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Abstract In the present paper, we shall give necessary and sufficient conditions for
the Spanne and Adams type boundedness of the commutators of fractional maximal
operator on generalized Orlicz–Morrey spaces, respectively. The main advance in
comparison with the existing results is that we manage to obtain conditions for the
boundedness not in integral terms but in less restrictive terms of supremal operators.

Keywords Generalized Orlicz–Morrey space · Fractional maximal operator ·
Commutator · BMO

Mathematics Subject Classification 42B25 · 42B35 · 46E30

The research of V.S. Guliyev and F. Deringoz is partially supported by the grant of Ahi Evran University
Scientific Research Project (FEF.A3.16.024). The research of V.S. Guliyev is partially supported by the
Ministry of Education and Science of the Russian Federation (the Agreement No. 02.a03.21.0008).

B Fatih Deringoz
deringoz@hotmail.com

Vagif S. Guliyev
vagif@guliyev.com

Sabir G. Hasanov
sabhasanov@gmail.com

1 Department of Mathematics, Ahi Evran University, Kirsehir, Turkey

2 S.M. Nikolskii Institute of Mathematics at RUDN University, 6 Miklukho-Maklay St, Moscow
117198, Russia

3 Institute of Mathematics and Mechanics, Baku, Azerbaijan

4 Ganja State University, Ganja, Azerbaijan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-017-0504-y&domain=pdf


142 F. Deringoz et al.

1 Introduction

For 1 ≤ p < ∞ and ameasurable functionϕ : R
n×(0,∞) → (0,∞), the generalized

Morrey space Mp,ϕ(Rn) is to be the set of all f ∈ L p
loc(R

n) such that the norm

‖ f ‖Mp,ϕ := sup
x∈Rn , r>0

ϕ(x, r)−1 |B(x, r)|− 1
p ‖ f ‖L p(B(x,r))

is finite. Here and everywhere in the sequel B(x, r) is the ball in R
n of radius r

centered at x and |B(x, r)| = vnrn is its Lebesgue measure, where vn is the volume

of the unit ball in R
n . Note that, in the case ϕ(x, r) = r

λ−n
p , 0 ≤ λ ≤ n, we get

the classical Morrey spaceMp,λ(Rn) from generalized Morrey spaceMp,ϕ(Rn). As
is well known, Morrey spaces are widely used to investigate the local behavior of
solutions to second order elliptic partial differential equations (PDE).

A natural step in the theory of functions spaces was to study Orlicz–Morrey spaces
MΦ,ϕ(Rn), where the “Morrey-type measuring” of regularity of functions is realized
with respect to the Orlicz norm over balls instead of the Lebesgue one. Such spaces
were first introduced and studied by Nakai [28]. Then another kind of Orlicz–Morrey
spaces were introduced by Sawano et al. [37]. We point out that our definition of
Orlicz–Morrey spaces introduced in [7,24] and used here is different from that of the
papers [28] and [37]. Inwords of [19], our generalizedOrlicz–Morrey space is the third
kind and the ones in [28] and [37] are the first kind and the second kind, respectively.
According to the examples in [12], one can say that the generalized Orlicz–Morrey
space of the first kind and the second kind are different. Notice that the definition of
the space of the third kind relies only on the fact that LΦ is a normed linear space,
which is independent of the condition that it is generated by modulars. On the other
hand, the spaces of the first and the second kind are defined via the family of modulars.

Let 0 < α < n. The fractional maximal operator Mα and the Riesz potential
operator Iα are defined by

Mα f (x) = sup
t>0

|B(x, t)|−1+ α
n

∫
B(x,t)

| f (y)|dy, Iα f (x) =
∫
Rn

f (y)

|x − y|n−α
dy.

If α = 0, then M ≡ M0 is the well knownHardy-Littlewoodmaximal operator. Recall
that, for 0 < α < n,

Mα f (x) ≤ υ
α
n −1
n Iα(| f |)(x).

The commutators generated by a suitable function b and the operators Mα and Iα
are formally defined by

[b, Mα] f = Mα(b f ) − bMα( f ), [b, Iα] f = Iα(b f ) − bIα( f ),

respectively.
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Given a measurable function b the operators Mb,α and |b, Iα| are defined by

Mb,α( f )(x) := sup
t>0

|B(x, t)|−1+ α
n

∫
B(x,t)

|b(x) − b(y)|| f (y)|dy

and

|b, Iα| f (x) :=
∫
Rn

|b(x) − b(y)|
|x − y|n−α

f (y)dy,

respectively. If α = 0, then Mb,0 ≡ Mb is the sublinear commutator of the Hardy-
Littlewood maximal operator. Recall that, for 0 < α < n,

Mb,α( f )(x) ≤ C |b, Iα|(| f |)(x).

