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Abstract

Finite mixture regression (FMR) is widely used for modeling data that orig-
inate from heterogeneous populations. In these settings, FMR can offer
increased predictive power compared to more traditional one-class models.
However, existing FMR methods rely heavily on mixtures of linear mod-
els, where the linear predictor must be given as an input. A flexible FMR
model is presented using a combination of the random forest learner and
a penalized linear FMR. The performance of the new method is assessed
by predictive log-likelihood in extensive simulation studies. The method is
shown to achieve equal performance with the existing FMR methods when
the true regression functions are in fact linear and superior performance in
cases where at least one of the regression functions is nonlinear. The method
can handle a large number of covariates, and its predictive ability is not
greatly affected by surplus variables.

Keywords: finite mixture regression, random forest, prediction intervals,
bootstrap, penalization

1. Introduction

Finite mixture models provide a tool for analyzing data that are suspected
to arise from a heterogeneous population (Quandt, 1972; De Veaux, 1989;
Khalili and Chen, 2007; McLachlan and Peel, 2004). Specifically, a finite
mixture-of-regressions (FMR) is used for modelling a continuous response as
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a function of covariates. Consider a continuous outcome variable Y and a
p-dimensional covariate vector @ = (x1,...,2,). The data is assumed to
originate from a population consisting of multiple latent, unobserved classes.
Depending on the class, a separate regression model between the outcome and
the covariate applies. Assuming a Gaussian linear model for each component,
the density function of Y|z is
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where K is the number of classes, ¢(y;u, o) is the density function of the
normal distribution with mean p and variance o2, 3, is the vector of regres-
sion coefficients for class k, o}, is the standard deviation of the error term in
class k and 7, > 0 is the probability of membership in class k. Models of this
type are applied in a variety of fields including ecology, genetics, economics
and marketing where such unobserved latent classes are often appropriate.
The parameters of this model are typically estimated using the expectation
maximization (EM) -algorithm (Dempster et al., 1977; Hastie et al., 2009).
Penalized versions of the FMR have also been proposed (Khalili and Chen,
2007; Galimberti et al., 2009; Khalili et al., 2010; Stadler et al., 2010).

In this paper, we aim to achieve greater predictive power than linear FMR
methods such as model (1). This is realised by considering a more flexible
structure for the linear predictor &’3, to better model possible nonlinear
dependencies and interactions between the covariates. However, instead of
trying to accurately capture the underlying mean functions, we aim to esti-
mate the full mixture density f(y|e), which can then be used for prediction
purposes. Thus, our emphasis is on identifying f as a whole, not on the more
conventional aim of recovering the underlying mean functions and the class
labels. Semiparametric approaches for FMR with similar aims have been re-
cently suggested by Huang et al. (2013b) and Xiang (2014), whereas Huang
et al. (2013a) discuss the problem from a functional data-analysis perspec-
tive. Huang et al. (2013b) assume that the outcome follows a mixture of
Gaussians whose class means and variances are unknown smooth functions
of the covariates. The functions are estimated by local smoothing accompa-
nied with a modified EM-algorithm. Similar assumptions are made by Xiang
(2014), however with constant class variances. Again, the model is estimated
with an EM-algorithm modified for local fitting. Both publications deal only
with univariate covariates although results are said to be extendable to mul-



tivariate data. However in both cases, the authors also state that the curse of
dimensionality (Hastie et al., 2009) reduces the usefulness of these extensions.
Thus, their applicability in high dimensional data sets is questionable.

If the finite mixture regression model is thought of as a supervised learn-
ing method, its unsupervised counterpart would be model based clustering.
Similar to FMR, these methods assume that the data originates from a mix-
ture of K distributions, typically Gaussians, but are pure clustering methods
in the sense that no outcome variable is modelled based on a set of covariates.
Instead, all observations originating from a particular class k£ are assumed
to have the same mean p,. This corresponds to applying FMR on a mul-
tidimensional outcome with only the intercept term in the model. Recent
reviews on model based clustering from a variable selection perspective are
given by Celeux et al. (2014) and Bouveyron and Brunet-Saumard (2014).

FMR is related to mixtures of experts (MOE) models that are frequently
used in the machine learning applications (Yuksel et al., 2012). The idea of
MOE is to have a collection of different learners, each specializing to sepa-
rate parts of the covariate space, to form the overall regression model. For
example, in a simple case of a continuous outcome Y and a single covariate
x, one could consider a linear model E(Y) = 5y + 1z when = < a and a
quadratic fit E(Y) = ap + a1z + apx® when z > a. In general, the learn-
ers are not limited to such simple polynomial models but can be arbitrarily
flexible, e.g. feed-forward neural networks. Furthermore, instead of a hard
transition between the models at * = a, a certain smoothing technique is
used to ensure a soft transition. MOE and FMR can be seen as opposites in
this matter: A MOE model invokes a strict (although soft) partition of the
covariate space while FMR assumes global and constant class proportions.
An extension of MOE, called hierarchical mixtures of experts (HME), allows
the class probabilities 7, to depend on the covariates. Although there are
similarities between the HME approach and the problem posed in this pa-
per, HME models cannot be easily applied to high-dimensional data without
compromising flexibility (Yuksel et al., 2012; Hadavandi et al., 2016). Fur-
thermore, the added estimation of the covariate-dependent class probabilities
introduces excess variability that is likely to adversely effect the performance
of these models under the assumptions of the problem. Similarly to the
regular FMR, a penalized HME using generalized linear models as experts
(Khalili, 2010) requires the definition of the correct structure for the linear
predictor.

