

1

Jarkko Saarinen

 EVALUATING CROSS-PLATFORM MOBILE
APP PERFORMANCE WITH VIDEO-BASED

MEASUREMENTS

Faculty of Information Technology and Communication Sciences
M. Sc. thesis

Supervisor: Timo Nummenmaa

April 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250158841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Jarkko Saarinen: Evaluating cross-platform mobile app performance with video-based measurements
M. Sc. thesis
Tampere University
Master's Programme in Computer Science
April 2019

Smartphone sales are nowadays centered around two platforms: Apple’s iOS and Google’s

Android. These two platforms are vastly different and generally a native app made for one platform

can’t be used on the other, which means that organizations have to develop two separate apps to reach

customers on both platforms. Several cross-platform mobile app development tools have been created

to address this issue by allowing developers to write the app once and have the tool work as an

intermediary that makes the app run on both platforms. These tools generally work by using

workarounds and creating abstractions on top of native SDKs, which can cause performance

overhead. This study investigated the performance of apps created with these kinds of tools when

compared to native apps.

To test the performance of apps created with these tools, a benchmarking app was implemented

with five different cross-platform development tools and the native development tools of Android

and iOS. The tests measured how fast apps could perform tasks like opening a new screen and reacting

to a button press. Collecting measurements that are comparable between apps created with different

tools was done by adopting a method previously used to test input lag in games. This method involves

recording a video of the device running the test and then the video is analyzed frame by frame. The

videos were captured using a high-speed video camera and screen recording software.

The results showed that the cross-platform apps often have some areas where they perform worse

than their native counterparts, especially on Android. These problematic areas included app launch

times, moving between screens and displaying a list of items. The performance disadvantages

however weren’t generally significant enough to make using cross-platform tools a bad choice for

organizations looking to reduce their app development costs, but some attention needs to be paid

when selecting which tool to use.

Keywords: Mobile apps, cross-platform, performance analysis

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

Contents

1. Introduction ... 1

2. Related work .. 4

3. Cross-platform mobile app development patterns ... 6

3.1. Hybrid app pattern ... 6

3.2. Interpreted app pattern ... 7

3.3. Cross-compiled app pattern ... 8

4. Cross-platform app development tools .. 9

4.1. Cordova .. 9

4.2. React Native ... 10

4.3. Titanium ... 11

4.4. Xamarin .. 12

4.5. Flutter ... 13

5. Comparing performance between tools ... 15

5.1. Logging-based measurement ... 16

5.2. Video-based measurement ... 17

5.3. Testing setup .. 20

6. Benchmarking app ... 22

6.1. General implementation guidelines ... 22

6.2. Landing screen ... 24

6.3. Button reaction delay screen .. 27

6.4. Large list of items screens .. 28

6.5. Heavy computation screen ... 29

6.6. Vibration screen ... 30

7. Results ... 31

7.1. Comparing high-speed camera and screen recording software results 31

7.2. App launch times ... 34

7.3. Moving between screens .. 35

7.4. Reacting to a button press .. 38

7.5. Heavy computation .. 38

7.6. Triggering vibration ... 40

7.7. Frozen frames during scroll ... 40

8. Discussion ... 42

8.1. General results ... 42

8.2. Evaluating the tools .. 44

8.3. Video-based performance measuring... 45

9. Conclusion ... 49

References ... 51

 1

1. Introduction

Developing mobile apps is hard and time consuming. To make matters worse, an app

created for iPhones can’t run on Android phones and vice versa. To bring an app to both

major smartphone platforms, app developers need to create it two times basically from

scratch. That means that there’s twice the code to write and maintain and twice the

resources needed to create the app.

There are several ways to address this issue. First is to only create the app on one

platform and ignore the other. Depending on the audience the app is targeting this might

be feasible. For example, Android’s market share in Asia was 84,12% in September 2018

[MOSMSA, 2018], so for apps targeting Asia it can make sense to focus only on Android.

On the other hand, iPhone users are more likely to spend money on apps and in-app

purchases [Nelson, 2018], so it’s understandable that paid apps often focus on iPhones.

The second approach is to skip creating an app completely and focus on the web. Modern

mobile browsers let web apps use lot of phone’s features such as location and gyroscope

and users can “install” the web app by creating a shortcut to it on their phone’s home

screen, making this an appealing approach to organizations that have already created a

solid web version of their app and are looking into the mobile market.

The third approach is to use cross-platform mobile app development tools. These

tools let app developers to write their app code once and then run it on multiple platforms,

in this case iOS and Android. Some notable tools include Apache’s Cordova, Microsoft’s

Xamarin and Facebook’s React Native. The main appeal over the web app approach for

most of these tools is that they give developers access to even more of the phone’s

features, such as flash storage and running code native to the platform. The way these

tools work on the surface level is that they create an API that abstracts the features of

native platforms, and then behind the scenes do platform specific actions. The developer

then writes the app with the abstracted API and the heavy lifting of all the platform

specific code is done by the cross-platform tool.

The history of cross-platform smartphone app development tools is as old as iPhone

app development, with QuickConnect for iPhone starting development in spring 2008

soon after the iPhone SDK was first released to initial testers [Barney, 2008].

QuickConnect and most early cross-platform tools use webviews, the part of native

mobile SDKs that embeds a web browser in the app, to run web apps on the phone. These

webview-based apps can also be called hybrid apps as they leverage both web and native

technologies [Raj and Tolety, 2012]. PhoneGap, a webview hybrid tool currently known

as Apache Cordova, started development in fall 2008 and is still widely used. Solutions

that weren’t based on webviews started appearing next year with Appcelerator Titanium

adding Android and iOS support in summer 2009 [Krill, 2009]. Since then many tools

have come and gone, such as Adobe Air, Sencha Touch, jQuery Mobile and Intel XDK.

Some game engines, like Unity, have also added support for mobile platforms but are out

of scope of this thesis.

The app developer community has taken great interest in cross-platform tools. In

2013 Business Insider estimated that 10% of smartphones had Appcelerator Titanium

based apps installed on them [Bort, 2013]. In July 2018, 0,95% of all questions posted on

Stack Overflow had “react-native” tag on them (As a comparison, “android” tag was

present in 6,2% and “ios” in 2,3% of all questions during that same month) [SE_API,

2019]. Some large companies using cross-platform tools at least in parts of their apps

include Alibaba, Google [FShowcase, 2019], Facebook, Microsoft (Skype), Pinterest and

Uber [WURN, 2018]. Facebook, Google and Microsoft are also behind some the

currently more popular cross-platform tools, React Native, Flutter and Xamarin

respectively. Several scientific papers have also been published about these tools, which

will be discussed more in Chapter 2 about related works.

Even though cross-platform tools have lots to offer, they are a controversial topic in

the app developer community. Developers in native tools focused Internet communities,

such as Android developer subreddit, can even act a bit hostile against them [IXSTB,

2018; WDTSHF, 2018] or upvote harsh jokes about them [Illbuyajuicer, 2018]. Some of

them see cross-platform tools as inferior and are annoyed that their popularity might

eventually affect their jobs [Empiricalis, 2018]. Especially hybrid apps seem to be hard

to optimize for performance as searches like “Cordova performance” yield lots of

questions on Stack Overflow, with answers varying from modifying app metadata files

[Gregavola, 2012] to using third party libraries or non-default embedded browsers

[Kevin, 2016]. Other common complaints are bad tooling [FJRRN, 2018], larger app

sizes due to packaged runtimes [Mudiyala, 2017] and not supporting all platform specific

features [LouisCAD, 2016]. Most cross-platform tools have a mechanism to add platform

specific code to help access platform specific features, but that somewhat defeats the

purpose of using a tool whose main selling point is to have single codebase run on all

platforms.

The main topic of this thesis is to see what the state of cross-platform development

tools was in 2018 and if there still were any basis on the complaints on their bad

performance. The research included designing a benchmarking app and implementing it

with native Android SDK, native iOS SDK and 5 different cross-platform tools. The

performance testing involved trying out measuring time from videos recorded from the

device, something not previously done in this context. These videos were recorded in two

sets, with the first one being recorded with a high-speed video camera and second one

with screen recording software. The thesis includes discussion on the previously used

timing based on logging [Corral et al., 2012; Willocx et al., 2015] and why it might not

fit this use case, and how well the video-based timing worked out.

The next three chapters will give brief introductions to previous studies on cross-

platform tools, the principles that these tools are often based on and the tools used in this

 3

study. Chapters 5 and 6 will go through how the comparison study was conducted by

going through how performance of apps was measured and how the benchmarking app

behaved. The results are given in Chapter 7 and Chapter 8 has more insightful discussion

and thoughts about the results and the study. Chapter 9 wraps up with some final

conclusions.

2. Related work

As smartphones and apps have taken a major part in people’s lives in the last ten

years, researchers have taken interest in the field as well. Papers about mobile cross-

platform tools can be roughly divided to four categories: Ones that find and define

different patterns on how to create cross-platform apps, ones that compare different tools

and their performance, ones that try to understand the implications of their usage for

developers, and ones that focus on the end user experience of cross-platform apps. Many

papers have sections from more than one category, with most of them having at least a

small comparison between different tools.

Raj and Tolety [2012] defined four different types of cross-platform apps: web apps,

hybrid apps, interpreted apps and cross-compiled apps. Web apps use web technologies

and are used through a web browser. Hybrid apps are also created with web technologies,

but use a browser embedded in to a native app by the developer or a framework like

PhoneGap. Interpreted apps use a runtime interpreter which lets the developer access

platforms native APIs, including UI, through abstraction layers. Cross-compiled apps

have parts of them written in languages that can be compiled to native binaries of each

platform. The UI and platform specific functionality of the app is then written with the

platforms native SDKs that can access these binaries. Xanthopoulos and Xinogalos

[2013] defined the generated app pattern, in which apps are written in a domain specific

language (DSL) of an app generator tool. The generator uses the DSL source code to

generate native source code for each platform the generator supports. App generators at

the time mostly supported data-driven apps with CRUD operations, but there weren’t any

widespread tools [Xanthopoulos and Xinogalos, 2013]. Taneja et al. [2016] defined

virtual machine, distributed computation and hardware-based approaches with the virtual

machine approach being an umbrella term for both hybrid and interpreted apps defined

by Raj and Tolety [2012]. In distributed computation the app on user’s device is just a

dumb UI that delegates all or most computations to a remote server. When discussing the

hardware-based approach, Taneja et al. [2016] mostly listed ways how mobile processors

can theoretically be made more powerful and energy-efficient but didn’t really give any

examples what this approach means from an app developer’s perspective.

The year 2012 saw several publications that compared different tools. Ohrt and Turau

[2012] compared 9 different tools and checked which platforms they supported, what

features they had and how well they performed. Their findings were that most of the tools

had issues with developer support and resource usage (e.g. CPU, RAM) that needed to

be addressed before they could be considered a serious alternative to native tools. Corral

et al. [2012] created an app with both native Android SDK and PhoneGap hybrid app

tool and compared executions times of several tasks between them. PhoneGap lost in all

tasks but retrieving network information (and won that by only 0.1 milliseconds),

struggling especially in file reading and accessing contact list. More recent studies, such

as ones from Willocx et al. [2015] and Ferreira et al. [2018] have confirmed that cross-

 5

platform apps can still use more resources but are catching up with native tools. Ciman

and Gaggi [2017] took a unique approach to the subject and measured apps’ energy

consumption and found out that cross-platforms apps consume more energy than native

apps. In some cases, cross-platform apps can perform better than native ones in some

tasks like navigating between screens [Willocx et al., 2015]. Ahti et al. [2016] even had

their hybrid app performing better than a native Android app in app startup time and

RAM usage due to native app requiring libraries to perform its tasks and be compatible

with older versions of the Android platform.

Some of the papers comparing tool performance also have brief mentions about the

developer tooling and experience, such as Ohrt and Turau [2012] listing IDE features,

debugging and emulator support in their table of features supported by the tools.

Heitkötter et al. [2013] focused their comparison on seven infrastructure oriented (such

as licenses & cost, distribution methods) and seven developer oriented (such as

maintainability, scalability) criteria. Their conclusion was that if native app like UI isn’t

necessary, using PhoneGap to create a hybrid app is the recommended approach as using

web technologies brings a lot of benefits.

Studies that focused on user experience and impressions of cross-platform apps often

had a test user group try out multiple versions of an app created with different tools.

Studies that had users try the different app versions in quick succession had users mostly

prefer the native versions [Humayoun et al., 2013; Angulo and Ferre, 2014]. Andrade

and Albuquerque [2015] had users first use either native or hybrid version of the app for

two weeks and give feedback on it. After the two-week period there was another two-

week period, but half of the users had their app version switched. Only 8 of 60 testers

noticed performance differences between the two app versions, suggesting that

performance differences between hybrid and native apps aren’t too noticeable in

everyday usage. One major exception in research method is a study by Mercado et al.

[2016] which studied user feedback from apps published to Google Play and Apple App

Store. On both platforms cross-platform apps were more likely to get complaints about

metrics like performance, reliability and usability than native apps. They even saw that

when Facebook app was changed from hybrid app to native the amount of complaints it

got reduced.

This thesis mostly focuses on learning how different kinds of cross-platform tools

work and the performance of apps created with them. The developer point of view won’t

be focused on as many points are either hard to analyze (e.g. how does one compare

completeness of documentation between tools) or depend on personal preferences (e.g.

does one like JavaScript or C# more). As it’s very time consuming to have enough people

test out the same app implemented with 6 tools on two different smartphone platforms to

do any meaningful analysis, no end user feedback analysis was conducted.

3. Cross-platform mobile app development patterns

Previous studies have defined several patterns on how cross-platform smartphone

apps are created. This chapter will take a deeper look on how these patterns are used to

achieve cross-platform compatibility. The next chapter will introduce some tools that

utilize these patterns.

One common aspect for all cross-platform patterns is that while they run some parts

of the app in a cross-platform environment, they still need a native portion of the app to

be able to run on a device. Depending on the pattern the native portion of the app can be

just a container that makes the app installable and runnable on a device or an integral part

of how the apps UI and features are implemented. In most cases, some mechanism is

needed for the native and cross-platforms parts of the app to communicate with each

other. In this thesis the terms “bridge” and “bridging” are used to generally address the

communication mechanisms used in different patterns and tools.

As web apps and hybrid apps work fundamentally the same through a browser [Raj

and Tolety, 2012], only hybrid apps will be focused on. The biggest differences between

the two are the distribution method and the fact that web apps can’t access native APIs

[Raj and Tolety, 2012], both of which could cause problems in the comparison study later

as the tests assume the app to be installed locally on the device and to have access to

native APIs. There aren’t any widespread tools that use generated [Xanthopoulos and

Xinogalos, 2013], distributed computation or hardware-based cross-platform app patterns

[Taneja et al., 2016] so they won’t be covered in this thesis. However, it doesn’t mean

that aren’t any implementations of these patterns. For example, server driven UI approach

used by Airbnb [Peal, 2018a] can be considered as an implementation or evolution of the

partially distributed computation pattern described by Taneja et al. [2016].

