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Abstract—In this paper, we study the boundedness of the fractional integral operator Iα on Carnot
group G in the generalized Morrey spaces Mp,ϕ(G). We shall give a characterization for the strong
and weak type boundedness of Iα on the generalized Morrey spaces, respectively. As applications of
the properties of the fundamental solution of sub-Laplacian L on G, we prove two Sobolev–Stein
embedding theorems on generalized Morrey spaces in the Carnot group setting.
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1. INTRODUCTION

Carnot groups appear in quantum physics and many parts of mathematics, including Fourier
analysis, several complex variables, geometry and topology. Analysis on these groups is also motivated
by their role as the simplest and the most important model in the general theory of vector fields satisfying
the Hörmander’s condition. The simplest examples of the Carnot groups are Euclidean space R

n, the
Heisenberg group Hn and the Heisenberg-type groups introduced by Kaplan [1].

For x ∈ G and r > 0, let D(x, r) denote the G-ball centered at x of radius r, and let �D(x, r) denote
its complement.

Let f ∈ Lloc
1 (G). The maximal operator M and the fractional integral operator Iα are defined by

Mf(x) = sup
r>0

|D(x, r)|−1

ˆ
D(x,r)

|f(y)| dy,

Iαf(x) =

ˆ
G

f(y) dy

ρ(x−1y)Q−α
, 0 < α < Q,

where Q is the homogeneous dimension of the homogeneous Carnot group G and |D(x, t)| is the Haar
measure of the G-ball D(x, t).

The operators M and Iα play an important role in real and harmonic analysis and applications (see,
for example, [2] and [3]).

The Hardy–Littlewood–Sobolev theorem for the fractional integral operator Iα holds.
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Theorem A ([2], [4]). Let 0 < α < Q and 1 ≤ p < Q/α. Then
(1) If 1 < p < Q/α, then the condition 1/p − 1/q = α/Q is necessary and sufficient for the

boundedness of Iα from Lp(G) to Lq(G).

(2) If p = 1, then the condition 1− 1/q = α/Q is necessary and sufficient for the boundedness
of Iα from L1(G) to WLq(G).

In the present work, we study Spanne-type boundedness of the operator Iα from Mp,ϕ1 to Mq,ϕ2 ,
1 < p < q < ∞, and from the space M1,ϕ1 to the weak space WMq,ϕ2 , 1 < q < ∞. Also we study
Adams-type boundedness of the operator Iα from Mp,ϕ1/p(G) to Mq,ϕ1/q (G), 1 < p < q < ∞, and from
the space M1,ϕ(G) to the weak space WMq,ϕ1/q(G), 1 < q < ∞. We shall give a characterization for
the Spanne and Adams-type boundedness of the operator Iα on generalized Morrey spaces, including
weak versions. As applications of the properties of the fundamental solution of sub-Laplacian L on G,
we prove two Sobolev-Stein embedding theorems on generalized Morrey spaces in the Carnot group
setting.

By A � B we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A � B and B � A, we write A ≈ B and say that A and B are equivalent.

2. NOTATION AND PRELIMINARY RESULTS

We first recall some preliminaries concerning stratified Lie groups (or so-called Carnot groups). We
refer the reader to the books [3], [5] and [6] for analysis on stratified groups.

Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume that there is a direct sum
vector space decomposition

G = V1 ⊕ · · · ⊕ Vm, (2.1)

so that each element of Vj , 2 ≤ j ≤ m, is a linear combination of (j − 1)th order commutator of elements
of V1. Equivalently, (2.1) is a stratification provided [Vi, Vj ] = Vi+j whenever i+ j ≤ m and [Vi, Vj ] = 0
otherwise. Let X = X1, . . . ,Xn be a basis for V1 and Xij , 1 ≤ i ≤ kj , for Vj consisting of commutators
of length j. We set Xi1 = Xi, i = 1, . . . , n and k1 = n, and we call Xi1 a commutator of length 1.

If G is the simply connected Lie group associated with G, then the exponential mapping is a global
diffeomorphism from G to G. Thus, for each g ∈ G, there is x = (xij) ∈ R

N , 1 ≤ i ≤ kj , 1 ≤ j ≤ m,
N =

∑m
j=1 kj , such that

g = exp
(∑

xijXij

)
.

A homogeneous norm function | · | on G is defined by

|g| =
(∑

|xij |2m!/j

)1/(2m!)

,

and Q =
∑m

j=1 jkj is said to be the homogeneous dimension of G, since d(δrx) = rQ dx for r > 0. The
dilation δr on G is defined by

δr(g) = exp
(∑

rjxijXij

)
, if g = exp

(∑
xijXij

)
.

The convolution operation on G is defined by

f ∗ h(x) =
ˆ
G

f(xy−1)h(y) dy =

ˆ
G

f(y)h(y−1x) dy,

where y−1 is the inverse of y and xy−1 denotes the group multiplication of x by y−1. It is known that, for
any left invariant vector field X on G,

X(f ∗ h) = f ∗ (Xh).
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Since G is nilpotent, the exponential map is a diffeomorphism from G onto G which takes the
Lebesgue measure on G to a bi-invariant Haar measure dx on G. The group identity of G will be referred
to as the origin and denoted by e.

