
Tuukka Virtanen
LITERATURE REVIEW OF
TEST AUTOMATION MODELS IN
AGILE TESTING

Master of Science Thesis

Information and Knowledge Management

Examiner: Prof. Samuli Pekkola
Examiner and topic approved by the
Faculty Council of the Faculty of
Business and Built Environment on
26th of March 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250159758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

TUUKKA VIRTANEN: Literature review of test automation models in Agile testing
Tampere University of Technology
Master of Science Thesis, 104 pages, 5 Appendix pages
May 2018
Master’s Degree Programme in Information and Knowledge management
Major: Knowledge management
Examiner: Professor Samuli Pekkola

Keywords: agile testing, test automation, software testing, prescriptive modelling,
agile practices, testing tools, literature review

Test automation is considered to be a crucial part of a modern Agile development team.
Agile software testing methods and development practices, such as Test Driven Devel-
opment (TDD) or Behavior Driven Development (BDD), continuously assure software
quality during development time, from project start to finish. Agile software development
methods require Agile testing practices for its implementation. Software quality is built-
in and delivering functional and stable software continuously is a key business capability.
Automated system and acceptance tests are considered as a routine part of the Continuous
Integration (CI) and Continuous Delivery (CD) pipeline.

The objective of the research was to study, what test automation models, Agile practices
and tools are found in Agile test automation literature and what kind of generic Agile test
automation model can be synthesized from this literature. The objective was completed
by conducting a systematic literature review of test automation models. The initial search
included fifty scientific articles, from which ten models were selected for further analysis.

The selected articles and their models were modelled using prescriptive modelling. The
tools and Agile practices mentioned in the articles were recorded and categorized. Each
model was also categorized according to its domain of application. Using the collected
data, a synthesized generic model for Agile test automation model was created.

Test automation models proved difficult to evaluate as the models were vastly different
from each other in their description, depth of detail, utility, environment, scope and do-
main of application. A generic Agile test automation model would be characterized with
agent, activity, artefact and event elements. It would have a functional information per-
spective and would be formally presented in text and graphic form. Continuous Integra-
tion was identified as the most popular Agile development method and Scrum as the most
popular Agile management practice. Continuous Integration was also identified as the
most popular tool category.

ii

TIIVISTELMÄ

TUUKKA VIRTANEN: Kirjallisuuskatsaus testiautomaatiomalleista ketterässä
ohjelmistotestauksessa
Tampereen teknillinen yliopisto
Diplomityö, 104 sivua, 5 liitesivua
Toukokuu 2018
Tietojohtamisen diplomi-insinöörin tutkinto-ohjelma
Pääaine: Tiedon ja osaamisen hallinta
Tarkastaja: professori Samuli Pekkola

Avainsanat: agile, testiautomaatio, ohjelmistotestaus, ketterät menetelmät, tes-
taustyökalut, kirjallisuuskatsaus

Testiautomaatio on tärkeä osa ketterää ohjelmistokehitystä. Agile-metodologian mukai-
set kehitysmenenetelmät, kuten Test Driven Development (TDD) tai Behavior Driven
Development (BDD), varmistavat ohjelmiston toimivuuden koko kehitysajan alusta lop-
puun asti. Agile-testauksen neljä kvadranttia ja ketterän testauksen menetelmät varmista-
vat jatkuvasti laadun ketterässä ohjelmistokehityksessä. Automatisoidut integraatio- ja
hyväksymistestit ovat rutiininomainen osa jatkuvan integraation kehitystä (Continuous
Integration, CI), jossa muutokset lähdekoodiin laukaisevat automaatisoidut testit.

Tutkimuksen tarkoituksena oli tutkia, mitä ketteriä testiautomaatiomalleja, menetelmiä ja
työkaluja löytyy alan tieteellisessä kirjallisuudessa ja syntetisoida sen pohjalta geneerinen
testiautomaatiomalli. Tämä tavoite saavutettiin suorittamalla systemaattinen kirjallisuus-
katsaus ketterään testiautomaatiokirjallisuuteen ja siinä mainittaviin testiautomaatiomal-
leihin. Haun perusteella luettiin viisikymmentä tieteellistä artikkelia, joista valittiin tar-
kempaan analyysiin kymmenen mallia, jotka sisälsivät myös mallia hyödyntävän case-
tapauksen.

Valitut testiautomaatiomallit mallinnettiin käyttäen kuvailevaa mallintamista (prescrip-
tive modelling). Artikkeleista kirjattiin ylös maininnat testaustyökaluista ja ketteristä oh-
jelmistokehitysmenetelmistä. Testiautomaatiomallit myös luokiteltiin niiden käyttötar-
koituksen (domain) mukaan. Hyödyntäen artikkelien dataa syntetisoitiin geneerinen malli
testiautomaatiomallin kuvaamiselle.

Testiautomaatiomallien vertailu osoittautui vaikeaksi, koska mallit erosivat toisistaan pal-
jon kuvauksessa ja sen tarkkuudessa, ympäristössä ja käyttötarkoituksessa. Geneerinen
malli on kuvattu käyttäen agenttia, toimintaa, artefaktia ja tapahtumaa. Geneerisen mallin
informaationäkökulma on funktionaalinen ja se on esitelty formaalisti käyttäen formaalia
kieltä ja grafiikkaa. Continuous Integration oli suosituin ketterä kehitysmetodi ja Scrum
johtamismetodi. Continuous Integration oli myös suosituin kategoria testaustyökaluille.

iii

PREFACE

Writing this document feels like the end of a long journey, which it has been. But it also
feels like the culmination of sixteen years of studying, beginning from Elementary School
through Secondary School and Gymnasium up until Tampere University of Technology.
After graduation, I’m throwing myself into the unknown. Once again. Like when I found
testing. Testing is something that came to me by surprise. This document was created
under a period of twelve months under which I have learned an enormous amount from
testing – working as an analyst for Sogeti Finland Oy has been a place for professional
growth as a tester and a human being.

I would like to thank Prof. Samuli Pekkola and my manager Sami Koivumäki at Sogeti
Finland Oy for assisting in the conduction of this research and for their continued support
and insights. I would also like to thank my twin brother Erkka, my mother Jaana and my
father Kari, my partner Nelli Leinonen, all the people at Sogeti and Veikkaus who have
contributed their knowledge about testing.

I would like to end this Preface with a brilliant quote by Timothy Leary that summarizes
my thoughts about this learning journey of life and how one must constantly throw them-
selves into the unknown:

“Throughout human history, as our species has faced the frightening, terrorizing fact that
we do not know who we are, or where we are going in this ocean of chaos, it has been the
authorities, the political, the religious, the educational authorities who attempted to com-
fort us by giving us order, rules, regulations, informing, forming in our minds their view
of reality. To think for yourself, you must question authority and learn how to put yourself
in a state of vulnerable, open-mindedness; chaotic, confused, vulnerability to inform
yourself.”

Espoo, 18.03.2018

Tuukka Virtanen

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 Research background ... 1

1.2 Research objective.. 2

1.3 Research questions ... 3

1.4 Research scope ... 4

1.5 Research limitations ... 4

1.6 Research structure .. 4

2. AGILE TESTING AND TEST AUTOMATION ... 5

2.1 Definition of Agile testing.. 5

2.2 Comparing Agile testing and Plan-driven testing .. 6

2.3 Agile Testing Quadrants... 8

2.3.1 Q1: Automated testing ... 9

2.3.2 Q2: Automated & manual testing .. 9

2.3.3 Q3: Manual testing ... 10

2.3.4 Q4: Testing tools .. 10

2.4 Agile testing team and quality assurance organization 11

2.4.1 Agile testing teams ... 11

2.4.2 Quality assurance organization .. 12

2.5 Definition of test automation ... 14

2.5.1 Typical use ... 14

2.5.2 Development test automation... 15

2.5.3 Regression test automation .. 15

2.5.4 Workflow automation .. 15

2.5.5 Process automation .. 15

2.5.6 Verification and validation (V&V) .. 15

2.5.7 Typical test automation tools ... 16

2.6 Test automation levels .. 19

2.6.1 Unit testing ... 20

2.6.2 System testing .. 22

2.6.3 Acceptance testing ... 23

2.7 Test automation in Agile testing .. 25

3. AGILE TESTING PRACTICES .. 27

3.1 Scrum ... 27

3.1.1 The Product Owner .. 28

3.1.2 The Scrum Master .. 28

3.1.3 The development team ... 28

3.2 Kanban ... 29

3.3 Defect Tracking System (DTS) .. 31

3.4 Extreme Programming (XP)... 32

3.4.1 Rules... 33

v

3.4.2 Pair Programming .. 34

3.5 Specification by Example (SbE) .. 35

3.6 Behavior Driven Development (BDD) .. 35

3.7 Acceptance Test Driven development (ATDD) ... 36

3.8 Exploratory Testing (ET) ... 36

3.8.1 Characteristics .. 36

3.8.2 Levels ... 37

3.9 Daily stand-up .. 38

3.10 User stories ... 38

3.11 Virtual test environment ... 40

3.12 Continuous Integration (CI) ... 41

4. RESEARCH RESULTS ... 43

4.1 Research strategy.. 43

4.1.1 Systematic literature review ... 43

4.1.2 Fink’s systematic literature review model 43

4.1.3 Bibliographic databases ... 44

4.1.4 Search terms ... 46

4.1.5 Practical and methodological inclusion and exclusion criteria 47

4.1.6 Prescriptive modelling ... 48

4.2 Data review .. 52

4.2.1 Lean Canvas Model (2017) .. 52

4.2.2 Quality Experience (2016) ... 55

4.2.3 Agile Testing for Railway Safety-Critical Software (2016) 58

4.2.4 Development Method for Acceptance Test Process (2016) 61

4.2.5 Dynamic Regression, Code Bisector and Code Quality (2015) 64

4.2.6 N-tiered Test Automation System for Agile (2014) 67

4.2.7 Test Automation Practices in Agile Development (2012) 71

4.2.8 Test Driven Development (2011) .. 74

4.2.9 Agile Test Framework (2011) .. 77

4.2.10 Agile Method for Open-Source Safety-Critical Software (2011) .. 80

4.3 Data synthesis ... 84

4.3.1 Domain and characterization matrix .. 84

4.3.2 Agile practices and tools .. 86

5. DISCUSSION ... 90

5.1 Summary of Agile test automation models .. 90

5.2 Synthesized generic model ... 91

5.3 Discussion .. 92

5.3.1 How to evaluate different Agile test automation models? 92

5.3.2 What characteristics describe Agile test automation models? 93

5.3.3 What domains are found in Agile testing literature? 95

5.3.4 What Agile practices are found in Agile testing literature? 95

5.3.5 What tools are found in Agile testing literature? 97

vi

5.3.6 How does synthesized generic model compare with Agile testing
literature? .. 98

6. CONCLUSIONS ... 99

6.1 Research summary ... 99

6.2 Critical evaluation of research .. 100

6.3 Future research ... 101

REFERENCES .. 102

APPENDIX A: List of research articles

vii

ABBREVEATIONS

ATDD Acceptance Test Driven Development
BDD Behavior Driven Development
CD Continuous Delivery
CI Continuous Integration
DDT Data Driven testing
DevOps Development and Operations
DTS Defect Tracking System
JVM Java Virtual Machine
LoC Lines of Code
MBT Model Based Testing
PRA Product Risk Analysis
QA Quality assurance
SbE Specification by Example
SoC Separation of Concerns
SUT System under test
TDD Test Driven Development
XP Extreme Programming

1

1. INTRODUCTION

1.1 Research background

Many companies are adopting Agile testing methodologies in their software development
and testing processes. Agile software testing methods, such as Test Driven Development
(TDD), have introduced new ways of continuously assuring software quality during de-
velopment time, from project start to finish. In Agile, the software quality is built-in.
Delivering functional and stable, quality software continuously, is recognized as one of
the key business capabilities in the software industry. Software quality is put in focus and
automated system and acceptance tests are considered as a routine part of the Continuous
Integration (CI) and Continuous Delivery (CD) pipeline. Test automation is an important
part of the delivery pipeline, ensuring always working software and freeing testers from
doing manual development and regression testing to do more exciting Exploratory Test-
ing.

Development teams are now wondering, how to efficiently organize and automate their
software testing efforts – what are the key features of test automation in an Agile envi-
ronment? What is the role of test automation in Agile software testing? How does it differ
from traditional, plan-driven testing? How could Agile teams use test automation to fur-
ther develop their CI & CD processes?

Agile testing is a movement that focuses on continuously delivering the best possible
software product. The term was first introduced by author Lisa Crispin, in her nominal
work Agile Testing in 2009, where Crispin highlights the differences between Agile and
waterfall testing. After the success of Agile testing, many development methods with a
similar focus on testing gained popularity, such as Agile Acceptance Testing (AAT), Ac-
ceptance Test Driven Development (ATDD), Example Driven Development (EDD),
Story Testing (ST), Behavior Driven Development (BDD) and Specification by Example
(SbE). Extreme Programming (XP), Scrum and Kanban and other industry practices are
also often bundled under the names of Agile and Lean (Adzic 2011). Detailed description
of Agile testing and Agile testing activities is provided in Chapter 2.1.

In Agile testing, test automation is seen as the key driving force in generating benefits
compared to traditional testing. Test automation is used to reduce manual testing and total
testing time and resource waste. Automation is applied routinely to unit tests and compo-
nents tests. Automated tools are applied for performance and load testing, security testing
and usability testing. Both automated and manual activities are used together in functional
tests, examples, prototypes and simulations. Automating redundant testing tasks leaves

2

more time for manual exploratory and user acceptance testing. The purpose of test auto-
mation is not to detect new defects or to find inadequate business logic specifications.
Test automation is practiced to provide continuous assurance of software functionality,
which enables the developers to have confidence in the quality of their software. Detailed
description of test automation practices and usage is provided in Chapter 2.5.

In Agile testing literature, multiple different models and frameworks for organizing and
applying test automation exist. These models vary considerably in their description, depth
of detail, utility, environment, scope and domain. The purpose of this research is to un-
derstand, how test automation is depicted in Agile testing literature by reviewing, cate-
gorizing and analyzing the differences between these models.

1.2 Research objective

The objective of the research is to discover, what test automation models, Agile practices
and tools are found in Agile test automation literature and what kind of generic Agile test
automation model can be synthesized from this literature. Ten scientific articles are se-
lected for the literature review, in an effort to find out, how is test automation organized
in Agile testing environment. The research aims to create and sample qualitative infor-
mation about test automation practices and their evaluation in the domain of Agile testing
and test automation. The research methodology is explained in detail in Chapter 4.1.

The selected test automation models will be modelled utilizing prescriptive modelling
(Acuna et al. 2001). Prescriptive modelling is utilized to standardize model differences
by characterizing models by their process elements and their relations. These process el-
ements can be categorized in to three groups, including model criteria, representation
criteria and methodological criteria. Detailed definitions for the criteria for different pro-
cedure elements are described in Chapter 4.1.6. In addition to criteria, models are catego-
rized according to their domain or use case, e.g. open-source or safety-critical. This cate-
gorization is utilized to discover if test automation models have differences or similarities
between groups.

After reviewing each article, the process model, or part of the process model, is depicted
using Microsoft Visio in unified manner to help comparison. To gain insight of the tools
and Agile practices that are used within the literature, the tools and Agile practices that
are mentioned in the articles are recorded. Tools are categorized by their use case to un-
derstand what type of tools are most utilized in test automation. Agile practices are cate-
gorized to development and management methods to distinct between the technical and
organizational managerial practices. The collected data and characterization model are
used to synthesize a generic test automation model for Agile testing environment.

3

1.3 Research questions

From the research objective, the two main research questions were formed

• What test automation models, Agile practices and tools are found in Agile test
automation literature?

• What kind of generic test automation model can be synthesized from Agile test
automation literature?

To answer the first research question, a systematic literature review of Agile test automa-
tion literature is performed. After searching and reading fifty (50) scientific articles, a
sample of ten (10) articles containing an Agile test automation model are selected for
review and modelled using prescriptive modelling. Prescriptive modelling is used to pre-
scribe models with standard definitions of model criteria, representation criteria and
methodological criteria for effective comparison. The domain of application, practices
and tools mentioned in each article are recorded and categorized. A table containing all
models and their attributes is presented for effective comparison.

The second research question is answered by synthesizing a generic Agile test automation
model description, using the data collected in the first question. The model will be syn-
thesized from the most popular attributes mentioned in the literature. Discussion of model
viability is performed.

To support the discussion of research results, following supporting questions were formed
to aid discussion

• How to evaluate different Agile test automation models?
• What characteristics describe Agile test automation models?
• What domains are found in Agile testing literature?
• What Agile practices are found in Agile testing literature?
• What tools are found in Agile testing literature?
• How does the synthesized generic model compare with Agile testing literature?

The supporting questions provide context for discussing the research results, differences
between models and comparing them to research literature. For the discussion, the forty
(40) read articles excluded by the methodological inclusion criteria, will be used for the
literary comparisons. The supporting questions and their answers are presented in Chapter
5.3.

4

1.4 Research scope

The research scope is limited to qualitative information about the state of test automation
in Agile testing literature. Agile methods and practices are presented in level of detail
needed for understanding their application. Full examination of Agile methods and prac-
tices and usage in other contexts are left out of scope. Technical implementation details
of the researched Agile test automation models are left out of scope. Technical imple-
mentation or viability of the synthesized Agile test automation model is left out of scope.

1.5 Research limitations

The research is limited by time and resources of the researchers. This sets limitations to
the research scope, accuracy and validity. The chosen search methodology and search
strategy set limits to the possible results. The research is limited to discovering qualitative
information about test automation aspects in Agile testing. The data collected about do-
main, Agile practices and tools is not statistically valid due to small sample size (ten
articles). The data provides a qualitative characterization for the inspection of different
Agile test automation models. The research is limited to synthesizing only a theoretical
generic Agile test automation model that will not be tested in a real-life business case.

The research is limited by the number of articles available for search in used bibliographic
databases. Utilizing only one search portal (Andor) limits the list of available articles.
The human resources available for reading and reviewing the articles limits the number
of read articles to fifty (50) and to ten (10) for reviewing. The research accuracy is limited
by the accuracy of search terms, selection criteria and inclusion and exclusion criteria.
Used search terms limit what kind of literature will be found. Relevant literature might
be excluded. The research validity is limited by the validity of the prescriptive model
characterizations and the conclusions drawn from them. Subjective differences between
different characterizations and categorizations may differ.

1.6 Research structure

The structure of the research is as follows

• Chapter 1 gives an introduction into the research background, objective, scope
and limitations.

• Chapter 2 contains theory about Agile testing and test automation.
• Chapter 3 lists Agile testing practices and their definitions.
• Chapter 4 contains research results.
• Chapter 5 contains discussion of research results.
• Chapter 6 contains research conclusions.

5

2. AGILE TESTING AND TEST AUTOMATION

2.1 Definition of Agile testing

Agile testing is defined by the words of the Manifesto for Agile Software Development
(2001) and the notion of software quality being built-in – and in the case of software
testing – tested-in. The four main statements of Agile say that we value

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan.

Since its original conception in 2001 to 2018, the Agile manifesto and its teachings have
become de facto standard for organizing software development in the rapidly progressing
field of software development. As the term’s usage has expanded, the practical usefulness
of the term itself has diluted in value. The word “Agile” is used so often in so many
different occasions, that it has lost its original meaning – Agile is used as “catch-all” term
that includes a collection of industry standards, practices and methodologies, applied in
practice in various ways. In the same vein, Agile testing is used to refer to a collection
industry standards, practices and methodologies used for software testing in Agile soft-
ware development.

Agile testing encompasses all the different aspects of software testing related tasks in an
Agile environment, including (but not limited to) manual testing, test automation, report-
ing found defects, documenting system behavior, but it can also be used to refer to the
programming style used for the software development. Some of the names used to refer
to practices similar or almost similar are Agile Acceptance Testing (AAT), Acceptance
Test Driven Development (ATDD), Example Driven Development (EDD), Story Testing
(ST), Behavior Driven Development (BDD) and Specification by Example (SBE). Terms
for industry practices, such as, Extreme Programming (XP), Scrum and Kanban are also
often bundled under the names of Agile and Lean. (Adzic 2011).

In her nominal work Agile Testing (2009), Lisa Crispin argues that Agile testing simply
means to continuously focus on delivering the best possible product. Crispin divides Ag-
ile testing into four distinct Agile testing quadrants and highlights the differences between
Agile testing and traditional, plan-driven waterfall testing. The most important differ-
ences are a result of the short iteration cycles of Agile development compared to tradi-
tional development. Testing has been traditionally done as the last part of the development
process, when all the feature development work has ceased, acting as a final “gatekeeper”
to releasing software into production.

