
1

Effectiveness of NoSQL and NewSQL

Databases in Mobile Network Event Data:

Cassandra and ParStream/Kinetic

Petri Kotiranta, Marko Junkkari

Faculty of Natural Sciences, Computer Sciences, University of Tampere, FI-33014, Finland,

kotiranta.petri.S@student.uta.fi, marko.junkkari@uta.fi

ABSTRACT

Continuously growing amount of data has inspired seeking more and more efficient database solutions for storing

and manipulating data. In big data sets, NoSQL databases have been established as alternatives for traditional

SQL databases. The effectiveness of these databases has been widely tested, but the tests focused only on key-value

data that is structurally very simple. Many application domains, such as telecommunication, involve more complex

data structures. Huge amount of Mobile Network Event (MNE) data is produced by an increasing number of

mobile and ubiquitous applications. MNE data is structurally predetermined and typically contains a large number

of columns. Applications that handle MNE data are usually insert intensive, as a huge amount of data are

generated during rush hours. NoSQL provides high scalability and its column family stores suits MNE data well,

but NoSQL does not support ACID features of the traditional relational databases. NewSQL is a new kind of

databases, which provide the high scalability of NoSQL while still maintaining ACID guarantees of the traditional

DBMS. In the paper, we evaluation NEM data storing and aggregating efficiency of Cassandra and

ParStream/Kinetic databases and aim to find out whether the new kind of database technology can clearly bring

performance advantages over legacy database technology and offers an alternative to existing solutions. Among

the column family stores of NoSQL, Cassandra is especially a good choice for insert intensive applications due to

its way to handle data insertions. ParStream is a novel and advanced NewSQL like database and is recently

integrated into Cisco Kinetic. The results of the evaluation show that ParStream is much faster than Cassandra

when storing and aggregating MNE data and the NewSQL is a very strong alternative to existing database

solutions for insert intensive applications.

TYPE OF PAPER AND KEYWORDS

Short Communication: performance evaluation, data storage, data aggregation, insertion, telecommunication,

NoSQL, NewSQL, Cassandra, ParStream, Kinetic, Mobile Network Event, MNE data

1 INTRODUCTION

In telecommunication, ever bigger data sets must be

manipulated because the number of transactions and the

amount of data associated with the transactions increase

constantly. International and national laws and standards

determine what kind of data must be stored about a

single transaction, and thus they determine the structure

of data. Due to the increasing amount of Mobile

Network Event (MNE) data it is essential to investigate

possible solutions to manipulate MNE data. NoSQL

[13][14] and NewSQL [14][26] databases are modern

 Open Access

Open Journal of Databases (OJDB)

Volume 5, Issue 1, 2018

www.ronpub.com/ojdb

ISSN 2199-3459

© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250156763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Open Journal of Databases (OJDB), Volume 5, Issue 1, 2018

2

solutions to manipulate big data sets. In this present

study, we evaluate and compare the efficiency of

NoSQL databases and NewSQL databases in storing and

querying MNE data. Applications of MNE data are

insert intensive, and thus the main focus of the

evaluation is to compare the storing speed of databases.

More generally, our research question is whether new

database solutions bring additional value compared to

existing legacy SQL based solutions.

The traditional SQL databases are usually designed

to be operated on one server node. This is the way they

can offer ACID (Atomicity, Consistency, Isolation, and

Durability) properties. However, the drawback of this

feature is the lack of horizontal scalability. Depending

on the implementation, clustering is possible. For

example, in Oracle it is possible to divide the database

tables into different server nodes. However, NoSQL

databases enable to spread the data around a cluster per

data row based on the primary key. This is why there has

been the demand for NoSQL databases as they offer

more horizontal scalability. They also offer simpler data

models that may be more efficient than SQL in certain

use cases. NewSQL is a class of SQL database systems,

which seek to achieve high performance and scalability

of NoSQL while still guaranteeing the ACID properties

of traditional DBMS. By comparing between NoSQL

databases and NewSQL databases, we aim to find out

whether it is possible to combine the best sides of the

SQL and NoSQL databases and still perform well in our

use case.

Among NoSQL databases, column family stores and

document stores are structurally suitable for

manipulating NME data. We selected column family

store Cassandra because its insertion speed is efficient

and its data files take less storage space than JSON based

document store implementations. Among NewSQL

databases we selected ParStream [7] because it is

suitable for managing MNE data. For example, it

supports the geo-distributed database solution that is

essential for MNE data. As of the summer 2018, after

ParStream was acquired by Cisco (www.cisco.com) that

is a market leader in the areas of IT and network. Cisco

integrates it into Cisco Kinetic system and does not offer

ParStream as a stand-alone product any more [10], but

Cisco still provides all documents on ParStream online

[8]. The functionality of ParStream is now a part of

Cisco Kinetic, and hence we also refer to this database

by ParStream/Kinetic. In the test setting we use original

databases because during our test periods for MNE data

we had only the license of ParStream but not Kinetic.

MNE data consists of different reports that are

generated by telecommunications traffic. The most

common report is the RAB (Radio Access Bearer) report

that is sent when a radio access bearer is created. A radio

access bearer provides a connection between a user

equipment and a network service. It is created

practically every time when a user equipment, for

example a mobile phone, tries to connect to a mobile

phone network through a base station. These reports

consist of structured data that have values representing

several metrics from the base station and information

about the user equipment such as IMEI (International

Mobile Equipment Identity) and IMSI (International

Mobile Subscriber Identity). These, in turn, contain

coded information on the country, networks and the

route through which a mobile phone plan has been

connected. For example, IMSI is a 64-bit field typically

represented as a 15 digit number where first three digits

determine a country, and a mobile network code and a

mobile subscription identification number follow.

For a mobile phone plan, there is information on the

country, networks and the route through which a mobile

phone plan has been connected. A connection involves

information on different kinds of area codes and the

route through which the connection is formed. A

network station carries its own information. All this

information is collected into a RAB report that is stored

in the context of a MNE event. Depending on a version,

a RAB report contains about 100 data entries, but one

entry may contain a value having different kind of coded

data.