3.1. Hybrid app pattern

Hybrid apps are created with web technologies and are run on a browser embedded

in a native app [Raj and Tolety, 2012]. The Android SDK offers the WebView class to

do this and the iOS SDK offers WKWebView (the older UIWebView is now deprecated).

Normally these classes are intended to show content from the Internet but also support

loading content packaged in the app, which is what enables hybrid apps to work. The

embedded browser offers everything you’d expect from a normal browser: rendering

HTML which can be styled with CSS and possibility to run JavaScript code to drive the

application logic.

As Android’s WebView and iOS’s WKWebView are based on different browsers

(Chromium and WebKit), minor differences in HTML rendering and supported

JavaScript features are possible and even expected. Some of the differences in JavaScript

features can be normalized by packaging polyfills (implementations of JavaScript APIs)

 7

as part of the application or by using a transpiler that transforms source code that uses

newer JavaScript features to more backwards compatible source code.

What makes these embedded browser apps “hybrid” is that they can access the

platforms native APIs through the embedded browser [Raj and Tolety, 2012]. For

example, the Android WebView class has methods “evaluateJavascript” and

“addJavascriptInterface” which lets the application’s native Java portion call JavaScript

functions and JavaScript to call Java methods respectively. This is essentially hybrid app

version of bridging native and cross-platform portions of the app.

Tools for creating hybrid apps have two main benefits for developers over setting up

an app with embedded browser by hand: they have tools to package the web app into a

native app without writing any native code and provide premade bridges with the native

code for commonly used native platform APIs. Often these tools also let developers add

their own bridges if they want to or need some specific functionality from the native side

of the app. More advanced tools can also support features like fetching updated source

code and assets for the packaged web app without updating the app through App Store or

Google Play (for an example of this, see https://github.com/Microsoft/cordova-plugin-

code-push).

3.2. Interpreted app pattern

Interpreted apps work similarly to hybrid apps in that they use a separate runtime to

run the app logic. The main difference between them is that interpreted apps use the

native SDK tools for rendering [Raj and Tolety, 2012] instead of a browser’s HTML

rendering engine. The interpreter runtime can be anything that can run code and

communicate with the native SDK, like a JavaScript or Python interpreter.

Because rendering is not handled inside the runtime where developer code runs,

developers can’t directly manipulate what is shown on the screen like in hybrid apps

where they can update the HTML and CSS. This means that the cross-platform tool needs

to provide developers some other means to describe the screen contents and then map

that to platform’s native UI widgets. The mapping from the tool’s abstracted UI

description to native UI widgets lets the cross-platform tool to change the look and feel

of the app depending on the platform, making it closer to a native app experience [Raj

and Tolety, 2012]. For example, let’s say that a developer tells the tool that they want to

show a button with text “Hello world”. The tool can map that on Android to a Material

Design themed rectangle with a drop shadow and all-capitalized text and on iOS to a

clickable text with first letters of words capitalized.

Interpreted apps communicate with native APIs with bridges similar to how hybrid

apps do. With the UI being rendered in the native portion of the app but defining what

should be rendered and handling input events happening in the interpreted portion of the

app, the bridges are a central part of interpreted app tools instead of just being an optional

way to access more device features like in hybrid apps. The bridging mechanism needs

to be fast enough to not be a bottleneck in the apps’ execution, as that can result in UI

updates or reacting to user input being delayed, making the user experience worse. The

implementation of bridges can be dramatically different between tools, even if they use

a similar cross-platform runtime. For example, React Native allows developers to register

native packages from which the JavaScript portion can call methods from [NM, 2018],

while Axway’s Hyperloop module allows Titanium apps to use any native code with no

setup or glue code required [Hyperloop, 2019].

3.3. Cross-compiled app pattern

Cross-compiled apps use native binaries to deliver the cross-platform portions of the

app [Raj and Tolety, 2012]. App developers create their applications with a compiled

language and the cross-platform tool then compiles the code for each platform and

packages it in an app. Using a compiled language and binaries can give these apps

performance benefits over apps relying on interpreting their source code [Raj and Tolety,

2012].

Need for bridging between portions of the app depends on the target platform and the

cross-platform implementation. Android apps run in Google’s implementation of Java

Virtual Machine (JVM), meaning that bridging through Java Native Interface (JNI) is

needed to access APIs that aren’t part of the Android Native Development Kit (NDK),

like the UI. On iOS native apps are already compiled into machine code, so if the cross-

platform tool supports communicating with Objective-C directly then no extra bridging

or setup is needed. In practice this means that the tool would need to be either C or

Objective-C based, and tools created with other types of technologies would need to use

some bridging to enable interoperability between native iOS code and cross-platform

code.

Raj and Tolety’s [2012] original description of cross-compiled apps listed the need

to recreate the UI on every platform as their main disadvantage. This means that at the

time cross-compilation was more of way to share business logic code than to write

complete cross-platform apps. Nowadays modern cross-compilation tools, like Xamarin

with its Xamarin.Forms toolkit, can include UI tools similar to what interpreted apps

traditionally have with abstracted UI definitions being mapped to native UI widgets by

the tool [UTXMP, 2017]. Also at least one cross-compilation tool, Flutter, creates its UI

with its own rendering engine backed by OpenGL or Vulkan [FSA, 2017], which makes

it work with the same principle as cross-platform 3D game engines do. This means that

UI events don’t need to be sent from native code to cross-platform code but making the

app look and feel like a native app on each platform means that the native UI widgets

need to be recreated with Flutter’s rendering engine.

 9

4. Cross-platform app development tools

Most of the patterns from Chapter 3 require both native and cross-platform portions

of the app to be aware of each other and to co-operate. At minimum the native portion

needs to set up the cross-platform portion, and for the simplest hybrid app with no need

to access native functionality that’s all that’s really needed. For any more complex apps

though, bridging events like app lifecycle changes or requesting a link to be opened in a

browser are needed. Creating the native setup code and cross-platform enabled

abstractions for bridging the events can be cumbersome, so most of the time creating a

cross-platform app means using a tool that does all the heavy lifting and allows

developers to focus on the application specific code. Maybe one exception to this is the

Raj and Tolety’s [2012] original type of cross-compilation when not used to create most

of the app in cross-platform code.

In this chapter we’ll look at five selected tools that abstract most of the native SDKs

away and allow developers to write basic apps with no need to write any native code.

These five tools were used in the comparison study, which will be covered in following

chapters. The two main criteria for being selected were that the selected tools should all

represent different cross-platform patterns and that they should be at least somewhat

relevant in the developer community in 2018. The “relevancy” of a tool can be quite

vague, but here it was measured by looking at how many questions related to it were

posted to Stack Overflow during summer 2018 (this was done by using the site

http://sotagtrends.com/). With these criteria, Cordova, Flutter, React Native and Xamarin

were selected. The fifth tool, Titanium, was added as it was featured in many previous

studies on cross-platform app performance and thus could make comparing results with

those studies easier.

4.1. Cordova

Apache Cordova, formerly known as PhoneGap, started development in 2008 and is

one of oldest smartphone cross-platform tools [Johnson, 2008]. It allows bundling

HTML5 apps as native apps, and thus is a hybrid app development tool. PhoneGap was

originally developed by Nitobi Software, but when Adobe acquired Nitobi in 2011, the

PhoneGap source code was given to Apache Software Foundation to create open source

Cordova project [AAATAN, 2011]. Adobe still maintains PhoneGap as their own

distribution of Cordova and offers extra tooling through their cloud services. Newest

versions of Cordova support creating apps for Android, iOS, Windows and MacOS [PS,

2018].

Creating apps with Cordova doesn’t require developers to write any native code or

use native SDK tools. Instead the Cordova CLI tools are used to create and manage

projects, and it handles packaging the app in a native SDK project and generating the

glue code for it to show the packaged web app in a webview.

Bridging the native SDK code and web app code is done with Cordova’s custom API,

which wraps the webview’s own bridging mechanism. Native methods that can be called

are added to the project with plugins, which can be installed with the Cordova CLI tools.

Plugins include all needed native SDK code and XML configuration files that Cordova

uses to create objects needed to use the API. To call plugin functions, Cordova’s bridging

API takes the name of the plugin, the name of an action to run in the plugin and an array

of parameters needed to run the action. Calls to plugins are asynchronous, and any results

from the plugin action are delivered with callbacks.

As Cordova just wraps web apps into a native app, the UI in Cordova apps is written

in HTML and CSS. Developers are free to use any coding styles or techniques that

generally work on mobile browsers. Cordova documentation though suggests that

developers should adopt the Single Page Application (SPA) pattern so that the Cordova

JavaScript framework and other assets need to be loaded only once [NS, 2018]. Cordova

doesn’t include any built-in tools to make the app look like a native app on each platform,

though their documentation includes a short list of external tools for styling web apps and

a note that considering each platforms UI guidelines is important.

Cordova is a mature tool with documentation covering its APIs, how-to instructions

and best practices. Debugging code is supported with Safari and Chrome debugging tools

and other tools like Ripple. While not a common use case, Cordova documentation also

includes instructions on how to integrate Cordova hybrid app portions into otherwise

native SDK created apps on Android and iOS.

4.2. React Native

React Native is a JavaScript based interpreted cross-platform app development tool

created by Facebook. It shares its main principles and some source code with ReactJS,

which is a JavaScript library for creating web apps. It was originally created at a

hackathon event at Facebook and its initial release was in January 2015 [Chedeau, 2015].

Facebook officially maintains support for Android and iOS platforms, but the community

has created tools to run React Native apps on other platforms like Windows, macOS and

browsers [OOTP 2018]. React Native is open sourced and currently uses the MIT license.

Before February 2018 it was licensed with the BSD license with an additional clause that

the license would terminate if the tools users were to sue Facebook for patent

infringements [UTMITL, 2018].

React Native uses an asynchronous bridge to send messages between native and

JavaScript portions of the app [Alpert, 2018]. The native portion of the app can

communicate with the JavaScript portion by either sending events that JavaScript can

register to listen to by name, or by sending properties (which basically are parameters

used to describe the app’s state) to the root node of the virtual DOM tree. JavaScript can

send named events with optional callbacks to preregistered native modules like in

 11

Cordova. Registering modules is done with macros on iOS and by passing them to

ReactInstanceManager on Android. Facebook is planning to heavily rework the bridge,

aiming to make it simpler and faster and to include at least some synchronous call support

[Alpert, 2018].

Even though React Native is based on ReactJS, a web app framework, it doesn’t use

a webview to render the app. The way how ReactJS works is that it collects the

developers’ description of the app’s UI into a virtual DOM (Document Object Model, a

tree structure that most browsers use to organize HTML) and uses that to update the

browser’s actual DOM efficiently only in parts that change [RE, 2019]. React Native

takes the same idea of a virtual DOM, but uses it to update a view hierarchy of a mobile

platform’s native SDK UI widgets instead of a browser DOM. Because of the mapping

from a virtual DOM to native UI widgets, React Native apps can look like native apps on

all platforms. Developers can create their own UI widgets by developing them in native

code and then registering them as native modules. The UI is written in JSX, a HTML-

like markup language which is converted into JavaScript when the app is bundled

[JSXID, 2019]. JSX is written in JavaScript code files, so the UI and logic portions of the

application aren’t written separately like traditionally in the web where separate HTML,

CSS and JavaScript files are often used.

React Native’s tools and documentation are extensive, including support and tutorials

for creating apps without using any native SDK tools, using some custom native code or

integrating React Native into an app created mostly with the platform’s native SDK. A

lot of JavaScript and ReactJS guides and community resources also apply to React

Native. While the ReactJS and React Native APIs have started to stabilize, there are still

occasional breaking changes [RNChangelog, 2019].

4.3. Titanium

Titanium is another interpreted cross-platform tool that lets developers to create

Android, iOS and Universal Windows Platform (UWP) apps with JavaScript. It’s one of

the older tools of its category and has supported Android and iOS since summer of 2009

[Krill, 2009]. It is free to use and open-sourced with Apache 2 license. It was originally

developed by Appcelerator, but they were acquired by Axway in 2016 [Haynie, 2016].

Axway offers some additional premium features to Titanium developers, like geofencing

and SQLite database encryption, in its paid premium licenses.

In Titanium bridging calls between native and JavaScript is done through modules

and proxy objects. A module is a singleton proxy that defines an API, while normal

proxies can be instantiated through the module. Proxy methods can take an array of

parameters and return values synchronously, or they can asynchronously fire events to

JavaScript code. Views are defined as special view proxies. In native code modules and

proxies are defined and registered by extending Titanium SDKs Proxy classes and doing

some other platform specific setup (annotations, specific file naming schemes). Titanium

also has a separate Hyperloop module that enables calling any native code without

separately defining proxies. Hyperloop’s documentation doesn’t include information on

how it achieves this. A tool with a similar feature, NativeScript, collects metadata of all

available native APIs during build time using reflection which are then exposed to

JavaScript code [WIARFNS, 2018]. A Stack Overflow answer from 2016 by an

Appcelerator employee suggests that Hyperloop might work on a similar principle as he

talks about a “hyperloop-metabase” that does reflection [Knöchel, 2016].

The currently recommended way to create app UIs in Titanium is using Alloy, an

MVC framework that uses XML for defining layouts and a CSS-like language for styling.

The XML can also bind functions as event listeners like in HTML. The “classic” method

of creating UIs had developers create and manipulate the view proxies in JavaScript more

directly. Axway is currently working on experimental Titanium ports of Vue and

Angular, popular JavaScript web app frameworks.

Titanium and related Axway products (Alloy, cloud services) have good API

documentations and most JavaScript guides and code that don’t manipulate the DOM

should also work with Titanium. The documentation doesn’t mention any support to

integrate Titanium to an existing app created with native SDKs. While Titanium isn’t

brought up in developer community discussions as often nowadays as other tools

discussed in this thesis, it was mentioned in most related work papers.

4.4. Xamarin

Xamarin is a .NET based cross-compilation tool that lets developers use a common

C# codebase to create Android, iOS and Windows apps. It was originally based on

MonoTouch and Mono for Android technologies which Xamarin had licensed from

Attachmate [SAXP, 2011] after Attachmate had laid off the teams behind them [Allen,

2011]. Microsoft bought the Xamarin company in 2016 [Guthrie, 2016]. Microsoft has

open-sourced Xamarin with the MIT license.

The base Xamarin platform and apps created with it follow Raj and Tolety’s [2012]

original description of cross-compiled apps very closely: it lets developers to write the

common parts like logic in a shared codebase that is compiled for each platform, and the

UI is created separately for each platform with their native SDK tools (XML for Android,

Storyboards for iOS). The separate Xamarin.Forms toolkit branches off from the original

cross-compilation pattern by adding the option to create the app’s UI with cross-platform

tools too. The UI framework of Xamarin.Forms works similar to how interpreted apps’

UIs work, as the layout and styles are defined in abstract XML which is then mapped to

native UI widgets in runtime. In this thesis’ comparison Xamarin is used with

Xamarin.Forms as other tools are also used with their cross-platform UI creation tools.

 13

Xamarin.Forms UIs are written in XAML (Extensible Application Markup

Language), a superset of XML that is used to declare UIs in .NET applications. On top

of declaring how the UI should be laid out, XAML can also be used to bind the UI to

code (e.g. button click listeners, binding a value of a property to UI text).

