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The number of networked devices will grow exponentially in the coming years. It is
estimated that up to 50 billion devices will be connected to the internet by 2020 and
most of the growth comes from Internet of Things (IoT). Along with growth, new
IoT devices will use network in more diverse ways and new specialized networking
technologies are needed to fulfill new requirements.

Future networks are running more and more in programmable cloud environments
which enable scalable provision of connections to new diverse devices and users.
Though there are good estimations about the future, the practical solutions and
standards are open.

This thesis will implement a tool called LoadGenerator to model large future
networks. LoadGenerator uses LTE network emulation software, thus it can create
an emulated 3GPP compatible network which can be connected to external LTE
entities. LoadGenerator scales horizontally in cloud environment and a large scale
cellular IoT network is presented as a case study. This proves that cloud environ-
ments can be used to run large scale network emulations with decent performance.

The modeling of future networks produces information which can be used in
today’s development work. Practical tests with a real size emulated network gives
the possibility to try out new technologies which could solve the future problems.
To test new scalable products, scalable testing methods are needed.

Telecommunications is developing fast and there are new technologies to keep
eye on so that updated research information is available. Technologies, like IoT and
cloud, are driving the development towards more programmable world. To assist
with the change, this thesis presents network emulation as a tool, which combines
the best features from software and hardware for more realistic testing also in large
scale.
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Verkotettujen laitteiden lukumäärä tulee kasvamaan räjähdysmäisesti tulevina vuo-
sina. On arvioitu, että jopa 50 miljardia laitetta on yhdistettynä internetiin vuonna
2020 ja suurin osa kasvusta tulee esineiden internetistä (IoT). Kasvun lisäksi uudet
IoT-laitteet käyttävät verkkoja hyvin moninaisiin tarkoituksiin, jolloin tarvitaan
myös uusia erikoistuneita verkkotekniikoita vastaamaan muuttuneita tarpeita.

Tulevaisuuden verkot toimivat yhä enemmän ohjelmoitavissa pilviympäristöissä,
mikä antaa mahdollisuuden tuottaa yhteydet kasvavalle ja moninaistuvalle käyt-
täjäkunnalle. Tulevaisuudesta siis tiedetään melko paljon, mutta käytännön ratkai-
suja ei ole vielä toteutettu eikä standardoitu.

Tässä diplomityössä toteutetaan kuormageneraattori, LoadGenerator, jota käyte-
tään tulevaisuuden verkkojen mallintamiseen. LoadGenerator hyödyntää LTE-verk-
koemulaattoria 3GPP-yhteensopivan verkon tai sen osan luomiseen, ja se voidaan
kytkeä ulkoisiin LTE-elementteihin. Kuormageneraattori skaalautuu horisontaali-
sesti pilviympäristössä ja esimerkkinä mallinnetaan matkapuhelinverkkoa sekä suur-
ta määrää IoT-laitteita. Tämä osoittaa, että pilvessä on mahdollista suorittaa suuria
verkkoemulaatioita kohtuullisella suorituskyvyllä.

Tulevaisuuden verkkojen mallintaminen tuottaa tietoa, jota voidaan hyödyn-
tää tämän päivän kehitystyössä. Käytännön kokeilut aidon kokoisessa emuloidussa
verkossa antavat mahdollisuuden testata uusia tekniikoita, joilla tulevaisuuden on-
gelmia pyritään ratkaisemaan. Uusien skaalautuvien tuotteiden testaamiseen tarvi-
taan skaalautuvia testausmenetelmiä.

Tietoliikenteen kehitys on nopeaa ja kehitystä on seurattava, jotta uusista teknolo-
gioista on saatavilla ajantasaista tietoa. Uudet teknologiat, kuten IoT ja pilvet,
muuttavat maailmaa entistä enemmän ohjelmoitavaksi. Muutoksen tukemiseksi
tämä diplomityö esittelee verkkoemulaation työkaluna, joka yhdistää ohjelmistojen
ja laitteiden parhaat puolet mahdollistaen realistisemman testaamisen myös isossa
mittakaavassa.
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1. INTRODUCTION

The number of networked devices will grow exponentially in the future and num-
bers as high as 50 billion networked devices by 2020 has been estimated [1]. New
technologies have to be implemented to handle the growing network load and the
different needs of the new devices. A scalable testbed, where large and realistic
future networking scenarios could be created and studied, would be useful for inno-
vation and implementation. First, the future must be estimated so that it can be
turned into a system that is able to emulate it. What will be the main technologies
that will power the future networks?

IBM study shows that cloud computing and services, mobile solutions, and In-
ternet of Things (IoT) are the technologies that C-suite Officers think that are
important in the near future. Results in Figure 1.1 clearly show that these three
technologies rise above others [2], and they all are related to telecommunications.

Figure 1.1: IBM study shows the important technologies in the near future according
the C-suite Officers [2].

It is clear that the expectations for future networking are high, but it is unclear
what actually will happen and when. The current state could be described that the
information and communications technology industry is investing large sums to new
technologies, e.g., IoT [3; 4], but the mass adoption is far away [5]. Though the
growth and time estimations vary between the sources, it is clear that fundamental
changes are to become with the future networks.

To narrow the thesis topic more to a practical and implementable level, Long Term
Evolution (LTE) is selected to cover the mobility aspect. The recent advancements
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in standardization show that LTE based technologies will be used for cellular IoT
[6]. Cloud is the environment for future networks [7; 8], where also massive amount
of programmable things can be ran. And last but not the least, IoT contains massive
amount of different networked devices with a need for new types of connectivity.

These three technologies are combined and studied in this thesis to create a sys-
tem that can be used to study future networks. The approach in this thesis is
straightforward: A large emulated network consisting of millions of mobile devices
and thousands of network elements is created in cloud. This system is named Load-
Generator and its main target usage is to represent part of a network which can be
connected to real networks for load creation.

System like LoadGenerator has not been built before, thus also cloud environ-
ment has to be studied and configured to support large scale network emulation.
Nokia’s LTE Emulators software has not been scaled out in cloud environments as
far as LoadGenerator targets are. These are the main open questions which need
to be solved for successful implementation to reach the goal for large scale network
emulation with LTE Emulators.

When the environment and LoadGenerator are set up, the research target is
to emulate IoT devices and IoT optimized networks that can be measured and
visualized.

1.1 Goal and methods

The goal for LoadGenerator is to generate events and traffic against real networks
and elements. This can be achieved by using LTE Emulators developed by Nokia for
Third Generation Partnership Project (3GPP) compatibility and open-source cloud
environment for scalability. The system is a combination of emulated LTE elements,
users and applications running in cloud. It can be connected and combined to any
3GPP compliant LTE element(s).

LoadGenerator can be compared to a large operator network and it can be used
in product testing and verification. Also, demo creation is a key element to show
and verify that technologies and products are working as promised. The system is
not limited to IoT testing; but in this thesis IoT can be seen as an example use-case
for the system.

Network emulation is a technique which combines the best sides of simulation
and real-life testing. Software defined emulation running on top a of real working
network provides controllable testing environment which is closer to real-life than
pure simulation. In simulation everything is separated from real world which causes
inaccuracy which can accumulate in large setups. In emulation real physical devices
are used to keep the system closer to the real-world resulting more accurate results.
[9].
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Emulations are typically running in real-time and system functionality can be
observed to demonstrate and study end-to-end (E2E) operation. Network emulation
suits also very large test setups because separated elements can be multiplied and
networked easily like in real world networking. These features are well suited for
LoadGenerator and network emulation was chosen to be the modeling technique.

Figure 1.2: The goal for LoadGenerator is to present real like networks in a emulated
test world running in cloud.

Scalable and fully programmable system enables a platform that can be used
in large scale state-of-the-art and proof-of-concept testing. The main idea behind
building the setup is to choose components and configurations so that goals will be
met with existing open source components when available. This will speed up the
development when less custom software implementations are used.

Some benefits in the emulated setup is the possibility to change LTE functions and
settings freely without physical limitations. This enables agile and versatile testing.
On the other hand, creating large network simulation or emulation is challenging
without making any simplifications from real network. However, network emulation
uses the full network protocol stack and thus inaccuracies are less likely compared
to pure simulation. It can also reveal problems hidden in a real environment, like
regular real life testing.

Work methods will focus on practical planning, developing and implementing
the system. Theory from LTE, IoT and network simulation and emulation is also
presented. Many of the solutions introduced are not optimal because the system
will be a first of its kind, i.e., proof-of-concept, and product quality system is not a
target. In overall, building a telecommunications grade cloud is a challenging topic.
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Many of the components used in LoadGenerator are working in a cloud but
are not designed for cloud environments. This thesis is not a detailed technical
documentation about the system but it provides an overview of the components
used and shows some example tests and results that the system can achieve mainly
from the viewpoint of IoT. Another viewpoint for the thesis is to present some
general problems related to telecommunications cloud.

1.2 Thesis structure

Thesis can divided into three parts which are the protocols, theory, and definitions;
system creation and installation; and the actual testing.

First chapters will introduce the protocols and entities which enable mobile LTE
networking. LTE network provides connectivity for wireless mobile devices around
the globe. Nokia’s LTE Emulators is a software family that can emulate LTE net-
work elements and is one of the main software components in this work. In this
thesis the focus is on IP connectivity over LTE for IoT devices.

After LTE and IoT have been introduced, the thesis continues with a view to the
building blocks of the system. LoadGenerator’s environment consists of OpenStack
cloud which is running on regular server and network hardware. Orchestration of
the setup will be developed and introduced, and it is used for easy installation. In
addition, hierarchical and horizontally scalable system built from separated compo-
nents will need a control infrastructure which is created and used to carry out test
scenarios.

After the basic installation of LoadGenerator has been developed and deployed,
tests can be run. LoadGenerator can be configured to test all kind of cases and
settings even outside of the LTE specifications. The downside of the system is the
complexity, but the customizable system can be developed further to meet the new
goals and scenarios.

This thesis does not present exact results from the point of LTE optimization for
IoT. The created system can be tuned and optimized for performance testing but
in the first phase, and in this thesis, the main idea is to explore and distribute this
new concept of using large scale network emulation.

LoadGenerator is a practical implementation in a cloud with development soft-
ware versions, thus it is hard to rule out external causes affecting the system per-
formance. In short, the results are not comparable to real systems and production
elements.
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2. LONG TERM EVOLUTION (LTE)

LTE is the fourth generation (4G) of world wide cellular network. It is a successor
in a long line of network engineering concepts including Global System for Mo-
bile Communications (2G GSM) and Universal Mobile Telecommunications System
(3G UTMS). LTE is a high speed pure packet access network which has evolved
from UMTS but large differences exist between the generations. In this thesis LTE
network will be running with only the elements that are needed for the basic IP
connectivity. More comprehensive description for LTE can be found from many
books, for example [10].

The LTE standardization comes from collaboration organization called 3GPP in
form of Releases. The first version of LTE was frozen in Release 8 in 2008. As of
May 2016 Releases up to 13 are frozen and Release 14 is under development. Frozen
Releases mean that the list of items is decided but the details of some items are not
yet finished.

Releases are being worked on parallel so that there are clear and stable milestones
for developers to work on. Thus, the actual products and implementations based
on the standards can be developed while last details are worked on and finished.
Complete list of Releases and their statuses is available from 3GPP [11].

Figure 2.1: Explanations for the symbols and colors in use. Dark blue will be used
for real elements and turquoise for emulated elements.

Before going into detailed networking figures, the figure notation is explained
in Figure 2.1. These symbols and colors will be used consistently throughout this
thesis.
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2.1 Architecture

The main target in LTE is to provide high speed packet access for subscribers. The
basic architecture of LTE is divided to two bigger parts which are Radio Access
Network (RAN) and Evolved Packet Core (EPC). LTE RAN is often called with
Evolved Universal Terrestrial Radio Access Network (E-UTRAN) to highlight the
difference between the RAN generations.

To be precise, the term LTE refers to a radio technology, but it is often used
to describe the whole system. The terms System Architecture Evolved (SAE) or
Evolved Packet System (EPS) are better when radio is not in the focus. Nevertheless,
this inaccuracy exists also in the name of LTE Emulators, and also this thesis uses
term LTE to describe the whole system. In overall, all of these terms are pointing
to same architectural compatibility with a bit different viewpoint.

In this work the focus is more on EPC. In pure LTE network, there are the
following minimal elements to provide IP connectivity for the subscriber: Evolved
NodeB (ENB) that acts as a base station, User Equipment (UE) which presents the
end-user device, Mobility Management Entity (MME) which handles most of the
control signaling work in the network, Home Subscriber Server (HSS) for authenti-
cation and subscriber database, Serving and Packet Data Network Gateway (SGW
and PGW) for IP and service access. These LTE elements are drawn in Figure 2.2.

Figure 2.2: Minimal LTE architecture elements and interfaces with two UEs and
ENBs. The network is scaled up by adding more RAN and EPC elements.

Real LTE networks are more complex because they are supporting connections
to previous cellular generations and provide multiple services for the end-users, op-
erators, and hardware vendors. The connection to previous cellular generations
is needed to accomplish handovers between radio access technologies (RAT) for ex-
tended coverage and services. For example, Voice over LTE (VoLTE) is standardized
but still voice calls are mostly going through GSM and UMTS. These connections
and extra elements are not drawn or explained further here but, in short, they are
similar to any other elements in the LTE network. They have standardized functions
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and interfaces, and they can be connected also to LoadGenerator if needed.

2.2 Interfaces and protocols

The following section will introduce the interfaces and protocols connecting LTE
elements in more detail. Understanding these protocols is important because we
are emulating these interfaces and protocols. Resolving network issues in LTE is
quite straightforward when line conversation can be compared to specifications and
standards.