For a function b defined on R
n , we denote

b−(x) :=
{
0 , if b(x) ≥ 0

|b(x)|, if b(x) < 0

and b+(x) := |b(x)| − b−(x). Obviously, b+(x) − b−(x) = b(x).
The following relations between [b, Mα] and Mb,α are valid :
Let b be any non-negative locally integrable function. Then

|[b, Mα] f (x)| ≤ Mb,α( f )(x), x ∈ R
n

holds for all f ∈ L1
loc(R

n).
If b is any locally integrable function on R

n , then

|[b, Mα] f (x)| ≤ Mb,α( f )(x) + 2b−(x)Mα f (x), x ∈ R
n (1.1)

holds for all f ∈ L1
loc(R

n) (see, for example, [39]).
The classical result by Hardy–Littlewood–Sobolev states that the operator Iα is of

weak type (p, np/(n − αp)), if 1 ≤ p < n/α and of strong type (p, np/(n − αp)) if
1 < p < n/α. Also the operatorMα is of weak type (p, np/(n−αp)), if 1 ≤ p ≤ n/α

and of strong type (p, np/(n − αp)), if 1 < p ≤ n/α.
Around the 1970’s, the Hardy–Littlewood–Sobolev theorem is extended from

Lebesgue spaces to Morrey spaces by Spanne [32] and Adams [1], respectively.
Although Adams type theorems provide a stronger estimate, theorems of Spanne type
with a weaker estimate have a wider range of applicability. For more details we refer
to survey paper [29].

Commutators of classical operators of harmonic analysis play an important role
in various topics of analysis and PDE, see for instance [2–5], where in particular in
[3] it was shown that the commutator [b, Iα] is bounded from L p(Rn) to Lq(Rn) for
1 < p < n

α
, 1
q = 1

p − α
n and b ∈ BMO(Rn).

Fractional maximal operator in Morrey spaces including their generalized versions
were studied in various papers. The Spanne and Adams type results for the fractional
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maximal operator in generalized Morrey spaces were studied in [15,16,36]. In gener-
alizedOrlicz–Morrey spaces theywere recently studied in [18,21], where references to
the studies in the Morrey space setting may be found. Commutators in Morrey spaces
were studied in a less generality. In the case of the classical Morrey spaces we refer
for instance to [33] and [35], in the case of generalized Morrey spaces to [14–16,38],
where other references may be also found. The boundedness of Mα and Mb,α in Orlicz
spaces was studied in [6] and [11], respectively. The Spanne type results for Mb,α in
the setting of generalized Orlicz–Morrey spaces was obtained in [18]. Note that, the
conditions given in [18] for the boundedness of Mb,α was sufficient.

The purpose of this paper is twofold. First, we discuss the necessity of the conditions
given in [18] for the Spanne type boundedness of Mb,α in the generalized Orlicz–
Morrey spaces. Secondly, we give necessary and sufficient condition for the Adams
type boundedness of Mb,α in these spaces.

By A � B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A � B and B � A, we write A ≈ B and say that A and B
are equivalent.

2 Preliminaries

2.1 On Young functions and Orlicz spaces

Orlicz spaces were first introduced by Orlicz in [30,31] as a generalizations of
Lebesgue spaces L p. Since then this space has been one of important functional
frames in the mathematical analysis, and especially in real and harmonic analysis.
Orlicz spaces are also an appropriate substitute for L1 when L1 does not work.

First, we recall the definition of Young functions.

Definition 2.1 A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is
convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞ Φ(r) = ∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing.
If there exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of
Young functions such that

0 < Φ(r) < ∞ for 0 < r < ∞

will be denoted by Y . If Φ ∈ Y , then Φ is absolutely continuous on every closed
interval in [0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (2.1)
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where Φ̃(r) is defined by

Φ̃(r) =
{
sup{rs − Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r = ∞.

A Young function Φ is said to satisfy the Δ2-condition, denoted also as Φ ∈ Δ2,
if

Φ(2r) ≤ CΦ(r), r > 0

for some C > 1. If Φ ∈ Δ2, then Φ ∈ Y . A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2C
Φ(Cr), r ≥ 0

for some C > 1.
A Young function Φ is said to satisfy the Δ′-condition, denoted also as Φ ∈ Δ′, if

Φ(tr) ≤ CΦ(t)Φ(r), t, r ≥ 0

for some C > 1.
Note that, each element of Δ′-class is also an element of Δ2-class.
We refer [34] for more details about those classes of Young functions.

Definition 2.2 (Orlicz space). For a Young function Φ, the set

LΦ(Rn) :=
{
f ∈ L1

loc(R
n) :

∫
Rn

Φ(k| f (x)|)dx < ∞ for some k > 0

}

is called Orlicz space. If Φ(r) = r p, 1 ≤ p < ∞, then LΦ(Rn) = L p(Rn). If
Φ(r) = 0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Rn) = L∞(Rn). The
space LΦ

loc(R
n) is defined as the set of all functions f such that f χB ∈ LΦ(Rn) for

all balls B ⊂ R
n .

