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The Discrete Time Network Simulator (DTNS) is a System-on-Chip (SoC) simulator

developed at Tampere University of Technology. It is used to analyze interconnection

architectures and systems built around them. The abstraction level is between the

conventional hardware simulators, such as Mentor Graphics ModelSim, and algorithm

level simulators, such as Synopsys System Studio. 

DNTS makes it possible to get cycle-accurate information about the communication while

other high-level tools often lack timing completely. This is because DTNS is a time-

driven simulator where the simulated time advances in fixed increments of half a clock

cycle and the system bus is always simulated at that level of detail.

The simulator itself is programmed in C and the system design is described in C or C++

programming language with detail level from high level functional code to almost

hardware description language level code. The accuracy of the simulation increases as the

model is refined. However, this also makes the simulation times longer. The goal of this

thesis work was to develop a distributed version of DTNS as a remedy. 

The emphasis on the system bus made it a natural point of partitioning. The simulator was

split to a central core process and separate processes for system component models which

can then be executed in parallel. Processes communicate any writes to the system bus to

the core process which then accumulates them and communicates changes to all other
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processes. At the same time all processes synchronize with the core process after every

simulation step.

For communication between processes executed on different computers, it was originally

given as a premise that Common Object Request Broker Architecture (CORBA) should

be used. However, the amount of overhead was found to be too significant and another

implementation that communicated directly over the TCP/IP protocol was created, too.

For performance testing a statistical model of a H.263 video encoder was used. The

model was instrumented to mimic different complexity levels with artificial delays.

Multiple simulations was then executed using both communication implementations while

varying the delay gradually from very high level and fast model to very complex and

slow. Also, the number of computers was varied from one to three.

The measured wall clock times of these simulations clearly show the high overhead of

CORBA in comparison to TCP/IP. Both implementation were able to speed-up the

simulation as the models became slower. The performance of the TCP/IP implementation

seems rather impressive.

The distribution method of DTNS was also used to distribute a commercial simulator,

ModelSim. The system consisted of two to eight TUTWLAN terminal and this was

distributed up to eight simulators executed in parallel with signals passed between them

using TCP/IP protocol. The simulation times show that this method is capable of

significant speed-up even in real world simulations if the system model is in fine enough

detail. 

In conclusion the distribution of DTNS is not very useful in real life as the models are

unlikely to be slow enough to see any speed-up. This new version of DTNS is, however,

also capable of parallel execution on a single computer with, for example, a multi-core

processor and without network overhead simulation times can be improved noticeably

even for higher level models.
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Discrete Time Network Simulator (DTNS) on System-on-Chip (SoC) -simulaattori, joka

on kehitetty Tampereen teknillisessä yliopistossa. Se on tarkoitettu yhteysarkkitehtuurien

ja niiden ympärille rakennettujen järjestelmien analysointiin. Sen abstraktiotaso on tavan-

omaisten laitteistosimulaattorien, kuten Mentor Graphics ModelSim, ja algoritmitason

simulaattorien, kuten Synopsys System Studio, väliltä. 

DTNS:lla on mahdollista saada ajoitustietoja järjestelmäväylällä tapahtuvasta liikennöin-

nistä kellojakson tarkkuudella, kun taas useilla muilla korkean tason työkaluilla ei saada

ollenkaan ajoitustietoja. Tämä johtuu siitä, että DTNS on aikaan perustuva simulaattori,

jossa simuloitu aika etenee vakiomittaisina, puolen kellojakson hyppäyksinä ja väylä

simuloidaan aina tällä tarkkuudella.

Simulaattori on ohjelmoitu C-kielellä ja mallinnettava järjestelmä voidaan kuvata joko C

tai C++ -kielillä. Kuvaus voidaan tehdä hyvin korkealla tasolla tai jopa lähes laitteiston-

kuvauskielen tasolla. Simulaation tarkkuus tietysti paranee mitä alhaisemman tason

kuvausta käytetään. Tämä kuitenkin hidastaa simulaatiota. Tämän työn tarkoitus olikin

nopeuttaa simulaatiota luomalla DTNS:stä hajautettu versio. 

Painopiste järjestelmäväylän simuloinnissa määritti luonnollisen osiointikohdan hajau-

tusta ajatellen. Simulaattori hajotettiin ydinprosessiin ja komponenttimalleja suorittaviin

prosesseihin. Komponenttiprosessit kertovat ydinprosessille mitä ne haluavat kirjoittaa

väylälle ja ydinprosessi yhdistää saamansa tiedot ja välittää muutokset muille prosesseille.



Tiivistelmä v

Samalla kaikki prosessit synkronoidaan ydinprosessin kanssa jokaisen simulaatioaskeleen

jälkeen.

Eri koneilla suoritettavien prosessien väliseen kommunikointiin oli alun perin tehtävänan-

nossa määritelty käytettäväksi Common Object Request Broker Architecturea (CORBA).

Sen aiheuttama rasite todettiin kuitenkin niin huomattavaksi, että hajautus toteutettiin

myös käyttämällä suoraan TCP/IP-protokollaa. 

Suorituskyvyn mittaamista varten käytettiin tilastollisesti H.263-videonpakkausta mallin-

tavaa järjestelmää, johon lisättiin mahdollisuus lisätä keinotekoista viivettä eri abstraktio-

tasojen mallintamiseksi. Tästä suoritettiin useita simulaatioita käyttäen molempia hajau-

tustoteutuksia. Simulaatioissa vaihdeltiin asteittain sekä keinotekoista viivettä nopeasta

hyvin korkean tason kuvauksesta hitaaseen hyvin matalan tason kuvaukseen, että käytet-

tyjen tietokoneiden määrää yhdestä kolmeen.

Mitatut suoritusajat osoittavat selvästi CORBA:n suuren rasitteen TCP/IP:hen verrattuna.

Molemmilla toteutuksilla saatiin silti simulaatiota nopeutettua, kun mallien suoritusajat

kasvoivat. TCP/IP-toteutuksen suorituskyky näyttää melko vaikuttavalta.

DTNS:n hajautustapaa käytettiin myös kaupallisen laitteistosimulaattori ModelSimin

hajauttamiseen. Järjestelmä koostui kahdesta kahdeksaan TUTWLAN-päätettä ja nämä

hajautettiin jopa kahdeksaan eri simulaattoriin, joita suoritettiin rinnakkain TCP/IP-

protokollan välittäessä signaaleita niiden välillä. Simulaatio osoitti, että käytetyllä hajau-

tustavalla voidaan saada huomattava nopeutus jopa todellisissa simulaatioissa kunhan

mallinnus on tehty tarpeeksi tarkasti.

Yhteenvetona voidaan todeta, että hajautettu DTNS ei ole kuitenkaan käytännössä kovin

hyödyllinen, koska mallit eivät todennäköisesti ole riittävän hitaita. Uudella DTNS:lla on

kuitenkin mahdollista suorittaa simulaatio rinnakkaistettuna yhdellä, esimerkiksi moni-

ydinprosessorilla varustetulla, tietokoneella ja ilman verkon rasitetta simulaatioajat

nopeutuvat huomattavasti jopa korkeamman tason malleilla.
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1 Introduction

The functionality of a hardware design is usually confirmed with simulations. Finding

and fixing possible design errors and bottlenecks is easier, quicker, and also cheaper at an

early design phase. Therefore, there is a need for a simulation tool that can be used as

early as possible in the design flow. Previously there has been a lack of tools for hardware

simulator that can give exact information about the system in an early design phase. The

Discrete Time Network Simulator (DTNS) [1] was developed at Tampere University of

Technology to fill this need. With DTNS it is possible to get cycle-accurate information

about the communication between system component even with very high-level models.

However, with more detailed simulation models the simulation times of a complex system

tend to increase to an intolerable level. The goal of this thesis work was to develop a

distributed version of the DTNS to remedy the problems of overlong simulation times.

The idea is to find tasks that can be executed in any order, or, indeed, in parallel, without

altering the result. Then distributing these tasks to multiple computers to be executed in

parallel and, thus, reduce the overall wall-clock time needed for the simulation.

When the work was started on this thesis, it was given as a premise that Common Object

Request Broker Architecture (CORBA) should be used for inter-process communication.

However, when working with CORBA version the amount of overhead involved with it

was noticed. Therefore, it was decided to use an alternative communication method, also.

To reduce the communication overhead near to minimum, TCP/IP was used directly.

Later the results achieved with both of these version was compared. 
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The distribution method developed in this thesis for DTNS was also used to distribute a

commercial Hardware Description Language (HDL) simulator, ModelSim. A system

modeled in VHDL is partitioned to suitable size parts which are simulated on different

computers. The simulated parts communicate using TCP/IP with the aid of a simple

Foreign Language Interface (FLI) block.

The structure of this thesis is following. Parallel and distributed computing and problems

involved are discussed in Chapter 2. Also specific problems and possible solutions of

parallel simulation are discussed.