6

2.2 Comparing Agile testing and Plan-driven testing

Agile product development follows short iteration cycles, usually from 1 to 4 weeks,
which means that testing activities also have to happen within these cycles. Traditional
plan-driven, waterfall-phased product development is defined by a sequence of chrono-
logical steps, beginning from gathering requirements, defining product specifications, de-
veloping product code and ending with testing activities and release into production. Dif-
ferences between approaches are illustrated in Figure 1.

Figure 1. Plan-driven testing vs. Agile testing (Crispin 2009, p. 13)

Plan-driven development is based on the assumption that project requirements are fixed
and do not change during the course of development. Comprehensive planning and test
design can be executed upfront, as the formal exit criteria is known. Documentation is
extensive and all functionality and features are documented in detail, which testers can
utilize in finding information about the system under test (SUT) and in their test design.
Test automation is built by tool specialists and only after the code is considered done.
Regression tests are not automated during development time.

A certain amount of development time is allocated to testing and testing can begin once
most of the programming has been completed. In real-life projects, product development
can suffer from delays or unprecedented setbacks, which usually result in a need to
lengthen the time allocated to programming phase. This extra time shortens the amount

7

allocated to testing, which leads to less time for test execution and defect findings and
ultimately, to lower software quality.

The Agile approach to software development and testing is iterative and incremental.
Testers begin testing features as soon as the code is incremented. Test design and planning
is done iteratively as the project progresses and documentation is usually scarce or non-
existant. Each feature, use case or User story is is expanded, programmed and tested dur-
ing the cycle. Features are not considered done unless testing has been executed.

Test automation is considered key to successful Agile projects. Developers or testers or
any team members with test automation knowledge automate tests for each new feature
and they serve as regression tests during the development. Keyword-driven tests separate
the programming from the writing of the actual test scripts so that they can be developed
without knowledge of programming. Zhongqian et al. (2013) argue that keyword-driven
tests are easy to create without programming knowledge, they can be developed earlier
and are easier to maintain when compared to traditional test automation.

Below is Table 1 by Hendrickson (2004) representing key differences between Plan-
driven and Agile testing.

Table 1. Plan-driven testing versus Agile testing (Hendrickson 2004)

 Plan-driven testing Agile testing

Change Manage & control it Change is inevitable – em-
brace and expect it

Planning/test design Comprehensive upfront
plan/test design

Plan/design as you go

Documentation Can be heavy Minimized – Only as much
as necessary

Handoffs Formal entry/exit criteria Team Collaboration

Test Automation System level built by tool
specialists, created after
code is ‘done’

All levels, built by anyone,
an integral part of the pro-
ject

8

2.3 Agile Testing Quadrants

Software quality can be measured in many dimensions; as the ability to perform required
functionality or as the ability to satisfy customer needs and they both require a different
approach software testing. Because of this vast amount testing possibilities, the question
is, where should time and resources be allocated? The question may seem arbitrary, but
in fact it is a quite complex and philosophical question about the nature of our software
product – when is software considered to be done, i.e. no more software testing is re-
quired? What is the D.O.D, definition of done? Contemporary wisdom tells us that in the
Agile world, software is never considered “done”. The software is in a constant state of
development and software testing is only finished when the software reaches the end of
its life cycle and is abandoned and replaced by a new piece of software.

Crispin (2009) introduces Agile Testing Quadrants as a theoretical framework to ap-
proach Agile software testing in multiple different dimensions. It provides a theoretical
framework to assess which dimensions of software are tested and in which ways. It is
based on the Agile testing matrix presented by Marick (2003). The Agile Testing Quad-
rant framework categorizes Agile testing tasks into four quadrants

• Automated (Q1)
• Automated & manual (Q2)
• Manual (Q3)
• Tools (Q4)

 that face four different dimensions of software quality

• Business-facing
• Team-facing
• Technology-facing
• Product-facing

The Agile Testing Quadrants are illustrated in Figure 2.

9

Figure 2. Agile Testing Qudrants (Crispin 2009, p. 98)

2.3.1 Q1: Automated testing

Quadrant 1 represents Test Driven Development (TDD). Programmers are to adopt any
of the Test Driven Development methodologies, such as Behavior Driven Development
(BDD) or Specification by Example. The key is to automate unit and component tests as
they are being developed. The automated unit and component tests ensure constant soft-
ware functionality and serve as automated regression tests when new features are added.
The unit tests are written in the same programming language as the development language
and technical expertise is required to understand them. The internal quality of the code is
defined by the programmers, not by external customers, as code units usually contain
proprietary information and design choices that are to remain internal. The process of
writing unit tests also forces programmers to question their architecture and design
choices and to design the architecture to be easy to test and automate.

2.3.2 Q2: Automated & manual testing

Quadrant 2 represents tests, such as functional tests, examples, story tests, prototypes and
simulations that support the development team on a level higher than unit tests. These
tests are external and facing business and customers and help to define the external quality
level and features required. These tests are written on a functional level that can be un-
derstood by business analysists and they can also write them.

10

2.3.3 Q3: Manual testing

Quadrant 3 represents Exploratory Testing, scenarios, usability and user acceptance tests.
Alpha and beta testing is also in this quadrant. These tests usually require both automation
and manual testing and Exploratory Testing is central to them. Test automation might be
used to automate the creation of the data sets used in these tests, but manual Exploratory
Testing is used to explore program paths and to find new defects. This task requires a
certain level of intuition and knowledge about the system under test and is heavily de-
pendant on the skills and experience of the tester. Hard to define, subjective quality met-
rics, such as usability, fall under this category.

2.3.4 Q4: Testing tools

Quadrant 4 represents technology related tests. Characteristics such as performance, ro-
bustness and security are in this category. These tests are highly specific to the used tools
and technologies and their design choices. They ensure that the technical aspects, that can
not be measured with straightforward functional requirements but that are affecting the
user experience, are tested.

11

2.4 Agile testing team and quality assurance organization

Agile product development team works as one and they encourage “whole team” ap-
proach (Crispin 2009). All project participants should view themselves as one team work-
ing together to achieve a common goal. Traditional, functional teams have clearly defined
roles for each team member, such as, programmers, business analysts and testers, who
each work their special domains with little overlap. Both team structures are illustrated in
Figure 3 below.

Figure 3. Agile team structure vs. Functional team structure (Crispin 2009, p. 64)

In functional teams, testers gain test specifications and requirements from programmers
and business analysts. Business analysts work with programmers in defining test specifi-
cations to test the appropriate business logic and functionality. Testers work to fulfill
testing requirements but do not actively participate in their design or refinement.

2.4.1 Agile testing teams

In Agile teams, testers and all other team members are expected to work closely together
and team roles are less strictly defined. Testers are encouraged to share their findings and
domain knowledge with programmers and external team members. Agile teams stress the
importance of face-to-face communication and consider it critical to the success of a pro-
ject. (Crispin 2009, p. 59). Translating and effectively communicating business require-
ments is a requirement. Testers work in a domain that overlaps with programmers and
business analysts and work to link and translate business requirements to programmers
and verify them.

In an Agile testing team, the tester is fully integrated into the development team and the
role expands from manual testing to test automation. Skills of script writing and program-
ming are required to write tests that minimize unnecessary regression tests and manual

12

testing (Ottosen 2016). Test automation frees time for the tester to be used more produc-
tively, such as doing Exploratory Testing.

The Agile tester is always trying to improve their skills in test automation and software
development. The Agile tester must have basic understanding of computers science and
programming. They must also have a good understanding of web programming standards
and most commonly used tools and operating systems, like command lines tool ins UNIX
envinronment. Common degrees for testers include computer science background or cor-
responding computer engineering background.

2.4.2 Quality assurance organization

Depending on the organization, Quality assurance (QA) can be organized as a part of the
Agile development team or as an independent functional team. The independent QA team
provides testing and Quality assurance as a service (QAAAS) to the other parts of the
organization. Reasons for having an independent QA team include stressing the im-
portance of an independent check and audit role, having an unbiased view of the quality
of the product and the want to separate testers from developers to avoid likeness. One
common mistake is to confuse “independent” with “separate”. If production budget and
processes are kept in discrete functional areas, a division between developers and testers
is inevitable. This can lead to competition between groups and cause friction within the
organization. Crispin (2006, p. 60) openly advocates for having the QA team as a com-
munity of testers working on different Agile product development teams. The QA com-
munity should provide a learning organization for testers to help them with their career
development and share knowledge with each other. (Crispin 2006)

The Agile “whole team” approach has forced many organizations the send their testers to
work within the Agile project teams. Arguments for the Agile approach include being
closer to the development of the product, building better team spirit, sharing responsibility
of quality (Crispin 2006, p. 63). Testers should be full-fledged members of the develop-
ment team. Testing is not seen as the “necessary evil”, but as a critical part of the product
development process. Each sprint defines the timeline that starts with planning and ends
with testing and quality assurance. Teams should try to avoid the common “small water-
fall” mistake, where developers spend a week writing code and the testers spend the next
week testing it. Agile team members are cross-functional and each team member usually
has multiple areas of domain expertise. Agile team members are capable of fluently tran-
sitioning between QA and developer roles. (Crispin 2006).

13

Table 2 by Pettichord (2000) lists a number of characteristics for testers and developers.

Table 2. Tester and developer characteristics (Pettichord 2000)

Testers Developers

Get up to speed quickly Thorough understanding

Domain knowledge Knowledge of product internals

Ignorance is important Expertise is important

Model user behavior Model system design

Focus on what can go wrong Focus on how it can work

Focus on severity of problem Focus on interest in problem

Empirical Theoretical

What’s observed How it’s designed

Sceptics Believers

Tolerate tedium Automate tedium

Comfortable with conflict Avoid conflict

Report problems Understand problems

14

2.5 Definition of test automation

Test automation is typically defined as “the use of a separate software from the testable
application to control and execute test cases against defined specifications”. In general,
the term “test automation” could be used to refer to all software interactions that can be
atomized into unitary steps, sequentially linked together and imperatively executed. The
broader definition includes automating parts of software delivery and testing pipeline,
such as writing build scripts for Continuous Integration servers, updating test results au-
tomatically to test management software or generating large amounts of random input
data for test execution. Building and maintaining a test automation framework falls under
the category of test automation tool development.

Test automation is a distinct area of modern software development that resides between
the domains of quality assurance (QA) and Continuous Integration (CI). Test automation
has a crucial part in ensuring software quality during its development and maintenance.
Specifically, in Agile development environments, where time is considered a luxury, test
automation is used as a part of the software development process, such as TTD (Test
Driven Development), to ensure continuous testing during development. Test automation
can be seen to cover five different areas of work, categorized as regression test automa-
tion, development test automation, work flow automation, process automation and veri-
fication and validation.

This Chapter is structured as follows: First, the typical usage and benefits of test automa-
tion are presented in Chapter 2.5.1, Second, the typical test automation categories are
listed in Chapter 2.5.2 – 2.5.5. The last Chapter 2.5.6 presents a list of commonly used
test automation tools.

2.5.1 Typical use

Test automation is typically used to automate the repeated testing of time consuming,
complex tasks. Test automation provides key advantages over manual testing, such as,
the length of the testing phase is significantly reduced, number of defects found before
going into production increases and manual regression testing is no longer required
(Adzic 2011, p. 39). Test automation is less error prone than manual testing and it guar-
antees that test steps are always reproduced exactly the same way, while also providing
test results traceability in the form of test execution logs. Prerequisite manual testing
tasks, such as, creating test data, test initialization and teardown can be automated to save
more time for the actual testing. Test automation is not well suited for finding defects in
program logic or usability or other user perceived metrics. Finding new program path-
ways, user experience or usability defects are most effectively assessed with manual Ex-
ploratory Testing.

15

2.5.2 Development test automation

Development test automation refers to automated tests that ensure development phase
software quality and provide feedback on the state of the program. Developers are re-
sponsible for developing unit tests for their components and for maintaining and updating
them as the program evolves. Test Driven Development, TDD, uses development tests as
a starting point for software development.

2.5.3 Regression test automation

Regression test automation refers to automated tests that ensure software quality between
software updates (Kandil et al. 2016). Regression test automation is a main component in
Agile testing and development. A test automation suite is built by a test automation de-
veloper for the system and continually assures working software. Regression tests, such
as unit tests or acceptance tests, are continuously run on CI-server and provide continuous
feedback.

2.5.4 Workflow automation

Workflow automation refers to the automation of testing workflows in Agile testing con-
text. Workflow should be considered broadly to refer to “the execution path of a task”. In
a test automation team, this could mean writing a bash script to automate the zipping and
unzipping of test result screenshots or to automating the test data creation for acceptance
tests.

2.5.5 Process automation

Process automation refers to the automation of a process for testing actitivies in the con-
text Agile testing. Process automation consists of achieving process-to-process interop-
erability. In a test automation team, this could mean automating the process of collecting
customer feedback for test data usage. Automated processes can range from trivial pars-
ing problem to complex business logic descriptions.

2.5.6 Verification and validation (V&V)

Verification and validation (V&V) are the desired outcomes of using test automation.
IEEE standard (1984) defines software verification as “the process of determining
whether or not the products of a given phase of software development cycle fulfill the
requirements established in the previous cycle” and software validation as “the process
of evaluating the software at the end of software development cycle”. Test automation
can be used to automate tests to verify that the required sprint features are functional or
to validate standard checks to confirm production level quality.

16

2.5.7 Typical test automation tools

Typical test automation tools can be divided into general programming languages and
automation frameworks and to “Capture and replay” tools. General programming lan-
guages are used to writing test cases in the same language as the SUT and to execute them
imperatively. Automation frameworks, such as, Robot Framework and Cucumber, follow
a keyword-driven approach (also described as Keyword Driven Development, KDD),
which allow test case specifications to be written in natural language form.

When using the keyword-driven approach, the keyword implementations are done by test
automation specialists, but natural language allows the test case implementation to be
written by a business analyst or a tester. Common test automation frameworks are listed
in Table 3. “Capture and replay” tools register tester’s interactions with the SUT and save
them as scripts, which can then be automatically re-executed (Polo et al. 2013). Examples
of commonly used software are TestComplete, Selenium and Appium Studio. Common
“Capture and replay” tools are listed in Table 4. Tools have maturity and expertise level
as defined by Polo et al. (2013) where 1=low, 2=medium, 3=high level of maturity and
1=beginner, 2=advanced and 3=expert level of required expertise.

Table 3. Common test automation frameworks (Polo et al. 2013)

Language Framework Description License Maturity
level*

Expertise
level*

Java JUnit The most famous
XUnit framework
for Java

Open-
source

3 1

Java JTest A commercial tool
that includes auto-
mated test genera-
tion and execution

Com-
mercial

3 3

Java JMock An extension of the
JUnit framework to
create mock objects

Free 1 2

JavaScript DOH Runs tests in
browser or inde-
pendently

Open-
source

3 2

JavaScript QUnit Tests any generic
JavaScript code and

Free 2 3

17

is very useful for re-
gression testing

JavaScript JSTest.net Enables JavaScript
unit tests to be run
directly in othe
XUnit frameworks

Free 3 3

C/C++ C++ Test A commercial
framework that in-
cludes unit test gen-
eration and code
coverage reporting

Com-
mercial

3 3

C/C++ Cantata++ A commercial
framework de-
signed for testing
embedded systems

Com-
mercial

2 3

C/C++ Opmock A stubbing and
mocking frame-
work for C and C++
based on code-gen-
eration headers

GPL 1 2

C/C++ Google C++
Testing Frame-
work

A framework de-
signed by Google to
test C++ systems

Free 2 2

.NET NUnit A framework inte-
grated in Visual
Studio to create and
run unit tests

Free 1 1

.NET DbUnit.Net An XUnit frame-
work for testing da-
tabases

Open-
source

2 3

.NET MbUnit A model-based
XUnit framework

Free 2 2

.NET QuickUnit.NET Design tests with-
out code and very
helpful for TDD

Com-
mercial

3 3

18

PHP PHPUnit An XUnit frame-
work that reports
results in XML and
HTML, including
coverage infor-
mation

Open-
source

1 3

PHP Apache-Test A PHP impelemen-
tation of Test::More

Open-
source

3 3

PHP Enhance PHP An XUnit frame-
work that includes
mock and stub fea-
tures

Com-
mercial

2 3

Internet HTMLUnit An extension of
JUnit that allows
testing of HTML
code

Open-
source

1 3

Internet Selenium A record and replay
framework that
works with most
Web browsers

Open-
source

3 2

Table 4. “Capture and replay” tools (Polo et al. 2013)

Tool Technology Description License Maturity
level*

Expertise
level**

TestComplete Multilanguage /
multitechnology
tool

Runs on Win-
dows

Com-
mercial

3 3

Abbot Java Designed for
Java Interface

Open-
source

1 2

Jacareto Java Doesn’t gen-
erate scripts,
can edit tests
via GUI

Open-
source

1 3

19

Selenium Web Generates
scripts that
testers can
modify

Open-
source

3 2

TPT’s

Automated GUI
Recorder

Java Generates
scripts that
testers can
modify

Open-
source

3 3

IBM

Rational Robot

Multitechnology Designed for
e-commerce,
enterprise re-
source plan-
ning and cli-
ent/server ap-
plications

Com-
mercial

3 3

PesterCat Web Generates
scripts in
XML

Com-
mercial

2 2

2.6 Test automation levels

The International Software Testing Qualifications Board (ISTQB 2017) defines test lev-
els as “groups of testing activities that are organized and managed together”. Test levels
are abstractions used to manage time and resources between different software develop-
ment phases. Test level definitions vary between organizations, but typically test levels
refer to three distinct software testing levels

• unit testing / component testing
• system testing / API testing
• acceptance testing / UI testing.

These levels are often referenced together with the software development V-Model and
its corresponding levels. The test levels can be presented as a test level pyramid, in which
the number of test cases is larger near the bottom and fewer near the top. In the case of
test automation, the term Test Automation Pyramid is used to refer to test automation
levels (Cohn 2009). Test Automation Pyramid is illustrated in Figure 4.

20

Figure 4. Test Automation Pyramid (Cohn 2009)

2.6.1 Unit testing

Unit testing, also referred to as module testing, development testing or component testing,
refers to the testing of individual software components (ISTQB 2017). Unit testing is
typically executed by the developer of the unit with the aim of demonstrating that the unit
meets the requirements defined in technical specifications (TMap Next 2006, p. 82). Unit
tests are designed to assure that the smallest parts of the program, such as routines, loops,
and objects, behave as intended. Unit tests executing these parts are automated to display
continuous quality of software units and robustness of the software.

In contrast to system and acceptance testing, unit testing cannot be organized as a separate
task from development. The developer is an integral part of the unit test process. The
developer has to have intimate knowledge of the SUT and the domain and to be familiar
with common defects found in similar systems. Unit test approaches include input space
partitioning, boundary values, error guessing, all combinations/pairwise/n-wise testing,
test coverage criterions and mutation testing (Polo et al. 2013).

21

An example of a development test requirement is that all statements of the code should
be evaluated at least once. This means that all program paths should be travelled to
achieve code coverage of 100%. Other common requirements include condition coverage
(CC), decision coverage (DC), condition / decision (C/D) coverage, modified condition /
decision coverage or multiple condition coverage (MCC) (TMap Next 2006). The modi-
fied condition / decision coverage (MC/DC) is the required level of testing coverage for
safety critical software. In avionics, the standard DO-178B (1992) requires that every
possible outcome of condition is the determinant of the outcome of the decision, at least
once (Tmap Next 2006). List of testing coverages and their explanations according to
TMap Next (2006) are presented in Table 5.

Table 5. Unit test coverage types (TMap Next 2006)

Unit Test Coverage Explanation

Condition coverage (CC) The possible outcomes of (“true” or “false”) for each
condition are tested at least once.

Decision coverage (DC) The possible outcomes of the decision are tested at
least once.

Condition / decision coverage
(C/D)

The possible outcomes of each condition and of the
decision are tested at least once. This implies both
“condition coverage” and “decision coverage”.

Modified condition / decision
coverage (MC/DC)

Every possible outcome of a condition is the determi-
nant of the outcome of the decision, at least once.

Multiple condition coverage
(MCC)

All the possible combinations of outcomes of condi-
tions in a decision (therefore the complete decision
table) are tested at least once. This implies “modified
condition / decision coverage”

TMap Next (2006, p. 333) lists common arguments for and against development tests.
Developers are under time pressure and their main focus is delivering product features
and functionality. As such, there is incentive to cut time for testing, in favor of feature
development. Human factors, such as taking pride in their development work, can cause
developers to feel resentment towards testing or “doubting” of their development capa-
bility. It can also be argued, that the subsequent system and acceptance tests will also test
the code unit functionality, though indirectly.

