of manned machines has ultimately always been the responsibility of the 

operators themselves, who have had to control the machine and monitor their 

environment in a manner that ensures no harm or hazards result from the operation of the 

machine. In worst-case hazardous situations, the operator could always act as a safety net 

of sorts if needed, stopping the machine before any harm could occur. However, 

autonomous machines do not have this advantage, and thus their safety must be ensured 

by other methods. The importance of these methods cannot be overstated, as in 

autonomous applications a small error in operation can lead to great consequences, for 

example, if an autonomous road vehicle encounters a fault in a densely populated area.  
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Autonomy is a relatively new field of research, which is why most research on machine 

and vehicle autonomy has centred on proof-of-concepts and on how these systems could 

be designed and implemented in practice. The safety of such machines has, however, 

generated far less research, but some previous research is available. Similarly, very few 

standards and other legislation on autonomous machines or on their safety are available. 

This has led to a situation where complex autonomous machines and vehicles are possible 

from a technical standpoint, but manufacturers and developers lack a common, 

comprehensive and effective way to ensure the safety of the machines. By their very 

nature, autonomous machines and vehicles operate in varyingly differing areas and 

around varying types of other machines, vehicles and people, which means they are faced 

with an essentially infinite number of different operational situations. Without proven 

methods for ensuring safety, it is a considerable challenge to make sure the autonomous 

machine or vehicle can operate safely in every operational situation. As the situations are, 

in theory, infinite in number, Murphy’s Law can be used to portray the scope of the 

problem: any error or fault in operation can lead to a safety incident given enough time, 

if no precautions are put in place.  

As current technology allows for fairly complex and sophisticated autonomous machines, 

manufacturers are faced with a paradox of sorts. Especially due to common methods not 

being available, ensuring safety of autonomous machines becomes a balancing act 

between an adequate level of safety, the level of autonomy and the functionalities the 

machine can offer. For example, it is relatively effortless to ensure the safety of a fully 

autonomous machine, if the functionality of the machine is simple and minimalistic. 

Similarly, it is relatively straightforward to create a fully autonomous machine with 

complex features, if it does not need to adhere to any safety requirements. 

When comparing autonomous civilian road vehicles and autonomous industrial machines, 

it is clear the former is the more researched and discussed field. This is largely because 

autonomous road vehicles attract far more interest, as they affect most of the general 

populous, rather than only a select field. Hence, there is more information available on 

autonomous road vehicles, such as standards, guidelines and ways of classifying levels 

of autonomy, than on the equivalent industrial machines. Therefore, many points made in 

this thesis are originally aimed solely for civilian autonomous vehicles (AV), but the 

knowledge gained from the research and development in this area will be a benefit for 

industrial fields, as the challenges and technical hurdles faced by both fields are very 

similar. 

This thesis is based on a thorough literature review on autonomous industrial machines 

and road vehicles with an emphasis on their safety. The goal of this thesis is to present 

and discuss the main aspects of autonomous machine and system design that affect overall 

machine safety. Furthermore, the main challenges of ensuring safety that arise from the 

increase in autonomy in machines and vehicles will also be discussed. The point of this 

thesis is not to present a specific practical method of ensuring safety for autonomous 
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machines, but rather to be an overview of autonomous safety and the challenges and 

hurdles that have to be overcome to create safe autonomous machines and vehicles.  

The thesis begins with general information on autonomous machines and vehicles, such 

as a definition on what constitutes as an autonomous machine. Importantly, the distinction 

between autonomy and automation is presented because these terms are often used 

interchangeably even though they imply notably different functionalities in machines and 

vehicles. Additionally in this chapter, an overview of the current standards and legislation 

that apply to autonomous industrial machines and civilian road vehicles is presented. This 

information is then used to present different categorisation methods for machines based 

on their autonomy. As no official categorisation methods exist that can be directly applied 

to industrial machines, a closer look is taken at the equivalent categorisations for 

autonomous road vehicles. Additionally, previous research is used to present alternative 

methods for categorising the levels of autonomy in industrial machines.  

In the next chapter, the main safety challenges that arise from the increase in autonomy 

are discussed. The first main challenge is to construct system architectures that are 

suitable for autonomous applications and also ensure effective performance and overall 

safety. The other main challenges include the position and movement planning 

characteristics of autonomous machines, which include such topics as localisation, 

motion planning and situational awareness. Next in the chapter, the risk analysis and 

verification challenges and methods of autonomous systems, which ensure the safe 

operation of machines in use, are presented. Lastly, the moral and ethical dilemmas of 

autonomy, which has been a widely debated topic in recent years as it is possible the 

actions of an autonomous machine or vehicle results in the death of a person, are 

discussed. This topic is presented from the viewpoint of road vehicles, as this has not 

been discussed in industrial applications.  

In the final main chapter, the mining industry is used as a practical example of 

autonomous machines in operation. The chapter begins with an overview of mining and 

mining operations. It is also discussed how mining can benefit from the increase in 

autonomy, as mining work tasks are often hazardous and repetitive and are thus well 

suited for autonomy. Next, the main challenges that are faced in increasing autonomy in 

mining applications, which stem mainly from the operational environments of mining, 

are presented. After this, the current developments in autonomous mining are discussed, 

with an emphasis on load-haul-dump mining machines, the autonomy and automation of 

which have been researched for over three decades. The last main topic in the chapter is 

the main safety challenges in autonomous mining, which are mainly the challenges in 

overcoming the harsh and hazardous operating environments.    
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2. AUTONOMOUS MACHINES IN GENERAL 

Autonomy has been a vision of the future for several decades. For instance, automotive 

manufacturers, such as General Motors, have shown interest in self-driving cars since the 

forties and fifties. In the last few decades, however, autonomy has evolved from a vision 

of the future to actual reality with offerings available in both industrial and civilian fields 

with varying degrees of autonomy. Completely self-driving cars and self-operated 

machines are still largely under research and development, but they too are not far in the 

future. 

This chapter begins with the definition of an autonomous machine and what is considered 

autonomy and what is not is discussed. Next, a brief overview is given of the current state 

of legislation and standards that apply to autonomous industrial machines and 

autonomous civilian vehicles. Lastly, as autonomy can be implemented in varying 

degrees, standards and other sources are used to present different ways to classify the 

level of autonomy of machines and vehicles from both automotive and industrial 

viewpoints. 

2.1 Definition of an autonomous machine 

Autonomy is often defined in a broader sense as meaning: “the ability to self-manage, to 

act or to govern without being controlled by others” (Baudin et al. 2007, p.5). In a more 

practical sense, an autonomous machine or system is an entity that is able to gather 

information on its surroundings and use this information to make decisions and perform 

actions in order to fulfil an ultimate goal given to it by an outside source. This outside 

source is usually an operator in industrial applications or a driver in autonomous road 

vehicles. Such goals given to an autonomous machine can be for example: “travel to this 

location” or “perform task A when criteria X is met”. 

The terms autonomy and automatic are often used interchangeably, as they are both 

similar in meaning and offer similar functions in machines. There is, however, a clear 

distinction between the two. An autonomous system has greater complexity and is 

capable of making decisions based on the information it has gathered, and then acts on 

those decisions. As the situations where autonomous machines make decisions vary, and 

no two situations are the same, there is no way to determine accurately how an 

autonomous system will act in a random and unknown situation in the future. Only broad 

assumptions can be made. On the contrary to autonomous systems, an automatic system’s 

behaviour can be determined beforehand, as it is always a predefined function or set of 

functions in regard to a specific input. (Baudin et al. 2007) For example, a simple cruise 

control feature could be classified as an automatic function: a set speed is given to the 
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cruise control module by the driver, and the system adjusts the speed of the vehicle to suit 

this value. Adaptive cruise control, however, is an autonomous feature because the 

vehicle makes decisions on whether to accelerate or brake in regard to the distance of the 

vehicle in front. Autonomy is not, however, a binary classification. Machines may have 

varying degrees of autonomy ranging from full autonomy to mere autonomous features. 

These levels of autonomy will be discussed later in chapter 2.3.  

Autonomous machines rarely operate in complete isolation, but rather operate around 

other machines and vehicles, both manned and unmanned, people and other dynamic 

objects. In the literature, these are often called agents. These are entities that act in the 

same area as the autonomous machine and have their own trajectories, goals and 

intentions that the autonomous machine must take into account. Another common term 

found in the literature is the state of an autonomous machine. Put simply, states are the 

sum of both internal and external variables of the autonomous machine in a specific 

situation, at a specific point in time. Thus, states range from normal safe operational states 

to states that can be abnormal and include some form of risk or hazard. 

2.2 Standards and legislation 

Autonomous machines and vehicles have enjoyed rapid technical advancements in recent 

years. This has led to numerous plausible applications where autonomy can be utilised.   

State regulatory establishments and standardising organisations have not, however, been 

able to keep up with these advancements in technology, which has led to a situation where 

numerous autonomous functions and features are technically plausible, but they lack a 

common method for development, verification and for ensuring safety, because of the 

lack of appropriate standards and legislation.  

Some previous standards are available that can be, at least in part, applied to autonomous 

industrial machines. These include standards relating to the safety integrity of machine 

control systems, such as IEC 61508: Functional Safety of 

Electrical/Electronic/Programmable Electronic Safety-related Systems and ISO 13849: 

Safety of machinery -- Safety-related parts of control systems. For civilian vehicles, there 

exists a similar standard - standard ISO 26262: Road vehicles – Functional safety. Some 

more specific and definitive standards for autonomous industrial machines are in the 

development phase and some, such as ISO 17757: Earth moving machinery and mining - 

autonomous and semi-autonomous system safety, have very recently been released.  

In the automotive field, the state of autonomous road vehicle legislation and regulation in 

general is still a work in progress. Some countries and states are in the stages of preparing 

and passing legislation on autonomous vehicles, but the work is still very much ongoing.  
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2.2.1 Standards on safety integrity levels 

Several standards are available for ensuring the safety of electrical control systems, and 

these standards can also be applied to autonomous machines to some degree. The two 

most prominent standards in this area are IEC 61508: Functional Safety of 

Electrical/Electronic/Programmable Electronic Safety-related System and ISO 13849: 

Safety of machinery -- Safety-related parts of control systems. Furthermore, function- 

specific standards have been developed based on the aforementioned standards, such as 

ISO 26262: Road vehicles – Functional safety, which is specifically intended for road 

vehicles. 

A system is categorised as safety-related when it performs functions that keep safety- 

related risks at a tolerable level. Therefore, if these functions do not operate correctly and 

this corresponds to increased safety-related risks, the system is labelled as safety-related. 

(SFS IEC/TR  61508-0 2012) As such, autonomous machines can be categorised as 

safety-related as a whole because they have numerous systems that ensure the safety and 

correct operation of the machine. If the machine does not operate as intended, a definite 

safety risk is present. Thus, standards on safety integrity levels (SIL) can be applied to 

autonomous machines, at least in part. 

Functional safety is described in the standards as the correct operation of the safety-

related functions or parts of a system. In other words, if a safety-related control system 

performs functions that effectively negate the risks posed by the operation of the system, 

it is called functional safety. An example of this is an electric motor with a temperature 

sensor that monitors the temperature of the motor. If the sensor senses the motor is about 

to overheat, it will shut the motor off, thus reducing risk. Here, the system performs 

actions that correctly minimise safety-related risks, thus performing functional safety. 

The probability of functional safety, i.e., the probability of safety functions operating as 

they are intended to operate, is called safety integrity. In standards such as IEC 61508, 

safety integrities are separated into levels, with each level having its own maximum and 

minimum limits for the probabilities of failure of the safety-related function. (SFS 

IEC/TR  61508-0 2012) 

Standard IEC 61508 separates safety integrity levels of electrical, electronic, and 

programmable electronic safety-related systems into four levels ranging from SIL1 to 

SIL4, with SIL4 offering the highest level of safety integrity (SFS IEC/TR  61508-0 

2012). The implementation of the standard has three main goals: to determine the needed 

safety integrity level of the system, to guide the development process of the system and 

to verify that an adequate level of safety has been reached. In figure 1, it is demonstrated 

how this is incorporated into the development phase of a system. (Redmill 2000) 
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Figure 1. The role of SIL’s in the development process (Redmill 2000) 

The implementation of IEC 61508 and safety integrity levels can be seen as a funnel. The 

process begins with the risk assessments of the system, with the goal of determining the 

current risk level posed by the system. If these risks are deemed too great, a suitable risk 

reduction method is implemented, such as a safety function. The failure probability of the 

whole system, including the safety function, is then calculated, which corresponds to a 

specific SIL. If this SIL is too low, the safety function or the rest of the system can be 

altered to reach the desired SIL. After choosing a SIL, standard IEC 61508 supports and 

controls the development process of the system by offering guidelines and instructions 

on how a specific SIL can be achieved. Standard IEC 61508 is based on a life-cycle 

approach, which ensures the verification of the overall system safety and takes into 

account the whole life-cycle of the system. (Redmill 1998) 

The standard ISO 13849: Safety of machinery -- Safety-related Parts of Control Systems, 

is similar to IEC 61508, but it is a simplified version that is only applicable to machinery 

control systems. Instead of categorising probabilities into safety integrity levels, the 

standard uses Performance Levels. Additionally, the equivalent standard for automotive 

applications is ISO 26262: Road vehicles – Functional safety. The standard is a simplified 

version of IEC 61508 that takes into account aspects important to the automotive field. 

The standard also uses automotive safety integrity levels (ASIL) instead of traditional 

safety integrity layers. 

The main issue with applying the current standards on safety integrity levels to 

autonomous machines is that the standards often rely on human intervention in their 

hazard and risk analyses, which may not be possible in autonomous machines. As such, 

none of the aforementioned standards can be utilised fully in their current state. Therefore, 

new standards are needed, or the current standards must be updated for autonomous 

applications. (Behere et al. 2016, Kaznov et al. 2017) 
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2.2.2 Other standards for industrial autonomy 

To date, only a few standards for autonomous industrial machines have been released by 

the major standardising organisations. The formation of new committees and work on 

new standards are, however, currently ongoing.  

In mining, standard ISO 17757: Earth moving machinery and mining - autonomous and 

semi-autonomous system safety was released in late 2017 by the technical committee 

TC127, which is the committee in charge of earth moving machinery. The standard was 

a joint effort between TC127 and the committee on mining TC82. The standard outlines 

the safety requirements for autonomous and semi-autonomous machines used for earth 

moving in mining, such as load-haul-dump machines.  

The technical committee for mining, TC82, has not yet itself released any standards 

regarding machine autonomy. Negotiations are, however, ongoing to form a new 

subcommittee, SC8, for autonomous mining. This committee will, once formed, prepare 

new standards for autonomous mining applications. The current problem with forming 

the subcommittee is the scope and overlap with the previously mentioned standard ISO 

17757. (Kempson et al. 2017) 

Other developments in autonomous industrial machine standards include ISO 18497: 

Agricultural machinery and tractors -- Safety of highly automated agricultural machines, 

which is still under development (International Organization for Standardization 2018). 

