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Full-duplex transmission is a scheme where the transmitter and the receiver of a trans-

ceiver can transmit and receive simultaneously using same carrier frequency. Full-duplex 

transmission theoretically doubles the spectral efficiency and avoids using the separate 

frequency bands for transmitted and received signal. Full duplex transmission suffers 

from the self-interference because of the powerful transmit signal coupling back to its 

own receiver chain. This self-interference signal should be mitigated for the efficient 

operation of the full duplex radio. 

This thesis work includes the experiment on the cancellation of self-interference signal 

induced during the full duplex transmission. LMS algorithm has been adopted for the 

channel estimation of self-interference channel and the self-interference cancellation has 

been carried out at the baseband level. Rician channel has been used as a self-interference 

channel with a high power in the line of sight direction.  

Effect of K parameter of Rician channel and LMS algorithm on self-interference cancel-

lation has been studied in this thesis work. The simulation work has been carried in a 

LabVIEW™ environment. Different level of attenuation has been observed by varying 

the number of samples for estimation/cancellation, step size and the length of estimation 

filter. In this thesis, the used figure of merit is the output power of self-interference digital 

canceller (error signal).  
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1 Introduction 

Wireless technology has been exponentially growing from the past years. With introduc-

tion of wireless telegraph in 1896 [1], demand for more advance wireless technology has 

been increasing day by day. As more portable devices are carried by people, there is more 

demand for data services which includes audio and video services. 

Most of the wireless network operates in the half duplex mode. One of the duplexing 

method used in wireless communication is known as frequency division duplexing 

(FDD). In this method communication occurs in two separate frequency bands. Each 

transmitter/receiver uses separate frequency bands to communicate with distant transmit-

ter/receiver at the same time. Time division duplexing (TDD) uses same frequency band 

for transmitter/receiver in different time slot separated by guard interval, in order to com-

municate with the distant transmitter and receiver.  

Currently most of the available frequencies are already in use. Even unlicensed bands 

like the ISM bands are in use by different wireless devices because of which there is a 

high congestion in the frequency spectrum. This situation has strongly motivated engi-

neers and scientist to develop more spectrally efficient system. 

Full-duplex (FD) means to receive and transmit data at same carrier frequency and at 

same time unlike the half duplexing method like TDD or FDD. FD radio fulfills the re-

quirement of high throughput and spectral efficiency. Self -interference is major problem 

that has to be faced when implementing such kind of FD radio system [2]. Self- Interfer-

ence (SI) occurs when receiver receives signal of interest from a distant transmitter along 

with signal from its own transmitter chain, thus interfering with the signal of interest SOI 

[2]. 

FD radios may use same antenna or a different antenna to transmit /receive data. Use of 

separate transmitting and receiving antenna provides high level of isolation than using a 

single antenna [3]. In [2], author has purposed three antennas, two for transmitting and 

one for receiving in order to cancel out the SI signal in space, by placing receiving an-

tenna asymmetrically in between two transmitting antennas. In [3], author has used a 

single antenna where the transmitted power couples to receiver chain through a circulator 

leakage, reflections due to impedance mismatch and multipath components. Even though 

power of multipath component is quite low, leakage and reflected power creates more 

interference to receiving chain. The author [3] has purposed a balanced feed network to 

mitigate those interfering power.   

The power of the transmitting antenna couples back to antenna of receiving chain and 

superimposed with the signal of interest. Adaptive cancellation algorithms like Least 
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Mean Square (LMS) can help in cancelling out the interfering signal from the SOI using 

digital cancellation technique. The baseband SI cancellation is better when high power 

of transmitted signal couples back to the receiving antenna. This is because high power 

level of SI signal gives good channel estimates and thereby reducing the channel estima-

tion error. According to [4], Rician channel with powerful LOS component and low 

power multipath component models SI channel accurately. The K parameter in the Rician 

channel controls the power of LOS component compared to the power of multipath com-

ponents. The higher the value of K, more power is coupled to the receiving chain from 

the transmitter through line of sight. This models closer proximity of transmitting and 

receiving antenna. 

In this thesis, we studied SI cancellation using LMS algorithm. The experiment for SI 

cancellation was conducted using LabVIEW™ tool.  LabVIEW™ is a powerful graph-

ical programming tool developed by the National Instrument. It has been designed spe-

cifically for engineers and scientist to increase productivity. Graphical programming syn-

tax used in LabVIEW environment is easier to visualize, create and design [5]. LabVIEW 

provides various tools for wireless communication providing more complex library func-

tion that can be used in simulating RF transceiver. 

Full Duplex radio gives capability of theoretically doubling spectral efficiency compared 

to half duplex system as FD employs same channel to transmit and receive data at same 

time [6]. Full Duplex can be used to solve the hidden node problem [7]. Access Point 

operating in a full duplex mode can listen to a channel for any incoming data and can 

transmit at same time, thus avoiding collision. This increases throughput and fairness of 

the channel. 

Similarly, full-duplex can be used in cognitive radio for spectrum sensing [8]. Secondary 

users can constantly sense the spectrum for primary users and can avoid interruption for 

any incoming data for primary users. Thus full duplex radio can help prevent any colli-

sion between the primary users and secondary user’s data. 

In chapter 1, we will discuss about the FD system, challenges while implementing it, and 

the application of FD radio system.  Similarly, in chapter 2, we will discuss about differ-

ent self -interference cancellation techniques. This chapter covers active and passive can-

cellation technique used for cancelling out the SI signal. In chapter 3, Rician SI channel 

model used in the simulations has been discussed. In chapter 4, adaptive self -interference 

cancellation technique has been discussed which is based on the LMS algorithm. This 

chapter covers detail about real value processing of LMS algorithm. In chapter 5, a trans-

ceiver model has been proposed that was design in LabVIEW. In chapter 6, waveform 

simulation results have been analyzed. In chapter 7 we will end the thesis with conclusion 

and future work. 
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1.1 Full Duplex System 

One of the most widely used equations in communication field was derived by Shannon 

which gives the theoretical maximum capacity of a communication link when SNR and 

bandwidth are known. The Shannon capacity formula for a half-duplex link as given in 

[9] can be expressed as  

  HD log 12 C  B SNR    (1.1) 

Where C is capacity in bits/sec, B is bandwidth in Hertz (Hz) and SNR is signal to noise 

ratio. The capacity of half duplex system is governed by the equation (1.1). The received 

signal at the antenna is resultant of self-interfering signal and the SOI. The signal propa-

gating from the distant transmitter gets highly attenuated when it reaches at the receiver 

end. Due to the closer proximity of transmitting and receiving antenna of a transceiver, 

SI signal has higher power than that of SOI at the receiving end. This causes the receiver 

end to interpret SOI as a noisy signal in the presence of SI signal. Full duplex system can 

operate efficiently when the self-interference signal is cancelled out. 

 

Figure 1.1: A point to point communication link. 

 

In Figure 1.1, two transceivers are communicating with each other. Assuming both trans-

ceivers TRXA and TRXB operating in the HD mode and SNRA,B and SNRB,A is the signal 

to noise ratio at receiving side, then the channel capacity of each link in presence of 

additive white Gaussian noise  is given by 

  A,B 2 A,Blog 1  C = B +SNR   (1.2) 

  B,A 2 B,Alog 1 C = B +SNR   (1.3) 

Assuming equal data rate in both directions, capacity for HD link is given by 

   HD 2 A,B B,Alog 1  , C = B +min SNR SNR    (1.4) 

For HD link, the capacity is limited by the minimum SNR at either side of the link. The 

self-interfering signal can be removed by using antenna cancellation technique at band 

pass level. There can be still some residual SI signal with power Pres after antenna can-

cellation, which can be removed using digital cancellation at baseband level. In the pres-

ence of SOI, noise and residual SI, signal to noise ratio can be defined as 

 SOI
A,B B,A

N res

  
P

SNR = SNR =  
P +P

  (1.5) 
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Where, 
SOIP   and 

NP   is power of SOI and noise respectively. 