22

Arguments for the use of development tests are frequent. Their use decreases the amount
of rework required after delivery, as subsequent levels are of higher quality. Planning is
also more certain, as the volume of uncertain rework declines and the lead total develop-
ment time shortens. Early rework is always more cost-effective than fixing defects later
in product development. Developers gain faster feedback on their mistakes and develop-
ment tests help them to better plan and design their software architecture and gives them
confidence in their code quality and integrity. Tools for unit tests include debuggers,
code-analysis and review tools and specific unit test frameworks.

2.6.2 System testing

System testing, also referred to as API testing, refers to the testing of system components
and their interoperability in a simulated production environment (TMap Next 2006, p.
82). The purpose is to demonstrate that the system subsystems communicate between
each other correctly and that the system as a whole meets the specified functional, non-
functional and technical design requirements.

System test automation has the aim to assure full system operability continuously. Re-
gression tests are written to assure that the correct system level functionality is executed
and business logic functions as required by the system specifications. Short smoke test
suites are used to quickly ensure critical software functionality on most common program
pathways. Automated regression tests are key to achieving maintainable and robust, qual-
ity software. It makes further development easier and gives the developer a feedback loop
to continuously monitor and improve their software. Many types of automated system
tests exist: automated checksum-checks, automated job-pipelines, automated build
scripts, automated text- and symbol-processing, automated verification and validation.

23

A list of system test automation strategies is presented in Table 6.

Table 6. List of system testing strategies

Test Strategy Aim

Regression testing Continuous assurance of software quality
by continuous execution of tests

Smoke testing Quick confirmation of critical functional-
ity by executing easy, fortunate program
pathways

Stress testing Assess how the system performs under ex-
aggerated levels of stress

Performance testing Assess how the system performs when un-
der heavy load or traffic

Recovery testing Assess how the system performs in recov-
ery / black-out situations

There are multiple testing strategies to system testing and system test automation. Com-
mon testing strategies include regression testing, smoke testing, stress Testing, perfor-
mance testing and recovery testing. The testing strategy can, for example, be chosen ac-
cording to the Product Risk Analysis (PRA), which prioritizes most business-critical parts
of the software before others. The chosen testing strategy is then converted into the test
plan and then into test specifications and then to keywords in test automation scripts.

2.6.3 Acceptance testing

Acceptance testing, also referred to as user interface (UI) testing or user acceptance test-
ing (UAT), refers to testing carried out by system users in an optimally simulated produc-
tion environment to demonstrate that the developed system meets the requirements of the
users (TMap Next 2006, p. 82). Acceptance tests include usability and other -ility testing,
such as visual testing. Visual testing can be automated using optical image recognition
software, such as Sikuli Script, fmbt-library or Applitools.

Acceptance test automation is usually based on keyword-driven testing. Common frame-
works for automating keyword-driven testing are Robot Framework, Cucumber or Fit-
Nesse (Gärtner 2013). Keywords are implemented in general purpose programming lan-
guages such as Java, JavaScript or Python. A list of common keyword-driven test auto-
mations frameworks is Table 7.

24

Table 7. A list of common acceptance test automation frameworks

Framework Descriptions

by their creators

Website

Robot Framework “A generic test automation
framework for acceptance
testing and Acceptance Test
Driven Development
(ATDD)”

http://robotframe-
work.org/

Cucumber “Open-source tool for exe-
cutable specifications”

https://cucumber.io/

FitNesse “The fully integrated
standalone wiki and ac-
ceptance testing frame-
work”

http://fitnesse.org/

The business logic is written using natural language like syntax, using previously pro-
grammed keywords. Business analysts and testers can understand and communicate busi-
ness logic into test case specifications without the attention of the developer. Other ac-
ceptance test automation approaches include the page-object model, Model Based Test-
ing, user stories and Given-When-Then-syntax.

A common syntax for writing automated test case specifications is Given-When-Then,
meaning to describe a test case in three sections as illustrated in Table 8.

Table 8. Given-When-Then (Fowler 2013)

GIVEN State of the world before test actions. Can
be described as “pre-conditions”.

WHEN Behavior to be specified.

THEN Changes expected due to behavior.

A common example for acceptance test automation is to automate the HTML user inter-
face interactions and to simulate use cases. The developer could write a python script that
operates a web browser, such as Google Chrome, using WebDriver- and Selenium -li-
braries. Robot Framework could be used as an example of a free and open-source, gen-
eral-purpose test automation framework. It can be used to write keywords that can then

25

be executed sequentially. These keywords would be made to match certain HTML ele-
ments, such as id or name, and then execute the defined keyword, such as click element.
These keywords are sequentially placed according to desired programming logic.

Common arguments against acceptance test automation include their short life cycle. User
interface is the part of the software that is exposed to the most frequent change. This
means that after each small change to the user interface or business logic, the scripted
user interface test fails, leading to maintenance update work. Therefore UI-tests cause
consideradable workload to keep up to date.

2.7 Test automation in Agile testing

Test automation is a prerequisite for an Agile development team. With short delivery
cycles of weeks or even days, extensive manual testing work piles up in one iteration and
spills over to the next, rendering it unsustainable for fast moving Agile projects. (Adzic
2011, p. 39). Agile test automation is focused on automating tests for new product fea-
tures. Test automation is executed without detailed business requirements. Test documen-
tation is minimized (or presented by a specification by example) and active communica-
tion between the developers and testers is preferred. Most of the testing is automated and
run daily on CI-server. The measurement of quality is continuous and the process flows
without human intervention.

Automating functional tests is the starting point for test automation adoption. Some ex-
perts argue that everything that can be automated, should be automated. Several benefits
can be acquired through automation such as:

• The length of the testing phase is significantly reduced
• Number of defects found before going into production increases
• Manual regression testing is no longer required

(Adzic 2011, p. 39)

One of the key product development questions is, what capabilities should the product
exhibit, in what timeframe, and with which and how many resources. The purpose of
planning is described as “to arrive iteratively at an optimized answer to the ultimate new
product development question of what should be developed” (Cohn 2006, p. 11). Cohn
(2006) reminds us to consider that nearly two-thirds of projects significantly overrun their
cost estimates, sixty-four percent of features included in products are rarely or never used
and that the average project exceeds its schedule by 100%.

Regression test automation scripts are written to ensure that the software maintains full
functionality. It ensures that no future update breaks any part of the software unknow-
ingly. That is why regression tests are most valuable when run frequently. Their quality

26

of providing information about software quality is inversely correlated with their update
date.

Development test automation is usually mentioned with acronyms, such as Specification
by Example (SbE), Test Driven (TDD) and Behavior Driven Development (BDD). They
describe a way of working that starts the development process from the wanted test re-
sults. Test cases are written first and then the functionality is programmed to get that
result. The final software product will have a fully functional regression test suite at the
end of development, to ensure that the whole software is working according to specifica-
tions. A list of test automation development approaches is in Table 9.

Table 9. Agile test automation development approaches

Approach Description

Test Driven Development (TDD) Specify wanted test results first and then
program implementation that matches the
test specification

Behavior Driven Development develop-
ment (BDD)

Specify wanted software behavior first
and then program implementation that
produces desired software behavior

Specification by Example (SbE) Specify wanted examples first and then
program implementation that expands on
the examples

Acceptance Test Driven Development
(ATDD)

Each part of program must pass an ac-
ceptance test before being merged into
master branch

Test automation in an Agile team also means automating work flows between different
systems, eventually automating and operating a Continuous Integration pipeline. In prac-
tice, this could mean writing bash scripts to collect test job results and merge them to-
gether into one xml-file and then uploading these test case results into TestRail through
their API. This also includes writing a Slack-bot to post notifications into the team chat
or securing the cloud platform pipeline.

27

3. AGILE TESTING PRACTICES

3.1 Scrum

Scrum is an Agile framework for software development management. The idea of Scrum
is to break development work down into defined blocks that can be completed within a
fixed time frame, a sprint or a cycle, usually from 1 – 8 weeks. The development work is
iterative, each cycle adding a new feature or functionality to the program. Completed
features are evaluated at the end of each sprint and a list of next week’s development tasks
is assigned. Agile scrum teams collaborate daily and share information between team
members.

The Scrum ideology focuses on change. Customer requirements change frequently, and
customer’s do not always know exactly what they want. Change requires Scrum teams to
be iterative and incremental, to build modularly. Continuous improvement is one of the
key values built into Scrum.

In Scrum team, three roles are defined: the development team, the Scrum Master and the
Product Owner. The Product Owner is responsible for the success of the product that the
team will build. The Product Owner sets the priorities for the features that the team will
be implementing and works together with other stakeholders to derive them. (Gärtner
2013, p. 7). The Scrum Master role is to keep consensus between team members and help
them to stay focused on the set tasks. The development team’s role is to accomplish their
tasks within the Scrum cycle. The roles and their definitions are listed in Table 10.

Table 10. Scrum team roles

Role Tasks

Product Owner Sets product requirements and responsible
for product success

Scrum Master Coaches the development team to succeed
and responsible for the process

Development team Complete development tasks within sprint

28

3.1.1 The Product Owner

The Product Owner is responsible for managing the product backlog and ensuring the
value of the work team performs (Schwaber 2009). The Product Owner is visible to eve-
ryone and communicates to many stakeholders. The Product Owner leads the develop-
ment effort to create a product that generates the desired benefits (Pichler 2010, p. 2).

3.1.2 The Scrum Master

The Scrum Master is often described as the “coach” of the development team that helps
the development team to succeed. While the Product Owner is responsible for the devel-
oped product, the Scrum Master is responsible for the development process (Cohn 2017).
The Scrum Master tries to find ways to render the development process more efficient,
i.e. find ways to lower development barriers, facilitate meetings with stakeholders, reduce
resource waste and lower risk.

3.1.3 The development team

The development team in Scrum does not feature traditional software development roles,
such as programmers, designers, business analysts or testers, but more expansive, cross-
functional developer roles. The team members value Agile principles and collaboration
and harbor a “whole team” approach. Their goal is to complete development tasks defined
by the Product Owner, using process defined by the Scrum Master, within the given
sprint. A typical Scrum team consists of five to nine people (Cohn 2017). Scale in Scrum
is achieved by increasing the number of Scrum teams, not the team member size.

29

3.2 Kanban

In traditional context, “Kanban” refers to scheduling systems for manufacturing processes
that follow lean and just-time-time (JIT) principles. The Kanban system focuses on the
manufacturing process and its flow, and to minimize the amount of work in progress. It
was originally developed by the Japanese automobile manufacturer Toyota in the 1940’s.
The literal meaning of the word “Kanban” in Japanese is “signboard”, “visual signal” or
“card”, referring to the method of using physical cards to signal work steps and their
phases (Leankit 2017). The four main principles of the Kanban system can be listed as

• visualize work flow
• limit the amount of work in progress
• focus on the flow
• continuous improvement.

Today, in the context of Agile knowledge work, “Kanban board” refers to a work visual-
izing tool for demonstrating process phases and task completion. In practice, Agile teams
use a physical board with notes or a shared web-based solution as their Kanban board
tool. An example of modern Agile team’s Kanban board is illustrated in Figure 5.

Figure 5. An example of a modern Kanban board visualization

The progress of the tasks is visualized through the incremental movement of the tasks on
the board from left to right, from start to finish. Tasks are represented by small cards,
which can be differentiated by color to mark different types of tasks. The x-axis represents
the completion of tasks in one sprint. The board is divided into phases, which commonly
include four phases: backlog, in progress, review, and done.

30

All the sprint tasks start in the “backlog” and once they are assigned to developers, they
will be moved to the second phase, “in progress”. After the developer has completed the
assigned task, it is moved to the “review” phase. In this phase, the other team members
review the completed work. If the completed task quality is deemed unsatisfactory, it can
be moved back to the “in progress” phase for next sprint rework. If it passes the peer-
review, it is moved to the rightmost side of the board, to the “done” or “completed” phase.

The purpose of Agile Kanban boards is the same as its traditional counterparts, to max-
imize process flow. The Kanban board works well in unison with Agile practices, such
as Scrum (described in Chapter 3.1). It limits the amount of work in progress, as each
developer is assigned only one or two features per sprint to complete, which forces the
Product Owner to prioritize product features. It visualizes, how far features are from com-
pletion and what is their current status of development.

Other important Agile value, continuous improvement, is also built-in to the Kanban
board system. The review phase ensures that all completed features are of required qual-
ity. Peer-review by other team members forces the team members to work cross-domain
and to take interest in each other work and areas of expertise. Found defects or problems
are shared by the team members and the whole team approach encourages shared respon-
sibility of quality for the whole team.

Common tools for Kanban board visualization include the use of whiteboard and notes
and software solutions. Modern issue tracking systems (ITS) include the option to visu-
alize tasks or issues with a Kanban board. List of common tools in Table 11 below.

Table 11. Common Kanban visualization tools

Tool Website

Trello https://www.atlassian.com/software/trello

Jira https://www.atlassian.com/software/jira

Kanban Flow https://kanbanflow.com/

Kanboard https://kanboard.net/

31

3.3 Defect Tracking System (DTS)

Defect Tracking System (DTS), or a defect management tool (DMT), is utilized to regis-
ter, handle and manage found defects in a systematic manner (TMap Next 2006, p. 432).
The Defect Tracking System contains a database that stores information about defects,
such as detection date, author, priority and status. In general, it can be classified as a type
of issue tracking system (ITS). The Defect Tracking System follows the found defect
from its detection to its resolution.

Depending on the length and scope of the sprint, the number of found defects can be
voluminous and the number increases with every sprint. This large amount of found de-
fect data has to be efficiently stored, shared and updated among Agile team members.
Modern Agile teams use web-based Defect Tracking Systems to report, document and
share found defects. Modern tools commonly allow importing or exporting data between
different systems, such as automatically updating test run results from a CI server to the
Defect Tracking System.

Modern tools integrate many different features to their software, such as task manage-
ment, document collaboration, code management or test run and test case documentation.
A common DTS tool Jira, developed by Atlassian, integrates issue tracking with test case
and test run management with their other testing tool, TestRail. Test cases and test exe-
cution steps are specified in TestRail and organized in multiple different test runs. The
test run results will be show the percentage of failed test cases and link directly to their
failed execution steps.

32

List of common Defect Tracking Systems is in Table 12.

Table 12. List of common Defect Tracking Systems

Tool Website

Application Lifecycle Management
(ALM)

https://software.microfocus.com/en-us/soft-
ware/application-lifecycle-management

IBM Rational Quality Manager http://www-03.ibm.com/software/prod-
ucts/fi/ratiqualmana

TestRail http://www.gurock.com/testrail/

Jira https://www.atlassian.com/software/jira

Mantis Bug Tracker https://www.mantisbt.org/

Axosoft https://www.axosoft.com/

FogBugz http://www.fogcreek.com/fogbugz

3.4 Extreme Programming (XP)

Extreme Programming includes several features and practices. The methodology was first
documented by Kent Beck in 1999 in his book “Extreme Programming Explained”. In
the same year, the rules of XP were posted by Don Wells at extremeprogramming.org,
where they can still be viewed in 2018.

Typically, Extreme Programming is characterized as technically oriented, containing fre-
quent releases and short development cycles in test driven environment. In practice, this
means the extensive use of Pair Programming, code review, unit testing, few features, flat
management and fitness for changes in customer requirements. Coding style was pre-
ferred simple and easily understandable – the acronym KISS, Keep It Simple Stupid – is
frequently deployed in Extreme Programming. Phases of an Extreme Programming Pro-
ject are illustrated in Figure 6.

33

Figure 6. Extreme Programming Project (Wells 2000)

The Extreme Programming Project transitions from release planning to iteration to ac-
ceptance tests and small releases. User stories provide requirements for the release plan-
ning and they are later utilized as test scenarios for acceptance tests. System metaphor
refers to a simplification of the system that can be easily described to gain an understand-
ing of the system under test. Spike solutions, meaning writing simple programs to explore
the program pathway space, are utilized in architectural and release planning. After each
iteration, new user stories are taken under work and project velocity – the speed of devel-
opment task completion – is measured. (Wells 2000)

3.4.1 Rules

According to Wells, there are 29 rules to Extreme Programming, that are categorized in
five areas: planning, managing, coding, designing and testing. The rules and their impli-
cations are listed in Table 13 below.

Table 13. Extreme Programming rules (Wells 2000)

Category Planning Managing Coding Designing Testing

Rules User stories
are utilized.

Dedicated,
open work
space

The cus-
tomer is al-
ways availa-
ble

Keep it sim-
ple stupid,
KISS

All code must have
unit testing

 Release
schedule fol-
lows release
planning

Sustainable
work pace

Code agrees
to standards

System met-
aphor

All code must pass
unit tests before re-
lease

34

 Frequent,
small re-
leases

Daily stand-
up meeting

Code unit
test first

Class, Re-
sponsibility
and Collab-
oration
(CRC) cards

A test is created for
a detected bug

 Work is di-
vided into it-
erations

Assess de-
velopment
velocity

All produc-
tion code is
pair pro-
grammed

Create
Spike solu-
tions

Acceptance tests
are run frequently

 Iteration
planning on
every itera-
tion

Move team
members be-
tween roles

Only one pair
integrates
code at the
time

No function
added early

 Adapt XP to
changes and
needs

Integrate of-
ten

 Dedicated in-
tegration
computer

 Collective
ownership

3.4.2 Pair Programming

Pair programming is typical element of Extreme Programming. Two developers work
side by side, co-create and co-design program code and architecture. Two developers
have roles that are clearly defined. The first developer operates the keyboard and writes
the program code, while the second developer evaluates and checks the code written. The
second developer tries to think ahead of other developer’s writing speed and to identify
possible upcoming challenges.

TMap Next (2006, p. 342) lists several advantages to Pair Programming, such as

• many typing errors are caught while typing
• number of defects in the final product is lower
• technical design is better
• lower number of lines of code (LoC)

35

• problem solving is faster
• team members enjoy work more
• more team members gain understanding of the SUT
• team members learn considerably more about the SUT

3.5 Specification by Example (SbE)

There are two popular models that follow the process of Specification by Example, as
described by Gojko Adzic in his nominal work “Specification by Example” (2011). These
models are the acceptance testing-centric model and the system behavior-centric model.
Acceptance Test Driven Development focuses on the automation of tests as part of the
Specification by Example process. The system behavior centric model, often referred to
as Behavior Driven Development, focuses on the process of specifying scenarios of the
system behavior.

The costs of implementing Specification by Example can usually be justified to the man-
agement on the basis of avoiding late acceptance testing (SbE, p. 46). Specification by
Example shortens the acceptance test phase, allowing the software to go into production
two months earlier compared to traditional testing. Specifications are key to validating
tests, and as such, in need of tight scrutiny. There are number of qualities to impose on
specifications, such as

• Specifications should be focused and self-explanatory
• Examples should be precise and testable
• Specifications should be about business functionality, not software design
• Specifications should be in domain language
• Avoid writing specifications that are tightly coupled with code
• Don’t create flow like descriptions
• Scripts are not specifications, (SbE, Chapter 8).

3.6 Behavior Driven Development (BDD)

Behavior Driven Development (BDD) starts with specifying the wanted software behav-
ior and then programming the implementation that produces the desired software behav-
ior. BDD is often considered to be an extension to Test Driven Development. BDD pro-
vides a way to achieve modularity in the software development process.

36

3.7 Acceptance Test Driven development (ATDD)

Acceptance Test Driven Development (ATDD) aims for collaboration of business cus-
tomers, developers and testers in producing testable product requirements and to build
high quality software in a more rapid way (Gärtner 2013). The key point of ATDD is that
each part of the program must pass an acceptance test before being merged into the master
branch. Gärtner (2013) argues, that ATDD can be used in conjunction with Test Driven
Development, using acceptance tests as bases for feature development.

3.8 Exploratory Testing (ET)

As most tests are automated, testers are free to use Exploratory Testing (ET) to find yet
unknown defects or behavior in the system. According to Crispin (2009, p. 194), Explor-
atory Testing combines learning, test design and test execution into one test approach.
Testers apply heuristics, sophisticated guesses and prior knowledge to implicate common
problem areas. As the system under test is more familiar and well-understood, Explora-
tory Testing results improve.

Test automation can assist Exploratory Testing. Test automation tools should be used for
automating test setup, generating test data and executing repetitive tasks (Crispin 2009,
p. 201). Exploratory Testing can then immediately continue from the interesting point in
the program, which saves the team a lot of time and redundant work. Many of the most
difficult to detect defects or anomalies are hidden far down the program’s path of execu-
tion, such as memory leaks and crashes.

3.8.1 Characteristics

Hagar argues in Agile Testing (2009, p. 199) that Exploratory Testing should be based on
factors including risk analysis, a model of software behavior, past experience and devel-
oper opinion. Hagar lists five key characteristics useful in Exploratory Testing: test de-
sign, careful observation, critical thinking, diverse ideas and rich resources. Characteris-
tics and their descriptions are listed in detail in Table 14.