No other information is available on this standard as of yet. 

2.2.3 The current state of autonomous road vehicle legislation 

Currently, the amount of state legislation in effect for autonomous vehicles is minimal 

both in Europe and in the US. The reason behind this is that legislation has not been able 

to keep up with the rapid advancements in autonomous technologies. Steps have been 

recently made, however, to pass legislation and standards for autonomous vehicles in the 

automotive field.  

In regard to autonomous road vehicles, the US has been the forerunner in passing 

legislation, as several US states have been implementing AV laws since 2011. US states 

could even be said to be in competition with each other in trying to be the leading state in 

the implementation of autonomous vehicles and laws, and thus being the forerunner in 

technological advancement. This is in part due to the push from companies such as 

Google who will benefit from being able to use autonomous vehicles on the roads as 

quickly as possible. Most of the legislation passed thus far has allowed the testing of 

autonomous vehicles on public roads, but few have allowed the actual civilian usage of 

AV’s. (Schreurs & Steuwer 2016) Continuing the trend set by US states, in the latter half 

of 2017 the US House of Representatives passed a bill entitled the “SELF DRIVE Act” 



9 

(2017). The aim of the bill is to create a nationwide framework for the regulation of AV’s. 

The bill, if passed into full legislation, would be the first federal legislation regarding 

AV’s in the US, and thus be a large step for AV legislation in the country. 

In Europe, the state of autonomous road vehicle legislation is not as advanced as in the 

US. On an EU level, autonomous vehicle legislation is almost non-existent, as of 2015. 

There is also little mention of autonomy in the “EU 2020” strategy – the EU agenda for 

growth in the coming decade. On a country level, the situation is similar, albeit for a few 

exceptions. Especially Sweden and Germany have passed legislations for AV’s, where, 

for example, Sweden has allowed the civilian testing of AV’s. (Schreurs & Steuwer 2016) 

The EU has, however, funded a vast number of research programs on autonomous 

technologies ranging from driver assistance systems to fully autonomous transport 

systems, thus showing a great interest in autonomy. These projects include the Eureka 

PROMETHEUS project (Programme for a European Traffic of Highest Efficiency and 

Unprecedented Safety), which ran from 1987 to 1995, and the ongoing SARTRE project 

(Safe Road Trains for the Environment), which aims to research vehicle platooning. 

(European Road Transport Research Advisory Council 2015) 

2.3 Classifications for autonomous machines 

Due to the varying degrees of autonomous functions and features in autonomous 

machines and vehicles, different classifications have been conceived to help with, for 

example, the applicability of standards and other legislation. In this chapter, some of these 

classifications for both road vehicles and industrial machines are discussed.  No common 

method for classifying autonomous industrial machines, however, currently exists, which 

is why a close look is taken at the equivalent road vehicle classifications, as these can be 

used as a guide or starting point for classifications for industrial machines.  

2.3.1 Road vehicles 

The two most notable classification methods for autonomous road vehicles are the SAE 

International standard SAE J3016: Taxonomy and Definitions for Terms Related to 

Driving Automation Systems for On-Road Motor Vehicles (SAE International 2016), 

originally released in 2014, and the guideline Preliminary Statement of Policy 

Concerning Automated Vehicles issued by the US National Highway Traffic Safety 

Administration (NHTSA) (2013). The former separates autonomy into six levels and the 

latter into five.  

The SAE J3016 classification is a widely used categorisation method for autonomous 

road vehicles, and it has been taken advantage of in legislation, for example in the United 

States (The United States House of Representatives 2017). The classification separates 

AV’s into six different levels ranging from 0 (no autonomy) to 5 (full autonomy). These 

levels are presented in table 1 with a brief description of each level.  
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Table 1. SAE J3016 classifications for AV’s (adapted from SAE International 2016) 

SAE 

Level 

Name Description 

0 No Automation No autonomous features 

1 Driver Assistance Longitudinal or lateral motion autonomy 

2 Partial Automation Longitudinal and lateral motion autonomy 

3 Conditional Automation Full autonomy in certain situations, driver as a fallback 

4 High Automation Full autonomy in certain situations, system as a fallback 

5 Full Automation Full autonomy in all situations, system as a fallback 

 

Currently, vehicles with autonomous functions up to level 2, such as Tesla’s Auto Pilot, 

are commercially available. Level 3 autonomy is predicted to be available in early 2020, 

while levels 4 and 5 are estimated to be available in late 2020 (European Road Transport 

Research Advisory Council 2015). 

In the standard, a clear distinction between the different levels of autonomy is made. The 

base level, level 0, is a vehicle without any autonomous features, such as a vehicle 

manufactured in the previous decade. This level also includes modern vehicles with 

warning systems, such as lane departure warning systems, that do not affect control of the 

vehicle. (SAE International 2016) 

Next, The Driver Assistance and Partial Automation levels are the first two levels with 

actual autonomous features. The distinction between the two is that in Driver Assistance 

the autonomous system controls either the longitudinal or the lateral movement of the 

vehicle, but not both. In Partial Automation, on the other hand, the autonomous system 

controls both. In practice, longitudinal autonomy is often adaptive cruise control, where 

the system maintains a fixed distance to the vehicle in front. Lateral autonomy is lane-

keeping assist, where the system keeps the vehicle between lane markers. These 

autonomous functions are available only in certain situations, generally only when the 

system or driver deems them fit. The driver on these levels is in charge of monitoring the 

surroundings of the vehicle and acts as a fallback if needed, i.e., the driver takes back 

control if the autonomous system encounters an error, fault or a situation where it can no 

longer operate autonomously. (SAE International 2016)  

SAE J3016 makes a clear distinction between the previous levels and levels 3 to 5, which 

is signified by the thick line in the above table. While on levels 0 to 2, the driver performs 

most, or all, of the driving functions, described as dynamic driving tasks (DDT) in the 

standard. However, on levels 3 to 5, the autonomous system performs all of the DDT’s 

and monitors the surroundings of the vehicle, when the system is active. Thus, when the 

autonomous system is active, the driver releases all control to the autonomous system. 
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Therefore, the driver can even be removed completely, as on level 5. (SAE International 

2016) 

On level 3, the vehicle is able to perform fully autonomous behaviour in certain situations. 

These certain situations are described in the standard as Operational Design Domains 

(ODD), which are specific situations where the autonomous features are designed to 

function. Level 3 ODD’s and autonomous features could, for example, be self-parking in 

a parking lot or autopilot on a motorway. When the autonomous system is active, it has 

complete control of the vehicle, but the driver is still used as a fallback in case of faults 

or other problems the autonomous system may face, similarly to level 2. (SAE 

International 2016) 

The next level, High Automation, increases the role of the autonomous system. The 

functionality of the level is the same as level 3, but with the distinction that the driver 

does not need to be a fallback if the system faces problems. The fallback functionality is 

performed by the system itself. In such a scenario, the goal of the autonomous system is 

to achieve a minimal risk condition and keep the system in a safe state. As such, level 4 

allows for full autonomy in the scope of an ODD, where the driver can be completely 

passive and even sleep. (SAE International 2016) 

The last level, Full Automation, offers full autonomy of the vehicle in all situations, i.e., 

the ODD can be said to be infinite. Vehicles of this level perform all DDT’s and do not 

need the input of a driver and, as such, the driver does not need to be in the vehicle. (SAE 

International 2016) 

The other major categorisation method for AV’s is the guideline issued by the NHTSA. 

The categories are similar to the ones in standard SAE J3016, but in the NHTSA 

classification there are only five levels, from 0 (no autonomy or automation) to 5 (full 

autonomy), as opposed to six. These levels are presented in table 2 with a brief description 

of each.  

Of note is that the NHTSA guideline does not use the word “autonomous” in its 

categorisations. The term is only used once in the guideline to describe self-driving cars 

as autonomous. All other levels of autonomy are described as levels of automation. Thus, 

the categorisations may be misleading as there is no distinction where the threshold 

between automation and autonomy lies. While the NHTSA categorisation is discussed in 

this text, the terms automatic and autonomous will be used according to the definition in 

chapter 2.1. 
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Table 2. NHTSA classifications for AV’s 

NHTSA 

Level 

Name Description 

0 No Automation No autonomous or automatic features 

1 Function-specific 

Automation 

One or more autonomous or automatic functions, overall 

control with driver 

2 Combined Function 

Automation 

Autonomy of at least two primary control functions in certain 

situations, driver to take control on short notice if needed  

3 Limited Self-Driving 

Automation 

Full autonomy in certain situations, driver needed to 

occasionally take control  

4 Full Self-Driving 

Automation 

Full autonomy in all situations  

 

The base level, level 0, is similar to the equivalent SAE J3016 level. A vehicle of this 

level does not have any autonomous or automatic features. Additionally, if the vehicle 

has warning systems, such as forward collision warning or lane departure warning that 

do not offer additional control functions, the vehicle is also categorised as level 0. 

(National Highway Safety Administration 2013) 

The next level, Function-Specific Automation, offers one or more autonomous or 

automatic functions. These functions operate independently from each other and overall 

control of the vehicle remains with the driver. The driver is thus responsible for the overall 

operation of the vehicle and must perform all monitoring of the environment. Functions 

of level 1 are, for example, cruise control and automatic braking. (National Highway 

Safety Administration 2013) The SAE J3016 counterpart of this level would be level 1, 

Driver Assistance, but the two have clear differences. The NHTSA classification 

classifies vehicles with automatic functions, such as cruise control, as level 1, but 

according to SAE J3016, these would not count as autonomous and the vehicle would 

thus be level 0. However, if a vehicle has autonomy of one control function, the vehicle 

would be categorised as level 1 by both SAE J3016 and the NTHSA classification. 

Combined Function Automation is the third level in the NTHSA classification. On this 

level, the vehicle is equipped with autonomy of at least two primary control functions in 

certain situations. When in such a situation, active control of these functions is given to 

the autonomous system, but the driver is still tasked with monitoring the environment. 

The driver must also be available and ready to take control of the vehicle within short 

notice, if needed. Examples of such autonomous functionalities are adaptive cruise 

control and lane-keep assist. (National Highway Safety Administration 2013) Level 2 is 

similar to the SAE J3016 level 2, Partial Autonomy, where instead of two or more 

autonomous control functions, the vehicle has autonomous control of both longitudinal 

and lateral movement in certain situations. In both, however, the driver is in charge of 

monitoring the environment and must be ready to take control if needed. 
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Limited Self-Driving Automaton is the second to last level of autonomy in the NHTSA 

classification. Vehicles of this level are able to function autonomously in certain 

situations. In these situations, the autonomous system takes full control of the vehicle and 

monitors its surroundings. The driver is not needed for active control but must be able to 

take control if needed after a transition time. Such a need may arise, for example, if the 

AV enters a location where autonomous driving is no longer possible. (National Highway 

Safety Administration 2013) Limited Self-Driving Automation resembles SAE J3016 

level 3 Conditional Automation. In both, the vehicle operates autonomously in certain 

situations, or ODD’s. When the ODD is about to end, the driver is prompted to take 

control. The NHTSA guideline does not, however, state how the system should react if 

the driver does not act on this prompt. If the system is supposed to reach a safe state in 

this situation, level 3 of the NHTSA guideline is more in line with SAE J3016 level 4. If 

not, level 3 is more similar.  

The last level is titled Full Self-Driving Automation, which is the highest form of 

autonomy according to the guideline. In this level, the vehicle is able to operate 

completely autonomously, with the driver only needed to enter the destination location. 

(National Highway Safety Administration 2013) This level is thus similar to the SAE 

J3016 level 5 Full Automation.  

2.3.2 Industrial perspective 

As discussed in chapter 2.2., only a few standards on autonomous industrial machines 

have been released thus far. As such, none of the major standardising organisations offer 

a method to categorise industrial autonomous machines based on their levels of 

autonomy. This is, however, also likely due to the vast number of different applications 

for autonomy in industrial fields, whereas in the automotive domain these applications 

are quite similar. Because of the lack of a standardised way to categorise industrial 

autonomous machines, more pragmatic approaches are often used to categorise machines, 

for example, in mining applications. 

In mining, a pragmatic approach to categorising autonomous industrial machines is to 

categorise them by their control method. This categorisation includes both non-

autonomous and autonomous machines, as only the most sophisticated level of control is 

considered true autonomy. Machines are often categorised into six levels: manual 

operation, remote control, teleportation, blind autonomy, semi-autonomy and full 

autonomy (Brown 2012, Gustafson 2011).  

The base level, manual operation, is a traditional industrial machine that is controlled by 

an operator from inside or on top of the machine. An example of such a machine is a 

traditional mining haulage truck, which is controlled by an operator inside the cabin. The 

first step towards autonomy of such a machine, and thus the second level of 

categorisation, is remote control of the vehicle. With such a machine, the operator is 
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removed from the machine and the machine is controlled with a remote controller. 

Importantly, the operator still has a line of sight to the machine at all times and must 

therefore be situated close by. (Brown 2012, Gustafson 2011) 

The next logical step towards autonomy is teleoperation. The clear distinction to the 

previous level is that the operator no longer has to have a clear line of sight of the machine, 

but rather operates the vehicle remotely, traditionally via a video feed. (Brown 2012, 

Gustafson 2011) 

The next level, blind autonomy, offers the lowest form of autonomy. Machines of this 

level can navigate on fixed paths without an operator, but they are “blind”, i.e., they do 

not have any kind of situational awareness and cannot sense obstacles. (Brown 2012) For 

example, many mining haul machines used underground are considered blind.  

When a machine can operate fully autonomously in only some specific situations, or when 

it cannot carry out all of the stages of its work cycle independently without an operator, 

it is considered semi-autonomous. While operating in autonomous mode, these machines 

gather information on their surroundings and act on this information, similarly to fully 

autonomous machines. A human operator is, however, needed to ensure safe and correct 

operation, and to take control when needed. This is traditionally performed via 

teleoperation. (Gustafson 2011)  

Lastly, the final level is full autonomy, where the machine can operate autonomously at 

all times. The machine has a set goal it has to achieve; it then gathers information on its 

surroundings and makes decisions using this information to achieve the set goal. An 

operator is not needed for operation, but traditionally one is required to monitor the 

machine. (Brown 2012, Gustafson 2011)  

This is a rough categorisation, which does not include all aspects of autonomy, such as 

operator assisting systems, and it can be argued that a fixed path travelling blind machine 

does not count as autonomy at all. The categorisation is nonetheless a good indication of 

the steps taken from no autonomy to full autonomy in machines, such as mining haulage 

trucks or other vehicles, where the main function is not to transport people. More 

theoretical and general approaches for categorising autonomous machines are also 

available, as pragmatic approaches are usually specific for only certain applications. 