A homogeneous norm on G is a continuous function x → ρ(x) from G to [0,∞), which is C∞ on
G \ {0} and satisfies (x−1) = ρ(x), ρ(δtx) = tρ(x) for all x ∈ G, t > 0; ρ(e) = 0 (the group identity);
moreover, there exists a constant c0 ≥ 1 such that

ρ(xy) ≤ c0(ρ(x) + ρ(y)) for all x, y ∈ G.

We call a curve γ : [a, b] → G a horizontal curve connecting two points x, y ∈ G if γ(a) = x,
γ(b) = y and γ′(t) ∈ V1 for all t. Then the Carnot–Carathéodory distance between x, y is defined
as

dcc(x, y) = inf
γ

ˆ b

a
〈γ′(t), γ′(t)〉1/2 dt,

where the infimum is taken over all horizontal curves γ connecting x and y. It is known that any two
points x, y on G can be joined by a horizontal curve of finite length and then dcc is a left invariant metric
on G. We can define the metric ball centered at x and with radius r associated with this metric by

Bcc(x, r) = {y ∈ G : dcc(x, y) < r}.

We note that this metric dcc is equivalent to the pseudo-metric ρ(x, y) = |x−1y| defined by the
homogeneous norm | · | in the following sense (see [2]):

C−1ρ(x, y) ≤ dcc(x, y) ≤ Cρ(x, y).

We denote the metric ball associated with ρ by D(x, r) = {y ∈ G : ρ(x, y) < r}. An important feature
of both of these distance functions is that these distances and thus the associated metric balls are left
invariant, namely,

dcc(zx, zy) = dcc(x, y), Bcc(x, r) = xBcc(e, r)

and

ρ(zx, zy) = ρ(x, y), D(x, r) = xD(e, r).

From now on, we will always use the metric dcc and drop the subscript from dcc. Similarly, we will use
B(x, r) to denote Bcc(x, r).

With this norm, we define the G-ball of radius r centered at x by

D(x, r) = {y ∈ G : ρ(y−1x) < r},
and we denote by Dr = D(e, r) = {y ∈ G : ρ(y) < r} the open ball of radius r centered at e, the identity
element of G. By �D(x, r) = G \D(x, r) we denote the complement of D(x, r).

One easily recognizes that there exist c1 = c1(G), and c2 = c2(G) such that

|B(x, r)| = c1r
Q, |D(x, r)| = c2r

Q, x ∈ G, r > 0.

The most basic partial differential operator in a Carnot group is the sub-Laplacian associated with X,
i.e., the second-order partial differential operator on G given by L =

∑n
i=1 X

2
i .

3. GENERALIZED MORREY SPACES

In the study of local properties of solutions of partial differential equations, together with weighted
Lebesgue spaces, Morrey spaces Lp,λ(G) play an important role, see [7]. They were introduced by
C. Morrey in 1938 [8]. The Morrey space in a Carnot group is defined as follows: for 1 ≤ p ≤ ∞,
0 ≤ λ ≤ Q, a function f ∈ Lp,λ(G) if f ∈ Lloc

p (G) and

‖f‖Lp,λ
:= sup

x∈G, r>0
r−λ/p‖f‖Lp(D(x,r)) < ∞;
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Lp,λ(G) =

⎧
⎪⎨

⎪⎩

Lp(G) if λ = 0,

L∞(G) if λ = Q,

Θ if λ < 0 or λ > Q,

where Θ is the set of all functions equivalent to 0 on G.
We also denote by WLp,λ(G) the weak Morrey space of all functions f ∈ WLloc

p (G), for which

‖f‖WLp,λ
≡ ‖f‖WLp,λ(G) = sup

x∈G, r>0
r−λ/p‖f‖WLp(D(x,r)) < ∞,

where WLp(D(x, r)) denotes the weak Lp-space of measurable functions f , for which

‖f‖WLp(D(x,r)) = sup
t>0

t|{y ∈ D(x, r) : |f(y)| > t}|1/p. (3.1)

We find it convenient to define the generalized Morrey spaces as follows.

Definition. Let 1 ≤ p < ∞ and ϕ(x, r) be a positive measurable function on G× (0,∞). The gener-
alized Morrey space Mp,ϕ(G) is defined for all functions f ∈ Lloc

p (G) by the finite norm

‖f‖Mp,ϕ = sup
x∈G, r>0

r−Q/p

ϕ(x, r)
‖f‖Lp(D(x,r)).

Also the weak generalized Morrey space WMp,ϕ(G) is defined for all functions f ∈ Lloc
p (G) by the

finite norm

‖f‖WMp,ϕ = sup
x∈G, r>0

r−Q/p

ϕ(x, r)
‖f‖WLp(D(x,r)).

Lemma 3.1. Let ϕ(x, r) be a positive measurable function on G× (0,∞).

(i) If

sup
t<r<∞

r−Q/p

ϕ(x, r)
= ∞ for some t > 0 and for all x ∈ G, (3.2)

then Mp,ϕ(G) = Θ.

(ii) If

sup
0<r<τ

ϕ(x, r)−1 = ∞ for some t > 0 and for all x ∈ G, (3.3)

then Mp,ϕ(G) = Θ.

Proof. (i) Let (3.2) be satisfied and f be not equivalent to zero. Then supx∈G ‖f‖Lp(D(x,t)) > 0, and
hence

‖f‖Mp,ϕ ≥ sup
x∈G

sup
t<r<∞

ϕ(x, r)−1r−Q/p‖f‖Lp(D(x,r)) ≥ sup
x∈G

‖f‖Lp(D(x,t)) sup
t<r<∞

ϕ(x, r)−1r−Q/p.