For ideal FD link, we can assume complete cancellation of SI signal ( resP 0  ) while 

maintaining constant SNR, which results in theoretical capacity of a full duplex radio 

given by 

    FD 2 B,A 2 A,Blog 1 log 1C =B +SNR +B +SNR   (1.6) 

Assuming equal SNR in both directions, i.e. A,B A,B FDSNR SNR SNR  , equation (1.6) 

becomes 

  FD FD2log 1C =2B +SNR   (1.7) 

Equation (1.7) gives the theoretical upper bound capacity for a FD system. It can be seen 

that spectral efficiency has been doubled compared to that of HD link with same available 

bandwidth. It is important to achieve same SNR in FD radio as in HD radio for the ca-

pacity to be doubled. It is to be noted that FD system can work at full efficiency if and 

only if both the transceiver, A and B sends and receives the data at the same time. 

1.2 Challenges in Implementation 

As explained in previous sections, self-interference is major problem while implementing 

FD radio [2, 4] because of the superimposition of the transmitted signal with the signal 

of interest at the same frequency band.  

The challenging part while implementing adaptive cancellation depends on the choice of 

adaptive filtering algorithm. The right parameter of algorithm has to be fixed to guarantee 

cancellation. For example, LMS algorithm performance varies with the different step size 

and length of the estimation filter [10] giving different result for SI cancellation.  

Another challenging part while implementing SI cancellation is coupling channel be-

tween transmitter and receiver of a transceiver. Small scale fading channel like Rician 

channel has been used in this experiment. Parameter for the channel should be chosen 

with care, so that it perfectly imitates the coupling between the transmitter and receiver 

of a transceiver. For example, Rician channel parameter “K” is the ratio of the power of 

signal from line of sight to the power from other multipath components. So higher the 

ratio “K” means high power of self-interfering signal is directly coupling from transmitter 

to the receiver chain through line of sight. This also means that the distance between the 

transmitting antenna and receiving antenna is quite less [4]. 

Since channel condition between transmitting and receiving antenna doesn’t change 

much with time because of fixed antenna, there is no Doppler spread. But if intermediate 

object or scatters position changes very fast, the Doppler spread is very high and the 
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coherence time is quite small [11]. This results in rapid change of channel impulse re-

sponse and thus good channel estimation is required when there is a presence of high 

Doppler spread because of the moving scatters [11].  

1.3 Nomenclature 

All the vector quantity in this thesis is represented with the bold and italics letters and the 

scalar quantity is represented with normal letters. The notation (.)^ and (.)* represents the 

instantaneous value and complex conjugate of the given quantity respectively. The oper-

ator (.)H and  represents the Hermitian transpose and convolution respectively.  

1.4  Application of Full Duplex Radio 

FD radio has several applications. The applications of FD radio are listed here. 

 Solving Hidden Node Problem 

 Full duplex base station 

 Cognitive radio 

 Security 

1.4.1  Solving Hidden Node Problem 

Hidden node problem occurs when the two nodes which are out of range, cannot listen 

to the transmission of each other and thus collision occurs.  

 

Figure 1.2: A picture showing the B as an AP, A and C as a two nodes communicating 

with each other. 

In Figure 1.2, two nodes are trying to communicate with access point B. Node B can 

listen to transmission of A and C which are within range of B. A and C cannot listen to 

each other because they are outside of hearing zone. A is trying to send data to B, but C 
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is unaware of any transmission in progress, as it cannot sense medium. Thus if C tries to 

send a packet at this time, there can be collision. 

If somehow B is full duplex node, it can receive data from node A, and at same time 

inform the node C about current data reception in progress, thus avoiding collision. More-

over, node A and C need not to be a full duplex node. Thus simultaneous transmission 

and reception avoids collision and this will increase the throughput of network. 

In [7] author has mentioned the SI cancellation using signal inversion technique and 

adaptive cancellation. The paper presents MAC design control for full duplex node. It 

has been observed that a full duplex node increases fairness of network from 0.85 to 0.98 

and also increases throughput of downlink and uplink by avoiding collision in the full 

duplex nodes. 

In half duplex mode, where the multiple nodes have to communicate with the same AP, 

there arises congestion problem. Full duplex helps to mitigate these problems by trans-

mitting and receiving from the same node with the AP [7]. 

1.4.2 Full Duplex Base Station 

A base station operating in a full duplex mode can serve two mobile users at a same time 

without FDD or TDD. To utilize this technique, there should be proper spatial separation 

between two mobile. This is due to the fact that transmitting uplink mobile user can in-

terfere to the receiving one in the downlink. 

Full duplex base station cannot be used in full capacity where number of mobile users 

are less. As mentioned in [12], it is ineffective to use full duplex radio in a Femtocell 

where number of users are quite less. 

Full duplex system is efficient when there is equal amount of traffic to receive and trans-

mit. Due to this fact, full- duplex system should be implemented in such base station 

where transmission and reception happens simultaneously and load is divided evenly be-

tween the transmitting and receiving end. 

Digital cancellation requires the proper channel estimation in order to cancel out the SI 

signal. In a RACH (Random access channel), it is highly unlikely to start a new trans-

mission when there is ongoing receiving process. This is because some part of receiving 

signal has to be used for channel estimation for further SI cancellation [13]. 

1.4.3 Cognitive Radio 

Secondary user uses available spectrum from primary user in a cognitive radio. During 

this stage, Secondary user has to check if it is blocking any transmission for the primary 

user. This is usually done using TDD by stopping transmission for certain interval and 
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listening for any incoming reception for primary user. This old traditional method is quite 

ineffective because of the collision that may occur if the data transmission occurs be-

tween these ceased intervals. 

In [2] author has proposed full duplex system to counter such kind of problem. In a full 

duplex mode transmission and reception can happen simultaneously, so basically it is 

possible to listen to the incoming transmission for the primary user in particular channel 

while the secondary user uses the same channel for transmission. Receiver can be used 

for sensing spectrum for primary while there is ongoing transmission for the secondary 

user. 

Since SI cancellation for cognitive radio is required for spectrum sensing, the require-

ment of SI cancellation level in this case, need not to be high as required in any other 

transceiver. Throughput in cognitive radio network increases when using this full duplex 

sensing scheme in comparison to TDD scheme [8]. 

1.4.4 Security  

Full duplex Radio also provides security measures while communicating between two 

nodes. Self-Interfering signal can be used as a jamming signal in order to protect data 

and to ensure data is received by intended user. 

Transmitting a jamming signal while receiving SOI, data can be securely transferred. As 

jamming signal structure is known to the particular recipient, it will be easy to cancel out 

the jamming signal while restoring the SOI. At same time, for other user jamming signal 

will be heard, rather than low power SOI. 

In [14], similar type of application has been discussed to prevent eaves dropping by the 

unwanted recipient. Antenna cancellation in [14] has shown increment in network se-

crecy when unknown structure of jamming signal was used. 

In [15], FD MIMO transceiver is assumed where receiver transmits the jamming signal 

to degrade the eavesdropping channel while receiving the data. It is shown that the FD 

transceiver can be used to improve the secrecy of channel along with high data rate. 
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2  Self-Interference Cancellation Technique 

There are number of self-interference cancellation technique that can be found in various 

research papers. They are generally categorized in two types, namely active and passive 

cancellation. Some previous work in this field [4,6,7,13,16,17,18] mainly uses passive, 

active or cascade of both cancellation technique so as to reduce self-interference signal 

level. 