In Chapter 3 some communication methods available in the target environment for this

thesis work are introduced. The levels of abstraction and the overhead associated with

each method are discussed and compared.

The DTNS is introduced in Chapter 4. It is explained how the simulator works and how it

is build. Also the hardware design flow with DTNS is discussed.

The distribution of DTNS is explained in Chapter 5. It is shown how the simulator was

parallelized and how the distribution is handled using the CORBA remote object

abstraction and with a lower level TCP/IP byte stream abstraction. Finally it is shown

how the distribution method developed for DTNS was applied to a commercial VHDL

simulator.

Chapter 6 describes the test cases used for evaluation and shows the results. Two test

cases for DTNS were used. One is more theoretical and a second is a real-life simulation

of a video codec. Also test cases for the distributed VHDL simulation and the results are

presented here.

The thesis is concluded in Chapter 7 with the conclusion that the simulator was successful

and it would be beneficial to use DTNS in the future.



2 Distributed Computing

Despite the fast development in processor speeds, a single processor is still not fast

enough for major computation within reasonable time. The amount of data may also be so

huge that the memory available in a single computer is not enough. However, these

massive computations must be carried out and they can be done with distribution, where

several processors are computing at the same time for a common goal. Another reason for

distribution is to maximize the availability of services and data. 

2.1 Background

Traditionally heavy computing must have been done with expensive parallel computers

(also called as supercomputers) that can have thousands of processors [2, 3]. Load

balancing is a major concern because synchronization causes the faster processes to waste

processing time. Time is either spend waiting for a slower process to progress, or rolling

back to a previous state as a result of receiving a message too late, and therefore, doing

some of the processing all over again. In traditional parallel computers, communication

overhead is usually fairly small because inter-process communication can be handled

using shared memory, which is just like ordinary memory but can be accessed by more

than one processor.
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However, the expenses related to parallel computers often render them out of reach. As a

remedy, there has been a lot of interest in networks of workstations [4]. A network of

workstations (NOW) has significantly lower cost because ordinary desktop PCs can be

used to build them. Modern PCs, connected with a high-speed network, are capable of

serious computation with performance comparable to super-computers with only a

fraction of the cost. However, the network connecting the PCs is fairly slow compared to

shared memory. This makes the communication overhead worse by an order of magnitude

compared to parallel computers. Therefore, successful distribution requires more

sophisticated distributed algorithms, which can tolerate communication delays better.

For less serious computation the same workstations used in ordinary office work during

the daytime can be used for distributed computation during the night, which further

lowers the cost because no additional hardware is required. With this approach the

possible heterogeneity of the environment can cause problems and must be dealt with. For

example workstations can be running different operating systems, they most likely are of

different speeds or have completely different architectures. All this makes the distribution

even more difficult.

Despite the difficulties there are an increasing number of reports of successful NOW

computation projects. For example, the Google Internet search engine is estimated to be

powered by hundreds of thousands of Linux servers. Also many of the big Hollywood

movies have had their special effects rendered by farms of cheap PCs, for example, the

Lord of the Rings trilogy. The well-known SETI@home project [5] is an example of

successful use idle processor cycles of desktop PCs for scientific computation. There are

currently over 5,000,000 participants and it is in fact already the largest computation ever

done (measured in floating point operations), and it is still going on. 

2.2 Partitioning 

Partitioning means the way a complex task is divided for the available computers or

processors in case of a multiprocessor computer. The workload of each partition and their

communication needs must be taken into account. To fully take advantage of the available

hardware the workload of each partition should match the performance of the computer.
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Or, in case of equal computers, the partitions should have equal workloads, too. The

frequency of communication and size of messages needed between partitions can also be

a determining factor. Synchronization needs of possible partitions also affects the

frequency of communication needed.

In ray tracing the pixel values of the final image can be calculated without knowing

anything about the surrounding pixels. Therefore, partitioning is a simple case of giving

each processor a certain amount of pixels to render and then combine these pixels to form

the final image. With animation each computer can be given a range of frames it should

render and the frames can be combined later to complete the animation. Because different

frames can be rendered independently, there is no need to synchronize after every frame

to combine pixels.

All processors do not necessarily carry out a similar task like in the ray-tracing example.

Instead it is common that every processor has a different task and probably there are few

different tasks. Tasks can be quite different and have varying needs for local and shared

memory, for example.

However, in general, the distribution is not an easy task to do. In fact, developing

distributed algorithms requires particular expertise, and sometimes the computation of an

algorithm can be impractical to implement, although theoretically possible. The main

reason for this is that the communication overhead will become larger than the gain from

parallel computation.

2.3 Communication

When designing distributed applications one must choose a networking model by which

the different processes of the application communicate. The basic models to choose from

are server-client model [6], peer-to-peer model [7] and master-slave model.

Traditionally distributed applications have been designed to follow the server-client

model. In the server-client model there are one or more servers that usually do nothing

but wait requests from the clients and act upon them, and then there are clients who ask
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the server to do them services. The World Wide Web (WWW) is an example of the

server-client model where web servers offer the content and browsers request the offered

content based on the actions of the users.

In server-client model all communication is always between a server and a client and it is

initiated by the client. Clients never communicate directly with other clients. In larger

applications servers can, however, act as clients to other servers. It is possible that one of

the servers becomes a bottleneck for the whole systems performance.

Lately there has been a lot of discussion about the peer-to-peer model, mostly related to

the illegal file sharing over the Internet. There is also a lot of interest to this model in the

scientific world as there are no servers to cause bottlenecks. In peer-to-peer model all

participants are equal and can communicate with whomever they need to. Processes can

of course be grouped to neighborhoods or layers where communications between

different neighborhoods are handled by only a few processes and others can only

communicate within their own neighborhood.

In master-slave model, after the master-slave relationship is established, one master

controls the communication of one or more slaves. The master-slave model is more

common in hardware design and rarely seen in software.

In practice, the need for performance and availability can cause the server-client model to

resemble the peer-to-peer model and vice versa because of the difficulty of distributing

algorithms. The servers might often have to communicate with each other, for example a

distributed database must do this to keep the different copies of the data consistent. In the

peer-to-peer model some process can become responsible of synchronizing the whole

execution and, therefore, act very much like a server. However, it is usual that the

synchronizing of similar tasks is also distributed so that the process doing it changes over

time. This leads to a more fault tolerant overall system. 

The physical layer used for communication can be any network or point-to-point link

available. Ethernet networks are common and cheap network used today, which are used,

for example, to build the local area networks (LAN) in most, if not all, offices. Larger

distributed applications can use the whole Internet, and therefore, any IP compatible
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network. IP protocol is often used even with LANs. In chapter 3 IP and some higher level

protocols are look into.

2.4 Distributed Simulation

Physical behavior is usually simulated using a discrete event or discrete time model with

the former being more common. The difference is that in discrete event simulation events

can happen at any point in simulated time and simulated time jumps from one event to the

next in order. On the other hand, in discrete time simulation time advances in constant

discrete step and simulation events are aligned those steps. Both methodologies have been

used in distributed simulations. Distributed discrete event simulations are presented in [8,

9] and a distributed discrete time simulation in presented is this work.

The correctness of distributed simulation can be ensured by using either conservative or

optimistic evaluation [10]. The conservative approach will let the simulation advance

only when it is absolutely certain that no causality violation will occur. Whereas, the

optimistic approach allows parts of the simulation to proceed on their own. If a causality

violation is later detected, the simulation is rolled back to a known good state before the

conflict. After that, the simulation is proceeded in a way that avoids the problem.



3 Communication Methods

There are many ways for computer programs to communicate over a network. In this

Chapter the following widely available and used methods for inter-process

communication, TCP/IP, UDP/IP, RPC, shared file system, CORBA, and Java RMI, are

presented.

All the presented methods are available for workstations with any common networking

capable operating system. But not all these methods are usable for embedded systems

because the overhead they impose is too high. The basic low-level protocol for all of

these is the Internet Protocol (IP) [11].

This thesis concentrates on IP networking because it is most widely used. Other low level

protocols are, for example, AppleTalk and IPX. In a workstation environment the

network utilized is nowadays usually Ethernet. Other possible networks could be

LocalTalk and Token Ring. There are several versions of the Ethernet which differ by

their speed and have different physical cabling and small differences in the protocol.

Hardware is, however, usually downward compatible, if the physical layer has not

changed. For example, the gigabit Ethernet interfaces, which has started to become

commonplace in PC, are compatible with 100 and 10 megabit Ethernets, but of course,

then operate at the lower speed.

The focus will be on the functionality and any security implications are ignored. In

general applications made with any of these methods can be made reasonably secure with
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proper care, or additional layers such as using the Secure Socket Layer (SSL), even in

untrusted networks. The SSL can be used to add authentication and encryption to most

TCP/IP protocols, but secure versions of common protocols are readily available. All the

presented methods are available to most common operating systems of desktop PCs.