Table 2.1: LTE interfaces that are used to provide basic connectivity for UEs.
ENB MME HSS PGW

UE Uu - - -
ENB X2 S1c - -
MME S1c S10 S6a -
SGW S1u S11 - S5

LTE entities are connected to each other with special interfaces which are listed
in Table 2.1. Typically, S1c is used to connect ENB to MME and S1u to SGW, S11
connects MME and SGW, S6a is between HSS and MME, S5 between the PGW
and SGW, and X2 is used between ENBs. These interfaces are also shown on Figure
2.2. Interfaces connecting ENBs and EPC elements are typically running on top of
a fixed IP network.

Traffic in LTE networks is divided to user and control plane (U-plane and C-
plane). U-plane carries user packet data through the LTE network. C-plane is used
in signaling between the entities to enable connectivity around the globe for mobile
devices. Signaling means that the elements have to instruct each other to create,
modify and delete connections in the network. C-plane and U-plane are separated
so that U-plane has short path through the network for lower latency and better
throughput.

Stream Control Transmission Protocol (SCTP) is a transport layer protocol and
it is designed to carry Public Switched Telephone Network (PSTN) signaling [12].
It provides reliable transfer like TCP (Transmission Control Protocol) [13] but it
is message oriented like User Datagram Protocol (UDP) [14]. It more resilient,
secure and redundant than TCP and UDP. Thus, SCTP is used with LTE C-plane
messages, e.g., on S1c and S6a interfaces where large amount of signaling messages
have to be exchanged reliably.

LTE U-plane is transported with GPRS Tunneling Protocol (GTP) which is run-
ning on top of UDP. GTP is divided to GTPv1-U [15] on U-plane and GTPv2-C [16]
on C-plane. GTPv2-C is used on S11 interface where MME and SGW are changing
messages. GTPv1-U is used on S1u and S5 to encapsulate the end-user packet data.
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Figure 2.3: LTE user plane protocol stack with end-to-end connection.

Diameter is used on S6a between MME and HSS [17]. It is an authentication,
authorization and accounting protocol which are the same functions that HSS is
part of. HSS acts as a server for MME.

X2 protocol connects ENBs to neighboring ENBs. This enables handovers be-
tween the base stations without interruptions and also data exchange between ENBs.
Uu interface is the physical radio interface between ENB and UE. Physical layer (L1)
air interface is not emulated in LTE Emulators but air interface related parameters
can be manually changed.

2.3 Signaling and parameters

Now when interfaces and protocols of LTE are known some signaling scenarios are
presented to familiarize how the elements communicate. These signaling cases are
also used in the emulated system.

Before the UE can attach (LTE term for connect) to the network all the elements
and interfaces have to be up on the network side. MME initiates S6a connection
to HSS. ENB initiates S1c connection to MME. Also large amount of configuration
parameters have to match. 3GPP networks have always been strict on security and
authentication so multiple identification parameters and settings are in use.

Figure 2.4 presents the identification codes in LTE. It also shows how they are
used and what entity is provisioning them. Some of the codes are provisioned by the
elements dynamically, whereas others are more static to identify logical divisions.
These IDs also define the theoretical limits for scalability because most of them have
fixed length. For example, MME-S1AP-UE-ID and TEID are 32 bit integers. Thus,
the maximum number of sessions, that MME and GW can theoretically support, is
232 which is approx. 4,3 billion which is more than any real system can support.

However, not all parameters have so much capacity. For example, Aggregate
Maximum Bit Rate is a 32 bit value and has a resolution of 1 bit/s [19] meaning
that the maximum bit rate is 4,3 Gbit/s, whereas LTE-Advanced has downlink rates
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Figure 2.4: LTE uses multiple identifiers to identify elements locally and globally.
Modified from [18].

up to 3 Gbit/s [20].
Mobile Network Code (MNC) and Mobile Country Code (MCC) will together

form the Public Land Mobile Network (PLMN) code. This is also drawn in Figure
2.4, and PLML is used to separate different countries and operators from each others.
On lower level, Tracking Area ID (TAI), which is formed from PLMN and Tracking
Area Code (TAC), is used to physically map the location of the UE globally so that
the network can reach the UE when needed. If these codes do not match between
LTE entities, connections wont be accepted. In other words, these codes define the
division to different networks.

International Mobile Subscription Identity (IMSI) will identify every subscriber
in 3GPP network. IMSI consists of PLMN code and is filled to the length of 15
digits. Local codes are used after the connection has been made to hide the global
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identity and prevent tracking. Temporary Mobile Subscriber Identity (TMSI) works
in the area controlled by MME. Globally Unique Temporary UE Identity (GUTI)
contains the PLMN code, MME code and M-TMSI to identify the MME and UE
globally without revealing the original IMSI.

Initial attach procedure for UE is in Figure 2.5. Example corresponds to the em-
ulated case which is the minimum required to set up the connections. Prerequisites
are that MME and HSS have Diameter connection and ENB and MME have set up
S1. From client-server point of view MME has to know HSS address and ENB has
to know MME address. In real radio system UE has to find the ENB radio signal
but this phase is skipped in this thesis. Also SGW and PGW have to be available
for upcoming connections.

In the following scenario it is supposed that UE is not existing in the network,
i.e., UE has no GUTI and IMSI is detached in the network, so no extra handovers
or updates are made during the attach. In real life, UE is mobile and handovers
are used to switch the connection to on top of the entities which can serve the UE
best. Also roaming can be used to gain access via different operators but these
scenarios are not explained here. Also the detailed operations inside entities are not
explained.

Figure 2.5: LTE signaling in clean and successful attach.

In Figure 2.5 UE is trying to attach to the network with Packet Data Network
(PDN) access. There are no sessions or bearers for the UE in the network, thus
the full path has to signaled "open". This requires co-operation on multiple entities
so that all handshakes are made securely. When parameters are not correct or no
resources are available, the attach will fail.
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First the UE connects to ENB which terminates the Uu interface, i.e., ENB is
the endpoint for the protocol. ENB gathers the necessary information from the UE
requests and starts the attach procedure to EPC. Initial UE message, Attach request
and PDN connectivity request are sent from ENB to MME.

Based on the requests MME sends an Authentication Information Request to
HSS to confirm that the UE is allowed to connect. If HSS sends an positive Authen-
tication Information Response, MME sends Authentication request to ENB which
passes it to the UE and UE replies with Authentication Response. MME verifies the
response and sends Security Mode Command to UE and UE replies Security Mode
Completed. MME updates the UE location to HSS which gives more subscriber
details in response. If failure happens at any point MME sends Detach request to
elements involved and the UE will be detached from the network.

When previous steps have been completed, there is enough information to open
the GTP sessions to GWs. The GW information can be retrieved from multiple
places. UE can request for specific Access Point Name (APN) in the initial attach
or HSS can provide the APN value. MME then converts the APN name typically
via Domain Name System (DNS) query to an address where the SGW and PGW
are located. MME sends GTP Create Session Request to SGW via S11 interface and
based on the request SGW opens the connection and retrieves the UE IP address
from PGW.

If GTP creation is successful in SGW and PGW, SGW responds to MME with
Create Session Response which includes the details that are needed to finish PDN
connection set-up. MME passes these details to ENB and UE which reconfigure
themselves according the details. UE will answer with complete messages which
are passed to MME. MME then request to update the bearer on SGW with Modify
Bearer Request and SGW replies with Modify Bearer Response. U-plane connection
is established and UE has an IP address and connectivity trough ENB, SGW and
PGW to external IP networks and other systems.

Figure 2.6: Wireshark packet capture from MME showing successful UE attach.

Figure 2.6 shows a real packet capture from MME ports handling the connections
to HSS, ENB and SGW. Note that the entities which do not have direct connection
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to MME are not present in this capture. In other words, they are communicating
through other entities, e.g., ENB is acting on behalf of an UE. Packet captures
are useful in network debugging because the conversation between the elements is
strictly standardized and readable when protocols are familiar. In short, MME
keeps track about connection states and makes the required operations to keep the
network aligned.

Detach is basically the reverse attach. Some element in the network initiates the
detach procedure, typically UE sends a detach request which is then forwarded to
MME. MME then signals all the elements relevant that the created connection will
be deleted by sending Delete Requests for sessions that were created for that specific
connection.

Handovers between ENBs and idle stages are another typical scenario. In han-
dover situation mobile device has moved so that it has better connectivity through
some other ENB or some other core entity. Handovers enable "jumping" from el-
ement to another without connectivity losses. In real world handovers are mainly
based on monitoring radio signal powers and error ratios to find the best cell for the
UE. ENBs then have certain parameters, like tracking area IDs, which can be used
to divide the physical network into logical areas which are served by specified core
entity.

Idle stages are controlled by ENB which sets UE to idle if it has not sent data for
a while. In idle stage no U-plane data can be transferred but the connection can be
activated by paging from network side or by request from the UE itself. Paging is
technique where MME sends signal via ENB to UE that network has something for
the UE. In both cases, UE then sends Service Request to re-activate connection. UE
locations in the network are periodically updated also during idle and the procedure
is called Tracking Area Update (TAU).

This section introduced some basic LTE signaling. It can be seen that signaling
in current cellular networks is complicated. It has many specific features which are
not needed for all devices, especially from IoT point of view. This makes LTE a
complicated system where a lot of resources are needed to keep the network running.
Overhead signaling can use more bandwidth than the payload itself if low data rates
are used. On the other hand, U-plane is quite simple and provides good performance.
Thus, IP networks and client applications can be used more extensively than in
previous cellular generations.

2.4 Simulation and emulation

Network simulations can be used in many situations from research to network debug-
ging. Telecommunication suits simulations in a way that the packets and protocols
are well defined in specifications, so they can also be simulated by following the
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same details. In other words, network simulation and real life are typically quite
close to each other and many times the algorithms found in simulations can also be
implemented in real life.

Another thing that helps with simulations is that the network problems are al-
ready divided into smaller problems – into multiple protocols and layers which can
be examined also separately. On the other hand, simulating the full stack becomes
more and more problematic when layers are added, and it may not be enough to
study only one part of the system. The end-to-end functionality is important for
the network user, not a single protocol.

Typically simulations are mathematical models of real system and thus they are
simplified from the real world. The benefit in simulation is that it can be run on a
single PC without specific hardware - pure calculations without external elements.
Typically discrete-event simulation (DES) is used in network modeling. [9]

In DES, events occur in a logical time order which differs from real networks
where delays cause events happen at random times. Time, and thus propagation, is
hard to simulate realistically which can lead to too optimal solutions. Some real-life
factors may not exists or they can differ somehow in the simulation. This leads to
inaccuracy and possible failures might appear in real implementation which did not
exist in the simulation. [9]

Ns (open source) and OPNET (proprietary) are examples of software used in
network simulations. They both support wide range of protocols and can be used
to create simulations with detailed configurations. In this thesis the networking
stack is customized and quite complicated because LTE networking is running on
top of cloud networking. This leads to a situation where accurate simulation is not
available and it would be very hard to implement.

Another issue with pure simulation is often the lack of real time execution and
external connectivity. These features are are needed if real networking elements
are connected to the test setup. The goal in this thesis is to create load for real
elements, so plain simulation software is not enough. LoadGenerator has to act like
real elements would do.

Emulation inherits features from simulation and real world testing. In network
emulation, some of the real devices are replaced with customizable virtual versions
which have the full networking stack available, and they are typically running in
real time. Simulation of time is not a problem when real network and propagation
is used.

Emulation is also preferred on very large setups. Simulation algorithms have
often difficulties to scale above certain point. In network emulation every element of
the network can be existing in its own operational unit which can be run in parallel
for scaling just like more ENBs and UEs can be added to a real network. This
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means that emulation can scale further than simulation. Thus, accurate results can
be gathered also from large test setups.

The targeted system in this thesis is clearly not only a simulation. The system will
be connected to a real network and all the real-like networking elements are existing
in a form of virtualized functions. They all have full connectivity and real time
execution, but the system also has features like simulators, e.g., the environment
can be modified and configured quite freely.

With these definitions and properties emulation is better suited for LoadGener-
ator than simulation. The term emulator also matches with the features of LTE
Emulators, like the name suggests.

Both terms, simulation and emulation, are used in this thesis and it easy to mix
them. The preferred term can depend from the viewpoint. In LoadGenerator the
elements are emulated and in a big picture the emulated setup creates an artificial
testbed. None of the elements can tell the difference if some part of the setup is
real or emulated. The generation starts from real applications and flows through a
3GPP compatible LTE network in real time.

What happens on top of LoadGenerator is another case. Network user is often a
unique human whose behavior has to simulated with some model: what applications
will be used and how much traffic will be generated, is left open. Basically nothing
prevents installing a real use-case application, e.g., some sensor software with ran-
dom input data to send it through the system to test how the core handles the load.
In short, devices can be emulated but human behavior is simulated.

LoadGenerator’s target is to emulate LTE elements and create networks which
can be connected like any other LTE network or element(s). This ability can be
used to create a large network which then can be studied. The end-user application
can be run on top of regular network stack meaning that multiple test scenarios can
be created on top of LoadGenerator.

2.5 LTE Emulators at Nokia

LTE Emulators (EMUs) is a Nokia internal tool for emulating LTE entities. Emu-
lators family covers all LTE entities from UE to SGi interface. Thus, emulated UE
can be connected to the Internet through fully emulated LTE network and there is
a support for both C-plane and U-plane traffic. The emulators are 3GPP compliant
but the features differ from real entities used in production. The emulator entities
are named like they are specified in 3GPP standards.

EMUs support low level signal tracing and macros for monitoring and creating
events. These architectural features will limit how many connections and how much
throughput EMU can support. Also resource usage can be high. Network expansion
can be done by adding more parallel elements which can be mixed with real elements
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to support larger loads.
Another limitation is that Layer 1 air interface is not emulated. However, it is

simplified so that normal EPC related signaling is working and U-plane traffic can
be transferred. EMUs also include performance test variants where functions are
optimized to generate large amount of specialized load. Letters PT in the entity
name stand for performance test variant.