The paper is organized as follows. Section 2 provides a brief review of



penalized FMR and random forests, and describes in detail the proposed
flexible FMR method, named FMRFLEX. Section 3 considers methods for
measuring the predictive power in the FMR setting and the construction of
prediction intervals. In section 4, we consider an extensive set of simulation
studies where the predictive performance of FMRFLEX is compared to that
of reference methods such as FMR and penalized FMR. In section 5, the
method is applied to a worker wage prediction dataset. Finally, the paper is
concluded with a short discussion in section 6.

2. Flexible FMR method

In order to obtain a flexible, nonparametric FMR fit, we replace the linear
model '3, in (1) with an arbitrary function of the covariate hy(-) : R — R
and obtain

Yiz ~ f(ylz) = ZWW(?J; hi(z), o%). (2)
P

Our goal is then to estimate f(y|x) in order to predict the response for a new
observation 1. We achieve this by using a combination of the random forest
learner (Breiman, 2001) and variable selection techniques in FMR models.
The random forest is used for obtaining a large set of informative dummy
variables that are then used as covariates in the subsequent penalized FMR
regression model to obtain a flexible fit for the means. Since our main interest
is the full density f(y|x), the unknown mean functions hq(x), ..., hx(x) need
to be estimated only to the extent that (2) estimates f(y|x).
In summary, the assumptions made in this paper are:

e the outcome y follows a mixture of Gaussians with means hy(x), ..., hx(x)
2

and variances 0%, ..., 0%
e the observations ¥, ..., yy are conditionally independent given the co-
variates @y, ..., Ty

e the class probabilities 7, ..., 7 are independent of the covariates .

In order to form a density-based prediction of Y|zt under model (2),
given the observed covariates ™, we need to find a set of component func-
tions, variance terms and mixing probabilities. The key issue is the correct
specification of the mean or component functions, especially when one has to
go beyond simple linear or quadratic curves. This can be hard or impossible
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to accomplish with 10s or 100s of covariates. Choosing the number of latent
classes K can also be difficult a priori, however model selection methods can
be used for this purpose.

The FMRFLEX method uses the random forest to approximate the com-
ponent functions, and more importantly, to extract a set of informative indi-
cator variables that can be used in the regression. A penalized FMR is then
fitted on these indicator variables and the original covariates to extract the
final prediction. The motivation for this approach is to combine the flexible,
data-driven identification of nonlinearities and interactions achieved with the
random forest with the linear associations obtainable with the original co-
variates and the existing FMR methods. The main ideas of the FMRFLEX
method can be summarized as:

1. Fit a random forest using the covariates  and the outcome y.

2. Extract the terminal nodes, that is the lowest branches of each of the
trees in the random forest, as dummy variables.

3. Fit a penalized FMR model on y using the covariates and the extracted
dummy variables.

Here, K is chosen using Bayesian information criterion (BIC). The fol-
lowing subsections briefly review and describe the implementation of each of
these steps in greater detail.

2.1. Random forest

Random forests (Breiman, 2001) are an especially popular method for
both regression and classification. By combining an ensemble of decision
trees, each built with a set of randomly selected covariates at each node
of each tree and a bootstrap sample of the observations, a highly efficient
learner is obtained. Each decision tree in a forest consists of consecutive
binary cuts, where observations are divided between two branches based on
given splitting rules, and finally assigned to the terminal nodes. One such
tree and the resulting segmentation of a 2-dimensional covariate space is
illustrated in Figure 1.

Importantly, each branch b in the forest can be expressed as a dummy
variable z,, the value of which depends on the covariates (Figure 1):

P
2y = H[(le <x; <wpy), —00 <lpj,up; < 00, (3)
j=1
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Figure 1: Panel A: A tree has been fit to a data set with two covariates, resulting in
a total of 9 branches of which 5 are terminal nodes (5-9). Each branching is based on
a simple splitting criterion for the selected covariate. Panel B: The tree partitions the
observations into 5 regions according to their covariate value, each corresponding to a
terminal node. Panel C: Branch memberships can be expressed as a design matrix. All
observations belong to branch 1, whereas each observation can belong to only one of the
terminal nodes.

where, [, ; and w;; are the splitting rules for the covariate x; in branch b.
Consequently, the regions defined by the whole forest can be expressed as
a large set of dummy variables. To simplify, we extract only those dummy
variables that correspond to the terminal nodes of the trees (columns 5-9 in
the panel C of Figure 1). No information is lost by this procedure, since all
the other dummy variables can be obtained as linear combinations of these
terminal nodes.