3.1 Sockets

The simplest form of inter-process communication in an IP network is realized with

sockets, which are the application programming interface (API) for Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) protocols. Sockets API also provide

access to UNIX sockets, which can be used within a single computer for inter-process

communication.

3.1.1 Background

The socket API was originally introduced in the BSD UNIX [12] but the growth of the

Internet has made clones of it available at practically every network-capable computer.

There are some rather small differences, however, between different operating systems,

which makes portability an issue. The language is not a liming factor as sockets can be

used with programming languages ranging from UNIX shell scripts to Java, and the

differences between languages are often surprisingly small.

If different computer architectures or operating systems will be used, their differences

must be taken into account. This situation can be handled by specifying the data formats

in detail. It is important to specify the byte ordering and word size for binary data and the

used character set for text-based communication, for example. Programmers must be very

careful with these things, too, if the code planned to be portable.

A socket is identified by a socket descriptor that can be used like a regular file descriptor

on a UNIX system. A socket (or file) descriptor is basically an integer that identifies a

socket (or file) when making system calls. On non-UNIX systems the API for using

sockets is mostly the same but socket descriptors are not necessarily compatible with file

descriptors.
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TCP and UDP provide only a mean to transport raw data between applications. Usually at

least some small application specific protocol on top of them is required. In a more

complex application, the custom made protocol would became so complicated that it is

safer to use one of the more advanced methods for inter-process communication just to

ensure that the communication layer actually works correctly and also to save

development time.

For identifying processes, both TCP and UDP have the concept of ports. This is needed

because an IP address only identifies the network interface of a computer. The port itself

is an unsigned 16-bit integer and the numbers are assigned independently for both

protocols.

On UNIX-like systems port numbers from 0 to 1023 are reserved for system services

executed with administrator permissions, the rest are available for everyone to use. A port

is allowed to be used by only one process at a time, and after a port is released, or closed,

there is a timeout before it can be re-opened to reduce the change that the new process is

confused with the previous one. Reserved port numbers are assigned by Internet Assigned

Numbers Authority [13].

A port is reserved with the API by opening a socket. The actual port number is not

usually important, but the server port must be one that all possible clients know, or can

find out from some kind of name service. If the port is not specified when a socket is

opened, it can later be requested from the operating system using the API.

The layers needed for TCP and UDP are shown in Figure 1. Ethernet is used as an

example here because it is widely used in office LANs today. Other possible lowest level

protocol could be Point-to-Point Protocol (PPP), which is used with serial lines and

modems.

Figure 1. Protocol layers for TCP and UDP over IP in an Ethernet LAN.

Ethernet frame (Payload 46 � 1500 bytes)

Payload

Header (14 bytes)

IP packetHeader (20 bytes)

TCP or UDP packetHeader (TCP 20+, UDP 8 bytes)

CRC (4 bytes)
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3.1.2 TCP/IP

Transmission Control Protocol (TCP) [14] is the standard protocol that is used for most of

the data transmissions over the Internet. It provides a two-way byte stream between two

processes running on computers connected by an IP network, or on the same computer.

Any data written by a process to the socket can be read by the process on the other end of

the connection. In more detail, any data sent is guaranteed to eventually arrive to the

receiver intact. No data will be lost and bytes arrive in the same order they were sent,

unless the connection is broken before transmission is complete. There is, however, no

guarantee on how long the transmission takes.

Behind the scenes TCP handles segmentation of the data and recovery from network

errors, such as packet lost, duplicate packets, and packets arriving in the wrong order. Of

course if the network is broken between the computers, no more data can be transmitted

and the connection is closed. In such a case it might not be known how much of the data

sent was received.

TCP/IP connections always has the concepts of a servers and clients. Nevertheless, this

does not prevent its use as a lower level protocol under a peer-to-peer protocol. An

example case of opening a TCP/IP connection is shown in Figure 2. A server opens a port

for anyone to connect to, and a client opens a connection to a known server port. After a

connection is made, there is no further difference between the server and the client.

However, the server can accept more than one connection to the same server port.

The most complicated part of using TCP sockets is making connections. Every

connection has two ends, the client and the server. Opening them is quite different. When

opening the server one must first open a server socket that reserves a server port from the

host computer to which the clients can then connect. After that, server waits for

connections to the server port and opens a new socket for accepted connection. The server

socket can be kept open for later connections from the same or other clients.

The client opens a connection by simply creating a new socket and connecting it to the

server by giving its IP address and server port. If one wants the client to take the

connection from a particular port, the socket can be bound to a port. However, this is not

usually necessary. The server is often specified by a human readable name instead of an
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IP address. Therefore, one must first contact a name server to get the actual IP address of

the server. This is usually a service of the operating system and can be done with only a

few system calls. If one must connect to the name server himself, like the operating

system does, the IP address of the name server must be known beforehand.

3.1.3 UDP/IP

User Datagram Protocol (UDP) [15] is another widely used protocol on the Internet. UDP

allows processes to transmit single datagrams, or messages. Unlike TCP, the transmission

is not guaranteed. Therefore, messages can be lost or duplicated, or they can arrive in the

wrong order.

The length of the messages is limited by the maximum size of Internet Protocol (IP)

packets. The maximum length of a message in an UDP packet is limited by the maximum

size of an IP packet which is 64 kibibytes and IP header uses 20 bytes and UDP header 8

bytes of it. If messages are longer than the maximum length, the application must know

how to break it into pieces and recombine it explicitly.

Figure 2. Opening a TCP/IP connection.
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The IP layer can split large IP packets to smaller fragments if the maximum packet size

for a network link is smaller than the transmitted packets. If all fragments arrive to the

destination they are combined by the IP protocol and the upper level UDP protocol never

sees this. But if some fragments are lost, the whole packet will be, too, and bandwidth has

been wasted. For this reason, it is often desirable to not use a large UDP message size that

it would cause fragmentation at the IP level.

The gain acquired from using UDP is that the amount of overhead is reduced compared to

TCP. Firstly, with UDP there is no need to open a connection, which saves a few packets

sent across the network. Secondly, acknowledgments are optional and must be sent

explicitly by the application if needed. Therefore, the sending of acknowledgments can be

optimized for the particular application, or omitted completely. With some application it

does not matter if few packets are lost. Thirdly the UDP header is smaller, because UDP

has fewer responsibilities than TCP.

UDP has one major advantage compared to TCP: it supports broadcasting and

multicasting messages. Broadcast messages are received by every host in a network (with

some restrictions). Multicast messages are only received by the hosts that have subscribed

to that particular multicast group.

When using UDP the communication overhead can be reduced, compared to TCP, by

careful design but it is paid with more program code to handle the communication. UDP

is often used in applications such as video streaming.

3.2 Sun RPC

Remote Procedure Call (RPC) [16] provides an abstraction that allows a client to call a

server with a simple function call within program code. RPC takes care of all the network

traffic and data representation problems related to different computer architectures such

as differences between big-endian and little-endian, and 32-bit and 64-bit, architectures. If

the programmer wants more control over the authentication and other details, RPC gets

more complicated to use.
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The interfaces of remote procedures are defined using eXternal Data Representation

language (XDR). C language stubs are generated automatically (by a utility called

rpcgen) from XDR definition. A stub contains all the code required for the

communication but the actual implementation of the procedures and function must of

course be completed. For the client side there is no additional coding needed. There is no

need to concern about the networking between the client and the server; using a remote

procedure is as simple as calling a normal function. Exposing the functionality of an

existing C code is done by writing a suitable XDR definition and filling the stubs with

simple calls to normal functions.

RPC protocol is an open standard designed by Sun Microsystems. Implementations can be

found on most UNIX like systems and even some non-UNIX systems. Although the

protocol can be implemented with any programming language, the programming interface

is often for C language. For on-wire communication RPC uses either TCP/IP or UDP/IP

protocols (shown in Figure 3) and it can therefore be used across the whole Internet and

can be implemented on practically every modern computer. For example, Microsoft

Windows use a version of RPC for communication between different parts of the

operating system.

3.3 Shared File System

A shared file system, such as Sun Microsystems Network File System (NFS) or Microsoft

Windows File Sharing, can also be used for inter-process communication on networked

computers. Using a shared file system for sharing information between processes is much

like using ordinary local files from the programmers point of view and it is, therefore, one

of the easiest methods for a programmer to adopt.

Figure 3. Protocol stack needed for sending RPC messages.
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The situation is however complicated by the use of many computers and networks.

Firstly, shared file systems cannot be really used across low bandwidth or high latency

networks. That is because they were designed to be used in an office environment where

computers are connected to a high-speed local area network. This is also reflected by the

fact that older shared file systems have little or no security features.