As mentioned in [19], complete self-interference cancellation is not possible because of 

the impairments of the radio circuits. Impairments like transmitter and receiver non line-

arity, transmitter and receiver phase noise, ADC quantization noise can have severe im-

pact on the SI cancellation level. Generally, power amplifier in transmitter chain intro-

duces non linearity in a circuit and this can be detrimental with increase in transmission 

power [17]. Therefore, a single cancellation scheme might not be sufficient to reduce the 

SI signal below noise floor due to which cascade of different cancellation schemes is 

suggested in various research papers [17]. This section covers some of the SI cancellation 

technique that has been implemented so far. 

2.1 Active Cancellation 

Active SI cancellation technique is a process in which an inverse of interfering signal is 

generated and added to the self-interference signal in order to remove the interference. 

Active cancellation can be done in both baseband and band pass signal. It is generally 

classified as follows. 

 Antenna Cancellation 

 Analog Cancellation 

 Digital Cancellation 

2.1.1 Antenna Cancellation 

This cancellation technique is based on the fact that the two signals adds up in the space 

resulting in either constructive or destructive signal [20]. Transmission signal (self- in-

terfering signal) is divided and transmitted using two antennas TX1 and TX2 as shown 

in Figure 2.1. The receiving antenna RX is placed at null point of two transmitting an-

tennas TX1 and TX2, in such a way that the signal transmitted from the two antennas 

results in destructive combination at receiving end, thus mitigating some of the self-in-

terference signal. After reducing self-interfering signal, the RX will be able to hear 

weaker signal of interest. 
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Antenna cancellation technique, as proposed in [2] utilizes three antennas, two for trans-

mitting and one for receiving in a single node. Two transmitting antenna are kept at a 

distance of d and d + 2  from the receiving antenna as shown in Figure 2.1 [2]. The self-

interfering signal from the two transmitting antennas adds up destructively at the receiv-

ing point. 

 

 
Figure 2.1:Antenna setup for Antenna cancellation. 

Additionally, antenna cancellation can only be achieved, if signal level from the trans-

mitting antenna (TX1) which is close to the receiving antenna is attenuated to match with 

the signal level from other transmitting antenna (TX2) which is far away from the receiv-

ing antenna [2]. 

As mentioned in [2], maximum cancellation that can be achieved for a 5 MHz with center 

frequency of 2.48GHz was 60.7dB when there is a perfect matching. In case of 1dB mis-

match, the cancellation was observed to be 20dB. 

Large SI signal voltage level covers most of dynamic range of the ADC which causes the 

low level SOI to suffer from large quantization noise [18]. Antenna cancellation reduces 

self-interference signal so that the ADC can accurately represent signal of interest. The 

amplitude or power of signal of interest is quite low with respect to interference signal 

and dynamic range of ADC is the limiting factor when representing the signal of interest. 

So it’s important to cancel out the interference in RF, so that the ADC can represent the 

SOI with enough precision [16]. 

Antenna separation method is not quite useful for a wideband signal where phase shifting 

is not uniform over entire bandwidth reducing the SI attenuation level [4]. It has been 

mentioned in [4] that 40dB attenuation was achieved for RF signal having 2MHz band-

width, whereas 10dB attenuation was observed for 20MHz bandwidth both centered at 

2.4GHz carrier frequency. 
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2.1.2 Analog Cancellation 

Analog cancellation technique implies cancellation of SI signal at RF level by adding up 

a phase inverted signal [6].  In [6], author has purpose analog cancellation technique in 

which an additional auxiliary transmitter chain has been used for self-interference signal 

cancellation. In Figure 2.2, original baseband signal u( n )  has been up converted and 

transmitted using TX1 antenna resulting in band pass signal u( t ) . The self-interference 

channel SIh couples power in the receiving antenna RX thus interfering with signal of 

interest.  

The auxiliary transmitter chain TX2 uses a wired channel having response wireh with a 

canceller signal d( t ) . It can be observed from the Figure 2.2, that the received signal 

y( t )  is the result of addition of three different signal including AWGN signal n and can 

be defined by the equation (2.1)  

 SI wirey( t ) h u( t ) h d( t ) n       (2.1) 

 

Figure 2.2: Analog Cancellation Scheme utilizing two transmitting antenna and one re-

ceiving antenna. 

It can be seen from equation (2.1), in order to cancel out term SIh u and  dwireh   , wireh  

must be equal to   SI wire
ˆ ˆ-h u / h where ˆ

SIh  and ˆ
wireh  are the noisy estimation of SIh  and wireh  

because of the estimation error, respectively. 

The experiment in [6] was conducted with antenna separation of 20cm and 40 cm with a 

fixed distance of 6.5 cm between two nodes. The SI cancellation was observed to be 33 

dB when separation was 20 cm where as 31dB cancellation was observed when separa-
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tion was 40 cm. This is because greater the separation between the transmitting and re-

ceiving antenna, greater will be the estimation error because of the lower power SI signal 

coupling back to the receiving antenna. This will decrease the SI cancellation level.  

2.1.3  Digital Cancellation 

Digital cancellation is technique in which self-interference is mitigated at the digital base-

band level [2]. A prediction of received SI is formed, provided that transmitted samples 

are already known inside receiver where cancellation is performed. In [17] author has 

proposed a nonlinear digital cancellation technique along with RF cancellation which can 

be readily modified for the linear digital cancellation as shown in Figure 2.3. 

In [17] Figure 2.3, nx is original digital baseband transmit signal. The multipath channel 

between the transmitting antenna and receiving antenna is defined by the impulse re-

sponse nh  . The estimated SI channel can be defined with an impulse response of nĥ  . The 

estimated channel is modeled as FIR filter with L number of delays and the weight 0w  to

L 1w   . The length of the estimation filter and tapping point can be different according to 

channel condition or multipath component. ns  is signal of interest which gets superim-

posed with self-interference signal and nw   is additive white Gaussian noise. So from 

Figure 2.3, total self-interference signal can be defined as 

 
SI

n n n n nx x h s w      (2.2) 

Similarly the reference signal nx  is passed through the estimated channel to generate 

signal 
SI

nx̂  which is used for cancelling out the self-interference signal and can be defined 

as 

 
SI SI

n n n
ˆ ˆs x x    (2.3) 

The self-interference estimate 
SI

nx̂  is defined as 

 
L 1

SI

n n n k n k

k 0

ˆx̂ x h w x






     (2.4) 

After RF cancellation there is still some residual SI, which can be mitigated using digital 

cancellation at baseband [16]. Any adaptive estimation algorithm for example, LMS or 

RLS algorithm can be implemented to estimate a channel from residual SI signal. 

It has been observed in [18] that amount of SI cancellation is directly proportional to the 

power of SI signal which gives the better estimation of SI channel by lowering the chan-

nel estimation error. 
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Linear signal processing method for digital cancellation cannot mitigate the effect of non-

linearity introduce by the transceiver chain. This is due to the fact, that the reference 

sample for the digital cancellation exist only in the digital state of the transmitter chain, 

and does not include any non-linearity introduced by the component of transmitter chain, 

for example, power amplifier. This decreases the SI cancellation level by the digital can-

cellation method. 

 

Figure 2.3: A digital cancellation technique where the SI signal is regenerated and 

subtracted from the overall received signal at digital baseband. 

The level of SI attenuation also depends on the number of training samples used for digital 

cancellation. Similarly, the length of the channel estimation filter should be long enough 

to produce good estimation. 

2.2  Passive Cancellation 

Passive cancellation is a technique, in which energy of a transmitted signal from a node 

is directed to a receiver at a different node, by using a directional antenna in order to 
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suppress self-interference signal [16]. Similarly, path loss between the transmitting and 

receiving antenna also provides passive SI suppression. 

In [16], author mentions about the directional diversity as one of the method of the pas-

sive cancellation. This cancellation technique uses antenna isolation between the separate 

antennas or circulator isolation between shared antennas [17]. In directional diversity, 

node operating at full duplex completely relies on directional antenna for transmitting 

and receiving. The performance of this link depends on angular separation between these 

two antennas. 