EMUs operation is not explained in detail in this thesis. In short, EMUs can
perform the same functions as real LTE entities with the limitations mentioned. It
can be used to replace any slice of LTE network. This means that the whole network
can be created fully emulated and RAN side can be horizontally scaled when real
EPC is used.

2.6 LTE Emulators in LoadGenerator

LTE Emulators and LoadGenerator can be used to test multiple configurations. The
main task for EMUs in this thesis is to emulate large amount of base stations (ENBs)
and end-user devices (UEs). The target is to have millions of UEs and thousands of
ENBs which can load real EPC elements. This scenario can be used, for example,
to examine large IoT networks based on LTE.

Figure 2.7 shows an example configuration how the emulated and the real entities
are connected. ENB(s) and UE(s) are emulated in the LTE EMU VM (Virtual
Machine) and U-plane payload is generated in the UE VM. The U-plane insertion
is an EMU feature which is not related to LTE specifications. EMUs can be run
with or without U-plane source and by using this modular architecture there is
an opportunity to connect different environments together which can sometimes be
useful.

Figure 2.7: Example configuration and its connections.

In this thesis the end-user applications are running on a regular Linux distribution
which is connected to an Ethernet broadcast domain. The Ethernet traffic, which is
flowing between the UE VM and the LTE EMU VM, is transformed into LTE traffic
by the EMU. In practice, one virtual network card (vNIC) is mapped to one LTE
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UE. A vNIC is like any other network interface and any process in the operating
system can use it.

LTE attach and detach are mapped to Dynamic Host Configuration Protocol
(DHCP) Request and Release, and emulated UE holds the LTE specific information.
Thus, basically any operating system or device capable of using DHCP is able to
act as as LTE UE in this system and generate payload into the system. This
mapping is drawn in Figure 2.8 which is compared to a real scenario. MME(s) and
GW(s) can also be emulated but they are not used because they can not reach our
targeted network size. On core side real MME and GWs are needed always to create
LoadGenerator in large scale.

When the goal is to generate load against real core (MME and GW), EMU
performance variants are useful. HSSPT is a simplified version of an HSS. It’s
minimized to only do necessary operations requested by other elements. In practice
it only authenticates UEs and gives the UE profile to MME. This way HSSPT has
a good performance to handle large amount of requests coming from real MME.

RANPT does the same to ENB by removing most of the extra signaling. These
simplifications are close to the planned IoT optimization where network will be
made simpler and more energy efficient by removing extra signaling. More on IoT
optimization for LTE is presented in Chapter 3. If full LTE functionality is tested,
normal (non PT) versions are used from the EMU. This will provide full 3GPP
compatibility but reduces performance when more resources are used per ENB and
UE.

Figure 2.8: In the emulated setup any process can generate load into normal Eth-
ernet domain which is then converted into LTE compatible form.

In this system Ethernet provides data link layer (L2) connectivity. One Ethernet
domain is used to contain up to 5000 sources of U-plane which all have their own
vNIC. This L2 Ethernet domain and entities connected to it can be seen analogous
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to L1 RAN cell which has n UEs and m ENBs. L1 air interface is not emulated
but the needed variables and procedures are available in emulated UE to describe
changes on RAN so that full functionality can be tested from the core point of view.

For example, transmit and receiver powers are not simulated nor measured ac-
tively but handovers can be manually triggered. One L2 Ethernet domain is isolated
into a VLAN where the cloud networking comes in to scale the setup further. Cloud
networking with the virtual switching in Figure 2.8 is explained in more detail in
Section 4.5.

One thing to emphasize is that EMU is consisting of processes which are running
on a regular virtual machine. EMU processes don’t have support for multi-threading
but in a large setup the scalability comes from multiple deployments and processes
instead of cloudified software.



18

3. INTERNET OF THINGS (IOT)

NETWORKING

Internet of Things (IoT) has been in the center of hype for a couple of years. The
term has topped Gartner’s yearly hype cycle of emerging technologies two times in
a row in 2014 and 2015 [21; 22]. Gartner estimates that IoT will reach plateau of
productivity in 5 to 10 years meaning that even a decade can pass before IoT is
widely accepted and used. But what is actually happening?

Definition for IoT is not exactly clear because IoT covers enormous amounts of
different devices, applications and even social changes. IEEE is currently working
on the definition for IoT and has found that many definitions are made and they
usually lack in accuracy. IoT-like devices are not a new thing and many other terms
have been used before IoT. [23]. Term Machine Type Communications (MTC) is
also often used.

Nowadays term IoT is used almost everywhere which can be misleading when the
same term is used with very different devices and capabilities. Loose term is easy to
use and everyone has some idea what is a thing and what is the Internet. But from
a technical point of view the definitions are problematic. What are the capabilities
of a thing? What are the requirements to be connected to the Internet?

Terms that are close to IoT are also in use. Term machine-to-machine (M2M) em-
phasizes that things can communicate with each other. Device-to-device (D2D) and
vehicle-to-everywhere (V2X) are similar and they will have many new applications.
Term mesh or wireless sensor networks have also been used earlier but nowadays
wireless sensors are clearly under IoT. This shows that IoT can be separated to
multiple verticals depending on the use case.

Internet of Everything (IoE) is a term used by Cisco [24] and it gives understand-
able definition that everything is connected to Internet. Generally it can be seen
that IoT is the phase where the number of networked devices and device types will
grow exponentially. Further in the future this should lead into a situation where
everything is connected – like IoE describes.

For telecommunications industry IoT means great changes because things differ
from the current mobile devices. There are massive amount of things and they
have to be simple, cheap and have long battery life which is quite the opposite to
the current cellular devices, e.g., smart phones. This leads to new standards and
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technologies which are currently forming up. IoT is a big phenomenon and it will
happen but the question is when and how?

3.1 Current status and verticals

In this section the focus will be on cellular IoT networking and standardization
which enables secure connectivity around the globe and prevents the incompatibility
between the systems. Thus, global standardization accelerates general acceptance
and usability of IoT, too. Also verticals are presented to summarize how IoT will
be used.

Figure 3.1: Comparison between SIGFOX, LoRa and 5G targets [25]. 3GPP tech-
nologies are listed in Figure 3.4.

Another general term for cellular IoT like networks is Low Power Wide Area
Network (LPWAN). Figure 3.1 shows some competing technologies in a segment of
LPWAN. These networks will have long range, low power, low data rate and very
low cost. Current technologies available, e.g., LoRa and SIGFOX, are operating on
unlicensed Industrial, Scientific and Medical (ISM) bands and they offer the ability
to create local deployments before global connectivity is available through (3GPP)
standardization as explained more in Section 3.2.

Finding "winners" from these technologies will take years but the main targets
are the same. There will be big markets when it is estimated that the amount of
networked devices will be tens of billions in the next decade. Fifth generation (5G)
of cellular networks is targeted to launch in 2020 so operators are investing in LTE
based technologies before that. IoT is also a big and long change, thus some of the
features will be implemented into LTE and some features into 5G, and it is unknown
how these giants will be aligned.
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Currently it is clear that IoT will be used in multiple verticals. There will be
and already is so many applications that it is likely that no single solution will be
available to connect all of the cases. 3GPP is mainly working on licensed bands and
global compatibility which will add extra costs to technologies supporting 3GPP
standards. Also LPWAN networks will connect only part of the devices and un-
licensed short range technologies are estimated to cover more cases. For example,
public WLANs (Wireless LANs) can be found in places which have dense population.
WLAN standards are also evolving towards IoT [26].

Figure 3.2: IoT vertical examples include long list of use cases [25].

Some of the verticals have proceeded closer to real life usage but many of them
have not entered the markets. Large number of devices requires new kind of control
layers to handle the devices, applications, and the new data has to be processed into
more valuable form. In short, the whole package is currently open but some success
stories have been made and there is room for new business.

From LoadGenerator point of view, all lightweight applications should be able to
run on top of LoadGenerator. For simplicity, metering is selected to be an example
in this thesis because the function of the meters is straightforward. A measurement
is done and sent over the network and processed further. Meters and sensors will be
everywhere in the future, thus emulating large number of those is one way to study
future networks.

3.2 Future estimations and network requirements

The results from standardization process show that evolved LTE will be used for
cellular IoT. Many of the LTE features are designed for high-speed access with low
latency which differs from IoT requirements. Features that are not needed can be
removed or optimized to IoT usage. Thus, the requirements for IoT devices must
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be examined and estimated so that LTE optimization can be done efficiently.
The device count will grow but many of the devices won’t use much bandwidth

and will send data seldom. Long battery life requires that low power sleep stages
must be used. During sleep no communications are made. From core point of view
every device and session will reserve some amount of resources, thus static resource
usage should be minimized. During idle stages some resources can be released also
in the core and thus make resource usage more dynamic.

Figure 3.3: Techniques for IoT optimizations [25].

Real-time connections are not needed for all devices. This allows higher latency
which can be exploited by using caches to distribute load more evenly over the time.
Also higher utilization rate is possible when load is evenly distributed. Longer la-
tency allows core to be further away, e.g., in large data-centers where more resources
are available.

Many IoT devices are static and thus real-time handovers are not necessary. If
IoT device moves to a new location it can re-attach to regain connectivity. Also
active location updates, paging and TAU procedures can be adjusted to reduce
unnecessary signaling. This simplifies the system which helps to reduce costs and
saves battery and resources when signaling overhead is lower.

Reduced signaling mostly works on current core but simplified elements can also
be used in core to save computing resources. Devices could use different core which
would be optimized for the specific usage, e.g., MME, PGW and SGW could be
implemented into "one box" and also non-IP connectivity could be used [6]. For
example, Short Message Service (SMS) could be used.

3.3 Future 3GPP Releases

LoadGenerator will use LTE as a base, thus LTE evolution is examined more care-
fully. The target is to gather knowledge about future networks so that also these
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networks could be emulated better. In other words, this topic gives more precise in-
formation about scenarios and settings that could be implemented to LoadGenerator
to test the effect of these changes in practice.

Although this section focuses more on RAN specifications, the core network will
be logically built on top of RAN selections. In practice, 3GPP standardization is
the first concrete information about the future cellular networks. Another note on
this topic is that although some standard is agreed it doesn’t necessarily mean that
it will be implemented in large scale if the markets won’t find value from a standard.

LTE Cat0 was approved in 3GPP Release 12 but it includes only minimal changes
which will probably be implemented by software updates, thus it does not fill all the
IoT requirements. However, Cat0 can be seen as the first step to evolve LTE towards
IoT and MTC and the upcoming IoT evolution is based on top of Cat0. Figure 3.4
shows a summary between the upcoming 3GPP standards which are introduced in
Release 13. As a recap, Release 8 is the first LTE release and Release 13 is latest
frozen release.

IoT has been under work in 3GPP for some time. In 2014 3GPP had a study item
named "Cellular System Support for Ultra Low Complexity and Low Throughput
Internet of Things". The objective was to study how cellular IoT could be imple-
mented from radio point of view. Both GSM evolution and clean slate were eval-
uated. Result was that EC-GSM work item was approved to evolve GSM; eMTC
(LTE Cat M1) and NB-IoT were approved to be evolved by the RAN Technical
Specification Group (in 3GPP) in Release 13.

Figure 3.4: 3GPP IoT evolution summary from February 2016 [6].

The summary in Figure 3.4 shows that multiple technical changes are made to
support IoT better and these three solutions also offer wide range of features to
support multiple use-cases. For example, EC-GSM offers extended coverage, eMTC
optimizes Cat 0 further and NB-IoT provides multiple deployment options.
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Modem complexity affects the device prices directly when simpler chips are cheaper
to manufacture. Narrowband and lower rates will be optimized to save battery with
enhanced idle stages allowing things to sleep for hours if needed. Lower coding rates
and multiple link powers will enable enhanced coverage.

From core point of view the biggest change will be the number of devices. 3GPP
goal is to support 50000 devices per cell [6] for EC-GSM and NB-IoT, thus core
elements will have to scale even more. NB-IoT and eMTC are introducing multiple
optimizations on core side, too. For example, core architecture may be combined to
single entity and data can be transferred over non-IP connection.

In overall, the variety of devices will grow and multiple techniques will be used
to provide connectivity. Some devices are a lot more in idle state and some devices
require very low latency. Thus, multiple solutions will probably be implemented on
the core side also, e.g., edge computing can be applied to serve the device, and the
user, as near as possible. Whereas large data centers could be used to serve devices
with low priority traffic to optimize resource usage.

The last missing details in Release 13 are related to IoT but they will be finished
before June 2016 [27]. The 3GPP work continues with Release 14 which is gaining
momentum when Release 13 is closing and Release 14 has already a long list of items
which can be found from [28]. Release 15 is also starting in June 2016 [11]. The
completion of Releases 14 and 15 is years ahead but they can give some information
about the areas which are important beforehand.

The upcoming features have to be implemented into emulations also. In practice,
the LTE features of LoadGenerator are depending on LTE Emulators, thus the
development of EMU will define what features are available in LoadGenerator in
the future.

3.4 Example protocols

The mission of IoT is to connect all the things but what then? What will be the
protocols to communicate with the things? IP connectivity is not the full networking
stack and on top of IP there are application protocols. The path from specifications
to standards and compliant devices will take time. It is also important to have
new applications which take the advantage from the new things. To speed up IoT
development also higher layer protocols have to be kept in mind. This section should
give some examples which will be used in the future.

One interesting framework is webRTC [29]. It enables real time communication
(RTC) between a browser and a thing for example. RTC is useful in scenarios
where the thing is remotely controlled and sends information about its environment
to the user via video for example. webRTC completes the networking stack and
applications can be made inside a browser without any extra software or plugins.
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In webRTC standardization World Wide Web Consortium (W3C) is responsible for
the API and Internet Engineering Task Force (IETF) for protocol thus it is an open
framework.