Secondly, network problems or server crashes can cause the distributed files to become

temporarily available. This can either cause the operating system halt the process

accessing the files until the network connection is re-established or file access can simple

fail at any point. The results depend on the file system chosen and its configuration. 

Thirdly, file locking, which is often used with processes running on a single computer and

accessing same files simultaneously, might not work as well, or at all, with shared file

systems. This, too, depends on the particular setup and its functionality must be verified

and application requirements documented before it can be relied upon. Even the lack of

file locking can be worked around, but obviously it will not be as efficient. Some

applications, however, might not need locking and are unaffected by the this.

Lastly, different operating systems have support for different shared file system. This is

only a problem if application is indented to be used in a mixed environment. Additional

software, such as Samba [17], exists to allow usage of Windows File Sharing on UNIX

systems. Samba is an independent free implementation of Windows File Sharing protocol

and allows non-Microsoft systems to work as as file servers for Windows clients. There

are commercial NFS implementations available for most widely used operating system

since MS-DOS including Microsoft Windows. A common shared file system might have

already been set up for ordinary file sharing in an office environment. Otherwise, it

might be easier and cheaper to use some other method of communication for a distributed

application.

Shared file systems often builds up on top of existing protocols. As an example the

protocols working underneath NFS are shown in Figure 4. NFS clients use RPC calls to

communicate with the server. RPC calls are packed into TCP or UDP packets for

transmission. Both TCP and UDP packets are packed into IP datagrams. Finally IP

datagrams are transmitted within Ethernet frames.
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3.4 CORBA

The Common Object Request Broker Architecture (CORBA) is an open standard by

Object Management Group (OMG) [18]. The standard defines an object oriented

communication protocol and it is platform, operating system, and programming language

independent. There are several implementations of the standard from different vendors.

And most importantly the different implementations can be used together. An object

implemented with one CORBA implementation can be invocated by application using a

different implementation. A CORBA implementation provides all the program code for

remote object creation and invocation, thus making remote objects as easy to use as an

ordinary local object.

The public interfaces for objects are defined using Interface Description Language (OMG

IDL). IDL mappings for widely used languages such as C, C++, Java, Ada and Python are

standardized. Non-standardized mappings for some other languages are also available. In

reality, however, even the standardized language mappings for different vendor products

have some differences. Especially the application code required to connect to remote

objects is not portable. The code using the objects when already connected, on the other

hand, is quite consistent between implementations.

The interface specification is mapped to the implementation language using an IDL

compiler that comes with the selected CORBA implementation. The IDL compiler

provides skeleton code, that handles the actual communication, for both server and client.

The server skeleton must be completed with the actual functionality. The client skeleton

provides a ready-to-use interface for the remote object that can be used pretty much like

Figure 4. Protocol stack when using NFS over Ethernet LAN

Ethernet frame

RPC message

IP packet

TCP packet

NFS function call



3 Communication Methods 17

any other object within the application. Some implementations for dynamic, non-

compiled, languages allow IDL files to be compiled and used to access remote objects

even at run-time.

The communication protocol, Internet InterORB Protocol (IIOP) is strictly specified by

the CORBA standard, thus enabling applications compiled with different vendors

implementations to use remote objects from each other without any problems. ORBs are

allowed to use other protocols besides IIOP. Especially when invoking local object

through the ORB it would be unnecessary to use network protocols. The protocol stack

with IIOP on an Ethernet network is shown in Figure 5. As can be seen from the figure

IIOP operates directly above TCP/IP protocol.

3.5 Java RMI

Java programming language [19] developed by Sun Microsystems provides its own

method for inter-process communication, the Java Remote Method Invocation (RMI)

[20]. RMI provides a remote object abstraction similar to CORBA which is quite natural

since Java is an object oriented programming language. RMI is part of the Java Platform

standard and, therefore, it is included in every Java Virtual Machine (JVM), and available

everywhere Java is. An advantage of RMI compared to CORBA is that the public

interfaces for remote objects are defined using Java language, therefore, there is no need

to learn a special interface description language.

Although RMI only works with Java, non-Java services can be made available by making

a Java wrapper for them, for example, by using Java Native Interface (JNI). JNI is

another part of the standard Java platform, which allows parts of an application to be

Figure 5. CORBA protocol stack.
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implemented using C programming languages, or another language which can be linked

with C code.

RMI is very flexible with data that can be passed to, and returned from, remote objects.

Method parameters and return values can be of any basic data type and any class that

implements the Serializable interface. The Serializeable interface is a guarantee that an

object of a class implementing it can store its internal state to a byte stream and later

restore the object as it was. A remote object interface does not even have to be specific

about the class of an passed object, instead the values can be defined to be just the general

Object type. The Object class is the abstract root class in Java and all classes are derived

from it.

By using an abstract type for passed object executable code can be transferred from one

computer to another. If the object implements a known interface, the actual

implementation will be dynamically loaded at runtime by the JVM. The class file can be a

local file or it can be downloaded with Hyper Text Transfer Protocol (HTTP) or File

Transfer Protocol (FTP). This allows runtime modification on the function of both the

client or the server and moving processing where it makes sense for best overall system

performance and usability, which is very hard to achieve with other distribution methods.

The protocols Java uses when making a remote invocation with RMI are shown in Figure

6. The use of HTTP in remote invocations is optional and is only used by Java for passing

firewalls if necessary. If there is no need for such a workaround, RMI works directly over

TCP/IP.

Figure 6. One possible protocol stack for RMI invocation.
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3.6 Summary

A comparison of the methods described above is shown in Table 1. They can be available

as a separate middleware, that sits between the application and underlying operating

system (OS) to extend the readily available system services, or can be integrated into the

operating system itself. Most of them are readily available on many UNIX systems.

The popularity of the Internet has made IP the most widely used communication protocol.

All the methods described here are usually used over an IP network. The more complex

protocols also built onto the simpler ones.

Table 1: Comparison of communication methods.

Abstraction Overhead Operating System

Support

Programming

Language

Support

Ease of use

TCP/IP Stream of

bytes

Small Included with most

operating systems

Any language Socket programming,

similar to low level

file access

UDP/IP Packets of

bytes

Small Included with most

operating systems

Any language Socket programming,

similar to low level

file access

Sun RPC Remote

function

calling

Medium UNIX systems,

Microsoft

Windows has a

variation

C, C++ Write a remote

definition and use

like ordinary

functions

Network

File System

Shared files Medium NFS on UNIX

systems, Microsoft

Windows 

Any language Same as local files

with maybe more

locking needed

CORBA Remote

objects

High Open source and

commercial

libraries available

to most systems

Most languages Write remote object

definition and use in

programs just like

ordinary objects

Java RMI Remote

objects

High Support in Java

Runtime 

Java Almost like ordinary

Java objects
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The downside is that every layer adds more overhead to the communication. Packing and

unpacking the packets at every layer consumes time and memory at the communicating

hosts, and the headers for every layers can add to a significant amount of data to be

transmitted. Therefore it should be carefully thought out what level of abstraction and

performance is needed for any particular application as it is impossible to have both. 

Using one of the existing protocols, such as HTTP or Simple Mail Transfer Protocol

(SMTP), and building the new application on top of them can be easier than defining a

completely new protocol. A newer standard, The Blocks Extensible Exchange Protocol

(BEEP) [21], has been developed to ease designing new custom protocols. BEEP does all

the non-application-specific tasks related to communication, including encryption, and

communication between processes using different protocol versions, all implemented in a

way that has been proved to work.

Obviously the more complex systems provide more functionality with the expense of

possibly more overhead. In many cases this overhead is negligible considering the ease of

implementation abstractions such as the object paradigm. Systems like CORBA provide

ready made tools for load balancing and at the same time makes the system scalable. With

the rapid development times needed today there is just no reason to spend time

reimplementing and testing all these features. Instead, custom build communication

systems are only made when absolutely needed, or the needs are fairly simple and no

extra overhead is wanted.



4 Discrete Time Network Simulator

The Discrete Time Network Simulator (DTNS) is a simulation tool developed at the

Institute of Digital and Computer Systems at Tampere University of Technology. DTNS

is aimed to be used at the high-level phases in the design flow of platform-based complex

digital systems [1]. DTNS can be used to analyze interconnection architectures and

systems built around them such as System-on-Chip (SoC) designs. 

4.1 Overview

DTNS is a time-driven simulator, which means that during the simulation the time

advances in fixed increments. Time-driven simulation is inherently not as accurate as

event-driven simulation but the approximation is accurate enough for majority of logical

simulations with a global clock. The time-driven approach was chosen because it makes

the simulation kernel less complicated and it is also faster to execute. The extra

complexity of event-driven simulation would not even be much of use because DTNS is

intended to be used at the higher abstraction levels where simulation results are

approximations at best. The simulated time advances in time steps of half a clock cycle

and this resolution is sufficient to allow events happening at both rising and falling edges

of the system clock.
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The motivation for DTNS was to reduce the gap between specification and the first

implementation that could be simulated and to lift the design process of complex systems

to a higher abstraction level. Because of the large size of SoC designs, the design process

focuses on communication. Therefore, it is ideal to have detailed communications model

even though the model otherwise is still at a high level.