In a typical scenario, a huge amount of RAB reports

must be stored during a short period of time. This

happens especially during rush hours when many user

equipment requests RAB. Therefore, the storing speed

plays the most essential role in manipulating RAB

reports. Most of the data will not be utilized, but the

storing is necessary for tracing possible problems or

tracking calls in serious criminal cases. The RAB reports

can also be used analyzing the load of a network in a

specific area. Therefore, aggregation queries are

essential when analyzing the reports. Furthermore,

pattern matching queries such as ‘like’ are needed to

isolate parts of the codes (e.g. the country code of IMSI).

In the evaluation, we simulate real world multi-

columned data from the area of telecommunication, the

data storing and aggregation performance of the

NewSQL-like ParStream database and the NoSQL

Cassandra database are evaluated over different amount

of MNE data using different number of threads. The

results of the evaluation show that ParStream is

dramatically faster than Cassandra in storing data and it

benefits from increasing the number of threads.

ParStream also outperforms the traditional SQL solution

in the insertion speed of data. The efficiency of

aggregation queries depends on the column on which the

query is focused. If aggregation queries do not focus on

any specific columns, ParStream is notable faster than

Cassandra. We also conclude that Cassandra does not

support pattern matching queries that are essential for

manipulating NME data.

In this study work, we compare NoSQL and

NewSQL-like databases whereas existing studies focus

mainly on NoSQL databases. To our best knowledge, no

P. Kotiranta, M. Junkkari: Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic

3

research results have been published on efficiency

evaluation of either ParStream or Kinetic and on the

performance comparison between NoSQL databases

and NewSQL databases.

The rest of the paper is organized as follows. In

Section 2, we perform a literature review on efficiency

studies of NoSQL databases. Section 3 investigates

different database models in order to find suitable

databases, which will be used in this study to evaluate

the performance of databases for MNE applications. In

Section 4, we introduce the content of the Radio Access

Bearer (RAB) reports. RAB reports are the Mobile

Network Event (MNE) data and are be used in the

evaluation. Section 5 describes the generation of RAB

data and the evaluation setting. The results of evaluation

are presented in Section 6. Section 7 discusses the

evaluation results and investigates further research

questions. Finally, conclusions are given in Section 8.

2 RELATED WORK

There has been a large amount of research on the

performance of the NoSQL databases [1][2][4][9][11]

[17][18][19][20][25]. Yahoo! Cloud Serving Bench-

mark [9][27] is the most popular testing environment for

key-value data. More complex data are used in

benchmarking document stores with SQL databases in

[23] and 0. Oliveira and Bernardino [21] have compared

NewSQL databases MemSQL and VoltDB using the

TPC-H test set that is also a more complex data set

containing several tables and their mutual relationships.

We focus on the studies where column family stores are

compared with other databases. In the following, we

present the latest performance tests where Cassandra is

compared with column family stores HBase,

Hypertable, document stores MongoDB, Couchbase,

RavenDB, CouchDB, key-value databases Aerospike,

Redis, multimodel database OrientDB and relational

database MS SQL Express.

In the Datastax study [11], Cassandra version 1.1.6,

HBase version 1.1.1 and MongoDB version 2.2.2 have

been compared. Yahoo! Cloud Serving Benchmark was

used as a test tool. Load, read, write and scan tests were

made with different stress levels and different amounts

of cluster nodes. Read, insert, update and scan latency

were also tested. Cassandra had clearly the best

performance among the databases. Especially, when the

amount of cluster nodes was increased Cassandra was

much ahead leaving HBase second and MongoDB third.

Nelubin and Engber [20] compared Cassandra,

MongoDB, Couchbase and Aerospike. In their study,

the performance of the databases was compared using

Yahoo! Cloud Service Benchmarking Tool. Databases

were compared for insertion throughput, maximum

throughput and latencies in balanced workload (50%

write and 50% read) and read heavy workload (95% read

and 5% update) in SSD (Solid State Drive)-backed and

in-memory datasets. The tests measured raw key-value

performance of the databases. In these tests, Aerospike

and Couchbase had clearly better performance

compared with Cassandra and MongoDB. Aerospike

outperformed Couchbase in read-heavy workloads and

Couchbase outperformed Aerospike in balanced read-

write workloads. One of the reasons for the good

performance of Aerospike was that it had been well

optimized for SSD disks that were used in this test. Both

Aerospike and Couchbase are designed for key-value

based queries and these databases were expected to

perform better than more complex Cassandra and

MongoDB. However, pure key-value performance is not

what we are looking for as MNE applications usually

require more complex queries.

Li and Manoharan [19] compared MongoDB version

1.8.5, RavenDB version 960, CouchDB version 1.2.0,

Cassandra version 1.1.2, Hypertable version 0.9.6,

Couchbase version 1.8.0 and MS SQL Express version

10.50.1600.1. The study tested instantiating a bucket of

key-value pairs, reading values behind keys, creating

and updating key-value pairs, deleting key-value pairs

and fetching all the keys. RavenDB, Hypertable and

MongoDB were the fastest whereas CouchDB,

Couchbase and SQL Express were the slowest in

creating the bucket. The read performance list of

databases from the fastest to the slowest was as follows:

Couchbase, MongoDB, SQL Express, Hypertable,

CouchDB, Cassandra and RavenDB. With write

performance, the corresponding list was Couchbase,

MongoDB, Cassandra, Hypertable, SQL Express,

RavenDB and CouchDB, and with delete performance

Couchbase, MongoDB, SQL Express, Cassandra,

Hypertable, CouchDB and RavenDB. In fetching all the

keys, the test observation was that all the databases fetch

keys quickly except CouchDB. SQL Express was the

fastest for doing this operation.

One of the interesting findings of this study was that

traditional database MS SQL Express performed better

than some of the NoSQL databases. Thus, although

NoSQL databases should perform better in key-value

based queries compared with traditional databases, they

do not always perform better than traditional SQL

databases. There was only a small correlation between

performance and data models. RavenDB and CouchDB

were not good in read, write and delete operations.

Couchbase and MongoDB were overall the fastest for

read, write and delete operations. Cassandra was slow in

read operations but good in write and delete operations.

