
Lucas Machado

Fair Team Recommendations for

Multidisciplinary Projects

Faculty of Information Technology and Communication Sciences (ITC)
Master’s thesis

May 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250158859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Lucas Machado: Fair Team Recommendations for Multidisciplinary Projects
Master’s thesis
Tampere University
Master’s Degree Programme in Software Development
May 2019

With the ever increasing amount of data in the world, it becomes harder to find

useful and desired information. Recommender systems, which offer a way to analyze

that data and suggest relevant information, are already common nowadays and a

important part of several systems and services. While recommender systems are

often used for suggesting items for users, there are not many studies about using

them for problems such as team formation. This thesis focus on exploring a variation

of that problem, in which teams have multidisciplinary requirements and members’

selection is based on the match of their skills and the requirements. In addition,

when assembling multiple teams there is a challenge of allocating the best members

in a fair way between the teams.

With the studied concepts from the literature, this thesis suggests a brute force

and a faster heuristic method as solutions to create team recommendations to mul-

tidisciplinary projects. Furthermore, to increase the fairness between the recom-

mended teams, the K-rounds and Pairs-rounds methods are proposed as variations

of the heuristic approach.

Several different test scenarios are executed to analyze and compare the efficiency

and efficacy of these methods, and it is found that the heuristic-based methods are

able to provide the same levels of quality with immensely greater performance than

the brute force approach. The K-rounds method is able to generate substantially

more fair team recommendations, while keeping the same levels of quality and per-

formance as other methods. The Pairs-rounds method presents slightly better rec-

ommendations quality-wise than the K-rounds method, but its recommendations

are less fair to a small degree. The proposed methods perform well enough for use

in real scenarios.

Keywords: Recommender systems, fairness, group formation, team recommenda-

tion.

The originality of this thesis has been checked using the Turnitin Originality Check

service.

Contents

1 Introduction . 1

2 Related work . 4

2.1 Recommender Systems . 4

2.1.1 Collaborative Filtering . 4

2.1.2 Content-based Recommendations 5

2.1.3 Knowledge-based Recommendations 7

2.1.4 Group recommender systems . 8

2.1.5 Diversity in Recommender Systems 10

2.1.6 Fairness in Recommender Systems 11

2.1.7 Evaluation of Recommender Systems Efficacy 11

2.2 Group formation . 13

3 Problem definition . 15

3.1 Motivating example . 15

3.2 Model . 17

3.3 Fairness-aware Team Formation . 20

4 Methods . 21

4.1 Brute force algorithm . 21

4.2 Heuristic algorithm . 22

5 Experimental Evaluation . 26

5.1 Dataset . 26

5.2 Measurements . 27

5.3 Methods . 28

5.4 Efficiency . 31

5.5 Effectiveness . 32

6 Conclusions . 37

References . 39

1

1 Introduction

Availability and quantity of data is increasing day after day in our digital and

connected world. According to Guo (2017), it is expected that from 2016 to 2025

the global data amount will grow by a factor of 10, more than doubling every two

years. As the amount of data grows, new challenges emerge about organizing and

extracting useful knowledge from it. Knowledge obtained from raw data can be

utilized to get insights, to detect patterns and even for helping in decision making

processes.

Recommender systems, which are a subclass of information filtering systems, are

a tool to process extensive amounts of data and derive valuable information from

it (Ricci et al. 2011). They work by trying to antecipate the preference or rating

that a user would give to some item (Ricci et al. 2011), based on user activities

and personal data. Recommender systems are currently widely used especially in

digital media services so relevant items of information can be presented to users

or to groups of users. In these recommender systems it is common to group users

based on similarities to provide recommendations of items to the group. In the

opposite direction, often similar items are grouped in a package for recommendation

to a user or group of similar users. Another use of recommender systems can be

found on team formation problems, despite that there are only a few research papers

published about.

Recommender systems’ algorithms for team formation aim to assemble teams of

individuals based on some specified criteria. For team formation, those algorithms

need to extract and identify individual characteristics of the individuals, topics from

documents and perform analysis and visualization of relation graphs (Datta et al.

2014). The individuals are then grouped together based on how near they are from

each other in a relations graph (implicit relation identification) or by expert finding

(Lin et al. 2009). While it is a difficult task to assemble the “best” team, due to

the several different subjective factors that could define a team as best, a decision

support system such as a recommender system may help on that (Datta et al. 2014).

Furthermore, most of the papers describe team formation in software development

context (Yilmaz et al. 2015; Colomo-Palacios et al. 2012), or based on users common

interests and attributes (Dorn et al. 2011; Al-Adrousy et al. 2015; Awal et al. 2014).

Thinking about a team as a package of items in which its members have skills

that correspond to individual items attributes, a multidisciplinary team is a package

of items with diversity in their attributes. Complex tasks often demand multidisci-

plinary teams, and an increase of a team output could be achieved through selecting

members with specific skills to maximize that output. Forming multidisciplinary

2

teams requires aligning people with different skills and backgrounds and should

also consider people that are not similar as a possible good choice, while recom-

mender systems are usually based on similarities as an indicator of good alignment

(Lykourentzou et al. 2017). In addition, the concept of diversity is positive in a

multidisciplinary team context and may also trigger serendipity (Ratcheva 2007).

Other challenges may apply to this multidisciplinary team formation problem,

for example when a team member is restricted to work for only one project. If several

teams are being formed, all the best member candidates could be assigned to the first

team, leaving the remaining less suitable candidates for the other projects. Thus,

the fairness aspect of this team formation should be also taken into account, in a

way that good members could be assigned to all teams.

Inspired by a real world problem in which multidisciplinary teams need to be

formed and allocated to work on different projects with requirements for members’

skills and some constraints, a gap was found in literature. There is no research

available concerning multidisciplinary team formation based on skills and project

requirements, especially regarding fairness when multiple teams need to be formed.

For that reason, this thesis proposes the exploration of the research question “How

to create team recommendations based on members’ skills and projects requirements,

regarding fairness?”.

Recommender systems could be very helpful in multidisciplinary team formation

problems for projects, bringing several benefits. Particularly when there are thou-

sands of candidates and dozens of teams to be formed, the amount of needed human

labor can be significantly reduced due to systematic analysis of candidates. In ad-

dition, it is a difficult task to maintain the fairness aspect between teams manually,

a problem which that recommender system algorithm could easily solve.

Based on existing research, Chapter 2 explores the concepts of recommender

systems, fairness and diversity. State of art literature is reviewed over recommender

systems main topics to provide a background for the research question.

Chapter 3 gives a motivating problem and formally defines it. The motivating

problem illustrates the research question and helps to understand the real world

problem that inspired this thesis. The formal definition specifies how candidates

could be chosen as team members, since it is not possible to use traditional similarity

criterion as in most recommender systems methods.

Chapter 4 proposes different methods for creating team recommendations. Since

a brute force algorithm would be inefficient, a heuristic method is presented. Fur-

thermore, two other variant methods are described to improve the fairness aspect

of the recommendations.

Chapter 5 describes and analyzes an experimental evaluation of the proposed

methods. To evaluate the efficiency and effectiveness of the methods, a set of test

3

scenarios is designed and executed. The findings are compared and analyzed in

regard to quality and fairness of the team recommendations.

Finally, Chapter 6 evaluates the contributions of this thesis. The objectives of

this work are evaluated, and its implications are discussed. Besides the contribu-

tions, the limitations as well as possibilities for further research are presented.

4

2 Related work

Based on existing literature, this chapter explores the different types of recommender

systems, the properties of fairness and diversity applied to them, how recommenders

are evaluated, and group formation methods.

2.1 Recommender Systems

Being a subclass of information filtering systems, recommender systems are used

to analyze large amounts of data and obtain valuable information from it (Ricci

et al. 2011). Their goal is to suggest items or packages of items to users (individual

recommendation) or groups of users (group recommendation).

Consider that in a recommendation system the set of items to be rated is I, and

the set of users is U . An item i ∈ I could be rated with a score by a user u ∈ U . The

score is defined as rating(u, i) in the interval [0.0, 1.0], and the set of all recorded

ratings is R. Often, the amount of items in the set I is vast, whereas only a few

of them are rated by the users. Furthermore, I(u) is the subset of rated items by

a user u ∈ U , while similarly U(i) is the subset of users which gave a rating to an

item i ∈ I (Ntoutsi, Stefanidis, Rausch, et al. 2014).

Recommender systems try to estimate a relevance score for items which were

not rated by the users, denoted by relevance(u, i), for u ∈ U and i ∈ I (Kyriakidi

et al. 2017). There is extensive research literature in regard to the approaches for

estimating the relevance score between items and users. Typically, the methods for

recommending are differentiated within: content-based, which suggest items based

on the similarity to items previously well rated by the user (e.g., M. Pazzani et

al. 1997; Mooney et al. 2000), collaborative filtering, that recommend items based

on items which other users with similar preferences like (e.g., Konstan et al. 1997;

Breese et al. 1998) and knowledge-based ones (e.g., Shoham et al. 1997).

A recommender can also create suggestions of one or more items for a group of

users. Those group recommender systems work by aggregating data from individual

users. Several strategies for implementing the aggregation are used, for instance

the Least Misery Strategy, which uses the minimum of the ratings to minimize the

misery for group members (Ricci et al. 2011).

2.1.1 Collaborative Filtering

The methods used for collaborative filtering in recommender systems are based on

gathering and analyzing huge data quantities about the preferences, actions and

behaviour of a user, and then based on the similarity of that user with other users,

5

trying to anticipate what they would like. The basic idea is that people who gave

the same rating for some item in the past are likely to give the same rating for

new items. For example, a person might ask friends for a movie recommendation,

and if the recommendation comes from friends who share similar preferences and

interests, it is more likely to be trusted than recommendations from people with

other interests.

In general, given a user u ∈ U and a set of items I, the steps that a collaborative

filtering recommender system needs to take in order to generate a list of suggestions

for the user u are:

• Find similar users with u.

– Utilize an appropriate similarity function S(u, u′)∀u′ ∈ U, u 6= u′.

• Predict relevances score for items not rated by u.

– Based on the similar users to u, apply a relevance function relevance(u, i),

where i /∈ I(u), in order to produce an estimated score for that item.

• Recommend the top-k items.

– Rank the items based on the predicted score found in the previous step

and report back the k items with the highest scores.

An important benefit found in the collaborative filtering method is that it does

not depend on the items being computer analyzable. For that reason, it is able

to precisely suggest intricate items without the need of “comprehending” the item

itself. Nonetheless, the algorithms for collaborative filtering suffer from three main

problems: scalability, cold-start and sparsity. In several real scenarios in which

recommendations are made by these systems, the amount of users and items involved

are in the order of millions. As a result, to execute the algorithms and calculate the

recommendations there is a need of a very large amount of computational power.

Furthermore, in order to make precise recommendations a large number of existing

data is required by these systems, thus resulting in the cold start problem (Rubens

et al. 2015; Elahi et al. 2016). Finally in most cases the number of items is very

large. Even the users that are more active will only have given ratings to a very

small subset of items from the entire dataset. Hence, there would be only a few

ratings even for the most popular items.

2.1.2 Content-based Recommendations

The content-based filtering approach creates recommendations of items based on

comparing the content of the items and a profile of a user. A collection of terms

6

or keywords represent the content of a item, which typically are words occurring

within a document. The same terms, assembled with the analysis of the items’

content which the user rated or interacted with, are used to represent the user

profile. Therefore, content-based algorithms try to recommend similar items to the

ones already rated by the user. More specifically, several possible items are compared

with the items which the user rated in the past, and then the best matches are

suggested (Brusilovsky et al. 2007; Aggarwal 2016). This developed the drawback

of overspecialization. The systems often tend to propose new items that are very

similar to those the user has already seen, and so the system suffers from a diversity

problem, where the user is not offered the opportunity to explore new items. A

key feature of the content-based recommender systems is the classification learning

algorithm. These algorithms work by learning a function which models the interests

of each user. The function anticipates if the user will have interest in a new item,

given the user model and a the item. These predictions can take a probabilistic

form by estimating the probability that the user will like an item, or they can take

a numeric form in which the algorithm will directly compute a numeric value that

represents the item’s relevance to the user, such as the level of interest. Traditional

algorithms of machine learning are used for many of these algorithms. Some of

the algorithms that may be used by content-based recommender systems include:

Nearest Neighbor Methods, Decision Trees, Rocchio’s Algorithm, Rule Induction

and Naive Bayes (M. J. Pazzani et al. 2007).