A .NET embedding feature that lets an app built with native SDK tools call C# code

was published in 2017. While Xamarin documentation doesn’t seem to advertise it, using

Xamarin.Android and Xamarin.iOS to write a bit of platform specific glue code, .NET

embedding can be used to use Xamarin.Forms views in an otherwise native app

[Montemagno, 2017]. Otherwise the documentation is exhaustive with API references,

examples and even free courses. Being based on C# and .NET there’s also a great supply

of general resources and community made code modules that developers can use.

4.5. Flutter

Flutter is a unique take on the cross-compiled app pattern created by Google. It

features its own OpenGL rendering engine that is part of the Flutter runtime, meaning

that it doesn’t need to use a bridge to native SDKs to create and interact with the app’s

UI like lot of cross-platform apps do. It supports Android and iOS and is also the UI

framework for Googles Fuchsia operating system. It is open-sourced with the 3-clause

BSD license. It was first demoed at Dart Developer Summit 2015 with the name “Sky”

[Seidel, 2015]. Google has really started campaigning about Flutter in 2018 with 11

sessions at Google I/O [IOSchedule, 2018] and regular videos on Google Developers

YouTube channel.

Flutters take on cross-compiled app pattern with its own UI framework and rendering

engine comes with benefits and downsides. Some benefits are better performance due to

not using bridging as much, the apps looking and behaving exactly the same on each

platform and not needing to re-implement a UI abstraction layer for every supported

platform. Apps looking the same on each platform can also be a downside as users expect

a platform specific look and feel from apps. Using platforms’ default UI widgets, such as

webviews and maps, is supported but is still experimental on iOS [SIAIV, 2018].

Asynchronous non-view interoperability and adding a Flutter portion to otherwise native

SDK app are supported on both platforms like with most tools.

Flutter apps are written in Dart, an object-oriented programming language created by

Google. It was originally intended for creating web applications, but was later adopted

for Flutter as its features, like supporting both interpreted and ahead-of-time compiled

execution, fit Flutter’s use case. With the ongoing legal case with Oracle suing Google

for copyright infringement for using Java on Android [Al-Heeti, 2018], Google might

also have wanted to use their own programming language for their next mobile SDK.

Building a UI with Flutter is based on nesting widgets in a tree structure. The app and

its widgets are all written in Dart, so no separate markup or template language is used for

defining the UI. Styling the layout and even animations are also created with widgets.

For example, padding is added by wrapping the desired widget with a Padding widget.

Flutter has out of the box implementations for Material design and iOS styled widgets,

but no automation to change which one is used on each platform.

As Flutter has really gained attention from developers only recently and Dart is not

used widely outside of Google and the Flutter community, the amount of community

created modules can be smaller when compared with some of the other tools. Flutter’s

documentation is comprehensive with API reference, examples and adaptation guides for

developers familiar with other tools.

 15

5. Comparing performance between tools

This thesis’ main goal is finding out if apps created with current generation of cross-

platform development tools are inferior to apps created with native SDK tools in their

performance. To achieve this, we need to define ways on how we can compare apps

created with different tools in a reliable and fair fashion. This chapter goes through how

we define performance and how it manifests in the apps, how previous studies have done

their measurements and how this study brings something new to the table by adapting a

measuring method not previously used in this context. We’ll also go over how the tests

were ran in the comparison study.

Previous studies have used various ways to compare these kinds of tools and for our

purposes we can roughly group them to three groups: performance, resource usage and

others. Going quickly over the two groups we are not looking at in this study, the resource

usage group contains metrics that can be measured either from the app installation file or

from a running instance of the app. As its name implies, it contains metrics on how much

system resources it needs, such as CPU or RAM usage of the app while running or the

size of the installation file. The others group contains metrics and other assessments

related more to the tools themselves rather than the finalized apps created with them, like

the development process, code complexity, documentation and tooling. Both of these

groups have some interesting metrics in them and it would be great to see a future study

taking a look at the current generation of cross-platform apps from those perspectives, as

neither Flutter or React Native have been part of those kinds of academic studies.

The performance group of metrics this study focuses on looks only at running

instances of apps and how fast they can perform their tasks, like opening a new screen or

calculating something. Several previous studies have compared apps with these types of

metrics [Ohrt and Turau, 2012; Willocx et al., 2015]. The types of tasks can be divided

into four categories: state transitions, computation, I/O, accessing device features. The

state transitioning category includes tasks such as moving between screens and launching

the app. Computational tasks do some (heavy) calculations, like finding prime numbers

or image manipulation. When comparing cross-platform tools it’s important to note that

for meaningful testing, the computation should be kept in the cross-platform portion of

the app, and not be passed to the native code through the bridge. I/O tasks do read and

write operations on the local disk and make network requests. One example of device

feature accessing tasks is triggering the vibrator on the device, which was previously used

by Corral et al. [2012] in their study. In the context of comparing cross-platform apps, if

the different tools use similarly efficient native code to access the device features, most

of the differences in performance should come from the efficiency of the bridging

mechanism.

5.1. Logging-based measurement

Measuring the time in these types of performance has previously been done mostly

by logging messages with a timestamp to a debug console or a file, the measured time

being the difference between timestamps acquired before the task starts and after it

finishes [Corral et al., 2012; Willocx et al., 2015]. This timing method should lead to

millisecond level accuracy with most tools and some tools can even achieve nanosecond

accuracy [Corral et al., 2012]. It has some other great qualities on top of its accuracy, like

ease of implementing it, being light enough work for the device to not affect the results

and outputting text, which is easy to automatically transform into formats that analyzing

software can take as input. Overall when thinking of timing methods for software

performance, logging is probably the one that comes first in mind for many and fits many

use cases quite well.

Despite its many good points, logging might not be suitable timing method for our

testing. This might be easiest to see this through some examples. For our first example,

let's say we want to start timing when a button is pressed. A native app would register a

click listener to that button, in which it does the log call and then proceeds on the actual

task. With cross-platform tools that use the native SDK for their UI, the tool abstracts

away registering that native click listener and the event can potentially go through many

layers of abstraction before reaching our code. So, we can’t accurately start the timing

when we want to, the moment the app receives the input from the OS, and instead have

some arbitrary delay that varies between tools. As a second example of use cases where

logging can be inaccurate, let’s consider triggering the device vibrator from cross-

platform code. On both Android and iOS, the native SDK method to trigger the vibration

quickly passes an event to the OS, which will asynchronously then start the vibration,

with no return values or callbacks. All of the cross-platform tools in our comparison have

an abstraction that works in a similar fashion, just quickly pass an event to the bridge and

let the cross-platform code move on. So, if we just naively take the time it takes for the

tools abstracted function to trigger vibration to execute, we’ve most likely only measured

how much time it takes to tell the bridge to send an event to the other side. We have no

guarantee if the native side has already processed the event and even if it had, how much

other processing had been done after that. Our last example is the app launch time

measurement, and this issue affects even apps created with native SDKs. The time it takes

to cold start an app is affected by the amount of code and resources that need to be loaded

to the RAM before the operating system can even start the app, which means that we’d

need to do our first logging call before we’ve had any chance of doing so. Looking at the

app launch time from this perspective, the software we’d be testing would actually be the

operating system and the task would be getting the app to the state we consider as fully

launched.

Sometimes the issues mentioned above can be solved by modifying the tools’ source

code to do the log calls at the timing we really intend to, but with tools and SDKs that

 17

aren’t open-sourced this wouldn’t be possible. Modifying the source code would also add

lots of extra work and require knowledge of the tools’ internal workings. Depending on

the device we’re testing on, we might get lucky and have access to operating system logs

that tell us when our app is being launched. In many cases using the log timing should be

accurate enough when comparing apps created with the same tool, but the code that we

don’t control creates too many unknown factors for it to be a reliable timing method when

comparing apps created with different tools.

5.2. Video-based measurement

To overcome the issues with logging-based measurements, an alternative was

needed. Inspired by video game input lag tests conducted with high-speed video cameras

[Soomro, 2015], a video-based measuring method was adopted. With this method, a

video of the device screen and inputs being given to the device is recorded, and the result

is based on the number of frames it takes from the input being given to the task being

finished. One exception in this study would be the vibration triggering test, where timing

ended when the sound of the vibration started in the video. The precision of this type of

timing would be tied to the frame rate of the video and thus lose to logging in this regard,

but the conditions for starting and ending the timing would be exactly the same for all

kinds of apps and the results can be directly compared with no issues. As long as all the

frames shown on the device are recorded, the accuracy should be good enough to measure

how a user would perceive the apps’ performance.

Figure 1. The high-speed camera video recording setup with a Nexus 6P acting as a

camera.

The initial batch of test runs were conducted by directly applying Soomro’s [2015]

method of using a high-speed video camera. Figure 1 shows how the recording was setup

with the camera being rigged close to the device being tested in an angle that left

clearance for a stylus to touch the screen. After initial analysis of the videos however it

became clear that this recording setup had too many flaws for the results to be considered

accurate. The camera used for recording was the Nexus 6P smartphone from 2015, which

has a 240-fps slow-motion video recording mode. The camera often produced grainy

videos where it was hard to see exact timings and it was slow to adjust the colors when

the screen faded quickly from one color to another. This created situations where it was

hard to judge e.g. a fade from blue to white ending when even the paper behind the phone

glowed with blue color for a while in the recording. The IPS panel on the iPhone 6S Plus

used as a test device was problematic as changes that were supposed to be instantaneous

happened as fades on the video, which added extra complexity to definitions on when a

task is considered to be finished. It was also hard to determine the exact frames where

inputs were given when a regular stylus pen or a finger was used to touch the screen, as

the motion of touching the device screen with them moved away from the camera and

the two surfaces making contact can’t be seen on the video. To make the two surfaces

making contact visible on the video, a custom-made stylus made by wrapping aluminum

foil to tip of a pen was used as a proxy. The stylus couldn’t trigger inputs by itself and it

needed a finger or a metal object to touch the foil for the screen to register inputs from it.

 19

As shown in Figure 2, by placing the stylus on the screen and then touching the foil with

a knife, inputs could be sent to the device with the two surfaces making contact (the stylus

and the knife) being caught in the video. While this worked great in many recordings,

there were still hard-to-judge situations when the stylus wasn’t in the center of the

camera’s focus, or the knife used to touch the stylus was tilted.

Figure 2. Two frames from a high-speed video camera recording demonstrating how the

custom stylus was used.

The second batch of test runs was done with screen recording software while an on-

screen marker for inputs was enabled on the device. This got rid of all the image quality

issues that the camera recordings had and there was no ambiguity on which frame was

the one that the input was given. In a way it also made the timing closer to what we’re

after by moving the starting time from the moment of input being given to the screen to

the moment that the operating system had received it, removing the time it takes for the

hardware to register the input. This makes the results comparable even between devices

with different types of screens. The biggest issue with screen recording on Android and

iOS devices is that all available software for it allow only variable frame rate recording.

These types of recordings save space by not saving duplicate frames in the video, and

instead rely on metadata to tell the video player software on when to show the next frame.

This makes analyzing the video frame by frame more complicated, as advancing the

video by a frame doesn’t advance the time by a constant, like it would do in a constant

frame rate video (in smartphone use case, recording all of the frames of their 60Hz

screens would generate a 60-fps video where every frame is shown for 16,666…

milliseconds). Using screen recording software also creates extra work for the device,

which can affect the results. This wasn’t seen as a problem as the recording should affect

all the apps with roughly the same impact, and the video camera recordings were used to

check that the results were similar between the two recording methods.

On top of the four types of tasks (state transitions, computation, I/O, device feature

access) done in performance testing, the video-based measurement also enables testing

animation performance. It doesn’t fit the previously given definition of performance

metric as animations aren’t always tasks that have well defined start and end times, and

faster isn’t always better. Rather, animation performance would be how smoothly the app

can run its animations, which can’t really be measured through logs at all. With video,

animation performance could be measured by going through the video frame by frame

and counting the amount of times there’s an unexpected duplicated frame. Adding

directly comparable animations for apps created with 6 different tools per platform would

be quite a difficult task, so no animation performance testing was done in this study.

Something similar however was done with scrolling through a list of items and counting

the amount of dropped frames during the scroll. The previously mentioned issues with

access to only variable frame-rate recordings complicates this type of testing, as the

frames stored in the video file aren’t the single source of truth if the playback will have

duplicated frames or not like they would be in a constant frame rate video. So, the amount

of dropped frames during a scroll was counted by first checking the duplicated frames,

and then adding the number of frames that were shown for over 33,333… milliseconds

during the scroll. If a frame was shown for over 50 milliseconds, it was added twice and

so on.

5.3. Testing setup

The video-based performance method was put to a use in this study by running tests

on apps created with tools introduced in Chapter 4. The tests were run on a OnePlus 3

running Android Oreo 8.0 and iPhone 6S Plus running iOS version 12.1.2. During the

testing the phones were connected to a computer with USB cable and the reported battery

charge level was over 95% while tests were run. The phones didn’t have SIM cards

installed, were connected to a 5GHz Wi-Fi with a good connection quality and had

automatic updates and app synchronizations turned off. Before each test run the app under

testing was installed, then launched once to make sure any first launch setup was done,

the device was rebooted, and then the device was left idle for at least a minute to make

 21

sure that most post-launch procedures had finished. The reinstallations were necessary as

some of the cross-platform tools automatically cache images loaded from the Internet and

the reinstallation was the most surefire way to delete the cache between tests. The reboots

were done to make sure that the phone is in a similar state regarding background

processes and such for each test.

Tests that fetched content from the Internet connected to an Apache HTTP server that

ran on a Raspberry Pi 3 in the same network, connected with an ethernet cable. The Pi

didn’t do any other work during testing and the fact that the server was running smoothly

was confirmed before each test recording session.

Making touch inputs visible in the recordings on Android was as easy as enabling the

“Show touches” option in the developer options menu. There is also a separate “Pointer

location” option that shows inputs with some extra data, but that option occasionally was

a frame behind the marker shown by “Show touches” option, so it wasn’t used. iOS

doesn’t have a dedicated option to show inputs, but the Assistive Touch accessibility

option was used as a replacement. Assistive Touch can be used to replay macro inputs

with a single touch, and by recording a quick tap as a macro it can effectively be used to

show touches. Assistive Touch always shows a marker on the screen, but when the macro

activates it flashes, so the time the flash starts was used as indication that the input was

given. For scrolling tests, a swipe gesture macro was used. On Android there is no built-

in macro system and the “Show touches” marker doesn’t appear for inputs given through

USB, so the swipes were done manually.