Also some quite old protocols for simple communications over unreliable network
can be used for IoT. MQ Telemetry Transport (MQTT) is one popular protocol
for transporting simple messages [30]. MQTT is open and free protocol thus it has
been implemented by many industries. Its design principles have solved out the
same problems that IoT networks and devices are now facing. Earlier devices and
networks were simple and slow but IoT has packed this device type into a new form
factor but some of the problems have stayed the same: how to handle slow unreliable
connections?

The number of devices will also pose new problems. How to control large number
of devices and how to process the gathered information? Some kind of platforms
have to be developed to efficiently control, monitor, configure etc. large number of
things. For example, how operator can manage the huge amount of devices, and how
user is controlling his/hers devices? In short, there are also new needs for control
protocols.
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4. SYSTEM BASE USED IN THE SETUP

LoadGenerator has evolved to its current status through many steps. The implemen-
tation of the idea has proven to be possible already in early phase but the technical
steps have been mostly into untested areas. Large emulated LTE network on top
of cloud networking has many pieces that do not work without extra configuration.
Before going to the current setup a short history is presented as an introduction.
This section gives an overall description of the problems related to the setup.

First practical tests were done with VirtualBox on a regular laptop where a fully
emulated setup was tested. The tests were successful and a basic configuration of
virtual machines and network layout was found. Of course, the performance and the
scalability were not good enough. Emulators need precise time information, whereas
reading clock information in VirtualBox on Windows is slow. The next step was to
move the setup to cloud environment where it could scale out.

The first cloud was a regular OpenStack based environment. It was not config-
ured for tests which include traffic from unknown sources which are blocked by the
security by default. When the environment configuration was done to fix security
issues so that the rest of the cloud was operating normally, it was time to scale the
setup by multiplying elements and creating scripts for event generation. When more
events and more elements were added, things started to break down and fixes had
to be made to go further. For example, EMUs needed multiple patches and default
networking configuration needed expansion. Soon the concept of control network
was added to control a large number of elements and virtual machines.

The cloud that was in use became small so a new and bigger cloud had to be
built from a scratch. The bigger cloud was configured with LoadGenerator in mind
so most of the cloud environment problems were solved during the cloud setup.
Also orchestration was added to aggregate deployment. In the new environment the
system has been scaled out to support millions of UEs and thousands of emulated
entities fully emulated. It was time to integrate LoadGenerator with real MME and
GWs to support even bigger setup.

The following Chapters will introduce the LoadGenerator setup in more detail.
Figure 4.1 explains the graphics used in the following figures.
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Figure 4.1: Network and hardware icons in use.

4.1 Current status

LoadGenerator is running in the innovation lab at Nokia Campus Espoo Finland.
Currently 26 servers are allocated from two racks to build up two OpenStack clouds.
Also some bare metal testing and support servers are allocated and installed. Split-
ting the setup in two has been preferred because one setup can be used for more
stable testing and another one for experiments where outages might happen. This
way more people can test their ideas without interrupting others too much. Real
MME and GW are also running in the same lab.

Figure 4.2 shows the basic layout and connections between the racks in the labo-
ratory. This chapter will introduce the building blocks of the system from hardware
to virtualization on computing and networking which will enable OpenStack cloud.
The focus will be on how standard hardware and software can be used in telecom-
munications and what problems there will be.

Figure 4.2: System is divided into two racks which are connected together and to
the lab network. Physical layout supports the traffic flow through the servers.

Term cloud is quite loose and it is often added to some other technology to
emphasize functionality over network and maybe hide some technical details in the
way. More strict definition for cloud computing by NIST says: "Cloud computing
is a model for enabling ubiquitous, convenient, on-demand network access to a
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shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction" [31].

With LoadGenerator, cloud computing will be used as a platform which offers an
easy orchestration to rapidly deploy large masses of networks and instances which
are turned into emulated LTE network. In practice, the selected system has to have
good support for multiple networking modes and powerful orchestration tools. Also
overhead in networking and virtualization has to be low when the protocol stack is
complicated.

4.2 Kernel-based Virtual Machine (KVM) and containers

LoadGenerator has to be scalable, thus virtualization is applied to utilize hardware
better. Main units in virtualization are virtual machines (VMs) and containers.
Both techniques provide near native speeds and they can be used in multiple sce-
narios but there are also many differences.

This section introduces KVM VMs and (Docker) containers [32] focusing on Net-
work Function Virtualization (NFV) related problems. Containers have many fea-
tures that would be better suited for emulation but some mandatory features for
LoadGenerator are missing. Nevertheless, containers are also introduced because it
is likely that in the future they will be used more in telecommunications, too.

IBM’s comparison between native, KVM and Docker Container environments
provides a good overview of the subject [33]. The results show that containers
typically have lower overhead than KVM. The study mentions that KVM overhead
is especially visible in I/O-operations and low latency requirements, that are the
features that Virtual Network Functions (VNFs) typically need: KVM can manage
10 Gb/s link speeds but special notice should be kept that the overhead can be an
issue. Containers can perform better than KVM in operations requiring heavy I/O.

IBM’s study also concludes that the difference between containers and VMs has
narrowed down and both techniques have matured. Good example about the de-
velopment, also mentioned in [33], is that the general rule to deploy infrastructure
with VMs and platforms with containers is not so clear anymore.

The reason for the I/O differences is architectural. KVM uses hardware supported
virtualization where isolation is done so that the stack is also growing vertically
which is shown in Figure 4.3. The VM is running in a single process on host operating
system’s user space and this nesting causes performance penalty, especially with I/O
operations which have to travel through two operating systems. On the other hand,
this vertical addition improves security, when a new dedicated device is created
instead of shared hardware resource usage.

KVM emulates the VM’s devices, like NICs, thus the guest operating system does
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not share them among other VMs. This gives more control for the guest but the
emulation will grow the stack vertically and in practice adds overhead. KVM has
options to pass-through host devices directly to VMs but in LoadGenerator’s case
hardware resources are easily outnumbered if pass-through is used.

Figure 4.3: Container architecture has less vertical layers compared to VMs [32].

With containers the isolation is done more horizontally. Linux cgroups and
namespaces are used to isolate processes from each other directly in the host kernel.
Thus, all the processes are visible in host kernel where only software features are
isolating them from the rest of the system. So processes running in containers have
more direct access to host resources compared to KVM.

Containers are better suited in deploying large masses of microservices because
they are lighter than virtual machines. Containers don’t have extra applications
which are not used during the run-time. For example, one clear difference between
containers and VMs is boot-up time: containers are up almost immediately and
VMs typically take couple of ten seconds. Emulator process or VNF can be seen as
a microservice and lots of them are needed in large scale emulation, thus containers
are really interesting also from network emulation point of view.

In LoadGenerator’s case the problem with containers is networking. Docker 1.9
release in late 2015 introduced libnetwork which supports multinetworking but still,
e.g., SCTP [34] is not working between external and Docker overlay networks. Typ-
ical reason is that the protocol does not work over NAT which is typically used
between external and Docker overlay networks. Host network mode in Docker is not
an option when hardware should be divided between large number of devices.

Containers, and Docker, are developing rapidly and in the future containers will
be used for NFVs more. When SCTP is working, LTE network emulation should be
possible with containers that would enable smaller overhead compared to KVM.
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Docker is also going towards very small footprint. In early 2016 Docker and
Unikernel joined together. The main idea behind unikernel is to provide optimized
kernel for the container. This will create even more light and optimized containers
[35].

Because of the lack of SCTP support in container networking, KVM is left to
be selected to be the virtualization service behind LoadGenerator. In the future,
containers can be seen as a good candidate for network emulation. TCP and UDP
based emulations could already be implemented especially if NAT is not an problem.

4.3 OpenStack open source cloud

OpenStack is a free open source cloud operating system. It converts standard hard-
ware into cloud resources and services which are then turned into virtual machines,
networks and in the end to applications and functions. OpenStack has a release
cycle of six months and development is rapid.

OpenStack provides good orchestration tools and many networking options. For
example, Open vSwitch (OVS), KVM and multiple other components can be used
to virtualize networking and computing. In practice, OpenStack is a platform where
LoadGenerator can easily be deployed on and decent performance can be expected.
Thus, OpenStack is selected to be the base of the infrastructure. A short introduc-
tion to OpenStack is given next.

OpenStack consists of shared services which have certain responsibilities. The
compute service is called Nova. For LoadGenerator good performance and scalability
is needed so Nova is configured to use KVM for virtualization. Virtualization enables
the sharing of one physical machine into multiple virtual machines.

Neutron provides networking service in OpenStack. It supports multiple drivers,
networking modes and third party plugins. In short, Neutron can support nowadays
almost any networking solution and fits well in our system where multi-networking
is a must. Neutron and Nova work together so that Nova will create the VMs which
have NICs that are bound to networks handled by Neutron.

Orchestration service is called Heat and it is a powerful tool which turns easy-to-
use templates into ready-to-use networks and VMs. Heat is used for orchestration
tool to deploy LoadGenerator. There are also multiple support services needed to
run OpenStack: Glance is image service, Keystone is for authentication, Horizon is
web interface for controlling OpenStack. Also databases, message brokers and other
basic services are needed on the host machines.

Many third party automation tools are available to deploy OpenStack but they are
not used here. With LoadGenerator host machines have CentOS 7 with OpenStack
Kilo or Liberty that can be installed via Preboot Execution Environment (PXE).
The chapter 5 will describe the installation in more detail.
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To summarize the role of OpenStack with LoadGenerator: it is used to provide
platform with orchestration and multiple networking modes. These features are used
to easily deploy, connect and scale out LoadGenerator.

4.4 Hardware

The servers in the racks have two Intel E5-2665 Xeon CPUs, 256 GB of RAM, three
2 TB hard-drives in RAID0 and Intel X520 dual port 10 Gb/s physical NIC (pNIC).

Intel E5-2665 Xeon is part of Romley architecture [36]. The most interesting
knowledge of the platform for LoadGenerator is related to the networking capabilities
of the system. The servers have only one pNIC with two ports. PCI Express (PCIe)
lines are directly connected to CPUs which causes that NIC is directly accessible for
only CPU0. CPU1 has to access NIC over the CPU0. CPU0 and CPU1 belong to
different Non-Uniform Memory Access (NUMA) nodes.

Figure 4.4: NUMA layout on the physical servers.

NUMA is used to describe the physical topology of the available resources. This
will help kernels to use resources more efficiently. For example, Linux kernel has
the knowledge of the NUMA costs in a matrix form which is the source for NUMA
optimization. In practice, CPU’s own memory is faster to access than the memory
behind the other CPU. This is described by placing CPUs to different NUMA nodes.

In other words, crossing NUMA nodes causes performance hit. This is important
to know in cloud environments. Especially VNFs take a big performance hit if they
are not executed in the right place. One reason is that VNFs require real time
execution and good I/O throughput. Virtualization hypervisors can try to converge
to a state where the best performance can be achieved. However, manual CPU and
hardware pinning is often needed to be able to reach the best performance.
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In general, a guest instance, a VM, is just one process on host system. Hypervisor
does not provide full host hardware resource information and, for example, NUMA
information is dropped. This will create a problem for the hypervisor and for the
guest kernel to schedule resources optimally. KVM has option to pin vCPUs to
pCPUs and NUMA areas which can help with NUMA issues. Unluckily, the case is
often so that pCPUs are over-committed with vCPUs and the static pinning does
not solve the problem.

Host system tries to converge to an optimal stage by observing resource usage.
Host services can move processes and memory used to an optimal location, i.e., other
physical CPU core or NUMA area. There are issues related to this convergence:
resource usage varies and optimal performance might be needed right from the start
point, i.e., before converging happens.

Figure 4.5: NUMA details including cost matrix. Compare to physical layout in
Figure 4.4.

Top-of-rack (ToR) switches are HP 5900AF-48XG-4QSFP+ which have 48 10
Gb/s ports and four 40 Gb/s ports available with a switching capacity over 1,2
Tb/s. Both racks have a primary, prsw, and back-end, besw, switch which are
connected to servers’ pNICs’ 10GE ports. Port1 is connected to the primary side
and Port2 to the back-end side. Primary and back-end switches are connected to
their counterparts on the other rack by 2×10 Gb/s link. Physical layout is drawn
in Figure 4.2.

4.5 Networking stack

Networking stack can be divided into three groups: the physical layer with hardware
and hardware related virtualizations, OpenStack networking with Neutron and OVS,
and on the top are LTE Emulators. Networking stack might sound long and complex
but the configuration is kept quite simple. The main goal is to have large number of
networks that are isolated and LTE Emulators will make the connections between
these networks.
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Connections between LTE elements are typically done with routable addresses.
This is due to the specifications where ports are strictly defined. In other words,
Network Address Translation (NAT) can make connections between the elements
very difficult. The use of routable addresses will consume a large amount of addresses
in a large network. For example, every base station needs an IP address and we have
thousands of base stations.

The network size goes so high that connecting LoadGenerator to external net-
works can be challenging. Thus, an internal network with private addressing is
created and used. UE count and addressing is even more problematic when count
is in millions. Some simplifications can be made if UEs don’t need connectivity to
external networks and NAT can be used for Internet access.

4.5.1 Network virtualization

This and the following section will describe some techniques that could be used
for LoadGenerator and what effects they would have. Based on this evaluation
selections for LoadGenerator networking are made. LoadGenerator will benefit from
stable, efficient, scalable and non-hardware dependent network solutions. Hardware
dependent solutions typically offer the best performance but they also limit hardware
choices.

Most of the problems are how to share the limited physical resources. In practice,
the question is how a VM is connected to the right network. The first step is to
connect pNIC to multiple virtual NICs (vNICs) which are connected to the guest
VMs.

Single Root Input Output Virtualization (SR-IOV) can be used to virtualize a
device in a PCIe slot. It is hardware dependent virtualization. When SR-IOV
is used, the device is divided into physical and virtual functions (PF and VFs)
which appear as normal NICs in the operating system. For example, servers in
LoadGenerator setup have pNICs that support SR-IOV: Intel x520 pNIC has two
physical ports which both can support up to 64 VFs. These VFs can be directly
assigned for single a VM and have near native speed.