The general steps required by a content-based recommender system are summa-

rized as follows:

• Generate a profile based on user u.

– If the profile is not given, generate a user profile that share the same

attributes as the description of the items and as values of these attributes

the values of items that the user has already viewed.

• Apply a classification learning algorithm.

– Utilize one of the previously mentioned algorithms to predict a score for

any new item i such that i /∈ I(u).

– Alternatively, a similarity function such as cosine correlation may be used.

• Recommend the top-k items.

– Rank the items based on the predicted score found in the previous step

and report back the k with the highest scores.

7

A key issue of content-based filtering is if the system is capable to learn prefer-

ences of users from users’ behaviour within one source of content and then use them

with other types of content. For instance, it is useful to recommend news articles

based on news’ browsing, however it would be much more useful when discussions,

videos, products, music etc. from different sources could be recommended based on

news browsing (Ntoutsi and Stefanidis 2016). Furthermore, keywords alone may not

be sufficient to judge the quality and relevance of an a item. Finally the content-

based algorithm suffer from the cold start problem, since they require a training

dataset in order to extract the user profile from the items that the user has already

seen.

2.1.3 Knowledge-based Recommendations

Recently, knowledge-based recommender systems have received a lot of attention.

These systems require not only information (knowledge) about the users and the

suggested items, but they also necessitate the domain knowledge about how these

suggested items respond to the users needs and preferences (Frikha et al. 2017). In

more detail, a knowledge-based recommender system requires the following knowl-

edge; information on the users and their corresponding contextual parameters, in-

formation about the items and their features, and finally, the knowledge models,

meaning, the knowledge about the matching between the item and the users needs.

Two main categories of knowledge-based systems are the constraint-based and

case-based recommender systems (Aggarwal 2016). The recommendation proce-

dure is similar for both methods; the users specify their requirements and items

that satisfy them are tried to be identified by the system. If no items are found,

then the users need to change their requirements. The difference being that in

constraint-based systems the users explicitly define their requirements as a set of

recommendation rules that the system tries to satisfy, while in the case-based sys-

tems, different similarity measures are used based on the requirements of the users,

such as maximize or minimize certain properties, e.g., “more RAM memory” and

“lowest price” respectively.

Knowledge-based approaches answer to the sparsity problem that collaborative

filtering suffers from. Additionally, often a user wants to define a requirement for the

suggested items explicitly, a feature that is supported in knowledge-based systems

but not for example in collaborative filtering or content-based ones. At the same

time however, this is also one of the major drawbacks of this approach. The process

to acquire this knowledge explicitly is time consuming.

8

2.1.4 Group recommender systems

In many cases, it would be interesting to recommend items to a group of users

instead of to a single user. For example, a group of friends might want to watch a

movie together or have a playlist of songs for a party, and recommendations could

be given based on all group members’ models. Creating recommendations to groups

is more complex than suggesting items to individuals.

After being able to predict what an individual user would like, group recom-

mendations are typically created by combining the individual models of the users

in a group (Ricci et al. 2011). Two approaches can be utilized for generating group

recommendations (Baltrunas et al. 2010; Jameson et al. 2007). In the first one a

joint profile of a group of users is created, and recommendations are made based

on a created artificial user that serves as the entire group (McCarthy et al. 1998;

Yu et al. 2006). Thus, the recommendation represents to some extent the group

preferences mediated in this artificial user. The general steps for this approach are

defined below:

• Based on a group of users G, G ⊂ U , create an artificial user v

– Several techniques could be used to create the artificial user v. While

there is not a well founded method, averaging of group members’ at-

tributes is commonly used.

• Apply a recommendation algorithm to the created user v.

– Depending on the context, collaborative filtering, content-based filtering,

or knowledge-based approaches can be used to predict the score of items

for the user v.

• Recommend the top-k items.

– Rank the items based on the predicted score found in the previous step

and report back the k items with the highest scores.

The other approach creates individual and ranked recommendations for all the

users in a group, then an aggregation algorithm combines them into a single list for

the group. In a problem of recommending recipes, Berkovsky et al. (2010) compared

both the approaches and found that the performance of the first one is slightly better.

The generic steps for the second approach are described as follows:

• Apply a recommendation algorithm to all the users of the group G, G ⊂ U .

9

– Depending on the context, collaborative filtering, content-based filtering,

or knowledge-based approaches can be used to predict the score of items

for the users.

– For every user u ∈ G, a list of recommendations is created in the same

way as individual recommendations.

• Aggregate the recommendations into a single list.

– An algorithm aggregates all the lists of recommendations generated in

the last step into a single list.

– Different methods could be used for combining the lists, such as Optimal

Aggregation, Kendall tau Distance, Average Aggregation, Least Misery

Aggregation and Borda Count Aggregation (Dwork et al. 2001; Meena

et al. 2013; Ricci et al. 2011).

• Recommend the top-k items.

– Rank the items from the single list created in the previous step by their

predicted scores and report back the k items with the highest scores.

Group recommendations presents a research challenge in evaluating and improv-

ing their effectiveness. Many researchers tried to investigate these aspects (e.g.

Amer-Yahia et al. 2009, Ntoutsi, Stefanidis, Nørv̊ag, et al. 2012, Stratigi et al. 2018,

etc.), and most of the literature focus on group formation and evolution, interfaces

that give support to group recommenders and privacy concerns (Chen et al. 2016).

Ntoutsi, Stefanidis, Nørv̊ag, et al. (2012) for example, suggests a model that uses

recommendations for items that users similar to the members of a group liked in the

past. Users are separated into clusters by their similarity, and then recommendations

are based on the cluster members.

One user study that evaluated the advantages of group recommendations is

PolyLens. PolyLens is group recommender system extended from the MovieLens

recommender (O’Connor et al. 2005). In that study, users were allowed to compose

groups while the system analyzed how the groups had an influence on the way users

used MovieLens. Using the least misery heuristic, group recommendations were cre-

ated by combining recommendations of individual group members. Different criteria

were used to evaluate user satisfaction, such as the easiness of creating groups and

adding members to it, the usefulness of group recommendations and overall satis-

faction. In addition to other findings, the study came to the conclusion that when

in a group, users prefer group recommendations.

Other works try to incorporate the property of fairness in group recommenders.

The model proposed by Stratigi et al. (2018) uses the semantic distance between

10

users to balance the recommendations. Different methods can be used to improve

the fairness based on the recommender system domain.

Group recommendations can also be used to recommend to individual users,

since aggregating recommendations to a group is similar to aggregating multi-criteria

recommendations (Ricci et al. 2011). For instance when recommending news, the

criteria topic, location and how recent the items are could be used within a group

recommender. However, this criteria should not be treated in the same way and

different weights must be assigned to them. In that way, by using the criteria it is

possible to better predict the final user overall satisfaction.

2.1.5 Diversity in Recommender Systems

In some situations it may not be useful for a user to receive recommendations of

similar items. For example when exploring travel destinations, it could be better

to receive a set of suggestions for different locations rather then suggestions for

different hotels in the same location. The property of diversity in a recommender

system deals with that issue. Usually diversity is described as being the opposite

of similarity. One of the most used approaches to measure diversity is based on

calculating item-item similarity by their contents (Smyth et al. 2001; Ricci et al.

2011).

In research literature many definitions for diversity are found. According to

Drosou et al. (2010), they could be mostly categorized in: (i) content-based, in which

items are selected by the dissimilarity in their attributes in relation to others items

(for example when information does not overlap) (e.g., Zhang et al. 2008; Stefanidis,

Drosou, et al. 2010); (ii) novelty-based, in which items are selected based on whether

they contain new information that were not shown to the user before (e.g., Clarke et

al. 2008); and (iii) semantic-based, when items are selected by belonging to distinct

topics and categories (e.g., Agrawal et al. 2009)

Generally, selecting diverse items is defined as selecting k items within a set,

such that within the k items the diversity is maximized (Kyriakidi et al. 2017). In

the content-based method, the main activity is selecting items that present dissim-

ilarity in relation to each other by not containing information that overlaps. The

dissimilarity could be calculated by the contents of the items for example using

a Jaccard-like definition of distance (Kyriakidi et al. 2017). However, oftentimes

items are poorly described or do not have enough content, thus not being effective

for dissimilarity calculation. In those cases, other methods could be used, such as

the ratings-based approach as described by Kyriakidi et al. (2017). That approach

takes advantage of the ratings given by a set of users for particular items. The idea

is to define the similarity between two data items by how large is the set of users

who gave ratings to both items.

11

Moreover, there could be a trade-off between diversity and other recommender

systems properties such as accuracy. Some approaches try to include diversity by

relaxing the possible items to a trust-region, thus maintaining the accuracy, or using

user preferences to obtain diverse items that are still relevant to the user (e.g. Zhang

et al. 2008, Stefanidis, Drosou, et al. 2010).

2.1.6 Fairness in Recommender Systems

Fairness is another property that can be considered for recommender systems, es-

pecially when suggesting items to groups. Depending of the context of the rec-

ommender, fairness could be implemented in different ways. For instance when a

package is suggested to a group of users, it would be fair if every user in the group

is pleased by an enough amount of items of the package (Serbos et al. 2017; Stratigi

et al. 2018; Yao et al. 2017; Burke 2017). In the context of multiple teams for-

mation, fairness could be defined as if all the teams receive good members in a

balanced way between them. No literature was found regarding fairness in teams

recommendations.

Most of the works implement fairness as an improvement over aggregation meth-

ods, either for group recommendations or for group recommendations to individuals

(e.g. Christensen et al. 2011, Masthoff 2015, Quijano-Sanchez et al. 2013, etc.). Due

to the possible different preferences within users in a group, achieving fairness could

improve overall satisfaction but also reduce it for a few members. Commonly it is

implemented with a penalty factor to the amount of variation between the predicted

ratings.

For example, Stratigi et al. (2018) proposes including fairness in a novel measure

of similarity for creating group recommendations in the health domain. The goal is

to recommend health documents to groups of patients, using an aggregation method

based on the semantic distance between their health problems. Since the patients

usually have a variety of health problems, fairness is needed within these group

recommendations. It is implemented in such a way that, in a set of recommendations

there will be at least a few interesting items for each patient, regardless of not all

the recommended items being interesting for the patient. Typically, if at least a few

recommended items are good enough, the user is able to tolerate being suggested

other non-interesting items.

2.1.7 Evaluation of Recommender Systems Efficacy

There are three methods to measure how effective the suggestions generated by a

recommender system are. The effectiveness can be measured through user studies,

A/B tests (online evaluation), and offline evaluations (Beel, Genzmehr, et al. 2013).

12

User studies are conducted in such a way that a small amount of users (dozens or

a few hundred) act as judges by evaluating which recommendations are best between

the results of distinct recommendation methods.

A/B tests works similarly to user studies but are applied in large scale and the

users are not focused on the task of evaluation. Different recommendation methods

results are presented to thousands of users and the success of those methods are

measured implicitly with click-through or conversion rates. A/B tests are typically

applied to real products and services with active user bases.

Offline evaluations are done by using previous data of users’ ratings. Based on

this historic information, recommendations can be evaluated.

Different metrics are used to evaluate recommender systems output. The most

often used are the root mean squared error and the mean squared error (Candillier

et al. 2007). In addition, the quality of a method for recommending items is also as-

sessed by information retrieval metrics as discounted cumulative gain and precision

and recall (Candillier et al. 2007). There are other factors regarded as important in

the evaluation such as coverage, novelty and diversity (Lathia et al. 2010). Nonethe-

less, there is a lot of criticism towards many of the traditional evaluation measures

(Turpin et al. 2001).