The larger the angle between the two antennas, more isolation is achieved between trans-

mitting and receiving ends. A regular 2.4GHz patch antenna for both transmitter and 

receiver was used in [16]. It has been observed that the passive cancellation shows better 

performance in FD radio over HD radio even in the absence of extra hardware for can-

cellation. 

Similarly, in [16] when using omnidirectional antenna there is not much angular separa-

tion due to which there is very low SIR when compared with the case using omnidirec-

tional antenna. So the choice of antenna type is also important, when there is requirement 

for passive cancellation. 

In [6] author has used antenna separation technique, in which path loss between trans-

mitting and receiving antenna provides certain level of SI suppression. Since the distance 

between these two antennas is not high enough and does not contribute enough path loss, 

author has used active cancellation technique as well. 

 

 

 

 



  14 

 

3 Self-Interference Channel Modeling 

Self-Interference Channel refers to medium between transmitting and receiving antenna. 

Channel characteristic depends on distance between transmitting and receiving antenna, 

multipath component and scatters present between these two antennas. The profile of the 

received signal can be obtained from the transmitted signal if a channel model is known 

between these antennas.  

The simplest channel between the transmitting and receiving antenna can be consider 

when there is only presence of line of sight without any obstacle between them. The 

power of signal attenuates along with the distance due to which the received power is 

always less than transmitted power. Path loss model are deterministic in nature and de-

pends on the antenna height and environment.  

Some part of the transmitted signal gets lost during propagation because of the absorp-

tion, reflection, scattering and diffraction caused by any intermediate object present be-

tween the transmitting and receiving antenna. This phenomenon is termed as shadowing 

or large scale fading. Large scale fading is the change in the received signal power around 

the nominal value, based on different path loss model, due to the movement of the re-

ceiver, transmitter or both over large areas. 

Shadowing is modeled as a zero mean white Gaussian distributed variable in a macro cell 

with a standard deviation of s  also known as location variability. The parameter s  

introduces a shadowing margin sl  whose probability density function is defined as 

 
2

2

s
s

ss

1 l
p(l ) =  exp -  

2σσ 2Π

 
 
 

  (3.1) 

Small scale fading model assumes that a transmitted signal reaches receiving antenna 

through multipath because of reflection caused by an intermediate object present between 

these antennas. The multiple versions of the transmitted signal arrive at the receiver at 

different times. These multipath waves combine at the receiver to give a resultant signal 

which varies widely in amplitude and phase. The resultant amplitude depends on the 

propagation time, intensity and the bandwidth of the transmitted signal [21]. 
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Figure 3.1:Classification of small scale fading channel. 

 

As shown in Figure 3.1, the multipath channel bandwidth can be quantified as a coher-

ence bandwidth (Bc) which depends on the multipath structure of the channel. Coherence 

bandwidth is the measure of the range of frequencies for which the signals are strongly 

correlated in amplitude. The received signal will be distorted if a signal bandwidth (B) is 

greater than bandwidth of the multipath channel, but the strength of the received signal 

will not fade much over a local area. If the transmitted signal has smaller bandwidth than 

that of channel, amplitude of signal will change rapidly but the signal will not be dis-

torted. 

Multipath delay spreads lead to time dispersion and frequency selective fading whereas 

Doppler spread leads to frequency dispersion and time selective fading. Delay spread is 

time measure after which received signal power can be neglected. Generally RMS values 

of delay spread ( rms ) is consider while analyzing the channel characteristics. As shown 

in Figure 3.1, fast fading occurs when the coherence time ( c ) is smaller than the symbol 

period (Ts) where as slow fading occurs when the coherence time is greater than the sym-

bol period. 

3.1 Tapped Delay Line 

Small scale variation of radio signal can be directly related to impulse response of a mo-

bile radio channel. Mobile radio channel can be modeled as a linear filter with a time 

varying/unvarying impulse response [21]. The time varying impulse response is intro-

duced by the moving transmitter or receiver or the intermediate objects.  
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Figure 3.2: Tapped delay line implemented using l number of delayed element and-

changing/constant weight. 

A wideband fading model can be implemented using number of taps and coefficients 

where each tap represents respective multipath component or a line of sight component 

based on delay unit. In Figure 3.2, input signal x( n ) is passed through the linear filter to 

generate an output signal y( n ) which can be expressed as 

   k k

L
y(n)= W x n-τ

k=0

   (3.2) 

Where 0 0   represents the tap for the line of sight component whereas remaining tap 

delay ( 1  to l  ) represents the multipath component as a delay unit. 

3.2  Existing Implementation of SI Channel Model 

Rician channel are stochastic model for radio propagation. It assumes that the signal ar-

rives at the receiver through various multipath including one line of sight component. 

Rician “K” parameter determines how strong the line of sight component is with respect 

to other reflective component. In this section, we will discuss about the SI channel mod-

eling used in the literature [4,18]. 

In [4], omnidirectional antenna has been assumed for both transmitter and receiver.  

These antennas have been place quite near to each other which receives high power from 

line of sight and low power from other reflected component. This models channel as a 

Rician channel. SI channel is the channel between transmitting and receiving antennas 

that are close to each other [8]. This results in the high K- factor because of the strong 

line of sight component and weak scattered component. According to [22], Rician chan-

nel can be model as  
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d

i o
P

 h (θ)= [1+2πδ(θ-θ )]
2π(K+1)

  (3.3) 

Where K is the ratio of specular to diffuse signal power, o is the angle of arrival. 
dP  is 

received SI power. Auto covariance of the received signal is approximated as [4] 

 

2

2

2K+1 K r
ρ(r) exp -23 1+

(K+1) 2K+1 λ

   
    

    
  (3.4) 

According to equation 3.4, the channel coherence is proportional to the auto covariance 

and the channel is coherent for small distance r and the large power ratio K [23]. Since 

transmitting and receiving antenna are closely located in the transceiver, this channel is 

quite useful to implement as a SI coupling channel. In other word, the received signal is 

highly correlated with the transmitted signal when passed through the Rician channel.  

In [18] author has mentioned about the changes in “K” factor value before and after the 

analog cancellation. It has been assumed that the K factor is quiet high before analog 

cancellation because of the closer proximity of transmitting and receiving antenna with 

a strong line of sight component. But after the active cancellation, strong LOS component 

is reduced. This means after analog cancellation magnitude of SI signal is Rician distrib-

uted with a low “K” factor. 

In [18], author has measured Kullback Leibler (KL) distances between the histogram of 

channel estimate magnitudes obtained from experiments and probability density function 

of a Rician and Rayleigh distribution. The K factor for Rician distribution was computed 

from the experiment whereas the K factor for Rayleigh was fixed to 0. The author ob-

served the KL distances were lower for Rician than Rayleigh and concluded that Rician 

distribution was suitable for SI channel modeling. 

3.3  Implementation of SI Channel in LabVIEW 

We have assumed a frequency selective Rician channel as a model for self-interference 

channel. Even though the Doppler spread can be considered ideally 0 in the presence of 

stationary transmitter and receiver, LabVIEW’s Rician function defines the interval for 

the Doppler spread as [24] 

 [1E - 6 , 0.5]
doppler spread

sampling rate
   (3.5) 
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So, a minimum Doppler spread was chosen so as to make the channel slowly time varying 

as possible and also fulfills the criteria given by equation 3.5. LabVIEW’s function “Ri-

cian fading profile” generates multipath fading profile and “apply selective fading pro-

file” applies multipath fading profile to input complex waveform for each path. Each 

function is discussed in detail below. 

 Rician fading profile 

A Rayleigh distribution was generated for each path using Jake’s model. Jakes 

fading model is a deterministic method for generating a Rayleigh fading wave-

forms. It assumes that N equal strength rays for each path arrives at a moving 

receiver with uniformly distributed angle of arrival n  as shown in Figure 3.3. 