Anyway, Cassandra had the best performance among

column family stores.

Abramova and others [2] compared Cassandra

version 1.2.1, HBase version 0.94.10, MongoDB

version 2.4.6, OrientDB version 1.5 and Redis version

2.6.14. Among these databases OrientDB can be used as

Open Journal of Databases (OJDB), Volume 5, Issue 1, 2018

4

Table 1: Top four ranking of NoSQL database performance tests

Test 1. 2. 3. 4.

Klein et al. [17] Cassandra Riak MongoDB -

Datastax [11] Cassandra HBase MongoDB -

Nelubin & Engber [20] Couchbase Aerospike MongoDB Cassandra

Li & Manoharan [19] Couchbase MongoDB Cassandra Hypertable

Abramova et al. [2] Redis Cassandra HBase MongoDB

a document store and a graph database. Databases were

tested with Yahoo! Cloud Serving Benchmark program.

Read and write operations were tested with 600,000

records. Tests focused on comparing the execution

speed of get and put operations with different workloads

of read and update operations. Redis was clearly the

fastest of the tested databases, Cassandra the second

fastest, HBase third, MongoDB fourth. The slowest was

OrientDB when comparing the overall execution time of

workloads. One of the reasons for the poor performance

of the OrientDB was that it keeps records in the disk

rather than loading them into memory. Other reason

mentioned was that OrientDB took more resources than

what was available in the test environment. Abramova

and others [2] divide NoSQL databases into two

categories: those that are good in read operations and

those that are good in update operations. MongoDB,

Redis, and OrientDB belong to the first category,

whereas Cassandra and HBase belong to second

category. Cassandra again possessed the best

performance among column family stores and it

performed well especially in write operations.

Therefore, Cassandra is a strong alternative for insert

intensive applications.

Klein and others [17] have compared MongoDB

version 2.2, Cassandra version 2.0 and Riak version 1.4.

A modified version of the Yahoo! Cloud Serving

Benchmark framework was used for testing. Tests

measured the throughput of read-only, write-only and

read/write workloads, and read and write latencies. Each

test was run three times with different number of

threads. The performance of Cassandra was clearly best

in the read and write tests when the number of threads

was increased. Riak had the second best performance

and third was MongoDB. On the one hand, Cassandra

had the biggest delay in read and write operations

whereas Riak was 5 times faster and MongoDB was 4

times faster. The reason for the better performance of

Cassandra was that its hash based sharding was much

more efficient than the sharding of MongoDB. On the

other hand, the indexing features of Cassandra enabled

fast queries. Furthermore, the peer to peer based

architecture facilitated efficient coordination of read and

write operations between different nodes. From the

perspective of the present study, the results are

interesting because we also run tests using the different

number of threads.

All the mentioned tests, where Cassandra

participated, were key-value oriented. Yahoo! Cloud

Service Benchmarking tool was used in many of the

tests and this tool measures get and put performance

with different loads. As key-value stores are well

optimized for these kinds of queries, they had the best

performance. However, among column family stores

Cassandra performed best and therefore we selected

Cassandra for testing multicolumn MNE data. Table 1

summarizes the results of the performance tests. Our test

setting differs from above-mentioned evaluation in two

ways. First, we use real words multi-columned data and

second, we evaluate not only NoSQL databases but also

compare NoSQL with NewSQL databases.

3 REVIEWING DATABASES FOR TESTING

In many of the current MNE applications, the solutions

are based on traditional SQL databases. As MNE data

has a heavy demand for insertion performance, we are

interested in NoSQL and NewSQL solutions for MNE

data. In this part, we reviewed different NoSQL data

models and aimed to find suitable databases in order to

investigate if traditional SQL database could be replaced

with the NoSQL and NewSQL solutions for the needs of

MNE data applications.

NoSQL databases are intended for big data sets and

their organization is not based on the relational model.

The query capabilities of NoSQL solutions are different

in comparison with traditional SQL solutions, and this

must be taken into account when selecting a suitable

NoSQL database solution for MNE data that is multi-

column, structurally predetermined and contains a low

number of relationships. The graph-based, column

family stores, document stores and key-value stores are

different types of NoSQL databases [12].

Key-value store model is very simple and does not

support as diverse queries as SQL does. In multicolumn

data, SQL based solutions are difficult to replace with

simple key-value store solutions because the keys to

query must be known beforehand. Graph databases are

neither a suitable choice for MNE data because they are

designed for data that has a great number of

relationships. Instead, document stores and column

family stores are suitable for MNE data because both of

P. Kotiranta, M. Junkkari: Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic

5

Figure 1: Radio Access Bearer in UMTS system

them contain structured data under key and support

queries to different attributes of data. Document stores

are based on JSON format. However, one of the

drawbacks of JSON is that it consumes space because of

the structure definition of the JSON standard. Column

family stores, like Cassandra and Hypertable, support

SQL-like query language CQL (Cassandra Query

Language) [6] and HQL (Hibernate Query Language)

[16]. However, the expression power of these languages

is limited in comparison with the standard SQL. For

example, join operations are not supported.

In column families, data also take less space

compared with document stores. This is due the fact that

column definitions take less space on disc than JSON

structure definitions. Thus, among NoSQL databases,

the column family store model suits best for the needs

of MNE data. We tested space consumption of

1,000,000 RAB reports in one of the most popular

document stores, MongoDB and one of the most popular

column family stores, Cassandra. The size of RAB

reports as a MongoDB collection was 4.53 GiB and as a

Cassandra column family was 1.18 GiB. As the system

might have to store billons of these reports, we

considered Cassandra more space efficient.

Among column family stores, Cassandra has clearly

the highest ranking in DB-Engines [12]. In Cassandra

previously mentioned amount of reports consume

around as much space as in a SQL database. As

reviewed in Section 2, Cassandra has the best

performance among the column family stores. The way

Cassandra stores the data should suit insertions well.

When inserting data, Cassandra just appends the data

into commitlog and memtable. The operation is simple

and thus insertion operations should be efficient.

Therefore, we select Cassandra as a representative of

column family stores in our testing.