A recommendation method effectiveness is then measured by how well that

method is able to anticipate the ratings that would be given by users in the recom-

mender dataset. However, whereas a rating is a clear representation of a user liking

an item, not all domains provide the concept of rating items, such as in the domain

of team formation, in which users commonly do not rate a team. In those situations,

implicit measurements of effectiveness could be used with offline evaluations. For

instance, a recommender system might be presumed effective if the teams are built

with as many members as possible from a members reference list.

Several researchers however, are critical towards this type of offline evaluations

(Jannach et al. 2013; Turpin et al. 2001; Beel, Genzmehr, et al. 2013). For ex-

ample, it has been demonstrated that there is a low correlation between results of

A/B tests and user studies and offline evaluation results (Turpin et al. 2001; Beel

and Langer 2015). Moreover, a commonly used dataset in offline evaluation has

been brought wrong conclusions in algorithms’ evaluation due to containing du-

plicated data (Basaran et al. 2017). Oftentimes, the assessed user-satisfaction of

a recommender also does not correlate to the results of alleged offline evaluations

(Beel, Genzmehr, et al. 2013). Therefore, results of offline evaluation need to be

interpreted carefully and critically.

13

2.2 Group formation

The employment of soft-computing and smart methods for selecting personnel has

been extensively researched. In contrast with Malinowski et al. (2008) claims, sev-

eral studies support selection of individuals with the use of computer intelligence

techniques and information systems (e.g. Strnad et al. 2010, Toroslu et al. 2007,

Celik et al. 2009).

Mohanty et al. (2010) presents an important review on this field. The attempts

to solve personnel selection problems with technology are frequent (e.g. Barreto et

al. 2008, Barcus et al. 2008). For example for selecting teams of software engineers

many techniques are used, such as fuzzy logic (e.g. Strnad et al. 2010, J. Wang et al.

2003), semantics (e.g. Garćıa-Crespo et al. 2009, Valencia-Garćıa et al. 2010) and

rough sets (e.g. Imai et al. 2011). Many authors also address the issue of combining

these intelligent systems approaches aiming to improve the selection of members’

performance (e.g. Zhong et al. 2001, Mahmoud 2011, Nowicki 2010, Li et al. 2011).

The use of those personnel selection algorithms comes naturally to form teams.

When used with recommender systems, team formation can help in decision taking

problems by indicating the best combination of members in regard to specific criteria.

For instance, Colomo-Palacios et al. (2012) describe how to use rough sets and fuzzy

logic to form and recommend Scrum teams, based on team members’ roles. The

recommendations are based on hybrid techniques and are described by the following

steps:

• Labeling of competences: Each work package (a project for a Scrum team)

receives labels of the required competences, that are also weighted by their

relative importance for the project.

• Fuzzy transformation: The weights of the labels are transformed into linguistic

values with the use of fuzzy methods. Thus, the matching between staff and

project required competencies is made easier.

• Rough set categorization: Based on a set of earlier assessments, a rough set

method is used to determine the competence level of each individual within

the required competencies of the project.

• Matching and recommendation process: Each candidate is matched with the

competences, then the system recommends teams for the project based on

different criteria such as minor gap, ranked teams, best teams, etc.

This described system is able to help project managers in assembling the best team

for Scrum projects, based on available staff and each project required competences.

14

A recommender system for team formation in which extreme situations are taken

into consideration is described by Al-Adrousy et al. (2015). Such system is designed

for a Mobile Ad-hoc Network context, in which challenges as intermittent connec-

tivity, limited coverage and limited computing power are present. Therefore, the

recommender can not assume the same conditions of most other recommender sys-

tems, such as time stability of how users exist in the network to be selected. The aim

is to build teams of skilled members in short intervals of time for ad-hoc projects,

which for instance could be about writing codes, testing or creating websites, or

designing specifications. Another possible use could be for exchanging materials

(books, code or articles).

Besides restrictions of the domain, constraints can also be applied to recom-

mender systems, as described by Stefanidis and Pitoura (2013). In their paper, a

problem of team formation for recommending an item when the team members are

affected by constraints is presented. A greedy algorithm is depicted in which the

team is built by incrementally selecting users by how much score they add to the

team and by how well they satisfy the set of imposed constraints. The novel aspect

is considering group consensus not only towards an item recommended for the team,

but also regarding other group members.

As with the literature described above, most of the research of team formation

is focused on the software development context. In addition, Minto et al. (2007)

suggest an approach to form and recommend emergent teams based on how software

artifacts are changed by developers. Yilmaz et al. (2015) depict a team recommender

based on personality of team members, in which a machine-based classified predicts

the performance of the possible teams. Lappas et al. (2009) also propose a team

recommender in which individuals are grouped by skill requirements, but also uses a

communication cost indicator to measure effectiveness. Therefore, despite following

the same general procedure, the problem of recommending teams has a tendency to

differ in how to aggregate the members for a team, which depends largely on the

application domain and its particularities. Moreover, there is still space for more

research on team recommender systems for more general contexts. Those other

contexts may have different constraints and methods to assess fairness, efficacy and

to form the team itself than recommender systems in the software development

context.

15

3 Problem definition

This chapter provides a motivating example to illustrate how the concepts of recom-

mender systems and fairness could be used together to solve a real-world problem.

Furthermore, the problem being investigated is formally defined, while referencing

the literature.

3.1 Motivating example

Assume that there are several projects that aim to create products and satisfy

needs. Each one of these projects has different needs of skilled people based on their

requirements, restrictions, context and goals.

For example, a project on developing a new website for a company would require

individuals with skills of back-end development, front-end development, design and

prototyping of interfaces, and user experience. However, a project aimed at creating

a device for measuring heart rate would need individuals with expertise in health

sciences, engineering and ergonomics.

The individuals that could work on a project possess different sets of skills.

Figure 3.1 shows nine individuals with their skill sets and 3 projects with their

required skills.

The ability or expertise to do something well is defined as a skill. A project

is a collaborative effort to reach a goal, which is carefully designed and planned

(Stevenson 2010) and that requires a team of people with specific skills for that.

This thesis investigates a team formation problem in the context of a platform

in which several different projects are available to receive applications from inter-

ested individuals (applicants) to work on them. For all projects a team should be

formed by matching the project requirements with applicants’ skills. Furthermore,

each project has a determined number of team members required (for example 6

members). Figure 3.2 shows the result of the recommender system, in which teams

of applicants are suggested for the projects based on their skills. In this hypothetical

situation, all the projects have team members that satisfy their requirements.

The teams should be formed in a way that maximizes matches between project

requirements and applicants’ skills. A perfectly maximized but unrealistic team

formation would be when for every applicant in the team, the applicant possesses

all of the project required skills. However, a given applicant cannot belong to more

than one team, which poses a restriction since forming a team limits the available

choices of applicants for other teams. Therefore, when forming all the teams, some

fairness is required in such a way that all teams are similarly good and choices are

16

Figure 3.1 Example of a set of individuals and their skills, and a set of projects and
their required skills

Figure 3.2 Example of suggested teams of three applicants each, and their skills, for a
set of three projects and their required skills.

17

Figure 3.3 Example of a set of skills in a hierarchy

not made purely on finding the best possible applicants for a project, leaving other

projects with the remaining less suitable applicants.

3.2 Model

Skills, which might be attributes of applicants or project requirements, are repre-

sented by textual tags and relate to each other in a hierarchy relationship. Figure

3.3 shows an example of a set of skills and their relations. In this example, skills are

represented by nodes which are connected by edges and follow an order from the

most abstract (root) skill to more specialized (branches and leaves) skills. The skill

“Software development” is related to the skill “Programming”, which is related to

the skill “Back-end programming”.

The similarity between two skills s1 and s2 can then be calculated by the shortest

path distance between their corresponding nodes in the hierarchy. The distance be-

tween two nodes dist(s1, s2) is the graph geodesic distance considering non-weighted

edges. Therefore, any existing edge between two nodes represents a distance of 1.

To find the shortest path distance, where the skill slca = LCA(s1, s2) is the least

common ancestor of s1 and s2, we compute the sum of distances from slca to s1 and

from slca to s2. Accordingly, the similarity(s1, s2) function is defined as follows:

18

similarity(s1, s2) =

0, if no relation

1, if s1 = s2
1

dist(s1, slca) + dist(s2, slca)
, otherwise

Therefore, the similarity between the skills “Software testing” and “Back-end

programming” in Figure 3.3 is 1
3
, while the similarity between the skills “Back-

end programming” and “Front-end programming” is greater at the value of 1
2
. The

similarity of the skills “Programming” and “Advertising” is 0, since they are not in

the same hierarchy and it is not possible to find a common ancestor skill.

Different sets of skills are attributes of different applicants. Let A be a set of

applicants to the projects, in which each applicant a, a ∈ A, possess a set of skills

{s1, . . . , sn}, in which si is a textual tag representing a skill.

Example 3.2.1 (Applicants a1 and a2 and their sets of skills)

a1 = {programming, user experience, photography}
a2 = {visual design, marketing, sales, cooking}

Skills are not only attributes of applicants, but also requirements for the projects.

Let P be a set of projects, in which each project p, p ∈ P , is described by a set of

required skills p = {r1, . . . , rn} that the team members of the project must possess,

in which ri is a textual tag representing a skill. It can be assumed that all projects

have the same amount of required skills.

Example 3.2.2 (Projects p1 and p2 and their sets of required skills)

p1 = {programming, sales, user interfaces, design}
p2 = {programming, user experience, marketing, advertising}

To determine if an applicant a has the skill r that is needed in the project p, or if

the applicant has any skills related to r within its skill set, the function scoreAR(a, r)

is used. The function returns a score of how well an applicant has skills that relate

to a specific required skill of a project.

scoreAR(a, r) =
∑
∀si∈a

similarity(si, r)

Knowing how well an applicant’s skills suit one project requirement, it is possible

to calculate how well an applicant fits in a project in consideration with all of the

project’s required skills. The function scoreAP (a, p) is used to calculate the matches

between the set of skills of an applicant a and all the required skills of a project p,

based on the function scoreAR(a, r).

19

scoreAP (a, p) =
∑
∀ri∈p

scoreAR(a, ri)

Furthermore, with the information of how well applicants could fit within a

project, the function scoreTP (t, p) denotes how well a team of k applicants t, t ⊂ A,

matches with all the required skills of a project p. By using this function it is

possible to compare how well different team formations fit to a project, according

to Definition 3.2.3 below. It is assumed that all teams are formed with the same

amount of applicants k.

scoreTP (t, p) =
∑
∀ai∈t

scoreAP (ai, p)

Definition 3.2.3

Given a project p = {r1, . . . , rn}, and a set of applicants A = {a1, . . . , am}, where

each applicant ai is associated with a set of skills {si1 , . . . , six}, the best team of k

applicants for the project p is the team T ∗ for which:

T ∗ = argmax|T |=kscoreTP (T, p),

such that, ∀rj ∈ p, ∃ai ∈ T , with siy = rj; and there are at least k applicants in the

set A.

Therefore, to form q teams of k members, the set A must contain at least q × k

applicants.

The model presented above differs from the methods in research literature in

the sense that teams are not formed based on similarities between its members as

in content-based methods, neither on past ratings as in collaborative filtering ap-

proaches. The problem presents itself similarly to a packages-to-group recommenda-

tion, in which packages (teams) of items (applicants) are recommended to groups of

projects. The concept of ratings itself is not used in a traditional way, but replaced

by the relation between required skills of projects and applicants’ skills, which for

this problem would be better called scores. Since the relations between applicants’

skills – items’ attributes – are not taken into consideration, content-based filtering

is not suitable. Furthermore, recommended teams are also not calculated based on

historic data of past formed teams. Projects are often unique and rarely the as-

sumption that there are two or more projects with the same requirements can be

made. Hence, collaborative filtering would also be unfit for this problem, since the

sparsity problem would be taken to an extreme in which the subset of rated items

for a user would consist of at most one item.

Nonetheless, the model seems to fit better within knowledge-based approaches.