Each individual ray experiences a Doppler shift defined as [25] 

  cosn m n     (3.6) 

 2m fv c    (3.7) 

Where m is the maximum Doppler shift, f is a carrier frequency, v  is the vehicle 

speed, c is the speed of light and n is an angle of arrival. As seen from Figure 

3.3, there is a symmetricity in the magnitude of Doppler shift except for angles 0 

and . Thus the waveform can be generated with 0 1N   complex oscillators with 

total number of rays N arriving at a node, where 0N  is defined as [25] 

 0

1

4 2

N
N

 
  
 

  (3.8) 

Multiple uncorrelated waveform as a function of time  t is generated using the 

equation given below [25]. 

           
0

0

1

, 2 cos sin cos
N

j n n n n

n

T t j N A n I t   


       (3.9) 

Where j is the path index and 0n n N   for n = 1 to 0N .  jA n  is the jth 

Walsh Hadamard code sequence which produces 1  values and ensures the un-

correlated waveforms for different path. The oscillator phases, n  are generally 

randomized and are insensitive to correlation properties. 

The waveform for each path can be generated using equation 3.9. Rician distri-

bution can be generated just by adding amplitude contribution by LOS compo-

nent defined by the K parameter to the first path whereas the remaining paths 

are Rayleigh distributed.  
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Figure 3.3:  N=10 different rays arriving at a moving receiver with an angle of arri-

val 
n  . 

 Apply selective fading profile 

In order to match the output complex waveform power from the channel to the 

specified fading variance, this LabVIEW function first normalizes the power 

array of the power delay profile defined as [24]  

 

 

2
2

2 2

1

2

1

k
k N

LOS k

k

C
C

K C C




  
  (3.10) 

 
102 10 kP

kC    (3.11) 

where k is the path index from 1 to N different path. LOSK is the K parameter in 

linear scale. Pk and Ck is the power defined for each path by the power delay 

profile in linear and logarithmic scale respectively. 

These normalized power coefficients given by equation 3.10 are then multiplied 

with the fading waveform generated by the LabVIEW function “Rician fading 

profile” as defined by equation 3.9. The resultant product is defined as [24] 

 kl k kla C T    (3.12) 

where k = 1 to N is the path index and l = 1 to L, where L is known as profile 

length and is generally equal to the length of input signal samples applied to the 

Rician channel. klT is the fading waveform defined by equation 3.9 for each path 

k  and total number of fading samples L. The input complex waveform are then 

delayed by k  whose delays are define by the power delay profile. The delay k  

is approximated to integer multiple of sampling time defined as 

 
k

kn
dt


   (3.13) 
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The delayed input samples  x n  are then multiplied with the fading amplitude 

kla  point by point, using tapped delay line .The output waveform from the chan-

nel can be expressed as [24] 

    
1

N

kl kk
y n a x n n


    (3.14) 

An experiment was conducted in LabVIEW for three different path with power 

delay profile and channel parameter shown in table below.   

Table 3.1: Power Delay Profile Table 3.2:Channel Parameters  

Delay (sec) k  Relative 

Power(dB) Pk 

 0 0 

 1.25E-8 20 

 2.5E-8 30 

 

 

 

In Figure 3.4, response for three different path is plotted against sampling in-

terval for 80Hz Doppler spread. It can be seen, the response for the Line of sight 

component is similar for all sampling interval whereas the remaining path is 

varying slowly with the time. As shown in Figure 3.5, increasing the Doppler 

shift to 20 KHz can significantly increases the rate of change of response for 

each path. 

 
Figure 3.4: Normalized Fading Response generated for three different path with the 

specification listed in table 3.1 and table 3.2 with Doppler spread of 80 Hz. 

Parameters Specifica-

tion 

Number of Path 3 

Sampling Time(dt) 1.25E-8sec 

Fading Variance 1 

Doppler Spread 80Hz 

K 35.8 dB 
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Figure 3.5: Normalized Fading Response generated for three different path with the 

specification listed in table 3.1 and table 3.2 with Doppler spread of 20 KHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: A LabVIEW code implementation of Rician Channel using library function 

Generate fading profile and Apply selective fading profile. 
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In Figure 3.6, interconnection of two functions generate fading profile and apply selective 

fading profile has been depicted. Generate fading profile uses number of parameters which 

is listed and explained below 

 Number of paths 

This parameter specifies the number of paths in the simulated multipath channel. 

A fading profile is generated for each path.  

 Rician Parameter K 

This parameter specifies K value of channel in dB scale. A large positive value 

of K indicates a strong additive white Gaussian noise channel whereas a large 

negative value indicates a Rayleigh fading. 

 Profile Length 

This specifies the length of the complex valued fading profile samples (coeffi-

cients) to generate.  

 Doppler Spread 

This specifies the desired input Doppler spread of channel. The Doppler spread 

cannot be taken 0 and should fall within a range define by equation 3.5. The unit 

of Doppler spread should be in Hz. 

 Fading variance 

This specifies the desired variance of complex valued fading profile. During the 

experiment this value was not changed and kept constant to 1. 

 dt 

It specifies the sampling time of system and is expressed in seconds. 

 Fading Profile 

It returns complex valued coefficients. The number of rows corresponds to the 

number of paths in channel and the number of columns is equal to the profile 

length. This fading profile is then applied to the Rician function apply fading 

profile. 

The parameter used in apply fading profile function is listed and explained below. 

 Input Complex Waveform 

It specifies the input modulated complex baseband waveform data. This wave-

form signal should also contain the sampling time of the signal. 

 Fading profile 

It a 2 dimensional input which is fed from the output of generate fading profile 

function. The coefficients generated by generate fading profile is applied sample 

by sample to the input complex waveform. 

 Power delay profile 

It specifies the arrival time of different ray paths in seconds versus their respective 

power in dB. The times are relative to arrival of the first ray path and the power 

must be relative power loss. 
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 Output complex waveform  

It returns the Rician faded complex baseband waveform data. The length of the 

output complex waveform is equal to the length of input complex waveform re-

gardless the size of fading profile. The size of fading profile is specified by profile 

length. 

 Fading Profile for three path 

This is not a library function output but still this function has been modified to 

view the normalize coefficients of the channel as explained in equation 3.10 to 

3.12. LabVIEW uses these normalized coefficients as a weight of SI channel to 

convolve with input signal rather than fading profile. 
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4  Adaptive Digital Self Interference Cancellation 

Adaptive filter has the ability to change its parameter automatically unlike conventional 

filters. The filtering process is adaptive thus does not need any prior information regard-

ing signal or noise characteristic. However, the noise component in the corrupted signal 

and noise signal in the reference channel should be highly coherent in order to cancel out 

the noisy component [3]. 

In this chapter we will discuss on the background of LMS algorithm, formulate LMS 

algorithm for SI cancellation and finally discuss on the implementation of LMS algorithm 

in LabVIEW. 

4.1 Background on LMS Algorithm 

Least Mean Square is a linear adaptive filtering algorithm which computes the output of 

a filter in response to an input signal. The LMS algorithm is a member of stochastic 

gradient algorithm which operates on stochastic inputs. An estimation error is calculated 

by taking the difference between filtered output and the desired signal. The weight of 

filter is adjusted by using this estimated error. The filter weight is updated until the mean 

square error is minimized. 

 

Figure 4.1:An adaptive filtering for system identification. 