The BIC criterion obtained from the final FMR model is used for finding
the values for the key parameter controlling the random forest, which is the
minimum proportion of observations in the terminal nodes (minobs). This
parameter directly controls the depth of the tree and thus its complexity and
flexibility. Deeper trees typically offer increased accuracy but naturally result
in a larger set of dummy variables with less data to estimate their regression
coefficients. Therefore, slightly larger terminal nodes are preferable compared
to the original application of random forests for regression. We experiment
with two values minobs = 0.05,0.10 and use a total of 200 trees in a forest.

2.2. Penalized FMR

Joly et al. (2012) sought to compress the random forest in the ordinary
one-class regression setting by applying shrinkage methods to the dummy



variables. By fitting a Lasso-penalized (i.e. L1-penalized) (Tibshirani, 1996)
linear model between the outcome and the dummy variables, only the most
important indicator variables are selected. This reduces the model’s space
complexity meaning that the model can be, if not fully represented, at least
adequately approximated by a simpler form. The authors showed that an
equal or even improved predictive power could be obtained with this proce-
dure. Here, we utilize this idea in the FMR context to select those covariates
and dummy variables that are important for the given regression problem.

Previous studies of variable selection in FMR models (Khalili and Chen,
2007; Galimberti et al., 2009; Khalili et al., 2010; Stadler et al., 2010) have
considered shrinkage using some form of Lasso-type penalty. The model pa-
rameters are estimated via maximum likelihood while modified EM-algorithms
are developed to incorporate the penalization. Such an approach allows for
different coefficients to be shrunk in the K different classes. We opt to use
the method proposed by Stadler et al. (2010) due to its convenient R imple-
mentation (R Core Team, 2013; Stéadler, 2010) and the ability to handle a
large amount of covariates.

The most important tuning parameter for the FMR Lasso, in addition
to the assumed number of classes K, is the penalty term A that controls the
amount of penalization. We choose A based on the BIC criterion using a
grid search over 100 values as suggested by Stédler et al. (2010). The same
criterion is used for estimating the number of latent classes K when it is
unknown.

In addition to the extracted dummy variables, the original covariates x
are included in the linear prediction of the regression to model possible linear
relationships efficiently. The dummy variables’ role then becomes to model
deviations from linearity, and should linearity be true, the model is expected
to simplify greatly at the penalization stage.

The proposed method can be expressed as a linear FMR model of the
covariates and the extracted dummy variables. Denote the vector of dummy
variables z = (z1,..., 2,), where r is the total number of extracted terminal
nodes from all trees. The component functions in (2) are then estimated as

x'B, + 20, k=1,...,K, (4)
where the coefficients 3, and 0}, along with the standard deviations oy, ..., 0k
and the mixing probabilities 7y, ..., Tk are estimated with a Lasso-penalized

likelihood.



It has been shown that a reduction in bias can be gained for Lasso-
penalized models with an additional fitting step with only the selected covari-
ates (Biihlmann and Van De Geer, 2011; Belloni and Chernozhukov, 2013).
The covariates with regression coefficients shrunken to zero are dropped, and
the model is refitted with only the remaining covariates without penalization.
This additional step is implemented here as well.

2.3. A modified flexible FMR algorithm to improve computational efficiency

Steps 1-3 of the method need to be repeated for all combinations of the
tuning parameters minobs and A, after which the model with the lowest
BIC is selected. In practice, this approach is computationally demanding
when the number of dummy variables is large. The problem increases with
the sample size, the number of trees used in the forest and their depth. In
order to reduce the computational demand of the method, we propose an
alternative strategy that utilizes an iterative approach:

1. Obtain an initial class assignment for all observations based on a linear
FMR fit on the original data using maximum a posteriori probability
(MAP). Then iterate steps 2-6 M times:

2. Fit the random forest model for each class k = 1,..., K separately
using the covariates & as input.

3. Extract the terminal nodes from all K forests for the complete data as
dummy variables z.

4. Fit a penalized one-class regression for each class separately using the
original covariates and the extracted dummy variables.

5. Fit the linear FMR model with L;-penalty using those variables that
have non-zero coefficients in at least one of the regression models in the
previous step.

6. Aim to reduce the bias of the model by refitting again using only the
covariates with non-zero coefficients in (5) in at least one class of the
estimated FMR, and without penalization.