Behere and Liljeqvist argue in the article: Towards Autonomous Architectures: An 

Automotive Perspective (2012) that all autonomous systems can be separated into a 3+1 

pattern, which includes all aspects needed for autonomy. They also argue that the pattern 

can be used to categorise levels of autonomy. The pattern is presented in figure 2 and it 

includes four portions: User, Environment, Control and Self. 
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Figure 2. The 3+1 pattern (Behere & Liljeqvist 2012) 

At the centre of the pattern is the portion Self, which represents the internal decision-

making capabilities of the system, that is constantly in interaction with the other portions 

of the pattern. The Environment portion of the pattern is the situational awareness and 

world model building functions of the system that build a picture of where the machine 

is located and what is around it. The User portion contains the interactions with the user 

of the machine, which can be continuous, or a set of goals given to the machine. Lastly, 

the Control portion is in charge of controlling the actual machine. (Behere & Liljeqvist 

2012) 

The 3+1 pattern can be used to categorise the level of autonomy of systems by analysing 

the complexity of each part of the pattern. In a highly intelligent autonomous machine, 

all parts of the pattern are present and are highly complex. For example, an autonomous 

road vehicle utilises all parts of the pattern: Environment is used for localisation, 

situational awareness and motion planning, while User and Control are used to store the 

desired destination and to control the vehicle to reach this destination, respectively. Less 

complex autonomous systems would thus have less complex portions of the pattern. 

Moreover, if the functionalities that are represented by the portions of the pattern are 

missing completely, the system is not considered autonomous, but rather automatic. For 

example, a traditional cruise control system of a road vehicle does not have an 

Environment portion, as the system does not monitor the operational environment in any 

way. Therefore, a cruise control system cannot be regarded as autonomy based on the 3+1 

pattern, which is also the same conclusion based on the definition in chapter 2.1. (Behere 

& Liljeqvist 2012) 

A standardised method for categorising industrial autonomous machines, similar to the 

NHTSA guideline or standard SAE J3016, would be greatly beneficial for the 

development of further autonomous machine standards. Moreover, with a common 

methodology of categorising autonomous machines, adequate levels of safety would be 

relatively simple to verify because each level could have specific safety requirements. 

Lastly, as there is no common way to distinguish between the levels of autonomy in 

industrial machines, the autonomy and automation of a machine are often used as 
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interchangeable terms, and hence there is a lack of clarity on what the machine is actually 

capable of. 
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3. AUTONOMY SAFETY CHALLENGES 

Autonomous machines and vehicles are vastly complex and intelligent entities that often 

operate in highly unstructured environments that include a number of other agents, such 

as other autonomous machines, manned vehicles and people. This introduces a great 

number of new safety challenges that have not been an issue in the past, which 

autonomous machines must overcome. An autonomous machine must operate in these 

environments effectively and safely, without making errors in operation, that could lead 

to safety hazards. Errors that an autonomous machine could make include erroneous 

movement or actions, errors in decision making or systematic errors embedded in the 

system architecture of the machine itself. The basis of a safe autonomous machine is the 

definition of safety given in standard IEC 61508, which states safety is: “the freedom 

from unacceptable risk of physical injury or of damage to the health of people, either 

directly, or indirectly as a result of damage to property or to the environment." (SFS 

IEC/TR 61508-0 2012). Autonomous machines include a vast number of safety functions 

and features, which are tasked with keeping the machine in a safe state. This is an 

important aspect of safety, but as discussed in chapter 2, an autonomous machine can be 

labelled as a safety-related system as a whole. because the correct operation of all of the 

machine’s subsystems is needed to ensure safety and not only the direct safety functions.  

In the following chapters, the different aspects of safe operation for industrial autonomous 

machines are discussed. Topics on the safety of autonomous civilian vehicles are also 

included, as these issues are more researched, and the challenges faced are often similar 

to autonomous industrial machines. A study on civilian vehicle autonomy is therefore 

beneficial because the advancements and findings in autonomous road vehicle 

technologies can be applied to industrial machines and are indicative of the future 

developments needed for industrial applications.   

The chapter begins with an overview on the nature of the hazards that autonomous 

machines face in operation. Then, the differences between the challenges faced by 

industrial and civilian machines and vehicles are discussed. The next part of the chapter 

deals with system architectures and how they affect overall machine safety, and what 

challenges are faced in designing architectures for autonomous machines. After this, the 

main areas that affect the safe operation of an autonomous machine, such as localisation, 

motion planning, situational awareness and risk analysis, are discussed. Additionally, the 

moral and ethical dilemmas that arise from autonomy from a road vehicle viewpoint are 

presented in depth. Lastly, the paradox that arises from ensuring the safety of an 

autonomous machine while also ensuring effective autonomy is discussed. 
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3.1 The nature of autonomous safety hazards 

Most hazards and risks related to autonomous machines arise from the complex nature of 

the machines and the varying operational environments where they are used. Most 

operational state combinations cannot therefore be known beforehand, which may lead to 

safety issues. The main safety risks posed by autonomous machines are due to both 

hazardous operation and faults that occurr in the decisional mechanisms of the machine. 

(Baudin et al. 2007) 

Hazards posed by the operation of an autonomous machine can be separated into 

endogenous and exogenous hazards. Endogenous hazards are caused by faults introduced 

in the machine itself, such as faults introduced in development or faults due to component 

failures. (Baudin et al. 2007) These faults may lead to incorrect operation of the machine, 

and may thus pose a safety risk. In the standard IEC 61508, which is discussed in chapter 

2.2.1, these types of faults are labelled as systematic and random faults and the standard 

outlines how these affect the functional safety of the system. Exogenous hazards, on the 

other hand, are caused by the operational environment of the machine, rather than by the 

machine itself. These hazards include faults due to outside interference and unforeseen 

events due to the environment. Exogenous hazards may also arise from the uncertainty of 

the environment due to missing environmental information. This may occur, for example, 

because of unsuitable sensors. (Baudin et al. 2007) 

Faults in the decisional mechanisms that autonomous machines may face are separated 

into internal faults and interface faults, both of which may pose safety risks. Internal faults 

of the decision making of the machine include situations where the machine makes 

decisions with incomplete information, resulting in erroneous operation. Internal faults 

may also arise if the machine is faced with having to make a decision in a situation that 

was not foreseen by the designer of the machine, and thus the machine cannot act in this 

situation correctly because it is unsuitable for this situation. Interface faults that decision-

making may face are faults due to errors in communication. These include ontological 

mismatches where one term has different meanings in different parts of the system, 

leading to errors. Interface faults also occur when human operators interpret information 

incorrectly, leading to undesired behaviour of the machine. (Baudin et al. 2007)  

Additionally, errors faced by an autonomous machine can also be separated into omission 

errors and commission errors, both of which may result from the faults described 

previously. Omission errors occur when the autonomous machine does not perform an 

expected function and the system must then perform a recovery action to keep the 

machine in a safe state. Commission errors are the opposite and occur when the machine 

performs an action or chain of actions that were not desired or were otherwise forbidden. 

Both scenarios may lead to safety hazards. (Baudin et al. 2007) 
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3.2 Civilian and industrial differences 

The safety challenges of autonomous industrial machines are similar to civilian road 

vehicles. Both types of machine may have to operate in complex environments with 

several interactions with other vehicles, autonomous and non-autonomous, as well as 

people. Both types of machine must also do this efficiently and, above all, safely. The 

challenges machines and vehicles face have, however, some notable differences.  

The number of civilian vehicles on the road, the frequency of their usage and the vast 

distances travelled create a far greater safety challenge than for the equivalent industrial 

machine which are far fewer in number. As autonomous machines can be considered 

safety-related systems, as discussed in chapter 2.2.1, the fault tolerance of a civilian AV 

must be considerably higher because the sum of operational hours is considerable. This 

leads to a need for a high safety integrity level, which may not be needed for the 

equivalent industrial autonomous machine, as the number of these machines in use is 

smaller. 

Interactions between other vehicles and people is far more common with civilian AV’s 

than industrial autonomous machines due to the sheer number of vehicles and people in 

civilian areas. Industrial applications are, on the other hand, far more secluded with less 

traffic, which lessens the challenge in ensuring safety.   

Industrial autonomous machines face their own set of problems that mainly stem from 

their operational environment. Areas where industrial machines operate are usually harsh 

with extreme temperatures, large amounts of dust and other disturbances, which affect 

the reliability of sensors and interfere with the correct operation of the autonomous 

machine. Areas where industrial machines operate are also often temporary and 

constantly evolving, which means pre-made maps that could be utilised in navigation, as 

with autonomous civilian vehicles, are not available. Industrial machines are also much 

larger than civilian AV’s, which increases the risk they pose. (Nebot 2007) 

3.3 System architectures 

The increase in machine autonomy has brought with it numerous new functionalities to 

existing machines. This has led to the need to evolve existing system architectures to 

accommodate these new features, which has, however, introduced numerous challenges, 

namely in constructing system architectures that are effective and safe. The addition of 

autonomy to a system architecture cannot be thought of as only a new feature, but rather 

a from-the-ground-up-approach is needed for safe and effective autonomous system 

architectures (Kaznov et al. 2017). Architectures that operate correctly are needed for 

autonomous applications because if an architecture does not allow for the correct 

operation of an autonomous machine, it may lead to safety hazards due to the nature of 

autonomous machines and their operational environment. There are, however, no 
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guidelines or standards on designing a system architecture for autonomous machines, so 

the challenges must be solved by the system designers alone (Kaznov et al. 2017). The 

architecture challenges are not only technical, but also include the development process 

and certification phases of system design (Behere et al. 2016). 

In the past, the most common type of system architectures used in vehicles and machines 

were federated architectures, where system parts are separated into self-contained 

electronic control units (ECU) connected to each other via a communication bus. Each 

unit has its own function that is controlled by the unit itself. (Behere et al. 2016, Kaznov 

et al. 2017) An example of a federated system from an aviation application is presented 

in figure 3 below. Here the system architecture is separated into three parts with their own 

central processing units (CPU), connected via a communication bus, with one part 

controlling sensors, the second effectors and the third the interactions with the user. 

  

Figure 3. An example of a federated system architecture (Watkins & Walter 2007) 

Federated architectures are easily expandable and verified due to their modular 

characteristics. However, as they are expanded, they begin to suffer from high 

complexity, resource consumption and cost. (Behere et al. 2016, Kaznov et al. 2017) 

The limitations of federated architectures has led to the adoption of integrated 

architectures in both the autonomous industrial and automotive fields. Integrated system 

architectures differ from federated architectures in that one ECU may control several 

different functions, or one function may be controlled by several ECU’s. (Behere et al. 

2016, Kaznov et al. 2017) An example of an integrated architecture is presented in figure 

4, again from an aviation application. In the example architecture, the system is controlled 

by a single CPU that controls the three functions that were also included in the 

architecture in figure 3. 
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Figure 4. An example of an integrated system architecture (Watkins & Walter 2007) 

Integrated architectures offer greater functionality, require less space for components and 

reduce cost. However, because the systems are no longer a group of self-contained 

functions, integrated architectures are considerably harder to verify and test to assure 

system behaviour in all scenarios. This leads to the need for new methods for the design 

and verification of integrated system architectures. (Behere et al. 2016, Kaznov et al. 

2017) 

Due to the complex nature of autonomous systems, federated architectures are not well 

suited for autonomous applications. An autonomous system requires considerable 

communication and functioning between parts of the system, which is why integrated 

architecture are a better option.  

3.3.1 Problem areas 

The incorporation of autonomy in integrated system architectures leads to four distinct 

problem areas in system design. These aspects also have a direct effect on overall machine 

safety because they affect the operation of the machine. (Behere et al. 2016) 

The first major challenge is the implementation and the usage of the world model in the 

system. The world model is a central part of any autonomous machine because it is in 

charge of the upkeep and distribution of what the autonomous machine believes is around 

it and where the machine believes it is located in regard to the world. World model 

information is needed by several of the autonomous machines subsystems and this leads 

to the problem of how this information should be gathered, stored and distributed on an 

architecture level. Traditionally, world data is gathered with sensors, such as radar, laser, 
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machine vision and the global positioning system (GPS), and this information is stored 

somewhere in the system architecture. The problem is that different subsystems may need 

this information in varying degrees and formats. Some may need a partial world model at 

specific moments in time, whereas some may need a complete model at all times. Some 

may require historical data on location or some may need more accurate data than other 

subsystems. The question is should all of the varying degrees of information be stored in 

a central complete world model, or should each subsystem gather and store the more 

specific data they require and share this data with other subsystems. The former could 

lead to size issues and questions on which subsystems are allowed to access and write 

which parts of the world information. The latter, on the other hand, may create needless 

complexity and have an effect on system efficiency. The challenge is to design the system 

in such a way that each subsystem receives the information it needs, in the desired format, 

without affecting the operation of the other subsystems. (Behere et al. 2016) 

The second main problem is human interaction. By design, an autonomous system must 

take some control away from the user as otherwise the purpose of autonomy would be 

defeated. The autonomous system should operate transparently, relaying all needed 

information to the user. There is however, no clear distinction on what this transparency 

should be in practice because no guidelines are available that indicate what information 

should be given to the user in autonomous operation. Furthermore, it is still a matter of 

debate what role autonomy should be given in machines in general and what functions 

should be left to the user. The two main opposite opinions are that autonomy should be 

left to functions that are not suitable for human operation, and the other, that autonomy 

should coexist with the user as an equal in control. The differing amounts of information 

given to the user and the differing degrees in autonomy may lead to situations where 

similar autonomous systems operate slightly differently to each other. This raises safety 

concerns when human users are involved. When a user switches from one similar machine 

to the next, undesired behaviour may occur due to the slight differences in how human 

interaction is designed in the autonomous system architecture, and in how the machine is 

intended to be used. (Behere et al. 2016) 

Autonomy unavoidably leads to more complex system architectures because it requires 

considerably more communication between subsystems than in traditional machines. This 

leads to a situation where the system must simultaneously act as a larger shared system 

and as isolated subsystems, which all may have different goals. Ultimately, the increase 

in complexity leads to increased difficulty in the testing, verification and validation of the 

system in the design phase. This may ultimately also lead to feature interaction, which is 

a situation where operation of one subsystem affects or counters the operation of another. 