NewSQL solutions are a new group of databases that

aim to provide the best sides of the two kinds of

databases: the high scalability of NoSQL and the ACID

features of traditional relational databases. There are

three main categories of NewSQL databases: 1. New

database solutions that have been written from scratch;

2. MySQL based storage engines; 3. Pluggable solutions

for existing databases that aim to provide more

scalability [26]. We chose ParStream to represent a

NewSQL database with properties from both SQL and

NoSQL databases. Apart from supporting traditional

SQL queries, ParStream also provides horizontal

scalability that is not offered by traditional SQL

solutions. The ParStream database handles data in

partitions, i.e. a table can be partitioned based on chosen

partitioning columns. This way ParStream enables very

fast querying as it can exclude irrelevant partitions by

using bitmap indexing [24].

Furthermore, ParStream is one of the newest

NewSQL like database with possibility to install a geo-

distributed analytics server. This is an essential feature

for geo-distributed telecommunication architecture.

Although we do not investigate geo-distributed analytics

in the present study, this was still one reason for

selecting ParStream out of other NewSQL solutions. To

our best knowledge, no previous research on ParStream

exists, so we aim to show in the present research how

this kind of database performs against Cassandra.

4 TEST DATA – RAB REPORTS

In a performance evaluation, it is essential that the test

data corresponds to real data [3]. Our test data

structurally and in content corresponds to Radio Access

Bearer (RAB) reports. Radio Access Bearers are used

when a user equipment, for example a mobile telephone,

connects to a mobile network. RAB guarantees

bandwidth for different kinds of communication that a

Open Journal of Databases (OJDB), Volume 5, Issue 1, 2018

6

mobile equipment does in the network. Different sorts

of RABs are used for different types of communication.

For example, conversational speech RABs are used for

normal telephone calls. These RABs guarantee 12.2

kbps bandwidth for speech. Web browsing and email

sending activities use interactive packet switched RABs

that guarantee 384 kbps downlink and 64 kbps uplink.

Many other kinds of RABs also exist for different kinds

of connection.

Figure 1 illustrates the components of RAB in

UMTS system. As can be seen from the picture, Radio

Access Bearer consists of Radio Bearer and Iu Bearer.

Radio Bearer is created between a user equipment and

Radio Network Controller (RNC). Radio Network

Controller is an element that is responsible for managing

resources between a radio network and a core network.

Iu Bearer is created between RNC and Mobile Switching

Centre (MSC) in a circuit switched core network and

Serving GPRS Support Node (SGSN) in a packet

switched core network. MSC routes voice calls and SMS

messages to the circuit switched network. SGSN works

similarly for packet switched data.

Network operators are interested in monitoring the

activities that occur in the network. This is why a

network element, such as RNC, sends reports when

RAB is created. The RAB report is a part of commonly

accepted 3GPP (3rd Generation Partnership Project)

specifications [28]. Network event monitoring systems

are used to analyze the reports. All the created RAB

reports are usually collected into a system database. In

Figure 1, data are collected from the RNC, MSC and

SGSN elements into a database. During rush hours,

when a lot of RABs are established, a huge number of

reports might be sent, so it is very important for the

database to perform fast enough to handle all these

reports.

The content of the RAB reports varies in some extent

and depends on the network element that sends them. A

RAB report typically contains information on the user

equipment that requests RAB and technical information

related to a base station and connection. In our case, a

RAB report contains information about user equipment

such as International Mobile Subscriber Identity (IMSI),

International Mobile Station Identity (IMEI), Mobile

Station International Subscriber Directory Number

(MSISDN) and an IP address. There is also much

information related to base stations and connections.

This information includes start and stop base stations

and their Cell ID (CID), UTRAN Cell ID (LCID),

Mobile Country Code (MCC), Mobile Network Code

(MNC), Special Area Code (SAC) and Location Area

Code (LAC). Further, RAB reports contain information

about many other kinds of connection and possible

failure. The RAB reports that we used in our test contain

96 columns.

5 EVALUATION SETUP

A Java program was implemented to generate the test

data that structurally correspond to real RAB reports

used in the UTRAN network elements. More concretely,

the program creates an array object with 96 columns for

a RAB report, which contains 88 columns of 32-bit

integer types, one timestamp and seven string types. The

integers are generated using the random class of Java

with the ranges of real values what are used in the actual

reports. Some string types, such as IMSI (International

Mobile Subscriber Identity) and URL (Uniform

Recourse Locator), are selected from the real data and

other data (e.g. IPv4 -Internet Protocol version 4) are

generated at random. The timestamp is the time when

the array is inserted into the database. All data are stored

into a table called networkdata. In Appendix A, the code

for generating the test data is given. Three columns were

indexed that correspond to real indexing needs for

typical use cases of MNE data.

The computers used in the tests were HP ProLiant

DL380 Gen9 Server. The used operating system is Red

Hat Enterprise Linux version 6.5. Datastax Cassandra

version 2.2 and ParStream version 3.3.4 were installed.

Cassandra driver version 2.1.5 was used to insert data

into Cassandra and Java Streaming Import API version

3.3.4 was used to insert data into ParStream. We used

only one node installation of the both databases. The HP

ProLiant DL380 Gen9 Server had following hardware

setting:

 2 x Intel Xeon E5-2667 v3 CPU @ 3.20GHz

 8 cores, 16 threads

 64-bit memory technology

 L1 cache 512 KB

 L2 cache 2048 KB

 L3 cache 20480 KB

 32 GB memory for each processor @ 2133 MHz.

In the test setting, the servers contain only necessary

programs and no unnecessary external load existed. For

inserting data into databases, the Java program utilizes a

for-loop that iterates through a list of array objects. The

values of objects are randomly generated following the

database structure presented in Appendix A. In our tests,

the initial size of data was 10,000 rows. The for loops

either keep looping trough the list until certain amount

of time has passed or certain amount of rows are

inserted. So as the same pre-generated list of rows is

looped trough many times, some of the values can be

duplicates. In our tests, this is not important as we only

are interested in the insertion and query performance.

The Java program can also insert values in multiple

threads and the amount of threads can be selected.

 The tests were run in a single node for achieving

comparability with the existing architecture that is

designed for a single node database.