Therefore, ‖f‖Mp,ϕ = ∞.

(ii) Let f ∈ Mp,ϕ(G) and (3.3) be satisfied. Then there are two possibilities:
Case 1: sup0<r<t ϕ(x, r)

−1 = ∞ for all t > 0.
Case 2: sup0<r<t ϕ(x, r)

−1 < ∞ for some s ∈ (0, τ).

For Case 1, by the Lebesgue differentiation theorem, for almost all x ∈ G, we have

lim
r→0+

‖fχD(x,r)‖Lp

‖χD(x,r)‖Lp

= |f(x)|. (3.4)
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We claim that f(x) = 0 for all those x. Indeed, fix x and assume |f(x)| > 0. Then, by Lemma 3.2 and
(3.4), there exists a t0 > 0 such that

r−Q/p‖f‖Lp(D(x,r)) ≥ 2−1c
1/p
2 |f(x)|

for all 0 < r ≤ t0. Consequently,

‖f‖Mp,ϕ ≥ sup
0<r<t0

ϕ(x, r)−1r−Q/p‖f‖Lp(D(x,r)) ≥ 2−1c
1/p
2 |f(x)| sup

0<r<t0

ϕ(x, r)−1.

Hence ‖f‖Mp,ϕ = ∞, so f /∈ Mp,ϕ(G) and we have arrived at a contradiction.

Note that Case 2 implies that sups<r<τ ϕ(x, r)
−1 = ∞, hence

sup
s<r<∞

ϕ(x, r)−1r−Q/p ≥ sup
s<r<τ

ϕ(x, r)−1r−Q/p ≥ τ−Q/p sup
s<r<τ

ϕ(x, r)−1 = ∞,

which is the case in (i).

Remark 3.1. We denote by Ωp the sets of all positive measurable functions ϕ on G× (0,∞) such that,
for all t > 0,

sup
x∈G

∥
∥
∥
∥
r−Q/p

ϕ(x, r)

∥
∥
∥
∥
L∞(t,∞)

< ∞ and sup
x∈G

‖ϕ(x, r)−1‖L∞(0,t) < ∞,

respectively. In what follows, keeping in mind Lemma 3.1, we always assume that ϕ ∈ Ωp.

A function ϕ : (0,∞) → (0,∞) is said to be almost increasing (resp. almost decreasing) if there
exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

Let 1 ≤ p < ∞. Denote by Gp the set of all almost decreasing functions ϕ : (0,∞) → (0,∞), such that
t ∈ (0,∞) �→ tQ/pϕ(t) ∈ (0,∞) is almost increasing.

Apparently, the requirement φ ∈ Gp is superfluous but it turns out that this condition is natu-
ral. Indeed, Nakai established that there exists a function ρ such that ρ itself is decreasing, that
ρ(t)tn/p ≤ ρ(T )T n/p for all 0 < t ≤ T < ∞ and that Mp,φ(G) = Mp,ρ(G).

By elementary calculations, we obtain the following statement, which shows particularly that the
spaces Mp,ϕ(G) and WMp,ϕ(G) are not trivial; see, for example, [9].

Lemma 3.2. Let ϕ ∈ Gp, 1 ≤ p < ∞, D0 = D(x0, r0), and χD0 is the characteristic function of the
ball D0, then χD0 ∈ Mp,ϕ(G). Moreover, there exists C > 0 such that

1

ϕ(r0)
≤ ‖χD0‖WMp,ϕ ≤ ‖χD0‖Mp,ϕ ≤ C

ϕ(r0)
.

Proof. Let ϕ ∈ Gp, 1 ≤ p < ∞, D0 = D(x0, r0) denote an arbitrary ball in G. It is easy to see that

‖χD0‖WMp,ϕ = sup
x∈G, r>0

1

ϕ(r)

(
|D(x, r) ∩D0|

|D(x, r)|

)1/p

≥ 1

ϕ(r0)

(
|D0 ∩D0|

|D0|

)1/p

=
1

ϕ(r0)
.

Now, if r ≤ r0, then ϕ(r0) ≤ Cϕ(r) and

1

ϕ(r)

(
|D(x, r) ∩D0|

|D(x, r)|

)1/p

≤ 1

ϕ(r)
≤ C

ϕ(r0)

for all x ∈ G.
On the other hand, if r0 ≤ r, we have ϕ(r0)r

Q/p
0 ≤ Cϕ(r)rQ/p for all x ∈ G and

1

ϕ(r)

(
|D(x, r) ∩D0|

|D(x, r)|

)1/p

=
|D(x, r) ∩D0|1/p

c
1/p
2 ϕ(r)rQ/p

≤ |D0|1/p

c
1/p
2 ϕ(r)rQ/p

=
r
Q/p
0

ϕ(r)rQ/p
≤ C

ϕ(r0)

for all x ∈ G. This completes the proof.
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The following theorem was proved in [10].

Theorem 3.1. Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfies the condition

sup
r<t<∞

t−Q/p ess inf
t<s<∞

ϕ1(x, s)s
Q/p ≤ Cϕ2(x, r), (3.5)

where C does not depend on x and r. Then, for p > 1, the operator M is bounded from Mp,ϕ1(G)
to Mp,ϕ2(G), and for p = 1, the operator M is bounded from M1,ϕ1(G) to WM1,ϕ2(G).