The system design is described in C or C++ programming language and can then be

verified by simulation. Especially the C++ language has such high level that fairly

complex functionality can be described with just few lines of code compared to the

normally used hardware description languages such as VHDL [22] and Verilog [23]. Of

course, this benefit is lost when the system model is refined to a more detailed version.

DTNS also decreases the simulation time compared to existing hardware description

language (HDL) simulators. However, it is still a slow process to simulate functionality of

accurate multiprocessor design. Therefore, it is possible to distribute DTNS simulation

employing multiple computers connected with a network. The speed-up with distribution

is only achieved when the models are described in detailed level. Otherwise, the overhead

caused by the communication slows down the simulation enough to negate the benefit.

The objective of DTNS was to produce as much timing information as possible early in

the design process using a high abstraction level model. Therefore DTNS was designed to

always use detailed communication model with exact timing information, i.e. it is suitable

for communication based design. DTNS is aimed to be easy to use without any

knowledge of special purpose HDLs and even with limited knowledge of systems

functionality at hardware level. 

The abstraction level of DTNS is between the conventional hardware simulators, such as

Mentor Graphics ModelSim [24], and algorithm level simulators, such as Synopsys

System Studio [25]. With DTNS, the first simulation can be executed at an earlier phase

of the design flow than with other tools and thus important information about the systems

functionality is gained at the beginning of the architectural design.

Unlike some of the other simulators, DTNS does not make abstractions of the

interconnections of functional blocks but the system bus traffic is always simulated

accurately even when inaccurate high level agent models are used. As a result the
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simulation produces always accurate information about the sufficiency of the bus

capacity.

Agents are the functional blocks that are connected together by the system bus. Each

agent is an independent block that performs a well defined function or functions. An

agent can be an accelerator, general purpose processor, or something in between.

The functionality and abstraction level of DTNS is conceptually very close to the well-

known Ptolemy II [26] simulation tool and SystemC [27] simulation kernel. However,

since the C/C++ is still very widely used in algorithm design, the use of Java-based

Ptolemy II would require extra work.

Current tools lack the timing information, even if it is available at the original

specification, and the communication information is usually ignored at the higher levels

of abstraction. The lack of this important information has caused the architectural design

to be done with less information that is available at the lower levels. This has been the

primary concern in the design of DTNS and thus the interconnection is always simulated

accurately. The overall accuracy of high-level simulations is increased and more useful

information is gained at a very high abstraction level with reasonable simulation time.

DTNS is implemented in C programming language. The structure of DTNS is modular as

presented in Figure 7. Different interconnection models and agents can be used fairly

easily by replacing the module describing the functionality of the bus or an agent. The

modules are explained in more detail in Section 4.3.

Figure 7. DTNS modules.
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The typical area for DTNS is a SoC design where the blocks are connected by a system

bus, which takes care of all the communication in the system. The interconnection and

agents are modeled and then a simulation is run to determine the performance of the

system. 

4.2 Design Flow with DTNS

DTNS was designed to support Platform-Based Design (PBD) [28]. The suggested design

flow that takes full advantage of DTNS is shown in Figure 8. DTNS can be used at the

four top levels, from executable specification to cycle-approximation level (or register

transfer level, RTL), after that a vendor specific tool, such as Mentor Graphics Seamless

co-verification tool, must be used. One possible classification of abstraction levels is

shown in Table 2. 

Figure 8. Design flow when using DTNS.
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Table 2. Simulation levels and abstraction levels.

Simulator Type Abstraction Typical Use Design Flow Tool /

Language

Statistical Input: statistical

distributions

Data transfers: abstract

channels

Data processing: queuing

systems

General purpose

architectural

exploration

Feasibility

analysis

Spread sheet

Data Flow Input: known data flow

Data transfers: channels /

protocol

Data processing: queuing

systems

Embedded

architectural

exploration

Feasibility

analysis

SDL

Algorithm Level Input: test data

Data transfers: channels /

protocol

Data processing: algorithm

level code

System

specification

design and

verification

Algorithm

selection

C/C++

Instruction Level

(Functional Level)

Input: test data

Data transfers: channels /

protocol

Data processing: processor

cores / algorithms

HW/SW

partitioning and

performance

estimation

Processor

selection, SW

development

C/C++ / High

level HDL

Architectural Level

(Behavioral Level)

Input: test data

Data transfers: protocol

Data processing: processor

cores / behavioral HDL

HW/SW logical

design and

verification

Behavioral

synthesis, IP

selection, SW

development

Behavioral

HDL

Register Transfer

Level

Input: test data

Data transfers: protocol /

cycle-accurate

Data processing: RTL HDL

HW logical

design and

verification

Logic

synthesis, SW

verification

RTL HDL
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System design is an iterative process, and if simulation results at some level are found not

to correspond the specification, the design at the earlier phases need to be corrected. It

should be noticed that DTNS can be used as early as the executable specification to

simulate the system, whereas traditional simulators can be used only from the behavioral

specification. Thus, with DTNS important information is achieved for the architectural

design.

The systems design starts from a natural language specification (not shown in the figure.)

An executable specification (phase 1) of the system is written in C or C++ language. The

specification can be at a very high abstraction level at this stage. The executable

specification is then simulated with DTNS and some information about the systems

functionality is acquired.

Based on the information gained from the simulation the accuracy of the description is

refined to a functional (or behavioral) specification (phase 2). The exact timing

information about the functional blocks can be ignored at this level, but the platform

information and interfaces are accurate. With the simulation of the functional

specification (phase 3) detailed information about the transactions in the system is

achieved.

Simulator Type Abstraction Typical Use Design Flow Tool /

Language

Switch Level Input: test data

Data transfers: protocol /

phase-accurate

Data processing: switch

level transistors

HW electronic

design and

verification

Automatic

layout,

placement,

route

PLD design

languages

Circuit Level

(Transistor Level)

Input: test data

Data transfers: electrically

accurate

Data processing: circuit

models

Final HW

electronic design

and verification

Physical design PLD design

languages
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This information is used to write a more detailed description of the system. At the next

simulation the platform is simulated cycle-accurately and the connected blocks are cycle-

approximated (phase 4) and even more detailed information about the system is gained.

The system can be simulated between the design phases using agents from different

abstraction levels because the tool remains the same. This allows the implementer to

verify the agents one by one at every step in the way and find bugs earlier and more easily

from a smaller amount of code.

DTNS is not currently capable of doing event-driven simulation, thus, for the event-

driven simulation (phase 6) the code must be translated from C/C++ to the HDL of choice

and the simulations must be done with a vendor specific tool. The cycle-accurate models

of agents could be simulated with DTNS (phase 5), but currently it is not reasonable to do

it for the whole system, because the HDL version must be done anyway.

Unfortunately, currently the error-prone translation must be done by hand which can

cause problems at this stage, but there are ways to make it automatic. One possibility is to

make a compiler from C to, for example, VHDL, which could be done if a fairly strict

coding style is used when writing the C code. Another possibility would be to use

SystemC for modeling.

4.3 Structure of DTNS

In DTNS, the signals on the system bus are modeled using a bit type that can have nine

different values instead of the usual two, similar to the IEEE std_logic type in VHDL.

The possible values are logic one (1) and zero (0), weak one (H) and zero (L),

uninitialized (U), conflict (X), weak conflict (W), high impedance (Z) and don't care (-).

With the extra values it is possible to identify situations where more than one agent is

writing to the same signal or someone is trying to read a floating signal. The type and

conversion functions between it and normal C types are available for the agents to use as

well.
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Because of the distribution there are two types of agents. Local agents are executed in the

same process with the simulation kernel. Remote agents, on the other hand, are executed

in separate process and are compiled into distinct binaries. In fact, the only difference

between these is in the way they are compiled and the same source code can be used for

both.

The modules of distributed DTNS are shown in Figure 7. The main modules are

Simulation Kernel, Utility Functions, Distribution, Statistical Functions, Platform and

Block Models. These main modules contain sub-modules but only some of them are

shown in the figure.

The Simulation Kernel module contains the main function for the DTNS simulator. The

code for the actual simulation kernel and code that interprets the command line arguments

and the configuration file is also there. In addition the module contains a simple agent that

reads an initialization vector from a file and writes it to the bus. After the file has been

written to the simulated system bus the agent does not do anything. It is used to initialize

the simulated interconnection blocks instead of using simulation of a processor, which

would do the work in the actual implementation. It could also be used to input the initial

data for the simulation, but this is better done in separate agents that reads the data from a

file and also writes the output to another file.