Most of the video recordings on Android were done with the screen recording tool

that comes as a part of ADB (Android Debug Bridge). This method stored the videos on

the device and has an option to embed frame numbers and timestamps for each frame to

the video. However, it doesn’t support recording audio, which was needed in the vibration

triggering tests as the sound of the vibration motor was used to determine when the timing

should end. Because of this, the screen recording app AZ Screen Recorder

(https://play.google.com/store/apps/dev?id=4946092157052757127) was used to record

the vibration tests. Using scrcpy (https://github.com/Genymobile/scrcpy) was also

considered as it would’ve streamed the video to a computer and thus not write to disk

during testing. The ADB screen recording was chosen over other tools as it was the only

tool that didn’t make the 60-fps animation test at Test UFO (https://testufo.com) warn

about not being able to achieve steady 60-fps. On iOS the only option without

jailbreaking the device was to record the screen using QuickTime on a Mac with excellent

quality setting. iOS disables the device’s vibrator while the microphone is in use, so an

external microphone was needed for the vibration tests. The microphone on the MacBook

that ran QuickTime was used as it didn’t need any extra setup. The phone was placed on

top of the MacBook’s keyboard during vibration triggering test so the distance between

vibrating device and microphone was same for all recordings.

https://github.com/Genymobile/scrcpy

6. Benchmarking app

To make performance comparisons between apps created with native SDKs and

different cross-platform tools, apps created with all of them were needed. To ensure that

the comparisons between apps is meaningful and fair, specification for a benchmarking

app was defined and then implemented with each tool. The benchmarking app was

designed to be relatively simple to create with each tool and allow easily testing different

aspects of them. That’s why a design with a simple landing page that had buttons that

navigated to different screens was chosen. Each screen contained everything needed for

a single type of test, like a counter that incremented when a button was pressed or a large

list of items. It might not have resembled a typical real-world app in its design but kept

the tests isolated, so they could have been easily changed without affecting other tests.

The versions of the tools and other packages used were the latest official releases on

December 20th, 2018.

The benchmarking app specification given in next sections contains rough UI

descriptions, sample screenshots from the finalized apps, feature specifications, general

implementation guidelines and some specific implementation requirements that were

followed. Implementation requirements were specified in places where the same feature

or UI design could have been implemented in multiple ways with different kinds of

performance implications. For example, some parts of app UI were specified to be static

and some dynamically created.

All the implemented apps are open-sourced and can be found at

https://github.com/jarkkos-crossplatform-comparison-thesis.

6.1. General implementation guidelines

The general implementation guidelines were the following:

- The UI should be implemented with official resources and officially endorsed

third-party resources.

- For non-UI purposes all official addon packages and free & open-source libraries

are allowed.

- Custom made platform specific code should be kept to minimum.

- Follow each tool’s coding style and best practices, don’t try to optimize for

testing.

These rules were given to make the apps’ implementations push the cross-platform

capabilities of the tools’ official packages. The definition of official resource was that it

is distributed by the same organization as the tool itself and it’s not labeled as

experimental, like the Android support library by Google. If the official documentation

suggests a specific third-party library or module for doing certain tasks, it was considered

to be an officially endorsed resource. The clause for officially endorsed third-party

 23

resources was added because neither ReactJS or React Native had built-in solutions for

moving between screens, but their documentations suggested third-party solutions for the

task [RJSRouting, 2018; NBS, 2018]. The second rule was given to speed up

development and to bring the implementations bit closer to what they would be in average

apps.

Because Cordova isn’t a tool for creating mobile apps but a tool for packaging a web

apps as mobile apps, some extra considerations needed to be made. The web app to be

packaged with Cordova was created with ReactJS so it could share non-UI code with the

React Native app. The general app implementation guidelines were then applied to

ReactJS.

All screens of the app had a bar with the title of the app or the screen. It will be

referenced as the “top bar” as the platform specific terms “navigation bar” and “toolbar”

have different meanings on both platforms. In the test screens, the top bar contained a

button to go back to the landing screen.

All the buttons were configured to do their actions on touch down events, or when a

finger initially touches the screen. The norm on both platforms and by default followed

by all the tools is to do the action on touch up, or when the finger is lifted from the button.

The default behavior allows canceling the button click by moving the finger away from

the button before lifting it, but the touch down event is easier to pick up from a video so

it was used instead. Most tools allowed using touch down events out of the box, while

with React Native and Flutter the source code of the default buttons needed to be copied

and modified to create widgets with touch down event listening support.

Another change from the default behavior for testing purposes was to disable all

screen transition animations and delays. Different tools could have animations with

different timings, which would make the comparison be about some animations timing

parameters defined by the tool instead of how fast the apps can navigate between the

screens at their fastest. All tools allowed disabling animations when moving to a new

screen, a feature presumably added for state restoration and deep linking purposes, but

moving to a previous screen with default controls was often more difficult to implement.

Even the native iOS SDK didn’t support disabling animation of the default back button.

With most tools this could be worked around by using a custom button for moving back,

the only exception being Flutter which allowed disabling the animation but still seemed

to delay the screen transition arbitrarily.

6.2. Landing screen

The landing screen was the first screen that is shown when the app was launched. It

worked as a hub for accessing all the other screens of the app. While the landing screen

didn’t have any test specific functionality in it, it was used to test app launch time and as

part of tests that involved moving from one screen to other.

The design of the landing screen layout was minimalistic. At the top there were two

images in both corners of the screen, and between the images were three lines of text

describing the app and its version. Below the images and title texts were a set of buttons,

one below the other center aligned. These buttons moved the app to screens that contained

the tests, and the buttons contained a text that describes the screen it opens. A red bar was

added to the bottom of the screen to help determining when the whole screen had been

rendered in the video camera recordings where the high frame rate recording captured

partially updated screens. Figures 3 and 4 on the next pages show how the landing page

looked in each app on both platforms.

Because the landing screen’s initial rendering time affects the tests it was used in, its

implementation was dictated strictly to make the implementations comparable. The

layout had to be completely static with everything hardcoded. With tools that use separate

code and layout files, the button click listener bindings were done in code. The code that

the button click listeners execute to move to the next screen knew what to do without

doing any sort of lookups for which screen to show or what kind of configurations to pass

to it. These implementation requirements were given to make sure that all the

implementations take the same approach of prioritizing execution speed over other things

like configurability of the buttons and the screens they lead to.

 25

Figure 3. The landing screen in all 6 Android apps.

Figure 4. The landing screen in all 6 iOS apps.

 27

6.3. Button reaction delay screen

The button reaction delay screen contained a top bar, a button in the middle and a line

of text below the button that showed how many times the button has been pressed. Figure

5 shows how the screen looked in native apps on both platforms. The apps were

implemented so that the layout is static, and the button click listener is bound in code.

The amount of times the button has been pressed was kept in an integer variable with

hardcoded initial value of zero. This variable was stored in an appropriate place to store

simple pieces of UI state for the tool and solutions used with complex state (e.g. view

model, redux store) were avoided in the implementations. Clicking the button

incremented the counter variable by one and made the UI to update with the updated

value. A green bar was added to the bottom screen for the video camera recordings,

similar to the red bar on the landing screen.

As none of the cross-platform tools supported using touch down events with the

default back button, and with many the animation from the default back button couldn’t

be disabled, a separate button for back navigation was added to this screen for back

navigation speed testing.

Figure 5. The button reaction delay screen in the native Android app and the native iOS

app.

6.4. Large list of items screens

These screens simulate a common task for a mobile app, loading a list of items and

showing them to the user. The item data was stored to a json file, with each item

containing information of a jpg image’s URI and a sentence of text. Images used were

from the Caltech 101 dataset [Fei-Fei et al., 2004] and the texts were generated at

lipsum.com. As shown in Figure 6, the apps displayed this data in a vertical list where

each item’s image was shown in the left side of the screen and the text next to the image.

The height that a single item used was adjusted so that on both platforms the same number

of items was shown in all of the apps (this ended up being 7 items on Android and 8 + 9th

peeking from the bottom on iOS).

To test the list scrolling performance of the tools, the list had 300 items to create long

enough list that a single swipe couldn’t scroll through it. Most production quality apps

would implement paging to loading such a large list of items either with infinite scrolling

and loading more items on demand or by splitting the list to different pages. The approach

of loading data for all the list items at once and letting the tool handle performance

optimizations was used as it was easy to implement with all of the tools and could make

the performance differences between tools more apparent than a more typical number of

items.

Figure 6. The item listing screen in the native Android app and native iOS app.

 29

Each app had two versions of this screen: one that read the data from disk and one

that fetched it from the Internet. This enabled testing how the tools could handle reading

data from these two common data sources and if the choice of data source has any effect

on the list scrolling performance. While not an actual requirement or a focusing point of

the study, all apps had both versions of the screen use the same layouts and display logic,

only swapping the implementation of data loaders. This was done to reduce duplicate

code, to see how the APIs of the tools could handle loading images from different sources

and to test how simple dependency injection could be done with each tool. All the tools

could handle this type of implementation fine, with the only exception being that the data

loader’s implementation couldn’t be injected to the screen in the native Android

implementation due to how instantiating Fragments works. To get around this, a flag

describing which implementation the Fragment should instantiate by itself was injected

instead.

6.5. Heavy computation screen

Like the button reaction delay screen, the heavy computation screen had a top bar

and a button, but the content below the button changed a bit more depending on the state.

Initially there was a text prompting the user to click the button. When the button was

pressed, it triggered the computation to start in the background, the text changed to

“Computing” and a spinner or similar animated UI widget was shown. After the

computation was done, the spinner was hidden, and text was changed to “Done”. Figure

7 shows how the screen looked in native apps during the computation with the spinner

visible.

The computation task chosen was finding all the prime numbers below three million

and returning them as a list. This task was chosen as it was easy to implement optimally

on all platforms with similar syntax. A more realistic computational task for a mobile app

could’ve been some image manipulation task like applying a filter to an image but

creating optimal and comparable solutions for each platform would’ve been difficult.

Doing the computation in the background meant that it had be done asynchronously

in another thread or similar construct in a way that it didn’t block UI updates or user

input. With this kind of implementation, the computation doesn’t disrupt the spinner

animation and the back buttons still works like users would expect in a normal app. With

tools that supported it, the computation was implemented in a cancelable manner and was

cancelled either when the button that started the computation was repressed or back

button was pressed. The apps weren’t allowed to explicitly initialize the mechanism for

doing the computation in a background thread before the button was pressed.

Figure 7. The heavy computation screen in the native Android app and the native iOS

app during the computation.

6.6. Vibration screen

The vibration screen had a static layout with just the top bar and a button in the

middle of the screen, like the ones in Figure 7 but with no additional widgets below the

button. Pressing the button makes the device vibrate for a moment. Triggering the

vibration to start had to be implemented by fetching a reference to the bridging

mechanism used to control the device vibrator and calling the appropriate method.

Fetching the reference to the bridging mechanism before the button got pressed wasn’t

allowed to make sure that it didn’t cause any sort of vibration specific initialization to

happen before the test timing started.

 31

7. Results

The results for each kind of test are given in a section specific for each category of

tests, with each section containing the results in table(s) and text pointing out the most

noteworthy results and explaining any oddities. In the result tables, React Native is

abbreviated as “RN”. When multiple tools have the same result in a test, the table has

them grouped in an alphabetical order.

The results presented in this chapter are from the screen recording software tests, with

the only exception being the Section 7.1. where the results between the two tested video

recording methods are compared. Tables in that section have the recording method

mentioned with the type of test they give the results for, but in later sections the recording

method is omitted as they all have only screen recording software results.

Due to the large amount of manual work with recording the videos and going through

them to find the frames that start and end the timing, the tests were run only three times

for each app. The main comparisons were done by choosing the fastest one of the three

runs. There were two reasons for selecting the fastest one over the second fastest and

slowest times. The fastest times are good estimations of how the apps can perform at their

absolute fastest, while with the sample size of three we can’t really be sure what an

average result would be in the long run and aiming to find the slowest results that aren’t

caused by the device randomly doing something in the background isn’t really

meaningful. The second reason was that the fastest results of video camera and screen

recording software tests aligned with each other better than the other two. Using the mean

time of the three samples wasn’t even considered due to the small sample size and

problems that having times that aren’t approximately multiples of 16,666… milliseconds

could cause when converting them to approximated amount of 60-fps video frames.

7.1. Comparing high-speed camera and screen recording software results

As explained previously in Chapter 5, a lot of videos were already recorded with a

high-speed video camera before the switch to screen recording software was decided. As

those videos already existed, the ones that didn’t have too much issues with image quality

or clarity on timing were compared with the screen recording videos to validate that the

screen recording going on during testing didn’t affect the results significantly. The

comparison wasn’t done on the network list and vibration tests, as doing two list tests

seemed unnecessary and the vibration test result accuracy was questionable anyway as

will be discussed later in Section 7.6. The local list loading test was chosen over the

network version, as both list loading and screen recording on Android accessing the disk

at the same time could potentially make the performance hit of using screen recording

software more apparent. Only the apps’ relative performance to each other was compared,

as the absolute times have different variables affecting them with each method (e.g.

registering the stylus touch from the screen and passing it as an input event to the app)

and aren’t directly comparable between the two recording methods.

Table 1 contains the fastest time comparisons for Android. Most of the differences

are apps with close timings switching places with each other, which can either be because

of using screen recording software affects the results slightly or by random with the small

sample size of recordings. Cordova’s ranking relative to Flutter and React Native

changing between the testing methods in some tests can probably be explained by the two

larger apps being more affected by the ongoing disk writes, but the largest app Xamarin

didn’t seem to mind the writes as much. While the absolute times can’t really be

compared, React Native’s slow touch registering in camera tests and the performance hit

that Flutter takes from the screen recording in computation test are worth mentioning

even though they didn’t cause any changes in placements.

software
launch
time tool

camera
launch
time tool

software
new screen tool

camera
new screen tool

0:00,451 Native 0:00,450 Native 0:00,016 Native 0:00,092 Flutter

0:00,920 Cordova 0:00,892 Flutter 0:00,038 Flutter Native

0:01,050 Flutter 0:01,029 RN 0:00,050 Cordova 0:00,150 Cordova

0:01,773 RN 0:01,054 Cordova 0:00,117 Xamarin 0:00,192 Xamarin

0:02,224 Titanium 0:01,842 Titanium 0:00,185 Titanium 0:00,258 Titanium

0:02,280 Xamarin 0:02,325 Xamarin 0:00,267 RN 0:00,300 RN

software
previous
screen tool

camera
previous
screen tool

software
button
press tool

camera
button
press tool

0:00,031 Cordova 0:00,096 Native 0:00,000 Flutter 0:00,067 Native

0:00,048 Native 0:00,121 Xamarin Native Xamarin

0:00,066 Xamarin 0:00,146 Cordova Titanium 0:00,071 Titanium

0:00,101 Titanium 0:00,183 Titanium Xamarin 0:00,079 Flutter

0:00,133 RN 0:00,304 RN 0:00,015 Cordova 0:00,083 Cordova

0:00,367 Flutter 0:00,504 Flutter 0:00,065 RN 0:00,217 RN

software
local list tool

camera
local list tool

software
computation tool

camera
computation tool

0:00,104 Flutter 0:00,200 Flutter 0:00,869 Native 0:00,921 Native

0:00,167 Native 0:00,225 Native 0:01,355 Titanium 0:01,546 Titanium

0:00,286 Titanium 0:00,367 Titanium 0:01,595 Cordova 0:01,692 Cordova

0:00,402 Cordova 0:00,600 Cordova 0:14,724 Xamarin 0:15,321 Xamarin

0:00,454 RN 0:00,613 RN 0:57,986 RN 0:49,608 RN

0:01,138 Xamarin 0:01,242 Xamarin 2:13,742 Flutter 1:55,533 Flutter

Table 1. Comparing fastest screen recording software and high-speed camera results on

Android, sorted by the amount of time.