4. FRACTIONAL INTEGRAL OPERATOR IN THE SPACES Mp,ϕ(G)

We will use the following statement on the boundedness of the weighted Hardy operator

Hwg(t) :=

ˆ ∞

t
g(s)w(s) ds, 0 < t < ∞,

where w is a weight.
The following theorem was proved in [11] (see also [12]).

Theorem 4.1. Let v1, v2, let w be weights on (0,∞), and let v1(t) be bounded outside a neighbor-
hood of the origin. The inequality

ess sup
t>0

v2(t)Hwg(t) ≤ C ess sup
t>0

v1(t)g(t) (4.1)

holds for some C > 0 for all nonnegative and nondecreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

ˆ ∞

t

w(s) ds

ess sups<τ<∞ v1(τ)
< ∞.

Moreover, the value C = B is the best constant for (4.1).

4.1. Spanne-Type Result

The following local estimates are valid.

Theorem 4.2. Let 1 ≤ p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q, and f ∈ Lloc
p (G). Then, for p > 1

‖Iαf‖Lq(D(x,t)) ≤ CtQ/q

ˆ ∞

2c0t
r−Q/q−1‖f‖Lp(D(x,r)) dr (4.2)

and for p = 1

‖Iαf‖WLq(D(x,t)) ≤ CtQ/q

ˆ ∞

2c0t
r−Q/q−1‖f‖L1(D(x,r)) dr, (4.3)

where C does not depend on f , x ∈ G, and t > 0.

Proof. For a given ball D = D(x, t), we split the function f as f = f1 + f2, where f1 = fχ2c0D,
f2 = fχ�(2c0D), and 2c0D = D(x, 2c0t); and then

Iαf(x) = Iαf1(x) + Iαf2(x).

Let 1 < p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q. Since f1 ∈ Lp(G), by the boundedness of the
operator Iα from Lp(G) to Lq(G) (see Theorem A) it follows that

‖Iαf1‖Lq(D) ≤ C‖f1‖Lp(G) = C‖f‖Lp(2c0D) ≤ CtQ/q

ˆ ∞

2c0t
r−Q/q−1‖f‖Lp(D(x,r)) dr, (4.4)

where the constant C is independent of f .
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Observe that the conditions z ∈ D and y ∈ �(2c0D) imply

1

2c0
ρ(y−1z) ≤ ρ(x−1y) ≤ 3c0

2
ρ(y−1z).

Then, for all z ∈ D, we obtain

|Iαf2(z)| ≤
(
3c0
2

)Q−α ˆ
�(2c0D)

ρ(x−1y)α−Q|f(y)| dy.

By Fubini’s theorem, we haveˆ
�(2c0D)

ρ(x−1y)α−Q|f(y)| dy ≈
ˆ

�(2c0D)
|f(y)| dy

ˆ ∞

ρ(x−1y)
τα−Q−1 dτ

≈
ˆ ∞

2c0t

ˆ
2c0t≤ρ(x−1y)<τ

|f(y)| dyτα−Q−1 dτ �
ˆ ∞

2c0t

ˆ
D(x,τ)

|f(y)| dyτα−Q−1 dτ.

Applying Hölder’s inequality, we obtainˆ
�(2c0D)

ρ(x−1y)α−Q|f(y)| dy �
ˆ ∞

2c0t
‖f‖Lp(D(x,τ))τ

−Q/q−1 dτ

and for all z ∈ D

|Iαf2(z)| �
ˆ ∞

2c0t
‖f‖Lp(D(x,τ))τ

−Q/q−1 dτ. (4.5)

Moreover, for all p ∈ [1,∞) the inequality

‖Iαf2‖Lq(D) � tQ/q

ˆ ∞

2c0t
r−Q/q−1‖f‖Lp(D(x,r)) dr (4.6)

is valid. Thus, from (4.4) and (4.6), we deduce the inequality (4.2).
Finally, in the case p = 1 by the weak (1, q)-boundedness of Iα (see Theorem A) it follows that

‖Iαf1‖WLq(D) ≤ C‖f1‖L1(G) ≤ CtQ/q

ˆ ∞

2c0t
r−Q/q−1‖f‖L1(D(x,r)) dr, (4.7)

where C does not depend on x, t. Then, from (4.6) and (4.7) we get the inequality (4.3).

Theorem 4.3. Let 1 ≤ p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q, ϕ1 ∈ Ωp, ϕ2 ∈ Ωq, and let the pair
(ϕ1, ϕ2) satisfy the conditionˆ ∞

t

ess infr<s<∞ ϕ1(x, s)s
Q/p

rQ/q

dr

r
≤ Cϕ2(x, t), (4.8)

where C does not depend on x and r. Then, for p > 1 the operator Iα is bounded from Mp,ϕ1(G)
to Mq,ϕ2(G) and for p = 1 the operator Iα is bounded from M1,ϕ1(G) to WMq,ϕ2(G).