Table 14. Exploratory Testing (ET) characteristics and their descriptions (Agile Testing
2009, p. 199)

Characteristic Description

Test design A good test designer understands many
test methods. Thinking of multiple ways
to approach the test, is one of the most im-
portant aspects of Exploratory Testing –

37

the ability to quickly change and to adapt
testing methods.

Careful observation Exploratory testers are pedantic observers.
They can identify subtle changes or unsual
patterns in the program.

Critical thinking Testers ability to quickly assess and to
evaluate program behavior. A good tester
is able to quickly direct the program exe-
cution to desired problem areas, when
they are noticed.

Diverse ideas Testing experience and subject matter ex-
pertise produce more accurate exploratory
guesses. Shared expertise helps to create
joint understanding of explored system.

Rich resources Exploratory tester has a large set of tools,
techniques, test data, colleagues and infor-
mation sources to draw inspiration and
support from.

3.8.2 Levels

Gregory & Crispin (2015, p. 188) mention Exploratory Testing as an integral part of Agile
testing practices. Exploratory Testing is introduced in the Agile testing Quadrant 3 (Chap-
ter 2.3.3.). It explores the workflow to evaluate if the anticipated business value has been
delivered. Gregory & Crispin (2015) identify four product levels of Exploratory Testing:

1. Task level
2. Story level
3. Feature level
4. Product release level

Task level exploring happens during programming. Testers explore, how the program acts
with different input parameters and try to find ways to cause errors. Examples of task
level exploring include testing API inputs and responses or checking boundary values for
exceptions.

Story level exploring is executed after a user story passes the expected results and auto-
mated tests. Story level testing should focus on development risks, boundary conditions

38

and exceptions, detailed functionality issues and possible program states. Examples in-
clude asking for more details after suspecting an unspecified program pathway.

Feature level exploring can begin afters all the user stories are finished and the feature is
considered complete. Exploration should focus on interactions with other parts of pro-
gram and other systems. Features should be explored by multiple team members to foster
the use of different test approaches. Examples include asking multiple opinions about
usability of the expected feature.

Product release level exploring happens during integrated product delivery or release can-
didate delivery. Explorative testing should focus on high-risk system workflows, system
and environment dependencies and system performance. Examples include testing web-
based game on multiple different mobile phone devices and platforms.

3.9 Daily stand-up

Daily stand-up is an Agile practice where the team helds a daily meeting to discuss their
work, usually standing up. This provides a moment for each team member to share what
they have accomplished, what they are going to accomplish and where they need help
accomplishing something. Daily meetings help to keep the team focused and they also
enourage knowledge-sharing between team members.

The daily stand-up is usually kept brief. They typically last under 15 minutes, but they
can be much longer if the situation demands it. Each team member is given a turn to
present their accomplishments and what they are going to do next. Any challenges or
troubles that might have come up, should be shared among the team. Through team col-
laboration, the obstacle should be less difficult to overcome.

The key point is sharing, what every team member is planning to accomplish during the
day. Agile teams focus on three time horizons: day, iteration, release (Cohn 2006, p. 29).
The daily stand-up focuses on the shortest horizon, a single day. Number of daily tasks
should be an evaluation that can realistically be accomplished. The team also discusses
the iteration schedule and what how the daily tasks help to accomplish the next iteration
requirements. The release schedule is also kept in mind and assessed, what kind of large
units are yet to be delivered or architectural changes to be adapted to.

3.10 User stories

User story is a high-level user or business requirement, commonly used in Agile software
development. Typically, it consists of one or more sentences in the everyday or business
language capturing what functionality a user needs. This also includes non-functional cri-
teria and acceptance criteria. (Ottosen 2016, p. 10)

39

User stories combine strengths of both verbal and written communication. They provide
(light) documentation but their purpose is to encourage discussion about product features
and functionality. They get the customer or user side engaged with the product develop-
ment process and foster mutual understanding of the product.

User stories are independent of each other. They can be modified, extended or swapped
without affecting stories or other specifications. That also makes them a great tool for
Agile, iterative development. User stories are often updated or created, when a new use
case or functionality is introduced. (Ottosen 2016, p. 10)

Table 15. User story following Role-Action-Result syntax (Ottosen 2016)

1. As a <role>

2. I need <action>

3. so that <result>

User stories typically follow a certain syntax, such as Role-Action-Result or Given-
When-Then presented in Table 15. This gives the user stories a definite length and scope,
centered around a definite feature. The user story is co-designed by the developer and the
user and the solution is also a mutual agreement. Describing the user actions in detail is
preferred. User stories also have a defined acceptance criteria. Only after acceptance cri-
teria is met, can user story be discarded.

Story requirements should include all necessary information needed for test execution.
SMART requirements state that that requirements should be Specific, Measurable, Ac-
ceptable, Relevant and Time-specific. Requirements should be written in high-level lan-
guage. (Ottosen 2016, p. 10)

Story champion is a term used by teams to describe a particular developer who stays with
the story until it’s completed. The story champion will act as a point of contact for that
user story and will answer all the issues regarding it. This ensures the efficient transfer of
knowledge while switching pairs of developers working on the user story. This role is
sometimes referred to as “story sponsor” in other corporations. (Adzic 2011, p. 55)

40

3.11 Virtual test environment

Virtual machines have been used for test environment versioning and management since
the 1990s. Modern solution is to use containers, such as Docker, Kubernetes, Ansible or
Puppet, to easily track and maintain test environments. Using a virtual test environment
brings more control into the test environment management and over the software require-
ments.

Containers are light virtual environments running the needed software environment. Mul-
tiple containers can be easily run on the same server, as the live containers share the same
kernel. The containers are spun up from images, compiled packages of required software
for the test environment. The image installs appropriate software and libraries according
to its yaml-file. This allows the test environment to always download the approariate soft-
ware requirements, patches and libraries of apprioriate versions to ensure working condi-
tion.

Usually virtual test environments are initialized by the CI-server. The CI-server cleans
the old working space, starts the build process, runs the tests in desired virtual test envi-
ronment and saves results to the new working space. Test automation engineers write
scripts needed to automate the test environment creation process.

List of common tools for virtual environments and containerization in Table 16.

Table 16. List of common tools for virtual test environment

Tool Website

Docker https://www.docker.com/

Kubernetes https://kubernetes.io/

Ansible https://www.ansible.com/

Puppet https://puppet.com

41

3.12 Continuous Integration (CI)

Continuous Integration (CI) means to continuously integrate source code changes into a
new software build (Gärtner 2013, p. 8). After a committed change to the working branch,
the test automation server starts a virtual test environment, builds the working branch
executable and runs all the unit and acceptance tests and displays information about the
results (Gärtner 2013, p. 9). Continuous Integration is considered crucial to Agile devel-
opment and Agile testing as it provides continuous assurance of the software state and
quality and deployablity into production.

Currently used popular commercially licensed CI tools include Bamboo, Go, TeamCity
and open-source ones include Jenkins, Hudson CI and CruiseControl (Swartout 2014, p.
88). The test automation developer automates the CI software pipeline using bash-scripts,
os-operations or other tools. This often requires building software wrappers or to frame-
works to achieve software-to-software interoperability.

Continuous Integration is prerequisite for Continuous Delivery and as such, a prerequisite
for an Agile testing process. Swartout (2014, p. 44) defines Continuous Integration as “a
method of delivering fully working and tested software in small incremental chunks to
the production platform” and that it does not mean delivering large portions of the code
infrequently. DevOps, meaning development and operations, is a term that is used often
in conjuction with Continuous Integration, as CI is used as a tool for DevOps. DevOps
should be understood as a broader term for collaboration between developers and business
operations, such as automating a business function to i.e. aligning operations with busi-
ness, to achieve a common goal.

42

List of common tools for Continuous Integration tools in Table 17.

Table 17. List of common tools for Continuous Integration

Tool Website

Jenkins https://jenkins-ci.org/

Hudson CI http://hudson-ci.org/

Cruise Control http://cruisecontrol.sourceforge.net/

Bamboo https://fi.atlassian.com/software/bamboo

GoCD https://www.gocd.org/

Team City https://www.jetbrains.com/teamcity/

Travis CI https://travis-ci.org/

43

4. RESEARCH RESULTS

4.1 Research strategy

4.1.1 Systematic literature review

A systematic literature review process aims to “identify, critically evaluate and integrate
all the findings of relevant, high-quality studies addressing the research question” (Sid-
daway 2014). A systematic review answers “a defined research question by collecting
and summarizing empirical evidence that fits pre-specified eligibility criteria” (University
of Edinburgh 2017). Systematic reviews are characterized as being objective, systematic,
transparent and replicable (Siddaway 2014).

A systematic literature review compiles published research on a topic. A thorough, sys-
tematic search of research literature is required to ensure that the most relevant studies
are used to reduce bias in the review process (CRD 2009, p. 16). The style of the review
can be argumentative, integrative, historical, methodological, systematic or theoretical
(NCBI 2016).

This systematic literature review aims to identify, what test automation models, Agile
practices and tools are utilized in researched literature and which characteristics are the
most preferred. The identified practices and characteristics are then classified into differ-
ent categories. Lastly, the preferred practices are formulated into a synthesized generic
test automation model.

4.1.2 Fink’s systematic literature review model

Systematic literature review models are used to provide guidelines for research and help
to limit the amount of information to be searched. Literature review models define a pro-
cess path for research that can be confirmed and replicated. This research utilizes a sys-
tematic literature review model proposed by Fink (2014). Fink’s literature review model
is based on seven tasks, which are listed as:

1. Select research questions
2. Select bibliographic or article databases
3. Choose search terms
4. Apply practical screening criteria
5. Apply methodological screening criteria
6. Do the review
7. Synthesize results

44

This research was conducted in the following steps. First, the research questions were
defined (Chapter 1.3). Second, the bibliographics databases for research where selected
(Chapter 4.1.3). Third, the search terms were formulated (Chapter 4.1.4). Fourth, the prac-
tical screening criteria was applied (Chapter 4.1.5). Fifth, the methodological screening
criteria was applied (Chapter 4.1.5). Sixth, the review of the selected articles was executed
(Chapter 4.2). Seventh, the synthesized results and model are presented (Chapter 5).

4.1.3 Bibliographic databases

In this research, bibliographic databases are the primary source of research literature. The
term “bibliographic database” has traditionally been defined as abstracting and indexing
services for the scholarly literature (Trawick et al. 2003). More recent definitions refer to
bibliographic databases as any large collection of indexed text documents, such as, web-
based subscription academic journal services (Kusserow et al. 2014, p. 1). Books about
the subject matter were used as background research and to gain insight into the subject
matter before conducting the research.

The research was performed using search engine Andor. Andor is the name of the in-
house search engine developed at the Tampere University of Technology Library (TUT
2017). Andor functions as a web-portal that amasses links to multiple different biblio-
graphic databases. The databases utilized through Andor were Scopus, ScienceDirect,
SpringerLink and IEEE Xplore. The utilized bibliographic databases and their descrip-
tions are listed in Table 18.

The following books about the subject matter, that were recommended by my colleagues,
were used as secondary reference and as background research into the subject matter:

1. Agile Estimating & Planning (2006), Mike Cohn, Pearson Education, 330 p.
2. Agile Testing: a Practical guide for testers and Agile teams (2009), Lisa Crispin

& Janet Gregory, Addison-Wesley, 533 p.
3. More Agile Testing: Learning journeys for whole teams (2015), Janet Gregory &

Lisa Crispin, Addison-Wesley, 486 p.
4. ATTD By Example (2013), Markus Gärtner, Addison-Wesley, 211 p.
5. Agile Product Management with SCRUM (2010), Roman Pichler, Addison-Wes-

ley, 133 p.
6. Specification by Example (2011), Gojko Adzic, Manning Publications, 296 p.
7. TMap Next: for result-driven testing (2006), Sogeti Nederland B. V., 752 p.

45

Table 18. List of utilized biobliographic databases and their descriptions

Name Description

Scopus According to publisher Elsevier (2017), Scopus is “the
largest abstract and citation database of peer-reviewed lit-
erature: scientific journals, books and conference proceed-
ings” and contains over 22 000 peer-reviewed journals and
over 69 million records.

ScienceDirect According to publisher Elsevier (2017), ScienceDirect is
“the world's leading source for scientific, technical, and
medical research” and currently contains over 14,2 million
items.

SpringerLink According to the publisher Springer Publishing (2017),
SpringerLink “provides researchers with access to millions
of scientific documents from journals, books, series, pro-
tocols and reference works” and currently contains in total
over 11 million scientific documents with over 6,2 million
scientific articles.

IEEE Xplore IEEE Xplore is the research database of IEEE, which pub-
lishes “the leading journals, transactions, letters, and mag-
azines in electrical engineering, computing, biotechnol-
ogy, telecommunications, power and energy, and dozens
of other technologies” and currently contains over 4,4 mil-
lion items (IEEE 2017).

46

4.1.4 Search terms

Selecting purposeful search terms are critical for research validity. Search term refers to
the words or phrases utilized in the search query (Chandler & Munday 2016). The bibli-
ographic database search engine locates the relevant content according to the recognized
keywords in search terms. The selected search engine Andor supports Boolean opera-
tors, such as “AND“ and “OR” to condition the searched keywords (TUT 2017).

The selected search terms were formulated from the research questions (Chapter 1.3).
Boolean operator “AND” was used to join singular search terms into purposeful search
terms. After carefully examining the research questions, the following search terms
were constructed:

“test automation”
“software test automation”
“agile testing”
“agile testing” AND “test automation”
“agile” AND “test automation”
“agile” AND “testing” AND “framework”

The selected search terms were input into the Andor search engine. The Andor seach
engine was restricted to search for “scientific articles and journals” and to rate search
results according to “relevance”. The search was conducted in two parts, in 15.09.2017
and 4.11.2017. The number of search results for each search are displayed in Table 19.

Table 19. Number of Andor search results

Search term Number of Andor results

“test automation” 5586

“software test automation” 358

“agile testing” 311

“agile testing” AND “test automation” 8

“agile” AND “test automation” 2915

“agile” AND “testing” AND “framework” 8367

47

4.1.5 Practical and methodological inclusion and exclusion cri-
teria

The initial searches yielded a large quantity of search results, over 15 000 articles and
journals. A screening process was applied to reduce the number of irrelevant articles and
to find the most meaningful articles to the research questions. A practical and methodo-
logical screening were applied search results.

Following Fink’s (2014) systematic literature review model, the screening process in-
cludes two phases: practical and methodological inclusion and exclusion criteria. Practi-
cal inclusion and exclusion criteria refers to attributes that can be screened practically and
are essential to be included. Practical criteria covers a wider range of articles in the re-
search topic and is used to identify relevant areas of interest. Methodological inclusion
and exclusion criteria follow the guidelines of the chosen research method to uncover
relevant research results. Methodological inclusion and exclusion criteria are applied to
improve search quality and to reduce the number of unsuitable results.

For this search, the following practical inclusion and exclusion criteria were applied:

Inclusion criteria:

• Language: English
• Publication date: Released after the year 2000
• Publication type: Scientific articles or journals
• Abstract: Mentions of test automation, Agile testing or framework
• Relevance: Within the first ten search results
• Availability: Full-text available

Exclusion criteria:

• Language: Not in English
• Availability: Full-text non-available

48

This resulted in narrowing the search results into fifty relevant articles. A full list of the
articles is available in Appendix A. After reading and analyzing the articles, the following
methodological inclusion and exclusion criteria were applied:

Inclusion criteria:

• The article contains a proposal for applying test automation in Agile testing envi-
ronment and answers research questions

• A case study using the proposal was performed

Exclusion criteria:

• The article does not propose or present a test automation model or framework
• The article does not follow scientific guidelines or research standards
• Only one article per author(s)

The methodological screening was focused in finding the most relevant articles to the
research questions that presented a model for test automation in Agile testing environment
with a case study performed using the model. The screened articles were also to contain
mentions of test automation tools, QA organizational structures, used programming lan-
guages, frameworks and examples of their application.

Articles containing test automation proposals but with no clear mention of Agile meth-
odologies or organizational or managerial practices were dismissed as out of scope. Con-
ference papers and bibliographical indexes were also excluded. Applying this criterion
resulted in narrowing the list of fifty articles into ten relevant articles. The articles and
their proposed models are reviewed in Chapters 4.2.1 – 4.2.10.

4.1.6 Prescriptive modelling

The selected ten articles and their proposals were reviewed, modelled and characterized.
The proposed process frameworks were modelled using Microsoft Visio in a unified man-
ner to help comparison with various different presentations and characterized and pre-
sented using prescriptive modelling proposed by Acuna et al. (2001). As the proposed
models and their descriptions by their authors varied immensily in detail, depth and com-
plexity, converting the model attributes into the characterization matrix and comparing
them proved difficult.

Prescriptive models define the recommended or required means of executing the software
development process and answer the question “how should software be developed?”. Pre-
scriptive models can be divided in to two categories: manual and automated prescriptive
models. Manual presctipive models can be standards and methodologies centered on man-
agement, development, evaluation and software life cycle and organisational life cycle

49

support processes, while automated prescriptive models refer to activities related to as-
sistance, support and management of computer-assisted software production techniques.
Prescriptive models belonging to manual modelling category include traditional struc-
tured methodologies, organizational design methodologies and software life cycle devel-
opment standards. (Acuna et al. 2001)

In this review, the selected ten proposals were prescribed within a characterization matrix
proposed by Acuna et al. (2001). The models are characterized in three different areas:
model criteria, representation criteria and methodological criteria. The model criteria
includes process elements represented by the model, such as agent, activity, artefact, role
and event and process environments addressed by model, such as organizational, creative
ability, social interaction, environment flexibility and scientific/technological environ-
ment. Creative ability, social interaction and environment flexibility are considered to be
part of the organizational culture. Model criteria and their definitions are presented in
Table 20.

Table 20. List of model criteria descriptions

 Model criteria Definition

Process ele-
ments repre-
sented by the
model

Actor Entity executing the process

Role Describes set of actor responsibilities

Activity Produces externally visible changes in the process

Artefact (Sub) product or raw material produced by process
activity

Event A noteworthy occurrence happening in a specific
moment

Process envi-
ronments
represented
by the model

Organizational Reflects model dealings with organisational issues,
such as organizational culture, behavior, the design
and evolution of the organization.

Creative ability The ability to develop new organizational and soft-
ware process models

 Social interac-
tion

Relations between different reasoning structures
within the organization

 Environment
flexibility

Organization’s position on socio-cultural, scien-
tific/technological environment and generic soft-
ware process models

50

 Scientific/tech-
nological

Model points to tools, infrastructure and software
used for software production

The representation criteria includes information perspectives, such as functional, behav-
ioral, organizational and informative and notation characteristics from the viewpoint of
information quality. Representation criteria and their definitions are presented in Table
21.

Table 21. List of representation criteria descriptions

 Representation criteria Definition

Information
perspectives

Functional Represents process element implementa-
tion and their information entity flows

 Behavioral Represents sequentially the conditions un-
der which process elements are imple-
mented

 Organizational Represents where and by whom in the or-
ganization the process elements are imple-
mented

 Informative Represents information entities output or
manipulation in the process, including
structure and relationships

Notation
characteris-
tics

Informal Information represented informally

Formal Information represented formally

 Automated Information generated by automated sys-
tems

 Text Information notated in text format

 Graphic Information notated in graphic format

The methodological criteria describes the modelling procedure (non-developed or devel-
oped), procedure coverage (partial or suffient) and procedure definition (undefined, semi-
defined or defined). Methodological criteria and their definitions in the context of this
research are presented in Table 22.

51

Table 22. List of methodological criteria descriptions

 Methodological criteria Definition

Modelling
procedure

Non-developed Does not show defined causal relationships
between process elements

Developed Showing defined causal relationships be-
tween process elements

Procedure
coverage

Partial Covers a technical or organizational part of
test automation process in Agile environ-
ment

Sufficient Covers both technical and organizational
parts of the test automation process in Agile
environment

Procedure
defintion

Undefined Procedures are not defined

Semi-defined Some procedures are defined

 Defined All procedures are defined

In addition to prescriptive modelling, common domains of application, common Agile
practices and common tools were identified and registered, if mentioned by name by the
authors. This was done in effort to capture, what Agile practices and tools are used in the
literature and which are the most popular. Agile practices and tools are listed at the end
of each model review.

52

4.2 Data review

4.2.1 Lean Canvas Model (2017)

Nidagundi & Novickis (2017) propose “Lean Canvas Model” for Scrum software testing.
They argue that Scrum software development framework delivers software in incremental
and iterative way. They define Lean Canvas as “a white board with several blocks with
title names and is used mainly for the evaluation of business ideas”.

Lean Canvas life cycle starts with an idea and a phase of collecting ideas for product
requirements. The life cycle model and metrics are used to measure progress and to de-
termine when the project is considered done. The life cycle model applied to Scrum soft-
ware testing can be written as a repeating loop of the following actions:

1) Ideas=Product backlog, sprint backlog,
2) Build=Development,
3) Product=Testing,
4) Measure=Sprint planning meetings,
5) Data=Test data, Burndown charts,
6) Lean=Retrospective meetings, sprint review.