Especially latency is significantly lower with SR-IOV compared to virtual switches.
SR-IOV does not provide enough VFs for large scale usage but it provides a test
environment where latency can be pushed down. This is important for example
5G testing where latency requirements are really low. Thus, SR-IOV can be only
used in small scale testing with LoadGenerator. Some tests were done in OpenStack
environment but MAC and VLAN spoof filtering [37] have caused some problems
with LoadGenerator.

OVS is an open-source virtual multilayer switch. Typical use case for OVS is to
connect pNICs and vNICs together so that networks are securely isolated, manage-
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able and have a good performance and stability. OVS is widely used with OpenStack
for example.

An IEEE accepted paper shows that OVS has better performance than Linux
Bridge [38]. This comparison uses the same kind of network cards that are used in
this work and results should be alike with LoadGenerator. The situation for Data
Plane Development Kit (DPDK) [39] is the same as in the IEEE comparison: DPDK
should provide best results but the implementation requires extra work and it has
not been tested with LoadGenerator.

These results support the selection of OVS to be the connector between vNICs
and pNICs. It is easy to use, stable and has the best performance from the virtual
switches, and many platforms have support for it, including OpenStack.

4.5.2 OpenStack networking

There is no single way to configure OpenStack networking and the variety of options
gives a possibility to have multiple solutions. This subsection explains some of the
basic OpenStack networking terminology and operating modes available.

Neutron is the networking service in OpenStack, like introduced earlier. It is used
to manage the lifecycle of the networks created by the cloud users. Figure 4.6 shows
a basic deployment with the controller, network and compute hosts. A management
network is used for internal communications between the controller and other host
servers so that the services creating the cloud can communicate, and it is created
during the cloud installation, thus Neutron will use it but won’t manage it.

Neutron’s role is to manage tenant and provider networks, and how they are con-
nected to external networks. External network(s) will provide external connectivity
but as the Figure 4.6 shows, there are some differences.

Tenant is a term for OpenStack project which can have multiple users. Thus,
tenant networks are networks which are created and controlled by the project group
members. For tenant networks, the networking host offers DNS, DHCP, NAT and
network layer (L3) routing services. For every interface (eth in VMs), a fixed IP is
assigned. Fixed IP is static, thus OpenStack cloud always has an IP address which
can be used to communicate with the VM. VM can also have a floating IP which
is assigned from the external network. To reach the VM from an external network
the networking host will do NAT between fixed and floating IP.

Provider networks are networks where OpenStack does not provide all networking
services. This enables the use of external network hardware and direct connections
without NAT or networking host. Otherwise provider networks and tenant networks
are alike. Tenant and provider networks can be chosen when VM is deployed, or
they can also be attached and detached during VM run-time. OpenStack will make
the connections between the chosen networks and VM’s NIC(s).
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Figure 4.6: OpenStack networking example.

Neutron supports many drivers which expand the networking capabilities. In our
setup Modular Layer 2 (ML2) plugin with OVS mechanism driver is used. Open-
Stack networks can be made using multiple techniques: ML2 and OVS support flat,
local, VLAN, GRE and VXLAN networks. GRE and VXLAN are overlay networks
which have the benefit of creation of L2 domains over L3 connections with plain
switches.

In large data centers, it is useful when L2 doesn’t have to be configured from
point to point on network hardware. GRE and VXLAN cause overhead when en-
capsulation and decapsulation has to be made for traffic crossing different hosts.
Offload functions on network hardware can be used to decrease the overhead CPU
load also with overlay network protocols.

Local network type creates only local network inside the compute host. Local
network could be used with LoadGenerator to deploy isolated networks to connect
UE and EMU VMs but Heat orchestration does not support deploying local net-
works. Flat mode does not create isolated L2 domains so it can not be used in our
case. VLAN separation needs support and configuration from network hardware.
Separation is achieved by using VLAN tag which is 12 bit long and thus supports
separation of 4096 L2 domains per switch supporting VLAN tagging. These features
lead to the fact that VLAN has clear scalability and configuration issues in large
data centers.

LoadGenerator will be deployed into two racks, with two ToR switches each, thus
making of L1 connections is not a problem. With four switches it is possible to create
over 16k (4 × 212) separate L2 domains when VLAN tenant network separation is
selected. VLAN separation is light and it provides enough separated L2 domains
analogous to LTE cells where UEs and base-stations are. One Ethernet switch
typically has support for 8192 MAC addresses at least. Inside compute hosts, the
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internal integration bridge (br-int) uses VLANs also to isolate networks, thus single
compute host is also limited to support 4096 networks.

To estimate more about the setup scalability, the specification of ToR switch says
that maximum MAC table size is 128k per device. These theoretical upper limits
define the maximum amount of directly connected devices. In practice, LoadGen-
erator will have millions of UEs so they cannot be connected to ENBs via ToR
switches. On the other hand, these calculations are just telling how to not to do the
setup because physical switches are not the only switches in use.

To circumvent the problem of limited MAC addresses on physical switches, UEs
and ENBs will be connected within the compute hosts, which is anyways logical
solution to keep the data paths as short as possible. Thus, it will be br-int OVS
bridge, that will be used to connect ENBs and UEs, thus having also most of the
MAC load. OVS can handle a sufficient number of flows, thus it is capable of
handling the traffic.

ENBs will be connected to EPC via provider networks and ToR switches will act
as gateways for these networks. Thus, the MAC limit will apply to ENBs, but the
number of ENBs will stay under the limit clearly. Another thing is how well the
controller will scale, especially Neutron server, when large amount of networks and
ports are deployed. On networking level the scalability will not be a problem if basic
properties of all layers are kept in mind.

4.5.3 Offload functions

Multiple optimizations and offload features have been developed to improve network-
ing performance. Most of the offloading features try to reduce CPU load with various
operations. For example, a NIC can do checksum calculations just before/after the
wire and rest of system doesn’t have to care about checksums. Typically these
features have a big performance improvement but with network functions they can
cause problems.

NIC is typically thought to be last/first step of the network but with cloud envi-
ronment it is rarely the case nowadays. Virtual networking has changed the game
so that NIC is only bridging the physical and virtual network together. Many of
the networking optimizations and offloads have been made for traditional networks
long before large clouds have been built up, thus the compatibility issues can rise in
surprising locations.

When routing and bridging is combined to optimization which alter packet head-
ers, corruption is likely to happen. Also other modifications to the packets can
cause multiple problems. Another typical case is when extra tag or encapsulation
will grow the packet size over the maximum transmission unit (MTU) and fragmen-
tation happens. For example, VLAN tag and GTP encapsulation add extra bytes
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and this has to be known when adjusting MTUs.
LTE Emulators also have some packet capturing functions which are not com-

patible with most of the offload features which are present in the NICs. The more
layers the networking stack has, the more probable it is that things can go wrong.
On the other hand, hardware features are often needed to handle packets arriving
at very fast rate, thus it is always balancing between the features and compatibility.

Offload settings can be controller and in practice incompatible offload features are
turned off. Ethtool is a program on Linux to adjust the NIC settings. For example,
large receive offload should not be used with bridging and routing [40].

4.5.4 Network performance

Typically Linux systems have been strictly divided into user and kernel space. Both
spaces, user and kernel, have certain features and limitations which are problematic
especially with I/O virtulization. This is due to the logic how data is transferred
between the spaces: copying the packet between the spaces is bad performance wise.
With enormous amount of small packets the number of function calls and interrupts
will use too much CPU cycles and throughput goes down.

From networking point of view, KVM can support multiple modes. By default
the best performance can be achieved by using Vhost-net, which is shown in Figure
4.7. Vhost-net enables direct queries between guest NIC and host kernel space where
the virtual tap device and networking bridge are running. This direct connection
reduces CPU cycle usage but it can still be a bottleneck.

Figure 4.7: Vhost-net architecture.

LoadGenerator has been running on top of Vhost-net and OVS but this config-
uration is not very good from performance point of view. In the future specialized
packet frameworks should be implemented into LoadGenerator because they enable
better link performance between guests and host pNIC(s) with lower resource usage.
The problem is that specialized networking frameworks are not yet fully matured.

These specialized packet frameworks typically enable direct communication be-
tween the user space and the pNIC by replacing slower kernel networking. DPDK
[39] and Netmap [41] are examples from this group. They are typically installed
directly from sources which is more complicated than using package repositories.
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Another problem with these frameworks is the lower abstraction level. In practice,
TCP/IP stack is missing and applications which are using operating system sockets
are not working directly. On the other hand, these frameworks can be used for low
level programming for best performance. One option to complete the stack is to use
OpenDataPlane [42], which extends both frameworks with good performance.
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5. SYSTEM INSTALLATION AND

CONFIGURATION

This chapter will present how LoadGenerator can be installed and configured. This
chapter is not a complete guide because LoadGenerator is not restricted to a single
platform or configuration. In other words, a couple of example deployments are
presented to show how the full-stack can be built. If needed, many of the components
in the stack can be replaced easily when they are using standard networking.

The deployed layout varies from single EMU VM to a large set of emulated and
real entities. Three scenarios are presented here: The first one is a fully emulated
setup with three VMs and two networks. The second is a single non-virtualized
server without U-plane payload capabilities with real MME and GW. The third one
is the large scale setup with emulated RAN with U-plane payload mapping, and
real EPC is connected, too. Note that from this point on, GW is referring to the
combination of SGW and PGW which are implemented by single physical element.

The first setup in Figure 5.1 will support up to 5000 UEs, 50 ENBs, 1 MME,
1 HSS and 2 GWs. These numbers are software defined limitations in the EMU.
Single fully emulated U-plane path (UE-ENB-GW) can support throughput over 1
Gbit/s depending on the configuration and hardware. This deployment can be used
to study how LTE, emulators and the environment are working. This is especially
recommended if they are not known beforehand. Fully emulated environment gives
the possibility to test everything and it is a good environment for learning, i.e., one
is not depending on external systems when all the elements are emulated.

Figure 5.1: Fully emulated setup with three VMs and two networks.

The second setup in Figure 5.2 is a special case where C-plane load is generated
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with minimum resources and it can scaled also on single non-virtualized host. This
deployment shows how the scripts from LoadGenerator can be used to configure
EMU also outside cloud environment, and how to create C-plane stress test setup
to load real EPC.

Figure 5.2: LoadGenerator only emulating RAN without U-plane payload.

The third deployment in Figure 5.3 shows how LoadGenerator can be used in a
cloud environment and how it scales. This scenario will create large scale C and
U-plane load to real elements. This is the combination of the first and second case
with centralized control network and cloud computing.

Figure 5.3: LoadGenerator building the full-stack.

These three cases are example templates which then can be used for easy deploy-
ment and customized further. Small scale setups are good for first time tests like
checking E2E configuration of newly installed element. Large scale deployments are
used to generate load and to create very large networks to model futuristic scenarios.
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5.1 Configuring hardware, network, and OpenStack

Servers are updated to the latest Unified Extensible Firmware Interface (UEFI)
and firmware versions available and maximum performance profile is enabled. Hard
drives are assigned to single drive RAID0 (striped mode) configuration.

Figure 5.4: An example how external LTE elements can be physically connected to
LoadGenerator.

The physical network connections are shown in Figure 5.4. Networking config-
uration is made so that primary switch (prsw) connects RAN to EPC. Back-end
switch (besw) is connected to SGi side of the PGW. SGi is the interface connecting
the PDN to PGW. Switches are configured to act as gateways for provider networks.
In practice, IPs are assigned for the gateways and static routing is added. Tenant
networks can use VLANs, defined in ML2 configuration, on trunk ports, thus they
don’t need to be configured to the switches.

During the host installation the primary switch port type is configured as access
port to support PXE boot from specific VLAN. During the host installation the
port connected to besw is configured to use OVS and is ready to support cloud
networking. After the host installation is completed, OVS is added also to primary
port. Cloud management network interface is configured as internal OVS port on
the compute host. The end-configuration of OVS bridge-mappings is presented in
Figure 5.5.

OpenStack networking is configured so that OVS is used to share the two physical
network interfaces. Both ports have their own OVS bridges that are connected to
a third bridge named br-int. These mappings and networking modes are defined in
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Figure 5.5: OpenStack OVS configuration consist of three OVS bridges which are
controlled by Neutron.

Neutron’s configuration. OpenStack can deploy networks according to this configu-
ration. In practice, this configuration gives the ability to use both physical networks
via OpenStack networking. Prsw is used to contain LTE networking (C-plane and
U-plane) and besw handles the IP network load coming from PGW’s SGi interface.

Figure 5.6: The overall setup and networking to external core.

The full network with both racks is presented in Figure 5.6. Rack 2 will handle the
routing to external networks, i.e., Rack 2 switches are running with L3 configuration,



5. System installation and configuration 42

and VLANs for provider networks are passed directly to Rack 1.
To support unknown VNFs port security must be turned off. This can be achieved

by using port security settings or by turning security off cloud-wide. Turning off
security will also remove iptables-bridge from the OpenStack networking. Note
that OpenStack Liberty implements ARP-spoofing protection via OVS flow rules
by default where preceding releases do not. Security note: turning port security off
can be compared to giving access to physical switch port which accepts all traffic.
Thus, unsecure ports should not be given to an untrusted party.

Figure 5.7: OpenStack networking configuration for LoadGenerator when external
core is used.

After host, OVS, and Neutron configuration is made, the network scenario in
Figure 5.7 can be deployed to support LoadGenerator. The arrows present a flow
from UE to some service running on APP VM.

5.2 Configuring guest instances

Debian 8.2.0 is used as guest distribution. Installation image is configured and
uploaded to image service Glance. Installation image has the necessary packages
installed so it is ready to use after the boot. Heat installation template is used to
configure remaining options related to different roles of the VMs.