 33

Table 2 has the same comparisons for iOS. Here we have some rankings switching

places, but the tables here make the differences seem a bit worse than they actually were.

The camera results have finer accuracy (4.166… milliseconds) compared to the screen

recording software results (16,666… milliseconds), which caused the screen recording

results to round up to exact same times more often than the camera results. These grouped

results are given alphabetically in these tables, and if we look at the camera results for

apps that had same results in screen recording tests, we see that the differences are often

close enough that they could’ve been rounded to be the same if they were measured with

screen recording. This explains most of the placement switches in new screen, button

press, local list and computation tests in Table 2 and button press test placement switches

in Table 1. The Cordova-Titanium switch in Table 2’s computation results is most likely

due to random chance in this small dataset, as a 30-millisecond difference in a test that

runs for roughly 27 seconds isn’t significant. This leaves the launch time and previous

screen test as the only tests with unexplained switches in their results in Table 2. Some

of them might come from inaccuracies in timing, as the slowly responding IPS panel

pixels made especially the launch time and screen changing tests hard to judge and those

exact tests were the final deciding factors for the switch to screen recording software.

software
launch
time tool

camera
launch
time tool

software
new screen tool

camera
new screen tool

0:00,683 Titanium 0:00,638 RN 0:00,050 Flutter 0:00,104 Native

0:00,700 RN 0:00,654 Native Native 0:00,113 Titanium

0:00,783 Native 0:00,708 Titanium Titanium 0:00,125 Flutter

0:00,967 Xamarin 0:00,775 Xamarin 0:00,067 Cordova 0:00,133 Cordova

0:01,250 Flutter 0:01,158 Flutter Xamarin 0:00,146 Xamarin

0:01,330 Cordova 0:01,271 Cordova 0:00,083 RN 0:00,150 RN

software
previous
screen tool

camera
previous
screen tool

software
button
press tool

camera
button
press tool

0:00,017 Native 0:00,067 Titanium 0:00,000 Native 0:00,046 Native

0:00,033 Cordova 0:00,071 Native 0:00,017 Cordova 0:00,058 Titanium

 Titanium 0:00,100 Cordova Flutter 0:00,067 Flutter

 Xamarin 0:00,125 RN RN Xamarin

0:00,067 RN 0:00,158 Xamarin Titanium 0:00,071 Cordova

0:00,417 Flutter 0:00,492 Flutter Xamarin 0:00,075 RN

software
local list tool

camera
local list tool

software
computation tool

camera
computation tool

0:00,133 Flutter 0:00,171 Flutter 0:00,900 Native 0:00,921 Xamarin

0:00,217 Xamarin 0:00,258 Xamarin Xamarin 0:00,929 Native

0:00,267 Native 0:00,313 RN 0:01,284 Flutter 0:01,208 Flutter

 RN 0:00,333 Native 0:27,470 Cordova 0:26,787 Titanium

0:00,600 Cordova 0:00,633 Cordova 0:27,504 Titanium 0:26,800 Cordova

0:00,700 Titanium 0:00,700 Titanium 0:27,821 RN 0:27,146 RN

Table 2. Comparing fastest screen recording software and high-speed camera results on

iOS, sorted by the amount of time.

7.2. App launch times

Android iOS
approx. frames tool time approx. frames tool time

27 Native 0:00,451 41 Titanium 0:00,683

55 Cordova 0:00,920 42 RN 0:00,700

62 Flutter 0:01,050 47 Native 0:00,783

105 RN 0:01,773 57 Xamarin 0:00,967

131 Titanium 0:02,224 74 Flutter 0:01,250

135 Xamarin 0:02,280 79 Cordova 0:01,330

Table 3. Fastest app launch times on Android and iOS, sorted by the approximated

number of frames. Timing is from the input to open the app being given to app’s first

screen being completely drawn with animations finished. As the app icon reacts to

touches on touch up event, the frame of input being given was when the touch ended.

For the rest of this chapter, the results given in the tables are from screen recording

software tests, and results from camera tests are separately given and pointed out only

when necessary. In Table 3 we have some interesting results on the iOS side, with two

cross-platform apps beating the native implementation in launch time. The native iOS

app was implemented by using a single big Storyboard to define all the screen layouts,

so it’s possible that the native app’s launch time was slowed down by the need to parse a

file that contains layout information for more screens than just the landing screen.

On iOS the times were somewhat close together with result being either bit under or

over one second, but on Android the times were quite scattered. The top 3 iOS apps had

their screens drawn before the default animation of the screen expanding from the app

icon had finished, and there doesn’t seem to be any information available on what

controls that animation’s speed, so the timing for them was ended when that animation

ended to make sure that the timing works the same for all of the apps.

While on iOS one couldn’t probably tell from launch times only if the app is using

the native SDKs or not, on Android the penalty was easily noticeable. The absolute

slowest launch time in the dataset on iOS was Cordova getting 1,334s twice, which is

practically the same as the fastest time it got. On Android Titanium and Xamarin took

over three seconds in some test runs, with Xamarin’s slowest time being 3,413s (3,579s

in camera tests).

As mentioned earlier, on Android Cordova’s relative performance against Flutter and

React Native was worse in the video camera-based testing but in screen recording tests it

was ahead of them. Whether it’s due to small sample size or the screen recordings disk

writes affecting larger apps, it’s hard to say but should be considered when analyzing the

results.

 35

7.3. Moving between screens

Two separate types of screen transitioning tests were conducted: the first type moved

into a new screen with a simple design and then back to the previous screen, and the other

type moved to a new screen that had to load a list of items and dynamically create the

layout before it could be shown. Table 4 has results of the former type of test and Table

5 of the latter.

At first glance, the most interesting result in Table 4’s simple screen transition times

is Flutter’s slow transitions to previous screen. This was due to the Flutter’s Navigator

API not having an option to completely disable the animation and the time reserved for

playing it, as giving it an empty animation didn’t change the time it took to go back to

previous screen. The Navigator API also didn’t offer any easy way around the issue, so

we’re left with a result that tells us more about Flutter’s API than its performance.

On actual as-fast-as-possible screen transition results, we have the native

implementations being in the fastest groups in most of them, which isn’t too surprising.

On Android Cordova still managed to beat the native app though. Flutter also redeemed

itself with the top 2 ranks on both platforms when moving to a new screen. React Native

had consistently the slowest transition times. The React Navigation library that was used

(and recommended by React Native documentation [NBS, 2018]) didn’t have an explicit

option to disable animations, but one could configure an animation that caused an instant

transition to happen.

Android
open new screen

Android
open previous screen

approx. frames tool time approx. frames tool time

1 Native 0:00,016 2 Cordova 0:00,031

3 Flutter 0:00,038 3 Native 0:00,048

 Cordova 0:00,050 4 Xamarin 0:00,066

7 Xamarin 0:00,117 6 Titanium 0:00,101

11 Titanium 0:00,185 8 RN 0:00,133

16 RN 0:00,267 22 Flutter 0:00,367

iOS
open new screen

iOS
open previous screen

approx. frames tool time approx. frames tool time

3 Flutter 0:00,050 1 Native 0:00,017

 Native 0:00,050 2 Cordova 0:00,033

 Titanium 0:00,050 Titanium 0:00,033

4 Cordova 0:00,067 Xamarin 0:00,033

 Xamarin 0:00,067 4 RN 0:00,067

5 RN 0:00,083 25 Flutter 0:00,417

Table 4. Fastest screen transitions between simple screens on Android and iOS, sorted by

the approximated number of frames. Timing is from input to open the new screen being

given to the destination screen being completely drawn.

Android Android
local screen transition local full render
approx. frames tool time approx. frames tool time

3 Flutter 0:00,035 7 Flutter 0:00,104

4 Native 0:00,066 10 Native 0:00,167

14 RN 0:00,236 17 Titanium 0:00,286

15 Xamarin 0:00,249 24 Cordova 0:00,402

17 Titanium 0:00,286 27 RN 0:00,454

21 Cordova 0:00,352 67 Xamarin 0:01,138

Android Android
network screen transition network full render
approx. frames tool time approx. frames tool time

2 Cordova 0:00,034 10 Flutter 0:00,165

3 Flutter 0:00,049 11 Native 0:00,184

4 Native 0:00,066 23 Titanium 0:00,382

10 RN 0:00,169 29 Cordova 0:00,485

15 Xamarin 0:00,249 46 RN 0:00,768

19 Titanium 0:00,317 124 Xamarin 0:02,092

iOS iOS
local screen transition local full render
approx. frames tool time approx. frames tool time

4 Flutter 0:00,067 8 Flutter 0:00,133

 Native 0:00,067 13 Xamarin 0:00,217

5 Xamarin 0:00,083 16 Native 0:00,267

16 Cordova 0:00,267 RN 0:00,267

 RN 0:00,267 36 Cordova 0:00,600

42 Titanium 0:00,700 42 Titanium 0:00,700

iOS iOS
network screen transition network full render
approx. frames tool time approx. frames tool time

2 Cordova 0:00,033 9 Flutter 0:00,150

4 Flutter 0:00,067 11 Native 0:00,183

 Native 0:00,067 15 RN 0:00,250

 Titanium 0:00,067 23 Xamarin 0:00,383

5 Xamarin 0:00,083 39 Cordova 0:00,650

7 RN 0:00,117 68 Titanium 0:01,150

Table 5: Loading a list of items both locally and from the network on Android and iOS,

sorted by approximate number of frames. Timing starts at the input to open the new

screen being given, and for the transition ends when the old screen disappears, and for

the full render when the first screenful of list items with their images are visible.

Worth noting is also that React Native on Android was the only one of the twelve test

apps to flash the screen to white between the screens when doing the transition. This one

frame flash was noticeable to naked eye, so hopefully this was just a side-effect of

pushing the animation configuration to its limit in the direction that most real apps don’t

do.

As loading the item list and the images might take a while, it can potentially create a

situation where the new screen is empty before the list is loaded and ready to be shown.

 37

This is better than having the app sit at the old screen before swapping to the fully loaded

list screen, as it gives feedback to the user that the input was registered, and a loading

indicator can be shown on the new screen during that time. This is why two separate

times are shown for each test in Table 5, so we can compare the screen transition times

to ones in Table 4 to see if the loading slows down the transitions and to see how long it

takes to display the first screenful of content from the list.

The screen transition times took quite a hit on the local versions of the tests where

JSON file and images were loaded from the device disk. On Android at least part of it

was again from the screen recording using the disk at the same time, but other than that

it seems a bit odd. There are two possible explanations, but neither of the them have been

confirmed. The first is that threading is handled differently for the two sources of data,

with networking being always moved to a background thread but some of disk I/O being

done on whatever thread does the call. The way how Titanium behaved suggests that this

could be the case with it, as on both platforms the screen transitions straight to the fully

loaded list with local data source but not with the network one. The second possible

explanation is that maybe the JSON and images were loaded from the disk on another

thread, but the read from disk finished before the transition to an empty screen happened

and the results were handled on the UI thread, slowing down the transition. Even though

the screen transition was slower in the local data source tests, displaying the list with its

images was still faster with the local data for all apps except the iOS React Native one.

The list loading test had probably the largest spread of results that can’t be explained

by timing inaccuracies, screen recording affecting some apps more than others or by some

of the Android apps using 32-bit binaries. Flutter beat or tied native implementations on

both platforms in all categories, but other cross-platform apps seemed a bit weak against

the native apps, especially with showing the final list from network source. Cordova

transitioned to an empty screen while loading the network data faster than it transitioned

to a screen with a static layout but wasn’t too impressive with finally filling that empty

screen with the list. Xamarin was oddly inconsistent between platforms, with the Android

version sticking out with its bad performance.

7.4. Reacting to a button press

Android iOS
approx. frames tool time approx. frames tool time

0 Flutter 0:00,000 0 Native 0:00,000

 Native 0:00,000 1 Cordova 0:00,017

 Titanium 0:00,000 Flutter 0:00,017

 Xamarin 0:00,000 RN 0:00,017

1 Cordova 0:00,015 Titanium 0:00,017

4 RN 0:00,065 Xamarin 0:00,017

Table 6. Fastest reactions to a button being pressed on Android and iOS, sorted by the

approximated number of frames. Timing is from the input to start the task being given to

a text being updated on screen.

Table 6 shows that most of the apps had no problems with input latency. The 0-frame

reaction on iOS Native was the only such occurrence in these specific tests, but Titanium

also achieved it during the computation tests. It’s hard to say if the 0-frame reactions

were glitches in the recordings, delayed responses on the Assistive Touch marker or just

needed so many unknown conditions to be met that they seem rare and random. Cordova,

Flutter and React Native had also 2-frame reactions on iOS, so there was a bit more

variance in the data than what the fastest results show.

On Android the 0-frame reactions were more common, but only native and Titanium

got the perfect results with others having 1- and 2-frame results in the mix. React Native

was clearly the slowest here and the several frames of reaction time was also present in

the video camera results, confirming that this was not caused by the screen recording

software.

7.5. Heavy computation

Android iOS
approx. frames tool time approx. frames tool time

52 Native 0:00,869 53 Native 0:00,900

80 Titanium 0:01,355 Xamarin 0:00,900

94 Cordova 0:01,595 76 Flutter 0:01,284

867 Xamarin 0:14,724 1616 Cordova 0:27,470

3411 RN 0:57,986 1618 Titanium 0:27,504

7868 Flutter 2:13,742 1637 RN 0:27,821

Table 7. Fastest completions of finding all primes below 3 000 000 on Android and iOS,

sorted by the approximated number of frames. Timing is from the input to start the task

being given to a text informing about the computation being finished appearing on the

screen.

The computation test results shown on Table 7 turned out differently than originally

expected on Android. Flutter and Xamarin were expected to be quite fast with their

 39

compiled code but instead struggled with the test. React Native’s JavaScript performance

was also unexpectedly slow while the other two apps running JavaScript didn’t have any

problems. The slow apps were slow in the video camera tests too, though the screen

recording did exaggerate the problem. For example, on Android Flutter’s video camera

times were between 1:55 and 2:14 and the screen recording times between 2:13 and 2:46.

The slowdown problems with Flutter, React Native and Xamarin most likely had to

do with the fact that all three of them still used 32-bit binaries by default on Android

when the final APKs were created. Running an app with 64-bit binaries would give it

access to more memory, and more importantly it could handle more data per CPU cycle

and be able take advantage of other features of the more modern 64-bit ARMv8

architecture. Flutter has 64-bit support, but the default release APK is built with only 32-

binaries [marnberg, 2018], and as enabling the 64-bit build wasn’t covered in the

documentation [PAAAFR, 2019], the option wasn’t used in the APK used in testing.

Xamarin’s support for 64-bit runtime was at the time “experimental” [CA, 2018] and not

enabled by default, so it wasn’t enabled for the testing. React Native didn’t have 64-bit

support at all when the APKs were finalized. The debug version of the Flutter app running

its Dart code in interpreted mode ran the test in just couple of seconds, which made the

results with the production APK even more interesting.