20

It could be related to constraint-based knowledge-based systems, as the projects

possess requirements for the desired applicants’ skills. Furthermore, knowledge-

based methods have as their strengths the ability to work well with sparsity, complex

and specific problems, which is the case presented by this thesis.

Moreover, the concept of group recommendations to individuals is used. The

formation of a team involves calculating the score of applicants for a project, then

combining them into the team, based on the requirements (criteria) set by the

projects.

3.3 Fairness-aware Team Formation

It is not sufficient to find the best team for a project using the Definition 3.2.3,

since the assignment of applicants to a specific team makes them unavailable to

other teams. Therefore, the property of fairness needs to be applied when suggesting

multiple teams to multiple projects, so that there is a balance between the teams,

as specified by Definition 3.3.1 below.

Definition 3.3.1

Fairness to teams: Let T be a set of n teams (T1, . . . , Tn), assigned to a set P
of projects (p1, . . . , pn). Given a set T S including all pairs of teams (Ti, Tj) ∈ T , to

ensure fairness in group formation, minimize:∑
(Ti,Tj)∈T

|scoreTP (Ti, pi)− scoreTP (Tj, pj)|

The implication of applying Definition 3.3.1 is that the best possible team is

not always going to be chosen for some projects. However, by choosing teams with

slightly lower scores (scoreTP) for some projects, it is possible to choose teams

with greater scores for others, thus minimizing the differences and increasing the

fairness between them. Furthermore, the implementation of fairness in this thesis is

novel relating to the research literature, as most of the approaches are implemented

by reducing the variation between predicted ratings, i.e. by increasing similarity

between items. On the other way, this thesis proposes to achieve fairness through

the way in which teams are formed, considering the presented restrictions of the

context.

21

4 Methods

This chapter proposes different methods for creating team recommendations. Sec-

tion 4.1 defines a brute force method, while Section 4.2 specifies a heuristic approach

and further optimizations to increase fairness in the recommendations.

4.1 Brute force algorithm

Based on the functions of Chapter 3, Algorithm 1 implements the function scoreAP (a, p)

which calculates how well a given applicant a is suited to a given project p.

Algorithm 1: Function scoreAP (a, p)

Input: An applicant a and a project p

scoreAP = 0;

foreach ri in p.requirements do

/* calculates scoreAR between applicant a and individual

project requirement ri */

scoreAR = 0;

foreach sj in a.skills do

scoreAR = scoreAR + similarity(sj, ri);

end

scoreAP = scoreAP + scoreAR;

end

Output: scoreAP

Result: How well an applicant a skills match with a project p requirements

Assume that combinations(k, L) is a function that calculates the binomial coef-

ficient (generates a list of all possible combinations) of k elements from the set of

elements L, as shown in Example 4.1.1 below. In our context k is the amount of

applicants in a team, and L is the set of all applicants. Algorithm 2 below uses the

combinations(k, L) function and Algorithm 1 to implement a brute force method to

generate the best teams recommendations:

For every project p in the set of projects P , all the possible team combinations

T of k members are generated from the set of available applicants A. Then for every

possible team t in T , its score relating to the project p is calculated with the function

scoreTP (t, p). The team with the maximum score is chosen as the best team for

that project and its members are removed from the set of available applicants A.

This team formation process is repeated for all projects.

22

The asymptotic computational complexity of Algorithm 2 is factorial as denoted

by O(k ×
(
A
k

)
× P), or O(n!).

Example 4.1.1 (Use of the function combinations(k, L))

Let k = 2 and L = {1, 2, 3},
combinations(k, L) = [{1, 2}, {1, 3}, {2, 3}]

Algorithm 2: Brute force method to generate best team recommendations

Input: A set of applicants A, a set of projects P , and the team size k

bestTeams = [];

foreach pi in P do

possibleTeams = combinations(k,A);

teamsScores = [];

foreach tj in possibleTeams do

scoreTP = 0;

foreach an in tj do

scoreTP = scoreTP + scoreAP (an, pi);

end

put {tj : scoreTP} in teamsScores;

end

bestTeamForProject = max(teamsScores :: scoreTP);

put {pi : bestTeamForProject} in bestTeams;

/* After the best team for a project is determined, its

members are removed from the set of applicants A */

remove members in bestTeamForProject from A;

end

Result: Set of bestTeams

4.2 Heuristic algorithm

It is noticeable, however, that the brute force approach defined by Algorithm 2 is

very computationally expensive with its factorial asymptotic complexity, due to the

calculation of all possible team combinations. Therefore, a heuristic which could be

applied to minimize the computations while keeping the recommendation efficacy is

proposed.

Algorithm 3 below also uses the function from Algorithm 1, but in place of gener-

ating all possible team combinations, it first calculates scoreAP (a, p) between every

applicant a in the set A and every project p in the set of projects P . These values

are stored as a set in the projectApplicantsScores variable. Then the applicant a

who had the best calculated (maximum) scoreAP for a given project p is chosen as a

23

member of that project team and is removed from the set of available applicants A.

This previous step is repeated k times until the project p team has all its k members

chosen. This team formation process is then repeated for all other projects of the

set P .

Algorithm 3: Heuristic method to generate team recommendations

Input: A set of applicants A, a set of projects P , and the team size k

bestTeams = [];

projectApplicantsScores = [];

foreach pi in P do

foreach an in A do

put (pi, an, scoreAP (an, pi)) in projectApplicantsScores;

end

end

foreach pi in P do

for m = 1 to k do

bestApplicant = max(projectApplicantsScores[pi] :: scoreAP);

put bestApplicant in bestTeams[pi];

remove bestApplicant from projectApplicantsScores;

end

end

Result: Set of bestTeams

Furthermore, Algorithm 3 could be optimized to improve the fairness according

to Definition 3.3.1. That optimization is specified in the novel variants Algorithm 4

and Algorithm 5 below, which implement a k-rounds choosing method to generate

more fair teams recommendations.

Instead of choosing all the k best applicants as members of a project team and

then repeating the process for other project teams, Algorithm 4 chooses only one

applicant a who had the best calculated scoreAP for every project p as a member of

that project team, and also removes it from the set of available applicants A. This

procedure happens in k rounds to add the k-nth-member until all the teams have k

members.

24

Algorithm 4: K-rounds choosing method to generate team recommendations

Input: A set of applicants A, a set of projects P , and the team size k

bestTeams = [];

projectApplicantsScores = [];

foreach pi in P do

foreach an in A do

put (pi, an, scoreAP (an, pi)) in projectApplicantsScores;

end

end

for m = 1 to k do

foreach pi in P do

bestApplicant = max(projectApplicantsScores[pi] :: scoreAP);

put bestApplicant in bestTeams[pi];

/* After bestApplicant is chosen for a project pi, it should

be unavailable for other projects. Therefore, it is

removed */

remove bestApplicant from projectApplicantsScores;

end

end

Result: Set of bestTeams

Similarly to Algorithm 4, Algorithm 5 implements a variation pairs-rounds choos-

ing method to form teams. Based on the calculations of scoreAP (a, p) between every

applicant a in the set A and every project p in the set of projects P , there are k/2

rounds in which the pair of applicants a1 and a2 who had the best values of scoreAP

for p are assigned as team members and removed from the set of available applicants

A. Again, this process is repeated until all the projects have teams of k members.

If k is an odd number, then during the last round only one team member will be

assigned.

It is expected that by selecting team members one by one or in pairs between

the projects, the fairness between teams is increased.

In contrast to Algorithm 2, the asymptotic computational complexities of Algo-

rithms 3, 4 and 5 are linear as defined by O(A× P + k × P), or O(n).

25

Algorithm 5: Pairs-rounds method to generate team recommendations

Input: A set of applicants A, a set of projects P , and the team size k

bestTeams = [];

projectApplicantsScores = [];

foreach pi in P do

foreach an in A do

put (pi, an, scoreAP (an, pi)) in projectApplicantsScores;

end

end

for m = 1 to k do

foreach pi in P do

bestApplicant = max(projectApplicantsScores[pi] :: scoreAP);

put bestApplicant in bestTeams[pi];

/* After bestApplicant is chosen for a project pi, it should

be unavailable for other projects. Therefore, it is

removed */

remove bestApplicant from projectApplicantsScores;

secondBestApplicant =

max(projectApplicantsScores[pi] :: scoreAP);

put secondBestApplicant in bestTeams[pi];

/* secondBestApplicant should be also unavailable for other

projects and it is removed */

remove secondBestApplicant from projectApplicantsScores;

end

end

Result: Set of bestTeams

26

5 Experimental Evaluation

This chapter describes an experiment using the methods from Chapter 4. The

objective of the experiment is to test the feasibility, efficiency and efficacy of the

proposed algorithms for team recommendations creation. It is expected that the

heuristic-based methods perform significantly faster than the brute force approach.

In addition, the k-rounds and pairs-rounds variants are expected to show better

fairness than the previous methods.

Several test scenarios are created and executed through the implemented algo-

rithms of the methods. Section 5.1 describes the data that was used in the ex-

periment. Section 5.2 presents two measurements that are collected and analyzed

during the experiments. The quality of the recommendations is measured by the sum

of their scores, while the fairness aspect is measured by a novel fairness-deviation

indicator. Section 5.3 details how the algorithms were implemented and the test

scenarios were created and executed. Finally, Section 5.4 and Section 5.5 evaluate

the expectations and summarize the findings of this thesis.

5.1 Dataset

A preprocessed dataset derived from the DBLP dataset1 is used for testing. The

DBLP dataset is an online bibliography database for publications on computer sci-

ence (Ley 1997), created by Trier University. The preprocessed dataset was created

by X. Wang et al. (2015) and consists of a CSV (comma-separated values) file of

7428 lines. Each line corresponds to a researcher from DBLP dataset and contains

the person’s name and a varying number of skill tags related to that person. Each

researcher has at least one skill and there are 4480 unique skills among all people,

with some skills appearing more than once for the same person. Example 5.1.1

below illustrates a line from the dataset representing a researcher named Alpa Jain

and seven skills related to that person.

Example 5.1.1 (A line from the preprocessed dataset)

Alpa Jain,text,extraction,queries,information,query,sql,databases

Due to the nature of the DBLP dataset, the skills associated with the researchers

correspond to keywords used in those researcher’s scientific publications. Truthfully,

it may not represent the same definition of skills used in this work (the ability or

expertise to do something well). However, since the skills derived from the DBLP

dataset represent an area of knowledge or expertise in which a person published

1https://dblp.uni-trier.de/

https://dblp.uni-trier.de/

27

research, it could be considered as a sufficient approximation. In addition, a best

suited dataset was not found publicly.

To assemble the hierarchy relationship between the skills, the Wordnet2 database

was used. Wordnet is a large lexical database in English language, in which words

are grouped by their cognitive synonyms (synsets) (Fellbaum 1998; Fellbaum 2005).

There are about 117 000 synsets in Wordnet and each one of them convey a different

concept. They are connected by lexical and conceptual-semantic relationships, and

with those connections it is possible to estimate how similar in meaning one word

is to another. Therefore, use of Wordnet suits well as a way to compute similarity

between the skills derived from the preprocessed DBLP dataset, since the skills are

words without any connections between them.

5.2 Measurements

In our experimental evaluation, we compare how well the proposed heuristic meth-

ods perform timewise, studying different parameters, especially since the presented

brute force approach has a factorial asymptotic complexity (O(n!)) and the heuris-

tic methods have linear asymptotic complexity (O(n)). For that reason, and for

verifying the linearity of those methods, the execution time of these algorithms is

measured.

Since the scoreTP value is an indicator of how well a team fits into a project

requirements, the analysis of the success of the recommendations is focused on it.

The sum of all the scoreTP values in a set of recommended teams indicate how

successful the recommendation method is, relative to its parameters (amount of

projects, amount of required skills by project and amount of members in each team).

Therefore, this measurement is taken into account as it conveys s better quality and

quantity of matches between applicants’ skills and project requirements.