P. Kotiranta, M. Junkkari: Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic

7

Table 2: Average insertion rate in rows per second

for twelve five-minute runs

Number

of Threads
ParStream Cassandra

1 30459 1132

2 56393 5454

3 79114 4918

4 101108 4491

5 117278 4032

6 130448 3619

7 151606 3161

8 167868 2885

9 197233 2492

10 220393 2187

11 242622 2063

12 241366 2029

6 EVALUATION

In this study, we evaluate the performance of a NoSQL

database (Cassandra) and a NewSQL database

(ParStream), and aim at answering the question whether

new database solutions bring additional value compared

to existing legacy SQL based solutions. Since

applications of MNE data are insert intensive, this

evaluation focuses on the efficiency of storing and

aggregation query processing.

6.1 Storing Speed

The efficiency of storing data is essential in

telecommunication because during a short time period a

large amount of data may be inserted into a database.

The number of threads is a typical way to increase

storing speed.

We first compare ParStream and Cassandra using a

single thread. The average storing speed in Cassandra

was about 12,500 rows per second and in ParStream

about 40,000 rows per second. In other words, the

storing speed was over three times faster in ParStream

than in Cassandra. During the two-hour period of testing

the difference stayed linearly the same.

In order to test the impact of the number of threads

in storing data, we made twelve five-minute runs using

different number of threads with both databases. The

results are given in Table 2 and illustrated in Figure 2.

In ParStream, increasing the number of threads also

increased the storing speed. Cassandra, instead, did not

benefit notably from increasing the number of threads.

The difference of the maximum storing speeds was 44

times bigger in ParStream than in Cassandra. Based on

Figure 2. Average insertion rate in rows per second

with different number of threads

 the performance of relational database solutions, we

choose the insertion speed of 210,000 rows per second

as the performance baseline. Cassandra did not exceed

the performance baseline even with the maximal number

of threads, whereas ParStream exceeded the

performance baseline when using ten or more threads.

6.2 Querying Speed

In MNE applications, it is often needed to find the

amount of certain reports. Thus, we chose a count query

for testing the aggregation efficiency of databases and

the count query is currently used by existing SQL based

applications. The count function is heavy for databases

to process. It is supported by both ParStream and

Cassandra and we were thus able to compare them and

see the differences in performance. In Cassandra, the use

of a column counter is recommended to keep track of the

amount of records. Counter columns with multiple

nodes may involve consistency issues.

The first query is a basic aggregation query where

the number of all the rows is calculated.

Query 1: SELECT COUNT(∗) FROM 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎

We tested the speed of the query over different

amount of data. The tested data sets consist of half

million, one million, ten million and hundred million

rows. The results are given in Table 3. In all the cases,

ParStream was dramatically faster than Cassandra. For

example, in case of the half million rows, Cassandra

performed the query in 36 seconds whereas ParStream

used only four milliseconds. In the case of hundred

million rows, Cassandra could not finish the execution

of the query during 30 minutes whereas ParStream used

only 16 seconds.

It is also worth noting that running the same query

twice improved the execution time in ParStream. In the

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12

in
se

rt
ed

 r
o

w
s

Number of threads

Parstream Cassandra

Open Journal of Databases (OJDB), Volume 5, Issue 1, 2018

8

Table 3: Execution time of Query 1

Number of Rows Cassandra ParStream

500,000 36 seconds
0.004 seconds (1st run)

0.002 seconds (2nd run)

1,000,000 1 min 24 seconds
0.007 seconds (1st run)

0.0035 seconds (2nd run)

10,000,000 11 min 12 seconds
0.067 seconds (1st run)

0.031 seconds (2nd run)

100,000,000 Timeout (30 minutes)
16 seconds (1st run)

0.35 seconds (2nd run)

 cases of half, one and 10 million rows, the time halved.

In the case of hundred million rows, the processing time

decreased from 16 seconds to less than half seconds.

This is due to the fact that in the first querying the bitmap

is loaded into the central memory, and thus it is

immediate in use in the second query processing.

Cassandra does not benefit from repetitively querying.

The above results do not mean that Cassandra is

inefficient in general. If a query is focused on the

column that is part of the primary key, Cassandra is

efficient. Query 2 represents the query type where an

attribute is exactly valuated. We consider the querying

efficiency related to the role of a valuated attribute. The

test data contain a hundred million rows.

Query 2: SELECT COUNT(∗) FROM 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎

WHERE 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 44755149

When the attribute belongs to a column that is a part

of the primary key in Cassandra, and the attribute is

partitioned and bitmap indexed in ParStream, there is no

significant difference between the query performances

of the two databases. Execution times of two databases

were less than 0.01 seconds. If the attribute is indexed

but not partitioned in ParSrteam, then the query was

performed in 18 seconds. If the attribute is neither

indexed nor partitioned in ParSrteam, the query required

more than 40 seconds. We cannot run the query with

these settings in Cassandra, because non-indexed

attributes cannot be queried by Cassandra.

The last query is string matching, which is supported

by ParStream but not by Cassandra. In Query 3, ‘515’ is

an area code that is the initial code of IMSI (the

International Mobile Subscriber Identity).

Query 3: SELECT COUNT(∗) FROM 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎

WHERE imsi LIKE ′515%′

In testing Query 3, the database contained ten

million rows. ParStream performed the string matching

query in 10 seconds when the bitmap was not used,

whereas when using the index, the query required 28

seconds. This means that bitmap indexing does not

increase performance for every type of queries.

7 DISCUSSION

We evaluated the insertion performance and the

aggregation capability of ParStream and Cassandra

databases over MNE data in the previous section. The

results of the evaluation show that ParStream was much

more efficient in insertion speed compared with

Cassandra.

In order to find out why Cassandra had an inferior

insertion speed, we performed more investigations on its

performance by changing the test setting. We changed

durable writes feature to off-state that bypasses

commitlog of Cassandra. Cassandra appends the data

first into commitlog-file and then takes it into in-

memory memtable. If memtable is full, data are stored

into data files. However, setting durable writes to off-

state did not have any impact on insertion speed. We

also tested the effect of different sizes of the memtable,

but this did not improve insertion performance either.