Proof. By Theorems 4.1 and 4.2 with v2(r) = ϕ2(x, r)
−1, v1(r) = ϕ1(x, r)

−1r−Q/p, and w(r) = r−Q/q

we have for p > 1

‖Iαf‖Mq,ϕ2
� sup

x∈G, t>0
ϕ2(x, t)

−1

ˆ ∞

t
r−Q/q−1‖f‖Lp(D(x,r)) dr

� sup
x∈G, t>0

ϕ1(x, t)
−1t−Q/p‖f‖Lp(D(x,t)) = ‖f‖Mp,ϕ1

,

and for p = 1

‖Iαf‖WMq,ϕ2
� sup

x∈G, t>0
ϕ2(x, t)

−1

ˆ ∞

t
r−Q/q−1‖f‖L1(D(x,r)) dr

� sup
x∈G, t>0

ϕ1(x, t)
−1t−Q‖f‖L1(D(x,t)) = ‖f‖M1,ϕ1

.
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Remark 4.1. Note that, in the case G = Hn Theorems 4.2 and 4.3 were proved in [13, Lemma 5.1 and
Theorem 5.2]; see also [14], [15].

For proving our main results, we need the following estimate.

Lemma 4.1. If D0 := D(x0, r0), then

rα0 ≤ c2(2c0)
Q−αIαχD0(x) for every x ∈ D0.

Proof. If x, y ∈ D0, then

ρ(x−1y) ≤ c0(ρ(x
−1x0) + ρ(x−1

0 y)) < 2c0r0.

Since 0 < α < Q, we get rα−Q
0 ≤ (2c0)

Q−αρ(x−1y)α−Q. Therefore,

IαχD0(x) =

ˆ
G

χD0(y)ρ(x
−1y)α−Q dy =

ˆ
D0

ρ(x−1y)α−Q dy ≥ c2(2c0)
Q−αrα0 .

The following theorem is one of our main results.

Theorem 4.4. Let 0 < α < Q, p, q ∈ [1,∞), ϕ1 ∈ Ωp, and ϕ2 ∈ Ωq.
(1) If 1 ≤ p < Q/α and 1/q = 1/p − α/Q, then condition (4.8) is sufficient for the boundedness

of Iα from Mp,ϕ1(G) to WMq,ϕ2(G). Moreover, if 1 < p < Q/α, condition (4.8) is sufficient for the
boundedness of Iα from Mp,ϕ1(G) to Mq,ϕ2(G).

(2) If the function ϕ1 ∈ Gp, then the condition

tαϕ1(t) ≤ Cϕ2(t) for all t > 0, (4.9)

where C > 0, does not depend on t, is necessary for the boundedness of Iα from Mp,ϕ1(G)
to WMq,ϕ2(G) and Mp,ϕ1(G) to Mq,ϕ2(G).

(3) Let 1 ≤ p < Q/α and 1/q = 1/p − α/Q. If ϕ1 ∈ Gp satisfies the regularity conditionˆ ∞

t
rα−1ϕ1(r) dr ≤ Ctαϕ1(t), (4.10)

for all t > 0, where C > 0 does not depend on t, then condition (4.9) is necessary and sufficient
for the boundedness of Iα from Mp,ϕ1(G) to WMq,ϕ2(G). Moreover, if 1 < p < Q/α, then condi-
tion (4.9) is necessary and sufficient for the boundedness of Iα from Mp,ϕ1(G) to Mq,ϕ2(G).

Proof. The first part of the theorem was proved in Theorem 4.3.

We shall now prove the second part. Let D0 = D(x0, t0) and x ∈ D0. By Lemma 4.1 we have
tα0 ≤ CIαχD0(x). Therefore, by Lemma 3.2 and Lemma 4.1

tα0 � |D0|−1/p‖IαχD0‖Lq(D0) � ϕ2(t0)‖IαχD0‖Mq,ϕ2
� ϕ2(t0)‖χD0‖Mp,ϕ1

� ϕ2(t0)

ϕ1(t0)

or

tα0 � ϕ2(t0)

ϕ1(t0)
for all t0 > 0 ⇐⇒ tα0ϕ1(t0) � ϕ2(t0) for all t0 > 0.

Since this is true for every t0 > 0, we are done.

The third statement of the theorem follows from first and second parts of the theorem.

Remark 4.2. If we take ϕ1(t) = t(λ−Q)/p and ϕ2(t) = t(μ−Q)/q in Theorem 4.4, then conditions (4.10)
and (4.9) are equivalent to 0 < λ < Q− αp and λ/p = μ/q, respectively. Therefore, we obtain the
following Spanne result for Morrey spaces on Carnot groups.

Corollary 4.1. Let 0 < α < Q, 1 ≤ p < Q/α, 0 < λ < Q− αp, and 1/q = 1/p − α/Q. Then the
operator Iα is bounded from Lp,λ(G) to WLq,μ(G) if and only if λ/p = μ/q. Moreover, if
1 < p < Q/α, then the operator Iα is bounded from Lp,λ(G) to Lq,μ(G) if and only if λ/p = μ/q.
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4.2. Adams-Type Results
The following pointwise estimate plays a key role in the proof of our main results.

Theorem 4.5. Let 1 ≤ p < ∞, 0 < α < Q, and f ∈ Lloc
p (G). Then

|Iαf(x)| ≤ CtαMf(x) + C

ˆ ∞

t
rα−Q/p−1‖f‖Lp(D(x,r)) dr, (4.11)

where C does not depend on f , x, and t.

Proof. Write f = f1 + f2, where f1 = fχ2c0D, f2 = fχ�(2c0D), and D = D(x, t). Then

Iαf(x) = Iαf1(x) + Iαf2(x).