LΦ(Rn) is a Banach space with respect to the norm

‖ f ‖LΦ := inf

{
λ > 0 :

∫
Rn

Φ
( | f (x)|

λ

)
dx ≤ 1

}
.

We note that ∫
Rn

Φ
( | f (x)|
‖ f ‖LΦ

)
dx ≤ 1. (2.2)

Lemma 2.1 [7] For a Young function Φ and B = B(x, r), the following inequality is
valid:

‖ f ‖L1(B) ≤ 2|B|Φ−1
(
|B|−1

)
‖ f ‖LΦ(B),
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where ‖ f ‖LΦ(B) := ‖ f χB‖LΦ .

By elementary calculations we have the following.

Lemma 2.2 Let Φ be a Young function and B be a set in R
n with finite Lebesgue

measure. Then

‖χB‖LΦ = 1

Φ−1
(|B|−1

) .

The following theorem is an analogue of Lebesgue differentiation theorem inOrlicz
spaces.

Theorem 2.1 [22] Suppose that Φ is a Young function and let f ∈ LΦ(Rn) be
nonnegative. Then

lim inf
r→0+

‖ f χB(x,r)‖LΦ

‖χB(x,r)‖LΦ

≥ f (x), for almost every x ∈ R
n . (2.3)

If we moreover assume that Φ ∈ Δ′, then

lim
r→0+

‖ f χB(x,r)‖LΦ

‖χB(x,r)‖LΦ

= f (x), for almost every x ∈ R
n . (2.4)

2.2 Generalized Orlicz–Morrey spaces

We find it convenient to define generalized Orlicz–Morrey spaces in the form as
follows.

Definition 2.3 Let ϕ(x, r) be a positive measurable function on R
n × (0,∞) and Φ

any Young function. We denote byMΦ,ϕ(Rn) the generalized Orlicz–Morrey space,
the space of all functions f ∈ LΦ

loc(R
n) for which

‖ f ‖MΦ,ϕ := sup
x∈Rn ,r>0

ϕ(x, r)−1Φ−1(|B(x, r)|−1)‖ f ‖LΦ(B(x,r)) < ∞.

In the case ϕ(x, r) = Φ−1
(
|B(x,r)|−1

)
Φ−1

(
|B(x,r)|−λ/n

) , we get the Orlicz–Morrey spaceMΦ,λ(Rn)

from generalized Orlicz–Morrey space MΦ,ϕ(Rn). We refer to [10, Lemmas 2.9
and 2.10] for more information about Orlicz–Morrey spaces. Also, according to this
definition, we recover the generalized Morrey space Mp,ϕ(Rn) under the choice
Φ(r) = r p, 1 ≤ p < ∞ and if ϕ(x, r) = Φ−1(|B(x, r)|−1), then MΦ,ϕ(Rn)

coincides with the Orlicz space LΦ(Rn).

Lemma 2.3 [10, Lemma 2.13] Let Φ be a Young function and ϕ be a positive mea-
surable function on R

n × (0,∞).
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(i) If

sup
t<r<∞

Φ−1(|B(x, r)|−1)

ϕ(x, r)
= ∞ for some t > 0 and for all x ∈ R

n,

then MΦ,ϕ(Rn) = Θ .
(ii) If

sup
0<r<τ

ϕ(x, r)−1 = ∞ for some τ > 0 and for all x ∈ R
n,

then MΦ,ϕ(Rn) = Θ .

Remark 2.1 For the case Lemma 2.3 (ii), we imposed the condition Φ ∈ Δ′ in [10]
since we used (2.4) in the proof. But this condition is superfluous. It is enough to use
(2.3) to prove this fact, the details being omitted.

Remark 2.2 Let Φ be a Young function. We denote by ΩΦ the sets of all positive
measurable functions ϕ on R

n × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥Φ−1(|B(x, r)|−1)

ϕ(x, r)

∥∥∥
L∞(t,∞)

< ∞,

and

sup
x∈Rn

∥∥∥ϕ(x, r)−1
∥∥∥
L∞(0,t)

< ∞,

respectively. In what follows, keeping in mind Lemma 2.3, we always assume that
ϕ ∈ ΩΦ .

A function ϕ : (0,∞) → (0,∞) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

For a Young function Φ, we denote by GΦ the set of all almost decreasing functions
ϕ : (0,∞) → (0,∞) such that t ∈ (0,∞) → 1

Φ−1(t−n)
ϕ(t) is almost increasing. In

the case Φ(t) = t p, 1 ≤ p < ∞, we denote the class GΦ by Gp. Note that the class
Gp was first defined by Nakai in [27].