7. Update the class assignments based on the model in the previous step.

Following this approach, the computationally heavy variable selection is
mainly done in step 4, separately for each class. With traditional penal-
ization methods being highly efficient compared to the mixture alternatives,
this greatly reduces the overall computational burden. We use the Lasso-
regression method by Friedman et al. (2010) in step 4 and find the amount
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of penalization using a grid search and 5-fold cross-validation as suggested
by the authors. We found this procedure sufficient and note that this step
does not need to be fully optimized to achieve its main goal, which is to filter
out most of the unnecessary covariates for step 5. Using cross-validation for
the selection of the penalty parameter has been found to have a tendency to
over-select variables in practice (Feng and Yu, 2013; Spindler, 2014). This
is desirable, because it lowers the chance of unintentionally losing important
variables at this step. Five iterations (M = 5) of steps 2-7 are run after
which the model with the lowest BIC in step 6 is chosen. In our simulations,
the best BIC is typically produced in the first two iterations after which the
improvement is usually negligible or non-existent. Thus, the relatively small
number of iterations is justifiable.

2.4. Identifiability of the flexible FMR

Identifiability is a critical issue when it comes to estimating FMR models.
In complex settings, situations can occur, where multiple sets of parameter
estimates result in equally good fits for the data. For example, crossing
mean functions can lead to such ambiguity if the considered model is flexible
enough, as is the case with the proposed method. However, in this example,
the full mixture density would still remain identifiable and not compromise
the prediction goal. Problems will arise if the target density itself is uniden-
tifiable. Such severe examples are illustrated by Hennig (2000) where two
differing sets of linear regression lines give equally good fits for the data and
lead to different predictions if interpolated or extrapolated outside the data
points. However, with the proposed method, predictions are never obtained
for points outside their possible values of 0 and 1, letting us avoid the problem
altogether.

3. Prediction
3.1. Predictive log-likelihood

We consider a set of simulation studies to assess the predictive perfor-
mance of our method. Hence, we need to form both a prediction and a
metric that quantifies the difference between the prediction and the observed
data. In conventional (one-class) regression, this is easily accomplished by
evaluating a loss function, for example the mean squared error between ob-
served and predicted values. In an FMR setting however, the assignment
of a single-valued prediction is a non-trivial task. Simply assigning one of
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the class means does not seem justified, especially when we are assuming
constant class proportions for all . A weighted average of the class means
would also be a dubious route as such a prediction would not be close to the
individual components (in general).

Therefore, instead of providing a single-value prediction, we consider a
predictive distribution relying on the assumption of Gaussian errors. Each
prediction is thus the density of the mixture distribution defined by the esti-
mated model parameters. A measure of predictive ability is then obtained by

evaluating the log-likelihood of the model on a new dataset (z7, 1), ..., (X,
N+
log [ [ f(u1=)),
i1

where Nt is the sample size and f(y;|}) is the estimated mixture density
at x;. This approach, called predictive likelihood is utilized by Khalili and
Chen (2007) for example. Higher values of the predictive likelihood indicate
better fits. Note that contrarily to classical criteria like AIC and BIC, no
penalty term is required since it is evaluated on new data.

3.2. Highest density region predictions

To obtain an interval-type prediction for a given new observation ™ in
the FMR setting, we rely on an estimated predictive distribution density f+.
Obtaining such a predictive distribution however, requires some additional
considerations on top of the model estimation. Simply plugging the point-
estimates of the model parameters in to the model definition in (2), as is
done for the predictive log-likelihood, leads to liberal intervals since the un-
certainty related to the parameter estimates themselves is not accounted for.
However, obtaining the variance-covariance matrix of the estimates (which
would be needed for even an approximate interval estimate) is difficult to de-
rive explicitly in the penalized FMR context. Here, we rely on the following
bootstrap resampling (Efron and Tibshirani, 1994) routine to quantify the
estimation uncertainty:

1. Fit the linear FMR model with Li-penalty as done in step 5 of the
algorithm proposed in section 2.3. For bin 1,..., B perform steps 2-4:

2. Take a bootstrap sample from the data used in the original model. In
other words, N observations are sampled randomly with replacement
from the data.

10
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3. Refit the FMR model using the same bootstrap sample and the value of
the penalty parameter A that was found optimal in the original model.

4. Using the fitted model, find the estimated mixture density for ™ to
obtain f,(z*).

5. Average over the bootstrap estimates of the mixture density to obtain
the predictive distribution f+:

b=1

In the same way that the highest posterior density regions are often con-
sidered in Bayesian analysis (Gelman et al., 2014), we can find the highest
density region of this predictive distribution:

A:{aeR:/f+:1—a N f+(a)>f+(b),VaeA,VbeAc}.
A

To put the above definition in words, the region contains a 1 — a proportion
of the probability mass and the density f+ is always greater for points in-
side the region than for those outside. This is further illustrated in Figure
2. The region typically consists of up to K disjoint intervals depending on
the estimated model parameters, although in theory there could be up to
BK disjoint intervals due to the bootstrap sampling. The intervals formed
this way contain an average proportion of 1 — a new observations generated
through the same process as the training data.

This procedure leads to approximate a-level intervals that account for
the uncertainty in the estimates of the linear predictors. A relatively small
bootstrap sample of B = 10 is used in the simulations. By using a fixed A in
step 2, we greatly reduce the computation time needed for the bootstrapped
predictions. Additional gains are made by using the posterior probabilities
and the point estimates of oy,...,0x obtained in step 1 as starting values
for the algorithm in step 2.