A transversal filter is built along with LMS algorithm which is used for the filtering pro-

cess. An adaptive algorithm like LMS is used to perform the adaptive control process on 

the taps of the filter. The step size μ which controls the convergence rate of algorithm 

depends on the maximum value of PSD of tap inputs  nu  and filter length M which can 

be represented as following inequality [10] 

 
max

2
0< μ<

M S
  (4.1) 
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Where Smax is the maximum value of the PSD of the tap inputs  nu .  The step size μ 

should be chosen carefully. The large amount of μ might change the weight of the adap-

tive filter by large value due to which instead of converging the error, it might start to 

diverge. The upper bound for the step size is given by inequality (4.1). In Figure 4.1 , 

transmitted sequence  nu  is generated and passed through a unknown system to gener-

ate signal  d n . The signal  nu  is also passed through an adaptive filter. The LMS 

algorithm updates the weight of adaptive filter in each iteration by equation given below 

 
Hˆy(n)= (n) (n)w u   (4.2) 

 e(n)=d(n)-y(n)   (4.3) 

 
*ˆ ˆ(n+1)= (n)+μ (n)e (n)w w u   (4.4) 

The equation (4.2) to (4.4) is the complex form of LMS algorithm. At each iteration, this 

algorithm needs the most recent values of  nu ,  e n  and  d n  . These new values are 

used to calculate the new weight  ˆ n 1w  of adaptive filter, which is also passed to the 

next iteration to calculate the next weight. It can be seen that the weight updating process 

is completely closed loop process, in which initial guess for the weight  ˆ nw  has to be 

made.  

When the iteration is started for first time, initial weight can be almost chosen close to 

final weight. This could help increasing the converging rate of algorithm. In case of no 

prior information of weight are provided, initial weights can be assumed to be 0. In Fig-

ure 4.1, as the filtered signal  y n  approaches close to desired signal  d n , error signal 

 e n  converges to 0. At this instant, weight is said to be completely updated and need 

not to be updated anymore. But if somehow the unknown system parameter changes, 

error signal starts to diverge away from 0, and there is requirement for weight update. 

4.2 Canonical LMS Algorithm 

Canonical form of LMS algorithm is quite useful when dealing with the adaptive equal-

ization of a communication system for the transmission of a binary signal over a disper-

sive channel [10]. Since digital SI cancellation is done at baseband level which consists 

of complex symbols modulated using QPSK or QAM constellation, for which these type 

of algorithm are very useful which deals with real value processing of complex signal. 
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Figure 4.2:Signal flow while updating the LMS equation. 

Each signal from equation 4.2 to 4.4 can be represented in complex form as shown be-

low  

 i qa( n ) a ( n ) ja ( n )= +   (4.5) 

where  a , y,e, u w  . 

The subscript i and q denotes in phase and quadrature component, that is real and imag-

inary parts of signal respectively. Thus equation 4.2 to equation 4.4 can be define as 

 
T T

i i i q q
ˆ ˆy ( n ) ( n ) ( n )- ( n ) ( n ) w u w u    (4.6) 

 ˆ ˆT T

q i q q iy (n)= (n) (n)+ (n) (n)w u w u   (4.7) 

 i i ie ( n ) d ( n )- y ( n )   (4.8) 

 ( ) ( ) - ( )q q qe n d n y n   (4.9) 

 i i i i q q
ˆ ˆ( n 1) ( n ) [ e ( n ) ( n )- e ( n ) ( n )]  w w u u   (4.10) 

 i qq q
ˆ ˆ( n 1) ( n ) [ e ( n ) ( n ) e ( n ) ( n )]   q iw w u u   (4.11) 

It can be seen from equation (4.6) to equation (4.11) and from Figure 4.2, that to imple-

ment real value processing of complex LMS algorithm, set of four real LMS algorithm 

with cross coupling between them is required. 



  27 

 

This type of equalizer is placed in the receiver chain where the output of the channel is 

used as the input signal. Its parameters are then adjusted using LMS algorithm to provide 

estimation to each symbol transmitted. During the training mode, a copy of desired re-

sponse is stored in the receiver. This training sequence has to be synchronized with the 

transmitted sequence which is generated using PN sequence generator. PN sequence uses 

number of feedback shift registers that produces the deterministic waveform periodically. 

Once the parameters for the transversal filter are estimated, data transmission can begin 

[10]. 

4.3  LMS Algorithm in SI Cancellation 

Let vector nx  be the original baseband transmit signal passed through the self-interfer-

ence channel. The multipath SI channel between the transmitting and receiving antenna 

is modeled by an FIR filter whose impulse responses are generated using Rician distri-

bution as explained in section 3.3 and is denoted as nh  . 

 

 

Figure 4.3: Baseband transceiver modeling and LMS canceller structure. 
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Let us define vector  0 1 1, ,..........,n Lw w w w  as a coefficient of the estimated channel 

and vector  0 1 1, ,..........,n Lw w w w   as the coefficient of the SI channel. Thus the total 

received signal before digital cancellation is defined as 

 
L 1

SI

n k n k n n

k 0

x w x z s






      (4.12) 

where 
nz  and 

ns   are additive Gaussian noise and signal of interest respectively. 

The self-interference estimated channel output having response of nĥ , is given as  

 

 

1

0

SI
n n n

L

k n k

k

ˆx̂ = x h

= w x








   (4.13) 

As seen from Figure 4.3, the output of digital canceller ˆ
ns   which can be consider as 

error signal in the context of LMS algorithm is defined as  

 ˆ ˆSI SI

n n ns x x    (4.14) 

Since the main objective of the digital cancellation in this thesis is the ability to automat-

ically adapt to the coefficient of the SI channel. Thus applying all the available parame-

ters to define the equations provided by the LMS algorithm we can write with reference 

from equation 4.4, 

       ˆ1 n nn n n s   w w x   (4.15) 

The equation 4.15 gives iterative process of updating the weight of the estimated channel. 

The right most term   ˆ
n nn s 

x  has to be 0 for the present weight  nw  and the next 

weight  1n w  to be equal. Since the step size   is always greater than 0, the updated 

weight  1n w and the present weight  nw  can be equal only if the error term ˆ
ns  

becomes equal to 0. For ˆ
ns  to be 0, the term 

SI

nx  and ˆSI

nx  should be equal which can only 

happen if the estimated weight nw  becomes equal to the SI channel weight nw . Since the 

total received signal consist of noise nz  and the signal of interest ns , the output of digital 

cancellation after complete SI cancellation can be can be written as  

 ˆ
n n ns z s    (4.16) 

The autocorrelation matrix of the tap input vector
nx can be expressed as  

    H

n nn n    R x x   (4.17) 

Thus the condition for stability of adaptive filter can be expressed with inequality as[10] 

 
max

2
0 < μ <


  (4.18) 
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where 
max  is the maximum Eigen value of autocorrelation matrix R . 

According to equation 4.18, the range of step size is controlled by the Eigen value of auto 

correlation matrix.  

4.4  Design of LMS Algorithm in LabVIEW 

A buffer was deigned to store the input samples. The size of buffer was made equal to 

the length of the filter. An initial weight of the adaptive filter and the initial buffer was 

assumed to be zero.  The process of weight update is shown in the Figure 4.4. 

 

 

Figure 4.4:A flowchart showing steps to update the weight of filter. 
 

In each iteration a new sample was added to the buffer and the last sample was dis-

carded. In each iteration, buffered input samples were filtered using the updated weight 

until all the input samples were filtered out. It is important to note that the input samples 

should be long enough to calculate the optimal weight so that the error signal converges 

to 0. The whole program code is divided into three different stages known as creating 

array of input signal, filtering stage and weight update stage as shown in the Figure 

4.9 (starting from bottom to top). 

 

 Creating Array of Input Signal 



  30 

 

Figure 4.5:Buffering stage implemented in LabVIEW platform 

This stage refers to the stage where all the input samples are stored in a buffer. 

