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ABSTRACT 

Background Basal cell carcinoma (BCC) is the most common skin cancer in the 

Caucasian population. Eighty percent of BCCs are located on the head and neck area. 

Clinically ill-defined BCCs often represent histologically aggressive subtypes, and 

they can have subtle subclinical extensions leading to recurrence and the need for re-

excisions. 

 

Objectives The aim of this pilot study was to test the feasibility of a hyperspectral 

imaging system (HIS) in vivo in delineating the preoperatively lateral margins of ill-

defined BCCs on the head and neck area. 
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Methods Ill-defined BCCs were assessed clinically with a dermatoscope, 

photographed, and imaged with HIS. This was followed by surgical procedures where 

the BCCs were excised at the clinical border and the marginal strip separately. HIS, 

with a 12 cm
2
 field of view and fast data processing, records a hyperspectral graph for 

every pixel in the imaged area, thus creating a data cube. With automated 

computational modelling, the spectral data is converted into localisation maps 

showing the tumour borders. Interpretation of these maps was compared to the 

histologically verified tumour borders. 

 

Results Sixteen BCCs were included. Of these cases, 10/16 were the aggressive 

subtype of BCC and 6/16 were nodular, superficial, or a mixed type. HIS delineated 

the lesions more accurately in 12/16 of the BCCs compared to the clinical evaluation 

(4/16 wider and 8/16 smaller by HIS). In 2/16 cases, the HIS-delineated lesion was 

wider without histopathological confirmation. In 2/16 cases, HIS did not detect the 

histopathologically confirmed subclinical extension.  

 

Conclusions HIS has the potential to be an easy and fast aid in the preoperative 

delineation of ill-defined BCCs, but further adjustment and larger studies are 

warranted for an optimal outcome.  

 

INTRODUCTION  

Basal cell carcinoma (BCC) is a locally destructive and rarely metastasising non-

melanoma skin cancer (NMSC), which comprises 40% of all cancers worldwide
1
. 
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Eighty percent of NMSCs are BCCs
2
. The incidence of BCC is as high as the 

incidence of all other cancers combined, and its incidence continues to increase, also 

affecting ever-younger populations
3-5

. BCC is causing a remarkable burden via 

healthcare costs, treatment capacity, and the morbidity of affected individuals
1,2,4

.  

Histologically, BCCs can be classified by their morphological growth pattern into 

indolent (nodular and superficial) or aggressive (micronodular, morpheaform, 

infiltrative, and metatypical – i.e. basosquamous) types
6
. In 27–43% of cases, a 

combination of different patterns – i.e. a mixed histology – exists
6-8

. The histological 

subtype affects the clinical choice of treatment and the prognosis
6
. A high risk of 

recurrence is associated most importantly with aggressive growth patterns along with 

location in high-risk anatomic areas (nose, ears, eyes, and periocular areas), clinically 

unclear visualisation of the border, immunosuppression, recurrence, and perineural 

involvement
9
. Clinically, BCCs are classified by visual assessment as either indolent 

(nodular, superficial) or ill-defined (aggressive subtypes)
9
. Roughly one out of five 

BCCs is the histologically verified aggressive subtype
6,10

. However, the proportion 

might be even higher. The accuracy of a punch biopsy in the interpretation of a mixed 

histology is 37%
11

. Moreover, in 39.1% of aggressive BBCs, the punch biopsy fails to 

identify the subtype correctly compared to the following excision, and 11–14.1% of 

any type of BCC shows an unsuspected aggressive component in the excision 

compared to the preceding punch biopsy
8,11

.  

 

The incidence of BCC is highest in the most sun-exposed anatomic locations
12

. Thus 

80% of BCCs – and most of the aggressive types – are located on the head and neck 

area
2,13

, where preserving the anatomy and function plays a major role. Surgery and, if 
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available, Mohs micrographic surgery (MMS) with a 100% margin control is the 

treatment of choice for high-risk BCCs
9
.  

Hyperspectral imaging is based on tissue chromophores (like melanin if present, 

haemoglobin, proteins, and water) affecting the absorption and scattering of emitted 

light, thus causing, together with autofluorescence, a unique spectral graph for 

different biological tissues
14

. A hyperspectral imaging system (HIS) has shown 

potential in the preoperative delineation of lentigo maligna
15

 and the detection of 

field-cancerised skin
16

. In this pilot study, the aim was to test the feasibility of HIS in 

the preoperative delineation of the lateral margins of ill-defined BCCs on the head 

and neck area. 