Furthermore, based on the scoreTP values, a fairness-deviation indicator is pro-

posed to measure the fairness digression between recommended teams. Assuming

that an absolute fair set of teams would be a set in which all of the teams have

the same scoreTP , the fairness-deviation indicates how much in average the teams

deviated from this absolute fair situation. The fairness-deviation between a set of

recommended teams T is defined by

fairness-deviation(T) =

∑
∀ti∈T | ti −mean(T) |

len(T)
.

where mean(T) is the arithmetic mean of the scoreTP values of the teams in the

set T , and len(T) is the count (length) of teams in the set.

2https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

28

Table 5.1 below illustrates an example of mean, sum and fairness-deviation

values calculated with scoreTP values of hypothetical sets T of teams. The four

combinations of teams’ scoreTP values in the first column are all different. Despite

that all the sets T have the same mean (50) and sum (150) values, the fairness-

deviation values are different. While the first row depicts a set of perfectly fair teams,

the following rows represent distinct levels of deviation from absolute fairness. The

fairness-deviation value grows as the difference between the scoreTP values increases

within a set of teams.

Table 5.1 Example of fairness-deviation calculation for sets of teams

scoreTP values for T mean(T) sum(T) fairness-deviation(T)
{50, 50, 50} 50 150 0.00
{45, 50, 55} 50 150 3.33
{35, 50, 65} 50 150 10.00
{12, 42, 96} 50 150 61.33

5.3 Methods

A Python script was crafted to implement the experiments and output the results.

The complete code is available in a GitHub repository3.

The script takes advantage of the fact that the datasets used are not from live

environments of online services – and therefore, they do not change – to precompute

some steps. After loading the preprocessed DBLP dataset, by joining all the skills

of all the 7428 researchers – from now on referred as applicants – and eliminating

duplicates, a set of 4480 unique skills was formed. Since computing the similarity

between skills could be a resource intensive procedure due to the task of finding nodes

and paths within the skills’ hierarchy relationship, a similarity matrix between all

the skills is calculated and saved to speed up the overall algorithm.

NLTK (Natural Language Toolkit)4 – a software library to work with human

language data – provides an API5 to access Wordnet dataset and exposes a function

path similarity that can be used to calculate the similarity between two synsets.

It returns a value between zero and one, with one representing identity (the two

synsets are exactly the same), and zero representing no link between the synsets.

Due to the fact that a word may convey different meanings – and therefore, be

represented by several different synsets within Wordnet –, and that it is not feasible

to determine individually the correct synset for every skill in the dataset, it is decided

that the first found synset is used. If no synsets are found for a skill in Wordnet, its

3https://github.com/machadolucas/Team-Recommender
4http://www.nltk.org
5http://www.nltk.org/howto/wordnet.html

https://github.com/machadolucas/Team-Recommender
http://www.nltk.org
http://www.nltk.org/howto/wordnet.html

29

similarity to all other skills is considered to be zero, except the similarity to itself

that is then considered one. The path similarity function was then used to calculate

the similarity between all the unique skills extracted from our dataset, producing a

4480× 4480 matrix. Once filled, the similarity matrix is saved as a binary file that

can be quickly loaded for further executions of the script.

Regardless that this precomputation was done with a static dataset, a precom-

puted similarity matrix could be used also for dynamic data with the appropriate

changes in the code. For every new skill that would be added to the skill set, it

would be needed to calculate only the similarity between the new and the previous

skills since the similarity value works bidirectionally. Then those new values would

be added to the matrix.

Several test scenarios were created to analyze different aspects of the algorithms.

A test scenario in this context is a team formation task in which all the algorithms

are executed to create team recommendations to a common randomly generated set

of projects. Test scenarios are organized into test groups, which may contain one or

more of them. Each test group has a different goal regarding analyzing algorithms

efficiency or effectiveness. Table 5.2 below summarizes the different test groups,

the amount of test scenarios and the purpose for each group.

Table 5.2 Test groups, amount of scenarios in each, and their purposes.

Test group Amount of
scenarios

Purpose

1: Varying amount of projects 10 Analyze time performance
2: Varying amount of team
members

10 Analyze time performance

3: Main test with random pa-
rameters

100 Compare heuristic algorithms

4: Very small dataset for brute
force analysis

1 Analyze brute force algorithm

Test scenarios receive input, execute algorithms and report measurements. Each

test scenario receives as input the amount of projects p and the set of skills that

could be used as project requirements, then a set of p projects is created with 20

randomly sampled skills from the given set. This set of created projects together

with the parameter k of how many members each team should have are subsequently

used as input to the algorithms. The results returned by the algorithms are measured

and recorded. All the test scenarios in test groups 1, 2 and 3 use the full set of 7428

applicants as input to the algorithms, while the test scenarios in test group 4 use a

sampled subset of 100 applicants from the full set.

The objective of test groups 1 and 2 is to analyze how much time the algorithms

need to create the team recommendations. For test group 1 all the parameters were

30

fixed and only the amount of projects p changed. A total of 10 test scenarios were

tested with values of p ranging between 3 and 30, in intervals of 3 ({3, 6, 9, . . . , 30}).
Similarly for test group 2, all the parameters were also fixed except for the amount

k of team members. The values of k tested were again the range between 3 and 30,

in intervals of 3 ({3, 6, 9, . . . , 30}), for a total of 10 test scenarios.

Test group 3 tests aimed at comparing the fairness-related results between the

algorithms and had randomly generated input parameters inside some constraints.

From the range of numbers between 5 and 35 a sample of 10 numbers was selected to

be used as p values (amount of projects). Then from the range between 3 and 12 a

sample of 5 numbers was used as k values (amount of members in each team). These

range values were chosen trying to represent the extreme situations in a real scenario,

as few teams have less than 3 or more than 12 members: Agile teams, for example,

usually have less than 10 members (Canty 2015). All the possible combinations

between the 10 sampled p and 5 sampled k values are used to generate a total of

50 test scenarios. As an alternative to the full set of 4480 unique skills, those 50

scenarios are executed receiving as input only the 200 most frequent skills as possible

project requirements. Likewise, another 50 test scenarios are created and executed

with another samples of p and k values following the same constraints. However, this

second set of 50 test scenarios uses the 200 less frequent out of the 2000 most frequent

skills to create project requirements. The behaviour of the algorithms during the

extreme situations of overfitting and underfitting of data can be analyzed with this

variation between the most and less frequent skills.

Test group 4 has only one test scenario and uses a reduced amount of data

with small values for parameters, so it allows to conceptually test the brute force

algorithm and compare it with the heuristic methods. Instead of using the full set of

7428 applicants, a sample of 100 applicants is extracted and used. Furthermore, the

task consists of creating recommendations for only 4 projects (p = 4) with 4 team

members each (k = 4). The whole skill set is used to create project requirements,

since it should not affect the performance of the algorithms.

The algorithms executed in each test scenario are different depending on the

test group. For each test scenario in test groups 1, 2 and 3, Algorithms 3 (heuristic

method), 4 (K-rounds method) and 5 (Pairs-rounds method) are executed. In test

group 4, Algorithm 2 (brute force) is executed in addition to the others.

Finally, measurements collected during all the tests are printed by the script on

computer terminal, and used for creation of the relevant figures (graphs). Exam-

ple 5.3.1 below illustrates the summarized output of a test scenario from test group

3.

31

Example 5.3.1 (Example of terminal output for a test scenario)

---------- Test input: ----------

Applicants: 7428 Projects: 20 k: 8

Heuristic results: Took: 7.646s

Scores: Max:1058.281 Min:214.749 Range:843.532 Mean:365.291

Sum:7305.829 f-deviation:112.729

K-rounds heuristic results: Took: 8.541s

Scores: Max:564.448 Min:273.220 Range:291.228 Mean:364.754

Sum:7295.083 f-deviation:50.836

Pair-rounds heuristic results: Took: 8.530s

Scores: Max:672.251 Min:260.797 Range:411.454 Mean:364.807

Sum:7296.139 f-deviation:63.049

5.4 Efficiency

Calculating the best teams with the brute force method (Algorithm 2) is not feasible

due to its factorial asymptotic complexity. In practice, given that in the dataset

there are 7428 applicants and the total possible teams is given by
(
N
k

)
(in which N

is the amount of applicants available and k is the amount of members in the team),

for example for a team of only 6 members there are
(
7428
6

)
, or 2.3282073138 × 1020

possible teams. With some tests in a common 3,1 GHz Intel (I5-7267U) processor,

on average 104 teams are calculated per second, which gives that for calculating all

possible choices for a single team to obtain the best one would take approximately

2.3282073138× 1016 seconds, or 737 million years.

Table 5.3 below shows the results of test group 4 test scenario with all the

algorithms, including the brute force method. Since the test scenario used a sampled

subset of 100 applicants from the original full set, and only had to form 4 teams of 4

members each, the amount of calculations (
(
100
4

)
+
(
96
4

)
+
(
92
4

)
+
(
88
4

)
) was reasonable

enough to be executed. The teams formed by brute force and heuristic approach

were identical since the core idea is the same: To choose the best possible team

for a project, either by comparing with all other teams possibilities or by choosing

the best k applicants. However, the time taken to execute the algorithms is very

different, with the brute force method needing over 60,000 times the amount of time

that the heuristic method needed. For that reason, the brute force algorithm was

not executed in other test scenarios.

The time spent to execute the Algorithms 3 (simple heuristic method), 4 (k-

rounds method) and 5 (pairs-rounds method) with test groups 1 and 2 is shown in

32

Table 5.3 Results of test scenario from test group 4

Method Time (s) scoreTP sum fairness-deviation
Brute force 891.737 156.643 16.270
Heuristic 0.014 156.643 16.270
K-rounds 0.012 160.642 5.219
Pairs-rounds 0.012 159.507 7.969

Figure 5.1 Time consumed by algorithms

Figure 5.1. The graph on the left, created with the test scenarios of group 1, shows

very clearly the linear nature of the algorithms, with almost perfect convergence as

the amount of projects increase for all the heuristic methods. That corroborates the

calculated asymptotic complexity presented in Chapter 4.

Nevertheless, on the right side of the Figure 5.2 the increase of k value results in

differently shaped lines with small variations. The scale of these variations should

be taken into account though, since they are very small and a trend line would still

show linearity. This graph was created with test scenarios from test group 2.

Furthermore, the time spent to generate the recommendations prove that the

heuristic algorithms are efficient and suitable for use in real-world scenarios, par-

ticularly considering that other optimizations in data structure and architecture, as

well as in the code could be implemented to further reduce the processing time.

5.5 Effectiveness

User studies, A/B tests (online evaluation), and offline evaluations, as suggested

by literature, are not appropriated methods to evaluate this work’s recommended

teams efficacy. User studies would require that a small amount of users judge the

quality of the recommendations, but with our DBLP derived dataset and random

33

generated project requirements it would be a rather difficult and imprecise task.

For the execution of A/B tests, a large system for recommending teams with our

dataset would be needed. That system would have to be into regular use by thou-

sands of users. Offline evaluation is also not possible because there is not historical

datasets with information of users’ ratings of team recommendations with the used

dataset. Therefore, since these traditional efficacy evaluation methods rely on the

existence of previous datasets as reference for comparison, or in users judgment or

behaviour towards the recommendations, and the problem explored by this work is

quite unique, it is not possible to use them for evaluation.

For that reason, the recommendations are evaluated by how well the team mem-

bers of the team recommendations adhere to the required skills of the projects,

represented by the sum of scoreTP values. In addition, they are also evaluated

by how fair the teams are in the context of a set of recommended teams T . The

fairness-deviation indicator is used for that.

Figure 5.2 shows the sum of all the scoreTP values over the amount of choices

made in a set of recommended teams T . The amount of choices made refer to

the amount of team members in each team multiplied by the amount of project

teams (k × len(T)). A greater result of this indicator points out a possible better

overall investment of desired human potential on the projects, since the value refers

to a better quality and quantity of matches between applicants’ skills and project

requirements. By applying linear regression to this data (as indicated by the lines

in the figure), it is possible to notice that the Pairs-rounds method achieves slightly

better results in overall than the other methods, while the K-rounds method seems

to improve when the amount of choices made increase. However, the results of the

three algorithms are very similar and in practice their differences could be considered

negligible. This figure was created with the results of test groups 1, 2 and 3.