For Iαf1(x), following Hedberg’s trick (see for instance [3, p. 354]), for all z ∈ G we obtain
|Iαf1(z)| ≤ C1t

αMf(z). For Iαf2(z) with z ∈ D, from (4.5) we have

|Iαf2(z)| ≤
ˆ

�(2c0D)
ρ(x−1y)α−Q|f(y)| dy ≤ C

ˆ ∞

2c0t
rα−Q/p−1‖f‖Lp(D(x,r)) dr, (4.12)

which proves (4.11).

The following is a result of Adams type for the fractional integral on Carnot groups (see [16]).

Theorem 4.6 (Adams-type result). Let 1 ≤ p < q < ∞, 0 < α < Q/p, and let ϕ ∈ Ωp satisfy the
following conditions:

sup
r<t<∞

t−Q ess inf
t<s<∞

ϕ(x, s)sQ ≤ Cϕ(x, r), (4.13)
ˆ ∞

r
tα−1ϕ(x, t)1/p dt ≤ Cr−αp/(q−p), (4.14)

where C does not depend on x ∈ G and r > 0. Then, for p > 1, the operator Iα is bounded
from Mp,ϕ1/p(G) to Mq,ϕ1/q (G) and the operator Iα is bounded from M1,ϕ(G) to WMq,ϕ1/q(G) for
p = 1.

Proof. Let 1 ≤ p < ∞ and f ∈ Mp,ϕ(G). By Theorem 4.5, the inequality (4.11) is valid. Then, from
condition (4.14) and inequality (4.11), we obtain

|Iαf(x)| � tαMf(x) +

ˆ ∞

t
rα−Q/p−1‖f‖Lp(D(x,r)) dr

≤ tαMf(x) + ‖f‖M
p,ϕ1/p

ˆ ∞

t
rα−1ϕ(x, r)1/p dr

≤ tαMf(x) + t−αp/(q−p)‖f‖M
p,ϕ1/p

. (4.15)

Hence, choosing

t =

(
Mp,ϕ1/p

Mf(x)

)

for every x ∈ G, we can write

|Iαf(x)| � (Mf(x))p/q‖f‖1−p/q
M

p,ϕ1/p
.

Hence the statement of the theorem follows in view of the boundedness of the maximal operator M
in Mp,ϕ(G) provided by Theorem 3.1, by virtue of condition (4.13):

‖Iαf‖M
q,ϕ1/q

� ‖f‖1−p/q
M

p,ϕ1/p
sup

x∈G, t>0
ϕ(x, t)−p/qt−Q/q‖Mf‖p/qLp(D(x,t))

� ‖f‖1−p/q
M

p,ϕ1/p
‖Mf‖p/qM

p,ϕ1/p
� ‖f‖M

p,ϕ1/p
,
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if 1 < p < q < ∞ and

‖Iαf‖WM
q,ϕ1/q

� ‖f‖1−1/q
M1,ϕ

sup
x∈G, t>0

ϕ(x, t)−1/qt−Q/q‖Mf‖1/qWL1(D(x,t))

� ‖f‖1−1/q
M1,ϕ

‖Mf‖1/qM1,ϕ
� ‖f‖M1,ϕ ,

if p = 1 < q < ∞.

Remark 4.3. Note that, in the case G = Hn Theorem 4.6 was proved in [13, Theorem 5.3].

The following theorem is one of our main results.

Theorem 4.7. Let 0 < α < Q, 1 ≤ p < q < ∞, and ϕ ∈ Ωp.
(1) If ϕ(x, t) satisfies condition (4.13), then condition (4.14) is sufficient for the boundedness

of Iα from Mp,ϕ1/p(G) to WMq,ϕ1/q(G). Moreover, if 1 < p < q < ∞, then condition (4.14) is
sufficient for the boundedness of Iα from Mp,ϕ1/p(G) to Mq,ϕ1/q(G).

(2) If ϕ ∈ Gp, then the condition

rαϕ(r)1/p ≤ Cr−αp/(q−p) (4.16)

for all r > 0, where C > 0 does not depend on r, is necessary for the boundedness of Iα
from Mp,ϕ1/p(G) to WMq,ϕ1/q(G) and from Mp,ϕ1/p(G) to Mq,ϕ1/q (G).

(3) If ϕ ∈ Gp satisfies the regularity conditionˆ ∞

r
tα−1ϕ(t)1/p dt ≤ Crαϕ(r)1/p (4.17)

for all r > 0, where C > 0 does not depend r, then condition (4.16) is necessary and sufficient for
the boundedness of Iα from Mp,ϕ1/p(G) to WMq,ϕ1/q(G). Moreover, if 1 < p < q < ∞, then condi-
tion (4.16) is necessary and sufficient for the boundedness of Iα from Mp,ϕ1/p(G) to Mq,ϕ1/q(G).

Proof. The first part of the theorem is a corollary of Theorem 4.6.

We shall now prove the second part. Let D0 = D(x0, t0) and x ∈ D0. By Lemma 4.1, we have
tα0 ≤ CIαχD0(x). Therefore, by Lemma 3.2 and Lemma 4.1, we have

tα0 � |D0|−1/q‖IαχD0‖Lq(D0)

� ϕ(t0)
1/q‖IαχD0‖Mq,ϕ1/q

� ϕ(t0)
1/q‖χD0‖Mp,ϕ1/p

� ϕ(t0)
1/q−1/p,

or

tα0ϕ(t0)
1/p−1/q � 1 for all t0 > 0 ⇐⇒ tα0ϕ(t0)

1/p � t
−αp/(q−p)
0 .