 

MATERIALS AND METHODS 

We followed the Declaration of Helsinki, and the Ethics Committee of the Tampere 

University Hospital District, Finland, approved our study protocol. All the recruited 

volunteering patients were informed orally and in writing, and they provided their 

written consent.  

 

Patients 

Twenty-three patients with 24 lesions were recruited prospectively between March 

2014 and March 2017 at the Department of Dermatology and Allergology at the 

Päijät-Häme Social and Health Care Group, Lahti, Finland. The inclusion criterion 

was a clinically assessed primary BCC with a visually ill-defined margin on the head 

and neck area, and which was later histologically confirmed to be a BCC. Eight BCCs 
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from seven patients were excluded: six because these were not treated according to 

the study protocol (3 represented only the superficial subtype and were treated with 

cryosurgery, and 3 were operated on without a separate circumferential marginal 

strip). Furthermore, one patient was excluded due to the imaging artefacts and one 

due to discrepancy in the histopathological statement (subclinical extension shown 

only in the preoperative biopsies and not in the separate margin strip).  

Thus, 16 patients (7 female and 9 male) with 16 lesions completed the study. The 

mean age of the patients was 77 years (range 59–91 years). Five patients displayed 

anamnestic skin phototype I, nine patients displayed skin phototype II, and two 

patients displayed skin phototype III. Thirteen patients had a previous history of skin 

malignancy or its precursor, and seven of them had multiple conditions (basal cell 

carcinoma n=12, actinic keratosis n=8, and melanoma n=2). None of the patients had 

received cytostatics or radiotherapy in the study areas or received phototherapy for 

any skin condition. One patient had received immunosuppressive treatments. 

 

Imaging processes 

All the lesions were initially evaluated clinically and with a dermatoscope (Dermlite® 

3GenCA, USA). They were photographed native with a digital camera (Canon Ixus 

115 HS, 12.1 megapixel or Canon Ixus 130, 14.1 megapixel) and with the 

dermatoscope linked to the digital camera. The hyperspectral imaging process was 

performed initially without drawing the clinically assessed tumour border, and then 

after marking the clinical borders on the skin. The prototype of HIS is described more 

detailed elsewhere 
15

. (In short, the VTT FPI VIS-VNIR Spectral Camera uses 

visible-to-near infrared light – i.e. wavelengths 500–900 nm based on a Fabry-Perot 
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interferometer – which enables the use of tuneable waveband selection. It has a large, 

12 cm
2
 field of view (FOV) with a spatial resolution of 6,400 pixels/cm

2
, where one 

pixel is approx. 125 µm, and an imaging depth of approx. 2 mm.)
 15

 The hyperspectral 

imaging took only seconds to capture the hyperspectral data cube, which thereafter 

was analysed computationally in 5–10 minutes.  

Data analysis 

The hyperspectral data cube is a three-dimensional data cube, where the x-axis and y-

axis are the dimensions on the skin surface, and the z-axis is the 70 layered 

hyperspectral images, where every layer is imaged on a narrow waveband. Every 

pixel on the skin’s surface has a unique hyperspectral graph – i.e. an end-member – 

from which the abundance maps are calculated based on mathematical modelling (see 

Fig.1).  

In this pilot study, we used mathematical modelling of linear mixture, as used in our 

previous studies
15,16

. These abundance maps were interpreted on site by the test-

readers (M.S., M.G., I.P. and N.N.). Additionally, we developed three diverse 

enhanced mathematical models to create more sensitive ways to characterise the 

visually ill-defined margins of BCCs. Finally, the mathematical models used for the 

results were 1) an inversion of linear mixture model using iterative Vertex Component 

Analysis – i.e. the linear mixture (the one used on site), 2) an inversion of linear 

mixture model from the estimated single scattering albedo (SSA) using iterative 

Vertex Component Analysis – i.e. the linear mixture with SSA, 3) a closed form 

chromophore-specific approximation for the estimated SSA – i.e. chromophore 

specific with SSA, and 4) a modified standard normal variate correction algorithm – 

i.e. a standard variate. All abundance maps from these four models were interpreted 
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by the same test-readers. A summarised technical and mathematical presentation of 

the imaging system used, the algorithms, and simulated results are presented in the 

supplementary material, S1. 