This can lead to unanticipated behaviour of the system, affecting overall safety. An 

example of this type of behaviour could be a situation where two self-cancelling 

operations are performed at the same time, such as acceleration and braking. To eliminate 

this problem, the possible and probable feature interactions should be eliminated from the 
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system architecture in the design phase and by algorithms while in use. All possible 

combinations cannot, however, be known beforehand, and thus the autonomous system 

must have a means to solve these situations independently. (Behere et al. 2016) 

The fourth main problem autonomous system architectures face is the effect of autonomy 

on the systems extra-functional properties, such as redundancy, predictability and above 

all, safety. For example, most safety critical systems thus far have been designed in such 

a way that the last-resort failsafe has been for the user to take action by activating an 

emergency stop. With autonomous machines, this is no longer an option because there 

may not be a user to take control or the user may face the interaction problems mentioned 

previously. This means the robustness of the safety-related system must be increased, 

which is often done by adding redundancy to safety critical sensors, actuators and other 

components. This, however, leads to an increase in the cost of the system and the need 

for more space for these components. Therefore, other redundancy methods are needed 

for autonomous machines. (Behere et al. 2016) 

Another area where safety and other extra-functional properties are affected by increased 

autonomy is the predictability of the system. In general, safety critical systems have to be 

predictable and deterministic so that the way the system will operate in all situations  can 

be predetermined. With autonomous systems, however, this becomes a problem. 

Inherently by design, autonomous systems include some degree of intelligence and 

decision-making capabilities, which leads to operation where only a rough determination 

can be made on the future actions of an autonomous machine because every scenario the 

machine may face cannot be known beforehand. This complicates the verification of 

safety of the system because the machine will have to operate in varying environments 

and around other heterogeneous machines, where the number of distinct interactions is 

vast. Some unpredictability is therefore to be allowed for autonomous machines, but the 

question is how much. (Behere et al. 2016) 

3.3.2 Preventing hazards on an architecture level 

The main types of hazards that arise from the operation of autonomous machines were 

presented in chapter 3.1. These hazards stem from internal errors and faults caused by the 

autonomous system itself and the operational environment of the machine. Autonomous 

system architectures must have a method to correct these faults and errors to minimise 

the hazards that arise from operation of the machine.  

Exogenous hazards can be minimised by adding robustness to the autonomous system 

architecture. This can be facilitated by increasing the monitoring of the system and of the 

operational environment. Increased monitoring allows for greater knowledge of the state 

of the autonomous system, which alleviates the effect of outside interference. Robust 

monitoring also allows for greater sensing of the outside environment. This increases the 
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probabilistic evaluation of the environment, lessening uncertainties, which minimises 

unforeseen situations the autonomous machine may face. (Baudin et al. 2007) 

Endogenous hazards are also minimised by increased robustness, which is the main 

method of fault-tolerance of the system. The autonomous system architecture must be 

able to prevent the hazardous operation of the machine due to errors or faults and keep 

the system in a safe state at all times. This is carried out by both avoiding unsafe states 

and by bringing the system back to a safe state if needed. Increased monitoring is a benefit 

as it allows for the sensing of faults before they become an issue. (Baudin et al. 2007) 

3.3.3 Separate safety layers 

Another approach to construct system architectures, which ensure safety, is to implement 

a separate safety layer into the autonomous system. Several different approaches have 

been proposed on how a safety layer can be integrated, ranging from simple layers to full 

autonomous control units. 

Simple safety layers can be added to autonomous system architectures to ensure safety. 

These layers can monitor the machine and its surroundings and control safety functions 

when necessary. They often also include decision-making properties, which, for example, 

are used to allow or cancel certain functions. (Toben et al. 2012) Complete independent 

safety systems have also been proposed that have increased control of the overall system. 

Independent safety systems can monitor and observe the overall system and check each 

hazardous planned function and stop them if necessary, and thus keep the system from 

entering an unsafe state. The safety systems also monitor internal data and try to detect 

faults. The safety systems are independent from the rest of the control system, which leads 

to simpler verification, and thus a greater level of safety. (Baudin et al. 2007) 

Separate complete autonomous control units have also been proposed. These control units 

perform all autonomous operations and functions, as well as safety monitoring. In 

essence, an autonomous control unit would take the place of a human operator and would 

thus perform all control and monitoring functions without the need for the human operator 

to take control in any situation. A clear benefit of such a control unit is that many of the 

architecture problems discussed in the previous chapters could be avoided because the 

autonomous control unit would be separate from the rest of the system, and thus would 

only require certain inputs and outputs to operate. (Molina et al. 2017) 

In the paper by Molina et al. entitled: Assuring Fully Autonomous Vehicles Safety by 

Design: The Autonomous Vehicle Control (AVC) Module Strategy (2017), the proposed 

autonomous control unit is an autonomous vehicle control (AVC) module. The AVC 

module is separated into two parts: the autonomous vehicle operation (AVO) and the 

autonomous vehicle protection (AVP) submodules. The AVO submodule performs all 

functions needed for the operation of the machine, such as navigation and motion 
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planning. The AVP submodule in turn acts similarly to a safety layer; it monitors the state 

of the overall system and the environment and keeps the system in a safe state by, for 

example, deploying safety functions or cancelling hazardous actions. The AVP 

submodule also carries out internal fault and error detection. The AVC module thus 

carries out all functions that are needed for safe autonomous operation. The complete 

system diagram of an autonomous machine with an AVC module is presented in figure 

5. (Molina et al. 2017) 

 

Figure 5. Diagram of an autonomous system with an AVC module (Molina et al. 

2017) 

In practice, the AVO submodule uses its own sensing subsystem, and it uses this 

information to determine its current location and the current state of the environment. 

This information is then used to plan an adequate and safe trajectory for the machine, 

which is put into action by the control subsystem that directly controls the machine. The 

AVP submodule has a sensing subsystem that is separate to the AVO subsystem. This is 

used to monitor the machine and its environment and to keep the system in a safe state. 

As there are two sensing subsystems, a level of robustness is added to the system in case 

of faults. Both submodules can send orders to the machine’s main systems when needed 

to ensure safe and effective operation. (Molina et al. 2017) Molina et al. do not, however, 

mention whether the two submodules can control or communicate with each other directly 

and not only through the main machine system. This may lead to problems in highly 

intelligent autonomous machines, as it may be needlessly complex for the two subsystems 
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to only communicate through the machine’s own system. Unforeseen, unsafe operation 

or feature interactions may also result if both submodules control the machine system 

simultaneously. 

As the AVC module is separate from the rest of the vehicle’s systems, the module and its 

submodules can be tested and verified independently, which leads to ensured safety of 

the system. Moreover, because the modules are separate, in theory, they can be 

implemented into any existing autonomous machine system. (Molina et al. 2017) This 

offers greater flexibility in the design of autonomous systems and their architectures, as 

any means to reduce complexity and to minimise the challenges of verification are clear 

benefits.  

3.4 Localisation and motion planning 

Localisation and motion planning of an autonomous machine comprises determining the 

location of the autonomous machine in regard to the world and the planning of a suitable 

set of actions to perform the tasks given to the machine.  

Localisation of an autonomous machine is the act of determining the longitudinal and 

lateral position of the machine in regard to the world, and the direction it is facing. Several 

different methods have been used that include GPS navigation and vision and map-based 

methods.  

Motion planning of an autonomous machine can be separated into two distinct parts: route 

planning and trajectory planning. Both of these must be computed by the autonomous 

system when movement is desired. The aim of route planning is to create a plausible route 

from A to B for the autonomous machine to traverse. Trajectory planning, on the other 

hand, calculates the exact motions the machine must take to achieve the desired route 

calculated by the route planner or the desired action it must take. (Benenson et al. 2008) 

Route planning is a greater challenge in automotive autonomy, where distances and 

different route options are greater. However, both aspects of motion planning must be 

solved in both industrial and automotive applications.  

3.4.1 Localisation 

The correct localisation of an autonomous machine is an important aspect of safety. If the 

localisation of the machine is incorrect, all future actions and motions of the machine may 

be incorrect, which may lead to clear safety hazards. 

A wide variety of methods exist to determine the location of an autonomous machine in 

regard to the world. These include the usage of satellite positioning systems, which are 

generally used whenever a GPS signal is available, odometry-based methods, where 
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position is calculated from the movement of the machine, and vision odometry methods, 

where position is determined with visual references.  

Traditionally in outside applications, for example in autonomous road vehicles, GPS 

based localisation systems are the most common. In these methods, GPS signals are used 

to determine the current location and orientation of the machine. The reliability and 

accuracy of GPS is, however, not always adequate, which is why situational awareness 

and indoor positioning techniques are often used to enhance the accuracy of positioning. 

(Han 2008) 

Indoor localisation methods depend largely on the nature of the operating environments. 

In fixed areas that do not change over time, such as factories and warehouses, separate 

infrastructure can be used for the localisation and navigation of autonomous machines. 

These are traditionally beacons and other signals that the machine can follow to determine 

its location and to stay on route (Mäkelä & von Numers 2001). The problem with these 

systems is the cost and difficulty of constructing the needed infrastructure and the 

considerable effort needed to make alterations in later use.  

In evolving indoor environments, such as in underground mines, GPS signals are 

unavailable, and the usage of separate beacons or other infrastructure is not economically 

viable. In these environments, other methods of positioning are needed. These methods 

are most commonly dead reckoning or vision-based  odometry methods, or a combination 

of the two. (Mäkelä 2001; Faralli et al. 2016; Aldibaja et al. 2017).  

Dead reckoning is the practice of calculating a relative position of the machine in relation 

to a determined starting point via calculating movement. Wheel revolutions during 

movement of the machine are calculated, which is then used to determine the distance the 

machine has travelled from the starting point. A gyroscope, or other similar sensor, is 

used to determine the direction of travel and the sum of these two measurements is used 

to determine the location of the machine. The drawback of dead reckoning is that 

measurement error accumulates during movement, which may lead to a considerable 

position error if a long distance is travelled. Additionally, dead reckoning has to account 

for wheel slippage during movement, which can also affect positioning accuracy. 

(Gustafson 2011) 

Vision-based odometry methods utilise visual landmarks that the autonomous machine 

uses for navigation and localisation. These visual landmarks can be, for example, a 

topological map of the area or a scan of the wall profile in a tunnel. The autonomous 

machine is fitted with a camera or sensor that is able to detect these visual landmarks. 

While in motion, the machine scans its surroundings and determines its location in 

relation to the visual landmarks it has been given in advance. (Aldibaja et al. 2017, 

Gustafson 2011) The drawback with visual odometry methods is that the visual landmarks 
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must be determined in advance, and without them the machine cannot locate itself or 

navigate.  

3.4.2 Motion planning 

The safe motion of an autonomous machine comprises three aspects: the perception of 

the machine’s surroundings, trajectory planning, and the correct control of the machine. 

Perception of the surroundings of the machine is a combination of effective situational 

awareness and an adequate world model. When a suitable trajectory has been chosen, it 

must be put into action by controlling the machine accurately. If errors are made in 

actuation, it may lead to erroneous movement and hazards. (Benenson et al. 2008)  

To ensure a safe trajectory, three areas must be taken into account: the motion of the 

machine itself, the surrounding environment, and the infinite number of possible states 

or, in other words, the infinite nature of the time horizon. The first area is self-

explanatory; the autonomous system must choose a trajectory that does not directly lead 

to a collision. The second point acknowledges that a collision can also result from the 

actions of other agents, not only the machine itself. Lastly, it is important to consider that 

the time horizon of an autonomous machine and other agents is infinite because, given 

enough time, it is certain that a collision can happen. Therefore, inaction of the machine 

itself does not ensure safety because in an infinite time horizon a sequence of trajectories 

made by another agent will inevitably result in a collision. (Benenson et al. 2008) In other 

words, a similar way of thinking is to apply Murphy’s law to the state space of 

autonomous machines: any possible collision will happen, no matter how improbable, if 

enough time is given. 

Traditionally in robotics, the safety of planned trajectories of a robot’s movement has 

been ensured by the real time analysis of unavoidable collision states. An unavoidable 

collision state is a state of the robot where a collision is completely certain, irrespective 

of what actions the robot tries to make to remedy the situation. Thus, if a robot at all times 

ensures that it is not in an unavoidable collision state, no collisions will ever happen due 

the robot’s own actions. In practice, this means that safe trajectory planning is a chain of 

states where none is an unavoidable collision state. (Fraichard & Asama 2003, Benenson 

et al. 2008) This methodology has also been applied to the trajectory planning of 

autonomous machines, but it is not enough to ensure safety in autonomous applications 

because this approach takes only the machine itself into account and not the actions of 

outside agents, ultimately ignoring the infinite time horizon and the trajectories of other 

agents. (Benenson et al. 2008) 

An autonomous machine has only a limited comprehension of its surroundings, as there 

is a limit to what the on-board sensors can observe. Thus, some areas around the machine 

are not visible to the machine, as demonstrated in figure 6. The machine does not have 

any information on what is outside of the observed area: the unobserved area may include 
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other agents with their own trajectories, static hazards or nothing at all. The information 

the machine has on the observed area may also include uncertainties, as it is possible the 

on-board sensors of the machine have made errors or have not gathered correct 

information due to faults regarding interference. (Benenson et al. 2008) 

 

Figure 6. Observed and unobserved areas around a machine (Benenson et al. 2008) 

Due to the missing or uncertain information, the world model of the autonomous machine 

is always incomplete, which poses a challenge for trajectory planning. The world model 

must either be completed, or a trajectory must be planned with an incomplete world 

model. Building a complete world model that includes all agents and their trajectories is 

not practical. Therefore, a method to plan trajectories with an incomplete world model is 

needed. Moreover, an autonomous machine in a dynamic environment must make 

decisions quickly, as the environment is constantly evolving and inactivity can lead to 

safety incidents (Laugier et al. 2007). Several different methods on how an autonomous 

machine should navigate and make decisions in an incomplete world have been studied. 

These include the use of occupancy grids (Laugier et al. 2007), Markov models (Seward 

et al. 2007), maximum velocity profiles (Alami et al. 2007), and Temporal logic methods 

(Jha & Raman 2016), among others. One effective and often used method of navigation 

with an incomplete world model is the usage of partial motion planning (Benenson et al. 

2008, Laugier et al. 2007). First, a conservative estimation is made of the incomplete 

world model that can then be used in partial motion planning. (Benenson et al. 2008) 

The aim of partial motion planning is to create a safe trajectory in the observed area 

around the machine that takes the machine roughly towards its end goal, without 

necessarily reaching it. As the machine moves, it gathers new information on its 

surroundings and is able to plan a more accurate route towards its destination. (Benenson 
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et al. 2008, Laugier et al. 2007) To ensure these trajectories are safe, each step of the 

trajectory must be a collision-free state, that is not an inevitable collision state, and 

additionally, the final step must have a speed of zero. This does not mean the machine 

must continually stop after each trajectory, but rather the machine is able to continuously 

create new partial trajectories during movement, and if no suitable new partial trajectory 

is available, then the machine must be able to stop. This implies the machines entire 

trajectory is safe, and if the machine senses a hazard nearby, it will alter its speed so that 

it is able to stop at the end of its partial trajectory without a collision. (Benenson et al. 