The calculation of the highest density region is not analytically possible
when f+ is a mixture of Gaussians. Thus, we consider regions calculated
using a Monte Carlo approach as described by Hyndman (1996) utilizing a
sample of 5000 values from f+.
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Prediction density

Outcome

Figure 2: Highest density region illustrated for mixture of two normals. A
constant ¢ is found such that the sum of gray areas equal the sought level 1 — a. The
boundaries of these gray areas determine the a-level prediction intervals which in this case
are [l1,u1] and [la, us].

4. Simulation studies

A set of simulation scenarios are considered that range from a simple
linear relationship to more complex models. The simulation scenarios are
defined in detail here, and they are further illustrated in Figure 3. We con-
sider only cases with K = 2 or K = 3 and furthermore assume that K is
known a priori for simplicity.

(A) We consider a p-dimensional covariate & = (x1,...,2,)" where each
;0 =1,...,pis sampled from the uniform distribution between 0 and
10 with pairwise expected Pearson correlations set to 0.2. The corre-
lation structure is achieved via a Gaussian copula (Nelsen, 2007). The
outcome has a mixture distribution of two densities:

fy) = 7(y; Boq + Bix, o) + (1 — 1) (y; Pop + Baz, o).

The parameters are fixed to
® foa=0  By=u1-.-.0) =
® foo=5  By=(Bo1,-..,0p) =
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e 1=20.5 o=1.

In this scenario, the outcome is linearly dependent on the covariates
and a linear FMR, such as the model in (1), is expected to have optimal
performance.

(B) Next we consider a quadratic relationship with the outcome. This sce-
nario is identical to A in all ways except that in the second class, a trans-
formation is applied to the covariate vector & = (23 — 10zy,..., 22 —
10z,)". The corresponding regression coeflicients are set following the
same pattern as in A.

(C) We consider a scenario with three classes based on both linear and non-
linear structures. Here, a third nonlinear structure is added to sce-
nario B based on a transformed covariate @ = (sin zy,...,sinx,)".
The regression coefficients for this third class are set as 3,3 = 60 and
Bs = (—10,0,...,0)'. The nonlinear form is thus introduced only in the
first dimension of the covariate to keep the problem tractable with a

reasonable sample size. The complete density is then

f(y) = mo(y; Bor+Bix, 0)+m20(y; 50,2‘1‘5/23537 o)+m3h(y; 50,3+5§3307 o),

where 1 = my =m3 =1/3 and 0 = 1.

(D) Finally, we generate a scenario where the outcome is defined as a func-
tion of interaction terms, rather than simple transformations of the orig-
inal covariate variables. These interaction terms are introduced as a new
covariate P = (2,29, To13,..., 2, 12,)". Similar to A and B, the out-

come has a mixture distribution of two densities:

f(y) = 77¢(y7 50,1 + /BllmD7 U) + (]- - 77)@5('3/, 60,2 + IBIQmDv U)a
where the parameter values are set to:

e Bop=-20 By=31,,=(1/2,...,1/2)

e Bopo=0 By=-11,,=(-1/2,...,-1/2)

o 1=0.5 o=1

In addition to the p-dimensional covariate, a set of ¢ surplus variables are

included in the data. These variables are sampled identically to the covariate
but are not related to the outcome; their regression coefficients are set to 0.

In the simulations, we experiment with all combinations of p = 2,5 and
q = 0,50.
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Figure 3: Simulation scenarios illustrated in one dimension. The black lines rep-
resent the class means and gray circles one realisation of the training set. The data is
generated by setting p = 1,q = 0 for scenarios A, B and C, and p = 2,q = 0 for D.
Simulation D is illustrated in terms of the interaction term xixs.

In addition to FMRFLEX, we include four existing approaches that rep-
resent typical analyses one might choose in this setting:

e A one-class linear model (LM). A simple linear model is fitted on the
data using all covariates and least-squares estimation.

e A one-class linear model with Lasso-penalty (LASSO).
e A finite mixture regression model with K classes (FMR).

e A finite mixture regression model with K classes and Lasso-penalty
(FMRL). The optimal value for the penalty parameter is found using
the BIC-criterion and a grid search over a 100 values as is done with
the proposed FMRFLEX method.

We assume Gaussian errors for all models to make the evaluation of the
predictive log-likelihood possible.

The different analysis approaches are fitted to training data with 500
x K observations after which the predictive log-likelihood and the highest
density region coverages are calculated using a test set of 10000 observations.
For each approach, the log-likelihood is compared to the true log-likelihood,
calculated using the true underlying model that was used for generating the
data. We also investigated the coverage probabilities and total lengths of the
prediction intervals.
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The simulations were repeated 100 times for each combination of settings.
The covariates and the surplus variables are kept fixed after being sampled,
whereas the outcome is resampled for each repetition.