Each of the mathematical models used has advantages and disadvantages. The 

standard variate model is quite sensitive to all changes in spectra that differ from the 

mean spectra of the imaged area. When there is either a lot of normal skin or an ill-

defined BCC, the standard variate model will distinguish the areas well. The linear 

mixture and linear mixture with SSA both capture changes in the concentration of 

skin chromophores. The chromophore specific with SSA is sensitive to skin scattering 

and absorption. The results from calculations with the linear mixture, the linear 

mixture with SSA, and the chromophore specific with SSA models can be used to 

simulate an imaged spectral cube. The simulated cube is a characterisation of the 

originally acquired image presented in the form of an abundance map for 

interpretation.  

 

Surgical procedures and the histopathological sampling 

After the imaging and analysis processes, and if the patient did not have an 

appointment for an operation on the same day, we took biopsies from the lesions and 

the areas where the HIS imaging indicated the BCC may be spreading. For all cases, 

we used a special operation technique to verify whether a subclinical extension was 

detected by HIS (see Fig.1). This included an initial excision of the tumour from the 

clinically and dermatoscopically detected border followed by a separately operated 2 

mm circumferential marginal strip, both with orientation marks. The circumferential 

strip allowed us to evaluate whether there was a subclinical extension in the marginal 
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area. If a free margin was found in the separately excised tumour specimen, this 

allowed us to evaluate if the BCC was smaller than the clinical evaluation with 

dermatoscopy. All the samples were orientated, fixed in 10% formalin, embedded in 

paraffin, and cut into 3 µm thick slices, which were stained with haematoxylin and 

eosin and, if necessary, with CK-PAN staining for the evaluation of perineural 

involvement. The tumour specimens were sectioned using the normal “bread-loaf” 

technique. The circumferential strips were sectioned closely in vertical slices. The 

histopathological samples were analysed by an experienced dermatopathologist 

blinded to the HIS outcome. If the circumferential marginal strip was BCC-positive, a 

re-excision was performed. 

 

RESULTS 

The histopathological subtypes of the 16 included BCCs are shown in Table 1. 10/16 

BCCs represented the aggressive subtype (infiltrative, infiltrative with perineural 

invasion, morpheaform, or micronodular features) in the final excision. In 6/16 BCCs 

the subtype was nodular, superficial, or a mixed histology of these two in the final 

excision, even though clinically all the included lesions were ill defined.  

In 12/16 cases, HIS was capable of delineating the BCCs more accurately than the 

conventional clinical evaluation by the naked eye and with a dermatoscope. HIS-

delineated lesions were wider in 4/16 of the BCCs (see Fig.2), and in 8/16 BCCs the 

lesions were delineated to be smaller than the clinical evaluation. In 2/16 cases, the 

HIS-delineated lesion was wider but could not be confirmed histopathologically (false 

positives). In 2/16 cases, HIS did not detect the histopathologically confirmed BCC in 

the circumferential strip (false negatives).  
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The results were quite similar in the four different mathematical models. If three out 

of four models showed similar tumour borders, those were regarded as the 

HIS-defined borders (see Table 1). However, it is still unclear which model is best for 

the imaging of BCC. 

 

DISCUSSION 

This study shows that HIS is feasible in detecting the borders of ill-defined BCCs, but 

further development work is needed to determine the optimal model for data 

processing. 

To our knowledge, there are no earlier studies on delineating BCC margins using 

hyperspectral imaging technology.  

Other non-invasive imaging techniques for delineating the lateral margins of BCCs 

include dermatoscopy, reflectance confocal microscopy (RCM), and optical 

coherence tomography (OCT)/high-definition optical coherence tomography (HD-

OCT). In clinical practice, dermatoscopy is the most widely used for the detection of 

lateral margins, although its use preoperatively has not reduced the excision stages in 

MMS, and thus evidence of its accuracy is lacking
17

. It has been previously shown 

that preoperative in vivo use of RCM and OCT can reduce the number of excision 

stages in the MMS of BCCs
17

. 