2008) 

3.5 Situational awareness 

For modern autonomous machines, situational awareness is one of the key areas in 

ensuring safety. In the past, this was not such an issue, as most autonomous vehicles were 

blind and thus operated in separate areas where other vehicles and people could not enter. 

This is not the case for modern autonomous machines that have to operate around other 

machines and people, often in unstructured environments. Thus, the role of situational 

awareness in ensuring safety cannot be overstated. 

In practice, situational awareness of an autonomous machine is the knowledge of what is 

located and what is happening around the machine during operation at all times. This 

includes three aspects: observation of what is happening at the moment, assessment of 

how this affects operation and lastly, prediction on how the observed may change in the 

near future. This information is used to determine the level of safety of the machines 

current and future states. Thus, situational awareness is a method of risk assessment of 

the current and future states of the machine in regard to its surroundings. To determine 

the risks involved in a particular state, the autonomous system must analyse the 

information it has at its disposal. The two main areas to assess in the situational risk 

assessments of the machine are trust and completeness of information. (Wardziński 2006) 

Trust is an attribute given to outside agents that the autonomous system has perceived to 

be operating around it. The attribute indicates the amount of confidence, or trust, the 

autonomous system places on the agent that it will operate as expected and in accordance 

to set rules. For example, set rules govern the operation of road vehicles and they must 

be followed. Therefore, an autonomous road vehicle can place a fair amount of trust on 

normal road vehicles that are on an adjacent lane to the AV: the AV can be relatively 

confident the other vehicles will stay in their own lanes, and therefore the AV can travel 

without slowing down and without the risk of an accident. However, if a learner driver is 

observed to be in an adjacent lane, less trust will be placed on it because it is not as clear 

if the learner will follow all traffic rules. For example, it is possible the learner will veer 

into the AV’s lane without indicating, the probability of which the AV must account for. 

This leads to reduced speed and larger safety margins. Therefore, a low level of trust leads 

to a high assessment of risk, which in turn necessitates the need for risk reduction methods 
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in the current or future state of operation of the machine. Thus, if the environment is given 

a high amount of trust, the machine may perform to its full potential and with confidence 

that its actions will not create a safety hazard. But if trust is minimal, the autonomous 

machine may be unable to operate to its full potential or may be unable to operate at all. 

Therefore, trust has a direct effect on motion planning and overall safety of the machine. 

(Wardziński 2006) 

For effective situational awareness, the evaluation of the completeness of the information 

the machine has gathered on its surroundings is equally important as the evaluation of 

trust because all situational risk assessments are based on this information. The 

autonomous system must assess the completeness and validity of the gathered 

information to ensure the risk assessments made are correct because the information may 

be incomplete or non-valid for a number of reasons. Usually, these are due to technical 

limitations or faults that can cause missing or erroneous data on the machine’s 

surroundings. For example, weather conditions may have a great impact on visibility and 

thus on the ability of the machine to sense its surroundings. Missing information leads to 

an incomplete picture of the machine’s surroundings and operational state that will 

require safety precautions to prevent hazards similarly to situations of low trust. The 

completeness of information must be ensured, but of importance is also that the 

autonomous system must have a means to determine when information is missing or if 

the information is uncertain. If this is not the case, the autonomous system may act 

hazardously if it makes decisions based on incomplete knowledge. Alternatively, if the 

autonomous system knows the information on its surroundings is incomplete, it can make 

assumptions what this information could be and continue to operate safely. (Wardziński 

2006) 

An adequate level of trust in other agents and an adequate level of information on the 

surrounding environment are enough to ensure the safety of an operational state in the 

normal operation of an autonomous machine. Problems arise, however, when 

irregularities arise, such as sudden hazards. For example, an autonomous system may 

attribute a high level of trust on another agent with which it is in close operation, i.e., the 

autonomous system has assessed that the probability of this other agent continuing on the 

course it is currently on as high. But if this other agent notices a hazard on the outside of 

the autonomous system’s perception, the agent may have to alter its actions considerably, 

and the autonomous system has no way of knowing this. This may lead to a collision 

between the two or other similar incidents. If the area of perception of the autonomous 

system is too small, these situations are far more common. (Wardziński 2006) To 

circumvent the limitations of situational awareness and perception of a single autonomous 

machine, communication between agents could be increased. This would allow vehicles 

and machines to communicate to each other their current perception of the surroundings, 

dramatically increasing the range of perception. Sharing information would also increase 

trust between agents, as an agent could notify other agents on the actions it is going to 
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take. Different viewpoints on the same situation also reduce erroneous sensing and 

missing information, reducing hazardous actions made based on incomplete information. 

(Wardziński 2006, Benenson et al. 2008) 

3.6 Risk assessments 

There are two approaches on how risks that arise from the operation of autonomous 

machines can be assessed and mitigated: the predetermined risk assessment approach and 

the dynamic risk assessment approach. These methods are used both to minimise the risks 

posed by the machine itself and, to some extent, minimise the risks the machine may face 

in operation due to the environment. (Wardziński 2008) 

For simpler systems, a predetermined risk assessment approach can be used. In this static 

approach, the designers of the autonomous system conduct hazard analyses in the design 

phase of the system, where all possible hazardous states and sequences leading to 

accidents are determined and analysed. When the sequences of events that can lead to 

accidents are determined, barriers are designed to stop the autonomous system from 

entering these hazardous sequences. Barriers can be traditional physical barriers, or they 

can be software constraints based on sensors or location, or a constraint based on a need 

for a specific function before continuing, which all stop the machine from operating 

hazardously. The predetermined risk assessment approach is a linear method that can be 

visualised and analysed by an event tree analysis, as shown in figure 7. In the event tree, 

the autonomous system is faced with a potentially hazardous situation, where a hazardous 

event occurs. To minimise this hazard, the system deploys a barrier that may succeed or 

fail in mitigating the hazard of the event. If it succeeds, the system enters a safe state. If 

not, the hazard may increase, or an accident can occur unless another barrier is used. 

(Wardziński 2008) 

 

Figure 7. An example of an event tree analysis as a part of a predetermined risk 

assessment (Wardziński 2008) 

The predetermined risk assessment approach is a straightforward method for simple 

systems, such as blind autonomous machines, as it only recognises two states: a safe state 

and an unsafe state. If a machine is in a safe state, it is allowed to operate, but if it is faced 

with an unsafe state, a barrier is applied. An adequate level of safety is simple to verify 
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with this method because safety assurances are based on numerous separate cause-and-

effect measures that can be analysed and verified separately. For more complex 

autonomous machines that can make independent decisions and act on them, however,  

this method would not work because the number of potentially hazardous situations and 

events would be vast and to analyse all of them would require considerable effort. 

Moreover, ensuring safety by applying barriers that essentially limit the operation of the 

machine would hamper the autonomy and intelligence of the autonomous machine 

considerably. Hence, the dynamic risk assessment approach is needed. (Wardziński 2008) 

The dynamic risk assessment approach is suitable for more intelligent autonomous 

machines. Unlike the previous method, dynamic risk assessments are not carried out by 

the designers in the development phase, but rather continuously by the autonomous 

system itself in usage. The method is based on the notion that risks are not binary, as 

states can be safe, unsafe or anything in between. The autonomous machine may judge 

each situation independently and choose a suitable action based on internal dynamic risk 

assessments. This places a great emphasis on the situational awareness abilities of the 

system because they are needed to sense and determine the safety of the current and future 

states of the machine. (Wardziński 2008) 

Simple event tree diagrams cannot be used to visualise how risks are mitigated in dynamic 

risk assessment methods because there are no clear cause-and-effect relationships. Rather, 

the autonomous system can decide on which actions to take which can lead to a varying 

degree of either safer or more hazardous states. This is presented in figure 8, where the 

autonomous system is faced with two hazardous situations (SH1 and SH2). The 

autonomous system has several different possible actions it can take, which may lead to 

safe states (SS1 and SS2), or accidents (SA), or anything in between (SB1 and SB2). 

(Wardziński 2008)  
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Figure 8. Possible actions for a dynamic autonomous system in regard to risk 

(Wardziński 2008) 

The difficulty of the dynamic risk assessment approach is to design and verify such a 

system that can perform adequate risk assessments continuously in usage. This requires 

highly intelligent system architectures and situational awareness which, in turn, require 

precise sensing capabilities. To verify such a system is also challenging, as there is no 

common methodology or tools available.  (Wardziński 2008)  

A combination of the two previous approaches can also be used for the risk assessment 

of an autonomous machine. For example, it is possible to identify the main hazards the 

system can face as in the predetermined risk assessment approach. This information can 

then be used to compose specific safety rules for the autonomous system. These rules are 

a set of guidelines that can be applied to the internal decision making of the autonomous 

machine. These then ensure the autonomous system remains in a safe state, without 

breaking the safety rules and performing hazardous actions. (Baudin et al. 2007) 

3.7 System verification challenges 

Autonomous machines include various safety-related systems and functions, the correct 

error-free operation of which must be ensured for the safe operation of the machine. Many 

of the possible errors originate from the design of the system and the implementation of 

its functions, as discussed in chapters 3.1 and 3.3.2. Methods must be put in place to 

ensure an adequate level of safety for the machine, both in the design phase and when the 

machine is in use. These methods can be separated into offline and online techniques. 
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Offline techniques are used for the elimination of hazards that originate from the design 

phase, while online techniques minimise hazards that arise in operation. The challenge in 

verifying autonomous systems is that the state space of an autonomous machine is in 

essence limitless. In practice, this means not all state combinations can necessarily be 

verified, which creates a larger emphasis on online verification techniques. (Baudin et al. 

2007) 

During the development of the autonomous system, a model of the system can be created, 

which can then be checked and tested offline to ensure the system works correctly and 

dependably. Offline model checking is an automated method, where the model is given a 

set of behavioural properties and the full scope of different states are gone through. The 

model checker then goes through the different states in the state space, searching for 

contradictions in regard to the given properties, which include safety and liveness 

properties. The drawback of model checking is that it only offers an estimation of the 

final system in practice, as checking is conducted on a model of the system. Therefore, 

the method is not a comprehensive technique and other techniques must also be used. 

(Baudin et al. 2007) 

Testing is another method for the offline verification of an autonomous system. Unlike 

model checking, testing can be carried out on the system itself, or parts of it, rather than 

a model. The limitation of system testing is that because the state space of an autonomous 

system is in practice limitless, not all situations can be covered or covering all situations 

may require a considerable amount of time and effort. (Baudin et al. 2007) 

Offline verification techniques do not offer complete verification of an autonomous 

system, which is why online verification methods must also be utilised. Online techniques 

are tasked with eliminating hazards that occur in operation, including exogenous and 

endogenous hazards, and residual hazards that the offline techniques did not solve. 

(Baudin et al. 2007) 

Online verification techniques can be separated into fault-tolerance and robustness 

methods. Fault-tolerance methods are traditionally used to ensure the system remains 

operational even if it is faced by faults, which are usually endogenous hazards, while 

robustness methods ensure the system avoids faults due to exogenous hazards. Fault-

tolerance methods are usually based on adding redundancy to the autonomous system. 

These methods are used for error detection and for recovery of the system, which include 

error and fault handling. Robustness methods are separated on how they handle the 

erroneous states of the system and environment. These can be either implicit or explicit, 

where implicit handling applies the same methods to all states, and explicit handling only 

applies methods to specific sensed hazards. (Baudin et al. 2007) 
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3.8 Moral and ethical challenges 

The moral and ethical dilemmas presented by autonomous vehicles have been widely 

discussed in recent years, although mainly regarding road vehicles. The discussion has 

mainly centred around how the autonomous vehicle should act in accidents and other 

emergency situations, where a collision is unavoidable. The main question being should 

the AV faced with an unavoidable accident be programmed to choose a trajectory based 

on some predetermined criteria and if so, what should this criterion be. Even though the 

discussion has revolved around road vehicles, this dilemma also applies to industrial 

autonomous machines and is, as such, something to be considered by manufacturers. 

Although the moral and ethical dilemmas have been discussed widely, a uniformly 

accepted approach to programming some sort of moral code in AV's has not yet been 

agreed upon.  

The moral and ethical questions arise when the AV faces unavoidable accidents, and other 

hazardous emergency situations, that are not a part of its normal operation, and when 

deciding how it should react when faced with such situations. The classic example is an 

AV carrying a passenger that is about to be in an unavoidable fatal accident that includes 

other road users. This could be due to, for example, an unavoidable object in the way of 

the AV. In this example, another vehicle has blocked the road in front of the AV and the 

AV cannot stop in time to avoid a collision. The programming of the AV now has three 

choices: either manoeuvre to the left and hit person A, manoeuvre to the right and hit 

group B or finally, do nothing and hit the other vehicle, saving both person A and group 

B, but killing the passenger of the AV. This resembles the classic Trolley Problem thought 

experiment where a number of people are tied in front of a speeding train with one person 

controlling a lever that controls the train tracks. The person controlling the lever can either 

do nothing and have the train hit group A, or they can pull the lever and have the train 

alter its course and hit person B, thus saving more lives but ultimately directly causing 

the death of person B.  

Similarly to the trolley problem, the inherent problem in designing an AV is that the AV 

must be programmed to choose one of these options, i.e., someone has to program this 

behaviour of the AV beforehand. This burden falls on the manufacturer of the vehicle and 

the software designers working on the vehicle who must somehow decide which is the 

correct action for the AV to take in situations such as the previous example. This is no 

easy task as there are no obvious right answers. 

The root of the moral and ethical dilemma is that killing another person is almost 

uniformly illegal in all parts of the world. This is, however, exactly what has to be 

programmed in some fashion in the AV's code: in certain extreme situations killing a 

human being. As such, it is proposed that the answer to the moral dilemma should be 

based on the Doctrine of Necessity, which is a term recognized by the Anglo-American 

judicial system. According to the doctrine, in an emergency, extreme situation or extreme 
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conditions, if there is no other option, something illegal can be carried out, and it can be 

regarded as legal in this specific situation. This translates to AV's in situations similar to 

the Trolley Problem mentioned above, where the only option is to cause a person’s death. 