Since this is true for every x ∈ G and t0 > 0, we are done.

The third statement of the theorem follows from first and second parts of the theorem.

The following is a result of Adams type for the fractional integral on Carnot groups.

Theorem 4.8 (Adams-type result). Let 0 < α < Q, 1 ≤ p < q < ∞, and ϕ ∈ Ωp satisfy condi-
tion (4.13) and

tαϕ(x, t) +

ˆ ∞

t
rα−1ϕ(x, r) dr ≤ Cϕ(x, t)p/q, (4.18)

where C does not depend on x ∈ G and r > 0. Then, for p > 1, the operator Iα is bounded
from Mp,ϕ1/p(G) to Mq,ϕ1/q (G) and the operator Iα is bounded from M1,ϕ(G) to WMq,ϕ1/q(G) for
p = 1.
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Proof. Let 1 ≤ p < ∞ and f ∈ Mp,ϕ(G). By Theorem 4.5, the inequality (4.11) is valid. Then, from
condition (4.14) and inequality (4.11), we obtain

|Iαf(x)| � tαMf(x) +

ˆ ∞

t
rα−Q/p−1‖f‖Lp(D(x,r)) dr

≤ tαMf(x) + ‖f‖Mp,ϕ

ˆ ∞

t
rα−1ϕ(x, r) dr. (4.19)

Thus, by (4.18) and (4.19), we have

|Iαf(x)| � min{ϕ(x, t)p/q−1Mf(x), ϕ(x, t)β‖f‖Mp,ϕ}

� sup
s>0

min{sp/q−1Mf(x), sp/q‖f‖Mp,ϕ} = (Mf(x))p/q‖f‖1−p/q
Mp,ϕ

; (4.20)

where we have used the fact that the supremum is achieved when the minimum parts are balanced. From
Theorem 3.1 and (4.20), we obtain

‖Iαf‖M
q,ϕ1/q

� ‖f‖1−p/q
M

p,ϕ1/p
‖Mf‖p/qM

p,ϕ1/p
� ‖f‖M

p,ϕ1/p
,

if 1 < p < q < ∞ and

‖Iαf‖WM
q,ϕ1/q

� ‖f‖1−1/q
M1,ϕ

‖Mf‖1/qM1,ϕ
� ‖f‖M1,ϕ ,

if p = 1 < q < ∞.

The following theorem is one of our main results.

Theorem 4.9. Let 0 < α < Q, 1 ≤ p < q < ∞, and ϕ ∈ Ωp.
(1) If ϕ(x, t) satisfy condition (4.13), then condition (4.18) is sufficient for the boundedness

of Iα from Mp,ϕ1/p(G) to Mq,ϕ1/q(G). Moreover, if 1 < p < q < ∞, then condition (4.18) is sufficient
for the boundedness of Iα from Mp,ϕ1/p(G) to Mq,ϕ1/q(G).

(2) If ϕ ∈ Gp, then the condition

rαϕ(r)1/p ≤ Cϕ(r)1/q (4.21)

for all r > 0, where C > 0 does not depend on r, is necessary for the boundedness of the oper-
ator Iα from Mp,ϕ1/p(G) to WMq,ϕ1/q(G) and from Mp,ϕ1/p(G) to Mq,ϕ1/q(G).

(3) If ϕ ∈ Gp satisfies the regularity condition (4.17), then condition (4.21) is necessary and
sufficient for the boundedness of Iα from Mp,ϕ1/p(G) to WMq,ϕ1/q(G). Moreover, if 1 < p < q < ∞,
then condition (4.21) is necessary and sufficient for the boundedness of Iα from Mp,ϕ1/p(G)

to Mq,ϕ1/q (G).

Proof. The first part of the theorem is a corollary of Theorem 4.8.

We shall now prove the second part. Let D0 = D(x0, t0) and x ∈ D0. By Lemma 4.1 we have
tα0 ≤ CIαχD0(x). Therefore, by Lemma 3.2 and Lemma 4.1 we have

tα0 � |D0|−1/q‖IαχD0‖Lq(D0)

� ϕ(t0)
1/q‖IαχD0‖Mq,ϕ1/q

� ϕ(t0)
1/q‖χD0‖Mp,ϕ1/p

� ϕ(t0)
1/q−1/p,

or

tα0ϕ(t0)
1/p−1/q � 1 for all t0 > 0 ⇐⇒ tα0ϕ(t0)

1/p � ϕ(t0)
1/q.

Since this is true for every x ∈ G and t0 > 0, we are done.

The third statement of the theorem follows from first and second parts of the theorem.
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Remark 4.4. If we take ϕ(t) = tλ−Q in Theorem 4.9, then condition (4.17) will be equivalent to 0 < λ <
Q− αp, and condition (4.16) will be equivalent to 1/p − 1/q = α/(Q− λ). Therefore, we obtain the
following Adams result for Morrey spaces in Carnot groups.

Corollary 4.2. Let 0 < α < Q, 1 ≤ p < q < ∞, and 0 < λ < Q− αp. Then the operator Iα
is bounded from Lp,λ(G) to WLq,λ(G) if and only if 1/p − 1/q = α/(Q− λ). Moreover, if
1 < p < q < ∞, then the operator Iα is bounded from Lp,λ(G) to Lq,λ(G) if and only if 1/p− 1/q =
α/(Q − λ).