The advantages of HIS compared to the previously studied imaging techniques in the 

preoperative assessment of the lateral surgical margin are the following: i) adjustable 

FOV up to a maximum of 12 m
2
 in HIS captured and processed in 5–10 min 

compared to 1 cm
2
 (with mosaicking) in RCM captured and processed in 2 min

18
, and 
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6x6 mm (0.36 cm
2
) in OCT, where 5x5 mm is captured and processed in 40 s

19
; ii) 

imaging depth of approx. 2 mm for HIS compared to 200 µm for RCM
17

 and 0.2–2.5 

mm for OCT, though one should note that the higher resolution is compromised by 

the penetration depth
19

; and iii) interpretation of HIS images is quick, easy to learn 

with a little experience, and does not require histological knowledge, unlike HD-OCT 

and RCM
17,19

. It seems that the interpretation of HIS images can be straightforward, 

but currently in some cases more combined information is needed from different 

models to conclude the interpretation, and thus further development of HIS is 

warranted.  

Our result for 4/16 BCCs revealed that subclinical extension by HIS is quite similar to 

RCM in the preoperative in vivo assessment of the margins, as in Venturini et al.’s 

study, RCM found subclinical extension in 3/10 cases compared to the 

dermatoscopically assessed margins prior to excision
20

. OCT found the subclinical 

extension of BCC in 11/52 cases compared to clinical evaluation by a Mohs 

surgeon
21

. Wang et al.
 21

 had a 100% evaluation of the margins in MMS excision 

compared to our design with vertical sections, which is clearly a limitation in our 

study. Furthermore, OCT delineated the lateral margins to be smaller by 1.4 +/-1.3 

mm than the clinical evaluation
21

. HIS delineated the lesion as being smaller in 8/16 

cases.  

In addition, high frequency ultrasound (HFUS) and fluorescence diagnosis have 

earlier been studied for the in vivo preoperative delineation of BCC. In lateral margin 

delineation, ultrasound has a low correlation compared to histopathology
22

. The 

subclinical extensions of the infiltrative and micronodular subtypes of BCC in 

particular are less likely to be detected by HFUS
23

. In deep margin assessment, the 

correlation using HFUS is intermediate
22

, and in facial BCCs, there is even a good 
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correlation for the deep margin with histopathology
24

. HFUS has the advantage of 

showing underlying structures like cartilage and bone
24

. In the fluorescence diagnosis 

of facial BCCs, the exogenic fluorescence diagnosis has no benefit in margin 

assessment compared to clinical evaluation in high risk areas (though most of the 

BCCs were nodular in this study)
 25

, but in aggressive types bispectral fluorescence 

imaging (using autogenic and exogenic fluorescence) had some potential in 

delineating the margins of BCC, with a 42% agreement in lateral margin assessment 

compared to the histopathology of MMS26.  

A limitation of HIS is its poorer resolution compared to OCT and RCM. In this study, 

HIS was not used to evaluate the deep margin, which in the future might be possible 

with further developments given the approx. 2 mm penetration depth of HIS. 

However, the assessment of deep margins is also limited with RCM and HD-OCT
17

. 

Artefacts in HIS abundance maps can be caused by an uneven imaging surface – i.e. 

round and sharp forms in the imaging area, and thus one case locating on nose was 

excluded with low quality in the abundance maps for interpretation. With further 

developments of HIS, it might be possible to handle these artefacts better. Additional 

pathological findings (i.e. actinic keratoses, etc.) in the imaging area might also be 

confounding factors in the interpretation of the HIS abundance maps, and thus further 

development work with HIS is needed. The limitations in our pilot study design were 

the small number of the cases, and thus these results are preliminary. This study was 

not performed to distinguish BCCs from other lesions on sun-damaged skin, but 

rather to visualise the borders of the lesions. Thus, larger studies are warranted in the 

future. 

Subclinical extension in aggressive BCCs can consist of cords with a thickness of a 

few cells
6
. Thus, in the future it would be interesting to repeat this study design by 
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assessing 100% of the margin and comparing the results to MMS. At the clinic where 

patients were recruited, MMS is not available, and thus we used the presented 

operation technique. Compared to MMS, in our method the separate circumferential 

strip was not assessed with a 100% margin control. In one true positive case, we were 

able to confirm subclinical extension of the marginal strip after additional histological 

sectioning based on the suspected subclinical extension in the HIS abundance maps. 

However, additional sectioning failed to reveal the subclinical extension in the two 

other false positive cases. It can be speculated that MMS with a 100% margin control 

would have revealed the histological extension in these false positive cases. 