ParStream seems to be better optimized for parallel

insertions than Cassandra. There are differences of how

the data is stored and the databases are implemented.

Cassandra is programmed in Java and cannot be

optimized as efficiently as C/C++ program. Cassandra

stores data as key-value pairs. All the values are stored

with their corresponding key. When more columns were

indexed, insertion speed seemed decreasing. Thus,

writing data as key-value pairs seems to be one of the

factors that decrease performance.

In the aggregation test, Cassandra was clearly

inferior to ParStream as well. When executing the count

function of CQL (Cassandra Query Language) [6],

Cassandra reads through all the rows in the database and

the operation is very slow. If an aggregation query is

modified such that a condition for an indexed key is

inserted, both of Cassandra and ParStream show equally

good performance when the queried value belongs to an

indexed column. This was to be expected. Cassandra

fetches the columns quickly with a right row key and

ParStream takes advantage of partitioning and bitmap

indexing. If the column is not partitioned, ParStream

cannot exclude irrelevant partitions from the query. This

P. Kotiranta, M. Junkkari: Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic

9

is why the query takes a longer time to finish. When

using bitmaps the querying time will be halved.

Query 3 was executed just for ParStream as

Cassandra does not support bitmap indexing and CQL

does not support LIKE-operation. The query

demonstrates that bitmap indexing does not always

provide better performance. This query was faster when

bitmap indexing was not used. Seeking the values that

match a like pattern seems to be the weakness of the

bitmap indexing in ParStream. Query 3 expresses also a

general problem in comparing different databases by

complex queries. Namely, if a database or a query

language does not support a query type, the comparison

cannot be executed. This is one reason for developing

SQL++ [22] that gives a similar interface to relational

databases and NoSQL databases. On the other hand, the

development of the query languages of NoSQL

databases is in progress and, thus, the SQL++ interfaces

will be developed.

Although ParStream seems to be overwhelming in

data insertion and aggregation over NME data, an open

question is the efficiency of ParStream in general. For

that, ParStream should be tested in different data sets

and compared with other NoSQL and NewSQL

databases. Yahoo! Cloud Service Benchmarking tool

would get results that will be in line with the results

released in NoSQL databases. TCP-H and TCP-BB [5]

are public data environments with structurally more

complex data. The ParStream has been acquired by

Cisco and integrated into Cisco Kinetic distribute

system in the summer 2018, and thus further tests should

be focused on Kinetic. During our test periods we had

only the license of ParStream but not Kinetic. In general,

a similar test setting can be repeated with Kinetic, and

similar results could be expected with Kinetic.

8 CONCLUSIONS

In this work, we investigate the applicability of NoSQL

and NewSQL databases for storing and querying Mobile

Network Event (MNE) data. Structurally, column

family stores and document stores are suitable for MNE

data, but the storage format used by document stores

consumes space. Therefore, among NoSQL databases

we selected the column family store databases for

performance evaluation. We tested the performance of

two databases over MNE data: Cassandra and

ParStream. Cassandra is a column family store database

and it is known as a very efficient solution for big data

sets. ParStream is a NewSQL like database for which no

test results have so far been published.

MNE applications are insert intensive and therefore

the efficiency of storing data is essential in MNE

applications. In terms of a single thread, ParStream was

three times faster than Cassandra. When increasing the

number of threads, both databases enhanced their

storing performance, but ParStream increased obviously

more. The difference of the maximum storing speed was

44 times bigger in ParStream than in Cassandra. In the

test setting tree columns were indexed. This seems to be

the essential reason for the huge difference in the

performance. In an additional test, we found that if only

one column is indexed, ParStream was six times faster

than Cassandra.

 In aggregation querying, ParStream was

dramatically faster than Cassandra. When a query is

focused on a key attribute, no difference between the

databases was found. So far Cassandra is known as one

of the column family stores with best performance

especially for write operations. However, with insert-

intensive MNE applications, ParStream is very efficient

compared to Cassandra. The functionality of ParStream

is now a part of Cisco Kinetic and similar results could

be expected with Cisco Kinetic

The study presented in this paper clearly indicates

that the new kinds of database technology can clearly

bring performance advantages over legacy database

technology and offer a very strong alternative to existing

solutions.

REFERENCES

[1] Y. Abubakar, T.S. Adeyi and I.G. Auta,

“Performance evaluation of NoSQL systems

using YCSB in a resource austere environment,”

Int. J. of Appl. Inf. Systems, vol 7, pp. 23-27, 2014.

[2] V. Abramova, J. Bernardino, and P. Furtado,

“Which NoSQL database? A performance

overview,” Open J. of Databases (OJDB), vol. 1,

no. 2, pp. 17-24, 2014. [Online]: http://nbn-

resolving.de/urn:nbn:de:101:1-201705194607

[3] A. Alexandrov, C. Brücke and V. Markl, “Issues

in big data testing and benchmarking,”

in Proceedings of Sixth International Workshop

on Testing Database Systems, 2013.

[4] S. Bushik, “A vendor-independent comparison of

NoSQL databases: Cassandra, HBase, MongoDB,

Riak,” Network World, 2012.

[5] P. Cao, B. Gowda, S. Lakshmi, C.

Narasimhadevara, P. Nguyen, J. Poelman, "From

BigBench to TPCx-BB: Standardization of a big

data benchmark," In Proceedings of Technology

Conference on Performance Evaluation and

Benchmarking, pp. 24-44, 2016.

[6] Cassandra, “The Cassandra Query Language

(CQL),” Apache Software Foundation, online:

http://cassandra.apache.org/doc/4.0/cql/,

accessed August 20, 2018.

Open Journal of Databases (OJDB), Volume 5, Issue 1, 2018

10

[7] Cisco ParStream, “Cisco ParStream: Cisco

ParStream Manual,” Cisco and/or its affiliates,

October 4, 2017. https://www.cisco.com/c/

dam/en/us/td/docs/cloud-systems-management/

cisco-edge-fog-fabric/1_1_0/Cisco-ParStream-

MANUAL-5-0-0.pdf.