LTE EMU VM is configured to run LTE Emulator. Instance has NICs that are
connected to the UE, RAN and Control network which is drawn in Figure 5.7. If
fully emulated GW is used, a NIC is added to connect the emulated PGW to PDN,
e.g., APP network.

In this thesis, UE VM is the U-plane payload source for 5000 UEs, which are
present in a form of macvlan type vNICs. UE VM can also generate some events
by using DHCP for detach and attach, and send messages to EMU for idle and
activation. If DHCP is used, the default dhclient is not light enough for hundreds
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of parallel processes. Udhcpc is a lightweight DHCP client and it can be used to
replace dhclient. Also MAC-table sizes are adjusted to support enough L2 neighbors.
Typical L2 default limit is 1024 on Linux.

APP vM can be used to receive the payload coming from the UEs. In practice,
this means that the applications running on APP VM are regular services. APP
VM can also be left out if external services are preferred, e.g., for more performance.

5.3 LTE and EMU configuration

After the VMs and OpenStack networks have been deployed, it is up to the EMUs
configuration how the LTE network will be formed on top. The basic LTE topology is
chosen by deciding how many elements there will be and how they will be networked.
The EPC has to have capacity to support RAN and all the elements have to be
configured to support the selected scenarios.

LTE elements can be shared to multiple logical networks by using LTE identifi-
cation codes. The ratios between the elements can be chosen quite freely, e.g., how
many UEs per ENB and how many ENBs per MME etc. In real life, this is mostly
related to product licensing, but of course there are technical limitations, too.

Figure 5.8: It is important to remember that LTE is only a one layer of connectivity.
In LoadGenerator’s case, the bottom hardware is consisting of VMs and servers.

In short, LTE configuration depends on the chosen case. If fully emulated setup
is used, most of the default EMU parameters are fine and they can be adjusted more
freely. If external entities are used, EMU has to match the device configuration or
vice versa. To achieve compatibility, it may require the configuration of multiple
networking parameters, not only the LTE parameters. It must be kept in mind that
there are networks and layers under LTE and on top of LTE, that also affect the
outcome. This is also drawn in the Figure 5.8.

In practice, the LTE network codes are adjusted so that test networks are in
use. Plain IP parameters are configured and connectivity is verified so that entities
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Figure 5.9: Typically, PLMNs and APNs can be used for logical division and ele-
ments need IP connectivity, too. In real life, there is a huge number of parameters
that have to be set.

acting as servers (HSS, MME, GWs) are known beforehand where needed, and they
can connect with each other. After plain IP connectivity is working and parameters
are aligned, LTE connections can be established. It can be a challenge to configure
element(s) manually, thus this step is mostly automatized in LoadGenerator. This
automation is introduced in the next section.

5.4 Control network and scripts

LoadGenerator consists of hundreds of VMs, thus centralized control structure is
needed for updates and commands. Current implementation is based on top of
Secure Shell (SSH) which is not very convenient in large scale, but it is working
when emulators are controlled with text based commands. Proper message broker
and configuration database should be implemented in the longer run.

Master server is the central control point for LoadGenerator. In practice, Load-
Generator’s configuration files can be retrieved via SSH File Transfer Protocol
(SFTP) and commands are given through SSH. This general principle is drawn
in Figure 5.10. There is a set of commands which have a predefined actions and
scripts, but also custom commands can be sent to specific VM(s). Master server is
also installation source during Heat deployment where SFTP is also used to retrieve
the custom files.

SSH commands can be run in parallel with simple bash scripts or by using some
program like ansible. Ansible uses SSH and offers easy-to-use configuration file for
grouping the servers. In practice, both techniques can multiply single command
to multiple servers, thus reducing the mechanical work. Control over SSH pro-
vides agent-less mode of operation, i.e., the servers under control don’t need extra
applications to receive the commands. SSH agent forwarding is typically used to
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Figure 5.10: Master server controls other instances and provides repository for up-
dates.

authenticate in the hierarchical chain.
Master server is used to share the updates like mentioned earlier. The basic idea

is that the master server has a file structure where every VM type has its own folder
and contents. These folders are packed into a zipped tarballs for the transfer and
they are extracted on the destination VM. In other words, the exactly same contents
are copied from the master server to every VM in the LoadGenerator. This enables
easy updates to all VMs. Unique values are typically listed into a configuration files
where the instance can identify itself and make actions according the configuration.

Figure 5.11: An example how update cycle is made. Master and control servers
are used to distribute commands to target servers, which act according the given
command.

The configuration of large number of LTE elements is automatized and this is
drawn in Figure 5.12. In the Figure, emu_config.sh is a master script that generates
initial values which are then applied to EMU VMs. The basic hierarchy is such that
the initial values are stored on a master server. EMU will receive these values via
control network and run necessary scripts to implement configuration based on the
initial values.
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Figure 5.12: Parameters.ini is a file that is read when an emulator is started. It is
generated locally on the VM but it receives some start values so that even a large
number or EMU VMs can have a non-overlapping configuration.

5.5 UE without real air interface

UE process, responsible for the UE’s LTE connection, is running on LTE EMU VM
and it has to be controlled there. UE VM, the U-plane payload source, runs the
actual end-user applications and does not have control over the LTE connection like
real UE has. UE VM has to signal EMU in non-3GPP way. The missing L1 air
interface will also cause that cell selection has is different from 3GPP specifications.

Figure 5.13: The eth0 interfaces are not used for LTE payload traffic but they can
be used to control the emulator process, for example, idle states.

Another missing feature is that the emulated base stations don’t have idle timers,
thus the UE must control the idle stages via a non 3GPP compliant way, i.e., it will
send a text command to EMU for going to idle or re-activating the connection. This
is almost the opposite to real UE-ENB connection where the base-station will handle
the idle states and UE cannot decide when it is in idle.

From core point of view, the EPC receives only requests and acts, and it does not
matter from where the request has exactly originated. Thus by using the control
connection, it is possible to circumvent the missing features from UE-ENB link when
EMUs are used to test the EPC.

These limitations come from the EMUs’ architecture which is designed for EPS
testing and the physical radio part is left out. Nevertheless and as said earlier,
EMUs have 3GPP compliant interfaces on EPC side and they support most of the
the signaling scenarios which affect the EPC state.
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6. SYSTEM USAGE AND LOAD GENERATION

After the basic configuration is decided the system can be scaled up. In practice,
this is done by expanding the cloud by installing more compute hosts and then by
deploying more guests where the emulation processes are running. Third dimension
are the EMU processes themselves and how many elements and connections they
will create. All of these three ways can be run separately to achieve the best mode
of operation.

Basic idea in two first cases is to use predefined templates to automatize instal-
lation to save time on the mechanical steps. Configuring tens of host machines and
thousands guest instances manually would be too slow and unreliable. Templates
make testing more comfortable when failed setups can be re-installed and instances
have exactly the same configurations.

The scalability of the EMU process is also depending on its configuration where
the LTE values are defined. In practice, a configuration is made, EMUs are started
to bring up ENBs and other core elements. After start-up UEs can be attached by
using control network and scripts. EMU macros can also be used to create all kind
of events to the network.

Installing the system is also very fast. Compute host installation takes around 10
minutes and the whole cloud can be set up under half an hour if preconfigured in-
stallation is used. Guest installation is also completed in minutes. Empty hardware
can be turned into a large emulated network in a couple of hours if no problems
occur.

6.1 Repository and support services

In this work, the system is installed on top of two clouds. These two clouds are
in two separated racks and have 10 compute hosts each. To ease up maintaining
and installing host machines, a management server is deployed. For network mon-
itoring and debugging there are monitoring servers which have a GUI and a VNC
server for remote graphical use. The management server acts as a gateway to cloud
management network. It has templates for all host installations and proxy server to
support the automatized host set-up.

As introduced, Master server is a VM which acts as a centralized control point
and custom file repository. Code changes can be made on master server, pushed to
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internal git repository, and/or packaged for deployment to instances. Every instance
type has its own installation package on the master server which also has initial
configuration values for the emulators.

Redis is an in-memory data structure store which can process high amount of
events with low CPU usage [43]. Redis has also a feature for messaging: Pub/Sub
is a service where clients can publish on and subscribe to channels in order to send
and receive information without predefined source and destination. Redis combines
features of database and message broker and everything is in memory with ACID
features. This provides good performance for processing large data amounts. Redis
client is available for multiple programming languages and Pub/Sub is used for VMs
to report statistics.

6.2 Preboot Execution Environment (PXE) for host installa-
tion

LoadGenerator can be run in different environments but in every environment it
needs an operating system underneath. In practice, the operating system must be
installed no matter if LoadGenerator is running on non-virtualized or in cloud.

This section briefly describes how PXE network boot can be used to install and
configure physical servers and OpenStack Compute host installation is presented as
an example. The next step is presented in Section 6.3 where guest operating systems
are installed in VMs on top of OpenStack.

With multiple physical servers, like a couple of tens with LoadGenerator, it is
easier to use automatized host operating system installation instead of manual work.
One typical way of doing this is to use PXE to boot from a network. If multiple hosts
are assigned to the same role with similar configuration, installation templates will
save many mechanical steps and reduce the risk of human errors. In other words,
these techniques are needed to administrate data centers efficiently.

In LoadGenerator’s case, a special server, called management server, provides
DHCP, Trivial File Transfer Protocol (TFTP) and HTTP servers as the installation
source for the environment. PXE clients, the physical servers under installation, are
UEFI based and Intel X520 NIC PXE boot is used to retrieve boot instructions.

A boot program on the network card is launched and it requests IP address
and more boot instructions via DHCP from the network, in this case from the
management server. Clients are identified with hardware MAC addresses. The
client receives DHCPOFFER that contains the IP address for the client and address
for the TFTP server where the boot images are stored. The client loads the image
and boots it, and CentOS installation starts.

Kickstart is the automated installation method for Red Hat based systems. Kick-
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start will install the system according to a template, which is also downloaded from
the management server. For example, OpenStack compute host installation has
its own template which can be used multiple times to expand the cloud. Multiple
templates can be defined for different roles and the selection can be made during
the PXE boot. Figure 6.1 describes the overall process where a Compute host is
installed and configured to register to the cloud controller.

Figure 6.1: When OpenStack cloud is expanded, new compute hosts can be installed
by using network boot.

ToR switch configuration has to be made to enable a connection between the
management server and the client. Typically a VLAN is allocated for the internal
cloud management network where the management server and the selected hosts
will be connected. The management server is connected to multiple networks, thus
its port-type will be trunk in switch configuration. An interface is added to the
management server network configuration for each VLAN.

PXE clients’ ports will be access-type in the switches during the installation.
After the installation is complete, it might be necessary to modify network settings
according the planned configuration. For example, the interface used for the PXE
boot can be handed over to OVS control which is not possible during the installation
without interrupting the network connection.

In practice, the start-up time of a physical server in use is a couple of minutes
and minimal CentOS installation takes under ten minutes. Installation time de-
pends on selected packages and external repository speed. Internal repository could
be installed to speed up package retrieval. The physical server might also need
configuration changes, e.g., RAID storage and networking setup. The whole install
process is typically between 10 to 20 minutes from the server start to installation
complete. Automatized installation is fast, easy, and configurations are consistent
across the hosts, which are good features in larger environments.

Although LoadGenerator hosts are installed with custom templates, there are
also ready-to-use tools which can be used to ease the management of physical servers
and use technique similar to those presented here. Ubuntu Metal as a Service is one
example which can be used to manage physical servers, i.e., metal [44].
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6.3 OpenStack Heat deployment

As introduced earlier, Heat is the OpenStack component for orchestration. Its target
is to manage the lifecycle of resources found in OpenStack cloud [45]. In practice,
Heat can create, configure, delete etc. most of the resources available in OpenStack,
thus it is very powerful tool.

By using Heat, a large LoadGenerator setup can be deployed in hours. This can
be compared to manual configuration of one instance which could take the same
time, i.e., Heat enables fast and efficient scaling. The main trick is to convert code-
like templates into usable resources.

Heat uses (YAML Ain’t Markup Language) (YAML) formatted templates which
contain Heat or Amazon Web Services (AWS) markup for descriptions. In other
words, these templates contain the instructions what to create in a form that both,
human user and Heat, can understand. The Heat format and available resources are
defined in [46] and some example templates are shared in GitHub [47].

With LoadGenerator, Heat is used to deploy networks and VMs so that the
network emulation is ready to run. Of course, Heat has no clue about LTE Emulators
but it will be used to launch scripts that will do the EMU configuration part. Section
5.3 tells more about EMU configuration itself.

The basic unit with Heat is a stack. A stack is a combination of resources which
are grouped together when the stack is created. Most of the Heat operations are
targeted to a stack; like create, delete, modify, check, update etc. are typical op-
erations. A stack is the total output of a template or a joint of templates. The
same template can be used multiple times and only the parameters are changed
which need to be changed are changed. For example, a typical scenario is to deploy
database VM to another network or scale the database cluster with a new node.
Heat can also be integrated to telemetry service for automatic scaling based on the
load.

The basic usage of Heat requires that the service is installed in the cloud. When
Heat is available, the first step is to create the stack.yaml file to describe what
one wants to deploy. Once the template is ready, it can be given to Heat service,
for example, via heat-pythonclient by giving command ’heat stack-create NAME
-f stack.yaml -P "ext-net=EXTNETNAME param=VALUE ..." ’ where -P defines
optional parameters that are inserted into the template automatically.

A LoadGenerator deployment can consist of multiple stacks thus running the heat
commands, with right parameters, can be a challenge. To solve this problem, stack
controlling can be done via scripts. This is presented in Figure 6.2 where scripts,
templates and cloud services are drawn. The arrows in the figure describe how these
elements are related to each other.
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Figure 6.2: Scripts on Master are using Heat and Heat templates to deploy VMs
and networks to compute hosts.