It would be interesting to investigate if HIS could be useful in MMS by reducing the 

number of stages by defining the margins preoperatively more accurately than the 

clinical evaluation, and by being faster than RCM. HIS might be also useful in 

reducing the number of re-excisions by more accurate preoperative assessment in 

intermediate- or low-risk anatomic locations, and also in high-risk areas if MMS is 

not available. After MMS, primary BCCs have a 4.4% recurrence and recurrent BCCs 

have a 3.9% recurrence in the 10-year follow-up; after traditional excision, the 

corresponding rates are 12.2% and 13.5%
27

. In traditional excision, the recurrence 

rates varies according to the width of the surgical margin, where a 2, 3, 4 or 5 mm 

announced negative margin has a recurrence rate of 3.96, 2.56, 1.62 and 0.39% 

respectively; if a positive margin is announced, the overall recurrence is 27%
28

. In the 

future with HIS, it might be possible to save tissues in cosmetically sensitive areas. 

With the increasing incidence of BCCs, there is a need for new technologies to make 

the treatment of BCC less time-consuming and more cost-effective. With preliminary 

results of 12/16 more precisely delineated lesions and 4/16 revealed subclinical 
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extensions, the HIS has the potential to be a clinical aid in treatment of ill-defined 

BCCs in the cosmetically sensitive areas of the head and neck region. 
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FIGURES AND LEGENDS 

 

 

Fig. 1 A) Hyperspectral imaging process and B) operation technique to verify the 

subclinical extension detected by HIS. 
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Fig. 2 Example patient with BCC delineated wider by HIS. Histologically, there was a 

nodular, superficial, micronodular, and infiltrative BCC, with perineural invasion, 

which showed subclinical micronodular growth in the marginal strip shown by HIS 

(arrows). A) Clinical picture, B) final excision with our operation technique, C) 

dermatoscopy image, D1) histological image from the main tumour area with the 

different aggressive growth patterns D2–D3) histological image, where the subclinical 

extension of BCC was detected in the separate marginal strip (D2 lower arrow and D3 

upper arrow). HIS abundance maps marking the clinically and dermatoscopically 

assessed tumour border on the skin (arrows pointing the subclinical extension 

detected by HIS): E) linear mixture F) linear mixture with single scattering albedo 

(SSA), G) chromophore specific with SSA H) standard variate. 
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TABLES  

Table 1. Histopathological analyses of the BCCs, anatomic location of the lesion, interpretation of the mathematical models, and the HIS 

outcome compared to clinical evaluation. 

esion 

Anatomic 

location of 

the lesion 

BCC subtype in 

the biopsies BCC subtype in the final excision 

BCC subtype in 

the separate 

circumferential 

strip 

Additional 

histopathological 

findings 

Linear 

mixture 

model 

Enhanced 

linear 

mixture 

model 

Chromo-

phore 

specific 

model 

Mean 

value 

model 

HIS outcome compared to the 

clinical assessment, and 

confirmed histologically 

1 right cheek  superficial, nodular, micronodular sun damaged skin + + + + false pos.* 

2 tip of nose  superficial, nodular sun damaged skin - - - 0 smaller** 

3 preaurically 

on right 

cheek 

nodulocystic superficial, nodular, micronodular superficial solar lentigo + + + + wider*** 

4 tip of nose  superficial, nodular, micronodular,  

infiltrative, basosquamous 

sun damaged skin - - - 0 smaller 

5 lateral to 

nasolabial 

fold on right 

cheek 

nodular nodular  sun damaged skin - - - - smaller 

6 left cheek nodular, 

micronodular 

nodular, micronodular sun damaged skin - - - - smaller 

7 forehead nodular, 

micronodular 

superficial, nodular, micronodular, 

infiltrative with perineural invasion 

micronodular actinic keratoses + + + + wider 

8 left auricle superficial, 

nodular 

superficial, nodular sun damaged skin - - - 0 smaller 

9 right temple nodular, 

micronodular, 

sclerotic 

nodular, micronodular, infiltrative 

with perineural invasion 

micronodular solar lentigo + + + 0 wider 

10 left auricle superficial, 

nodular 

nodular, micronodular, infiltrative micronodular sun damaged skin = = = 0 false neg. **** 

11 neck, behind left ear nodular  actinic kertoses,  

solar lentigo 

- - - - smaller 

12 left cheek nodular superficial, nodular sun damaged skin, solar 

lentigo 

+ + + + false pos. 

13 left cheek nodular cicatrix  eczema - - - - smaller 
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14 right ala of 

nose 

nodular nodular, micronodular nodular, 

micronodular 

actinic keratoses = = = = false neg. 