The iOS results with the 3 compiled languages being quite close with good results

and the JavaScript languages getting almost identical result was expected, though the

performance of JavaScriptCore, the iOS SDK built-in JavaScript interpreter, left lot to be

desired compared to what Cordova and Titanium could do on Android.

The Titanium implementation didn’t meet the specifications of the test as it was run

on the main JavaScript thread and thus blocked the UI. This was due to the main Titanium

SDK not having multithreading support and the external worker thread package received

Android support only after the APKs were finalized [APWIFTTM, 2019]. React Native

didn’t have official multithreading support either, so a third-party package called react-

native-threads was used (https://github.com/joltup/react-native-threads).

The Cordova app took a bit of a shortcut on iOS as the default progress bar on iOS

webviews isn’t animated like on Android, so it didn’t have the animation mentioned in

the specification. This wasn’t noticed before analysis of the videos had started and didn’t

seem to be big enough issue to justify redoing the tests, as the animation was added to

showcase that the UI isn’t blocked during the computation and that could be confirmed

without redoing the tests.

Some of the apps were slower than normal to update the screen when the

computational task started. The iOS Cordova app took 8 frames at its fastest to show that

the computation had started, and on Android Flutter’s best was 14 frames and React

Native’s 7 frames. The slow responses were likely due to costs of creating the second

runtimes that enable their single-threaded languages to do parallel execution.

https://github.com/joltup/react-native-threads

7.6. Triggering vibration

Android iOS
time tool time tool

0:00,041 Cordova 0:00,077 Titanium

0:00,048 Flutter 0:00,093 Cordova

0:00,062 Native 0:00,095 Native

0:00,116 Xamarin 0:00,096 Xamarin

0:00,147 Titanium 0:00,097 RN

0:00,159 RN 0:00,109 Flutter

Table 8. Fastest times to trigger vibration on Android and iOS, sorted by time. Timing is

from the input to start the task being given to sound of vibration starting.

The vibration triggering test was given earlier as a prime example of a test that is

flawed with the logging-based measurements, but it seems to be problematic with video-

based measuring as well. The results in Table 8 don’t really make sense with native

implementations losing to cross-platform implementations that had go through multiple

hoops to do the same function call as the native one. There might be a case for Cordova

to be faster than native on Android as Chromium has native web vibration API support,

but all of the other cross-platform apps should have been at a clear disadvantage. The

spread of results was also much larger than expected, especially on Android. Most likely

culprit for inconsistent results is the vibration motor being an inconsistent audio source,

but the audio/video synchronization can also affect the results. Maybe with a larger

dataset these results could be proven to be accurate, but with three samples per app these

results are written off as invalid due to the timing method not being a good fit for this

test.

7.7. Frozen frames during scroll

Android iOS

approx. frames tool

approx.
frames tool

0 Cordova 1 Cordova

 Flutter Native

 Native RN

 Titanium Titanium

4 RN 2 Xamarin

56 Xamarin 3 Flutter

Table 9. Least frozen frames during scrolling through list of items with images and short

text on Android and iOS, sorted by the approximated number of frames.

The scrolling lag frames test was done on the network version of the list items screen.

The range from which the frames were counted was from the first frame of movement to

20 frames before the moving ended. The last 20 frames were taken out as many apps had

 41

multiple doubled frames in that range, but that was likely due to the movement slowing

down to sub-pixel speed per frame rather than the app not being able to keep up.

The results on Table 9 show that most apps could do the scrolling just fine. Most of

the frame drops were at the very beginning of the scroll and in normal use would’ve gone

unnoticed as the user would have still focused on the swipe while the frame drops

occurred. This however doesn’t apply to Xamarin on Android which had serious

slowdown issues, including many consecutive dropped frames (the same frame being

shown for more than 2 times in a row) that made the scroll look even worse. This result

becomes even more puzzling considering that on iOS Xamarin didn’t have this problem

and worked just as well as all the other tools. Xamarin’s documentation and samples

showcased some settings that could be tweaked on how the list item’s layout was created

or cached, but none of them seemed to do noticeably better than the one used in the final

APK.

Getting these numbers from a variable frame rate video was hard, as both identical

frames in the video and frames that were shown for over 33 milliseconds needed to be

counted separately. The frame timing analysis might also be inaccurate without knowing

how the rendering of these devices with vertical sync and other possible frame buffers

works, as multiple frames that take between 18 to 32 milliseconds to render in a row must

eventually cause a frame drop that might go unnoticed with this type of analysis.

8. Discussion

Both the results of the comparison study and the experiences on collecting the dataset

by recording videos of a device running an app have lots of interesting and even some

surprising aspects to them. This chapter is separated to three sections that analyze the

results in general, impressions on the tools and video-based performance measuring

separately to keep it structurally sound and easier to follow.

8.1. General results

To summarize the results, one can say that cross-platform apps do worse in

performance benchmarks than native apps, but in most cases the performance hit isn’t

significant enough to truly harm the user experience. The results also contain some points

that are worth discussing a bit more, such as the cases where the performance hit can be

significant and differences between the two platforms.

The tests that made most of the cross-platform apps look bad compared to their native

counterparts were the app launch and new screen opening tests on Android and

computation test on iOS. Technically the computation test on Android was also bad for

three of the apps, but the probable cause for those results was already stated (the 32-bit

binaries) and will be discussed more below. Computation being slow on the cross-

platform side of the app shouldn’t be a problem in most cases, as that can in many cases

be offloaded to a server or be ran on the native side. The launch times and new screen

transitions being slow on the other hand don’t have similar easy solutions to them and

are the ones that can hurt the user experience the most, which makes them quite

problematic. If the first interaction with the app (launching it) takes almost two seconds

(compared to native app’s half a second), the user session isn’t off to a great start.

Google’s research data shows that visitors are more likely to abandon a website if it’s

slow to load [An, 2018], and if we draw a parallel between website loads and app launches

& screen transitions, it shouldn’t be too far reaching to suggest that the app being slow

might eventually cause enough frustration that the user stops using the app or uninstalls

it. Times for transitioning to a screen with a list of items were also somewhat bad for

most of the cross-platform apps on both platforms, but the problem can be reduced by

postponing the loading the list’s content till the screen transition has begun and by

showing a loading indicator. This of course doesn’t remove the fact that loading and

showing the list is slow, but makes the app seem more responsive. As the list loading

times stayed generally under one second, the retention rate shouldn’t be too affected as

we’re safely under the Google’s recommendation of keeping site load times under three

seconds [An, 2018]. Though we should also remember that the list layout used in the tests

was very simple, so having a more complex layout might push the loading times to

retention dropping territory.

 43

The 32-bit binary problem that Flutter, React Native and Xamarin had on Android

might need a short explanation of what it is and why it matters. Android gained support

for 64-bit ARM processors in 2014 with the 5.0 release when support for the armeabi-

v8a ABI (Application Binary Interface) was added [AL, 2019]. The 32-bit binaries are

mostly built for the armeabi-v7a ABI, which has been supported since 2010 [NDKRH,

2019]. So, on top of the typical 64-bit benefits of having access to more memory and

being able to handle more data per CPU cycle, the 64-bit binaries also have access to 4

years’ worth of advancements in CPU instructions and features. 32-bit compilers might

also just lack important optimizations, like in Flutter’s case the 32-bit Dart compiler

generated unoptimized code for MD5 hashing [MD5C, 2018]. Apple introduced support

for 64-bit apps to iOS with iPhone 5S in 2013 [Clover, 2017], and with its tight control

of the iOS ecosystem it transitioned completely to 64-bits quickly by first demanding

new apps to have 64-bit support since beginning of 2015 and removing 32-bit support

completely from iOS 11 onward (released in fall 2017) [Clover, 2017]. Google has been

slower with the transition, with 64-bit support becoming mandatory for new apps and

updates to older apps on Play Store in August 2019 [Cunningham, 2017]. With no

external push to move to 64-bits and the 32-bit only Android 4.4 still being relatively

widely used [DD, 2018], Facebook and Microsoft were quite slow to add the support as

a non-experimental feature. React Native got its 64-bit support in the 0.59 release in

March 2019 [Turner, 2019] and Xamarin’s defaults were changed to include 64-bit

binaries in March 2019 as well [Peppers, 2019]. Flutter has had 64-bit support for a longer

time, but the default behavior is to build APKs with only 32-bit binaries, which is likely

done to keep APK sizes smaller while supporting all devices. The newer Android App

Bundle format also solves the APK size issue for apps published to the Play Store as it

supports delivering customers different APKs with only the binaries relevant to their

devices, making Google even less incentivized to change the default behavior of Flutter’s

APK packaging. But now that all three of the tools have their 64-bit support released, the

performance issues found in these tests shouldn’t be an issue anymore as long as newest

versions of the tools are used and configured correctly.

Comparing the absolute times on Android and iOS directly wouldn’t be fair due to

the differences in how the screen recording software worked (storing to device’s own

disk vs. streaming the screen to a computer) possibly affecting the results, but we can still

make some general observations. Two most obvious ones are that Android seemed to

have higher highs and lower lows in the performance, and that on iOS all the apps had

quite similar times in many tests. The native iOS app didn’t seem to have too much of an

edge over the cross-platform ones like its Android counterpart did. Between the three test

runs for each test, iOS times were also less scattered than Android ones. Combining these

observations together we can conclude that the cross-platform apps perform better on iOS

and can more often reach native-like performance than on Android. We can’t be sure for

why this is, but the reasons are probably related to differences between the platforms in

general and the tools just being more optimized on iOS. We can’t really know how the

tools are optimized on each platform, and the only hint we have about Android possibly

being neglected by the tool creators is the delayed 64-bit support for React Native and

Xamarin.

8.2. Evaluating the tools

Let’s go through all the impressions that each tool gave through the results and the

benchmarking app implementation process. We’ll go through the tools in alphabetical

order, starting with Cordova. As the hybrid app tool representative in this comparison, it

did quite well. Its biggest blunders were the iOS launch time, iOS computation speed and

list loading performance on both platforms. Considering that many other tools also didn’t

do that well with lists either it can’t be blamed too much for that. From these results we

can say that using web technologies is, at least performance-wise, a valid option for

creating mobile apps, but you’d still want to evaluate your options for which specific tool

to use. For some creating a web app for use through a regular browser might suit better

than creating an installable hybrid app, and some might want to use more complete app

development tools like Ionic to get a head start on stylizing the app to look more native-

like on each platform.

If we need to declare one of the tools as a winner of this comparison, the honor would

go to Flutter. If we don’t count the back navigation and Android computation tests, the

only tests where Flutter significantly lost to native apps were the launch time tests on

both platforms. It even beat the native apps in list loading performance, the test that most

cross-platform apps struggled with. The biggest reasons why someone might want to

steer away from trying or using Flutter come from reasons outside of performance, like

not being familiar with the Dart language or not liking its APIs. One big flaw of those

APIs is that there isn’t any built-in abstraction for creating an app with a native look and

feel on both platforms, but rather one would need to code the UI portion twice and try to

share the business logic components to achieve that.

Titanium’s overall performance in the comparison is hard to judge, as its results were

quite mixed with some results competing or even beating native app’s and some just

being horrible. The results weren’t even consistent between platforms, as it beat the native

iOS app in launch time but on Android it took over two seconds. Overall it ended up

being in the middle of the road and other than the Android launch times and the iOS list

loading times there aren’t any showstoppers for using it from performance perspective.

Titanium was the only tool in the comparison that needed platform specific code to

implement the benchmarking app, as setting up navigation between screens required a

NavigationWindow widget on iOS, but using it wasn’t supported on Android. This meant

that parts of the UI defining XML needed to be duplicated and the navigation logic also

needed some platform specific adjustments. With such an important feature that almost

 45

all apps use not having a cross-platform implementation, overall lack of up-to-date

community resources when comparing to other tools and other minor headaches that

came up while developing the app, Titanium doesn’t really have anything going for it and

it’s hard to recommend over other tools.

Despite being one of the more popular cross-platform tools during last couple of

years, React Native’s performance was a bit disappointing. The only test where it stood

out in a positive light was the iOS launch time test, being second and beating the native

app by 5 frames. Other than that, React Native was consistently in the slower half of the

group and in many tests got the straight up slowest times. Some of the results might have

come from problems with the third party React Navigation library’s implementation, but

as long as that library is recommended by the official documentation [NBS, 2018], that’s

how lot of people will experience React Native’s screen transitioning performance. On

iOS it placed slightly better than on Android, so we’ll see how the 64-bit support and

upcoming big threading model changes will affect its performance. With these results it’s

obvious that React Native can’t be recommended for developers looking for the best

performance and snappy response times, especially when counting in the lack of official

multithreading support. However, for web developers already familiar with ReactJS on

the web it can be very appealing to jump to mobile app development with React Native,

as they are already familiar with its core concepts and can jump right in to development.

Xamarin had lot of unexpected small performance issues. As a representative of the

cross-compiled tools group, it was expected to perform with almost native level

performance, but it couldn’t meet those expectations and lost to native and some other

cross-platform tools in most of the tests. While some of the issues could have potentially

come from unoptimized code, they can’t be completely discarded as false alarms as most

of the code was done by following samples in the documentation. This means that either

the tool itself doesn’t perform too well or official samples make it perform bad, and

neither of these situations are good for Xamarin. With its slow launch times and bad list

performance on Android, it can’t really be recommended even for the simple CRUD apps

which should be the best use case for cross-platform tools with little to no need for

accessing device features. Similar to ReactJS developers possibly finding React Native

interesting, the main group that could still find Xamarin attractive are developers that

have previously worked with .NET products and other Microsoft’s tools. Those people

would have a head start in the learning process and could potentially find more optimal

implementations and thus fixing the performance issues that came up in this study.

8.3. Video-based performance measuring

As many previous studies on cross-platform app performance had used the

timestamped logs approach of measuring time [Corral et al., 2012; Willocx et al., 2015],

the newly adopted the frame-by-frame video analysis method inspired by Soomro’s

[2015] video game input latency testing used in this study is just as much worth of

discussion as the results themselves. The two methods have their own pros and cons, and

the better method can change on a test by test basis. The video analysis method can be

divided to two categories depending on the video capture method used: high-speed video

camera or by recording the device screen. Selecting which one to use needs some serious

consideration as they have quite significant tradeoffs.

The biggest flaw of the logging-based timing method is that we can’t be sure if the

times between tools are comparable when the test depends on the UI or the bridging

mechanism is involved. As previously explained, each tool has its own overhead on

delivering the native UI events to app specific code for us to do the logging nor can we

reliably use logging when timing should start or end on the native side of the bridge where

developers don’t have access. For tests that don’t fall into those two groups, logging can

be superior to video analysis. For example, the computation test in this study could have

been timed with logs with no issue, and in fact would’ve benefited from the better

accuracy as the two best times on iOS tied with the video method. Though still even in

these cases doing some observation of what is happening on the screen can be beneficial,

evidenced by the slow button response of some apps in the computation tests. Processing

the individual logs to a proper dataset can also easily be automated, which isn’t the case

for video analysis, allowing collection of larger dataset in a reasonable amount of time.