Due to the two variations of project requirements used for test scenarios in test

group 3, in Figure 5.2 is also possible to notice two linear areas of concentrated

points. The first area is over the trend lines and represent the tests executed with

projects using requirements from the 200 most frequent skills. More frequent skills in

project requirements have a bigger chance to find more similarities with applicants’

skills, thus increasing the overall value of scoreTP . The second area of concentrated

points under the trend lines represent the tests executed with the 200 less frequent

out of the 2000 most frequent skills, that in contrast to the project requirements

from the tests of the first area, have smaller chances of finding similarities with

applicants’ skills. However, the relations between the algorithms’ are consistent

regardless of the skills used as project requirements.

Figure 5.3 shows the fairness-deviation values for all the test executions, over the

amount of choices made. With linear regression analysis on this data (as indicated by

34

Figure 5.2 Sum of scoreTP values over amount of choices made, for different algorithms

35

the lines in the figure), it is observed that the K-rounds and Pairs-rounds methods

produce significantly more fair results than the simple heuristic method without

fairness optimization. It is also interesting to notice how the Pairs-rounds method

has a tendency to converge to the same fairness levels as the K-rounds method, as

the amount of choices made increase. Figure 5.3 was also created from the results

of test groups 1, 2 and 3.

Based on this data, k-rounds (Algorithm 4) and pairs-rounds (Algorithm 5)

methods clearly show an large improvement in fairness measurements when com-

paring to the original simple heuristic method (Algorithm 3).

As can be noticed in the results of Table 5.3, the brute force method (Algo-

rithm 2) could be completely dismissed in a practical implementation, since the

team recommendations created by it are exactly the same as the ones created by

the simple heuristic, but at a far more expensive computational cost. Furthermore,

the brute force and heuristic methods not only produced less fair results than the

k-rounds and pairs-rounds methods but also had a lower sum of the scoreTP val-

ues. This occurred because first a full team was formed and its members were made

unavailable for other teams. Such situation can happen in brute force and simple

heuristic methods, and for that reason, the order in each teams are formed is im-

portant in these approaches and the sum of scoreTP values may not be maximized.

That further supports the claim that k-rounds and pairs-rounds methods have a bet-

ter efficacy in general when compared to simple heuristic method, and also explains

their slightly better results in Figure 5.2.

36

Figure 5.3 Fairness-deviation over amount of choices made, for different algorithms

37

6 Conclusions

Both efficiency and efficacy evaluation show that the proposed heuristic-based meth-

ods are able to create team recommendations for multidisciplinary projects in a very

successful way. As expected, the recommendations have at least the same level of

quality as the brute force approach, but are calculated tens of thousands times faster.

The suggested variations of the heuristic method also prove to create results

with more fairness, as expected. K-rounds method is able to generate significantly

more fair team recommendations, while maintaining the same levels of quality and

performance as other methods. Pairs-rounds method shows slightly better overall

quality in the recommendations than the K-rounds method, however performing

slightly worse regarding fairness. Both of these approaches present a solid answer

for achieving more fair team recommendations.

For simplicity, during the experiments we assumed fixed values for some vari-

ables. Despite having several test scenarios with varying amounts of projects, differ-

ent amount of team members for each project and even different sets of applicants,

the amount of required skills per project was constant. Moreover, within a test

scenario, the amount of members per team was the same for all the projects. In

real scenarios those values may differ, which may lead to misunderstandings with

the presented measurements. For example, teams with more members or projects

with more requirements have a tendency to have bigger scoreTP values, since there

is more possible matches between applicants skills and project requirements. Thus,

some teams could have bigger scores just because of having different parameters,

invalidating the fairness-deviation indicator. To overcome that limitation, the cal-

culation of a team scoreTP could for instance be tweaked to be use the weighted

average of the members’ scoreAP values, relative to the amount of members and

requirements in the project.

In another possible scenario in which not all project requirements are equally

important and there is the need to emphasize some of them, some slight adjustments

could be done in the scores’ calculation. The projects requirements could have a

weight factor, for example. The weight factor would be multiplied with the similarity

calculation between skills to compose the scoreAP , thus increasing the score for

applicants with the most desired requirements.

Furthermore, despite the great benefit that this work has of using the extensive

Wordnet database to calculate similarity between skills, it also presents some lim-

itations. Foremost, Wordnet only has synsets in English, and therefore, it would

not work with other languages’ terms. In addition, we only computed similarity

between single words as Wordnet does not support compound words neither using

38

them for the computation. Forasmuch as in a real scenario skills could be often

described in a compound word format, using Wordnet may not be fitting. Thus,

better results could be achieved in the future if other multilingual and compound

supporting lexical databases are available to be used.

Moreover, due to the lack of a publicly accessible and recognized dataset of

applicants and their skills, the use of DBLP dataset may not exactly reflect the team

formation problem. To overcome current restrictions related to the limited available

data for the entities involved in a recommender systems, the enormous amount

of diverse data on the Web that are created and collected without interruption

can be used (Efthymiou, Papadakis, Stefanidis, et al. 2019; Efthymiou, Papadakis,

Papastefanatos, et al. 2017; Christophides et al. 2015; Efthymiou, Stefanidis, et al.

2015). Several sources (ontologies, social media, etc.) could be used to enrich data

at different levels (information and preferences about applicants, information about

projects). Traditional problems in recommender systems such as data sparsity and

cold-start could be tackled with that wealthier data input, thus generating better

recommendations.

The affirmation that there is not enough data to describe an entity is not true

anymore; perhaps the recommender does not have enough data, but there is plenty

in the Web. The current challenge is how to gather and filter useful data, removing

the noise and using it together with already existing data in the recommender, in a

way that the user experience and quality of recommendations are increased.

Finally, all the proposed heuristic methods in this thesis perform well enough

for use in real scenarios, considering the probable adaptations needed for specific

problems. The k-rounds method could be efficiently used particularly for any team

formation problem in which fairness between teams would be beneficial. For example

in educational environments for assembling teams of students based on their traits

(Val et al. 2014), or when teams are needed to be formed quickly to respond to short-

term specific activities (that could be interpreted as projects) based on members’

expertise, such as in emergency services (Nair et al. 2002). Another interesting

application would be in crowd-sourcing platforms – similar to what inspired this

thesis –, in which individuals from a set of enrolled people with specific interests

could be combined as teams to work on projects, as described by W. Wang et al.

(2017). Further expanding beyond team formation problems, any problem in which

fairness in resources distribution is needed could take advantage of the fairness

improving methods proposed.

39

References

Al-Adrousy, Waleed M., Hesham A. Ali, and Taher T. Hamza (2015). “A recom-

mender system for team formation in MANET”. In: Journal of King Saud Uni-

versity - Computer and Information Sciences 27.2, pp. 147–159. doi: 10.1016/

j.jksuci.2014.06.014.

Aggarwal, Charu C. (2016). Recommender Systems. Cham: Springer International

Publishing. doi: 10.1007/978-3-319-29659-3.

Agrawal, Rakesh et al. (2009). “Diversifying search results”. In: Proceedings of the

Second ACM International Conference on Web Search and Data Mining - WSDM

’09. New York, New York, USA: ACM Press, p. 5. doi: 10.1145/1498759.

1498766.

Amer-Yahia, Sihem et al. (2009). “Group recommendation”. In: Proceedings of the

VLDB Endowment 2.1, pp. 754–765. doi: 10.14778/1687627.1687713.

Awal, Gaganmeet Kaur and K. K. Bharadwaj (2014). “Team formation in social

networks based on collective intelligence – an evolutionary approach”. In: Applied

Intelligence 41.2, pp. 627–648. doi: 10.1007/s10489-014-0528-y.

Baltrunas, Linas, Tadas Makcinskas, and Francesco Ricci (2010). “Group recom-

mendations with rank aggregation and collaborative filtering”. In: Proceedings

of the fourth ACM conference on Recommender systems - RecSys ’10. New York,

New York, USA: ACM Press, p. 119. doi: 10.1145/1864708.1864733.

Barcus, Ana and Gilberto Montibeller (2008). “Supporting the allocation of software

development work in distributed teams with multi-criteria decision analysis”. In:

Omega 36.3, pp. 464–475. doi: 10.1016/j.omega.2006.04.013.

Barreto, Ahilton, Márcio de O. Barros, and Cláudia M.L. Werner (2008). “Staffing

a software project: A constraint satisfaction and optimization-based approach”.

In: Computers & Operations Research 35.10, pp. 3073–3089. doi: 10.1016/j.

cor.2007.01.010.

Basaran, Daniel, Eirini Ntoutsi, and Arthur Zimek (2017). “Redundancies in Data

and their Effect on the Evaluation of Recommendation Systems: A Case Study on

the Amazon Reviews Datasets”. In: Proceedings of the 2017 SIAM International

Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied

Mathematics, pp. 390–398. doi: 10.1137/1.9781611974973.44.

Beel, Joeran, Marcel Genzmehr, et al. (2013). “A comparative analysis of offline

and online evaluations and discussion of research paper recommender system

evaluation”. In: Proceedings of the International Workshop on Reproducibility

and Replication in Recommender Systems Evaluation - RepSys ’13. New York,

New York, USA: ACM Press, pp. 7–14. doi: 10.1145/2532508.2532511.

http://dx.doi.org/10.1016/j.jksuci.2014.06.014
http://dx.doi.org/10.1016/j.jksuci.2014.06.014
http://dx.doi.org/10.1007/978-3-319-29659-3
http://dx.doi.org/10.1145/1498759.1498766
http://dx.doi.org/10.1145/1498759.1498766
http://dx.doi.org/10.14778/1687627.1687713
http://dx.doi.org/10.1007/s10489-014-0528-y
http://dx.doi.org/10.1145/1864708.1864733
http://dx.doi.org/10.1016/j.omega.2006.04.013
http://dx.doi.org/10.1016/j.cor.2007.01.010
http://dx.doi.org/10.1016/j.cor.2007.01.010
http://dx.doi.org/10.1137/1.9781611974973.44
http://dx.doi.org/10.1145/2532508.2532511

40

Beel, Joeran and Stefan Langer (2015). “A Comparison of Offline Evaluations, On-

line Evaluations, and User Studies in the Context of Research-Paper Recom-

mender Systems”. In: Research and Advanced Technology for Digital Libraries,

pp. 153–168. doi: 10.1007/978-3-319-24592-8_12.

Berkovsky, Shlomo and Jill Freyne (2010). “Group-based recipe recommendations”.

In: Proceedings of the fourth ACM conference on Recommender systems - RecSys

’10. New York, New York, USA: ACM Press, p. 111. doi: 10.1145/1864708.

1864732.

Breese, John, David Heckerman, and Car Kadie (1998). “Empirical analysis of pre-

dictive algorithms for collaborative filtering”. In: Proceedings of the 14th Annual

Conference on Uncertainty in Artificial Intelligence, pp. 43–52. doi: 10.1111/

j.1553-2712.2011.01172.x.

Brusilovsky, Peter, Alfred Kobsa, and Wolfgang Nejdl, eds. (2007). The Adaptive

Web: Methods and Strategies of Web Personalization. Berlin, Heidelberg: Springer-

Verlag.

Burke, Robin (2017). “Multisided Fairness for Recommendation”. In: The Comput-

ing Research Repository (CoRR) abs/1707.0.

Candillier, Laurent, Frank Meyer, and Marc Boullé (2007). “Comparing State-of-the-

Art Collaborative Filtering Systems”. In: Machine Learning and Data Mining in

Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 548–562.

doi: 10.1007/978-3-540-73499-4_41.

Canty, Denise (2015). Agile for Project Managers. Auerbach Publications, p. 135.

doi: 10.1201/b18052.

Celik, Metin, I. Deha Er, and Y. Ilker Topcu (2009). “Computer-based systematic

execution model on human resources management in maritime transportation

industry: The case of master selection for embarking on board merchant ships”.