4.1. Simulation results

Examples of prediction intervals obtained both with the proposed method
and with the linear FMR from the simulation scenarios A-C with one covari-
ate (p = 1,q = 0) are illustrated in Figure 4. Fits for scenario D are also
shown but with two covariates p = 2 and with the interaction term z;zs in
the z-axis. In scenario A, we see that the FMRFLEX method has clearly
found the linear relationships in the data whereas in other scenarios the use
of the dummy variables leads to more step-like behaviour. In scenarios B, C
and D, the linear FMR provides approximate but highly biased estimates of
the mean functions, and consequently, overly wide prediction intervals.

The predictive log-likelihoods from all simulation studies are collected in
Figure 5. In all scenarios, we see that the one-class methods (LM, LASSO)
provide the worst results as expected, displaying the highest difference to the
true model in predictive log-likelihood. The proposed method (FMRFLEX)
compares well with the linear alternatives (FMR, FMRL) in scenario A and
even outperforms them when surplus variables are introduced (¢ = 50). Here,
the method clearly benefits from the iterative approach that alternates be-
tween the class assignment and model fitting, which is not implemented in
the standard FMR Lasso. Our proposed FRMFLEX method is clearly the
top performer in all of the nonlinear scenarios (B, C and D). The conclusion
is the same across all combinations of the number of covariates and dummy
variables. The negative effect of surplus variables on the prediction perfor-
mance of the proposed method is not substantial. When compared to the
overall variation in the results, the variance across simulations is, with a few
exceptions, relatively small demonstrating the stability of all of the methods.

The average coverage and total width of the 95% prediction intervals for
the proposed method FMRFLEX and the best performing reference method
FMRL are shown in Table 1. The observed coverage is generally close to the
target probability of 95%. However, there is a tendency towards conservative
intervals, especially in scenario C. This scenario is particularly challenging
due to several partially overlapping components. A much larger data set
would be required for better performance. More striking differences between
the methods are seen in the average widths of the prediction intervals. The
proposed method provides more precise predictions in the nonlinear scenarios
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Figure 4: Examples of the prediction intervals obtained with a linear FMR (top
row) and the proposed method (bottom row) The observed data is shown with
black points on top of the gray prediction bands.

B-D as is seen in the relative average widths of the intervals (last column of
Table 1). In scenarios B-D, the intervals provided by the proposed method are
both more conservative and more accurate and thus are clearly preferable.
Only the actual covered region is included in the width, leaving out any
possible gaps between the classes.

The number of covariates and dummy variables finally selected by the
proposed method depends on the complexity of the scenario as illustrated
in Table 2. In the linear case of scenario A, typically no dummy variables
were assigned with nonzero regression coefficients. The original p covariates
were almost always chosen. The number of dummy variables used grows
along with the complexity of the scenarios as expected. There appears to
be little difference between the results obtained with no surplus variables
(¢ = 0) and those with noisy data (¢ = 50). This finding is in line with
the overall simulation results and shows that the method performance is not
overly affected by noise.

The computation times for the method greatly depend on the complex-
ity of the problem at hand, mainly on the number of classes. Examples
of computation times for p = 5 are shown in Table 3. The effects of addi-
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Figure 5: Simulation results. Differences in predictive log-likelihood to the true model
in all simulation scenarios. Smaller values are better. In all scenarios of A and in those
scenarios of D with p = 5, the results for the one-class models LM and LASSO are off plot
limits.

tional surplus variables and deeper trees are also evident and tend to increase
the time needed. Overall, FMRFLEX is much more time consuming than
FMRL, however not infeasible for most applications. The measurements were
obtained using a single core on an Intel®Xeon®X5450 3.00GHz CPU.
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scenario p ¢ FMRL FMRFLEX FMRL FMRFLEX relative
coverage coverage length length length
A 2 0 0948 0.954 7.3 7.6 1.039
A 2 50 0.948 0.956 7.3 7.6 1.035
A 5 0 0946 0.953 7.5 7.7 1.028
A 5 50 0951 0.953 7.7 7.7 1.000
B 2 0 0942 0.948 20.8 9.4 0.454
B 2 50 0.943 0.934 21.0 12.9 0.616
B 5 0 095 0.947 16.8 10.5 0.625
B 5 50 0.956 0.942 17.0 14.3 0.846
c 2 0 0973 0.986 65.3 35.0 0.536
C 2 50 0.959 0.965 61.1 41.0 0.671
C 5 0 0974 0.990 61.2 41.9 0.684
C 5 50 0971 0.981 60.6 40.5 0.667
D 2 0 0949 0.983 26.5 20.2 0.761
D 2 50 0.953 0.973 27.0 21.6 0.803
D 5 0 0949 0.966 73.3 38.5 0.526
D 5 50 0951 0.958 75.1 45.0 0.599

Table 1: Average prediction interval coverage probabilities and total lengths. The last
column displays the quotient of the two previous columns.