15 right temple superficial superficial, nodular, micronodular,  

infiltrative with perineural invasion 

sun damaged skin, ulcer - - - -  smaller 

16 forehead nodular, 

infiltrative 

nodular, micronodular nodular, 

micronodular 

sun damaged skin 0 + + + wider 

(+) interpret wider in the abundance maps 

 

(-) interpret smaller in the abundance maps 

(0) too much of artefact for interpretation 

(=) interpreted as same borders as than visually assessed (the margins announced in the tumor specimen were from 0 to 0,9 mm) 

* HIS delineated the lesion wider than clinical assessment, but this wasn't supported by histopathology

** HIS delineated the lesion smaller than clinical assessment, and histopathology supported this 

*** HIS delineated the lesion wider than the clinical assessment, and the histopathology supported this 

**** HIS showed no suspicious for subclinical extension, but in the histopathology there was BCC in the circumferential strip 

 



Supplementary material for article “Hyperspectral Imaging System in the Delineation 

of Ill-defined Basal Cell Carcinomas: A Pilot Study” 

Appendix S1: Summarised description of the hyperspectral imaging system and the 

mathematical models 

The studied handheld hyperspectral camera (VTT FPI VIS-VNIR Spectral Camera) 

was developed with the VTT Technical Research Centre of Finland; it is introduced in 

detail by Saari et al.29 The camera uses visible-to-near infrared light (wavelengths 

500–900 nm) based on a piezoactuated Fabry-Perot interferometer (FPI) with an 

adjustable air gap, one or two CMOS RGB colour sensors (MT009V022), basic 

camera objectives, microscope lenses, filters, and a dichroic beam splitter, which 

divides the light beam coming from the camera’s light source (ring light around the 

lens system, a halogen based fibre-optic illuminator; Dolan-Jenner Fibre-Lite DC 

950) into visible light and very near infrared light.  

The FPI consists of reflecting mirrors in a cavity, and the air gap between these 

mirrors is adjustable. By tuning this air gap, it is possible to record different 

wavelengths29. The FPI reflects three wavelength peaks at one air gap width, and by 

changing the width of the gap, it is possible to record another set of three different 

wavelengths29. Changing the air gap width takes < 2 ms29. Thus, it is possible to 

receive spectral information at 70 different wavelengths very quickly.  

At the same time as the spectral information is gathered, the camera records a 

traditional 2D image with a resolution of 240x320 pixels, which are approx. 125 µm 

in width. Every pixel has a unique spectral graph that forms the third dimension of the 

spectral data cube (see Fig. 1A). Use of this data cube enables spectral mapping, i.e. 

the localisation of the spectral information in the imaged area. With the 500–900 nm 



wavelengths, it is possible to reach approx. up to 2 mm penetration depth, with shorter 

wavelengths reaching more superficial depths and the wider wavelengths penetrating 

the deeper parts of the skin.  

The part of the camera system touching the object (i.e. the patient’s skin) is a dark 

cover tube that is available in varying sizes (range 2.5–12 cm2). The tube removes 

background light and defines the field of view (FOV). The maximum FOV is thus 

12 cm2. The cover tubes are selected according to the size of the lesion, and smaller 

tubes enable the flattening of uneven surfaces, such as the nose or ear.  

The spectral data cube – i.e. the recorded reflectance gathered by the colour sensors in 

the ENVI standard data format – is transferred to a computer via a USB2 port29. The 

different wavelengths are recorded in the different proportions of the RGB sensor 

output. This data is converted to reflectance X, in which Xλ = (Iλ – Idark) / 

(Iλ,white - Idark), where λ is all recorded wavelengths, Iλ is the recorded raw digital 

image, Iλ,white is the recorded white reference, and Idark is the dark current of the colour 

sensor.  

The huge amount of information imaged in the spectral cube can be represented 

numerically, and thereafter, it is possible to apply an algorithm, i.e. a mathematical 

model with computational calculations. With the mathematical modelling, it is 

possible to calculate an end-member (i.e. pure spectrum) from the spectral graphs of 

every pixel in the image (see Fig. 1A). These end-members are converted for 

interpretation to abundance maps, which show the localisation of the end-member 

spectra in the image. Every mathematical model is an assumption of the real world, 

and by these assumptions, we are able to visualise the information on the spectral 

dimension of the data cube. 