Remark 4.5. Note that, in the case G = R
n, the sufficient part of Corollary 4.6 was proved in [17].

5. SOME APPLICATIONS

It is known that (see [18, p. 247]) if ρ is a homogeneous norm on G, then there exists a positive
constant βρ such that Γ(x) = βρρ(x)

2−Q is the fundamental solution of L.
From Theorems 4.4 and 4.7 one easily obtains an inequality extending the classical Sobolev

embedding theorem to the homogeneous Carnot groups.

Theorem 5.1 (Sobolev–Stein embedding on generalized Morrey space). Let L be the sub-Laplacian
on the homogeneous Carnot group G of homogeneous dimension Q. Let also 1 < p < Q and
1/q = 1/p − 1/Q, ϕ1 ∈ Ωp and ϕ2 ∈ Ωq satisfy condition (4.8). Then there exists a positive
constant C such that

‖u‖Mq,ϕ2
≤ C‖∇Lu‖Mp,ϕ1

for every u ∈ Lp(G) ∩Mp,ϕ1(G).

Proof. Let u ∈ C∞
0 (G). By using the integral representation formula for the fundamental solution

(see [18, p. 237]), we have

u(x) =

ˆ
G

Γ(x−1y)Lu(y) dy. (5.1)

Keeping in mind that L = Σn
i=1X

2
i and X∗

i = −Xi, by integrating the right-hand side of (5.1) by parts,
we obtain

u(x) =

ˆ
G

(∇LΓ)(x
−1y)∇Lu(y) dy. (5.2)

On the other hand, out of the origin, we have

∇LΓ(x) = βρ∇L(ρ(x)
2−Q) = (2−Q)βρρ(x)

1−Q∇Lρ(x),

so that, since ∇Lρ is smooth in G \ {0} and δλ-homogeneous of degree zero,

∇LΓ(x) ≤ Cρ(x)1−Q

for a suitable constant C > 0 depending only on L. Using this inequality in (5.2), we can write

|u(x)| ≤ C

ˆ
G

|∇Lu(y)|ρ(x)1−Q dy = CI1(|∇Lu|)(x). (5.3)

Then, by Theorem 4.4,

‖u‖Mq,ϕ2
≤ C‖I1(|∇Lu|)‖Mq,ϕ2

≤ C‖∇Lu‖Mp,ϕ1
, where 1 < p < Q,

1

q
=

1

p
− 1

Q
.

The following theorem can be proved in a similar way.

Theorem 5.2 (Sobolev-Stein embedding on generalized Morrey space). Let L be the sub-Laplacian
on the homogeneous Carnot group G of homogeneous dimension Q. Let also 1 < p < q < ∞,
ϕ ∈ Ωp satisfy conditions (4.13) and (4.14). Then there exists a positive constant C such that

‖u‖M
q,ϕ1/q

≤ C‖∇Lu‖M
p,ϕ1/p

for every u ∈ Lp(G) ∩Mp,ϕ1/p(G).

MATHEMATICAL NOTES Vol. 102 No. 5 2017



734 EROGLU et al.

ACKNOWLEDGMENTS

The research of V. S. Guliyev was supported in part by the 2015 grant of the Presidium of the
Azerbaijan National Academy of Science and by the Ahi Evran University Scientific Research Project
under grant FEF. A3.16.024).

REFERENCES
1. A. Kaplan, “Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratics

forms,” Trans. Amer. Math. Soc. 258 (1), 147–153 (1980).
2. A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their

Sub-Laplacians (Springer, Berlin, 2007).
3. E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality and Oscillatory Integrals, in

Princeton Math. Ser. (Princeton Univ. Press, Princeton, NJ, 1993), Vol. 43.
4. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, in Math. Notes (Princeton Univ.

Press, Princeton, 1982), Vol. 28.
5. G. B. Folland and E. M. Stein, “Estimates for the ∂b-complex and analysis on the Heisenberg group,” Comm.

Pure Appl. Math. 27, 429–522 (1974).
6. N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, in Cambridge

Tracts in Math. (Cambridge Univ. Press, Cambridge, 1992), Vol. 100.
7. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, in Ann.

of Math. Stud. (Princeton Univ. Press, Princeton, NJ, 1983), Vol. 105.
8. C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math.

Soc. 43 (1), 126–166 (1938).
9. Eridani, M. I. Utoyo, and H. Gunawan, “A characterization for fractional integrals on generalized Morrey

spaces,” Anal. Theory Appl. 28 (3), 263–268 (2012).
10. V. S. Guliyev, A. Akbulut, and Y. Y. Mammadov, “Boundedness of fractional maximal operator and their

higher order commutators in generalized Morrey spaces on Carnot groups,” Acta Math. Sci. Ser. B Engl. Ed.
33 (5), 1329–1346 (2013).

11. V. S. Guliyev, “Generalized local Morrey spaces and fractional integral operators with rough kernel,” Probl.
Mat. Anal. 71, 59–72 (2013) [J. Math. Sci. (N. Y.) 193 (2), 211–227 (2013)].

12. F. Deringoz, V. S. Guliyev, and S. G. Samko, “Boundedness of maximal and singular operators on generalized
Orlicz–Morrey spaces,” in Operator Theory, Operator Algebras and Applications, Oper. Theory Adv.
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