The LabVIEW function “build array” (shown as 1 in the code depicted in Figure 

4.5) inserts one new sample in every iteration to the buffer. The new sample in-

serted is placed at the last index of the buffer. “Rotates 1D array” (shown as 2 in 

the code depicted in Figure 4.5) shifts the element to the left once such that the 

element in the first index comes to last index when the rotation index is initialized 

with constant -1.  
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Figure 4.6: An example explaining each functions of buffering stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The function “array subset” (shown as 3 in the code depicted in Figure 4.5) re-

moves off sample at last index so as to make the length of buffer always constant. 

Initially all the input samples of buffer is initialized to 0. In Figure 4.5, the in 

phase and quadrature component of input signal is denoted as 
i( n )x   and  q nx   

respectively. The signal 
i( n )x  and  q nx is consider as real and imaginary com-

ponent of baseband signal nx  with reference to Figure 4.3. The desire response 

 id n   and  qd n   are the desired response and is consider as output  

of SI channel SI

nx  with reference to Figure 4.3. 

  In Figure 4.6, an example of buffering stage has been explained. It can be seen 

that the buffering stage stores a sample and shifts element in every iteration. Dur-

ing the shifting process, the oldest sample in the buffer is removed. The size of 

buffer is made equal to number of taps of estimation filter. 

 

 Filtering Stage 

The next stage is referred as filtering stage in which complex weight of filter is 

divided into real and imaginary component  i nw   and  q nw  respectively and 

is multiplied with respective real and imaginary component of input signal as ex-

plained in equation 4.10 and 4.11 to get filtered signal  iy n  and  qy n   as shown 

in Figure 4.7. 

The filtered signal  iy n  and  qy n is consider as the real and imaginary com-

ponent of SI

nx̂  with reference to Figure 4.3.  The addition and the multiplication 

function is placed inside for loop, due to which arithmetic operation takes place 

sample by sample. Initially the weight of the filter has been initialized to 0 through 

feedback node. All the input signal and output signal are placed on top of the wire 
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Figure 4.7:A LabVIEW design of filtering stage. 

and inside red circle in Figure 4.7. The weight signal  i n 1w   and  qw n 1   

are real and imaginary component of  weight  n 1w  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Weight Update stage 

This is the final stage where we apply LMS algorithm to update the weight in each 

iteration. Figure 4.8 depicts weight updating stage. 
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Figure 4.8: A LabVIEW design of weight update stage. 
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The desired signal  d n   and the filtered signal  y n is subtracted to obtain the 

error signal.  The real and imaginary component of weight  nw is calculated 

using equation 4.10 and 4.11. The calculated weight is consider as the weight of 

the estimated channel  w n , with reference to equation 4.15. Feedback node was 

used to pass the updated weight  n 1w  to the next iteration. The input signal 

sample  ix n   and  qx n  are also passed using shift register function of Lab-

VIEW so as to update the buffer for next iteration. The initial guess for the weight 

was assumed to be 0. Each input and output signal are placed on top of wire and 

inside red circle. 

The interconnection of all three stages can be seen in Figure 4.9. 
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Figure 4.9: A LabVIEW design of canonical LMS algorithm. 
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5 Transceiver Model 

In this thesis, we have conducted an experiment on SI cancellation using simple baseband 

transceiver which was implemented in LabVIEW. This chapter contains a section where 

general RF transceiver that was implemented in [17] for digital SI cancellation is ex-

plained. The next section contains an explanation of a baseband transceiver that was im-

plemented in this thesis work for SI cancellation.  

5.1  Full Duplex RF Transceiver 

A direct conversion transceiver converts the baseband signal directly to the RF signal by 

using a mixer and is widely used model in mobile communication.  

As shown in Figure 5.1, transmitted bits are encoded and passed through DAC and then 

filtered out with Low pass filter. This filtered signal is amplified with Variable Gain Am-

plifier (VGA) and power amplifier.  

 

Figure 5.1: A high level block diagram of direct conversion Full Duplex Transceiver 

model showing digital adaptive cancelling stage in the transceiver. 
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At the receiving side, the received signal is passed through Band pass filter and then to 

LNA. Then the signal is down converted to base band signal. VGA at the receiving side 

control the received signal strength such that the signal falls within the dynamic range of 

the ADC.  

The taps input for the adaptive filter were taken from the transmitter chain before DAC 

and the cancellation was carried at the receiver chain. The baseband cancellation samples 

were taken from the output of ADC of receiver chain. The error signal was generated by 

taking the difference of these cancellation samples and output of the adaptive filter signal. 

5.2  Implementation of Baseband Transceiver in LabVIEW  

This thesis focuses on the linear digital SI cancellation and thus non idealities induced 

by the transceiver is ignore. Moreover, no up conversion or down conversion was carried 

in LabVIEW because the SI cancellation was carried out at baseband. In this thesis, we 

have assumed a separate antenna for transmitter and receiver. The overall transceiver 

model in the LabVIEW experiment looks as shown in Figure 5.2. 

 

Figure 5.2: A system design layout of Full Duplex Base Band Transceiver as imple-

mented in the LabVIEW Environment. 

A pseudo random code generator was used to generate the training sequence for the adap-

tive filter in LabVIEW. These generated bits are then mapped into symbol with QAM 

constellation. These generated symbols are then passed through a pulse shaping filter and 

then up sampled. These generated samples were used as a tap input for adaptive filter. 

These samples were also fed to the input of Rician channel which was modeled as SI 

channel. 
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At the receiving end digital SI cancellation has been performed before match filtering. 

The samples to be cancelled were taken from the output of SI channel. The error signal 

is the difference of these cancellation samples and the output of the adaptive filter. LMS 

algorithm updates the weight iteratively using this error signal and current tap input. The 

digital cancellation process was done as shown in Figure 5.2. This thesis focuses on the 

amount of SI cancellation that can be achieved during the training process, rather than 

the actual data transmission. 
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6  Waveform Simulation Result and Analysis 

The waveform simulation for SI cancellation has been performed with the channel pa-

rameters specified in Table 3.1 and Table 3.2. The experiment has been conducted with 

a low Doppler spread such that channel characteristic between transmitter and receiver 

changes slowly with time and thus it will be easier for adaptive algorithm to estimate the 

SI channel parameters. The SI coupling channel between the transmitting and receiving 

end consist of three taps where first tap is modeled as line of sight component, remaining 

taps are reflected components which are delayed by one and two sample intervals as 

shown in Table 3.1. The ratio between the power of main component and the multipath 

component has been chosen to be 35.8 dB which is practical value for a SI coupling 

channel when the transceiver is located inside a room [18]. The SI channel estimation 

has been performed during the training period when there is no received signal of interest. 

In this thesis, the used figure of merit is the output power of SI digital canceller (error 

signal). Table 6.1 shows the parameters for waveform simulation. 

Table 6.1:Waveform Simulation Parameters 

Parameter Value  

 
Constellation 4 QAM 

Signal Bandwidth 30MHz  

 Symbol Rate 20MHz 

 Transmit Power 4 dBm 

Roll off Factor 0.5 

Up sampling factor 4 

Number of  training samples(N)  47×10  / varied 

Number of taps of adaptive filter (M) 3/varied 

Step size of LMS algorithm 0.7/ varied 

b 0E N   50 dB 

SI Channel Length 3 

Noise Floor -46.838 dBm 

 

6.1  Learning Curve for LMS Algorithm 

In Figure 6.1 and Figure 6.2, real and imaginary components of error signal have been 

plotted. The error signal e(n), which can be referred as ˆ
ns  from Figure 4.3, needs to be 

approximately equal to the sum of noise signal and signal of interest. In absence of noise 
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and signal of interest, error signal should be equal to 0. It can be seen from figure below, 

the error signal has not completely converged around 0, because a noisy signal has been 

added to the channel output. According to equation 4.14, error signal 
nŝ   is the difference 

of  SI channel output SI

nx  and the filtered signal SI

nx̂ . The noisy signal 
nz and signal of 

interest 
ns   is independent of SI

nx , due to which the adaptive filter will take steps in the 

direction of interfering signal so that external signal like noise and signal of interest are 

not cancelled out. 