Lean Canvas is based on three principles of 1. Creating a document of your plan, 2. Iden-
tification of waste process or parts of your plan, 3. Repetitive test cycles for your plan.
The Lean Canvas process for software testing is presented in Figure 7. The model operates
in customer-facing domain.

53

Figure 7. Lean Canvas process for software testing (Nidagundi & Novickis 2017)

The Lean Canvas Model starts with understanding business and technical requirements
of the product. The second step is to identify test scenarios in unit and integration testing
and through other tests. These test scenarios are managed by a test case management tool.
With each sprint, test cases that are part of the sprint are identified. If product require-
ments have changed, different test cases are run.

In the context of prescriptive modelling and model criteria, process elements, such as the
actor implementing the model and the role and responsibilities are not defined. The events
(change in requirements) triggering activities (executing test scenarios) and producing
artefacts (executed test scenarios) are defined. The model criteria does not present process
environment elements, such as organisational, creative ability, social interaction,
environment flexibility or scientific/biological environment. The representation criteria
and information perspective can be defined as behavioral (presenting a sequential
conditions for process element implementation). From the viewpoint of information
quality, the information is informally presented in text and graphic form. In the
methodological criteria, the procedure can be characterized as developed (showing
defined causal relationships between procedure elements), covering a part (technical
environment undefined) of the test automation process with undefined procedures
(presented procedures are not defined on base-level, only containing top-level
descriptions of procedure actions). Review of the model is presented in Table 23 and
characterization matrix in Table 24.

54

Table 23. Lean Canvas Model review

Name Lean Canvas Model

Authors Nidagundi, P. & Novickis, L.

Published 2017

Domain Customer-facing

Testing tools N/A

Agile practices Scrum, Test case management tool

Table 24. Lean Canvas Model characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

Le
an

 C
an

va
s M

od
el

 x x x x x x x x x x

55

4.2.2 Quality Experience (2016)

Prechelt et al. (2016) propose a “Quality Experience” model for delivering successful
Agile projects without dedicated testers. Their research centered around the question:
How does successful Agile development work without separate testers? Prechelt et al.
performed three case studies based on Grounded Theory evaluation for interviews and
direct observations. All three case study Agile development teams developed web-based
portals for customer use.

Prechelt et al. (2016) studied three Agile teams, of which only one team had a dedicated
tester role, while the two others shared the testing responsibilities between team members.
The idea of doing Agile development without dedicated testers is not new; Extreme Pro-
gramming (XP) has a dedicated role of tester, while Scrum clearly states that teams should
be cross-functional with everyone having the same title of developer. Prechelt et al.
(2016) consider Kanban to be agnostic of the separate-tester role issue.

In their research, Prechelt et al. (2016) define a term “Quality Experience” to denote a
mode of quality assurance and deployment. Here, quality is a holistic attribute, which
includes aspects from business value creation to operational tasks. According to Prechelt
et al. (2016), a Quality Experience team

1. feels fully responsible for their quality of software
2. receives feedback about its quality
3. quickly, directly and realistically
4. while rapidly repairing found defects.

The Quality Experience process appoints six key areas of interest: conscious
empowerment decision, the role of responsibility, the role of feedback, rapid repair of
defects and motivation effects, that have the desired consequence of frequent deployment.
The process model is based on the architectural precondition of modular software
architecture. The software architecture must be sufficiently able to decouple from the
work of one team from another, to enable work delegation and concurrent development.

The Quality Experience process starts with a concious decision to empower the
development team to take control over the deployment and monitoring of the product.
This requires the team to be cross-functional and capable and architecture to be modular.
In this context, empowerment means assigning quality responsibilities to the developer
role, which leads to increased feeling of responsibility to quality, both socially and
psychologically. Automated tests provide constant feedback on the quality and the
feedback is direct, realistic and quick. The defects are rapidly repaired as soon as their
detected. This repeated, rapid cycle of development leads to developers having higher
motivation and co-defining requirements with the team, as each developer feels shared
responsibility for quality.

56

The Quality Experience process model is presented below in Figure 8. The model
operates in customer-facing domain. The model begins with the feeling of empowerment
to deploy, leading to feeling responsible and higher motivation and more frequent
deployments. The blue lines mean engineering, red ones social and green ones
psychological driving forces.

Figure 8. Quality Experience process description (Prechelt et al. 2016)

In the context of prescriptive modelling and model criteria, process elements, such as
actor, activity, artefact, role and event are clearly defined. The developer (actor) is
empowered to deploy (activity) when held responsible (role) and produces automated
tests (artefact) which lead to quick feedback and rapid repair (event). The model criteria
does not present process environment elements, such as organisational, creative ability,
social interaction, environment flexibility or scientific/biological environment. The
representation criteria and information perspective can be defined as functional
(presenting information flows of process elements) and behavioral (presenting a
sequential conditions for process element implementation). From the viewpoint of
information quality, the information is formally presented in text and graphic form. In the

57

methodological criteria, the procedure can be characterized as developed (showing
defined causal relationships between procedure elements), covering a part (does not
include technical environment) of the test automation process with defined procedures
(each presented procedure is defined). Review of the model is presented in Table 25 and
characterization matrix in Table 26.

Table 25. Quality Experience review

Name Quality Experience

Authors Prechelt, L., Schmeisky, H. & Zieris, F.

Published 2016

Domain Customer-facing

Testing tools N/A

Agile practices Kanban, Scrum, XP, CI

Table 26. Quality Experience characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

Q
ua

lit
y

Ex
pe

rie
nc

e

x x x x x x x x x x x x x

58

4.2.3 Agile Testing for Railway Safety-Critical Software (2016)

Li et al. (2016) present in their article “Towards Agile Testing for Railway Safety-Critical
Software” a proposal for an Agile testing framework designed for safety-critical railway
software. Their study focused on Chinese Train Control System (CTCS). During their
study, they designed a test framework that includes a build automation tool that manages
source code, unit tests, integration tests, resources and other tools and supports Continu-
ous Integration and delivery. The model operates in safety-critical domain.

Li et al. (2016) identified three key challenges: lack of Continuous Integration (CI) and
Continuous Delivery (CD), unit test generated manually and lack of integration testing.
They proposed utilizing Continuous Integration and deployment, generating unit test cov-
erage logic automatically and generating test paths from Model Based Testing (MBT).

When testing safety critical software, rigorous testing and stronger test coverage criteria
in unit testing is required. Modified condition decision coverage (MCDC) should be used
for unit testing, the same standard applied by the aviation industry. According to Li et al.
safety critical software requirements usually change due to changes in detailed system
design or faults detected by testing, not because of changes in requirements. They noted,
that safety critical software is not generally more complex or have more lines of code
(LOC). Safety critical software had more often clauses with four or more predicates than
non-safety critical software.

The Agile test framework is depicted in Figure 9. The automation build tool is at the
center of the framework. The automation build tool, such as Jenkins or Travis CI, man-
ages source code, resources and dependencies and executes unit and integration tests. For

Figure 9. Agile Testing for Railway Safety Critical Software (Li et al. 2016)

59

used example tools, Apache Maven was used for a unit testing framework, JaCoCO for a
coverage measurement tool and CheckStyle for a static analysis tool.

After a new commit is made, source code is pulled from a repository, such as GitHub,
and automatically build and executed. As deploying railway software automatically di-
rectly to production would not be safe or realistic, automatic builds and integration tests
are run in a simulated platform. This simulated platform includes simulated train stations,
railroad rails, blocks, etc. The simulated platform has the advantage that multiple different
kind of station types can be simulated and more comprehensive test scenarios can be
created. There is a constant continuous feedback loop between the Continuous Integration
of source code to build and Continuous Delivery to the testing platform, from where the
code could be deployed directly into production.

Li et al. (2016) utilized Model Based Testing (MBT) to generate test paths from the
state machine UML descriptions. These test paths define the abstract, logical level tests
of the SUT. To reduce the massive number of test cases generated from multiple differ-
ent train track state possibilities, combinatorial testing was used. Combinatorial testing
reduces the number of test cases significantly, while increasing the over all risk only
slightly. The key insight comes from the observation that most defects are caused by in-
teractions involving only a small number of parameters.

In the context of prescriptive modelling and model criteria, process elements, such as
actor, activity, artefact and event are clearly defined. The developers and testers (actors)
execute testing actitivites, such as create unit tests (activity) that automated build tool
executes (artefact) when triggered by a new commit (event). The actor role
responsibilities are not defined. The model criteria does not present process environment
elements, such as organisational, creative ability, social interaction, environment
flexibility or scientific/biological environment. The representation criteria and
information perspective can be defined as functional (presenting information flows of
process elements). From the viewpoint of information quality, the information is formally
presented in text and graphic form. In the methodological criteria, the procedure can be
characterized as developed (showing defined causal relationships between procedure
elements), covering a part (does not include organizational environment) of the test
automation process with defined procedures (presented procedures are defined in text).
Review of the model is presented in Table 27 and characterization matrix in Table 28.

60

Table 27. Agile Testing for Railway Safety-Critical Software review

Name Agile Testing for Railway Safety-Criti-
cal Software

Authors Li, N., Guo, J.a, Lei, J.b, Li, Y., Rao, C.a,
Cao, Y.

Published 2016

Domain Safety-critical

Testing tools Jenkins, Travis CI, Apache Maven, Ja-
CoCo, Checkstyle

Agile practices CI, CD, MBT

Table 28. Agile Testing for Railway Safety-Critical Software characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

A
gi

le
 te

sti
ng

 fo
r r

ai
lw

ay

x x x x x x x x x x x

61

4.2.4 Development Method for Acceptance Test Process (2016)

Shim et al. (2016) propose a model “Acceptance Test Process” for acceptance test auto-
mation. They base their model on the Agile Testing Quadrants (described in more detail
in Chapter 2.3). The process is modelled in Figure 10. The model operates in acceptance
testing domain.

The primary purpose of acceptance tests is to determine, whether the product is ready for
publication or not, not finding defects. Writers classify different test automation tools by
the phase of usage. They also modelled automation design process and the practice of
Separation of Concerns (SoC), where design decisions are separated into different layers.
The top level layers include business and developer layers. Shim et al. (2016) list key
quality attributes for acceptance test automation: readability, maintainability, traceability
and accessibility. Readability concerns the automation specification and how easy it is to
understand by developers and business staff and other stakeholders. Maintainability con-
cerns, what is the effort required to maintain the system in working condition. Traceabil-
ity concerns requirements and tests. Accessibility concerns how deep is the relationship
between stakeholders and the collaboration between the developers.

Figure 10. Model for Acceptance Test Automation (Shim et al. 2016)

The Acceptance Test Automation process is described in following steps:

1. Establishment of strategies
2. Derivation of requirements
3. Preparation of requirements specification and test cases
4. Construction of test automation

Writers applied test automation using FitNesse for the architecture design. FitNesse is a
wiki-based testing tool that allows writing configuring test variables through web forms.

62

In the context of prescriptive modelling and model criteria, process elements, such as
actor, activity, artefact, role and event are not defined. The model criteria does not present
process environment elements, such as organisational, creative ability, social interaction,
environment flexibility or scientific/biological environment. The representation criteria
and information perspective can be defined as informative (presenting information
entities output or manipulated by the process). From the viewpoint of information quality,
the information is formally presented in text and graphic form. In the methodological
criteria, the procedure can be characterized as developed (showing defined causal
relationships between procedure elements), covering a part (does not include
organizational environment) of the test automation process with undefined procedures
(presented procedures are not defined). Review of the model is presented in Table 29 and
characterization matrix in Table 30.

63

Table 29. Acceptance Test Automation review

Name Acceptance Test Automation

Authors Shim, J.-A., Kwon, H.-J., Jung, H.-J.,
Hwang, M.-S.

Published 2016

Domain Acceptance testing

Testing tools FitNesse

Agile practices SoC, SbE, ATDD

Table 30. Acceptance Test Automation characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

A
cc

ep
ta

nc
e

te
st

au
to

m
at

io
n x x x x x x x x

64

4.2.5 Dynamic Regression, Code Bisector and Code Quality
(2015)

Sivanandan (2015) proposes a model for enhancing Agile methodologies using Dynamic
Regression, Code Bisector and Code Quality with Continuous Integration (CI). Sivanan-
dan (2015) presents Dynamic Regression as a solution to running unit and functional au-
tomation for only the code where changes happened. Code Bisector is a tool for finding
the broken piece of code faster. Sivanandan’s (2015) last question centers around how to
define quality of program code and which seven axes affect Code Quality.

Sivanandan (2015) claims that using the above mentioned three processes, a business
group was able to increase their Return On Investment (ROI) by 70-80%. This translates
to reduced time to finding defects, better code quality and delivering on time. Sivanandan
(2015) claims that using these techniques, predictive software quality can be attained. All
three models operate in customer-facing domain.

Dynamic Regression method begins by mapping source code against test suites. The sec-
ond step is to run code coverage for particular test suites and identifying related classes
which have been called during the execution and mapping them accordingly. Sivanandan
(2015) describes this step as very time consuming, as all the (possibly thousands) of test
cases have to be mapped accordingly. A “Smart Engine” is run every six hours to fech a
list newly added files to the source control system. If any of source code files is touched
or modified, the Smart Engine mapper parses the mapper database and pulls the corre-
sponding test suite. The list of corresponding functional test suites are then automatically
executed on the CI-server.

Code Bisector is defined as “a method for finding a code change that results in a specific
behavior change”. It is utilized to help developers find the defects more quickly and min-
imizing the manual trace down effort. Code Bisector is integrated into the CI to intimate
delta change breakages to the development team. These breaking changes are then dis-
played on the quality dashboard with responsible developer.

Sivanandan (2015) also argues that Code Quality is built on seven axes, which are: stick-
ing to coding standards and best practices, frequent use code comments in the source code
(especially in public APIs), duplicate lines of code, code complexity among components,
zero or low coverage by units tests (especially in complex parts of the program), unat-
tending potential bugs, using complex design and architecture.

The process of using the three methods, Dynamic Regression, Code Bisector and Code
Quality is represented in Figure 11. The process description uses tools such as Jenkins as
the CI-server and Robot Framework as the acceptance test framework. The architecture
of the test suite mapping database is left out.

65

Figure 11. Dynamic Regression, Code Bisector and Code Quality (Sivanandan 2015)

In the context of prescriptive modelling and model criteria, process elements, such as
actor, activity, artefact, role and are not defined. Process is modelled as sequential events.
The model criteria does not present process environment elements, such as organisational,
creative ability, social interaction, environment flexibility or scientific/biological
environment. The representation criteria and information perspective can be defined as
informative (presenting information entities output or manipulated by the process). From
the viewpoint of information quality, the information is informally presented in graphic
form. In the methodological criteria, the procedure can be characterized as developed
(showing defined causal relationships between procedure elements), covering a part (does
not include organizational environment) of the test automation process with semi-defined
procedures (some presented procedures are defined). Review of the model is presented in
Table 31 and characterization matrix in Table 32.

66

Table 31. N-Tiered Test Automation System review

Name Dynamic Regression, Code Bisector
and Code Quality

Authors Sivanandan, S.

Published 2015

Domain Customer-facing

Testing tools Jenkins, Cruise Control, Robot Frame-
work, Perforce, Git

Agile practices Dynamic Regression, Code Bisector,
Code Quality, CI

Table 32. Dynamic Regression, Code Bisector, Code Quality characterization matrix

Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

D
R

, C
B

 &
 C

Q
 x x x x x x x

67

4.2.6 N-tiered Test Automation System for Agile (2014)

Day (2014) proposes a multi-tiered test automation architecture for Agile software sys-
tems that increases both test coverage and depth. According to Day (2014), test automa-
tion is a major characteristic of a mature Agile development team. Compared to tradi-
tional stable systems, constantly evolving Agile systems face the challenge of mainte-
nance overhead that negates the return of investment brought by test automation. The N-
tiered test automation architecture tries to solve this challenge by separating the project
into distinct tiers (application layers) that can operate under instable systems. The
architecture model operates in customer-facing domain.

Each distinct layer has different interfaces to transfer data between different clients, such
as web application receiving data from one system and sending data to another system.
The number of layers depends on the complexity of the project. Day (2014) argues that
there is no set number of layers that a system must have, but typically it has at least two:
presentation and business. The presentation layer includes the graphical user interface
(GUI) and the business layer includes parts of the system handling the business logic.
Day (2014) also provides examples of other typical layers, including a data tier to test
data integrity and web services tier to test API responses between systems.

Day (2014) showcases a case study of building an enterprise application using Java tech-
nologies during thirteen two-week sprints. The case study project was designed to manage
and maintain a record of user specific entities and to perform domain specific analysis.
The test automation architecture is depicted in Figure 12. The architecture is separated
into two layers: front-end and back-end. The front-end test automation architecture han-
dles basic GUI and user interaction validations with smoke style test suites. The displayed
GUI data is retrieved from a data store that seeds the test data to drive testing. The back-
end tes automation architecture validates the business rules, data integrity and web service
functionality.

Day (2014) observed that change occurred maintenance was decreased, as clearly defined
abstraction layers allowed for quick refactoring of the code. Concentrating on each layer
specific context allowed the test automation to increase the coverage and depth of test
scenarios. When compared to the prior release, the new case study test automation archi-
tecture saved 720 man hours per sprint on testing and 2,5 million dollars in support costs.

68

Figure 12. N-tiered Test Automation System (Day 2014)

69

In the context of prescriptive modelling and model criteria, process elements, such as
actor, activity, artefact, role or event are not defined. The model criteria does not present
process environment elements, such as organisational, creative ability, social interaction,
environment flexibility or scientific/biological environment. The representation criteria
and information perspective can be defined as informative (presenting information
entities output or manipulated by the process). From the viewpoint of information quality,
the information is formally presented in graphic form. In the methodological criteria, the
procedure can be characterized as developed (showing defined causal relationships
between procedure elements), covering a part (does not include organizational
environment) of the test automation process with defined procedures (presented
procedures are not defined). Review of the model is presented in Table 33 and
characterization matrix in Table 34.

70

Table 33. N-Tiered Test Automation System review

Name N-tiered Test Automation System

Authors Day, P.

Published 2014

Domain Customer-facing

Testing tools Selenium2 WebDriver, Excel, Git, Jen-
kins, JMeter, Cucumber, JUnit

Agile practices CI, Test case management tool

Table 34. N-Tiered Test Automation System characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

N
-ti

er
ed

 te
st

au
to

m
at

io
n x x x x x x

71

4.2.7 Test Automation Practices in Agile Development (2012)

Collins & Ferreira (2012) studied software industry test automation practices in Agile
development in their industry report from 2012. They studied two software projects for
one and a half years in Brasil. Their report identifies two software engineering practices,
test automation and Agile methods, that have played a key role in producing low-cost,
highly complex, maintainable software with high user satisfaction in time to market. The
proposed model operates in customer-facing domain.

Collins & Ferreira (2012) define test automation as means to automate software testing
activities. This refers to the development and execution of automated scripts, verifying
testing requirements and the use of automated testing tools. The Agile software develop-
ment process is characterized by the ability to rapidly accommodate changes in require-
ments and to prioritize the development of critical functionality.

Collins & Ferreira’s (2012) proposal is based on incorporating Scrum methods with Agile
testing. Their key factors for successful Agile testing include looking at the big picture,
colloborating with the customer, building a foundation for Agile core practices, providing
and obtaining feedback, automating regression testing and adopting the Agile testing
mindset and the whole team approach. Different Agile testing quadrants offer different
domains for automation and capturing different characteristics requires different tests.
Automating all test actitivies during the development phase can take as much as fifty
percent of total development time. Similarly, test automation success factors were iden-
tified as programmers’ attitude, tester’s having a low learning curve for testing tools, in-
itial investment, constantly changing code leading to maintenance hell, legacy code unfit
for automation, old habits of doing manual testing.

In the model, developers code, create and execute unit tests, while testers review unit
tests and automate acceptance tests. Testers also do Exploratory Testing, performance
testing and security testing and other *ility testing. In this case, both roles commit to the
same Subversion version control system. The automation build tool used is Hudson CI
that handles the fetching of the newest version of source repository, code compilation,
executing unit tests, packaging, running Selenium acceptance tests and running JMeter
stress tests. The tests are executed in three different environments: development, test or
deployed into production. The process model is depicted in Figure 13.

72

Article mentions the team using tools, such as, TestLink, Mantis Bug Tracker, Subver-
sion, and Jmeter. They found the that the acceptance tests kept breaking because the GUI
interface was not stable enough. TestLink was used for managing test plans, writing test
cases and reporting test executions. Mantis Bug Tracker was used by testers for Defect
Tracking System (DTS). Subversion was used to manage and share code and documen-
tation between team members. JMeter was used for performance and stress testing.