In: Expert Systems with Applications 36.2, pp. 1048–1060. doi: 10.1016/j.

eswa.2007.11.004.

Chen, Jinpeng, Yu Liu, and Deyi Li (2016). “Dynamic Group Recommendation with

Modified Collaborative Filtering and Temporal Factor”. In: The International

Arab Journal of Information Technology.

Christensen, Ingrid A. and Silvia Schiaffino (2011). “Entertainment recommender

systems for group of users”. In: Expert Systems with Applications. doi: 10.1016/

j.eswa.2011.04.221.

Christophides, Vassilis, Vasilis Efthymiou, and Kostas Stefanidis (2015). Entity Res-

olution in the Web of Data. Synthesis Lectures on the Semantic Web: Theory

and Technology. Morgan & Claypool Publishers.

Clarke, Charles L.A. et al. (2008). “Novelty and diversity in information retrieval

evaluation”. In: Proceedings of the 31st annual international ACM SIGIR con-

http://dx.doi.org/10.1007/978-3-319-24592-8_12
http://dx.doi.org/10.1145/1864708.1864732
http://dx.doi.org/10.1145/1864708.1864732
http://dx.doi.org/10.1111/j.1553-2712.2011.01172.x
http://dx.doi.org/10.1111/j.1553-2712.2011.01172.x
http://dx.doi.org/10.1007/978-3-540-73499-4_41
http://dx.doi.org/10.1201/b18052
http://dx.doi.org/10.1016/j.eswa.2007.11.004
http://dx.doi.org/10.1016/j.eswa.2007.11.004
http://dx.doi.org/10.1016/j.eswa.2011.04.221
http://dx.doi.org/10.1016/j.eswa.2011.04.221

41

ference on Research and development in information retrieval - SIGIR ’08. New

York, New York, USA: ACM Press, p. 659. doi: 10.1145/1390334.1390446.

Colomo-Palacios, Ricardo et al. (2012). “ReSySTER: A hybrid recommender system

for Scrum team roles based on fuzzy and rough sets”. In: International Journal

of Applied Mathematics and Computer Science 22.4, pp. 801–816. doi: 10.2478/

v10006-012-0059-9.

Datta, Anwitaman, Jackson Tan Teck Yong, and Stefano Braghin (2014). “The zen

of multidisciplinary team recommendation”. In: Journal of the Association for

Information Science and Technology 65.12, pp. 2518–2533. doi: 10.1002/asi.

23139.

Dorn, Christoph et al. (2011). “Interaction mining and skill-dependent recommenda-

tions for multi-objective team composition”. In: Data & Knowledge Engineering

70.10, pp. 866–891. doi: 10.1016/j.datak.2011.06.004.

Drosou, Marina and Evaggelia Pitoura (2010). “Search result diversification”. In:

SIGMOD record 39.1, pp. 41–47.

Dwork, Cynthia et al. (2001). “Rank aggregation methods for the Web”. In: Proceed-

ings of the tenth international conference on World Wide Web - WWW ’01. New

York, New York, USA: ACM Press, pp. 613–622. doi: 10.1145/371920.372165.

Efthymiou, Vasilis, George Papadakis, George Papastefanatos, et al. (2017). “Paral-

lel meta-blocking for scaling entity resolution over big heterogeneous data”. In:

Information Systems 65, pp. 137–157. doi: 10.1016/j.is.2016.12.001.

Efthymiou, Vasilis, George Papadakis, Kostas Stefanidis, et al. (2019). “MinoanER:

Schema-Agnostic, Non-Iterative, Massively Parallel Resolution of Web Entities”.

In: Advances in Database Technology - 22nd International Conference on Extend-

ing Database Technology, {EDBT} 2019, Lisbon, Portugal, March 26-29, 2019,

pp. 373–384.

Efthymiou, Vasilis, Kostas Stefanidis, and Vassilis Christophides (2015). “Big data

entity resolution: From highly to somehow similar entity descriptions in the

Web”. In: 2015 {IEEE} International Conference on Big Data, Big Data 2015,

Santa Clara, CA, USA, October 29 - November 1, 2015, pp. 401–410.

Elahi, Mehdi, Francesco Ricci, and Neil Rubens (2016). “A survey of active learning

in collaborative filtering recommender systems”. In: Computer Science Review

20.C, pp. 29–50. doi: 10.1016/j.cosrev.2016.05.002.

Fellbaum, Christiane, ed. (1998). WordNet: an electronic lexical database. MIT

Press.

Fellbaum, Christiane (2005). “WordNet and Wordnets”. In: Encyclopedia of Lan-

guage and Linguistics. Ed. by Alex Barber. Elsevier, pp. 2–665.

Frikha, Mohamed, Mohamed Mhiri, and Faiez Gargouri (2017). “Using Social In-

teraction Between Friends in Knowledge-Based Personalized Recommendation”.

http://dx.doi.org/10.1145/1390334.1390446
http://dx.doi.org/10.2478/v10006-012-0059-9
http://dx.doi.org/10.2478/v10006-012-0059-9
http://dx.doi.org/10.1002/asi.23139
http://dx.doi.org/10.1002/asi.23139
http://dx.doi.org/10.1016/j.datak.2011.06.004
http://dx.doi.org/10.1145/371920.372165
http://dx.doi.org/10.1016/j.is.2016.12.001
http://dx.doi.org/10.1016/j.cosrev.2016.05.002

42

In: 2017 IEEE/ACS 14th International Conference on Computer Systems and

Applications (AICCSA). Vol. 2017-Octob. IEEE, pp. 1454–1461. doi: 10.1109/

AICCSA.2017.206.

Garćıa-Crespo, Ángel et al. (2009). “BMR: Benchmarking Metrics Recommender for

Personnel issues in Software Development Projects”. In: International Journal of

Computational Intelligence Systems 2.3, pp. 256–266. doi: 10.1080/18756891.

2009.9727658.

Guo, Huadong (2017). “Big Earth data: A new frontier in Earth and information

sciences”. In: Big Earth Data 1.1-2, pp. 4–20. doi: 10.1080/20964471.2017.

1403062.

Imai, Shinya and Junzo Watada (2011). “A Rough Sets Approach to Human Re-

source Development in IT Corporations”. In: International Journal of Simula-

tion: Systems, Science and Technology, pp. 249–273. doi: 10.1007/978-3-642-

19820-5_13.

Jameson, Anthony and Barry Smyth (2007). “Recommendation to Groups”. In: The

Adaptive Web. Ed. by Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 596–627. doi: 10.1007/978-

3-540-72079-9_20.

Jannach, Dietmar et al. (2013). “What Recommenders Recommend – An Analysis

of Accuracy, Popularity, and Sales Diversity Effects”. In: User Modeling, Adap-

tation, and Personalization. June, pp. 25–37. doi: 10.1007/978-3-642-38844-

6_3.

Konstan, Joseph A. et al. (1997). “GroupLens: applying collaborative filtering to

Usenet news”. In: Communications of the ACM 40.3, pp. 77–87. doi: 10.1145/

245108.245126.

Kyriakidi, Marialena, Kostas Stefanidis, and Yannis Ioannidis (2017). “On Achieving

Diversity in Recommender Systems”. In: Proceedings of the ExploreDB’17 on -

ExploreDB’17, pp. 1–6. doi: 10.1145/3077331.3077341.

Lappas, Theodoros, Kun Liu, and Evimaria Terzi (2009). “Finding a team of experts

in social networks”. In: Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining - KDD ’09, p. 467. doi:

10.1145/1557019.1557074.

Lathia, Neal et al. (2010). “Temporal diversity in recommender systems”. In: Pro-

ceeding of the 33rd international ACM SIGIR conference on Research and devel-

opment in information retrieval - SIGIR ’10. New York, New York, USA: ACM

Press, p. 210. doi: 10.1145/1835449.1835486.

Ley, Michael (1997). “Die Trierer Informatik-Bibliographie {DBLP}”. In: Informatik

’97, Informatik als Innovationsmotor, 27. Jahrestagung der Gesellschaft für In-

http://dx.doi.org/10.1109/AICCSA.2017.206
http://dx.doi.org/10.1109/AICCSA.2017.206
http://dx.doi.org/10.1080/18756891.2009.9727658
http://dx.doi.org/10.1080/18756891.2009.9727658
http://dx.doi.org/10.1080/20964471.2017.1403062
http://dx.doi.org/10.1080/20964471.2017.1403062
http://dx.doi.org/10.1007/978-3-642-19820-5_13
http://dx.doi.org/10.1007/978-3-642-19820-5_13
http://dx.doi.org/10.1007/978-3-540-72079-9_20
http://dx.doi.org/10.1007/978-3-540-72079-9_20
http://dx.doi.org/10.1007/978-3-642-38844-6_3
http://dx.doi.org/10.1007/978-3-642-38844-6_3
http://dx.doi.org/10.1145/245108.245126
http://dx.doi.org/10.1145/245108.245126
http://dx.doi.org/10.1145/3077331.3077341
http://dx.doi.org/10.1145/1557019.1557074
http://dx.doi.org/10.1145/1835449.1835486

43

formatik, Aachen, 24.-26. September 1997, pp. 257–266. doi: 10.1007/978-3-

642-60831-5_34.

Li, Chunshien and Tai-Wei Chiang (2011). “Function Approximation with Complex

Neuro-Fuzzy System Using Complex Fuzzy Sets – A New Approach”. In: New

Generation Computing 29.3, pp. 261–276. doi: 10.1007/s00354-011-0302-1.

Lin, Ching Yung et al. (2009). “SmallBlue: Social network analysis for expertise

search and collective intelligence”. In: Proceedings - International Conference on

Data Engineering, pp. 1483–1486. doi: 10.1109/ICDE.2009.140.

Lykourentzou, Ioanna, Robert E. Kraut, and Steven P. Dow (2017). “Team Dating

Leads to Better Online Ad Hoc Collaborations”. In: Proceedings of the 2017 ACM

Conference on Computer Supported Cooperative Work and Social Computing

- CSCW ’17. New York, New York, USA: ACM Press, pp. 2330–2343. doi:

10.1145/2998181.2998322.

Mahmoud, Tarek (2011). “Adaptive control scheme based on the least squares sup-

port vector machine network”. In: International Journal of Applied Mathematics

and Computer Science 21.4, pp. 685–696. doi: 10.2478/v10006-011-0054-6.

Malinowski, Jochen, Tim Weitzel, and Tobias Keim (2008). “Decision support for

team staffing: An automated relational recommendation approach”. In: Decision

Support Systems 45.3, pp. 429–447. doi: 10.1016/j.dss.2007.05.005.

Masthoff, Judith (2015). “Group Recommender Systems: Aggregation, Satisfac-

tion and Group Attributes”. In: Recommender Systems Handbook. Boston, MA:

Springer US, pp. 743–776. doi: 10.1007/978-1-4899-7637-6_22.

McCarthy, Joseph F. and Theodore D. Anagnost (1998). “MusicFX: An Arbiter of

Group Preferences for Computer Supported Collaborative Workouts”. In: Pro-

ceedings of the Conference on Computer Supported Cooperative Work (CSCW’98).

doi: 10.1145/289444.289511.

Meena, Ritu and Kamal K. Bharadwaj (2013). “Group Recommender System Based

on Rank Aggregation – An Evolutionary Approach”. In: Mining Intelligence and

Knowledge Exploration, pp. 663–676. doi: 10.1007/978-3-319-03844-5_65.

Minto, Shawn and Gail C. Murphy (2007). “Recommending Emergent Teams”. In:

Fourth International Workshop on Mining Software Repositories (MSR’07:ICSE

Workshops 2007). IEEE, pp. 5–5. doi: 10.1109/MSR.2007.27.

Mohanty, Ramakanta, Vadlamani Ravi, and Manas Ranjan Patra (2010). “The ap-

plication of intelligent and soft-computing techniques to software engineering

problems: a review”. In: International Journal of Information and Decision Sci-

ences 2.3, p. 233. doi: 10.1504/IJIDS.2010.033450.