Our mathematical models used the information on tissue optical properties and the 

coefficients of different parameters available in the literature30. The main properties 

affecting the tissue optics and reflectance are absorption and scattering. Both 

absorption and scattering vary based on the chromophores (i.e. melanin, water, 

haemoglobin, etc.) in different tissues30. Interestingly, it is possible to numerically 

represent the three layers of the skin (epidermis, dermis, and subcutaneous fat) as a 

combination of the absorption and scattering properties of the different 

chromophores30. 

The four numerical methods used in this study were 1) an inversion of the linear 

mixture model using iterative Vertex Component Analysis – i.e. the linear mixture, 2) 

an inversion of the linear mixture model from the estimated single scattering albedo 

(SSA) using iterative Vertex Component Analysis – i.e. the linear mixture with SSA, 

3) a closed form chromophore-specific approximation for the estimated SSA – i.e. 

chromophore specific with SSA, and 4) a modified standard normal variate correction 

algorithm – i.e. a standard variate. 

1) Linear mixture 

The linear mixture algorithm assumes that the spectra in the imaged cube are a linear 

mixture of some limited number of characterised spectra, which are named 

end-members. The linear mixture of end-members can be expressed in matrix form 

following 𝑋𝑋 = 𝑀𝑀𝑀𝑀, where 𝑋𝑋 is the recorded spectral data, 𝑀𝑀 is the mixing matrix, and 

𝑀𝑀 are the end-members. The linear mixture model uses vertex component analysis 

(VCA) 31 to define the end-members. The mixing matrix describes proportion of 

end-members in every pixel. To calculate computationally the inversion of the mixing 

matrix, filter vector analysis (FVA) 32 was used. Next, 𝑀𝑀 and 𝑀𝑀 are solved. This step is 



iteratively repeated several times to determine the right number of end-members. 

Selection of the right number of end-members is arrived at in order to minimise 

min
𝑘𝑘
�𝑋𝑋 − 𝑋𝑋��

𝐹𝐹𝐹𝐹𝐹𝐹
, where k is the number of end-members, which usually varies 

between 2 and 6 because VCA usually detects 2–4 end-members on the skin with 

malignancy based on experience. With this model, we assume the end-members of the 

healthy skin and tumour area differ from each other. 

2) Linear mixture with SSA 

The skin’s reflectance spectra is not actually linearly mixed. The reflectance of the 

skin is actually a non-linear mixture of the different chromophores’ absorbance and 

scattering properties. With a rough estimate, the reflectance spectra can be converted 

into a single scattering albedo (SSA). SSA is calculated based on the scattering 

coefficient and total absorption coefficient. SSAs are linearly mixed. After this 

conversion, we apply VCA31 to define the end-members. Thus, the non-linear “real 

world” is converted to a more linear form, enabling the use of VCA. With this model, 

we assume that the calculated end-members of the healthy skin and the tumour area 

might more accurately represent the “real world”. 

3) Chromophore specific with SSA 

In this model, SSA is used to describe the recorded reflectance upon which FVA32 is 

applied to solve the different proportion of chromophores. The coefficients of 

different chromophores are multiplied by the proportion of the chromophores. Thus, 

we create reconstructed data, in which we can weigh a certain chromophore’s 

end-member in the abundance map. In doing so, we assume that the proportion of 

certain chromophores differs in the healthy skin and the tumour area. In the 

chromophore-specific model, we produce the maps with oxyhaemoglobin 



concentration, deoxygenated haemoglobin concentration, total blood concentration, 

oxygen saturation, mean scattering of simulation, mean absorption of simulation, 

melanin concentration, and baseline concentration. For example, the tumour uses 

more oxygen, and in the abundance map of “deoxygenated haemoglobin 

concentration”, we can see the difference the between the tumour area and the healthy 

skin. Thus, we are able to visualize a certain chromophore in the abundance map. 

4) Standard variate 

The standard variate model differs from the three models presented above. It has a 

statistical background, and in essence, it compares how the spectra differ from the 

mean spectra. The standard variate algorithm reduces spectral noise and eliminates the 

background effect33. This means that if there are many similar spectra in the imaged 

cube, the standard variate model will characterise the differences in the spectra 

without the homogenous background information. Originally, standard variate 

algorithm was developed for the single point spectroscopy. For our purpose we added 

some modifications so that it gives us mapping in spatial domain, which separates two 

areas from image, which refers to background (healthy tissue) and anomalous area 

(tumorous tissue).  
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