5. Application to a worker wage dataset

To demonstrate the usage of the method in practice, we refer to a popula-
tion survey dataset on the wages of male workers in the Mid-Atlantic region
of the USA. This dataset contains 3000 subjects and is included in the ISLR
R package (James et al., 2013). The goal of the analysis is to predict the
worker’s wage based on his age (continuous), job class (binary), health class
(binary) and education level (3 classes). The wage is measured in thousands
of dollars per year.

The analysis starts by fitting an ordinary one-class random forest regres-
sion model on the data. As seen in Figure 6, the residuals of this model are
distributed around two centers, most of the density being close to 0 and a
smaller portion near 150. This suggests that the model predicts well for most
of the data but a finite mixture approach would be needed to account for
the group of exceptionally high wages. In order to compare various model
candidates, the data were split randomly into two equally sized sets of train-
ing and test data. Both the proposed flexible method FMRFLEX and the
penalized linear alternative FMRL were tested with varying number of latent
classes: k=1,2,3.
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Scenario p ¢  Number of covariates kept Number of dummies kept
A 2 0 2(2-2 0(0-1)

A 2 50 2(2-2) 1(0-1)

A 5 0 5(5-5) 0(0-1)

A 5 50 5(5-5) 0(0-1)

B 2 0 2(2-2 54.5 (49 - 59)
B 2 50 2(2-2) 54 (46 - 66)

B 5 0 5(5-5) 45 (40 - 50)

B 5 50 5(5-6) 42 (38 - 48)

C 2 0 2(0-2) 55.5 (40 - 65)
C 2 50 0(0-2) 60 (45 - 71)

C 5 0 0(0-0) 55 (47 - 63)

C 5 50 0(0-1) 65 (49 - 72)

D 2 0 2(2-2 79 (65 - 95)

D 2 50 2(2-2) 89.5 (77 - 100)
D 5 0 5(5-5) 112.5 (92 - 130)
D 5 50 7(6-38) 100 (88 - 117)

Table 2: Median number (interquartile range) of covariates and dummy variables kept in
the final model over the simulation runs.

For the proposed method, the model with lowest BIC was achieved with
two latent classes and by setting the minobs parameter to 0.05 yielding a
predictive loglikelihood of —7328.6 when applied to the test data. This is
less than the smallest BIC of —7357.5 for the lasso-penalized FMR which
was also achieved with two latent classes. The chosen model utilizes 13
dummy variables and only the age covariate in its original form. This suggests
that nonlinear relationships and/or interactions between variables need to be
addressed in order to tackle the prediction problem. The prediction interval
coverage in the test data is measured to be 94.9%, being almost identical with
the theoretical value. The estimated class probabilities for the two classes
are 0.904 and 0.096 which is in agreement with our earlier impression of the
data based on Figure 6. For further analysis, the model was refitted on the
complete data. The larger training sample resulted in an increased number
of 20 dummy variables.

Interpreting the model results is not straightforward, but the point pre-
diction curves displayed in Figure 7 are particularly revealing. Here we only
consider the larger low-wage latent class as the sample size in the smaller
high-wage class was found too small to derive any meaningful inference. The
method was thus utilized more as an automated filtering tool, rather than as
a full description of the data. The fit of a one-class random forest (RF) is also
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scenario p ¢q¢ FMRL minobs=0.1 minobs=0.05
A 5 0 0 min 15 sec 3 min 29 sec 3 min 20 sec
A 5 50 0 min 22 sec 5 min 8 sec 7 min 51 sec
B 5 0 O min 9 sec 7 min 14 sec 8 min 23 sec
B 5 50 0 min 23 sec 9 min 10 sec 19 min 22 sec
D 5 0 0 min 21 sec 38 min 40 sec 30 min 32 sec
D 5 50 0 min 26 sec 26 min 7 sec 20 min 49 sec
C 5 0 1 min 20 sec 34 min 41 sec 46 min 23 sec
C 5 50 3 min 27 sec 84 min 6 sec 108 min 22 sec

Table 3: Average computation times for the method based on five runs of the simulation
scenarios.

shown for comparison. A non-linear age effect is seen in the data explaining
the inclusion of dummy variables in the model. Wages increase with age for
younger workers after which they remain more or less level. Unsurprisingly,
increased education predicts higher average wages but is not independent of
the job class. With an advanced degree the highest average salaries are made
in the information segment, while with a lower education the average wages
are higher in industry. The one-class random forest seems to perform rela-
tively well for these data despite the group of high-wage outliers. Some bias
is observed in the younger ages where RF tends to overestimate the wages
considerably, but overall, the estimated mean components are very similar
between the two models. However, a significant difference is seen in the
lengths of their 95% prediction intervals: In a 5-fold cross-validation scheme,
the median interval length for the test data using FMRFLEX is 124.7 (me-
dian absolute difference = 15.2) while RF gives 138.3 (15.0). The overall
coverage of the intervals is comparable, 94.3% for FMRFLEX and 95.2%
for RF. Overall, these results lead us to conclude that by using FMRFLEX,
one would obtain more accurate predictions for these data, not necessarily
in terms of less biased mean estimates but in terms of narrower prediction
intervals.