[8] Cisco Search, “ParStream”, Cisco, https://search.

cisco.com/search?query=Cisco%20ParStream&l

ocale=enUS&tab=Cisco, accessed 20.08.2018.

[9] B. F. Cooper, A. Silberstein, E. Tam, R.

Ramakrishnan and R. Sears, “Benchmarking

cloud serving systems with YCSB,” in

Proceedings of 1st ACM symposium on Cloud

computing, pp. 143-154, 2010.

[10] Cisco, Cisco ParStream - Retirement Notification,

https://www.cisco.com/c/en/us/obsolete/analytics

-automation-software/cisco-ParStream.html,

accessed August 20, 2018.

[11] Datastax, “Benchmarking top NoSQL databases:

A performance comparison for architects and IT

managers,” White Paper, Datastax Corporation,

Feb. 2013, http://files.meetup.com/7441162/

WP-Benchmarking-Top-NoSQL-Databases.pdf,

accessed June 06, 2018.

[12] DB-Engines, “DB-Engines Ranking of Wide

Column Stores”, solid IT gmbh, http://db-

engines.com/en/ranking/wide+column+store,

accessed June 15, 2017.

[13] S. Edlich, “NoSQL-databases,” http://nosql-

database.org, accessed June. 15, 2018.

[14] K. Grolinger, W. A. Higashino, A. Tiwari, and

M.A.M. Capretz, "Data management in cloud

environments: NoSQL and NewSQL data stores,"

Journal of Cloud Computing, vol. 2, no. 22, 2013.

[15] R. Hecht and S. Jablonski, “NoSQL evaluation: A

use case oriented survey,” in Proceedings of

International Conference on Cloud and Service

Computing, pp. 336-341, 2011.

[16] Hibernate.org, “Chapter 14. HQL: The Hibernate

Query Language”, Community Documentation,

Red Hat, Inc. online: https://docs.jboss.org/

hibernate/orm/3.3/reference/en/html/queryhql.ht

ml, accessed 20.08.2018.

[17] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham

and C. Matser, “Performance evaluation of

NoSQL databases: A case study,” in Proceedings

of 1st Workshop on Performance Analysis of Big

Data Systems (PABS '15), pp. 5-10, 2015.

[18] J. Kuhlenkamp, M. Klems and O. Röss,

“Benchmarking scalability and elasticity of

distributed database systems,” in Proceedings of

the VLDB Endowment, vol. 7, pp. 1219-1230,

2014.

H. Kyurkchiev and E. Mitreva, “Performance study

of SQL and NoSQL solutions for analytical

loads,” Advanced Research in Mathematics and

Computer Science, vol. 49, pp. 49-57, 2014.

[19] Y. Li and S. Manoharan, “A performance

comparison of SQL and NoSQL databases,” In

proceedings of IEEE Pacific Rim Conference on

Communications, Computers and Signal

Processing, pp. 15-19, 2013.

[20] D. Nelubin and B. Engber, “Ultra-high

performance NoSQL benchmarking: Analyzing

durability and performance tradeoffs,”

Thumbtack Technology, Inc., White Paper, 2013,

http://www.odbms.org/wp-content/uploads/2013

/11/NoSQLBenchmarking.pdf, accessed June 15,

2018.

[21] J. Oliveira and J. Bernardino, “NewSQL

Databases - MemSQL and VoltDB experimental

evaluation,” In Proceedings of the 9th

International Joint Conference on Knowledge

Discovery, Knowledge Engineering and

Knowledge Management, pp. 276-281, 2017.

[22] O. K. Win, Y. Papakonstantinou and R. Vernoux,

"The SQL++ unifying semi-structured query

language and an expressiveness benchmark of

SQL-on-Hadoop, NoSQL and NewSQL

databases," CoRR, abs/1405.3631, 2014.

[23] Z. Parker, S. Poe and S.V. Vrbsky, “Comparing

NoSQL Mongodb to an SQL DB,” in

Proceedings of the 51st ACM Southeast

Conference, 2013.

[24] I. Spiegler and R. Maayan, “Storage and retrieval

considerations of binary data bases,” Inf. Process.

and Manag., vol. 21, pp. 233-54, 1985.

[25] B. G. Tudorica and C. Bucur, “A comparison

between several NoSQL databases with

comments and notes,” in Proceedings of

Roedunet International Conference, 2011.

[26] P. Venkatesh and S. Nirmala, “NewSQL - the new

way to handle big data,” OpenSource,

http://www.opensourceforu.com/2012/01/newsql

-handle-big-data, accessed June 15, 2018.

[27] Yahoo! Research, “Yahoo! Cloud Serving

Benchmark,” April 28, 2010, https://research.

yahoo.com/news/yahoo-cloud-serving-

benchmark?guccounter=1, accessed 20.08.2018.

[28] 3GPP, “3rd Generation Partnership Project,”

Technical Report, 3GPP Organizational Partners,

June 2018. http://www.3gpp.org/DynaReport/

25993.htm.

P. Kotiranta, M. Junkkari: Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic

11

APPENDIX A: CODE FOR GENERATING RAB REPORTS

The function generateValues generates a RAB report with 96 columns and stores it in a table. The simulated RAB

reports corresponds to real RAB reports structurally and in content.

public void generateValues() {

Random r = new Random();

for(int i=0; i<ROWS; i++) {

Object[] valueArray = new Object[COLUMNS];

valueArray[0] = inserter_id; //UINT8

valueArray[1]=ReportID[r.nextInt(ReportID.length)]; //UINT16

valueArray[2] = r.nextInt(700 - 650) + 650; //UINT32

valueArray[3] = r.nextInt(); //UINT32

valueArray[5] = r.nextInt(999 - 100) + 100; //UINT16

valueArray[6] = r.nextInt(999999 - 10000) + 10000; //UINT32

valueArray[7] = 15; //UINT8

valueArray[8] = Long.toString(generateRandomLong(15)); //VARSTRING(16) (IMSI)