In the context of prescriptive modelling and model criteria, process elements, such as
actor, activity, artefact, role and event are clearly defined. The developer and tester (actor)
have distinct responsibilities (roles) and tasks (actitivities) producing different products
(artefacts). Events triggering actions are not defined. The model criteria present process
environment elements in text, such as organisational (adopting Agile mindset), creative
ability (programmer’s attitude), social interaction (whole team approach), environment
flexibility (initial investment) or scientific/biological (low learning curve for test tools)
environment. The representation criteria and information perspective can be defined as
behavioral (presenting sequential conditions for process element implementation). From
the viewpoint of information quality, the information is informally presented in text and
graphic form. In the methodological criteria, the procedure can be characterized as
developed (showing defined causal relationships between procedure elements), covering
a sufficient part (includes both organizational and technical environment) of the test
automation process with semi-defined procedures (some presented procedures are

Figure 13. Test Automation Practices in Agile Development (Collins & Ferreira 2012)

73

defined). Review of the model is presented in Table 35 and characterization matrix in
Table 36.

Table 35. Agile Testing Process review

Name Agile Testing Process

Authors Collins, E. & Ferreira, V.

Published 2012

Domain Customer-facing

Testing tools Subversion, TestLink, Mantis Bug
Tracker, Hudson CI, JMeter

Agile practices CI, DTS

Table 36. Agile Testing Process characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

A
gi

le
 T

es
tin

g
Pr

oc
es

s x x x x x x x x x x x x x x x x

74

4.2.8 Test Driven Development (2011)

Parsons et al. (2011) argue in “Test Driven Development: Advancing Knowledge by Con-
jecture and Confirmation”, how Test Driven Development (TDD) is critical Agile soft-
ware development. They collaborated with an Agile team and observed the team’s adop-
tion of the practice. Based on their findings, they propose an analytical model for TDD
in Agile software development, which is depicted in Fig. 14.

Parsons et al. (2011) recount that TDD was first utilized by NASA in the 1960’s, but in
the context of structured methods, it was infrequently used. TDD became later popular
during the 1990’s and gained wider acceptance, particularly withing the Extreme Pro-
gramming (XP) community. At present, TDD is considered to be a regular part of the
Agile principles and seen in many different organisations.

Figure 14. Test Driven Development (Parsons et al. 2011)

Test Driven Development (TDD) is defined by writing tests before code. This means that
granular tests provide continuous feedback of the state of the software and the tests serve
as a valuable collection of unit tests for regression testing. They argue, that the main ben-
efit of using TDD is improvement in product quality. This provides greater predictability
into the development and helps to estimate the total project cost.

75

Test Driven Development requires the support of the customers and domain experts in
order to be utilized successfully. User stories are used as informal requirements and serve
as a starting point for future development and future conversations between the develop-
ers and other stakeholders. User stories are formed into multiple smaller tasks that a de-
veloper can develop unit tests for. The user stories also form the basis of the acceptance
tests.

Parsons et al. (2011) write how the philosophical approach to testing differs in TDD com-
pared to traditional testing. Their perspective is to reinterpretate Popper’s theory on con-
jecture and falsification as advancement of knowledge. Traditionally, the conjecture has
focused on the programming problems and post hoc tests are used for falsification of
those problems. Test Driven Development focuses instead on the positive confirmation
of software. This shift in perspective redirects the team’s interest (conjecture) to write
tests that confirm working program functionality and features. TDD operates in customer-
facing domain.

The team used a Four Stage Model of Agile Development and present the Popper’s model
in the form of: 1. Intial Problem, 2. Trial Solution, 3. Error Elimination, 4. Resulting
solution (with new problems). This model is presented in Figure 14, explaining how the
final product desing emerges from using trial solutions and error elimination. Unit tests
are refactored until all the automated unit tests are passed and acceptance tests are refac-
tored until a proposed solution is found. Acceptance tests confirm the functionality of
system Graphical User Interface (GUI) and unit tests confirm the functionality of the un-
derlying system.

In the context of prescriptive modelling and model criteria, process elements, such as
actor and role are not defined. Activities leading to artefacts are defined but events
triggering them are not clearly defined. The model criteria does not present process
environment elements, such as environment flexibility or scientific/biological
environment. Organizational element, the role of Agile tester is mentioned in text as a
crucial part of the model. Social interaction between developers is required for Pair
Programming to be useful. The creative ability is presented with conjecture and emergent
design patterns. The representation criteria and information perspective can be defined as
functional (presenting information flows of process elements). From the viewpoint of
information quality, the information is informally presented in text and graphic form. In
the methodological criteria, the procedure can be characterized as developed (showing
defined causal relationships between procedure elements), covering a sufficient part
(includes both organizational and technical environment) of the test automation process
with defined semi-procedures (some presented procedures are defined). Review of the
model is presented in Table 37 and characterization matrix in Table 38.

76

Table 37. Test Driven Development review

Name Test Driven Development

Authors Parsons, D., Lal, R. & and Lange, M.

Published 2011

Domain Customer-facing

Testing tools N/A

Agile practices User stories, Pair Programming, XP

Table 38. Test Driven Development characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

TD
D

 x x x x x x x x x x x x

77

4.2.9 Agile Test Framework (2011)

Jungyub et al. (2011) propose Agile Test Framework for business-to-business interoper-
ability. Agile Test Framework consists of test case design and test execution model. The
framework defines a test case in two levels: abstract and executable. The abstract level
corresponds with the human interaction requirements and the executable level with the
machine readable requirements. The framework operates in customer-facing domain.

Agile Test Framework depicted in Figure 15, is based on five Design Decisions: Two-
level test case design, Pluggable test components and infrastructure designs, Event-driven
test execution design, Modular test case design and Event-centric test case design. The
framework has two key concepts: systematic test case design and test infrastructure. Jung-
yub et al. (2011) propose different strategies for increasing system interoperability, such
as XML-based test case design, self-describing test case design and business process-
based test representation. Test intrastructure is introduced as a concept that is “a perma-
nent, invariable functional module that allows for re-configurability of test beds”. Test
infrastructure is designed to be modular and re-configurable; different reusable, pluggable
modules can be configured to different test scenarios.

As the importance of infrastructure has expanded, the role of Test Infracture Provider has
been broken into three new roles: Test Service Provider, Test Bed builder and Test Frame-
work (TF) provider. The Test Framework provider designs the Standard Interface Defi-
nition (WSDL). The Test Service provider designs the pluggable and re-usable test com-
ponents. The Test Bed builder searches for the relevant pluggable test components and
generates a test harness script and assembles the test bed spefic to the desired test. Stand-
ard developers define specifications into requirements according to standards and test us-
ers define usage specifications according to usage requirements.

In the context of prescriptive modelling and model criteria, process elements, such as
actor, activity, artefact, role and event are clearly defined. The actors, such as standard
developer, test user and test bed builder, have distinct roles and responsibilities and events
triggering them. They produce different artefacts, such as the test framework and test
cases. The model criteria does not present process environment elements, such as creative
ability and social interaction. Organizational elements, such as different organizational
roles are addressed. Environmental flexibility is addressed as part of the modular test
infrastructure. Scientific environment is presented with attention to test framework
specifications and documentation. The representation criteria and information perspective
can be defined as functional (presenting information flows of process elements) and
behavioral (presenting a sequential conditions for process element implementation). From
the viewpoint of information quality, the information is formally presented in text and
graphic form. In the methodological criteria, the procedure can be characterized as
developed (showing defined causal relationships between procedure elements), covering
a sufficient part (includes both organizational and technical environment) of the test

78

automation process with defined procedures (each presented procedure is defined in text).
Review of the model is presented in Table 39 and characterization matrix in Table 40.

Figure 15. Agile Test Framework (Jungyub et al. 2011)

79

Table 39. Agile Test Framework review

Name Agile Test Framework

Authors Jungyub. W., Nenad, I. & Hyunbo, C.

Published 2011

Domain Customer-facing

Testing tools N/A

Agile practices N/A

Table 40. Agile Test Framework characterization matrix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

A
gi

le
 T

es
t F

ra
m

ew
or

k x x x x x x x x x x x x x x x x

80

4.2.10 Agile Method for Open-Source Safety-Critical Software
(2011)

Gary et al. (2011) propose an Agile Method for Open-Source Safety-Critical Software.
There has been a common misconception that Agile development is inherently incompat-
ible with safety-critical software development. In safety-critical software applications,
occurrence of an error could lead to loss of life. Gary et al. (2011) argue that Agile meth-
ods have matured enough to be clearly understood, defined and executed process models.
They believe that Agile methods have contributions to safety-critical software develop-
ment in the areas of implementation quality and process management. Using Scrum pro-
cess management or Extreme Programming (XP) can improve the management of tradi-
tional safety critical activities. The proposed model operates in safety-critical and open-
source domain.

Gary et al. (2011) use the image-guided surgical toolkit (IGSTK) as an example of their
argument. The IGSTK is an open-source toolkit for surgery featuring image import, im-
age display, registering, segmenting, tracking support and scene graph manipulation. It is
developed by devoted volunteers and their part-time work. The architecture of IGSTK is
heavily layered by design. All the system variables are heavily typed. It has an interface
that accepts and returns event responses to the internal hardware. The hardware’s the in-
ternal state machine determines, whether the requested action can be performed, depend-
ing on the state of the component.

They list six key areas to consider in safety-critical environment, which include 1. hazard
analysis, 2. safety requirements, 3. designing for safety, 4. testing, 5. certification and
standards and 6. resources. Hazard analysis is defined as the identification and analysis
of hazards in terms of their severity and urgency. Safety requirements are specified in
formal notion and allow formal analysis. Designing for safety is understood as thinking
system-wide safety when modeling the system components. Extensive testing should be
employed to verify the functionality of the software in an appropriate environment. The
system should be assessed compared to industry standards and certified. The IGSTK fo-
cused on areas 2, 3, 4 and 5 using Agile methods. They argue that these methods have
nothing that prevents their application to Agile environment. The methods are considered
platform-agnostic and the most important measurement of Agile is “working software”.
A “right amount of ceremony” is required to have structure in the process, but not restrict-
ing individual team members’ roles.

81

In Figure 16, the process for both the requirements and code are depicted. Requirements
start as posts to a internal Wiki and put in review. The requirement is defined and then
discussed in a group. If the requirement fails the review, it is aborted and moved to the
log area of the Wiki under ’unaccepted’. If the requirement is requested to be modified it
is moved to ‘in pending’, waiting for revision. If the requirement passes the group review,
it is accepted and entered into the system. After that the required implementation is de-
veloped and implemented. The implementation is placed under code review and in-
spected. After verification, the requirement is moved into a Word document.

The coding process starts with the selection of the requirements feature list. Unit tests are
developed and tested locally. After that the code is checked into a Virtual Sandbox and
run nightly builds and validated. After validation, the code is moved into the Main branch.
Extensive system testing and code reviews are performed. The validated release is then
packaged and released into production.

In the context of prescriptive modelling and model criteria, process elements, such as
actor (developer), activity (requirements gathering and implementation), artefact
(requirement, documentation, code), role (developer responsibility to safety) and event
(triggering of evaluation and implementation) are clearly defined. The model criteria does
not present process environment elements, such as scientific/biological environment.
Organizational elements is addressed by only accepting highly trained applicants to the
development process. Social interaction is addressed by promoting constant
communication. Creative ability leverages the collective creative power of the open-
source community. Evolving process is mentioned as part of environment flexibility.

The representation criteria and information perspective can be defined as behavioral
(presenting a sequential conditions for process element implementation). From the
viewpoint of information quality, the information is formally presented in text and
graphic form. In the methodological criteria, the procedure can be characterized as
developed (showing defined causal relationships between procedure elements), covering
a sufficient part (includes both organizational and technical environment) of the test
automation process with defined procedures (presented procedures are defined).

Review of the model is presented in Table 41 and characterization matrix in Table 42.

82

Figure 16. Agile Method for Open-Source Safety-Critical Software (Gary et al. 2011)

83

Table 41. Agile Method for Open-Source Safety-Critical Software review

Name Agile Method for Open-Source Safety-
Critical Software

Authors Gary, K., Enquobahrie, A., Ibanez, L.,
Cheng, P., Yaniv, Z., Cleary, K., Kokoori,
S., Muffih, B. and Heidenreich, J.

Published 2011

Domain Open-source, safety-critical

Testing tools CDash, CMake, Doxygen

Agile practices Scrum, Pair Programming, CI, XP

Table 42. Agile Method for Open-Source Safety-Critical Software characterization ma-
trix

 Model Criteria Representation Criteria Methodological
Criteria

Process elements
represented by the

model

Process environ-
ments represented

by the model

Information
perspectives

Notation character-
istics

Mod-
elling
pro-
ce-

dure

Pro-
ce-

dure
cov-
erage

Procedure
definition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the
viewpoint
of infor-
mation
quality

from
the

view-
point

of
for-
mal

nota-
tion

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al
 i

nt
er

-
ac

tio
n

en
vi

ro
n-

m
en

t
fle

xi
-

bi
lit

y

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

A
gi

le
 m

et
ho

d x x x x x x x x x x x x x x x x

84

4.3 Data synthesis

4.3.1 Domain and characterization matrix

Review of the research data identified two challenges: the varying depth of detail, accu-
racy and complexity between model descriptions and the lack of standardized model for
measuring test automation modeling. The lack of standardized model meant that re-
searched articles varied in description, depth of detail, utility, environment, scope and
domain. In effort to find common attributes between models, the domain of each model
was classified by the intended domain of application for the model as described by the
authors. If data was not available, the classification was deemed as customer-facing.

When categorizing the models by their domain of application, it can be noted that the
majority of the models operated within the customer-facing interface. Seven (7) of the ten
(10) selected models were categorized as operating in the “customer-facing” domain.
Two of the models operated within safety-critical software development. One model was
designed exclusively to be used for acceptance testing. One of the safety-critical models
was also designed to be developed together with the open-source community. List of
model domain categorizations is presented in Table 43.

Table 43. Domain categorization of Agile test automation models

Name Domain

1. Lean Canvas Model (2017) Customer-facing

2. Quality Experience (2016) Customer-facing

3. Agile Testing for Railway Safety-Critical Software (2016) Safety-critical

4. Development Method for Acceptance Test Process (2016) Acceptance testing

5. Dynamic Regression, Code Bisector and Code Quality (2015) Customer-facing

6. N-tiered Test Automation System for Agile (2014) Customer-facing

7. Test Automation Practices in Agile development (2012) Customer-facing

8. Agile Test Framework (2011) Customer-facing

9. Test Driven Development (2011) Customer-facing

10. Agile Method for Open-Source Safety-Critical Software
(2011)

Safety-critical, Open-
source

85

Prescriptive modelling was chosen to characterize different aspects of the examined test
automation models. Deciding what features of model, representational or methodological
criteria were fullfilled by a model description proved difficult. Decision was made to
conclude all undefined or improperly described procedure definitions as undefined. The
prescriptive modelling characterizations are described in Table 44.

Table 44. Characterization matrix attributes

 Model Criteria Representation Criteria Methodological Criteria

Process elements repre-
sented by the model

Process environments repre-
sented by the model

Information perspec-
tives

Notation characteristics Model-
ling pro-
cedure

Proce-
dure

coverage

Procedure defi-
nition

ag
en

t

ac
tiv

ity

ar
te

fa
ct

ro
le

ev
en

t

or
ga

ni
za

tio
na

l

cultural

sc
ie

nt
ifi

c/
te

ch
no

lo
gi

ca
l

fu
ct

io
na

l

be
ha

vi
or

al

og
ra

ni
sa

tio
na

l

in
fo

rm
at

iv
e

from the view-
point of infor-
mation quality

from the
view-

point of
formal

notation

no
n-

de
ve

lo
p

de
ve

lo
pe

d

pa
rti

al

su
ffi

ci
en

t

un
de

fin
ed

se
m

i-d
ef

in
ed

de
fin

ed

cr
ea

tiv
e

ab
ili

ty

so
ci

al

in
-

te
ra

ct
io

n
en

vi
ro

n-
m

en
t

fle
x-

ib
ili

ty

in
fo

rm
al

fo
rm

al

au
to

m
at

ed

te
xt

gr
ap

hi
c

1. x x x x x x x x x x

2. x x x x x x x x x x x x x

3. x x x x x x x x x x x

4. x x x x x x x x

5. x x x x x x x

6. x x x x x x

7. x x x x x x x x x x x x x x x x

8. x x x x x x x x x x x x

9. x x x x x x x x x x x x x x x x

10. x x x x x x x x x x x x x x x x

86

When analyzing the results of the characterization matrix, observations can be noted. The
model with most prescriptive model characterizations was Agile Method for Open-Source
Safety-Critical Software (2011) with almost all of the model, representational and meth-
odological criteria. Models, such as Test Driven Development (2011) and Test Automa-
tion Practices in Agile Development (2012) were the second most characterized. The
model with least prescriptive model characterization was N-tiered Test Automation Sys-
tem for Agile (2014) with no model criteria and only small number of representational
and methodological criteria.

Model criteria included process elements were represented reasonably well in most
(seven out of ten) articles. The most commonly prescribed process elements were activity
and artefact and the least prescribed was role. Process environment was not represented
in over half of the models (six out of ten). The most commonly prescribed process envi-
ronment was organizational (four out of ten) and the least scientific or biological envi-
ronment. Representation criteria included information perspective which was most com-
monly characterized as behavioral (five models). Functional perspective was utilized in
four cases (4) and informative perspective in three (3). Information quality was formally
presented in six (6) cases. From the viewpoint of formal notation, all of the examined
articles featured a process model depiction in graphic. Eight out of ten articles also fea-
tured the model definitions in text while two of the articles did not. Methodological cri-
teria included the state of the modelling procedure, which was deemed developed in all
ten (10) articles. In six (6) articles the procedure coverage was only partial and in four (4)
sufficient. Procedure definitions were well-defined in four (4) articles, semi-defined in
three (3) articles and undefined in three (3) articles.

From the characterization matrix it can be observed that six of the selected models did
not present process environment elements and that four models did present. The six mod-
els that did not include process environment elements were more recently published (after
2015) than the other group but it can be coincidental. A division between the two groups
might give some validation to the idea of categorizing the researched models into “tech-
nologically” described models and “technologically and organizationally” described
models. Technologically described models do not take into consideration the organiza-
tional or human elements of the process and concentrate on describing the technological
steps needed to execute the testing process. Technologically and organizationally de-
scribed models discuss human elements of the process and how a test automation team
should be managed and organized within the testing organization.

4.3.2 Agile practices and tools

The following Agile practices were mentioned in the researched articles: Kanban, Scrum,
XP, CI, CD, MBT, SoC, SbE, ATDD, Dynamic Regression, Code Bisector, Code Qual-
ity, Test case management tool, DTS, User stories and Pair Programming. Most com-

87

monly mentioned Agile practices were Continuous Integration CI (6), Experimental Pro-
gramming XP (3) and Scrum (3). The popularity of the CI practice might explain why
most of mentioned tools were CI tools. One of the reviewed articles did not mention any
Agile practices or tools. Mentioned Agile practices and their categories are listed in Table
45.

Table 45. Mentioned Agile practices and their categories

Agile practice Category Times
men-
tioned

Continuous Integration CI Development method 6

Experimental Programming XP Development method 3

Scrum Management method 3

User stories Development method 1

Pair Programming Development method 1

Acceptance Test Driven Development ATDD Development method 1

Dynamic Regression, Code Bisector, Code
Quality

Development method 1

Separation of Concerns SoC Development method 1

Specification by Example SbE Development method 1

Model Based Testing MBT Development method 1

Continuous Deployment CD Management method 1

Test case management tool Management method 1

Defect Tracking System DTS Management method 1

Kanban Management method 1

The total number of different Agile practices mentioned was fourteen (14). Nine (9) of
the Agile practices described in Chapter 3 (CI, XP, Scrum, Kanban, ATDD, SbE, DTS,
User stories and Pair Programming) were mentioned in the researched articles. The ma-
jority of the practices were mentioned only once.

88

The mentioned Agile practices can be categorized into two groups, management and de-
velopment methods. Management methods (5), such as Scrum and Kanban, focus on the
management of the development and testing team. Development methods (9), such as
User stories or Pair Programming, focus on managing the technical implementation of
development and testing. In this categorization, CI is categorized as a way of developing
software (development method) and CD as a managerial decision to empower the team
(management method). When comparing the two categories, development and manage-
ment, the number of Agile development methods is emphasized.