The following lemma plays a key role in our main results.

Lemma 2.4 [9] Let B0 := B(x0, r0). If ϕ ∈ GΦ , then there exist C > 0 such that

1

ϕ(r0)
≤ ‖χB0‖MΦ,ϕ ≤ C

ϕ(r0)
.
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We need the following theorem about the boundedness of the maximal commutator
operator Mb on generalized Orlicz–Morrey spaces for proving our main results.

Theorem 2.2 [8] Let b ∈ BMO(Rn), Φ be a Young function with Φ ∈ Δ2 ∩ ∇2,
ϕ ∈ ΩΦ and Φ satisfy the condition

sup
r<t<∞

(
1 + ln

t

r

)
Φ−1(t−n) ess inf

t<s<∞
ϕ(x, s)

Φ−1
(
s−n

) ≤ C ϕ(x, r), (2.5)

where C does not depend on x and r. Then the operator Mb is bounded onMΦ,ϕ(Rn).

The following theorems are Spanne and Adams type results for Mα in generalized
Orlicz–Morrey spaces, respectively.

Theorem 2.3 [18] Let 0 ≤ α < n,Φ,Ψ be Young functions,Ψ −1(t) = Φ−1(t)t−α/n,
ϕ1 ∈ ΩΦ and ϕ2 ∈ ΩΨ . Let also Φ,Ψ ∈ ∇2, and the functions (ϕ1, ϕ2) and (Φ,Ψ )

satisfy the condition

sup
r<t<∞

Ψ −1(t−n) ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n

) ≤ C ϕ2(x, r),

where C does not depend on x and r. Then the operator Mα is bounded from
MΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

Theorem 2.4 [10] Let 0 < α < n, Φ ∈ ∇2, ϕ ∈ ΩΦ , η(x, r) ≡ ϕ(x, r)β and
Ψ (r) ≡ Φ(r1/β) for some β ∈ (0, 1). Let ϕ and Φ satisfy the conditions

sup
r<t<∞

Φ−1(t−n) ess inf
t<s<∞

ϕ(x, s)

Φ−1
(
s−n

) ≤ C ϕ(x, r)

and
rαϕ(x, r) + sup

r<t<∞
tα ϕ(x, t) ≤ Cϕ(x, r)β (2.6)

for every x ∈ R
n and r > 0. Then the operator Mα is bounded from MΦ,ϕ(Rn) to

MΨ,η(Rn).

Remark 2.3 Note that, for η(x, r) ≡ ϕ(x, r)β and Ψ (r) ≡ Φ(r1/β), ϕ ∈ ΩΦ implies
that η ∈ ΩΨ .

Remark 2.4 The condition (2.6) in Theorem 2.4 attributes to Hendra Gunawan [20],
see also [13].

3 Spanne type results for Mb,α in MΦ,ϕ

We recall the definition of the space of BMO(Rn).
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Definition 3.1 Suppose that f ∈ L1
loc(R

n), let

‖ f ‖∗ = sup
x∈Rn ,r>0

1

|B(x, r)|
∫
B(x,r)

| f (y) − fB(x,r)|dy,

where

fB(x,r) = 1

|B(x, r)|
∫
B(x,r)

f (y)dy.

Define

BMO(Rn) = { f ∈ L1
loc(R

n) : ‖ f ‖∗ < ∞}.

Modulo constants, the space BMO(Rn) is a Banach space with respect to the norm
‖ · ‖∗.

Before proving our theorems, we need the following lemmas.

Lemma 3.1 [26] Let b ∈ BMO(Rn). Then there is a constant C > 0 such that

∣∣bB(x,r) − bB(x,t)
∣∣ ≤ C‖b‖∗ ln

t

r
for 0 < 2r < t, (3.1)

where C is independent of b, x, r, and t.

Lemma 3.2 [17] Let f ∈ BMO(Rn) and Φ be a Young function with Φ ∈ Δ2, then

‖ f ‖∗ ≈ sup
x∈Rn ,r>0

Φ−1(|B(x, r)|−1) ∥∥ f (·) − fB(x,r)
∥∥
LΦ(B(x,r)) . (3.2)

Remark 3.1 For (3.2), see for instance [23] and [25], where more general statements
of rearrangement invariant spaces and also for variable exponent Lebesgue spacesmay
be found, respectively.

For proving our main results, we need the following estimate.

Lemma 3.3 If b ∈ L1
loc(R

n) and B0 := B(x0, r0), then

rα
0 |b(x) − bB0 | ≤ CMb,αχB0(x) for every x ∈ B0.