The Utility Functions module contains all sorts of miscellaneous functions. One important

sub-module is the std_logic type and the conversion functions, like conversion between

an integer and std_logic vector. In another sub-module are functions for handling threads.

There are also functions for acquiring parameters defined in the configuration file, which

is read when the program starts, and functions for printing debug and error messages.

The Distribution module contains the code that has something to do with inter-process

communication. The Remote Agent Proxy sub-module is the glue between the simulation

kernel and a remote agent. The kernel sees it as an ordinary local agent and handles it in

the same way. Behind the scenes the proxy makes the remote procedure call for the

remote agent skeleton that contains the actual agent model.

The Remote Agent Skeleton is basically the main function for the remote agent binary. It

handles almost all the same tasks that the simulation kernel has, for example



4 Discrete Time Network Simulator 29

configuration file reading, agent initialization and calling the agent model. The agent

model sees no difference between the simulation kernel and the Remote Agent Skeleton.

However, the skeleton does not advance the simulated system clock by itself, but depends

on the simulation kernel to do that.

The Statistical Functions module contains functions that are used to calculate statistical

properties of the system bus and the interconnection state of a block, and writes the data

to files. Examples of statistics are bus efficiency, rate of FIFO fullness and amount of

transferred data.

The Platform module has a very important role. The platform architecture, including the

bus signals (the Interface sub-module) and the interconnection block (the Interconnection

sub-module) are described there. Unfortunately it is very difficult, or perhaps impossible,

to come up with a universal programming interface for all possible platforms and,

therefore, a lot of code has dependencies of at least the bus signals. Major changes are

needed all over the program code if the simulated platform is changed in a way that

affects its interface. Besides the code for the interconnection block, there is not that much

functional program code there but only interface definitions.

Finally the Models module contains the agent models. The agent can be specific for an

application or they can be reusable. The agent models here form the DTNS library of

ready-to-use models for common blocks, such as memory. A typical simulation consists

of the simulation kernel, platform specification and usually more than one agent,

depending on the applications complexity.

Pseudo code for the simulation kernel is shown in Figure 9. There are slight differences

with this non-distributed version and the distributed version presented in the next chapter.

The kernel handles the ticking of the global clock and resolving of the signal values on

the system bus. It can also write current bus signals to a file for later analysis if it is

enabled and it can read a test vector from a file and feed it to the system bus to initialize

the agents. The platform specifies the signals on the system bus and provides the

interconnection model. The lower level versions of the agents are modeled in a VHDL-

like coding style that, for example, takes into account the clock edges and real timing.
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4.4 Simulation Flow

The simulation flow for non-distributed simulation is shown in Figure 10. When the

simulator is started, the simulator reads the configuration file. It defines at least the

number of clock cycles to be simulated and the file names of the output files. The

configuration file can also contain agent specific parameters, which the agent code can

access using utility functions. After that, the command line parameters are parsed and the

values defined are merged to the in-memory configuration. The last initialization step is

to initialize the bus signals and call initialization functions for each agent.

After initialization the main simulation loop is started. It is executed until the predefined

number of clock cycles has been reached. In the main simulation loop the current bus

values are passed to every agent and the agent modeling function is called. The agent

provides new interconnection values for the next clock cycle. After all agents have been

executed, the interconnection values from all the agents are combined and the bus signals

for the next cycle are resolved. Finally the system clock is advanced by half a clock cycle.

During a simulation data about the simulated system is collected and written to files. The

simulation kernel writes the bus signals to an output file, the interconnection model writes

statistics about the status of the input and output FIFOs for every agent, and the agents

can write whatever data is seen necessary.

initialize bus signals

initialize agents

clock := 0

while clock < CLOCKS do

for each agent do

transmit current bus values to agent

run agent

receive agent's interconnection values

loop

resolve interconnection for next half-cycle

toggle interconnection clock signal

if clock signal = 1 then

clock := clock + 1

loop

Figure 9. Pseudo code for the simulation kernel.
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After the simulation had ended output files are analyzed. The file with bus signals can be

used to determine whether bus signaling was correct. For example, verify that only one

interconnection block wrote to the bus at any one time. Also the utilization and

throughput of the simulated system bus can be calculated from this data. The correctness

of the whole simulated system can be determined from the output files written by the

agents. For example, a video decoder can write the decoded video frames to files which

can be viewed and verified to be correct.

Since the signal values are usually much easier for human beings to look at as a graphical

presentation, instead of just text, a tool was needed to visualize the bus, and other similar,

signals. At first Mentor Graphics ModelSim was used for this task but it is unnecessarily

heavy tool for such a simple use. Therefore, a much lighter graphical signal viewer, called

Waveform, was developed during this work to be used with DTNS.

Waveform can read the simple ASCII file format written by DTNS. It understands and

can view all the nine possible values a std_logic bit can have in the simulator. In addition

to viewing the single bit signals, it is possible to combine bits to form words and view

their values in hexadecimal and give bits and words meaningful names. For cross

platform support Waveform was written in Java and uses the Swing toolkit for the

graphical user interface. Waveform is shown viewing the HIBI bus signals from a DTNS

simulation in Figure 11.

Figure 10. Non-distributed simulation flow.
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Figure 11. Waveform viewer developed in this work
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The main goal of this thesis was to distribute the existing DTNS. The distributed version

targeted to be executed on network of workstations (NOW) environment to achieve better

performance while keeping the cost of hardware down. In this chapter the distribution is

described in detail.

5.1 Background

The non-distributed version of DTNS was designed without taking distribution into

account and different modules had many dependencies. For example, a lot of data was

stored in global memory, which cannot be done in a distributed implementation. It was,

however, justified in a non-distributed program, because global data does reduce the need

for data copying and, therefore, improves performance, and allowed easier collection of

statistics.

In a distributed program, the shared memory needed for global data would have to be

simulated with message passing. A simpler solution was to remove all global data and

design another way for the processed to communicate. At the same time a lot more

modular structure was gained.

In DTNS, the agents, or functional blocks, are separate entities and are only connected by

the system bus, which is, therefore, their only communication channel. The signal values
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on the system bus are also the only required shared data that all agents must know. The

bus is a natural point that could be used to divide the simulation to processes. Basically,

every agent is running in a process of its own and everything they would write to the bus

is transmitted over the network to other agents for reading. The agents would, however,

have to form a fully connected net for this kind of communication. Therefore, a central

process, the simulation kernel, is needed. With the central node the network will be star-

shaped and the amount of communication is linear to the number of agents in the system,

which scales much better than a fully connected net.

The simulation flow for distributed simulation is shown in Figure 12. With distribution all

the agent models can be executed simultaneously if enough computers are available.

Therefore, the task of transmitting and receiving bus signals from agents was needed in

the simulation kernel.

The pseudo code for the kernel is shown in Figure 13, and it is similar to the non-

distributed version in Figure 9. The distribution is conservative, i.e. all processes are

synchronized at every step on the way. This happens as a side effect of transmitting the

bus signals, because agents cannot proceed to process the next clock cycle before they

have received the signals on the system bus.

Figure 12. Distributed simulation flow.
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Firstly upon start-up the simulation kernel connects to all agents, which must have been

started earlier and must be waiting for a connection from the kernel. The addresses

required to find the remote agents is conveniently located in the configuration file, which

was read as the first step of initialization. After that the initialization continues as in the

case of the non-distributed version described in Section 4.4. After initializations the main

simulation loop is started.

Every half a clock cycle the kernel transmits the current signal values on the simulated

system bus to all agents, which also informs the agents that they are allowed to simulate

forward half a clock cycle. This transmission can be seen as a request for the agent to

perform its task. Then the kernel begins to wait for the agents to start sending back their

own interconnection values, which is the response for the kernel's request.

The responses are handled in the order that they arrive, which is not necessarily the same

order the requests were sent. This reordering allows optimization of the resolve function,

for each agent do

connect to agent

loop

initialize bus signals

clock := 0

while clock < CLOCKS do

for each agent do

transmit current bus values to agent

loop

{wait for agents}

for each agent do

receive agent's interconnection values

loop

resolve interconnection for next half-cycle

toggle interconnection clock signal

if clock signal = 1 then

clock := clock + 1

loop

for each agent do

close connection to agent

loop

Figure 13. Pseudo code for the distributed simulation kernel
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which in fact performs the same operation for interconnection values from each agent,

and the order of these operations is not important. Therefore, this resolving can be done

partially while waiting for the other agents to respond. The partitioning of the resolve

function on the other hand shortens the amount of time the agents have to wait for the

kernel between every cycle.

Finally, after the wanted amount of clock cycles have been simulated, the kernel closes

the connections to agents, which in turn informs the agents to shutdown themselves.

Before shutting down, agents can execute an analyze function and write the results to

files. The analyze function can be implemented to produce, for example, information

about the performance of the agent.