The following tools were mentioned in the researched articles: Jenkins, Travis CI, Apache
Maven, JaCoCo, Checkstyle, Fitnesse, Cruise Control, Robot Framework, Perforce, Git,
Selenium2 WebDriver, Excel, Cucumber, JUnit, Subversion, TestLink, Mantis Bug
Tracker, Hudson CI, JMeter, CDash, CMake and Doxygen. Most commonly mentioned
tools were open-source CI-server tool Jenkins (3), open-source source version control
system Git (2) and testing tool JMeter (2). Many of the mentioned tools can be categorized
as Continuous Integration and Deployment CI & CD tools, such as Jenkins, Travis CI and
Hudson CI. Different test frameworks were mentioned, such as Robot Framework and
JMeter and different Defect Tracking Systems DTS, such as Mantis Bug Tracker and
TestLink. Four of the researched articles did not have any mentions of testing tools. Men-
tioned tools and their categories are listed in Table 46.

Table 46. Mentioned tools and their categories

Tool Category Times mentioned

Jenkins Continuous Integration 3

Travis ci Continuous Integration 1

Hudson ci Continuous Integration 1

Cruise control Continuous Integration 1

Perforce Continuous Integration 1

Git Source version control 2

Subversion Source version control 1

Jmeter Test framework 2

Fitnesse Test framework 1

Jacoco Test framework 1

89

Checkstyle Test framework 1

Selenium2 webdriver Test framework 1

Cucumber Test framework 1

Junit Test framework 1

Robot framework Test framework 1

Mantis bug tracker Defect Tracking System 1

Testlink Defect Tracking System 1

Apache maven Build tool 1

Cmake Build tool 1

Doxygen Build tool 1

Cdash Build tool 1

The total number of different tools mentioned was twenty (20). The most mentioned cat-
egory was Test framework with seven (7) tools, second Continuous Integration (5), third
Build tool (4) and as last Source version control (2) and Defect Tracking System (2). The
majority of the tools were only mentioned once.

90

5. DISCUSSION

5.1 Summary of Agile test automation models

Summary of the examined Agile test automation models and their domain of applica-
tion, Agile practices and tools is presented in Table 47.

Table 47. Summary of Agile test automation models

Name Domain Agile practices Tools

Lean Canvas Model (2017) Customer-fac-
ing

Scrum, Test case management
tool

N/A

Quality Experience (2016) Customer-fac-
ing

Kanban, Scrum, XP, CI N/A

Agile Testing for Railway Safety Critical
Software (2016)

Safety-critical CI, CD, MBT Jenkins, Travis CI,
Apache Maven, Ja-
CoCo, Checkstyle

Development Method for Acceptance Test
Process (2016)

Acceptance
testing

SoC, SbE, ATDD FitNesse

Dynamic Regression, Code Bisector and
Code Quality (2015)

Customer-fac-
ing

Dynamic Regression, Code Bi-
sector, Code Quality

Jenkins, Cruise Con-
trol, Robot Frame-
work, Perforce, Git

N-tiered Test Automation System for Agile
(2014)

Customer-fac-
ing

CI; Test case management tool Selenium2 Web-
Driver, Excel, Git,
Jenkins, JMeter, Cu-
cumber, JUnit

Test Automation Practices in Agile Devel-
opment (2012)

Customer-fac-
ing

CI, DTS Subversion,
TestLink, Mantis
Bug Tracker, Hud-
son CI, JMeter

Agile Test Framework (2011) Customer-fac-
ing

User stories, Pair Program-
ming, XP

N/A

Test Driven Development (2011) Customer-fac-
ing

N/A N/A

Agile Method for Open-Source Safety
Critical Software (2011)

Safety-critical,
OS

Scrum, Pair Programming, CI,
XP

CMake, CDash,
Doxygen

91

5.2 Synthesized generic model

Using the data from the researched articles, a generic model for prescribing Agile test
automation is synthesized. The purpose of the synthesized generic model is to generalize,
what characteristics describe a typical Agile test automation model. The domain, model
characteristics, practices and tools are chosen by their commonality in the research data.

The most common domain of application for the test automation models was customer-
facing development. The prescriptive modelling of a test automation model should char-
acterize following processs elements: agent, activity, artefact and event. The process en-
vironment is not required to be characterized. The information perspective is character-
ized as functional and formally presented in text and graphic form. Procedures should be
developed, procedure coverage sufficient and procedure definitions defined.

The most commonly mentioned Agile development practice was CI and the most com-
monly mentioned Agile management practice was Scrum. The most commonly men-
tioned tool for Continuous Integration was Jenkins and for source version control Git. For
test frameworks and build tools, there are multiple options depending on technological
decisions, such as using JUnit and Apache Maven. Defect tracking is managed by Mantis
Bug Tracker or TestLink. The synthesized generic model attributes are listed in Table 48.

Table 48. Synthesized generic Agile test automation model characteristics
Attribute Value

Domain Customer-Facing

Model criteria The following process elements should be characterized: agent, activity,
artefact and event.

Representation criteria The information perspective is characterized as functional and formally
presented in text and graphic form.

Methodological criteria Procedures should be developed, procedure coverage partial and proce-
dure definitions defined.

Management practice Scrum

Development practice Continuous Integration

CI tool Jenkins

SVC tool Git

Defect Tracking System Mantis Bug Tracker, TestLink

Test framework JUnit, JMeter, FitNesse, Cucumber, JaCoCo, Selenium2 WebDriver,
CheckStyle, Robot Framework

Build tool Apache Maven, CDash, CMake, Doxygen

92

5.3 Discussion

The discussion of Agile test automation models and their summary is conducted with
the help of the research articles and the supporting questions

• How to evaluate different Agile test automation models?
• What characteristics describe Agile test automation models?
• What domains are found in Agile testing literature?
• What Agile practices are found in Agile testing literature?
• What tools are found in Agile testing literature?
• How does the synthesized generic model compare with Agile testing literature?

For the discussion, the forty (40) read articles excluded by the methodological inclusion
criteria, will be used for the literary comparisons.

5.3.1 How to evaluate different Agile test automation models?

Evaluating and comparing different Agile test automation models against each other and
the research literature proved difficult. The reviewed ten models were vastly different in
their description, depth of detail, utility, environment, scope and domain. When compar-
ing the ten selected models, only qualitative comparisons can be made. Analyzing the
different objectives of each model proved valuable for understanding the models, their
motivations and their application domain.

Lean Canvas Model (2017) is based on Lean philosophy and described as a “white board
with several blocks used for the evaluation of business ideas” and based in using Scrum
for managing the testing process. Quality Experience (2016) model was used to describe
a mode of quality assurance and deployment with emphasis on conscious empowerment
decision, the role of test automated feedback, rapid repair of defects and motivation effect
that lead to frequent deployment. Agile Testing for Railway Safety-Critical Software
(2016) model focused on safety-criticality in the Chinese railway industry where they
suggested utilizing Continuous Integration and deployment, generating unit test coverage
logic automatically and generating paths from Model Based Testing. Acceptance Test
Process (2016) was designed for acceptance testing with test automation designed utiliz-
ing Separation of Concerns to separate design decisions into different layers. Dynamic
Regression, Code Bisector and Code Quality (2015) presents three practices used for en-
hancing Agile methodologies through dynamically running unit and functional automa-
tion tests only for the changed code, a tool used for finding broken piece of code faster
and defining code with seven quality axes. N-tiered Test Automation System for Agile
(2014) describes test automation implementation details for Java-based GUI-testing with
the idea of separating the test automation architecture into distinct application layers, sim-
ilar to the Acceptance Test Process (2016). Test Automation Practices in Agile Develop-
ment (2012) describes commonly utilized practices, such as looking at the big picture,

93

colloborating with the customer, building a foundation for Agile core practices, providing
and obtaining feedback, automating regression testing and adopting the Agile testing
mindset and the whole team approach. Test Driven Development (2011) focuses on trans-
forming the development conjecture to positive confirmation of software functionality,
instead of falsification of software functionality, with similar ideas as Quality Experience
(2016). Agile Test Framework (2011) focuses on business-to-business interoperability
and has multiple defined roles for testing and maintaining the testing infrastructure. Agile
Method for Open-Source Safety-Critical Software (2011) focuses on safety-criticality in
the open-source environment and presents a way to apply Agile in the development of an
image-guided surgical toolkit.

When researching the forty articles, multiple other proposals for test automation frame-
works were found, such as GUITAR for GUI-testing (Nguyen et al. 2013), a keyword-
driven test automation framework (Zhongqian et al. 2013), an automatic testing frame-
work Agilework for web testing that is based on modular design (Wang et al. 2014), an
automatic page object generator for web testing APOGEN that is based on the page object
pattern where page objects are facade classes abstracting the internals of web pages into
high-level business functions that can be invoked by the test cases (Mariani et al. 2017),
Chameleon model that is based on the Test Pyramid (presented in Chapter 2.6) and aims
to provide a high degree of adaptability to changing test environments (Thopate & Ka-
chewarr 2012), an open-source system ZiBreve with the aim of supporting the process of
refactoring implementation level tests to business-level specifications (Mugridge et al.
2011) and an automated Agile regression testing approach that is based on Weighted
sprint test cases prioritization WSTP (Kandil et al. 2016).

The number of different use cases for test automation in Agile context was multiple and
model comparisons were difficult. One observation is that many of the test automation
frameworks were based on the same type of architecture; Garousi & Mäntylä (2016)
found in their research that lower-level testing tools and frameworks were more similar
or based on the same existing architecture or framework, such xUnit tools. On system
testing level they found that tools were more diverse and more dependent on the applica-
tion domain. Some of the articles were focused on the technical implementation of the
test automation framework, such as GUITAR and Chameleon model, while others, such
as WSTP, were more focused on the managerial and organizational aspects of test auto-
mation.

5.3.2 What characteristics describe Agile test automation mod-
els?

Prescriptive modelling was found not to be ideal for model characterization or decription.
Many of the important differences between Agile test automation models were not cap-
tured by prescriptive modelling, such as process flow or utilized tools and methods. The

94

research literature had multiple qualitative Agile test automation characterizations but no
other examples of using prescriptive modelling or the characterization matrix.

Models, such as, Quality Experience (2016), focused on process environment elements
and capturing top-level process of test automation and presented no tools for achieving
it. Test Driven Development (2011) provided no tool and no practices. On the contrast,
models, such as, Test Automation Practices in Agile Development (2012), provided mul-
tiple pratices and tools for its application. Agile Test Framework (2011) was the only
model to mention User stories as part of Agile practices. Models, such as, Agile Method
for Open-Source Safety Critical Software (2011), provided a full prescription of different
process elements and process environments, while models, such as, N-tier-ed Test Auto-
mation (2014) provided no information on process elements and concentrated on the tech-
nical application of test automation. Lean Canvas Model (2017) is part of the larger Lean
philosophy while Dynamic Regression, Code Bisector and Code Quality (2015) could be
described as a set of best practices utilized by a single development team. Development
Method for Acceptance Test Process (2016) concentrates on acceptance testing, while
Agile Testing for Railway Safety Critical Software (2016) concentrates on safety-critical
software.

When describing Agile test automation characteristics using the prescriptive modelling
characterization matrix, it can be observed that almost half of the examined models pre-
sented both technological and organizational element characterization and half of the ex-
amined models only presented technological element characterization. This leads to the
idea that process environment modelling is a preferred but not required characteristic for
an Agile test automation model. Agile test automation model criteria for process elements
included the following characteristics: agent, activity, artefact and event. The representa-
tion criteria and the information perspective are functional and formally presented in text
and graphic form. The methodological criteria for procedures is be developed, procedure
coverage sufficient and procedure definitions defined.

Prescriptive modelling examples of test automation models were not found in the re-
searched literature for direct comparison. Using examples from the forty articles, Agile
test automation can be characterized as having a continuous and smooth flow of deliver-
ing value to the customer and aiming to be highly focused and responsive to customer
needs (Petersen & Wohlin 2010). Other examples mention the increased popularity of
Agile methods in the central role of regression testing in maintaining software quality
(Parsons et al. 2013). Regression testing in general was mentioned as the most frequently
automated testing task with the most easily attainable benefits. Sfetsos & Stamelos (2011)
found in their research that in the industry Test Driven Development was deemed to im-
prove quality of software but studies conducted in academia were contradictory and re-
sults varied in different contexts. Mäntylä et al. (2014) found that rapid releases make
testing more continuous whicle leads to proportionally smaller spikes before the main
release.

95

5.3.3 What domains are found in Agile testing literature?

The research found a total of four (4) different domains of application for the selected ten
Agile test automation models. The models were utilized in the following domains: cus-
tomer-facing, safety-critical, acceptance testing and open-source development. The most
common domain was customer-facing domain. The least commonly mentioned domain
was acceptance testing and open-source development.

Agile methods were previously not seen as mature enough to be used in safety-critical
applications, but the research found two examples of utilizing Agile testing in safety-
critical domain, Agile Method for Open-Source Safety-Critical Software (2011) and Agile
Testing for Railway Safety-Critical Software (2016). Both models use virtual test envi-
ronments for simulating tests that would be hazardous or impossible to implement in real-
life cases. The Agile method was also an open-source project utilizing the members of
the open-source community to excercise the released code at an early stage and to find
defects.

Most test automation models found in the research literature were designed for customer-
facing domains, such as a behavior-driven automation framework (Sivanandan &
Yogeesh 2014) and Chameleon model (Thopate & Kachewarr 2012). Web-based testing
frameworks were particularly popular in customer-facing domain, such as GUITAR (Ngu-
yen et al. 2013). Other domains of application found in the research literature included
enterprise resource planning (ERP) systems in Sri Lanka (Hushalini et al. 2014). Exam-
ples of industries applying Agile test automation were also mentioned, such as banking,
telecommunication and manufacturing in India (Jigeesh et al. 2015), mobile application
development (Kirmani et al. 2017) and the use of Selenium tools in the telecommunica-
tion industry (Garousi & Mäntylä 2016).

5.3.4 What Agile practices are found in Agile testing literature?

The research found a total of fourteen (14) different Agile practices mentioned in the
selected ten articles. The articles mention the use of the following Agile practices: Kan-
ban, Scrum, XP, CI, CD, MBT, SoC, SbE, ATDD, Dynamic Regression, Code Bisector,
Code Quality, Test case management tool, DTS, User stories and Pair Programming. The
most commonly mentioned practice was Continuous Integration.

When dividing the mentioned Agile practices into management or development method
categories, it can be noted that the majority of the practices focused on technical devel-
opment implications and minority on the management of the test automation team. Con-
tinuous Integration, Experimental Programming and Scrum were mentioned as the most
frequently used management practices. Number of different technical development prac-
tices, such as, User stories and Pair Programming are utilized depending on the techno-
logical ramifications of the system under test.

96

In the research literature, multiple examples of Agile practices and statistics of Agile
practice usage were found. Kasurinen et al. (2009) studied software organizations, their
software process and testing policies. In their survey, they found that the median percent-
age of automation in testing was ten (10) and the median for use of Agile methodologies
was thirty (30) percent. On average, twenty-five (25) percent of development effort was
spent on testing. Perkusich et al. (2015) mention a study stating that from a survey of
4000 practioners, Scrum was found the most popular Agile development process with
56% preference, with mentions of the use of Kanban and XP. Kirmani (2017) mentions
multiple Agile practices not discussed in this research, such as Crystal, Feature Driven
Development (FDD) and Dynamic System Development Method (DSDM). Kirmani
(2017) argues that in literature, Extreme Programming and Scrum are the most prevalent
Agile methods for mobile application development. Kirmani mentions TDD and Pair Pro-
gramming as part of the Agile toolkit. Korhonen (2011) evaluated the impact of adopting
Agile in software defect management practices. Korhonen refers to studies implicating
that Pair Programming and CI help to improve code quality and reduce number of defects.
In their research, they found that after twelve months from starting Agile transformation,
the following daily Agile practices, such as User stories, short time-boxed iterations,
Scrum, retrospectives and product backlog were still utilized. Technical Agile practices
that were adopted by over fifty (50) percent of development teams, were refactoring, tests
written at the same time as code and CI. The utilization of Test Driven Development, Pair
Programming, collective code ownership and ATDD diminished to less than fifty (50)
percent at the end of the twelve-month period. Korhonen found multiple recommenda-
tions for defect management, such as specifying faults to be reported, creating practices
for prioritizing between bug fixes and feature development during sprint, evaluating fault
reporting tools and evaluating multisite development impact on management. Based on
their results, Korhonen concludes that the number of closed defects improved after chang-
ing defect reporting practices. Korhonen proposes three key practices to improve defect
management that are product backlog prioritization, Continuous Integration with auto-
mated tests and a short sprint cycle. Jigeesh et al. (2015) performed an empirical study of
Agile testing attributes in India. They found that there is a vast amount of literature dis-
cussing the Agile concepts and methodologies on Agile software development but that
the literature is very much limited in Agile testing. In their research, they concluded that
two Agile testing features, prioritization of features and iterative readiness for release,
were regarded as the most important features in the surveyed industries (banking, tele-
communication and manufacturing).

The research literature contains descriptions of Agile practice usage similar to the ten (10)
selected models. CI was regarded as one the most important technical practices in the
reviewed models as well as in the research literature, as Korhonen (2011) found in their
research. Scrum was regarded as the most preferred Agile management practice in the
reviewed models. The research literature also contained Agile practices and models that

97

were not found in the reviewed models, such as as Crystal, Feature Driven Development
(FDD) and Dynamic System Development Method (DSDM).

5.3.5 What tools are found in Agile testing literature?

The research found a total of twenty (20) different testing tools mentioned in the selected
ten articles. The articles mention the use of the following testing tools: Jenkins, Travis
CI, Apache Maven, JaCoCo, Checkstyle, Fitnesse, Cruise Control, Robot Framework,
Perforce, Git, Selenium2 WebDriver, Excel, Cucumber, JUnit, Subversion, TestLink,
Mantis Bug Tracker, Hudson CI, JMeter, CDash, CMake and Doxygen. The most com-
moly mentioned tool was Jenkins.

When dividing the tools into categories depending on their intended use, tools were found
in five (5) categories: Continuous Integration, Source version control, Test framework,
Defect Tracking System and Build tool. The most common category was Test framework
with seven (7) different tools. Five (5) of the tools were categorized as Continuous Inte-
gration tools, four (4) as Build tools, two (2) as Source version control tools and two (2)
as Defect Tracking Systems.

In the research literature, multiple examples of test automation tools and their usage were
found. Kasurinen et al. (2009) surveyed the popularity of testing tools and found that test
case management tools were the most popular category with 15 organizational units out
of 31 utilizing them. Second in popularity were unit testing tools and third test automation
implementation tools. Other categories mentioned performance testing tools, bug report-
ing tools and test design tools. Fawad et al. (2015) surveyed Pakistani software companies
and their testing activities and found that the use of automated tools was not prevalent
with 35.7% of respondents stating that no automated testing was performed in their or-
ganization. 40.4% of respondents state using no testing tools for testing and that only 19%
used testing tools for every project. The cost of use was deemed as the biggest barrier of
entry in adopting testing tools. Hushalini et al. (2014) performed an empirical study of
the use of test automation in Sri Lankan’s software development projects. They found
usage of NUnit testing frameworks, Selenium, JIRA, Cucumber, SoapUI, Jenkins, Jython
and Hudson and the use of Agile practices Kanban, Scrum, Extreme Programming. Par-
sons et al. (2013) mention the use of commercial testing tools, such as HP QC, HP QTP
and Microsoft TFS and the use of open-source tools, such as Hudson, Jenkins and Ant.
Parsons et al. found that dedicated tools were selected for testing specific technologies
such as Javascript test frameworks for testing Javascript applications. Garousi & Mäntylä
(2016) found that on system testing-level tools were more diverse and dependent on the
application domain where as lower-level testing tools and frameworks were more similar
or based on the same existing architecture or framework, such xUnit tools.

The research literature contains descriptions of test tool usage similar to the ten (10) se-
lected models. CI tools were the most mentioned category in the reviewed models and

98

frequently mentioned in literature, with the same tools, such as Jenkins and Hudson CI.
Test case management tools were not found in the reviewed models. Keyword-driven test
automation frameworks, such as Robot Framework and Cucumber were mentioned in
both instances. The research literature contained mentions of multiple test tools not found
in the reviewed models, such as Microsoft TFS, Ant and Jython. The popularity of Sele-
nium tools in web-testing was mentioned (Garousi & Mäntylä 2016) in many articles.

5.3.6 How does synthesized generic model compare with Agile
testing literature?

As no examples of using prescriptive modelling for test automation models were found
in the researched literature, no direct comparison of the synthesized generic model attrib-
utes could be made. The synthesized generic model was designed to describe Agile test
automation model elements and as such, is not a technical guide for implementing test
automation and does not contain process model descriptions. However, the qualitative
characteristics of the synthesized generic model could be compared to literature model
examples.