Proof It is well-known that

Mb,α f (x) ≤ 2n−αMb,α f (x), (3.3)

where Mb,α( f )(x) := sup
B�x

|B|−1+ α
n

∫
B |b(x) − b(y)|| f (y)|dy.
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Now let x ∈ B0. By using (3.3), we get

Mb,αχB0(x) ≥ CMb,αχB0(x) = C sup
B�x

|B|−1+ α
n

∫
B

|b(x) − b(y)|χB0(y)dy

= C sup
B�x

|B|−1+ α
n

∫
B∩B0

|b(x) − b(y)|dy ≥ C |B0|−1+ α
n

∫
B0∩B0

|b(x) − b(y)|dy

≥ ∣∣C |B0|−1+ α
n

∫
B0

(b(x) − b(y))dy
∣∣ = Crα

0 |b(x) − bB0 |.

The following theorem is one of our main results.

Theorem 3.1 Let 0 ≤ α < n, ϕ1 ∈ ΩΦ , ϕ2 ∈ ΩΨ and b ∈ BMO(Rn).
1. Let Ψ −1(t) = Φ−1(t)t−α/n and Φ,Ψ ∈ Δ2 ∩ ∇2, then the condition

sup
r<t<∞

(
1 + ln

t

r

)
Ψ −1(t−n) ess inf

t<s<∞
ϕ1(s)

Φ−1
(
s−n

) ≤ C ϕ2(r) (3.4)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of
Mb,α fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

2. If ϕ1 ∈ GΦ and Ψ ∈ Δ2, then the condition

tαϕ1(t) ≤ Cϕ2(t) (3.5)

for all t > 0, where C > 0 does not depend on t, is necessary for the boundedness of
Mb,α fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

3. Let Ψ −1(t) = Φ−1(t)t−α/n and Φ,Ψ ∈ Δ2 ∩ ∇2. If ϕ1 ∈ GΦ satisfies the
condition

sup
r<t<∞

(
1 + ln

t

r

)
tα ϕ1(t) ≤ Crαϕ1(r) (3.6)

for all r > 0, where C > 0 does not depend on r, then the condition (3.5) is necessary
and sufficient for the boundedness of Mb,α from MΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

Proof The first part of the theorem is a corollary of [18, Theorem 5.13].
We shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By Lemma

3.3 we have rα
0 |b(x) − bB0 | ≤ CMb,αχB0(x). Therefore, by Lemmas 2.4 and 3.2

rα
0 ≤ C

‖Mb,αχB0‖LΨ (B0)

‖b(·) − bB0‖LΨ (B0)
≤ C

‖b‖∗
‖Mb,αχB0‖LΨ (B0)Ψ

−1(|B0|−1)

≤ C

‖b‖∗
ϕ2(r0)‖Mb,αχB0‖MΨ,ϕ2 ≤ Cϕ2(r0)‖χB0‖MΦ,ϕ1 ≤ C

ϕ2(r0)

ϕ1(r0)
.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from the first and second parts of the

theorem.

If we take Φ(t) = t p, Ψ (t) = tq , p, q ∈ [1,∞) at Theorem 3.1 we get the
following new result for generalized Morrey spaces.
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Corollary 3.1 Let p, q ∈ [1,∞), 0 ≤ α < n, ϕ1 ∈ Ωp ≡ Ωt p , ϕ2 ∈ Ωq and
b ∈ BMO(Rn).

1. Let 1 < p < n
α
, 1
q = 1

p − α
n , then the condition

sup
r<t<∞

(
1 + ln

t

r

) ess inf
t<s<∞

ϕ1(s)s
n
p

t
n
q

≤ Cϕ2(r)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of
Mb,α fromMp,ϕ1(Rn) toMq,ϕ2(Rn).

2. If ϕ1 ∈ Gp, then the condition (3.5) is necessary for the boundedness of Mb,α

fromMp,ϕ1(Rn) toMq,ϕ2(Rn).
3. Let 1 < p < n

α
, 1q = 1

p − α
n . If ϕ1 ∈ Gp satisfies the condition (3.6), then the con-

dition (3.5) is necessary and sufficient for the boundedness of Mb,α fromMp,ϕ1(Rn)

toMq,ϕ2(Rn).

By (1.1) and Theorems 2.3 and 3.1 we get the following corollary.

Corollary 3.2 Let 0 ≤ α < n, b ∈ BMO(Rn), b− ∈ L∞(Rn), Φ,Ψ ∈ Δ2 ∩ ∇2,
Ψ −1(t) = Φ−1(t)t−α/n, ϕ1 ∈ ΩΦ and ϕ2 ∈ ΩΨ . If the functions (ϕ1, ϕ2) and (Φ,Ψ )

satisfy the condition (3.4), then [b, Mα] is bounded fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

4 Adams type results for Mb,α in MΦ,ϕ

In this section we shall give a characterization for the Adams type boundedness of the
operator Mb,α on generalized Orlicz–Morrey spaces.