The video-based timing addresses the flaws of logging by not relying on the code at

all for the timing. It doesn’t matter if we don’t have access to the best place to insert our

timing code because we can accurately time anything that can be picked up from a video.

It also opens up new types of tests that are completely based on the UI, such as counting

the amount of dropped frames during scrolling animation. The tests could also be run on

apps not specifically made for testing, so someone could check how “real” publicly

distributed apps perform against these small purpose made benchmarking apps and see if

the results on benchmarking apps apply to production apps.

In this study, the biggest downsides of timing with videos were difficulty of

transforming the raw videos to datasets that could be analyzed and technical difficulties

in capturing the footage. With properly designed and formatted logs, one could easily

write a script that takes the raw device logs, finds appropriate lines from them and writes

the results into a csv file or something similar that is easy to process further. With videos,

automatically determining the timing start- and endpoints isn’t as straightforward as you

have the frame images and the time when they were shown to consider. With proper

planning however, it should be possible to automate the process for many types of tests,

especially ones without animations. If the apps were to change large portions of the

screen, like the background color of the whole screen, when timing should start and end,

a single script could easily find the proper frames and then look up their timestamps. The

benchmarking app wasn’t designed to be friendly for such scripts and made only small

changes to the UI, which were all different for each test and for each app happened in

 47

slightly different positions on the screen. This means that a script would need to be

adjusted for each test to look at specific pixels, which in the worst case could be different

for starting and ending the timing, adding back lot of the manual labor of going through

the videos by hand.

Out of the two methods of capturing the video footage, the screen recording software

method was easier to use after initial setup, and the video were of better quality. The

problems with screen recording are in the implications it has on the performance and in

the variable framerate videos that the software used in this study produced. The effects

on performance were also different between platforms due to the differences on how the

screen recording software worked (storing locally vs. streaming to a computer). The flaws

in the high-speed camera footage however made using the screen recording software the

better choice in this study. As newer devices have the capability of connecting to a HDMI

monitor with adapters, if that video signal is of high quality and 60-fps on both platforms

then problems with both variable framerate footage and platform specific performance

hits could be circumvent by connecting the phones to a capture device with HDMI. If this

were the case, then the screen recording method could possibly be the preferred method

over high-speed camera method, not just the method that needs to be used because the

alternative has crippling flaws. This would be due to smaller costs (a couple of adapters

versus a good camera & other equipment), no need for special recording space (camera

needs proper lighting and a stand) and automating the analysis of video material being

easier on the screen recording material that doesn’t have as much noise or is affected by

the screen used in the device running the app.

Making the high-speed camera recordings a viable option would require a lot of

equipment, design and testing. A professional grade video camera would be required to

get better quality footage and to have more options on the framerate. The Nexus 6P used

as the camera in this study also marked the recordings as variable framerate footage,

which would be another reason to switch to a professional camera to make sure all the

frames in the recording are equal in length and make the analysis easier. Even if the image

quality problems can be solved with better off-the-shelf equipment, determining the exact

moment of input being given doesn’t have any easy solutions. The trick used in this study

was to place a custom-made stylus that didn’t cause an input event by itself on the screen,

and then touch it with a piece of metal that would cause the screen to register an input.

This made determining the frame of input being given easier than using a regular stylus

because the direction of the movement in relation to the camera but there were still many

situations where it was hard to pick a specific frame as the one where the touch happened.

It also required two hands, obstructing lot of the screen from the camera. An ideal solution

would be a stylus that powers up a LED light when it touches the screen, but there didn’t

seem to be any available on the market when testing was planned. If one were to make

one by themselves, they could make the light to be triggered either by the pressure of

touching the screen or by the electricity in the screen. Automating this type of video

capturing process would require at least a robotic hand on top of all the other equipment,

which starts to make this method to be too unpractical to setup for one-off studies.

Using audio as part timing in the video tests doesn’t seem to be a valid option. In the

test results this can be seen in the vibration tests results, where the spread of times was

unexpectedly large both on per platform and per app basis, and the native apps being

outsped on both platform even though they should’ve had a clear advantage with their

direct access to the vibration APIs. During the initial planning and testing of how to do

the high-speed camera recordings, one idea to overcome the issue of seeing accurately

when the touch happened was to use the sound of a stylus hitting the touchscreen instead

of trying to use the video. It didn’t take too many test runs to find a video where the

timing ending screen update happened before the camera’s microphone picked up the

sound, and there is also the issue of the distance between the camera and the stylus

possibly affecting the results. What we can conclude from this is that mixing different

signals, like video and audio, to do the timing should be avoided at all cost. This means

that in future studies the vibration test would need to be replaced by some other test that

can be used to showcase the tools’ speed of accessing platform specific features

completely through the video. Some possible replacement tests could be showing a

notification, opening another app (like when opening a link in the default browser app)

or turning on the device camera’s flash on.

 49

9. Conclusion

Is using a cross-platform tool to create your app a surefire way to kill its performance

and make it “janky”? For regular use cases that aren’t that demanding in the first place,

no. According to these results using them is fine, especially if you have the knowledge

on how to properly use the tool and optimize it properly (Xamarin’s list performance on

Android). Though for some the fact that you can’t just put something together and have

it work flawlessly on both platforms can be frustrating. For example, Airbnb talks of their

venture into using React Native as needing to support three platforms instead of two

[Peal, 2018b] and have since started moving back to fully native approach on both

Android and iOS.

If we were to pick a winner from the comparison, it would be Flutter, as it was the

only tool that didn’t struggle with any of the tests, if we’re not counting the Android

computation test due to the fix being passing a single flag to the compiler. It’s due to that

side note and other similar ones in the testing setup and benchmarking app definitions

not allowing the apps to perform at their absolute best that these result can’t be called

conclusive or absolute. What would’ve the results have been if all the tools could’ve used

all the available, even experimental, optimizations? What would the results have been if

the default animations and button behavior were used instead? Some future study could

revisit these tests now that the Android 64-bit support has been introduced to all of the

tools and try to define the tests in a way that allows all the apps to work with their default

behavior.

Some ways of how performance critical apps might use cross-platform concepts in

the near future are shared architecture & design and Kotlin multiplatform. The server-

driven UI that Airbnb currently uses [Peal, 2018a] and the RIBs architecture developed

at Uber [Tran and Zhu, 2016] are some examples of creating models that allow developers

to share resources and design patterns across platforms while still implementing the apps

with native SDKs. Kotlin multiplatform is JetBrains’ initiative to make sharing code

between all platforms that support Kotlin easier, which include Android and iOS [MP,

2018]. With Kotlin’s great interoperability with other languages, one could use a single

Kotlin codebase to write all but the UI layer of the app in pure Kotlin, and then create the

UI for each platform separately mixing Kotlin and platform’s default language(s). Apps

created with Kotlin multiplatform would fall in the traditional cross-compiled app

category in Raj and Tolety’s [2012] list of cross-platform app patterns, but if someone

were to create a cross-platform UI library on top of it, it would create a new branch of

cross-compiled category like Flutter’s embedded rendering engine approach did.

The video-based method of measuring app performance proved to be effective, but

not without its problems. It allows measuring app’s performance as users perceives it at

the cost of adding manual steps to collecting the dataset when compared to the old

timestamped logs method. The two methods of capturing the video material, using a high-

speed video camera or screen recording software, both have their problems that

complicate doing the measuring this way. Future studies should take their time to improve

the chosen video capturing process to address these issues, with some possible things to

try being using a better video camera and testing the HDMI outputs of newer smartphone

models. As part of improving the process automation of analyzing the videos should also

be tested to help scale up the size of datasets that can be collected. While this type of

situation where apps under testing are visually similar but have different internals is

probably the prime example for where video-based testing can be used, there are other

types of situations too where it could be tried out, like testing apps downloaded from the

App Store or the Play Store. It doesn’t even need to be limited to smartphones or even

computers, as with the camera method any UI with visual responses could potentially be

tested this way.

 51

References

[AAATAN, 2011] Adobe Announces Agreement to Acquire Nitobi, Creator of

PhoneGap. Press release, October 3rd, 2011. https://news.adobe.com/press-

release/adobe-creative-cloud-dps/adobe-announces-agreement-acquire-nitobi-

creator-phonegap (Accessed October 28th, 2018)

[Ahti et al., 2016] Ville Ahti, Sami Hyrynsalmi and Olli Nevalainen. An Evaluation

Framework for Cross-Platform Mobile App Development Tools: A case analysis

of Adobe PhoneGap framework. In: Proc. of the 17th International Conference on

Computer Systems and Technologies 2016, 41-48.

[Allen, 2011] Jonathan Allen. The death and rebirth of Mono. News article, May 17th,

2011. https://www.infoq.com/news/2011/05/Mono-II (Accessed October 20th,

2018)

[Alpert, 2018] Sophie Alpert. State of React Native 2018. Blog post, June 14th, 2018.

https://facebook.github.io/react-native/blog/2018/06/14/state-of-react-native-2018

(Accessed October 28th, 2018)

[Al-Heeti, 2018] Abrar Al-Heeti. Oracle v. Google ain't over yet -- Google vows it'll

appeal to Supreme Court. News article, August 28th, 2018.

https://www.cnet.com/news/oracle-v-google-aint-over-yet-google-vows-itll-

appeal-to-supreme-court/ (Accessed October 28th, 2018)

[An, 2018] Daniel An. Find out how you stack up to new industry benchmarks for mobile

page speed. Online article, updated Feburary 2018.

https://www.thinkwithgoogle.com/marketing-resources/data-

measurement/mobile-page-speed-new-industry-benchmarks/ (Accessed March

18th, 2019)

[Andrade and Albuquerque, 2015] Paulo R. M. de Andrade and Adriano B. Albuquerque.

Cross Platform App: A Comparative Study. International Journal of Computer

Science & Information Technology (IJCSIT), 7 (1), 33-40. doi:

10.5121/ijcsit.2015.7104

[AL, 2019] Android Lollipop. Developer documentation.

https://developer.android.com/about/versions/lollipop (Accessed March 18th,

2019)

https://facebook.github.io/react-native/blog/2018/06/14/state-of-react-native-2018
https://www.cnet.com/news/oracle-v-google-aint-over-yet-google-vows-itll-appeal-to-supreme-court/
https://www.cnet.com/news/oracle-v-google-aint-over-yet-google-vows-itll-appeal-to-supreme-court/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://developer.android.com/about/versions/lollipop

[APWIFTTM, 2019] Android: Add parity with iOS for the Ti.Worker module. Software

development tracker, updated January 2019.

https://jira.appcelerator.org/browse/MOD-2351 (Accessed February 9th, 2019)

[Angulo and Ferre, 2014] Esteban Angulo and Xavier Ferre. A Case Study on Cross-

Platform Development Frameworks for Mobile Applications and UX. In: Proc. of

the XV International Conference on Human Computer Interaction, Article 27, 8

pages.

[Barney, 2008] Lee Barney. QuickConnect iPhone: an iPhone UIWebView hybrid

framework. Blog post, May 28th, 2008.

https://tetontech.wordpress.com/2008/05/28/quickconnect-iphone-an-iphone-

hybrid-framework/ (Accessed August 15th, 2018)

[Bort, 2013] Julie Bort. Microsoft Might Buy A Startup That Powers 10 Percent Of The

World’s Smartphones. News article, February 1st, 2013.

http://www.businessinsider.com/microsoft-eyes-appcelerator-acquisition-2013-

2#ixzz2YmNSFhT7 (Accessed August 15th, 2018)

[RNChangelog, 2019] Changelog. Software development tracker, updated February

28th, 2019. https://github.com/react-native-community/react-native-

releases/blob/master/CHANGELOG.md (Accessed March 8th, 2019)

[Chedeau, 2015] Christopher Chedeau. From Hackathon to React Native. Online video,

September 20th, 2015. https://www.infoq.com/presentations/react-native-facebook

(Accessed February 9th, 2019)

[Ciman and Gaggi, 2017] Matteo Ciman and Ombretta Gaggi. An empirical analysis of

energy consumption of cross-platform frameworks for mobile development.

Pervasive and Mobile Computing, 39, 214-230

[Clover, 2017] Juli Clover. 32-Bit Apps No Longer Supported in iOS 11. News article,

June 6th, 2017. https://www.macrumors.com/2017/06/06/32-bit-apps-no-longer-

supported-in-ios-11/ (Accessed March 17th, 2019)

[Corral et al., 2012] Luis Corral, Alberto Sillitti and Giancarlo Succi. Mobile

multiplatform development: An experiment for performance analysis. Procedia

Computer Science, 10, 736-743.

https://jira.appcelerator.org/browse/MOD-2351
https://tetontech.wordpress.com/2008/05/28/quickconnect-iphone-an-iphone-hybrid-framework/
https://tetontech.wordpress.com/2008/05/28/quickconnect-iphone-an-iphone-hybrid-framework/
http://www.businessinsider.com/microsoft-eyes-appcelerator-acquisition-2013-2#ixzz2YmNSFhT7
http://www.businessinsider.com/microsoft-eyes-appcelerator-acquisition-2013-2#ixzz2YmNSFhT7
https://github.com/react-native-community/react-native-releases/blob/master/CHANGELOG.md
https://github.com/react-native-community/react-native-releases/blob/master/CHANGELOG.md
https://www.macrumors.com/2017/06/06/32-bit-apps-no-longer-supported-in-ios-11/
https://www.macrumors.com/2017/06/06/32-bit-apps-no-longer-supported-in-ios-11/

 53

[CA, 2018] CPU Architectures. Developer documentation, March 1st, 2018.

https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/cpu-

architectures (Accessed February 9th, 2019)

[Cunningham, 2017] Edward Cunningham. Improving app security and performance on

Google Play for years to come. Blog post, December 19th, 2017. https://android-

developers.googleblog.com/2017/12/improving-app-security-and-

performance.html (Accessed February 8th, 2019)

[DD, 2018] Distribution Dashboard. Developer documentation, data from October 26th,

2018. https://developer.android.com/about/dashboards (Accessed February 8th,

2019)

[Empiricalis, 2018] empiricalis. Re: Facebook moving away from React Native? Online

discussion comment, June 3rd, 2018.

https://www.reddit.com/r/androiddev/comments/8o4p6n/facebook_moving_away

_from_react_native/e00vy4x/?st=jtdfpfjl&sh=7d8e007f (Accessed October 22nd,

2018)

[FJRRN, 2018] Facebook just release react-native 0.56 which is totally broken on

windows. Online discussion thread, 2018.

https://www.reddit.com/r/reactnative/comments/8w8qsd/facebook_just_released_

reactnative_056_which_is/?st=jnlxl4cy&sh=b0d4164d (Accessed October 23rd,

2018)

[Fei-Fei et al., 2004] L. Fei-Fei, R. Fergus and P. Perona. Workshop on Generative-

Model Based Vision. CVPR 2004.

[Ferreira et al., 2018] Cristiane M. S. Ferreira, Maria J. P. Peixoto, Paulo A. S. Duarte,

Andrei B. B. Torres, Messias L. Silva Júnior, Lincoln S. Rocha and Windson Viana.