In the distributed version a couple lines of pseudo code have been moved from the kernel

to the main function of an agent. That is shown in Figure 14, which describes the general

functionality of a remote agent. The kernel does not need to know anything about the

agent except how to call the modeling function. It follows that agent initialization belongs

to the process executing the agent and not the kernel.

When the execution of a remote agent is started, it reads a configuration file and parses

command line parameters similarly to the main program. The initialization procedure

includes the initialization of the actual agent and connecting to the simulation kernel.

During simulation the agent waits for current bus signals from the kernel, executes the

actual agent code, and sends back the signals the agent has written to the bus. This loop is

repeated until the connection to the kernel is closed, which can be assumed to mean that

the simulation has ended. Before the process exits, the agent calls a clean-up function if

necessary.

wait connection from kernel

initialize agent

while connected do

receive current bus from kernel

run agent code

transmit agent's interconnection values to kernel

loop

Figure 14. Pseudo code for main function of a remote agent
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To reduce the overhead related to the inter-process communication over a network, there

exists an alternative agent main function that can actually handle several agent models

running within the same process. The additional code that is needed for this multi-agent

process is quite similar to what is in the simulation kernel for calling multiple agents.

The agent models are called in a loop and their combined interconnection values are

resolved. Therefore, the interconnection values must be transmitted between the agent

process and the kernel only once for a group of agents instead of once for each agent.

This improves the performance when the number of available computers is less than the

number of agents, or the agents are so simple that the communication overhead dominates

the execution time. The extra code, of course, increases overhead, so it should be only

used when multiple agents are executed on a single computer.

The call-paths for both local and remote agents are shown in Figure 15. Network lies

between Remote Agent Proxy and Remote Agent Skeleton. The remote object invocation is

hidden inside the Distribution module and, therefore, only it needs to know how the

Figure 15. Call-paths for local and remote agents
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invocation happens. The interface of the Distribution module is flexible enough to allow

several different implementations for remote invocations.

5.2 Distribution with CORBA 

The Xerox Inter-Language Unification (ILU) [29] was chosen as the CORBA

implementation. ILU was a natural choice from the freely available CORBA

implementations because it was the only one, which supports multi-threaded programs

and has C language mapping. The only feature that is missing is the capability to start a

server at a specific TCP port, which is available in, for example, MICO [30], an open

source standard compliant CORBA implementation. This was not, however, a necessary

feature and implementation was possible without it.

Using CORBA is convenient because the ILU handles all the system specific tasks related

to the communication over a network and, with the exception of threads, all DTNS code

is portable.

Threads are hidden behind a minimalist interface without priorities or other fancy

features. Only a few simple utility functions to handle threads and semaphores are

needed. Therefore, the requirement for threads does not make porting DTNS too difficult.

Most UNIX systems have POSIX threads, which were supported first because the

development computer was running Linux. The port for Microsoft Windows, which uses

completely different API for threads, has been also implemented.

The need for threads came from the fact that calling remote objects with CORBA is

synchronous. To gain anything from the distribution, different agents must be executed in

parallel. Therefore, agents, which are remote objects, must be invocated simultaneously

from separate threads.

This could have been circumvented by using two invocations to the CORBA objects

instead of one, one to transmit current bus signals to an agent and one to receive the

response from an agent. However, this approach would have wasted time because the

order in which the responses were fetch would have been fixed and would not adapt to the
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execution speed of the agents at a particular moment in simulation. With the use of

threading DTNS now can also parallelize the execution of agents when run on an

multiprocessor  computer with minimal overhead.

The CORBA implementation has some unexpected overhead. For example, an

enumeration type takes always 32 bits when sent across a network. The std_logic type is

an enumeration with 9 distinct values, which could be represented with 4 bits. To reduce

the amount of overhead the distribution was also implemented in another way. This

implementation uses TCP/IP, the transport layer used by CORBA, directly and is

discussed next in more detail.

5.3 Distribution with TCP/IP

In the sockets implementation, the CORBA remote objects are replaced with agent

programs that open a TCP/IP server socket. Next the main program containing the

simulation kernel connects to these agent programs. The agents still act as a server and the

kernel is a client for all of them like in the CORBA implementation.

Unfortunately the use of sockets removed the advantages gained from CORBA. The

network is not hidden behind a common API but utility functions providing access to the

sockets must be ported to every target platform. At least most UNIX systems are alike

which should reduce the amount of work.

Because the need of communication between DTNS processes is very simple and has a

static form, also the protocol used on top of TCP/IP is very simple. Every bit of the

simulated bus is converted to a descriptive 8-bit ASCII character and the characters are

combined into a single string, which is then send or received over the connection. ASCII

presentation was chosen because handling octets is easier than four bit nibbles. The

possibility of an odd number of nibbles also causes a problem because data is always

transmitted in octets with TCP/IP.

The client, the main program, sends such a string first and then waits a similar string from

the server, the agent, and the server does the same operations in a reversed order. There is
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no need for any extra headers except for the ones that come with TCP. The conversion

used for transmission of the data is much simpler than the marshaling performed by

CORBA. Every std_logic bit is presented by a single ASCII character in the TCP stream.

Depending on the value the character used is one of 0 (zero), 1 (one), - (dash), U, X, Z,

W, L or H.

A simple compression was developed for the socket version of distributed DTNS to even

further reduce the amount of transmitted data. The utilized compression scheme is similar

to run length encoding (RLE).

In ordinary RLE, a long string of repeating byte is replaced with three bytes. First comes

an escape byte which tells that a repetition follows. Second byte is interpreted as an

integer value telling the number of times the data byte repeats in the original stream. The

third byte is the actual repeating byte or data. If the byte value, that is used as the escape

byte, is present in the original data stream, it must be escaped in the same way even if it

does not repeat.

The implemented compression, however, has some differences compared to usual RLE

scheme. Firstly the compressed data remains in a human readable ASCII format.

Secondly the repeating strings can be arbitrary character sequences instead of only one

byte. Finally all data is encoded as repetitions even if the string is present only once in the

original data.

To enhance the compression rate only changes between simulation cycles are transmitted.

This is achieved by first comparing the current bus signals to the ones from previous

cycle and marking everything that have not changed equal. No-change is transmitted as an

ASCII equals sign (=). As a result, a long string of non-changing signal values can be

compressed to one repetition of one character, no matter what the actual signal values are.

Due to the use of a text format, the repeat count cannot be represented with a single byte.

Instead it is encoded as a text presentation of a positive decimal number. This also gives

the repeat count, at least in theory, an infinite range. In practice, the small amount of data

transmitted between simulation cycles keep the repeat counts quite low.

Because characters 1 and 0 can appear in both the repeat count and the following data,

special characters are needed to separate the two. A colon (:) is used to terminate the
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repeat count and a semicolon (;) terminates the string of data. This use of colon and

semicolon replaces the escape byte in ordinary RLE. The same character could be used

for both but using different characters increases readability. Despite that only a small part

of the ASCII character set is in use.

To avoid unnecessary overhead two optimizations are used. Firstly the repeat count is

implicitly one if it is omitted, but the colon must always be present. Secondly the

semicolon can be omitted at the end of the data, because it would be redundant.

An example of uncompressed bus traffic is shown in Figure 16. For readability a header

line and some white space for field separation was added. The same data compressed with

the above scheme is shown in Figure 17. This sample data has been reduced to about 18%

of the original size. A simple binary encoding, instead of ASCII, would halve the

compressed size. For comparison, gzip, a commonly used compression utility, packs the

same data to about 6%.

Clk Address                          Data                             Cmd Rst Lock

0   ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZ 1   0

1   ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZ 1   0

0   00000000000000000001000100100010 00000000000000000000000000111101 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000111101 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000111100 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000111100 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000111011 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000111011 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000111010 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000111010 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000111001 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000111001 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000111000 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000111000 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000110111 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000110111 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000110110 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000110110 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000110101 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000110101 000 1   0

0   00000000000000000001000100100010 00000000000000000000000000110100 000 1   0

1   00000000000000000001000100100010 00000000000000000000000000110100 000 1   0

Figure 16. Example of uncompressed bus traffic.
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5.4 Distribution of a VHDL Simulator

The same method of distribution was also used to distribute Mentor Graphics ModelSim,

a commercial VHDL simulator. A distribution bridge was implemented to connect to

separate task. The bridge is a reusable component which is in no way depended on the

simulated application.

In Figure 18, a distributed simulation of two separate tasks is shown. The simulation

processes can be run on a multiprocessor computer or on two distinct computers

connected by a IP network. By adding more connecting bridges the application can be

distributed to an arbitrary number of processes. As the connections are peer-to-peer type,

more than one bridge can be used in a single simulator to allow connecting more than two

simulators together.

The distribution bridge passes the signal values written to its input port to the output port

of the bridge it is connected running in an other simulator process, and vice versa. The
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Figure 17.  Example of compressed bus traffic.