Therefore, this could be, from a legal standpoint, regarded as a non-illegal action. This 

does not, however, solve the original problem of choosing the right option in situations 

similar to the example given previously. (Santoni De Sio 2017) 

The first ethical problem is the question of blame and consequence. In law, intentionally 

killing an innocent is in almost all circumstances illegal, and the person responsible is 

prosecuted for the crime. However, the relationship of responsibility and prosecution is 

not as clear in situations where the AV has taken an action that has resulted in a person’s 

death. In essence, the AV has been programmed by the programmers to make decisions 

in some way in emergency situations, and to choose who or what to hit in a collision. It 

could thus be said that if an innocent life is lost due to the AV, this was ultimately due to 

the actions of the programmers of the AV. It can be argued, however, that the programmer 

is not to be held accountable because the programmer did not program the AV to kill a 

specific person, but rather programmed a wider range of guidelines for the AV for a wide 

range of different scenarios. Therefore, the manufacturer cannot be held accountable in 

most situations. (Santoni De Sio 2017) 

According to studies, most people would choose a utilitarian approach to the AV Trolley 

Problem: they would simply have the AV in all situations choose the option that results 

in the fewest number of casualties. This approach, however, leads to several ethical 

problems, one of which is the problem of incommensurability, i.e., the value of different 

people is impossible to determine by comparing them to each other, as the value of a 

person is completely subjective. This is the most significant problem with the utilitarian 

approach to the Doctrine of Necessity: there is no objective way to compare the value or 

worth of a person or persons, and thus it cannot be said that choosing the option with the 

fewest fatalities is somehow objectively the right decision. Moreover, material damage is 

excluded from this because it is not comparable to the loss of life, and an AV should 

always choose material damage rather than fatalities. (Santoni De Sio 2017) 

Further problems arise from the contractual obligations of the manufacturers of AV's. In 

law, it is stressed that manufacturers and service providers have a contractual obligation 

to keep their customers safe. Santoni De Sio uses a court case as an example of this in the 

article: Killing by Autonomous Vehicles and the Legal Doctrine of Necessity (2017), 

where sailors threw travelling customers off a ship to save the ship from sinking. The 

sailors where held accountable and prosecuted for this act because, according to the court, 

they should have sacrificed themselves because they had a contractual obligation to keep 

their customers safe. This is even though the utilitarian approach here would have been 

to sacrifice a few customers to save everyone else. This dilemma is also present in AV's, 

but it is also more complex. The manufacturers of AV's have a contractual obligation to 

keep to their customers’ passengers safe. However, unlike the sailors, AV manufacturers 
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cannot sacrifice themselves to save their passengers, but rather might have to sacrifice a 

third party in an accident, such as other road users, to uphold their contractual obligations 

if there is no other option. These parties are, however, entirely innocent in this situation 

and it would be morally questionable to have the AV choose to hit them. Thus, stating 

that choosing the AV to hit a non-customer rather than killing the passenger, due to a 

contractual obligation, is false. Therefore, it could be said that manufacturers also have 

an extra-contractual obligation to the third parties. This leads to the conclusion that 

contractual obligations are not enough to choose the appropriate behaviour of an AV in a 

fatal accident. To circumvent this, manufacturers could, in theory, sign a contract with 

the customers stating that in an extreme situation the AV might cause the death of the 

passenger. This is, however, something few people would willingly sign. (Santoni De Sio 

2017) 

Another aspect to consider in the programming of the AV is the responsibility held by 

road users. In many court cases throughout the years, great emphasis has been put on the 

responsibility of drivers of road vehicles, as it is seen they operate the means to harm 

another. This leads to the fact that even if a pedestrian or cyclist were in a fatal accident 

with a vehicle due solely to their own negligence, the driver of the vehicle would still be 

most likely prosecuted. A similar, or even greater, burden would fall on AV's and AV 

manufacturers as well. Because of this, AV's should always avoid hitting third parties, 

such as pedestrians and cyclists. However, in situations where the only options are to 

injure the passenger of the AV or to injure a third party, a clear contradiction can be seen 

with the earlier point, which states manufacturers have a contractual obligation to their 

customers. The responsibilities of road users are therefore not a suitable basis for the 

decision-making of AV’s either. (Santoni De Sio 2017) 

Lastly, it is a matter of debate whether decisions of this calibre, i.e., of life and death, are 

even suitable for the manufacturers of vehicles and the AV’s themselves. As such, a 

higher authority in the decision-making would be beneficial. Vehicle manufacturers 

could, for example, be either given a set of binding legal guidelines that the AV's must 

follow in the case of an accident, or in the future the decision-making could be centralised 

into a separate automated system that chooses the right outcome in each situation. 

(Santoni De Sio 2017) 

In summary, the moral and ethical dilemmas of AV decision-making are complex, but 

some guidelines can be drawn from the points mentioned above. Firstly, the AV should 

never choose to hit third parties, which are not part of the accident otherwise, and the AV 

should always choose material damage before human fatalities. Secondly, manufacturers 

have a contractual obligation to keep their customers safe, but this should not come at the 

expense of other road users. Lastly, the AV's should not target pedestrians or cyclists if 

there is an option to hit another vehicle, regardless of who is at fault. (Santoni De Sio 

2017) 
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The previous examples are mainly for road vehicles, but the same problems and 

challenges exist in industrial fields as well. Industrial autonomous machines must also 

operate around people and other manned vehicles, and thus may cause harm to these other 

agents with their own actions. Ultimately, industrial machines may also face their own 

Trolley Problems and, as such, the moral and ethical considerations of decision-making 

apply. 

The operational environments of industrial AV’s are, however, not as complex as with 

autonomous road vehicles. Interactions with humans and other non-autonomous vehicles 

are not as frequent as with road vehicles, and thus situations where trolley type decisions 

must be made are rarer. The speeds of industrial machines are also generally slower, 

which shortens stopping distances, leading to fewer unavoidable collisions. Lastly, a 

major benefit of industrial autonomous machines is that the goal of industrial autonomy 

is often to situate the operator into a control room or to eliminate their presence 

completely, thus reducing the risk of human fatalities and eliminating the contractual 

obligations of autonomous machine manufacturers and the moral dilemmas they bring. 

Nonetheless, the moral and ethical implications of the decision-making of autonomous 

industrial machines is something to consider and something that must be accounted for 

in the design of such machines, even though situations were these problems arise may be 

rarer than in equivalent road vehicles. 

3.9 Autonomy-safety-paradox 

The level of autonomy of a machine is a double-edged sword, as the increase of autonomy 

may affect the safety of the machine. This is called the autonomy-safety-paradox 

(Matsuzaki & Lindemann 2016), where the increase of autonomy may come at the 

expense of safety, and similarly the increase in safety may come at the expense of 

autonomy.  

In the past, autonomous machines were blind, as per the categorisation in chapter 2.3.2, 

and therefore operated in cordoned off areas where they followed predetermined routes 

with minimal interactions with other machines or people. This ensured an adequate level 

of safety for these machines. As technology has progressed, modern autonomous 

machines can sense their surroundings and do not need to operate in cordoned off areas 

or along predetermined paths. Therefore, the safety precautions set in place for blind 

autonomous machines will not suffice for modern autonomous machines, as they would 

interfere with the autonomous capabilities of the machine. A similar problem occurs if 

the risks of operation of a highly intelligent autonomous machine are mitigated based on 

predetermined risk assessments and barriers, as discussed in chapter 3.6. This is the 

essence of the autonomy-safety-paradox: an adequate and necessary level of safety must 

be achieved by the precautions put in place and by the design of the system, but they 

should not interfere with the autonomous operation of the machine considerably, as this 

would negate the purpose of the machine and its usage. (Matsuzaki & Lindemann 2016) 
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The autonomy-safety-paradox can also be thought of as a triple constraint for the design 

and implementation of the autonomous machine, as illustrated in figure 9.  An advanced 

and safe autonomous machine can be seen as a sum of three parts: the level of its 

autonomy, the complexity of the machine’s features and functions, and lastly, the 

machine’s overall safety. To create such an advanced machine requires considerable 

effort and high sophistication of all three parts of the constraint. For example, a highly 

advanced autonomous machine would require a high level of autonomy, highly advanced 

features and a high level of safety.  

Level of autonomy

Safety

Complexity of 
features and 

functions

An advanced 
autonomous 

machine

 

Figure 9. The triple constraint affecting autonomous machine design 

If any of the three constraints need to be changed in the design phase of the machine, it 

also necessitates changes in the two other constraints. Therefore, if, for example, the level 

of autonomy is increased in a machine, safety must be ensured for this new level of 

autonomy, and similarly, the features of the machine must be updated to take advantage 

of the higher level of autonomy. 

Considerably less effort is needed in the design phase of the machine if only two of the 

three constraints need to be considered. For example, it is relatively simple to create a 

machine that offers highly complex and advanced functions with a high level of machine 

safety, but with no included autonomy. Similarly, a machine with a high level of safety 

and high level of autonomy is simple to design if the actual features of the machine are 

minimal and simple.   

To create a framework to ensure the safety of an autonomous machine, binding legislation 

and standards are needed, as discussed in other chapters. This would allow manufacturers 

to create machines that have highly autonomous functionalities but still offer an adequate 

level of safety, as the machine would conform with the given standards and legislation, 

thus eliminating most problems brought on by the autonomy-safety-paradox (Matsuzaki 

& Lindemann 2016). 
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4. AUTONOMOUS INDUSTRIAL MACHINES IN 

PRACTICE: MINING 

Mining is a field of industry that can benefit greatly from the implementation and increase 

in autonomy. This is due to the hazardous operating environments, monotonous tasks and 

the scale of operations affiliated with mining. This is why in this thesis, mining is chosen 

as a suitable example for industrial autonomy in practice.  

In this chapter, the nature of mining is presented and the main benefits of increasing 

autonomy are discussed. Next, the main challenges autonomy can face in mining 

operations are presented, which often also affect operational safety. The current 

developments in mining autonomy are also presented, with an emphasis on Load-Haul-

Dump (LHD) machines, the autonomy of which has been researched extensively in the 

last few decades. After this, the main safety issues autonomy brings to mining are 

discussed. Lastly, brief examples on autonomous machines from other fields of industry 

are given. 

4.1 Mining and the benefits of higher autonomy 

Mining is generally separated into two different categories: surface mining and 

underground mining. As the names imply, surface mining is mining above ground where 

ore deposits are accessed by removing the top layers of soil and rock. In underground 

mining, on the other hand, the ore deposits are accessed by digging underground tunnels. 

Both are quite similar in operation, but differ in some key areas, and these differences 

also effect autonomous operations to some degree. 

Regardless of which type of mining is in question, the lifecycle of a mine is generally the 

same for both. A traditional life cycle of a mine is separated into five distinct phases: 

prospecting, exploration, development, exploitation and reclamation. In the first two 

phases, the location for the mine is determined by searching for and verifying ore bodies. 

In the development phase, the needed infrastructure for the mining operations which 

includes roads, access tunnels and so forth, is built. Next, the actual mining is conducted 

in the exploitation phase, where the desired ore bodies are extracted from the earth. Lastly, 

when the ore has been fully exploited, the reclamation phase begins where the mine is 

closed, and the environmental impact is minimised by restoring vegetation and water 

supplies. 

In underground mining, several different machines are needed, each of which is used to 

achieve the common goal of extracting ore deposits from the ground. The machines range 

from tools for drilling, to tools for shaping tunnels to tools for transporting rock matter. 
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The most common underground mining method is drilling and blasting, where drill rigs 

are used to drill deep holes in the rock face. Explosives are then placed in to these holes 

and detonated. The created rock matter is then hauled from the tunnel with dedicated LHD 

machines and dump trucks. Other methods and tools used for underground mining are, 

for example, raise borers, cutting machines, among others. (Heiniö 1999) 

In surface mining, drilling and blasting is also one of the most common mining practices. 

Here, similarly to underground mining, drill rigs are used to drill holes for explosives, 

which are detonated. Then, the rock matter is loaded into dedicated haulers that transport 

the material, for example, to be crushed by dedicated rock crushers. (Heiniö 1999) 

Mining has been in the past a highly hazardous form of industry, with numerous lost time 

injuries and fatalities happening each year. This is due in part to the hazardous areas 

where mining takes place, but also due to the high-risk work methods used in mining. 

Risks in mining include falling rock, other vehicles and machines, poor visibility and the 

environment itself. In recent years, great effort has been put on mine safety, which in turn 

has decreased fatalities and injuries greatly. However, mining is still regarded as a high-

risk industry in regard to safety. For example, there were 72 fatalities in US mines in 2004 

(Dhillon 2010), and in the same year 6300 people were killed in mines in China alone 

(Kumar 2010). 

Previously, the philosophy in mining was that to increase the amount of ore mined, 

mining companies would merely deploy more and/or larger machinery to achieve the 

demand for ore. This expansion unfortunately often came at the expense of safety. More 

recently, productivity and effectiveness with an emphasis on safety has become the 

driving force in mining, with mining companies monitoring these areas closely. This has 

created a need for smarter, more effective mining methods, and thus autonomy. (Marshall 

et al. 2016) 

The safety and productivity of mining can benefit greatly from the increase in autonomy. 

This is mainly due to the hazards involved and the somewhat repetitive work tasks 

associated with mining, which can be carried out without an operator with autonomous 

machines. Mines are also generally located in isolated places with mining companies 

having simultaneous operations in different countries and continents. Thus, the relocation 

of personnel is a significant expenditure for mining companies, and therefore the increase 

in autonomy can reduce cost considerably (Nebot 2007). On a closer level, haulage is an 

area where both surface and underground mining can gain benefits from the increase in 

autonomy. In surface mining, for example, haulage accounts for 40% to 50% of 

operational costs, and haulage vehicles are in many instances a part of mine accidents 

(Nebot 2007). In addition to the safety and productivity gains, haulage tasks are often 

repetitive, and can therefore receive great benefits from the increase of autonomy 

(Marshall et al. 2016). Lastly, mining companies have suffered labour shortages in recent 

years, which is due to the shifting attitudes of the current generation of workers in regard 
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to physical work. Modern workers are more accustomed to technology than hard labour, 

and thus both parties would benefit from the increase in autonomy. (Marshall et al. 2016) 

4.2 Autonomy challenges in mining 

The challenges of autonomy in mining are very similar to the challenges faced by other 

fields of industry, but the hazardous environments of mining add an additional challenge. 

For example, as stated previously, haulage accounts for a great portion of the operational 

expenses in mining, hence the interest in autonomous haulage vehicles. These vehicles 

suffer from the same situational awareness and localisation problems as other 

autonomous vehicles, but the operational environment adds to these problems 

considerably.  

Mining operations and environments differ greatly between surface and underground 

applications, which is why different types of autonomy are called for and different 

technologies are needed. For example, in underground applications machines navigate in 

underground tunnels where GPS signals are not available, and other methods of 

localisation must be used, whereas in surface mining GPS signals are available, but the 

operational environment is far less structured than the equivalent underground tunnels.  

In the article: Surface Mining: Main Research Issues for Autonomous Operations, 

Eduardo M. Nebot (2007) outlines the main issues surrounding the development of 

autonomous surface mining machines, some of which also apply to underground mining. 

Some of the issues brought up in the article have already been overcome, or the proposed 

solutions have already been implemented due to advancements in present-day 

technology. Nonetheless, the issues brought up in the article still have a great effect on 

autonomous mining, even if the issues have been solved.  