Mooney, Raymond J and Loriene Roy (2000). “Content-based book recommending

using learning for text categorization”. In: Proceedings of the fifth ACM confer-

ence on Digital libraries. ACM, pp. 195–204.

http://dx.doi.org/10.1007/978-3-642-60831-5_34
http://dx.doi.org/10.1007/978-3-642-60831-5_34
http://dx.doi.org/10.1007/s00354-011-0302-1
http://dx.doi.org/10.1109/ICDE.2009.140
http://dx.doi.org/10.1145/2998181.2998322
http://dx.doi.org/10.2478/v10006-011-0054-6
http://dx.doi.org/10.1016/j.dss.2007.05.005
http://dx.doi.org/10.1007/978-1-4899-7637-6_22
http://dx.doi.org/10.1145/289444.289511
http://dx.doi.org/10.1007/978-3-319-03844-5_65
http://dx.doi.org/10.1109/MSR.2007.27
http://dx.doi.org/10.1504/IJIDS.2010.033450

44

Nair, Ranjit, Milind Tambe, and Stacy Marsella (2002). “Team formation for refor-

mation”. In: Proceedings of the AAAI spring symposium on intelligent distributed

and embedded systems, pp. 52–56.

Nowicki, Robert (2010). “On classification with missing data using rough-neuro-

fuzzy systems”. In: International Journal of Applied Mathematics and Computer

Science 20.1, pp. 55–67. doi: 10.2478/v10006-010-0004-8.

Ntoutsi, Eirini and Kostas Stefanidis (2016). “Recommendations beyond the ratings

matrix”. In: Proceedings of the Workshop on Data-Driven Innovation on the Web

- DDI ’16. New York, New York, USA: ACM Press, pp. 1–5. doi: 10.1145/

2911187.2914580.

Ntoutsi, Eirini, Kostas Stefanidis, Kjetil Nørv̊ag, et al. (2012). “Fast group recom-

mendations by applying user clustering”. In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 7532 LNCS, pp. 126–140. doi: 10.1007/978-3-642-34002-

4_10.

Ntoutsi, Eirini, Kostas Stefanidis, Katharina Rausch, et al. (2014). “’Strength Lies

in Differences’”. In: Proceedings of the 23rd ACM International Conference on

Conference on Information and Knowledge Management - CIKM ’14. Vol. 9. 5.

New York, New York, USA: ACM Press, pp. 729–738. doi: 10.1145/2661829.

2662026.

O’Connor, Mark et al. (2005). “PolyLens: A Recommender System for Groups of

Users”. In: ECSCW 2001. Dordrecht: Kluwer Academic Publishers, pp. 199–218.

doi: 10.1007/0-306-48019-0_11.

Pazzani, Michael J. and Daniel Billsus (2007). “Content-Based Recommendation

Systems”. In: The Adaptive Web. Berlin, Heidelberg: Springer Berlin Heidelberg,

pp. 325–341. doi: 10.1007/978-3-540-72079-9_10.

Pazzani, Michael and Daniel Billsus (1997). “Learning and Revising User Profiles:

The Identification of Interesting Web Sites”. In: Machine Learning 27.3, pp. 313–

331. doi: 10.1023/A:1007369909943.

Quijano-Sanchez, Lara et al. (2013). “Social factors in group recommender systems”.

In: ACM Transactions on Intelligent Systems and Technology 4.1, pp. 1–30. doi:

10.1145/2414425.2414433.

Ratcheva, Violina (2007). “Redefining multidisciplinary team boundaries in resolv-

ing heterogeneous knowledge dilemmas”. In: International Journal of Intelligent

Enterprise 1.1, p. 81. doi: 10.1504/IJIE.2007.013810.

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2011). “Introduction to Rec-

ommender Systems Handbook”. In: Recommender Systems Handbook, pp. 1–35.

doi: 10.1007/978-0-387-85820-3_1.

http://dx.doi.org/10.2478/v10006-010-0004-8
http://dx.doi.org/10.1145/2911187.2914580
http://dx.doi.org/10.1145/2911187.2914580
http://dx.doi.org/10.1007/978-3-642-34002-4_10
http://dx.doi.org/10.1007/978-3-642-34002-4_10
http://dx.doi.org/10.1145/2661829.2662026
http://dx.doi.org/10.1145/2661829.2662026
http://dx.doi.org/10.1007/0-306-48019-0_11
http://dx.doi.org/10.1007/978-3-540-72079-9_10
http://dx.doi.org/10.1023/A:1007369909943
http://dx.doi.org/10.1145/2414425.2414433
http://dx.doi.org/10.1504/IJIE.2007.013810
http://dx.doi.org/10.1007/978-0-387-85820-3_1

45

Rubens, Neil et al. (2015). “Active learning in recommender systems”. In: Recom-

mender Systems Handbook, Second Edition. Boston, MA: Springer US, pp. 809–

846. doi: 10.1007/978-1-4899-7637-6_24.

Serbos, Dimitris et al. (2017). “Fairness in Package-to-Group Recommendations”.

In: Proceedings of the 26th International Conference on World Wide Web -

WWW ’17. New York, New York, USA: ACM Press, pp. 371–379. doi: 10.

1145/3038912.3052612.

Shoham, Yoav and Marko Balabanovic (1997). “Fab: Content-based, Collabora-

tive Recommendation”. In: Communications of the ACM 40.3, pp. 66–72. doi:

https://doi.org/10.1145/245108.245124.

Smyth, Barry and Paul McClave (2001). “Similarity vs. Diversity”. In: Case-Based

Reasoning Research and Development. Ed. by David W. Aha and Ian Watson.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 347–361. doi: 10.1007/3-

540-44593-5_25.

Stefanidis, Kostas, Marina Drosou, and Evaggelia Pitoura (2010). “PerK: personal-

ized keyword search in relational databases through preferences”. In: Proceedings

of the 13th International Conference on Extending Database Technology, pp. 585–

596. doi: http://doi.acm.org/10.1145/1739041.1739111.

Stefanidis, Kostas and Evaggelia Pitoura (2013). “Finding the Right Set of Users:

Generalized Constraints for Group Recommendations”. In: CoRR 2013.

Stevenson, A (2010). Oxford Dictionary of English. 3rd edition. Oxford University

Press. doi: 10.1093/acref/9780199571123.001.0001.

Stratigi, Maria, Haridimos Kondylakis, and Kostas Stefanidis (2018). “FairGRecs:

Fair group recommendations by exploiting personal health information”. In: Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 11030 LNCS, pp. 147–155.

doi: 10.1007/978-3-319-98812-2_11.

Strnad, D. and N. Guid (2010). “A fuzzy-genetic decision support system for project

team formation”. In: Applied Soft Computing 10.4, pp. 1178–1187. doi: 10.1016/

j.asoc.2009.08.032.

Toroslu, Ismail H. and Yilmaz Arslanoglu (2007). “Genetic algorithm for the per-

sonnel assignment problem with multiple objectives”. In: Information Sciences

177.3, pp. 787–803. doi: 10.1016/j.ins.2006.07.032.

Turpin, Andrew H and William Hersh (2001). “Why batch and user evaluations

do not give the same results”. In: Proceedings of the 24th annual international

ACM SIGIR conference on Research and development in information retrieval -

SIGIR ’01. New York, New York, USA: ACM Press, pp. 225–231. doi: 10.1145/

383952.383992.

http://dx.doi.org/10.1007/978-1-4899-7637-6_24
http://dx.doi.org/10.1145/3038912.3052612
http://dx.doi.org/10.1145/3038912.3052612
http://dx.doi.org/https://doi.org/10.1145/245108.245124
http://dx.doi.org/10.1007/3-540-44593-5_25
http://dx.doi.org/10.1007/3-540-44593-5_25
http://dx.doi.org/http://doi.acm.org/10.1145/1739041.1739111
http://dx.doi.org/10.1093/acref/9780199571123.001.0001
http://dx.doi.org/10.1007/978-3-319-98812-2_11
http://dx.doi.org/10.1016/j.asoc.2009.08.032
http://dx.doi.org/10.1016/j.asoc.2009.08.032
http://dx.doi.org/10.1016/j.ins.2006.07.032
http://dx.doi.org/10.1145/383952.383992
http://dx.doi.org/10.1145/383952.383992

46

Val, Elena del et al. (2014). “A Team Formation Tool for Educational Environ-

ments”. In: Trends in Practical Applications of Heterogeneous Multi-Agent Sys-

tems. The PAAMS Collection. Ed. by Javier Bajo Perez et al. Springer Interna-

tional Publishing, pp. 173–181. doi: 10.1007/978-3-319-07476-4_21.

Valencia-Garćıa, R. et al. (2010). “Exploitation of social semantic technology for

software development team configuration”. In: IET Software 4.6, p. 373. doi:

10.1049/iet-sen.2010.0043.

Wang, Juite and Yung-I Lin (2003). “A fuzzy multicriteria group decision making

approach to select configuration items for software development”. In: Fuzzy Sets

and Systems 134.3, pp. 343–363. doi: 10.1016/S0165-0114(02)00283-X.

Wang, Wanyuan et al. (2017). “Toward Efficient Team Formation for Crowdsourc-

ing in Noncooperative Social Networks”. In: IEEE Transactions on Cybernetics

47.12, pp. 4208–4222. doi: 10.1109/TCYB.2016.2602498.

Wang, Xinyu, Zhou Zhao, and Wilfred Ng (2015). “A Comparative Study of Team

Formation in Social Networks”. In: Database Systems for Advanced Applications.

Ed. by Matthias Renz et al. Cham: Springer International Publishing, pp. 389–

404. doi: 10.1007/978-3-319-18120-2_23.

Yao, Sirui and Bert Huang (2017). “Beyond Parity: Fairness Objectives for Collab-

orative Filtering”. In: Advances in Neural Information Processing Systems 30.

Ed. by I Guyon et al. Curran Associates, Inc., pp. 2921–2930.

Yilmaz, Murat et al. (2015). “A Machine-Based Personality Oriented Team Rec-

ommender for Software Development Organizations”. In: Systems, Software and

Services Process Improvement. Ed. by Rory V. O’Connor et al. Vol. 543. Commu-

nications in Computer and Information Science. Cham: Springer International

Publishing, pp. 75–86. doi: 10.1007/978-3-319-24647-5_7.

Yu, Zhiwen et al. (2006). “TV program recommendation for multiple viewers based

on user profile merging”. In: User Modeling and User-Adapted Interaction. doi:

10.1007/s11257-006-9005-6.

Zhang, Mi and Neil Hurley (2008). “Avoiding monotony”. In: Proceedings of the

2008 ACM conference on Recommender systems - RecSys ’08. New York, New

York, USA: ACM Press, p. 123. doi: 10.1145/1454008.1454030.

Zhong, Ning and Andrzej Skowron (2001). “A rough set-based knowledge discov-

ery process”. In: International Journal of Applied Mathematics and Computer

Science 11, pp. 603–619.

http://dx.doi.org/10.1007/978-3-319-07476-4_21
http://dx.doi.org/10.1049/iet-sen.2010.0043
http://dx.doi.org/10.1016/S0165-0114(02)00283-X
http://dx.doi.org/10.1109/TCYB.2016.2602498
http://dx.doi.org/10.1007/978-3-319-18120-2_23
http://dx.doi.org/10.1007/978-3-319-24647-5_7
http://dx.doi.org/10.1007/s11257-006-9005-6
http://dx.doi.org/10.1145/1454008.1454030

	Introduction
	Related work
	Recommender Systems
	Collaborative Filtering
	Content-based Recommendations
	Knowledge-based Recommendations
	Group recommender systems
	Diversity in Recommender Systems
	Fairness in Recommender Systems
	Evaluation of Recommender Systems Efficacy

	Group formation

	Problem definition
	Motivating example
	Model
	Fairness-aware Team Formation

	Methods
	Brute force algorithm
	Heuristic algorithm

	Experimental Evaluation
	Dataset
	Measurements
	Methods
	Efficiency
	Effectiveness

	Conclusions
	References