The synthesized generic model is applied in the customer-facing domain which was also
the most popular domain the researched literature (Sivanandan & Yogeesh 2014; Thopate
& Kachewarr 2012; Nguyen et al. 2013). The generic model uses Scrum management
method and Continuous Integration as development practice, which are both mentioned
as the most popular choices in researched literature (Perkusich et al. 2015; Korhonen
2011). The CI tool for the generic model was Jenkins, which was mentioned in multiple
articles (Hushalini et al. 2014; Parsons et al. 2013). Similar to the large number of differ-
ent test frameworks in the generic model, multiple different test frameworks were used
depending on the technical implementation and test level.

99

6. CONCLUSIONS

6.1 Research summary

Summary of the research results and the discussion of the research questions are presented
in this Chapter 6.1. Critical evaluation of the conducted research is presented in Chapter
6.2. Suggestions for future research are presented in Chapter 6.3.

The objective of the research was to discover, what automation models, Agile practices
and tools are found in Agile test automation literature and what kind of generic Agile test
automation model can be synthesized from this literature. Two main research questions
were formed after the research objective and research strategy was developed. After con-
ducting a systematic literature review of Agile testing and test automation literature, ten
test automation models were reviewed, categorized and characterized using prescriptive
modelling and a generic characterization of an Agile test automation model was synthe-
sized from the collected data.

The two main research questions were

• What test automation models, Agile practices and tools are found in Agile test
automation literature?

• What kind of generic test automation model can be synthesized from Agile test
automation literature?

The first research question was answered in Chapter 5.1 Summary of Agile test automa-
tion models. The domain of application, Agile practices, tools and characteristics of test
automation models found in the researched ten articles are presented in Table 47 Sum-
mary of Agile test automation models. The research found ten (10) different test automa-
tion models for Agile testing, four (4) different domains of application, fourteen (14) Ag-
ile practices and twenty (20) tools. The discussion of the results affirmed that similar test
automation models, Agile practices and tools were found in the researched literature.

The second research question was answered in Chapter 5.2 Synthesized generic model. A
generic Agile test automation model was synthesized using the data collected in the first
research question. The model was constructed from the most mentioned prescriptive char-
acteristics, domain of application, Agile practices and tools. A summary of the generic
Agile test automation model is presented in Table 48 Synthesized generic Agile test auto-
mation model characteristics. The generic model is applied in customer-facing develop-
ment, using Agile practices Scrum and Continuous Integration with CI, SVC, DTS, test
framework and build tools. The discussion of the generic model affirmed that the model
characteristics reflected the Agile practices and tools found in the researched literature.

100

From the discussion of both research questions in Chapter 5.3, following points can be
concluded:

• An Agile test automation model should be understood by its domain of applica-
tion. Comparing models vastly different in their description, depth of detail, util-
ity, environment, scope and domain, is futile without knowledge of their applica-
tion. Understanding the different objectives and motivations of the model authors
helps to understand the models.

• Prescriptive modelling was found not to be ideal for model characterization or
decription. Descriptive and qualitative model characterizations capture model dif-
ferences in a more insightful way. No mentions of prescriptive modelling in the
researched articles.

• Continuous Integration and Scrum were found as the most popular Agile devel-
opment and management practices. Continuous Integration tools were also a pop-
ular category of tools and other categories included Test frameworks, Defect
Tracking Systems, Source version control tools and Build tools. Used system test-
ing tools were more diverse and dependent on the application domain than lower-
level testing tools.

• The synthesized generic model describes a typical Agile test automation model as
customer-facing, utilizing Scrum and Continuous Integration Agile practices us-
ing Continuous Integration tools, Source version control tools, Defect Tracking
System and Test frameworks. Other test automation models found in the re-
searched literature contained similar characteristics.

6.2 Critical evaluation of research

When evaluating the quality of the conducted research, criticism can be applied to the
search terms and vague or non-standard Agile testing definitions found in research liter-
ature, bibliographic databases, practical and methodological inclusion and exclusion cri-
teria and prescriptive model characterizations.

Agile test automation is still comparatively young field of software testing, with Agile
Testing beginning in 2009 with Lisa Crispin’s Agile Testing, and as such, all of the se-
lected articles were relatively new, with oldest articles published in 2011 and newest in
2017. The keywords “Agile testing” and “Agile test automation” were too vague or too
specific for the subject matter. The over-blown usage of “Agile” in testing literature and
the effect it has on the search results, were not considered while performing the search.
Keywords should have included “model” or “proposal” in addition to “framework”. This
would have made the search results to emphasize more technical model proposals.

101

More bibliographic databases could have been added to the search, such as Google
Scholar, to increase literature range and to reduce publisher bias. Using only Andor ac-
cessible bibliographic databases, such as Scopus and ScienceDirect limited the search
results. More supporting literature could have been searched and referenced.

The practical and methodological inclusion and exclusion criteria could have been more
specific to the research question. The practical inclusion criteria could have included Im-
pact Factor to yield more academically valid results. The practical exclusion criteria could
have included articles only released after 2010 for more recent results. The methodolog-
ical inclusion criteria could have included more specifically that article must mention
Agile practices and tools. The methodological exclusion criteria could have excluded ar-
ticles with too vague model proposals. The total number of read articles and included
model proposals could have been higher.

Criticism can be objected to the proposed model prescriptions. Evaluating the models
proved difficult, as the practices differed widly in presentation and detail. Standardizing
model elements to fit within the prescriptive modelling framework proved to be a chal-
lenge. The different domains of application was also a challenge and how to categorize
them, as well as the Agile practices and tools used.

Criticism can also be applied to the source of the research literature. The researched lit-
erature used for discussing the research results contained forty (40) articles that were ex-
cluded by the methodological inclusion criteria in the first part of the bibliogprahic search.
The books listed in Chapter 4.1.3 that were used as the main literary sources for the back-
ground research done in preparation to conducting the research, contain works from pop-
ular and authoritative writers, such as Crispin, Cohn and Adzic that have close connection
to the Agile Testing movement.

6.3 Future research

Future research should be directed towards the frequency of use of the evaluated test au-
tomation models and how to efficiently evaluate and characterize them. Information about
the real-life usage of the discussed models and their implications should be researched.
Quantifiable research data about the used testing tools and Agile practices should be col-
lected and analyzed. This means increasing the sample size and the number of used bib-
liographic databases.

102

REFERENCES

Acuña, S., de Antonio, A., Ferre, X., López, M. & Maté, L. (2001). The software pro-
cess: Modelling, evaluation and improvement.

Adzic, G. (2011). Specification by Example. Manning Publications. 296 p.

Beck, K. et al. (2001). Manifesto for Agile Software Development. Available: http://ag-
ilemanifesto.org/

Chandler, D. & Munday, R. (2016). A Dictionary of Social Media. Oxford University
Press.

Cohn, M. (2006). Agile Estimating & Planning. Pearson Education. 330 p.

Cohn, M. (2009). The Forgotten Layer of the Test Automation Pyramid. Mountain Goat
Software. Available: https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-
of-the-test-automation-pyramid

Cohn, M. (2017). Scrum Master. Mountain Goat Software. Available:
https://www.mountaingoatsoftware.com/agile/scrum/roles/scrummaster

Crispin, L. & Gregory, J. (2009). Agile Testing: a Practical guide for testers and Agile
teams. Addison-Wesley, 533 p.

DO-178B. (1992). Software Considerations in Airborne Systems and Equipment Certi-
fication. RTCA SC-167 & EUROCAE WG-12.

Duignan, J. (2016). A Dictionary of Business Research Methods. Oxford University
Press.

Fink, A. (2014). Conducting Research Literature Reviews: From the Internet to Paper,
Fourth Edition. University of California, Langley Research Institute.

Fowler, M. (2013). Given-When-Then. Accessed 14.10.2017. Available: https://martin-
fowler.com/bliki/GivenWhenThen.html

Gärtner, M. (2013). ATTD By Example. Addison-Wesley, 211 p.

Gregory, J. & Crispin, L. (2015). More Agile Testing: Learning journeys for whole
teams. Addison-Wesley, 486 p.

Hendrickson, E. (2004). Agility for Testers. Pacific Northwest Software Quality Con-
ference, 15 p.

103

IEEE Xplore, IEEE. (2017). Available: https://www.ieee.org/publications_stand-
ards/publications/periodicals/journals_magazines.html

ISTQB Glossary. (2016). Test level. Available: http://glos-
sary.istqb.org/search/test%20level

Kusserow, A. & Groppe, S. (2014). Getting indexed by Bibliographic Databases in the
Area of Computer Science. Open Journal of Web Technologies (OJWT). Volume 1, Is-
sue 2. Institute of Information Systems (IFIS), University of Lübeck.

Leankit. (2017). What is Kanban?. Accessed 18.10.2017. Available:
https://leankit.com/learn/kanban/what-is-kanban/

Marick, B. (2003). Agile testing matrix. Available: http://www.exampler.com/old-
blog/2003/08/22/#agile-testing-project-2

Mitchell, J. L. & Black, R. (2015). Advanced Software Testing. Vol. 3. Second Edition.
Rocky Nook, 24-26.

Ottosen, Gitte. (2016). Agile from a Testers Perspective. Capgemini Sogeti Danmark.
73 p.

Pichler, R. (2010). Agile Product Management with Scrum. Addison-Wesley, 133 p.

ScienceDirect. (2017). Browse all titles. Elsevier Inc. Available: https://www.sciencedi-
rect.com/science/journals/all

Scopus. (2017). Content Coverage Guide. Elsevier Inc. Available: https://www.else-
vier.com/__data/assets/pdf_file/0007/69451/0597-Scopus-Content-Coverage-Guide-
US-LETTER-v4-HI-singles-no-ticks.pdf

Siddaway, A. (2014). What is a systematic review and how do I do one?. Available:
https://www.stir.ac.uk/media/schools/management/documents/centregradre-
search/How%20to%20do%20a%20systematic%20literature%20re-
view%20and%20meta-analysis.pdf

Sogeti Nederland B. V. (2006). TMap Next: for result-driven testing. 752 p.

SpringerLink. (2017). Front Page. Springer Publishing. Available:
https://link.springer.com/

Tampere University of Technology Library. (2017). Andor scientific search engine. Ac-
cessed 12.12.2017. Available: http://www.tut.fi/fi/kirjasto/ajankohtaista/andor-kaikkien-
tiedonjanoisten-sankari-x158988c3

104

The National Center for Biotechnology Information. (2016). How to Conduct a System-
atic Review: A Narrative Literature Review. Cureus. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137994/

Trawick, B. W. & McEntyre, J. R. (2003). Bibliographic databases. National Center for
Biotechnology Information, National Library of Medicine, National Institutes of Health,
Bethesda.

University of Edinburgh. (2013). Systematic reviews and meta-analyses: a step-by-step
guide. Centre for Cognitive Ageing and Cognitive Epidemiology. Accessed 20.12.2017.
Available: http://www.ccace.ed.ac.uk/research/software-resources/systematic-reviews-
and-meta-analyses

Wells, D. (2000). The Rules of Extreme Programming. Accessed 27.11.2017. Availa-
ble: http://www.extremeprogramming.org/rules.html

APPENDIX A: List of research articles

1. Baseer, K. K., A Rama, M. R., & C, S. B. (2015). A systematic survey on waterfall
vs. agile vs. lean process paradigms. I-Manager's Journal on Software Engineer-
ing, 9(3), 34–59.

2. Berlowski, J. A., Chrusciel, P. A., Kasprzyk, M. A., Konaniec, I. A. & Jureczko,
M. B. (2016). Highly automated agile testing process: An industrial case study.
E-Informatica Software Engineering Journal, 10(1), 69–87.

3. Bose, L. & Thakur, S. (2014). GRAFT: Generic & Reusable Automation Frame-
work for agile testing. 5th International Conference - Confluence the next gener-
ation Information Technology Summit, Noida, 2014, 761–766.

4. Collins, E. F. & de Lucena, V. F. (2012). Software Test Automation practices in
agile development environment: An industry experience report. 7th International
Workshop on Automation of Software Test (AST), Zurich, 2012, 57–63.

5. Damm, L. & Lundberg, L. (2006). Results from introducing component-level test
automation and Test-Driven Development. Journal of Systems and Software,
79(7), 1001–1014.

6. Day, P. (2014). n-Tiered Test Automation Architecture for Agile Software Sys-
tems. Procedia Computer Science, 28(2014), 332–339.

7. Elallaoui, M., Nafil, K., Touahni, R. & Messoussi, R. (2016). Automated Model
Driven Testing Using AndroMDA and UML2 Testing Profile in Scrum Process.
Procedia Computer Science, 83(2016), 221–228.

8. Engström, E. & Runeson, P. (2011). Software product line testing – A systematic
mapping study. Information and Software Technology, 53(1), 2–13.

9. Fawad, M., Ghani, K., Shafi, M., Khan, I. A., Khattak, M. I., & Ullah, N. 2015.
Assessment of quality assurance practices in Pakistani software industry. Tech-
nical Journal, 20(2), 89–94.

10. Garousi, V. & Mäntylä, M.V. (2016). When and what to automate in software
testing? A multi-vocal literature review. Information and Software Technology,
76, 92–117.

11. Garousi, V., & Pfahl, D. (2016). When to automate software testing? A decision-
support approach based on process simulation. Journal of Software: Evolution and
Process, 28, 272–285.

12. Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P., Yaniv, Z., Cleary, K., Kokoori,
S., Muffih, B. & Heidenreich, J. (2011). Agile methods for open source safety-
critical software. Software: Practice and Experience, 41(9), 945–962.

13. Gupta, R. K., Manikreddy, P. & GV, A. (2016). Challenges in Adapting Agile
Testing in a Legacy Product. IEEE 11th International Conference on Global Soft-
ware Engineering (ICGSE), Irvine, CA, 2016, 104–108.

14. Hametner, R., Winkler, D. & Zoitl, A. (2012). Agile testing concepts based on
keyword-driven testing for industrial automation systems. IECON 2012 - 38th

Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Can-
ada.

15. Hushalini, S., Randunu, R. P. A. A., Maddumahewa, R. M., & Manawadu, C. D.
(2014). Software test automation in practice: Empirical study from Sri lanka.
Compusoft, 3(11), 1232–1237.

16. Itkonen, J. & Mäntylä, M.V. (2014). Are test cases needed? Replicated compari-
son between exploratory and test-case-based software testing. Empirical Software
Engineering, 19(2), 303–342.

17. Jigeesh, N., Chakraborty, S., & Chakravorty, T. (2015). An empirical study of
agile testing attributes for higher customer satisfaction in IT projects in india. In-
ternational Journal of Business and Information, 10(3), 365–386.

18. Kandil, P., Moussa, S., & Badr, N. (2017). Cluster-based test cases prioritization
and selection technique for agile regression testing. Journal of Software: Evolu-
tion and Process, 29(6), e1794.

19. Kasurinen, J., Taipale, O., & Smolander, K. (2010). Software test automation in
practice: Empirical observations. Advances in Software Engineering, 2010(4).

20. Kim E., Na J., Ryoo S. (2009). Developing a Test Automation Framework for
Agile Development and Testing. Agile Processes in Software Engineering and
Extreme Programming, Lecture Notes in Business Information Processing,
Springer, Berlin, Heidelberg.

21. Kirmani, M. (2017). Agile methods for mobile application development: A com-
parative analysis. International Journal of Advanced Research in Computer Sci-
ence, 8(5).

22. Korhonen, K. (2011). Evaluating the impact of agile adoption on the software
defect management practices: A case study. Software Quality Professional, 14(1),
23–33.

23. Li, N., Guo, J.a, Lei, J.b, Li, Y., Rao, C.a, Cao. (2016). Towards agile testing for
railway safety-critical software. ACM International Conference Proceeding Se-
ries, 24(18).

24. M. Polo, P. Reales, M. Piattini & C. Ebert. (2013). Test Automation. IEEE Soft-
ware, 30(1), 84–89.

25. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E. & Petersen, K. (2015). Em-
pirical Software Engineering, 20(5), 1384–1425.

26. Mariani, L., Hao, D., Subramanyan, R. & Zhy, H. (2017). Software Quality Jour-
nal, 25(3), 797–802.

27. Mugridge, R., Utting, M., & Streader, D. (2011). Evolving web-based test auto-
mation into agile business specifications, Future Internet, 3(2), 159–174.

28. Munetoh, S. & Yoshioka, N. (2013). RAILROADMAP: An Agile Security Test-
ing Framework for Web-application Development. IEEE Sixth International Con-
ference on Software Testing, Verification and Validation, Luxembourg, 491–492.

29. Nguyen, B. N., Robbins, B., Banerjee, I. & Memon, A. (2014). Automated Soft-
ware Engineering, 21(1), 65–105.

30. Nidagundi, P. & Novickis, L. (2017). Introducing Lean Canvas Model Adaptation
in the Scrum Software Testing, Procedia Computer Science, 104 (2017), 97–103.

31. Nidagundi, P., Iela, K. & Lukjanska, M. (2014). Introduction to Lean Canvas
Transformation Models and Metrics in Software Testing. Computational Methods
in Social Sciences, 4(2), 23–31.

32. Parsons, D., Lal, R., & Lange, M. (2011). Test Driven Development: Advancing
Knowledge by Conjecture and Confirmation. Future Internet, 3(4), 281–297.

33. Parsons, D., Susnjak, T. & Lange, M. (2014). Influences on regression testing
strategies in agile software development environments. Software Quality Journal,
22(4), 717–739.

34. Perkusich, M., Gorgônio, K.C., Almeida, H. & Perkusich, A. (2016). Assisting
the continuous improvement of Scrum projects using metrics and Bayesian net-
works. Journal of Software: Evolution and Process, 29(6).

35. Petersen, K. & Wohlin, C. (2011). Measuring the flow in lean software develop-
ment. Software: Practice and Experience, 41(9), 975–996.

36. Poth, A. (2016). Effectivity and economical aspects for agile quality assurance in
large enterprises. Journal of Software: Evolution and Process, 28(11), 1000–1004.

37. Prechelt, L., Schmeisky, H. & Zieris, F. (2016). Quality Experience: A Grounded
Theory of Successful Agile Projects without Dedicated Testers. IEEE/ACM 38th
International Conference on Software Engineering (ICSE), Austin, TX, 2016,
1017–1027.

38. Ramler, R. & Wolfmaier, K. (2006). Economic perspectives in test automation:
balancing automated and manual testing with opportunity cost. Proceedings of the
2006 international workshop on Automation of software test (AST '06), ACM,
New York, NY, 2006, 85–91.

39. Saleem, R. M., Qadri, S., ul Hassan, I., Bashir, R. N. & Ghafoor, Y. (2014).
Testing Automation in Agile Software Development. International Journal of In-
novation and Applied Studies, 9(2), 541–546.

40. Sfetsos, P. & Stamelos, I. (2011). Software quality and agile practices: A system-
atic literature review. Software Quality Professional, 14(1), 15–22.

41. Shim, J.-A., Kwon, H.-J., Jung, H.-J. & Hwang, M.-S. 2016. Design of acceptance
test process with the application of agile development methodology. International
Journal of Control and Automation, 9(2), 343–352.

42. Sivanandan, S. & Yogeesha, C. B. (2014). Agile development cycle: Approach to
design an effective Model Based Testing with Behaviour driven automation
framework. 20th Annual International Conference on Advanced Computing and
Communications (ADCOM), Bangalore, 2014, 22–25.

43. Sivanandan, S. (2015). Fail fast - fail often: Enhancing agile methodology using
dynamic regression, code bisector and code quality in Continuous Integration
(CI). International Journal of Advanced Computer Research, 5(19), 220–224.

44. Thopate, H. & Kachewar, R. R. (2012). Chameleon model based automation
framework design for testing in agile environments. CSI Sixth International Con-
ference on Software Engineering (CONSEG), Indore, 1–4.

45. Tort, A., Olivé, A. & Sancho, M-R. (2011). An approach to test-driven develop-
ment of conceptual schemas. Data & Knowledge Engineering, 70(12), 1088–
1111.

46. Wang, F., Wang, Y. W., & Li, J. K. (2014). Agile software development using an
automatic testing framework. Applied Mechanics and Materials, 543-547, 3449–
3453.

47. Watkins, J. (2009). Agile Testing: How to Succeed in an Extreme Testing Envi-
ronment. Cambridge University Press.

48. Woo, J., Ivezic, N. & Cho, H. (2012). Agile test framework for business-to-busi-
ness interoperability. Information Systems Frontiers, 14(3), 789–808.

49. Wu, Z. Q., Li, J. Z., & Liao, Z. Z. (2013). Keyword driven automation test. Ap-
plied Mechanics and Materials, 427-429, 652–655.

50. Zhu, H., Wong, E. & Belli, F. (2008). Advancing test automation technology to
meet the challenges of model-driven software development: report on the 3rd
workshop on automation of software test. Proceeding ICSE Companion '08 Com-
panion of the 30th international conference on Software engineering, 1049–1050.