Lemma 4.1 [9] If 0 < α < n and f, b ∈ L1
loc(R

n), then for all x ∈ R
n and r > 0 we

get ∫
B(x,r)

| f (y)|
|x − y|n−α

|b(x) − b(y)|dy � rαMb f (x).

Theorem 4.1 Let 0 < α < n, b ∈ BMO(Rn), Φ be a Young function with Φ ∈
Δ2 ∩ ∇2. Let ϕ ∈ ΩΦ satisfy the conditions (2.5) and

rαϕ(x, r) + sup
r<t<∞

(
1 + ln

t

r

)
tα ϕ(x, t) ≤ Cϕ(x, r)β (4.1)

for some β ∈ (0, 1) and for every x ∈ R
n and r > 0. Define η(x, r) ≡ ϕ(x, r)β and

Ψ (r) ≡ Φ(r1/β). Then, the operator Mb,α is bounded fromMΦ,ϕ(Rn) toMΨ,η(Rn).

Proof For arbitrary x0 ∈ R
n , set B := B(x0, r) for the ball centered at x0 and of

radius r . Write f = f1 + f2 with f1 := f χ2B and f2 := f χ�
(2B)

.

Let x be an arbitrary point in B. If B(x, t) ∩ { �
(2B)} �= ∅, then t > r . Indeed, if

y ∈ B(x, t) ∩ { �
(2B)}, then t > |x − y| ≥ |x0 − y| − |x0 − x | > 2r − r = r .
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On the other hand, B(x, t)∩{ �
(2B)} ⊂ B(x0, 2t). Indeed, if y ∈ B(x, t)∩{ �

(2B)},
then we get |x0 − y| ≤ |x − y| + |x0 − x | < t + r < 2t .

Hence

Mb,α( f2)(x) = sup
t>0

1

|B(x, t)|1− α
n

∫
B(x,t)∩{ �

(2B)}
|b(y) − b(x)|| f (y)|dy

≤ 2n−α sup
t>r

1

|B(x0, 2t)|1− α
n

∫
B(x0,2t)

|b(y) − b(x)|| f (y)|dy

= 2n−α sup
t>2r

1

|B(x0, t)|1− α
n

∫
B(x0,t)

|b(y) − b(x)|| f (y)|dy.

Therefore, for all x ∈ B we have

Mb,α( f2)(x) � sup
t>2r

tα−n
∫
B(x0,t)

|b(y) − b(x)|| f (y)|dy

� sup
t>2r

tα−n
∫
B(x0,t)

|b(y) − bB(x0,t)|| f (y)|dy

+ sup
t>2r

tα−n
∫
B(x0,t)

|bB(x0,t) − bB || f (y)|dy

+ sup
t>2r

tα−n
∫
B(x0,t)

|bB − b(x)|| f (y)|dy
= J1 + J2 + J3.

Applying Hölder’s inequality, by (2.1), (3.1), (3.2) and Lemma 2.1 we get

J1 + J2 � sup
t>2r

tα−n
∫
B(x0,t)

|b(y) − bB(x0,t)|| f (y)|dy

+ sup
t>2r

tα−n|bB(x0,r) − bB(x0,t)|
∫
B(x0,t)

| f (y)|dy
� sup

t>2r
tα−n

∥∥b(·) − bB(x0,t)
∥∥
LΦ̃ (B(x0,t))

‖ f ‖LΦ(B(x0,t))

+ sup
t>2r

tα−n|bB(x0,r) − bB(x0,t)|tnΦ−1(|B(x0, t)|−1)‖ f ‖LΦ(B(x0,t))

� ‖b‖∗ sup
t>2r

Φ−1(|B(x0, t)|−1)tα
(
1 + ln

t

r

)
‖ f ‖LΦ(B(x0,t))

� ‖b‖∗ ‖ f ‖MΦ,ϕ sup
t>2r

(
1 + ln

t

r

)
tαϕ(x0, t).

A geometric observation shows 2B ⊂ B(x, 3r) for all x ∈ B. Using Lemma 4.1,
we get
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J0(x) := Mb,α( f1)(x) �|b, Iα|(| f1|)(x) =
∫
2B

|b(y) − b(x)|
|x − y|n−α

| f (y)|dy

�
∫
B(x,3r)

|b(y) − b(x)|
|x − y|n−α

| f (y)|dy � rαMb f (x)

Consequently for all x ∈ B we get

J0(x) + J1 + J2 � ‖b‖∗rαMb f (x) + ‖b‖∗‖ f ‖MΦ,ϕ sup
t>2r

(
1 + ln

t

r

)
tαϕ(x0, t).

Thus, by (4.1) we obtain

J0(x) + J1 + J2 � ‖b‖∗ min{ϕ(x0, r)
β−1Mb f (x), ϕ(x0, r)

β‖ f ‖MΦ,ϕ }
� ‖b‖∗ sup

s>0
min{sβ−1Mb f (x), s

β‖ f ‖MΦ,ϕ }

= ‖b‖∗(Mb f (x))
β ‖ f ‖1−β

MΦ,ϕ .