 
Figure 6.1: In phase Error Signal converging as the number of iteration increases 

 
Figure 6.2: Quad phase Error Signal converging as the number of iteration increases. 
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It can be seen from the previous plot; the convergence of the error signal has been in-

creased when the number of iteration has been increased.  

 

 
Figure 6.3: Learning curve plot for 1000 realization depicting Mean square error vs no 

of iteration. 

A learning curve gives the better understanding performance of an adaptive filter, includ-

ing convergence speed, steady state error and stability. It is calculated by taking the mean 

of squared error  
2

e n  over several realization of ensemble. Mathematically, it can be 

defined as [10] 

    
2K

k

k 1

1
J n e n , n 0,.....,N 1

K 

     (4.19) 

where  ke n  is the estimation error at time instant n for the k  th realization, and K  is 

the number of realization to be considered. As shown in the Figure 6.3, instantaneous 

and average MSE is plotted resulting up to 
-32.386×10  of estimation error. Looking at 

the learning curve plotted in Figure 6.3, we can consider that the adaptive filter starts to 
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converge at about 3000 iterations. The error does not reduce anymore after 3000 itera-

tions and reaches the steady state. The lesser the estimation error, the more accurately the 

SI channel has been estimated. 

6.2 Effect of Length of Training Sample 

In the next experiment set up, the effect of length of training samples on SI attenuation 

has been studied on a signal having bandwidth of 30 MHz and with step size of 0.7. 

The length of training sample has been varied with steps of 5000, with minimum training 

length of 500 samples to maximum of 45.5×10 samples in each independent run. It can 

be seen from Figure 6.4, that the power of the digital canceller output has been decreased 

with the increase in the number of training samples up to - 44.31 dBm. It should be noted 

that to achieve maximum SI cancellation at least 3×103  samples were required.  

 

Figure 6.4: The output power of error signal vs the amount of training samples. The 

power was observed at the end of the samples with the parameters specified in the Ta-

ble 6.1. 
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6.3  Effect of Step Size  

In the next experiment set up, the effect of step size on the SI cancellation has been stud-

ied in LabVIEW with channel parameters specified in table 3.1 and table 3.2. 

 

 

 

Figure 6.5: The power of digital canceller output vs the number of iteration for differ-

ent step size. 

The output power of SI canceller has been observed for five different step sizes. It can be 

seen from Figure 6.5, the level of SI attenuation has been increased with the increase in 

the step size for a constant number of training samples. The higher step size has resulted 

in the faster convergence of algorithm. The larger step size has caused to increase the mean 

square error. As seen from Figure 6.5, forμ = 1.5  and higher, the SI attenuation starts to 

decrease . This is because the step size μ  should always satisfy the inequality given by 

4.18. The higher step size increases estimation error of the algorithm. There is no signifi-

cant difference in the output power of digital canceller for μ = 0.7  andμ = 1. This means 

that the SI attenuation doesn’t increase beyond a certain value of step size. The minimum 

digital canceller output power has been observed to be about -43.41dBm. 
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6.4 Effect of Signal Bandwidth  

In this next set up, effect of bandwidth on the digital SI cancellation has been studied. 

The bandwidth of the signal has been decreased to 30 KHz. The multipath channel has 

been modeled as one line of sight component and two reflected components which were 

delayed by one and two sample interval for both narrow band and wide band signal. 

 

 
Figure 6.6: The instantaneous and average power of digital canceller output for nar-

row and wideband signal. 

The number of training samples and step size has been  fixed to 47×10  samples and the 

0.7 respectively. The up sampling factor has been chosen 4 for both narrow band and 

wideband signal. It can be seen from Figure 6.6, the amount of SI cancellation is same for 

a narrow band signal and wideband signal. The minimum digital canceller output power 

has been observed to be about -44.31dBm. 

6.5 Effect of Length of Estimation Filter  

In the next experiment set up, effect of length of adaptive filter has been studied by var-

ying the length of adaptive filter with constant number of training samples and step size. 

The impulse response of SI channel consists of 3 taps. It can be seen from Figure 6.7, 

when there is a single tap in estimation filter there is less SI attenuation whereas increas-

ing the length of the estimation filter has improved the SI attenuation. This means that 
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the filter length should be equal to the number of significant taps in the impulse response 

of SI channel. 

A small filter length has increased the convergence speed whereas a longer filter length 

has decreased the convergence speed. However, at some point increasing the filter length 

does not increase the SI attenuation. The power of error signal at M=1 and M=3 was 

observed to be -11.12 dBm and -43.41dBm. The power of error signal at M=9 was ob-

served to be -39.41dBm. 

 
Figure 6.7: The average power of digital canceller output for different length of adap-

tive filter. 

6.6 Effect of K parameter of SI Channel 

In the next experiment set up, effect of Rician K parameter on SI attenuation has been 

studied with the channel parameters specified in table 3.1 and table 3.2. The number of 

samples were kept constant to 47×10 samples and the step size μ  was kept constant 

with a value of 0.7. It can be seen from the Figure 6.8, the amount of digital canceller 

power has started to decrease with increase in the amount of K parameter. 

As mentioned before, K parameter signifies the ratio of power of LOS component to 

the power of other reflected component. Lower K means that the power from LOS 

component has been decreased with respect to other reflected component, which results 

in decrease in weight gain of LOS component of SI channel, whereas there is significant 
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Figure 6.8: The average power of digital canceller output for different value of K. 

increase in the weight gain of other reflected component. The output power of digital 

canceller was observed minimum at K=10dB with a value of about -47.5dBm. The 

value of digital canceller for K= 40, 50 and 60 dB was observed to be about -45dBm. 
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7  Conclusion and Future Work 

In this thesis, the effect of LMS algorithm and SI channel on digital SI cancellation was 

studied by varying the parameters for the LMS algorithm and SI channel. A simple base-

band transceiver was used in LabVIEW environment to carry out this analysis. The per-

formance of LMS algorithm was based on steady state error and convergence rate. 

The waveform result showed that high amount of training samples can give better chan-

nel estimation which results in the higher amount of SI attenuation to some level. The SI 

attenuation cannot be increase beyond certain amount of training samples. The perfor-

mance of SI canceller was observed similar for a narrowband signal and wideband signal 

when all SI channel and LMS parameters were held constant.  

Increasing the step size to certain threshold has increased the amount of SI attenuation. 

It is important to choose the right value of step size because increasing the step size to 

beyond some threshold can result in divergence of error signal, resulting in the lower 

amount of SI attenuation. 

The length of adaptive filter must be equal to the number of taps used in SI coupling 

channel in order to get the better estimation of channel. So it is important to know the 

characteristic of SI channel. A longer filter length increases the computational resources 

than a shorter filter length. However, increasing filter length can only attenuate the SI 

signal to some threshold. A small filter length can increase the convergence speed.  

The K parameter of Rician channel controls the amount of SI cancellation that can be 

achieved using adaptive algorithm. A better estimation of SI channel was observed when 

the K parameter value was equal to 10dB for a fixed amount of step size and training 

samples.  

In this thesis, LMS algorithm was design for a complex signal which was processed as a 

real valued signal. The same design can be used to program a LabVIEW FPGA with a 

fixed point implementation. The SI cancellation can be done in real time using National 

Instrument Flex RIO system. LMS algorithm suffers from Eigen value spread which re-

sults in the instability of the adaptive filter. Compared to LMS, Recursive Least Square 

(RLS) algorithms have a faster convergence speed and do not exhibit the eigenvalue 

spread problem. However, computational complexity of RLS algorithm increases be-

cause of the complicated mathematical operations. This thesis work can also be imple-

mented using RLS algorithm. 
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