In practice, this layout is used to deploy LoadGenerator reliably and fast in large
scale by using Heat underneath. The script called loadgen_deploy.sh provides a
text user interface to insert variables, which can also be loaded automatically from
loadgen_variables.sh. These variables are used to select the networks, compute
hosts, etc. so that Heat will do the deployment in right place and with right size.

Second source for instructions are the templates and the first one, control.yaml,
is for deploying a control network and a control VM, which are deployed once on
every compute hosts used. The second template, pack.yaml, is for one emulator
pack installation.

Loadgen_deploy.sh will insert the given variables and template names into heat
stack-create command. Heat-pythonclient then combines the .yaml templates and
given parameters, and makes the requests to a cloud controller. The controller then
creates the networks and VMs according Heat’s input by instructing the compute
hosts.

After the controller and compute hosts have created the networks and VMs, which
are connected together, the configuration may start. Some common configuration
changes and updates can be made to the installation images already before Heat to
reduce duplicate steps. However, Heat can be used to do the full configuration from
plain cloud-image, but in LoadGenerator’s case Heat is used to configure VMs to
different roles.

For example, Heat could install a database to one VM and a web server to an-
other VM. Heat could add a database user with password and transfer the login
information to the web server, too. On the web server some application is installed
with database access based on the given credentials, and the final output of the
Heat template is the floating IP from where the application can accessed. To get
everything completed in the right order, wait conditions and signaling can be used.
RackSpace offers some good tutorials, like this example, on their site [48].
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How does Heat make this this configuration? Heat uses cloud-init to configure
VMs during the first boot. Cloud-init is a program installed in the (cloud) image of
the chosen operating system. When VMs is booted, an image is loaded and cloud-
init is requesting information from the network. In this phase, the configuration
script from the template is inserted to the instance.

In LoadGenerator’s case, the script in the template will do the configuration
and receive files from the Master server which acts as our central repository for
the custom files. Cloud-init can also send signals by using curl about the process
success and failures so that even complicated chains can be made to verify that
things are done in right order and required information is passed between VMs, and
the user, too. Signals also help administrators to determine if the deployment has
been successful or not.

Figure 6.3: Graphical presentation of Heat-stack from Horizon. Everything is green,
meaning successful, and create is completed.

The deployment output of pack.yaml, an EMU pack, typically contains three
instances and two networks which are APP VM, APP network, EMU VM, UE
network and UE VM. Figure 6.3 shows the output of pack.yaml from the Horizon
dashboard. VMs are also connected to the control network created by the first
template, control.yaml. Control network is used for control script networking and
Internet access.

6.4 Load generation

Load in LTE networks is divided into two parts: C-plane and U-plane. C-plane
mostly causes load to MME which is the central point for signaling in the network.
Signaling does not cause so much load on networking layer but the signal messages
have to be processed which requires computation time from the elements. This sec-
tion presents some basic information related to load generation with LoadGenerator.
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U-plane encapsulates the traffic to carry it through the LTE network, so network
throughput and the number of sessions is the main performance values on U-plane.
U-plane loads GWs the most because it terminates the GTP tunnels and connects
UEs to external networks.

C-plane and U-plane are divided into different core elements, thus LoadGenerator
setup can be different depending on the use case: payload on U-plane does not load
MME, thus it possible to leave out the U-plane generation, when MME is tested.
Dropping out U-plane source in LoadGenerator is possible and modular layout saves
also resources when unnecessary components are not used.

After deployment, the system is ready for testing. System fine tuning and control
is done by using control scripts and network. Operating system in use is regular
Debian 8.2. installation so basically system can run any application as load. Load-
Generator can be compared to a botnet of machines which can be controlled to cause
traffic flooding

Every test should have a plan, method and goal to get results efficiently. The
same applies with LoadGenerator which can be customized to specific test case. This
thesis presents some deployments and test results in Chapter 7 but not all cases are
covered or tested. This thesis is only using minimum LTE architecture but often
the interest is in some support services which are monitoring the LTE elements, for
example.

6.4.1 Traffic modeling

When emulation is used, most of the traffic can be generated by using existing
network test applications. Cloud virtualization can run almost any operating system
in a VM and the VM can run multiple applications. Single application can generate
a huge U-plane load but it does not respond to real network where multiple users will
share the capacity available. For more realistic traffic generation scenarios custom
applications with proper parameters to adjust the behavior are needed.

One simple approach to model traffic is the method of record and playback: real
traffic is recorded and only the headers are changed to get the traffic to a new
destination, and the rate and count can also be modified. In this thesis the case-
study is to mimic a large number of future IoT devices. Record and playback is not
very convenient for LoadGenerator because the IoT devices are so simple that the
payload is easy to generate in real-time. For other use cases record and playback
should provide traffic which is very close to real life.

Another option to load U-plane is to study the payload and find out what is the
distribution in packet sizes and how many destination-source tuples there are. With
these details it is possible to generate dummy data which is sent over the network
causing load which equals real network load. From network device’s point of view
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the payload content does not matter because only the headers are processed and
payload is kept the same during transfer.

With LoadGenerator the scalability and simple input and output are important
features. Most of the applications are made for testing one connection but with
LoadGenerator there are millions of UEs using the network and every connection
should have some kind of control and there are very limited resources available.
Thus, customized application is needed to combine the needed features from different
modeling techniques: one application will generate traffic to n UEs with customized
payload. For simple IoT devices this is quite a simple problem: typical scenario is
to send sensor data in a fixed payload periodically, e.g., electric meter sends usage
data in every 15 minutes.

6.4.2 Traffic generation

As introduced earlier, GWs are the termination point for GTP tunnels coming from
a large number of UEs and ENBs. LoadGenerator can scale horizontally to add
more UEs and ENBs to load the GWs more. The system can also be scaled on per
UE level where the running application defines how much payload is sent. These
two parameters, the amount of GTP tunnels and the payload, define the load on
GWs.

Scapy is a library for Python and it can be used to create custom packets. Scapy
has functions which will form the packets according to the parameters provided.
Scapy usage doesn’t require low level knowledge of the protocol implementations:
it is enough to tell what protocols to use and what will be the payload and options
for the protocol. LoadGenerator has some example programs which use Scapy to
generate the packets.

For low amount of TCP and UDP session with maximum throughput scenario,
iperf [49] is a typical test application. Iperf has client-server model and it provides
good statistics. EMU provides same kind of application like iperf but it can create
a large number of streams and TCP and UDP sessions. These applications are good
for generating massive U-plane load.

6.4.3 LTE transactions generation

LTE signaling is defined in the specifications and there are multiple configuration
parameters which will change the operation of a network or some part of it. Modify-
ing these options and optimizing the network for IoT devices will change the C-plane
load. Most of the signaling is related in handling of the mobility of the UE and if
IoT devices have less mobility, the signaling should also be reduced. One goal for
LoadGenerator is to be able to emulate networks where IoT optimization have been
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implemented.
LoadGenerator can be run with normal and simplified ENB (RANPT). With

IoT tests the simplified ENB is more interesting and it scales much better. Simpli-
fied ENB supports attach, detach, context release which equals idle, service request
which equals (re)activation of the bearer, tracking area update, detach and some
other bearer modifications. The other functions which were not separately men-
tioned are not used in this thesis. The listed functions provide simple connectivity
for IoT like device. Normal ENB extends support to full 3GPP compliance, e.g.,
hand-overs are supported.

As introduced, LTE Emulators do not emulate L1 air interface so the changes
in mobility have to be launched with a workaround. This is not how real network
operate but core does not see this difference. For example, the context release
command is exactly the same even though UE controls when it is launched.

With the features of simplified ENB and with the own traffic generation appli-
cation the following scenario can be implemented: application attaches n UEs in
random intervals within defined time distribution, e.g., 5000 attaches in 10 minutes
on single EMU pack. After the attach is complete UE sends first data packet to
application server and goes idle according idle timer, e.g., 10 seconds. After 15
minutes the UE wants to send the next data packet and sends a service request to
reactivate the bearer, sends the data packet and goes back to sleep. This loop can
be left on to emulate some sensor network as a static background load.

The simplified ENB in the EMU has been designed to generate large amount of
events to load the core on C-plane. There are some predefined EMU macros for load
generation and EMU can be extended with external scripts. EMU can be controlled
by giving text-based commands, thus it is easy to create all kind of events by using
macros, scripts and manual commands.

6.4.4 Measuring and visualization

Monitoring data is needed to measure and visualize the behavior of the element(s)
under test. Real core elements, MME and GW, can provide good statistics about
their usage but monitoring EMUs is not as straightforward. EMUs provide some
internal statistics about C-plane events but U-plane statistics have to be gathered
from operating system side.

Luckily, Linux has good statistics for network interfaces, thus it is logical to create
a virtual network interface for every ENB to monitor the U-plane load. These vNIC
statistics are read and throughput values are calculated. These measurements are
published to Redis Pub/Sub channel from where values can be retrieved for further
usage.

One demo visualization example is to generate locations for ENBs based on user
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density data and put them on a map. Mapped ENBs are given IDs and they are
grouped so that network segments are created. Given IDs will match the ones in
the emulated system and close to real-time information can be seen on the map.
For example, emulated ENB will publish its address and throughput to Redis and
a map-dashboard will retrieve the information and show it on the map.
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7. TESTS AND RESULTS

LoadGenerator can be used in multiple configurations and environments. This chap-
ter will test the current features of LoadGenerator in fully emulated mode and with
real MME and GW. Also small scale comparison between non-virtualized and Open-
Stack deployments is made to estimate the virtualization overhead.

LoadGenerator is horizontally scalable, thus the maximum performance from
single compute host is studied more carefully. To test the maximum load against
real elements LoadGenerator will be scaled so that it can overload the real MME
and GW. These tests will provide an estimation how much resources LoadGenerator
will need to perform a specified loading scenario.

These results give an example what LoadGenerator can achieve but these results
should not be taken as absolute values because they vary a lot depending on the
configuration. To get the performance on the level that is presented here, should be
possible without special optimization which could improve the performance a lot.

7.1 U-plane load

GW is the element handling the U-plane load, thus a test is made if LoadGenerator
can overload GW. The load is generated by 495 UEs from 495 ENBs from five
compute hosts and every UE has iperf client for traffic generation. The ratio of 1
UE active per 1 ENB is just for simplicity because iperf does not support multiple
interfaces at once.

Iperf is a synthetic tool and TCP mode was used, thus every client tries to send
or receive as much as they can. TCP is fair protocol, thus it will define how the
networks capacity is shared. In these tests the network does not limit the throughput
of single UE, but real GW supports traffic shaping and quality of service.

Figure 7.1 shows the statistics from the GW. In the first third UEs are only
sending, thus uplink is fully utilized. In the middle third, the flow is altered by
switching parameter -d on meaning that the iperf server will send data back to the
clients resulting that both uplink and downlink are utilized. The last third is pure
downlink. In all of the three cases the limiting factor is the GW throughput. The
overload alarm was also reported by the GW monitoring application, which confirms
the result.

When the results are compared to typical link speeds, saturating 1 gigabit link
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Figure 7.1: Maximum downlink and uplink measurement statistics where GW is the
bottleneck.

is possible with single EMU process in right configuration. In non-virtualized envi-
ronment close to 1,5 Gbit/s has been reached and in a OpenStack environment the
number is close to 1 Gbit/s. These numbers are greater than LTE speeds nowadays
and for IoT they offer a lot of throughput. A 10GE link has not been saturated
because of the GW scalability.

7.2 C-plane load

Most of the C-plane load is expected to hit MME because it is the element handling
the signaling between core elements. For example, in the attach procedure MME
has to communicate with the ENB, HSS and GW to set up connection for the UE.
In the next test the system is ramped up from zero to 2 million UEs.

As expected, during the attach stress-test MME was the bottleneck with a bit
over 500 successful attaches per second meaning that the full system ramp-up to
two million UEs is taking approximately one hour. Figure 7.2 shows the number of
attached UEs in total on the left, and on the right there are number of activations
(attaches) per second. In this test 693 ENBs were used and they all had 2890 UEs
each. In total the maximum was 2002770 UEs.

Figure 7.2: Attaching two million UEs takes approximately one hour and MME is
the bottleneck.

In overall, generating plain C-plane load and causing overload to MME can be
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done with a low amount of resources. On C-plane the environment, virtualized or
non-virtualized, does not affect so much on the results because generating events is
lightweight, especially with simplified emulator versions.

For example, simplified ENB is made so that it can also send a batch of events.
Batch of 100 attaches can already cause the overload function discard some of the
request in the real MME. In other words, the EPC will be the limiting factor on C-
plane because the core signaling operations are much heavier compared to generating
the request. A single simplified ENB can generate hundreds of attach request per
second and when this is multiplied with the amount of ENBs the total number will
be really huge.

Based on this evaluation LoadGenerator should be able to stress out any system
available on C-plane with basic LTE produces like attach and detach. However, the
performance on more detailed procedures has not been tested in large scale. The
mapping between UE behavior simulation and event creation adds some overhead
but in many cases the pure stress-testing without control over single UE may be
preferred.

7.3 Scalability

The scalability of LoadGenerator consists of multiple dimensions. In short, hard-
ware, virtualization, software, and the combination and configuration of these will
affect the outcome. This section presents how the results change when some of the
parameters are adjusted.

On cloud level LoadGenerator can be scaled by deploying more networks and
VMs. This expansion can continue as long as the physical hosts have resources
available. Figure 7.3 shows an example where each compute host has approximately
500000 UEs so the total number of UEs is close to 4 million. There are still some
RAM unallocated but CPU over-commit starts to limit how much load a single host
can generate. Also the compute host operating system shows that close to 100 GB
of RAM is free even when the 500000 UEs are attached, thus there is also some
space for optimization in the Heat templates.

LoadGenerator is horizontally scalable and adding more hardware will always
increase the performance numbers. Thus, the most informative results are the num-
bers with a certain amount of RAM and CPU. However, it is hard to estimate how
much a single process in a VM will consume the host system resources. This leads
to a situation where the most accurate results are gathered by measuring specific
unit as a whole, for example, how a single compute host performs under load.