The main issue with the operational environment in mining is the unstructured and 

unpredictable nature of mines. The layouts of mines are constantly evolving, and many 

structures and roads may be temporary. As such, predetermined maps and layouts are not 

readily available, so they cannot be utilised in the localisation and route planning of 

autonomous machines as effectively as with autonomous road vehicles. Thus, 

autonomous machines in mining rely heavily on sensory data and other means of 

positioning. (Nebot 2007) 

The constantly evolving and changing nature of mines also means setting up separate 

fixed infrastructure for autonomous vehicles, such as beacons for guidance, is often not 

economically viable (Marshall et al. 2016). On-board sensors for localisation and 

situational awareness are thus a better option but have their own issues. The rugged 

operational environment of mines can have a negative effect on the performance of 

sensors due to extreme heat, vast amounts of dust and other factors This degrades the 

quality of the data acquired by sensors and can thus have a great impact on machine 
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safety, if the autonomous machine performs tasks with missing or incomplete data. The 

rugged environment also has an effect on the overall health of the vehicle, which may 

deteriorate at a greater pace than in other industries. This is something the autonomous 

system must be able to monitor, as maintaining an operational state is important for the 

overall effectiveness of the machine, as well as for safety. This may, however, be 

challenging to implement in practice if there is no human operator present because this 

would require system-wide integration. A human operator, for example, is able notice, 

without issue, a strange sound coming from the vehicle, indicating a fault. Implementing 

such a feature as part of the autonomous machine is, however, an entirely different matter. 

Similarly, the harshness of the environment affects the state of the roads in addition to the 

state of the machine. For example, a haul route deemed safe and traversable the previous 

day may have degraded to such a degree that it cannot be used any longer. Therefore, an 

operator of a haulage machine must continuously monitor and asses the condition of haul 

roads and determine whether a particular route can be taken. Again, effectively 

implementing such a feature in a fully autonomous machine may be challenging to 

achieve in practice because this would require highly accurate sensing and decision 

making. (Nebot 2007) 

Mining applications also require a vast number of interactions with manned machines and 

other vehicles. These situations are, for example, the loading and dumping phases of a 

haul vehicle’s work cycle. Interactions between autonomous machines and non-

autonomous machines are difficult and potentially hazardous to perform because they 

require precise situational awareness and control of the machine, and any errors in either 

may lead to safety incidents. This is why all of the machines in a mine must be monitored 

and controlled effectively to ensure an adequate level of safety and efficiency. Such 

systems are already in place in numerous mines, which will be discussed later in chapter 

4.3.4. (Nebot 2007) 

4.3 Current developments in autonomous mining 

Mines of the past have evolved from places with inferior occupational hygiene, and 

numerous safety hazards and high risks to highly monitored and efficient production 

systems that utilise a number of state-of-the-art technologies. A key area of interest in 

mining is autonomy, which is being implemented in all aspects of mining, with often the 

end vision of a completely autonomous mine. Mining automation and autonomy has been 

studied comprehensively in the last few decades, with most of the effort having gone into 

the automation of mining haulage vehicles, especially underground LHD machines. To 

facilitate autonomous mining operations, a mine must be closely monitored to ensure 

different parts of the operation work together effectively and safely. This has led to the 

usage of mine-wide monitoring and control systems that have turned modern mines into 

complex systems-of-systems. 
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4.3.1  Autonomous underground haulage 

Autonomous mining haulage machines are the most researched aspect of mining 

autonomy, with several being available commercially for both surface and underground 

applications. The most studied application has been the automation of underground LHD 

machines, the first simulations of which were conducted in the 1980’s and the first 

prototypes were in operation in 1999 (Gustafson 2011). Currently, semi-autonomous 

LHD machines are commercially widely available. 

A mining LHD machine is a machine used in the loading and transportation of rock matter 

in underground mining. A typical LHD machine is presented in figure 10. Traditionally, 

the machines are used after the blasting of the tunnel face to load the created rock matter 

and to transport it to a location where it can be loaded onto a haulage truck.  

Autonomous underground haulage trucks have also been researched extensively in the 

last few decades (Gustafson 2011), which has led to manufacturers recently offering these 

machines commercially. The trucks are used to transport rock matter from the LHD 

machines dump location to the outside of the mine. Therefore, their operating 

environment and the challenges faced are similar to underground LHD machines, which 

is why these machines will not be discussed in more detail in this thesis.  

 

Figure 10.  A typical LHD machine (Sandvik 2018a) 

Traditionally, LHD machines are centre-articulated vehicles that utilise either diesel or 

electric power. They weigh between 20 and 75 tonnes and are 8 to 15 meters long. Normal 

operational speeds for LHD machines are roughly 20 km/h to 30 km/h. (Gustafson 2011) 

A normal work-cycle of a LHD machine consists of first loading the rock matter formed 

from blasting with the bucket on the front of the machine. After loading, the machine 

transports the rock matter through mining tunnels to a specified location, where the matter 

is loaded onto a haulage truck, which is also called the dump phase. This interaction 

between machines is seen in figure 11.  
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Figure 11. Machine interaction between a LHD machine and an underground 

haul truck (Sandvik 2018b) 

Current LHD machines can be operated with a traditional human operator, via 

teleoperation, or semi-autonomously, but not fully autonomously. The haul and dump 

phases of the LHD machine’s work cycle are fully autonomous, but the loading phase 

must be carried out by an operator manually or via teleoperation. This is due to the 

difficulty of automating the loading of rock matter, as the intricate differences in the 

densities and forms of rock necessitates the precise and skilled control of the bucket, 

which has not been able to be performed sufficiently using automation. Research and 

development has been carried out to automate this phase of the work cycle, but this 

functionality has not yet been able to be incorporated in commercial machines (Gustafson 

2011). 

The autonomy of LHD machines is mostly based on the safe and effective navigation of 

the machine. Traditionally, two types of navigation methods have been implemented in 

autonomous LHD machines: absolute navigation and reactive navigation. The former is 

a method where machines are blind to their surroundings and navigate along fixed paths 

to the desired destination that has been determined beforehand. Absolute navigation is 

thus a method for automatic navigation, rather than autonomous navigation, as the 

machine does not gather any information on its surroundings. The more modern reactive 

navigation methods, on the other hand, are based on the machine gathering information 

on its location and making decisions on navigation based on this information. As such, a 

predefined route is not needed. For example, the machine can sense its surroundings by 

analysing the tunnel face around the machine and then use this for positioning and 

navigation. (Gustafson 2011) 

As GPS signals are not traditionally available underground, other methods for positioning 

and localisation must be used. Manufacturers have taken different approaches to solve 

this problem. The applied methods, however, are all based on scanning the machines 

surroundings for information that can be used to determine the position of the machine. 
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In addition, movement-tracking methods, such as dead reckoning, are also used. 

(Gustafson 2011) These visual and movement-based methods were discussed in more 

detail in chapter 3.4.1.  

For example, the Sandvik AutoMine autonomous navigation system is based on absolute 

navigation, and it utilises both visual odometry and dead reckoning. In practice, the 

system works by first manually teaching the machine a suitable reference trajectory by 

traversing the tunnels of the mine and simultaneously calculating the machines position 

by dead reckoning and by scanning the distance from the machine to the tunnel walls. 

After this, the machine can traverse independently by determining its location by dead 

reckoning and by comparing its location to the information gathered in the teaching phase. 

The benefit of this method is that no separate infrastructure or premade maps of the mine 

are needed for the navigation of the machine because the teaching-phase gathers all 

needed information for navigation. (Gustafson 2011, Mäkelä 2001)  

Other similar methods of navigation have also been researched. For example, a similar 

method to the previous AutoMine system has been proposed by other parties. In this 

method, the machine is similarly taught by traversing the mining tunnels manually, while 

data are gathered with lasers and by articulation and speed sensors. The data are then used 

to create a metric map of the mine and a suitable route profile. In autonomous mode, the 

machine uses this route profile and metric map to navigate by ensuring with the on-board 

sensors that the machine stays on the desired route. (Marshall et al. 2008) Other methods 

for navigation include the usage of premade maps together with sensor information 

(Larsson et al. 2006) and vision-based methods that recognise mine intersections and 

other visual clues (Gustafson 2011).  

4.3.2 Safety of autonomous haulage machines and standard 

ISO 17757 

To ensure the safety of haulage machines, especially LHD machines, the standard ISO 

17757: “Earth-moving Machinery and Mining – Autonomous and Semi-Autonomous 

Machine System Safety” has recently been released. The standard outlines the general 

requirements and main risks for all aspects of an autonomous haulage machine that 

manufacturers of the machines must adhere to in the future. (ISO 17757:2017) 

The general safety requirements for an autonomous underground haulage machine are for 

the machine itself to comply with ISO 12100 (Safety of machinery -- General principles 

for design -- Risk assessment and risk reduction), while the control system must comply 

with IEC 61508 or a similar other functional safety standard, which were discussed in 

chapter 2.2.1. More specific requirements are given in the standard for the main aspects 

of the machine system that include positioning and orientation, digital terrain maps, 

perception and task planning. (ISO 17757:2017) 
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In chapter 3, some of the main safety challenges for autonomous machines and vehicles 

were presented. These included localisation, motion planning and situational awareness. 

These aspects are also included in standard ISO 17757 that outlines the main requirements 

and risks associated with each aspect. Even though it was stated in previous chapters that 

system architectures are an important aspect of autonomous machine safety, they are not 

directly dealt with in the standard. 

In the standard, localisation is classified as positioning and orientation (POSE). The 

POSE system is in charge of the calculation and monitoring of the machines position and 

orientation in regard to the world. The standard outlines the main possible failures 

associated with the POSE system that include inaccurate determinations of position or 

orientation, or the complete lack thereof, which can lead to collisions with the 

environment or other machines. The standard requires that the autonomous system must 

be able to sense the aforementioned faults and that the system must remain in a safe state 

even if faced with such faults. The standard also requires a certain amount of robustness 

in the POSE system because the machine must be able to determine its position and 

orientation even if one part of the POSE system encounters a fault. (ISO 17757:2017) 

The aspects of motion planning are discussed in the standard under chapters on navigation 

systems and task planning. The navigation system of the autonomous haulage machine 

ensures the machine navigates effectively and safely to the desired location, while the 

task planner plans the actions that are needed to reach this location, based on internal risk 

assessments, and then puts them into action. The main risks associated with the navigation 

system are possible collision with the environment or other machines, which can result 

from erroneous POSE information or insufficient control of navigation. To minimise 

these risks, the navigation system must be able to notice if it no longer has a safe heading 

or velocity and remain in a safe state in these situations. Risks associated with the task 

planner, in turn, are hazardous tasks that may lead to damage or injury if they are put into 

action. For example, an erroneous task may lead the machine directly onto a hazardous 

route, or the route taken may lead to hazards for others. To minimise these risks, the task 

planner must be able to detect and avoid hazardous actions before they are put into action. 

(ISO 17757:2017) 

Lastly, situational awareness is discussed in the standard under digital terrain maps and 

perception. Some machines may utilise a digital terrain map which is used for both 

situational awareness, task planning and navigation. Operational risks arise if the map is 

inaccurate or otherwise erroneous. Therefore, the POSE system must be monitored 

closely when the map is created, or the area surveyed, to minimise errors. Perception, as 

described in the standard, is similar to situational awareness as discussed in chapter 3.5. 

A perception system is used to detect what is around the machine at all times and to gather 

relevant information for navigating without an operator. Possible risks and failures 

perception systems can face include the failure to detect an object completely or the 

failure to detect the object in time. Other errors in detection include erroneous locations, 
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misclassifications and false-alarms. Ultimately, the main goal of the perception system is 

to keep the machine in a safe state at all times. Therefore, if the system is not operating 

correctly, the operator must be notified, and the machine to be kept in a safe state even if 

detection errors are encountered. (ISO 17757:2017) 

4.3.3 Other autonomous mining machines 

Other areas of mining have also made advancements in the adoption of autonomy. These 

vary from autonomous haulage vehicles to drills with autonomous functions. Many of 

which have come to fruition due to the advancements made in underground haulage 

autonomy. 

Another highly researched and commercially available area of mining autonomy is 

surface mining haul trucks that have followed in the footsteps of underground haulage 

machines. An example of such a machine is presented in figure 12. In general, surface 

haulage machines are similar to their underground counterparts, but differ mainly in size 

and operational environment. Surface trucks are also tasked with moving rock matter 

around the mine site, but usually the distances are considerably longer than in 

underground applications. Surface haul trucks are also generally far larger, as their 

carrying capacity is usually several hundred tonnes. 

 

Figure 12. An autonomous surface mining haul truck (Caterpillar 2018) 

Surface haul trucks offer varying degrees of autonomy, from mere driver assist systems, 

such as collision-alert and auto-spot systems to fully autonomous operation. Semi-

autonomy, including teleoperation, is also possible. (Brown 2012) The machines 

generally use a combination of GPS and radar for localisation and obstacle detection, and 
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they also include a communication system that connects it to the mines central command 

system. (Marshall et al. 2016) Due to the benefits autonomous haul trucks introduce, they 

have  increased in adoption in recent years. For example, there are currently one hundred 

autonomous trucks similar to the one in figure 12 in active mining operations. (Watkins 

2017) 

Other areas of mining autonomy include autonomous functions for drill rigs and semi-

autonomous bulldozers. Blasthole surface drill rigs are machines that are used for drilling 

holes for explosive charges in surface mines. The autonomy of these machines is under 

active development and autonomous models will be available commercially in the near 

future. Functions that these machines will offer vary from teleoperation to partial 

autonomy, where the machine can drill a row of holes autonomously after an operator has 

drilled the starting hole. (Watkins 2017, Leach 2015) Autonomous surface mine 

bulldozers are also commercially available. At the moment, these machines offer semi-

autonomous operation, where an operator is needed to set up the task for the machine. 

After this, the machine is capable of carrying out the task independently. Such a task is, 

for example, push-to-edge functionality, where the machine pushes matter over the edge 

of the mine pit. (Watkins 2017, Jensen 2016) 

Other areas of autonomous mining under research include diggers, rock breakers and 

draglines. Most of these tasks are highly repetitive and suffer from the same hazards as 

other forms of mining machines.Therefore, these machines are well suited for the 

application of autonomy. However, some aspects are still under research, which is why 

these machines are not available commercially at the moment. For example, autonomous 

diggers are still under research as they suffer from the same bucket control problems as 

underground LHD machines: the intricate control of the bucket is challenging to perform 

autonomously due to the heterogeneous consistency and size of the rock matter. 

Autonomous diggers also require precise situational awareness to determine the terrain 

around the machine and the location and orientation of the bucket. Similar problems have 

been faced with the autonomy of rock breakers that are used to shatter large fragments of 

rock with a hydraulic hammer on the end of a boom. Precise situational awareness is also 

needed in the automation and autonomy of draglines, which are large machines with a 

bucket and mast, that are used to drag rock matter in open coal mines. Research and 

development on these machines are still ongoing. (Marshall et al. 2016) 

4.3.4 Mining systems and the mine of the future 

A mine consists of a vast number of different machines and vehicles, which all have 

varying degrees of autonomy and operate in the varying stages of the mining processes. 