Hence for every x ∈ B we have

J0(x) + J1 + J2 � ‖b‖∗(Mb f (x))
β ‖ f ‖1−β

MΦ,ϕ . (4.2)

By using the inequality (4.2) we have

‖J0(·) + J1 + J2‖LΨ (B) � ‖b‖∗‖(Mb f )
β‖LΨ (B) ‖ f ‖1−β

MΦ,ϕ .

Note that from (2.2) we get

∫
B

Ψ

⎛
⎝ (Mb f (x))β

‖Mb f ‖β

LΦ(B)

⎞
⎠ dx =

∫
B

Φ

(
Mb f (x)

‖Mb f ‖LΦ(B)

)
dx ≤ 1.

Thus ‖(Mb f )β‖LΨ (B) = ‖Mb f ‖β

LΦ(B)
. Therefore, we have

‖J0(·) + J1 + J2‖LΨ (B) � ‖b‖∗‖Mb f ‖β

LΦ(B)
‖ f ‖1−β

MΦ,ϕ .
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By (3.2), Lemma 2.1 and condition (4.1), we also get

‖J3‖LΨ (B) =
∥∥∥∥sup
t>2r

1

|B(x0, t)|1− α
n

∫
B(x0,t)

|b(·) − bB || f (y)|dy
∥∥∥∥
LΨ (B)

≈ ‖b(·) − bB‖LΨ (B) sup
t>2r

tα−n
∫
B(x0,t)

| f (y)|dy

� ‖b‖∗
1

Ψ −1
(|B|−1

) sup
t>2r

Φ−1(|B(x0, t)|−1)tα‖ f ‖LΦ(B(x0,t))

� ‖b‖∗
1

Ψ −1
(|B|−1

)‖ f ‖MΦ,ϕ sup
t>2r

tαϕ(x0, t)

� ‖b‖∗
1

Ψ −1
(|B|−1

)‖ f ‖MΦ,ϕϕ(x0, r)
β .

Consequently by using Theorem 2.2, we get

‖Mb,α f ‖MΨ,η = sup
x0∈Rn ,r>0

η(x0, r)
−1Ψ −1(|B|−1)‖Mb,α f ‖LΨ (B)

� ‖b‖∗‖ f ‖1−β

MΦ,ϕ

(
sup

x0∈Rn ,r>0
ϕ(x0, r)

−1Φ−1(|B|−1)‖Mb f ‖LΦ(B)

)β

+ ‖b‖∗‖ f ‖MΦ,ϕ

� ‖b‖∗‖ f ‖MΦ,ϕ .

The following theorem is one of our main results.

Theorem 4.2 Let 0 < α < n, Φ ∈ Δ2, ϕ ∈ ΩΦ , b ∈ BMO(Rn), β ∈ (0, 1),
η(r) ≡ ϕ(r)β and Ψ (r) ≡ Φ(r1/β).

1. If Φ ∈ ∇2 and ϕ(t) satisfies (2.5), then the condition

rαϕ(r) + sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t)tα ≤ Cϕ(r)β

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of
Mb,α fromMΦ,ϕ(Rn) toMΨ,η(Rn).

2. If ϕ ∈ GΦ , then the condition

rαϕ(r) ≤ Cϕ(r)β (4.3)

for all r > 0, where C > 0 does not depend on r, is necessary for the boundedness of
Mb,α fromMΦ,ϕ(Rn) toMΨ,η(Rn).

3. Let Φ ∈ ∇2. If ϕ ∈ GΦ satisfies the condition

sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t)tα ≤ Crαϕ(r) (4.4)
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for all r > 0, where C > 0 does not depend on r, then the condition (4.3) is necessary
and sufficient for the boundedness of Mb,α from MΦ,ϕ(Rn) toMΨ,η(Rn).

Proof The first part of the theorem is a corollary of Theorem 4.1.
We shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By Lemma

3.3 we have rα
0 |b(x) − bB0 | ≤ CMb,αχB0(x). Therefore, by Lemmas 2.4 and Lemma

3.2

rα
0 ≤ C

‖Mb,αχB0‖LΨ (B0)

‖b(·) − bB0‖LΨ (B0)
≤ C

‖b‖∗
‖Mb,αχB0‖LΨ (B0)Ψ

−1(|B0|−1)

≤ C

‖b‖∗
η(r0)‖Mb,αχB0‖MΨ,η ≤ Cη(r0)‖χB0‖MΦ,ϕ ≤ C

η(r0)

ϕ(r0)
≤ Cϕ(r0)

β−1.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from the first and second parts of the

theorem.