Figure 18. Distribution of an application to two separate tasks.
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bridge also keeps the simulation processes synchronized and, hence, eliminates any

chance of a causality problem. 

If the partitioning to similar size tasks have been done successfully, the simulation runs

roughly at the same speed on all the simulators. Otherwise, in a less than optimal

partitioning the faster tasks will have to wait for the slower ones.

The bridge is implemented partly in VHDL and party in C. The communication between

the VHDL code and the C code uses ModelSim's Foreign Language Interface (FLI). The

VHDL code provides the input and output ports of the bridge so the application (also

implemented in VHDL) can be connected with the bridge. The C code transforms these

signals to ASCII format are then transmits over TCP/IP, exactly like the TCP/IP version

of Distributed DTNS.



6 Case Studies

To determine the performance of the distributed DTNS a test case was set up. The

scalability of the simulator was evaluated by running multiple simulations with two

varying parameters. Firstly, the workload of simulated agents was modified, and

secondly, the number of computers the simulation used for distribution was altered. The

measured quantity for each simulation was the amount of wall clock time required for the

simulation to complete.

There was also interest in the speed difference between the two distribution

implementations, CORBA and TCP/IP. For that reason, all simulations were run with

both versions so that they could be compared.

The distribution method used in DTNS was also tried with VHDL simulation and the test

case was simulating a TUTWLAN network of eight terminals. The simulation times

where measured using eight single processor Linux workstations and also using a single

multiprocessor UNIX workstation.

6.1 DTNS Test Case

The test application was a traffic simulation on the Heterogeneous IP Block

Interconnection version 1 (HIBI) [31] bus of a H.263 video encoder. No video encoding

was done in the simulation but the communication profile was arranged to roughly match
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an actual encoder in macro block encoding loop. The HIBI wrapper, which connects an IP

block to the interconnection, was modeled accurately. An IP block and a HIBI wrapper

together form an agent for the simulator. The structure of the simulated system is shown

in Figure 19.

The HIBI bus in this case consists of a total of 70 std_logic signal values: 32 signals for

data, 32 signals for address, three signals for command, and clock, reset and lock signals.

This means a payload of 280 bytes for CORBA implementation or 70 bytes for TCP/IP

implementation without protocol overhead. This payload needs to be transferred across

the network between computers in both directions on every simulation cycle.

The actual agents that generate the bus traffic are so simple that their execution time can

be neglected. A more complex system would require some processing at least with low-

level modeling. For evaluation reasons, an artificial adjustable processing time was added

to the agents. The processing time per simulation cycle was varied from zero to 5

millisecond with one millisecond intervals. Five agents were used to match the number of

agents in the working H.263 implementation.

Simulation length was set to 20.000 simulated clock cycles. This means 40.000 cycles for

the simulator as DTNS advances in half a clock cycle steps.

Figure 19. Test case system structure.
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6.2 DTNS Test Environment

The test environment consisted of three ordinary Linux workstations. The configuration

of computers is shown in Table 3. The workstations were connected to a 100 Mbps

Ethernet with switches. Although the third computer is faster than the other two the

artificial delay was still the same amount of milliseconds on all. This imitates a real

situation when multiple computers are used in distributed simulation. Other processing

was of course somewhat faster.

The simulations were executed with using one, two and three computers. The simulation

kernel was always running on computer #1. The five agents where distributed as equally

as possible among the used computers in each case. Load balancing in this case was rather

easy because all the agents were equal with only parameters changed.

6.3 DTNS Results

The speed-up gained from distributing the simulation to several computers was measured

by timing the simulation runs described above. The results for CORBA and TCP/IP

implementations are shown in Table 5 and Table 4 respectively and graphically in Figure

20 and Figure 21.

Table 3. Computers used to run the test cases.

Computer# Processor Memory Operation System

1 Intel Pentium II 400 MHz 128 MiB Red Hat Linux 7.1

2 Intel Pentium II 400 MHz 128 MiB Red Hat Linux 6.2

3 AMD Athlon 1.0 GHz 256 MiB SuSE Linux 7.1

Table 4. Results with TCP/IP (in seconds).

Processing time (ms)

0 1 2 3 4 5

one computer 23 179 332 508 643 771

two computers 25 120 188 262 345 441

three computers 27 78 131 204 254 293

Table 5. Results with CORBA (in seconds).

Processing time (ms)

0 1 2 3 4 5

one computer 22 151 277 413 536 665

two computers 86 148 230 282 352 425

three computers 135 163 204 260 310 333
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With very simple and fast-executing agents the distribution overhead causes the

simulation to become slower than without distribution. TCP/IP implementation handles

this case better because it has less overhead but the slowing down is noticeable.

When the agents are complex and need more processing time, distribution begins to make

sense. With CORBA the turning point in this test case is at 2 ms delay. TCP/IP is a little

better and it is faster that non-distributed already with just 1 ms delay. As the processing

time increases, the difference between CORBA and TCP/IP implementations vanish. 

The number of computers has a decreasing effect on the total simulation time. The

simulations with 0 to 2 ms processing times would probably not benefit from extra

computers. With 5 ms processing time maybe two extra computers could be used. The

maximum amount with this test case is six, one for the simulator kernel and one for each

five agents.

The TCP/IP implementation does not use the compressing algorithm presented in Section

5.3. Some simulations where run also with compression but the result where very close to

the ones without compression. Therefore, it is determined that with such a low number of

signal values as used here, there is no benefit from the compression. The explanation is

that the minimum payload size of the Ethernet frame is so large (46 bytes) that the data

(71 bytes uncompressed) is not significantly larger even without compression. For this

reason, the actual data transfer over the physical network takes nearly the same amount of

time.

Figure 21. Simulation results with TCP/IP.
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Figure 20. Simulation results with CORBA.
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6.4 Test Cases for Distributed VHDL Simulation

Because the real world test with DTNS do not show significant improvement in

simulation time with distribution and the more theoretical test cases show some potential,

some test cases where build where the distribution method from DTNS was borrowed and

used with Mentor Graphics ModelSim. The core DTNS code handles the distribution and

the agents are separate instances of ModelSim simulating hardware based on VHDL

description.

The test cases were a simulation of a network of two to eight TUTWLAN [32] terminals,

a total of seven different networks. A TUTWLAN terminal includes two processors,

external memory, radio interface, and the blocks are connected by HIBI interconnection

blocks, as shown in Figure 22. The networks were partitioned along the radio interface to

form equal size tasks. The tasks were executed in their own simulator process. Each task

also needs two ARM ISS processes to run the TUTMAC protocol and application

software. The length of all simulations were 125,000 clock cycles. 

The test cases were executed using one to eight ordinary single-processor Linux

workstations. They all had a 2 GHz processor, 512 MiB of memory, and where connected

to a 100 Mbps switched Ethernet network.

The same networks where also simulated using a multiprocessor UNIX workstation for

comparison. The workstation has eight 1050 MHz processors and 64 GiB of memory. In

addition to the distributed test cases, a simulation without distribution bridges was run

with this workstation.

Figure 22. TUTWLAN network with two terminals.
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6.5 Results of Distributed VHDL Simulation

The results from simulations using Linux PCs are shown in Figure 23. The maximum

speed-up with eight computers is 7.3 times compared to non-distributed simulation. The

simulation time stays nearly constant on simulations where the number of terminals

equals the number of computers used. With one computer the simulation time increases

almost linearly with the number of terminals. In odd cases the simulation time increases

when an extra computer is added. This is because the partitioning to computers cannot be

done equally and the additional computers add some overhead.

In Figure 24 the the results from the simulation run with the multiprocessor workstation

are shown. With distribution to all eight processors a maximum speed-up of 5.5 is gained.

This smaller speed-up is caused by the slight parallelization of even the non-distributed

simulation, because every task had two extra processes running the ARM ISS. Again, the

non-distributed simulation time increases almost linearly as the number of terminals

increases. In the distributed case the simulation time also slightly increases as the number

terminals (and processors) is increased.

Figure 23. Simulation times with different
size TUTWLAN networks performed with

Linux workstations.

Figure 24. Distributed and non-distributed
simulation times with multiprocessor

workstation.
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7 Conclusion

The distribution of DTNS was found partially successful. Simulation is sped up almost

linearly to the available computers with relatively complex models. However, such

complex models are not, at least currently, modeled with C or C++ language. Computers

have also gained more speed, and will continue to do so. Therefore, the models would

need to be increasingly complex for Distributed DTNS to stay useful.

The algorithm level simulation can still be done very well using DTNS with just a single

workstation, and the the new version developed in this work is capable of parallel

execution with more than one execution thread. With multi-core processors becoming

common that ought to be more important and useful aspect.

The distribution of VHDL simulator, which used the same method that was developed for

DTNS, however, has already proved to be successful and cut down simulation times

significantly. This is mainly because the simulation of VHDL models is a lot slower than

higher-level C models.
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