Simultaneously, mines are also under pressure to work as efficiently and effectively as 

possible. These requirements have led to the widespread adoption of mine-wide control 

and monitoring systems, which cover all aspects of the mines operation to ensure 

productivity and efficiency, that have effectively turned modern mines into complex 
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systems-of-systems. A need for such a system was already recognised in the early stages 

of the modernisation of mining, as especially the introduction of autonomy in machines 

necessitates a central control and monitoring platform (Nebot 2007). The challenge with 

these systems is, however, that for them to work effectively they have to be implemented 

in all aspects of mine operations. This leads to an all-or-nothing approach that requires 

considerable financial investments.  

Mine systems are offered by several manufacturers and offer similar functionalities 

ranging from central communication systems to fleet management. The systems also 

integrate teleoperation functionalities, mine mapping functionalities and other tools. 

Traditionally, the systems are monitored and controlled from a separate control room, 

which may be, for example, a van on the mine site or an office completely separate from 

the mine premises.   

Fleet management is the most central part of the mine system in regard to the operation 

of machinery. It is traditionally tasked with three aspects: position monitoring, production 

monitoring and equipment task management. Position monitoring allows for the real time 

monitoring of each machine and vehicle in the mine, including the weights and types of 

material they are transporting, or the current drilling depth, for example. This allows for 

the effective performance tracking of the mine operations and precise task planning. 

Above all, this increases safety by minimising collision risks because the positions and 

routes of machines and vehicles can be actively monitored. The internal state of each 

machine can also be monitored by production monitoring, which gathers data such as 

machine cycle times, failures, payloads and so forth. The data can then be used to plan 

production accordingly. Lastly, assigning tasks for the equipment in use is a central part 

of fleet management. Production and position data are used by control room personnel to 

determine what tasks need to be carried out by the machines in operation. These tasks are 

then sent to each machine, which can be both manned or unmanned, through the fleet 

management system. The task is then put into action and it can be monitored in real time 

by the control room personnel. Effective fleet management has a direct effect on mine 

safety because it allows for real time monitoring of all operations, and thus allows for the 

elimination of risks related to collisions, as these are responsible for most safety incidents 

in modern mining. (Marshall et al. 2016) 

Standard ISO 17757 also sets requirements for the mining system, or as titled in the 

standard, the autonomous machine supervisor system. The standard recognises that risks 

may arise if the supervisor system sends out erroneous tasks to the machine, either due to 

operator error or a fault. To minimise risks, the connection between the supervisor system 

and the machine itself must be periodically verified. If there is found to be a problem in 

the communication system, the machine must be able to keep itself in a safe state without 

input from the control room. (ISO 17757:2017) 



52 

The ultimate goal for mining companies in implementing mine systems and mine 

autonomy is a mine that does not need personnel at the actual mine site at all. For example, 

in 2008, the mining company Rio Tinto initiated the Mine of the Future programme in its 

iron ore mines in Western Australia. The aim of the programme was to find new ways of 

mining that increase efficiency, safety and sustainability, while minimising 

environmental impacts. Autonomy has been a central part of the programme, with a vast 

number of autonomous machines operating in the Rio Tinto mines, which are all 

controlled by a central operations centre that is 1500 kilometres away. (Jensen 2016) 

4.4 Safety challenges in autonomous mining 

The increase in machine autonomy has numerous advantages in mining applications, 

ranging from increased productivity and efficiency to improved safety. For example, the 

safety benefits of autonomy are clear: with autonomy, the need to situate personnel in 

hazardous environments is minimised, or in some cases completely eliminated. 

Nonetheless, the increase in autonomy in mining applications brings with it safety 

challenges that must be overcome to ensure operational safety. Most of these challenges 

are similar to the challenges autonomy itself faces in mining applications, which were 

discussed in chapter 4.2. The safety challenges stem mostly from the operational 

environment of mining, which includes hazardous weather conditions and frequent 

interactions between machines and vehicles. 

The harsh environmental conditions of most mines has an adverse effect on sensors and 

their performance. The conditions range from extremely high or low temperatures to high 

humidity and to considerable amounts of dust. Especially underground mines are harsh 

environments, as they are dark, damp and humid. All of these aspects can possibly 

degrade sensory data or render it unavailable. As most autonomous machine functions 

are based on sensing and sensory data that are acquired by sensors mounted on the 

machine, the data are critical for the safe and effective performance of the machine (Nebot 

2007). Methods are needed to ensure the machine remains in a safe state even if there are 

lapses in the gathered sensory data. These methods include added robustness to the 

sensory systems and the ability for the autonomous system to sense missing or erroneous 

data.   

Another major challenge for safe autonomous mining machines stems from the 

interactions with other machines, vehicles and personnel. As most safety incidents in 

modern mines are the result of different forms of collisions, it is also a problem 

autonomous machines must face. Most of the incidents occur when machines collide 

while traversing the mine or in situations where two or more machines must interact 

together, for example, during dumping or loading rock matter. The root cause in these 

incidents is often poor visibility or problems in communication. (Marshall et al. 2016) 

Central mine command systems and the situational awareness of machines can minimise 

these hazards, but a great level of system integrity and fault tolerance is needed, as a great 
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weight is put on these systems to ensure safety in interactions with autonomous machines. 

For example, errors in task assignment or position monitoring can lead to high-speed 

collisions of machines if they are ordered to traverse the wrong route. Moreover, precise 

control and monitoring is also needed for situations where autonomous machines must 

interact with other machines or vehicles to ensure no collisions occur.  

A highly challenging form of interaction occurs when autonomous and non-autonomous 

machines must work together to perform a task. For example, such interaction can occur 

when an autonomous LHD machine dumps rock matter onto the bed of a manned mining 

truck, or when a manned and unmanned machine share a road together. These interactions 

require highly precise situational awareness and control with narrow margins for error to 

minimise the safety risks for the operator of the manned vehicles. Traditionally, these 

interactions have been eliminated by having the autonomous mining machines operate in 

cordoned off areas, where other machines and personnel cannot enter. For example, 

autonomous LHD machines often operate in separate tunnels that are closed off with 

gates, such as in the example in figure 13. If a person or machine enters through such a 

gate while autonomous operation is active in the tunnel, every machine is stopped 

automatically. In surface mining applications, the same functionality can be achieved by 

creating GPS perimeters that other machines cannot enter (Gustafson 2011).  

 

Figure 13. An example of a gate cordoning off an area of autonomous 

operation (Gustafson 2011) 

Separating autonomous and non-autonomous mining machines leads to the autonomy-

safety-paradox, which was discussed in chapter 3.9. By eliminating the interactions 

between different machines, an adequate level of safety is achieved. However, this limits 

the autonomous capabilities and effectiveness of the machines because they are only 

allowed to operate in certain areas and to carry out certain tasks. For example, in surface 
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mining some routes may only be traversed by autonomous machines, which means 

manned machines must wait for their turn or find another route. High situational 

awareness and intelligence of the machines would eliminate the need for such 

arrangements and would allow for machines with heterogeneous levels of autonomy to 

operate in the same area. Another simple solution would be an all-or-nothing approach to 

autonomy: if a mine is completely autonomous, all interactions with manned machines 

are eliminated and no risk is present. Such an approach, however, is not possible with 

current technology and, moreover would lead to considerable financial investments which 

mining companies may not be willing to partake in (Brown 2012).  

4.5 Other industrial autonomous machines 

In addition to mining, autonomy has been widely researched in other industrial fields 

including such areas as agriculture, transport, maritime applications and ship port 

automation, for example. Traditionally, fields that have either repetitive or hazardous 

work tasks have had the most to gain in adopting autonomy. For example, the autonomous 

possibilities in agriculture have been studied for a number of years (Torii 2000), which 

has led to commercial offerings being currently available. Agriculture is an area that can 

greatly benefit from autonomy because the work tasks are often repetitive and relatively 

simple in nature. Agriculture is relatively hazard-free, so no great benefits are gained from 

autonomy in this regard. However, autonomy does have the benefit of minimising 

operator contact with the poisonous insecticides that are used in agriculture (Pushpavalli 

et al. 2015).  

Work tasks in agriculture usually consist of traversing a field in a straight line, while 

spreading seeds or pesticide, ploughing, harvesting and so forth. As the fields are large, a 

single machine would have to traverse end-to-end several times to cover one field, which 

is why in agriculture fleets of machines often operate at the same time. This has led to the 

adoption of follow-me based autonomous and automatic systems, where one master 

vehicle, operated manually, is followed by one or more slave vehicles that are 

autonomous or automatic. (Zhang et al. 2010, Bedord 2017) Agriculture machines that 

operate independently of a master vehicle are also under research and some are available 

commercially (Torii 2000, Agriculture News 2008). These machines navigate with the 

use of GPS and on-board sensors. A remote operator is, however, still needed to monitor 

the machine. 

Other industrial fields that have utilised autonomy have used similar approaches. Most 

autonomous machines are tasked with performing straightforward functions 

independently, while an operator is used for monitoring and the execution of more 

complex tasks. Technology is, however, advancing rapidly, which can lead to more 

complex work tasks for autonomous machines with decreasing amounts of input and 

monitoring needed by machine operators.  
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5. CONCLUSIONS 

Recent advancements in technology has allowed for the development of increasingly 

complex and intelligent autonomous industrial machines and civilian road vehicles. These 

machines and vehicles are able to act and make decisions independently and to perform 

functions that were a mere vision not too long ago. The increase in autonomy has, 

however, led to increased safety concerns. As autonomous machines and vehicles are able 

to operate without the supervision or control of a separate operator or driver, concerns 

arise on how to ensure an adequate level of safety in all operational situations. 

In this thesis, the main aspects that affect overall safety of autonomous machines, vehicles 

and the design of systems were presented. Additionally, the main safety challenges of 

increasing autonomy in machines and vehicles were also discussed. The ultimate goal of 

the thesis was to give an overview on what safety-related aspects have to be considered 

to achieve an adequate level of safety for autonomous machines and vehicles.  

The safety of an autonomous machine or vehicle is the combination of both safety-

specific functionalities and overall correct operation of the machine or vehicle in all 

situations. To ensure an adequate level of safety, these aspects have to be considered in 

the design phase of the machine, as autonomy cannot be regarded as a mere feature, but 

rather as an all-encompassing aspect of the machine.  

The main safety challenges that arise from the increase of autonomy in machines and 

vehicles include areas such as building suitable system architectures, creating effective 

situational awareness capabilities, as well as ensuring the correct localisation and motion 

planning of the autonomous machine. Moreover, the increase in autonomy introduces 

questions and concerns relating to the internal risk assessment and decision-making 

capabilities of the machines and vehicles, which ultimately can lead to moral and ethical 

dilemmas. All of these aspects are equally important for the safe operation of an 

autonomous machine, as any errors or faults in these areas can lead to undesired and 

erroneous behaviour, possibly leading to safety hazards and incidents, or even fatalities. 

Ultimately, the difficulty in creating safe and effective autonomous machines and 

vehicles is due to two main correlating aspects. First, increasing autonomy in machines 

and vehicles can be seen as a paradox of sorts. The intent of the manufacturers of 

autonomous machines and vehicles is often to create an autonomous system that is as 

advanced as possible, so that they can compete with other manufacturers effectively. 

Simultaneously, the autonomous system must also be as safe as possible, which can 

ultimately limit the autonomous capabilities of the system. In other words, the increase 

in safety can often come at the expense of autonomy and vice-a-versa, the increase in 

autonomy can often come at the expense of safety. Designing a safe, effective and 
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sophisticated autonomous machine or vehicle can also be said to be controlled by a triple 

constraint that comprises safety, the level of autonomy and the complexity of the 

machine’s functions. Therefore, changing any of these three aspects necessitates 

alterations in the other two, as for example, the increase in the level of autonomy 

necessitates an increase in safety and changes in the machine’s corresponding functions, 

if a safe and sophisticated machine is desired.  

The second reason for difficulties in designing safe autonomous machines and vehicles 

is the lack of appropriate legislation, standards and other guidelines on how autonomy 

should be implemented in practice. Both autonomous civilian road vehicles and industrial 

autonomous machines are hampered by bottlenecks in this regard. In the field of civilian 

road vehicles, some legislation and standards have been passed that offer guidelines on 

how autonomous vehicles should be designed and what steps must be taken before they 

can be used on public roads. Guidelines have also been put in place on ways to categorise 

the levels of autonomy of road vehicles, such as by the NHTSA and SAE International. 

These categorisations can then be used to create more specific legislation and guidelines 

on ensuring safety for specific levels of autonomy. Currently, however, only a select few 

of such legislation and guidelines are available. In industrial fields, on the other hand, the 

situation is difficult. At the time of writing, only two standards by the major standardising 

organisations are known to exist regarding the autonomy of industrial machines: the very 

recently released standard ISO 17757 on the autonomy of mining haulage machines, and 

the standard ISO 18497 on autonomous agriculture, which is still under development. 

Therefore, very little information and few guidelines are available for industrial 

manufacturers on how autonomy should be implemented in practice and how safety of 

such machines should be ensured. Moreover, as no guidelines are available, there is 

currently no common method for classifying the levels of autonomy in industrial 

machines. Therefore, future standards and guidelines can be challenging to apply in 

practice to machines, as there is no commonly accepted way to separate machines based 

on their autonomy. Ultimately, the resonsibility for ensuring the safety of autonomous 

industrial machines in practice is on the shoulders of manufacturers alone – at least at the 

moment. Therefore, the advances made in the automotive field in this regard could be 

used as a guide of sorts for industrial applications. For example, a classification method 

for autonomous industrial machines could be produced based on the guidelines by the 

NHTSA and SAE International.  

As this thesis was conducted as a literature review, no real-world tests or practical 

examinations were carried out on specific autonomous machines. Rather, mining 

autonomy was used as an example of industrial autonomy in practice, which was also 

used to demonstrate the types of problems and challenges safe autonomy can face in 

practice. Continuing this research, real-world tests could be carried out on differing 

autonomous machines in usage and data could thus be gathered on the different safety-

related aspects of autonomous machines presented in this thesis. This data could then be 
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used to compare how different safety methods affect overall machine safety in 

autonomous applications. 

In the future, it is certain that autonomous machines and vehicles will enjoy continued 

rapid advancements in technology. As the field of autonomy matures, new standards and 

other legislation will become available for manufacturers and developers to ensure 

autonomous machines and vehicles operate safely and correctly, without introducing 

hazards. It is to be hoped, however, that this happens sooner rather than later, so that the 

full benefit of autonomous technologies can be taken advantage of as soon as possible. 

Ultimately, autonomy will be an increasing part of everyday life and operations both in 

civilian and industrial applications because the vision of self-driving cars and self-

operating machines is very near. 
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