If we take Φ(t) = t p, p ∈ [1,∞) and β = p
q with p < q < ∞ at Theorem 4.2

we get the following new result for generalized Morrey spaces.

Corollary 4.1 Let 0 < α < n, 1 ≤ p < q < ∞, ϕ ∈ Ωp and b ∈ BMO(Rn).
1. If 1 < p < ∞ and ϕ(t) satisfies

sup
r<t<∞

(
1 + ln

t

r

) ess inf
t<s<∞

ϕ(s)s
n
p

t
n
p

≤ Cϕ(r),

then the condition

rαϕ(r) + sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t)tα ≤ Cϕ(r)

p
q

for all r > 0 and C > 0 does not depend on r, is sufficient for the boundedness of

Mb,α fromMp,ϕ(Rn) toMq,ϕ
p
q
(Rn).

2. If ϕ ∈ Gp, then the condition

rαϕ(r) ≤ Cϕ(r)
p
q (4.5)

for all r > 0 and C > 0 does not depend on r, is necessary for the boundedness of

Mb,α fromMp,ϕ(Rn) toMq,ϕ
p
q
(Rn).

3. Let 1 < p < ∞. If ϕ ∈ Gp satisfies the condition

sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t)tα ≤ Cϕ(r)

p
q

for all r > 0 and C > 0 does not depend on r, then the condition (4.5) is necessary

and sufficient for the boundedness of Mb,α from Mp,ϕ(Rn) toMq,ϕ
p
q
(Rn).
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By (1.1) and Theorems 2.4 and 4.1 we get the following corollary.

Corollary 4.2 Let 0 < α < n, β ∈ (0, 1), b ∈ BMO(Rn), b− ∈ L∞(Rn) and Φ

be a Young function with Φ ∈ Δ2 ∩ ∇2. Let ϕ ∈ ΩΦ satisfy the conditions (2.5) and
(4.1). Define η(x, r) ≡ ϕ(x, r)β and Ψ (r) ≡ Φ(r1/β). Then the operator [b, Mα]is
bounded fromMΦ,ϕ(Rn) toMΨ,η(Rn).

To compare, we formulate the following theorem proved in [9] and remark below.

Theorem 4.3 Let 0 < α < n, b ∈ BMO(Rn), Φ ∈ Δ2, ϕ ∈ ΩΦ , β ∈ (0, 1),
η(t) ≡ ϕ(t)β and Ψ (t) ≡ Φ(t1/β).

1. If Φ ∈ ∇2 and ϕ(t) satisfies (2.5), then the condition

rαϕ(r) +
∫ ∞

r

(
1 + ln

t

r

)
ϕ(t)tα

dt

t
≤ Cϕ(r)β

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of
|b, Iα| from MΦ,ϕ(Rn) toMΨ,η(Rn).

2. If ϕ ∈ GΦ , then the condition (4.3) is necessary for the boundedness of |b, Iα|
from MΦ,ϕ(Rn) toMΨ,η(Rn).

3. Let Φ ∈ ∇2. If ϕ ∈ GΦ satisfies the condition

∫ ∞

r

(
1 + ln

t

r

)
ϕ(t)tα

dt

t
≤ Crαϕ(r) (4.6)

for all r > 0, where C > 0 does not depend on r, then the condition (4.3) is necessary
and sufficient for the boundedness of |b, Iα| from MΦ,ϕ(Rn) toMΨ,η(Rn).

Remark 4.1 Although Mb,α is pointwise dominated by |b, Iα|, and consequently, the
results for the former could be derived from the results for the latter, we consider
them separately, because we are able to study the boundedness of Mb,α under weaker
assumptions than it derived from the results for the operator |b, Iα|. More precisely,
for ϕ ∈ GΦ , integral condition (4.6) imply the supremal condition (4.4). Indeed, by
(2.1) we have

Φ−1(s−n)
≈ Φ−1(s−n)sn

∫ ∞

s

dt

tn+1 �
∫ ∞

s
Φ−1(t−n)dt

t
.

It follows from this inequality

rαϕ(r) �
∫ ∞

r

(
1 + ln

t

r

)
tα ϕ(t)

dt

t
�

∫ ∞

s

(
1 + ln

t

r

)
tα ϕ(t)

dt

t

� ϕ(s)

Φ−1
(
s−n

) sα
(
1 + ln

s

r

) ∫ ∞

s
Φ−1(t−n)dt

t
�

(
1 + ln

s

r

)
ϕ(s)sα,

where we took s ∈ (r,∞) arbitrarily, so that

sup
s>r

(
1 + ln

s

r

)
ϕ(s)sα � rαϕ(r).
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Remark 4.2 For ϕ ∈ GΦ , the condition (2.5) becomes

sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t) ≤ C ϕ(r). (4.7)

By Remark 4.1, we have (4.6) implies (4.4). Also, note that (4.4) implies (4.7).
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