An Evaluation of Cross-Platform Frameworks for Multimedia Mobile Applications

Development. IEEE Latin America Transactions, 16 (4), 1206-1212

[FSA, 2017] Flutter System Architecture. Developer documentation, April 23rd, 2017.

https://docs.google.com/presentation/d/1cw7A4HbvM_Abv320rVgPVGiUP2ms

Vs7tfGbkgdrTy0I/edit#slide=id.gbb3c3233b_0_187 (Accessed August 25th,

2018)

https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/cpu-architectures
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/cpu-architectures
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://developer.android.com/about/dashboards
https://docs.google.com/presentation/d/1cw7A4HbvM_Abv320rVgPVGiUP2msVs7tfGbkgdrTy0I/edit#slide=id.gbb3c3233b_0_187
https://docs.google.com/presentation/d/1cw7A4HbvM_Abv320rVgPVGiUP2msVs7tfGbkgdrTy0I/edit#slide=id.gbb3c3233b_0_187

[Gregavola, 2012] gregavola. Re: Scrolling Performance in WebView for Android - Jelly

Bean 4.1.x. Online discussion comment, July 26th, 2012.

https://stackoverflow.com/a/11669972 (Accessed October 23rd, 2018)

[Guthrie, 2016] Scott Guthrie. Microsoft to acquire Xamarin and empower more

developers to build apps on any device. News article, February 24th, 2016.

https://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-

empower-more-developers-to-build-apps-on-any-device/ (Accessed October 24th,

2018)

[Haynie, 2016] Jeff Haynie. Axway Acquires Appcelerator — And Why This is Great

News for All. Blog post, January 17th, 2016.

https://www.appcelerator.com/blog/2016/01/axway-acquires-appcelerator-and-

why-this-is-great-news-for-all/ (Accessed October 20th, 2018)

[Heitkötter et al., 2013] Henning Heitkötter, Sebastian Hanschke and Tim A. Majchrzak.

Evaluating Cross-Platform Development Approaches for Mobile Applications. In:

International Conference on Web Information Systems and Technologies, 120-138.

[Humayoun et al., 2013] Shah Rukh Humayoun, Stefan Ehrhart and Achim Ebert.

Developing Mobile Apps Using Cross-Platform Frameworks: A Case Study. In:

International Conference on Human-Computer Interaction, 371-380.

[Hyperloop, 2019] Hyperloop. Webpage. https://www.appcelerator.com/mobile-app-

development-products/hyperloop/ (Accessed February 8th, 2019)

[Illbuyajuicer, 2018] illbuyajuicer. Re: Flutter or Kotlin, Which one is the future? Online

discussion comment, June 1st, 2018.

https://www.reddit.com/r/androiddev/comments/8ntbky/flutter_or_kotlin_which_

one_is_the_future/dzyp5eg/ (Accessed October 22nd, 2018)

[IXSTB, 2018] Is Xamarin still that bad? Online discussion thread, 2018.

https://www.reddit.com/r/androiddev/comments/8dfdzx/is_xamarin_still_that_ba

d/ (Accessed October 22nd, 2018)

[Johnson, 2008] Dave Johnson. PhoneGap: It’s Like AIR for the IPhone. Blog post,

September 18th, 2008. https://phonegap.com/blog/2008/09/18/phonegap-its-like-

air-for-the-iphone/ (Accessed October 28th, 2018)

https://stackoverflow.com/a/11669972
https://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device/
https://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device/
https://www.reddit.com/r/androiddev/comments/8ntbky/flutter_or_kotlin_which_one_is_the_future/dzyp5eg/
https://www.reddit.com/r/androiddev/comments/8ntbky/flutter_or_kotlin_which_one_is_the_future/dzyp5eg/
https://phonegap.com/blog/2008/09/18/phonegap-its-like-air-for-the-iphone/
https://phonegap.com/blog/2008/09/18/phonegap-its-like-air-for-the-iphone/

 55

[JSXID, 2019] JSX In Depth. Developer documentation, updated February 7th, 2019.

https://reactjs.org/docs/jsx-in-depth.html (Accessed February 8th, 2019)

[Kevin, 2016] Kevin. Re: Cordova android scrolling/performance issues. Online

discussion comment, April 27th, 2016. https://stackoverflow.com/a/36880002

(Accessed October 23rd, 2018)

[Krill, 2009] Paul Krill. Appcelerator enables iPhone, Android app dev. News article,

June 8th, 2009. https://www.infoworld.com/article/2632710/application-

development/appcelerator-enables-iphone--android-app-dev.html (Accessed

August 15th, 2018)

[Knöchel, 2016] Hans Knöchel. Re: Appcelerator Hyperloop vs. Plain Titanium

Modules. Online discussion comment, August 16th, 2016.

https://stackoverflow.com/questions/38951699/appcelerator-hyperloop-vs-plain-

titanium-modules/38970656#38970656 (Accessed October 20th, 2018)

[LouisCAD, 2016] LouisCAD. Instance state not saved when app is killed by OS. Online

discussion opening comment, November 12th, 2016.

https://github.com/flutter/flutter/issues/6827 (Accessed October 22nd, 2018)

[marnberg, 2018] marnberg. Build APK for multiple target platforms. Online discussion

opening comment, July 11th, 2018. https://github.com/flutter/flutter/issues/19275

(Accessed February 9th, 2019)

[MD5C, 2018] MD5 compute hash file stronger slow in release mode. Online discussion

thread, started December 1st, 2018. https://github.com/flutter/flutter/issues/24906

(Accessed February 9th, 2019)

[Mercado et al., 2016] Iván Tactuk Mercado, Nuthan Munaiah and Andrew Meneely.

The Impact of Cross-Platform Development Approaches for Mobile Applications

from the User’s Perspective. In: Proc. of the International Workshop on App

Market Analytics, 43-49.

[MOSMSA, 2018] Mobile Operating System Market Share Asia. Webpage, data from

2018. http://gs.statcounter.com/os-market-share/mobile/asia/2018 (Accessed

August 14th, 2018)

[Montemagno, 2017] James Montemagno. Share UI Code in any iOS and Android App

with .NET Embedding. Blog post, December 11th, 2017.

https://reactjs.org/docs/jsx-in-depth.html
https://stackoverflow.com/a/36880002
https://github.com/flutter/flutter/issues/19275
https://github.com/flutter/flutter/issues/24906

https://devblogs.microsoft.com/visualstudio/share-ui-code-in-any-ios-and-

android-app-with-net-embedding/ (Accessed March 28th, 2019)

[Mudiyala, 2017] Mudiyala. Xamarin.iOS file size is too big. Tried all the possible

options. Online discussion opening comment, August 18th, 2017.

https://forums.xamarin.com/discussion/103470/xamarin-ios-file-size-is-too-big-

tried-all-the-possible-options (Accessed October 23rd, 2018)

 [MP, 2018] Multiplatform Programming. Developer documentation, updated October

23rd, 2018. https://kotlinlang.org/docs/reference/multiplatform.html (Accessed

March 7th, 2019)

[NM, 2018] Native Modules. Developer documentation, updated August 8th, 2018.

https://facebook.github.io/react-native/docs/native-modules-android (Accessed

October 25th, 2018)

[NBS, 2018] Navigating Between Screens. Developer documentation, updated

December 2nd, 2018. https://facebook.github.io/react-native/docs/navigation

(Accessed December 12th, 2018)

[Nelson, 2018] Randy Nelson. U.S. iPhone Users Spent An Average of $58 on Apps in

2017, 23% More Than the Year Before. Blog post, April 13th, 2018.

https://sensortower.com/blog/revenue-per-iphone-2017 (Accessed August 14th,

2018)

[NS, 2018] Next Steps. Developer documentation, updated August 18th, 2018.

https://cordova.apache.org/docs/en/latest/guide/next/index.html (Accessed

February 7th, 2019)

 [NDKRH, 2019] NDK Revision History. Developer documentation, updated 2019.

https://developer.android.com/ndk/downloads/revision_history (Accessed March

8th, 2019)

[Ohrt and Turau, 2012] Julian Ohrt and Volker Turau. Cross-Platform Development

Tools for Smartphone Applications. Computer, 45 (9), 72-79.

[OOTP, 2018] Out-of-Tree Platforms. Developer documentation, updated September

12th, 2018. https://facebook.github.io/react-native/docs/out-of-tree-platforms

(Accessed October 28th, 2018)

https://forums.xamarin.com/discussion/103470/xamarin-ios-file-size-is-too-big-tried-all-the-possible-options
https://forums.xamarin.com/discussion/103470/xamarin-ios-file-size-is-too-big-tried-all-the-possible-options
https://kotlinlang.org/docs/reference/multiplatform.html
https://facebook.github.io/react-native/docs/native-modules-android
https://facebook.github.io/react-native/docs/navigation
https://sensortower.com/blog/revenue-per-iphone-2017
https://developer.android.com/ndk/downloads/revision_history
https://facebook.github.io/react-native/docs/out-of-tree-platforms

 57

[UTXMP¸ 2017] Part 1 - Understanding the Xamarin Mobile Platform. Developer

documentation, updated March 27th, 2017. https://docs.microsoft.com/en-

us/xamarin/cross-platform/app-fundamentals/building-cross-platform-

applications/understanding-the-xamarin-mobile-platform (Accessed August 25th,

2018)

[Peal, 2018a] Gabriel Peal. What’s Next for Mobile at Airbnb. Blog post, June 19th,

2018. https://medium.com/airbnb-engineering/whats-next-for-mobile-at-airbnb-

5e71618576ab (Accessed February 8th, 2019)

[Peal, 2018b] Gabriel Peal. Sunsetting React Native. Blog post, June 19th, 2018.

https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a

(Accessed February 8th, 2019)

[Peppers, 2019] Jonathan Peppers. 13.3.2019. [Xamarin.Android.Build.Tasks] include

arm64-v8a by default. Software development tracker, 2019.

https://github.com/xamarin/xamarin-android/pull/2825 (Accessed March 20th,

2019)

[PS, 2018] Platform Support. Developer documentation, updated July 18th, 2018.

https://cordova.apache.org/docs/en/latest/guide/support/index.html (Accessed

March 19th, 2019)

[PAAAFR, 2019] Preparing an Android App for Release. Developer documentation,

updated February 8th, 2019. https://flutter.io/docs/deployment/android (Accessed

February 9th, 2019)

[Raj and Tolety, 2012] Rahul Raj C.P and Seshu Babu Tolety. A study on approaches to

build cross-platform mobile applications and criteria to select appropriate approach.

In: 2012 Annual IEEE India Conference (INDICON), 625-629.

[RE, 2019] Rendering Elements. Developer documentation, updated July 19th, 2018.

https://reactjs.org/docs/rendering-elements.html (Accessed August 27th, 2018)

[RJSRouting, 2018] Routing. Developer documentation, updated October 26th, 2018.

https://reactjs.org/community/routing.html (Accessed December 12th, 2018)

[IOSchedule, 2018] Schedule. Webpage, 2018.

https://events.google.com/io2018/schedule (Accessed October 28th, 2018)

https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/understanding-the-xamarin-mobile-platform
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/understanding-the-xamarin-mobile-platform
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/understanding-the-xamarin-mobile-platform
https://flutter.io/docs/deployment/android
https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/community/routing.html

[Seidel, 2015] Eric Seidel. Sky: An Experiment Writing Dart for Mobile. Dart Developer

Summit 2015. Online video, April 29th, 2015.

https://www.youtube.com/watch?v=PnIWl33YMwA (Accessed October 28th,

2018)

[SE_API, 2019] Stack Exchange API. Web API. https://api.stackexchange.com/

(Accessed April 17th, 2019)

[Soomro, 2015] Adeel Soomro. Console Latency: Exploring Video Game Input Lag.

Online article, 2015. https://displaylag.com/console-latency-exploring-video-

game-input-lag/ (Accessed October 21st, 2018)

[FShowcase, 2019] Showcase. Webpage. https://flutter.io/showcase/ (Accessed April

17th, 2019)

[SIAIV, 2018] Support inlining Android/iOS views. Online discussion thread.

https://github.com/flutter/flutter/issues/19030 (Accessed February 7th, 2019)

[SAXP, 2011] SUSE and Xamarin Partner to Accelerate Innovation and Support Mono

Customers and Community. News article, July 18th, 2011.

https://www.suse.com/c/news/suse-and-xamarin-partner-to-accelerate-innovation-

and-support-mono-customers-and-community/ (Accessed October 20th, 2018)

[Taneja et al., 2016] Kavita Taneja, Harmunish Taneja and Rohit K. Bhullar. Cross-

platform application development for smartphones: Approaches and implications.

In: 2016 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), 1752-1758.

[Tran and Zhu, 2016] Vivian Tran and Yixin Zhu. Engineering the Architecture Behind

Uber’s New Rider App. Blog post, December 20th, 2016.

https://eng.uber.com/new-rider-app/ (Accessed March 7th, 2019)

[Turner, 2019] Ryan Turner. Releasing React Native 0.59. Blog post, March 12th, 2019.

https://facebook.github.io/react-native/blog/2019/03/12/releasing-react-native-059

(Accessed March 8th, 2019)

[UTMITL, 2018] Update to MIT license. Software development tracker, February 17th,

2018. https://github.com/facebook/react-

native/commit/26684cf3adf4094eb6c405d345a75bf8c7c0bf88 (Accessed August

26th, 2018)

https://www.youtube.com/watch?v=PnIWl33YMwA
https://flutter.io/showcase/
https://www.suse.com/c/news/suse-and-xamarin-partner-to-accelerate-innovation-and-support-mono-customers-and-community/
https://www.suse.com/c/news/suse-and-xamarin-partner-to-accelerate-innovation-and-support-mono-customers-and-community/
https://eng.uber.com/new-rider-app/

 59

[WIARFNS, 2018] What is Android Runtime for NativeScript? Developer

documentation, updated June 15th, 2018.

https://docs.nativescript.org/angular/core-concepts/android-runtime/overview

(Accessed October 19th, 2018)

[WURN, 2018] Who’s using React Native? Webpage, updated March 6th, 2018.

https://facebook.github.io/react-native/showcase.html (Accessed October 15th,

2018)

[WDTSHF, 2018] Why does this subreddit hate Flutter? Online discussion thread, started

May 2nd, 2018.

https://www.reddit.com/r/androiddev/comments/8gikul/why_does_this_subreddit

_hate_flutter (Accessed October 22nd, 2018)

[Willocx et al., 2015] Michiel Willocx, Jan Vossaert and Vincent Naessens. A

Quantitative Assessment of Performance in Mobile App Development Tools. In:

2015 IEEE International Conference on Mobile Services, 454-461.

[Xanthopoulos and Xinogalos, 2013]. Spyros Xanthopoulos and Stelios Xinogalos. A

Comparative Analysis of Cross-platform Development Approaches for Mobile

Applications. In: Proc. of the 6th Balkan Conference in Informatics, 213-220.

https://docs.nativescript.org/angular/core-concepts/android-runtime/overview
https://facebook.github.io/react-native/showcase.html
https://www.reddit.com/r/androiddev/comments/8gikul/why_does_this_subreddit_hate_flutter
https://www.reddit.com/r/androiddev/comments/8gikul/why_does_this_subreddit_hate_flutter