Especially with high I/O load, the CPU load numbers are unreliable source.
Study about OVS switch shows clearly that CPU cycle usage will grow linearly with
the offered network load where as CPU load does not [38]. When CPU cycle usage
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Figure 7.3: Each compute host is hosting 99 emulator packs which can support al-
most 500000 UEs with U-plane support. In total, these eight compute hosts support
close to 4 million UEs.

is the only reliable source, it is even harder to estimate the bottlenecks of the setup.
Linux performance analysis program called perf can be used to analyze low level
performance from the system and hardware counters, too.

Figure 7.4: The scalability of U-plane on single compute host when the number of
active ENBs is added.

Figure 7.4 shows how the number of ENBs per compute host affects the U-plane
performance. Results are averages from three measurements from all the ENBs
which were active and iperf was sending data from single UE per ENB, and the
rest UEs were attached but not generating traffic. In total the host was running
99 ENBs with close to 5000 UEs attached on each ENB. The results show that
single emulated ENB can achieve throughput of close to 800 Mbit/s in OpenStack
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environment. The peak total throughput is close to 2,5 Gbit/s, thus with five to six
compute hosts it should be possible to saturate a 10GE link.

Optimizing the system is also problematic when a single variable can make a
huge difference in performance or scalability. Multiple default values can cause big
problems in many places. For example, the cloud controller has to scale to support
large number of ports and networks and compute host virtualization has to be able to
share the resources efficiently. The worst scenario in networked services is typically
an exponential growth in response times that can collapse the service waiting for
the response.

Figure 7.5: Compute host ring buffer size has huge effect on performance stability
in the setup.

One low level configuration example is NIC buffer size. Figure 7.5 shows how
basic buffer setting makes the system very unstable from a performance point of
view. Each buffer size was tested three times over one minute window and then
switched to next buffer size and this was repeated 34 times by a test script. The
line presents the mean values from these measurements and low-high marks present
the min-max range seen in the measurements.

7.4 Results

LoadGenerator and LTE Emulators can be deployed in multiple configurations as
presented earlier. These configurations affect the system performance. In short,
main configuration matrix consists of: 1) Load type: pure signaling or signaling
and U-plane payload. 2) Environment: non-virtualized or virtualized. 3) Emulation
level: fully emulated or partly emulated.



7. Tests and results 62

Pure signaling without U-plane payload connections will use very little resources
and can be easily scaled on single machine to support millions of subscribers and
thousands of base-stations if enough IP addresses are available.

U-plane source memory consumption varies according the payload application.
For example, a compute host with 256 GB of RAM hosting 500000 UEs means that
only a half a megabyte per UE is available. Compared to a smart-phone it is a
tiny amount of RAM but for a simple IoT device it is plenty. In practice, payload
applications have to use resources efficiently.

Table 7.1: Performance and resource consumption
EMU RAM usage
with 10000 UEs

Non-virtualized
U-plane throughput

Virtualized U-plane
throughput

Fully emulated 10 GB 1,2 Gbit/s 0,7 Gbit/s
With real EPC 30 MB 1,3 Gbit/s 0,8 Gbit/s

Table 7.1 shows an overview about memory consumption and U-plane perfor-
mance in different configurations. The memory consumption value is an average
from a larger setup and the throughput values are maximum values from single UE.
In overall, emulated EPC is a big memory consumer and virtualization drops U-plane
performance. On the other hand, virtualization offers a way to utilize host machine
better by using multiple deployments that is not shown in the table. Scalability
outperforms the losses of virtualization.

The performance of fully emulated setup depends also heavily on the amount of
available CPUs when every LTE element can consume one CPU under heavy load.
Also CPU pinning, Linux distribution, task prioritization etc. have a noticeable
effect on the results, thus only a general rule should be extracted from these results.
The absolute values may differ a lot between the environments.

7.5 Discussion

Horizontal scalability makes it possible to adjust setup size according the needs from
small scale trials to stress testing, also in the future. However, the non-linearity in
scalability has to kept in mind when scaling the system but it is possible to scale the
system to support large scenarios. Standard server hardware is also cheaper than
specialized testing tools and software components are open-source or developed in
Nokia meaning that LoadGenerator can be taken use with low costs inside Nokia.

C-plane load generation requires much less resources compared to U-plane gen-
eration mainly for three reason. First, the performance variant (simplified) ENB is
optimized for light operation. Second, the U-plane mapping adds over-head when
network connections are created and connected to the emulator processes. Third,
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the actual application generating the U-plane payload may not be optimized for the
task.

Resource usage and performance also depends on the configuration size. When
more elements are emulated, the more resource LoadGenerator uses, and the less
CPU time is available per process if scaling is done on single host. Adding more
hardware improves scalability, whereas external real elements reduce the load from
LoadGenerator. External EPC is also needed to scale the core when emulated EPC
can support only a limited size RAN.

Depending on the use case, the memory consumption varies from tens of kilobytes
per UE on simple signaling scenarios to multiple megabytes per UE on complex
scenarios with U-plane load. Decent server hardware with Linux host and guest
systems should support throughput of a couple gigabits per second when EMUs are
scaled properly. Cloud orchestration makes the installation and scaling easy but on
the other hand standard cloud network stack can’t offer the best performance.

To sum it up, LoadGenerator can be deployed and scaled easily. It can overload
real LTE elements on C and U-plane, but the performance depends heavily on
environment and configuration. Results confirm that LoadGenerator fulfills the
targets that were set for the development.
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8. CONCLUSIONS

Computing clouds offer scalability which was combined to network emulation in
this thesis. The outcome, LoadGenerator, is a horizontally scalable tool for LTE
network emulation. LoadGenerator has multiple use cases from basic research to
LTE network element stress-testing.

This thesis also presented basic operation of LTE and the current status of cellular
IoT. Cloud networking and orchestration were studied and used so that LoadGen-
erator’s goals were met. The main technical problems were related how to scale and
virtualize network efficiently with existing open-source components.

8.1 LoadGenerator as a tool

LoadGenerator is a proof-of-concept which has multiple limitations but the main
features are working and the system can be developed forward. Thus, it can be said
that the original idea has evolved into a tool which has a value: large LTE networks
can be emulated and the system especially suits to IoT cases.

A programmable testbed, like LoadGenerator, can be customized for multiple use
cases. Different scenarios can be configured to create live end-to-end demos, with
real and emulated devices mixed. The results show that the concept is working in
end-to-end configuration and it fulfills the basic goals that were set, and that the
selected components are working. Next is the evaluation of how LoadGenerator can
be used and what benefits it brings.

The basic feature for LoadGenerator is that it can achieve large loads on U- and
C-plane and horizontal scalability provides capacity for future scenarios. The whole
setup can be deployed on standard hardware with multiple configurations. It can
be used to ease generation of single events to support development work but it can
also be scaled up to support large scale stress testing. The ability to create load
levels above production environment can be used in product verification.

A good testing tool is easy to use, has enough features, and can provide accu-
rate results. LTE Emulators has not been designed for large scale load generation,
but with some modifications the setup runs stably also in cloud environments. De-
ployment can be automatized and combined to familiar technologies like OpenStack
orchestration to ease initial deployment. LTE configuration can be assisted with
scripts that will spread selected configuration across the setup, but good LTE and
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cloud knowledge is needed to solve out problems.
After cloud environment, networking, and support services are set up LoadGen-

erator can be deployed. EMU usage in a cloud environment can be compared to a
Software as a Service model when local installations are not needed. When the net-
work environment and configuration are deployed in sync, LoadGenerator offers the
possibility to create ready-to-use service for its users. This extends the availability
of LTE Emulators. Although LoadGenerator can configure itself quite well, changes
in network configuration have to be told to the system by the user. Naturally Load-
Generator cannot remove all responsibility from the user but can greatly help by
reducing mechanical steps. The detailed configuration is always up to the user and
environment.

LTE Emulators have a basic configuration validator to find out certain basic
configuration errors but it can not be used to validate large setups nor the cloud
environment. The configuration validator can verify single configurations which
might help in finding initial settings. If a setup is working with a couple elements
in parallel, it should scale more if the same configuration logic is applied to new
elements. In other words, find one working configuration and copy it to scale the
setup. The same idea is behind the configuration scripts which automate mechanical
steps during the configuration.

The fact that cellular networks have evolved through many standards and gen-
erations, with different options and settings, can cause surprises in compatibility.
The method of trial and error is slow when the variable count is large. Sorting out
compatibility problems can be challenging if low level debugging is needed. On the
other hand, when real issues are found, they can be fixed, which is the purpose of
testing. Already during the development of LoadGenerator, multiple features and
bugs have been found from multiple elements.

The goal in this thesis was not to do exact validation or performance testing
related to real LTE elements or IoT optimizations. Nevertheless, LoadGenerator
and real elements can provide measurement data about the tested scenarios and
information can be easily stored in a database or processed in real time. This
data can be processed in multiple ways: test the functionality and maturity of
new technologies and ideas to support the decision making, test real elements with
realistic load, create visual demos about the functionality of network, etc. To sum
it up, LoadGenerator has multiple use cases.

For innovation lab it is essential to have good tools. LoadGenerator adds the
ability to load elements with realistic load which expands the available tool-set
for the lab. This accelerates testing and innovation processes when it is possible
to create scenarios to support stories behind the future technologies. End-to-end
demos are essential in proofing of new concepts. When a lab with good resources
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and tools is available, the work can concentrate more on the actual research and
innovation.

For IoT LTE Emulators provide a modifiable environment where new functions
can be added and old ones can be disabled. This gives a new dimension compared
to simulations because real elements can be mixed with LoadGenerator and overall
functionality can be tested, with the modifications existing in the system. The ability
of early testing and error fixing helps to reduce costs in software development. In
overall, the goal for LTE Emulators has been the ability to provide a testing pair,
a functional element over a real interface during development when real devices are
not yet existing for the tests.

Clouds and many other open-source technologies have entered the telecommu-
nications industry and LoadGenerator is an example that all software in use is
open-source except the LTE Emulators. Externally developed software requires
monitoring and basic research to find out and use the right combination of technolo-
gies. In open-source community development is done in co-operation, i.e., everyone
can contribute, and the results are shared to accelerate the overall process. On the
other hand, the continuation of the work is not guaranteed and the goals might be
different.

8.2 Future work

Future networks will be more diverse and more scalable, i.e., they will serve more
devices and more specialized needs. This change has to taken into account during
the development. However, realistic modeling of a network can be a complicated
task; especially in large scale. To assist with the development, scalable research and
testing tools should be developed to model futuristic networks.

This thesis used network emulation which is interesting technique to model net-
works that can be connected to real elements, too. Network emulation is less used
compared to network simulation although network emulation combines some of the
best sides of simulation and real life testing. Network emulation has potential to
model future networks, also in very large scale, thus it could be used more in the
future when network sizes are also growing.

LoadGenerator is an example tool which can support the evolution of telecom-
munication. The development of LoadGenerator will continue after this thesis is
finished and the results have been promising so far. LoadGenerator definitely brings
new opportunities inside Nokia although the life-cycle of LoadGenerator is open.
From a scientific point of view, LoadGenerator could evolve into a system which
could provide accurate measurements from different settings, technologies and net-
work elements.

The scale-out of LTE Emulators in cloud resulted a very large network emula-



8. Conclusions 67

tion and it is clear that LoadGenerator has some potential to replace stress-testing
tools, too. It is also possible to tune the system to do concept validation based on
emulation, e.g., new IoT network optimizations. There are multiple use cases for
LoadGenerator and the system has gained some interest inside Nokia.

The stress testing aspect is a never ending optimization game where the goal
is to generate more, and more realistic traffic on the line with optimized resource
usage. Also, new standards and features should be implemented into emulation as
fast as possible. In short, these kind of tools will never be completed because they
can always be optimized and developed further. Continuous integration should be
applied to speed up development.

Another issue is the support for LTE Emulators themselves because it defines the
LTE features. The concept of LoadGenerator could also be used in the future with
5G emulations to improve the next generation of network emulation inside Nokia.
Currently it is hard to say what exactly happens with 5G and how is should be
emulated. However, well-educated guesses can be made to develop 5G emulators
already in 2016. Although IoT and especially 5G are not standardized terms, they
are widely used and industry is investing these topics. LoadGenerator’s goal is to
support the development of these huge technological changes.

At the time when this thesis process ends, LoadGenerator is in a state that it could
be taken into wider use with some limitations. LoadGenerator uses components
which were fast to take in use, however they may not be optimal in the long run.
This is often the case in innovation projects where the target is to prove the concept
rather than make a ready-to-use tool. LoadGenerator should be refactored with
proper software components to provide more stable, accurate and scalable tool for
the future usage.

In overall, one sure thing is that the networks will grow bigger and bigger. Expo-
nential growth will require new technologies and provide new research topics with
multiple aspects. New topics can be found by monitoring open-source software and
standards which are public. These public processes are like open windows to see
what will likely happen in the future.

Bigger networks need also new type of tools for research. As said, network em-
ulation seems to be one solution to model very large networks accurately. Higher
link rates also impose new low level problems when latency is nearing to zero. This
has to be taken into account when using software defined environments where strict
time requirements can cause multiple problems. In practice, traditional network
stack will have problems how to scale to very fast link rates like 10GE and above,
which also affect network emulation.

New environments should be tested whether they can support network emulation.
For example, scaling in a non-virtualized environment and building the setup on top
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of containers should be studied. Specialized network frameworks are also interesting
research topic which could lead to solving of multiple performance problems related
to telecommunications, not to mention the possibilities of virtualized and software
defined networking in overall.

In short, the programmable world has changed and will continue to change our
lives. The pace is accelerating when more and more things are networked. Many
small things can cause big problems when they are connected to old systems which
have not been designed for massive scalability.
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