The contextual difference between the two latent classes remains unknown
but one can hypothesize that the smaller class of higher wages represents
those who have reached leader positions in their workplace. Notably, most of
the predictions are not particularly nonlinear, except for the younger ages.
This nonlinearity was still enough to justify the selection of the proposed
method over the linear alternatives.

To further demonstrate the utility of the method, we construct predic-
tion intervals for two selected professionals. Consider a 25-year old worker
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with no college degree, good health and working in an industrial job. The
corresponding 95% prediction interval for his wage is (26.18 — 136.06). In
contrast, a 40-year old with an advanced degree working in the information
field has a predicted wage of (61.8 —200.7) or (239.9 —278.4). In addition to
just reporting the overall coverage of the two disjoint intervals, one can also
place weights on the intervals based on the amount of probability mass of the
predictive distribution they contain. In this case, the probability assigned
for the first interval equals 0.930 while only 0.021 is placed on the second,
reflecting the latent class proportions in the data.

frequency
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Figure 6: Residuals of the random forest regression model fitted to the wage
data. Two distinct densities are seen in the distribution.

6. Discussion

We have introduced a method for flexible finite mixture regression that
combines a random forest learner with a Lasso-penalized finite mixture re-
gression model. We have shown using simulation studies that the method
achieves equal performance with existing methods when the true model is in
fact linear and superior performance in nonlinear cases.

The method was successfully applied to a wage prediction dataset, which
contained two unbalanced latent classes. Superior predictive power com-
pared to the linear alternatives was achieved most likely because the data
contained nonlinear relationships and/or interactions between variables that
were important for the prediction problem.

A drawback of our proposed FMRFLEX method is that while focusing on
improved prediction, we lose the ability to do model-based clustering, which
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Figure 7: Predictions of the FMRFLEX method on the wage data. The plot is split
into a grid where varying degrees of education define the rows and the columns correspond
to the health and industry variables. Each plot in the grid displays the predictions for
those data included in the larger latent class. The two lines correspond to the FMRFLEX
and an ordinary one-class random forest fitted on the complete data. The observed data
is shown as gray points.

is sometimes the goal of FMR analyses. Even though the clusters obtained
by our method are typically relevant and even match the underlying model
in the simulation studies, this is not guaranteed. There is no reason to expect
that observations originating from the same latent class but differing in their
dummy variable arrangement would be clustered together by the method.
Furthermore, the balanced class proportions and equal residual variances
used in the scenarios result in situations where the class distributions differ
only in location. This issue is somewhat alleviated by the first step of the
method where the initial classes are assigned using the standard linear FMR
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model. This often results in a sensible initial clustering unless the underlying
model is particularly nonlinear.

Another loss compared to standard FMR models is the difficulty of inter-
pretation of the model parameters. In the presence of dummy variables, it
is difficult to assess the net effect of a particular covariate in the model, es-
pecially since the dummy variables typically depend on multiple covariates.
Luckily, both of the above-mentioned drawbacks relate only to nonlinear
cases where dummy variables are used extensively. If the true association is
in fact linear, the dummy variables do not typically get carried through the
penalization and the method reduces to a linear FMR. If, however, the true
association is nonlinear, a linear FMR is not valid anyway making its easy
interpretation irrelevant.

The scope of the simulation studies covered cases with strong non-linearity
and partly overlapping latent classes. Simulations in even more extreme set-
tings could be performed to gain more information about the limitations of
the proposed method. However, some assumptions can be made based on
its structure. Due to the flexibility of the random forest learner, there is no
fundamental reason to assume that the proposed method could not handle
even severe cases of non-linearity or even discontinuous mean components.
However, it is conceivable that weakly-separated latent classes combined with
non-linearity could prove problematic. A particular concern in this case is
the first step of the algorithm, where the initial class assignments are sought
with a linear fit.

In this paper, we investigated exclusively a modified version of the orig-
inal FMRFLEX idea for computational reasons. It is not guaranteed that
the two alternatives perform identically when applied to the same set of data
and in fact, we have observed that a small loss in accuracy due to the mod-
ification is possible. It is therefore not correct to treat these alternatives
as two fully exchangeable methods. However, the magnitude of the differ-
ence in performance is negligible compared to the reduction in computational
burden.

There exists many opportunities for future research around this topic.
For example, an extension of the model to HMEs with covariate-dependent
mixing proportions could be developed, as well as extensions for different
types of outcome variables. Furthermore, the properties of BIC in selecting
the number latent classes K should be investigated in more detail.

A number of R (R Core Team, 2013) packages were used in different parts
of the analysis. Random forests were obtained with randomForest (Liaw and
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Wiener, 2002), the linear FMR with flexmiz (Leisch, 2004) and the Lasso-
penalized FMR with fmrlasso (Stédler, 2010). Parallel simulation runs using
multiple computing units were achieved with snowfall (Knaus, 2013). Finally,
the norimiz (Méchler, 2014) package was used for handling miscellaneous
calculations involving univariate mixtures of Gaussians.
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