valueArray[9] = r.nextInt(31356 - 29784) + 29784; //UINT16

valueArray[10] = r.nextInt(9999); //UINT16

valueArray[11] = r.nextInt(49); //UINT32

valueArray[12] = r.nextInt(255); //UINT32

valueArray[13] = r.nextInt(91); //UINT32

valueArray[14] = Long.toString(generateRandomLong(15)); //VARSTRING(16)

valueArray[15] = Long.toString(generateRandomLong(15)); //VARSTRING(16) (IMEI)

valueArray[16] = Integer.toString(r.nextInt(255)) + "." +

 Integer.toString(r.nextInt(255)) + "."+

 Integer.toString(r.nextInt(255)) + "." +

 Integer.toString(r.nextInt(255)); //VARSTRING(16) (IP address)

valueArray[17] = GenerateIPv6(); //VARSTRING(40)

valueArray[19] = Long.toString(generateRandomLong(15)); //VARSTRING(16)

valueArray[20] = r.nextInt(4); //UINT8

valueArray[21] = r.nextInt(14); //UINT16

valueArray[22] = r.nextInt(32);

valueArray[23] = r.nextInt(3058); //UINT16

valueArray[24] = r.nextInt(3058); //UINT16

valueArray[25] = r.nextInt(4); //UINT8

valueArray[26] = r.nextInt(14); //UINT16

valueArray[27] = r.nextInt(32); //UINT8

valueArray[28] = r.nextInt(3058); //UINT16

valueArray[29] = r.nextInt(3058);//UINT16

valueArray[30] = r.nextInt(6); //UINT16

valueArray[31] = r.nextInt(266 - 1) + 1; //UINT16

valueArray[32] = r.nextInt(65534); // UINT16

valueArray[33] = r.nextInt(65534); //UINT16

valueArray[34] = r.nextInt(9999999); //UINT32

valueArray[35] = 244; //UINT16

valueArray[36] = 7; //UINT16

valueArray[37] = r.nextInt(65534); //UINT16

valueArray[38] = r.nextInt(65534); //UINT16

valueArray[39] = r.nextInt(65534); //UINT16

valueArray[40] = r.nextInt(65534); //UINT16

valueArray[41] = r.nextInt(9999999); //UINT32

valueArray[42] = 244; //UINT16

valueArray[43] = 7; //UINT16

valueArray[44] = r.nextInt(65534); //UINT16

valueArray[45] = r.nextInt(65534); //UINT16

valueArray[46] = r.nextInt(9999999 - 1000000) + 1000000; //UINT32

valueArray[47] = r.nextInt();//UINT32

valueArray[48] = r.nextInt(254); //UINT8

valueArray[49] = r.nextInt(254); //UINT8

valueArray[50] = r.nextInt(65534); //UINT16

valueArray[51] = r.nextInt(65534); //UINT16

valueArray[52] = r.nextInt(8); //UINT8

valueArray[53] = r.nextInt(999 - 100) + 100; // UINT16

valueArray[54] = r.nextInt(2049 - 2048) + 2048; //UINT16

valueArray[55] = r.nextInt(8); //UINT16

Open Journal of Databases (OJDB), Volume 5, Issue 1, 2018

12

valueArray[56] = r.nextInt(8 - 5) + 5; //UINT8

valueArray[57] = r.nextInt(14); //UINT16

valueArray[58] = r.nextInt(32); //UINT8

valueArray[59] = r.nextInt(3058); //UINT16

valueArray[60] = r.nextInt(3058); //UINT16

valueArray[61] = r.nextInt(8 - 5) + 5; //UINT8

valueArray[62] = r.nextInt(99 - 10); //UINT16

valueArray[63] = r.nextInt(32); //UINT8

valueArray[64] = r.nextInt(3058); //UINT8

valueArray[65] = r.nextInt(3058); //UINT16

valueArray[66] = r.nextInt(266 - 1) + 1; //UINT16

valueArray[67] = r.nextInt(65534); //UINT16

valueArray[68] = r.nextInt(65534); //UINT16

valueArray[69] = r.nextInt(9999999); //UINT32

valueArray[70] = 244; //UINT16

valueArray[71] = 7; //UINT16

valueArray[72] = r.nextInt(65534); //UINT16

valueArray[73] = r.nextInt(65534); //UINT16

valueArray[74] = r.nextInt(65534); //UINT16

valueArray[75] = r.nextInt(65534); //UINT16

valueArray[76] = r.nextInt(9999999); //UINT32

valueArray[77] = 244; //UINT16

valueArray[78] = 7; //UINT16

valueArray[79] = r.nextInt(65534); //UINT16

valueArray[80] = r.nextInt(65534); //UINT16

valueArray[81] = r.nextInt(7 - 1) + 1; //UINT16

valueArray[82] = r.nextInt(15); //UINT8

valueArray[83] = r.nextInt(999999999); //UINT32

valueArray[84] = r.nextInt(999999999); //UINT32

valueArray[85] = r.nextInt(999999999); //UINT32

valueArray[86] = r.nextInt(999999999); //UINT16

valueArray[87] = r.nextInt(999999999); //UINT16

valueArray[88] = 244; //UINT16

valueArray[89] = 7; //UINT16

valueArray[90] = r.nextInt(999 - 100) + 100; //UINT16

valueArray[91] = r.nextInt(2049 - 2048) + 2048; //UINT16

valueArray[92] = r.nextInt(); //UINT16

valueArray[93] = r.nextInt(); //UINT16

valueArray[94] = r.nextInt(65534); //UINT16

valueArray[95] = r.nextInt(65534); //UINT16

rowsToInsert.add(valueArray);

generationCount++;

 }

 generationReady = true;

 }

P. Kotiranta, M. Junkkari: Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic

13

AUTHOR BIOGRAPHIES

Petri Kotiranta has graduated

from Tampere University of

Technology in 2013 and

University of Tampere in 2015.

In his master’s thesis he

evaluated the suitability of

NoSQL and NewSQL databases

for telecommunications data. He

has two years of work experience

from Nokia Networks where he

was working with various software development related

tasks. He is currently working in Qvantel as a system

specialist with Cassandra database related

administration tasks. He is also doing NoSQL related

research for his PhD.

Marko Junkkari got Master’s

Degree in Computer Science

from the University of Tampere

in 1997. He achieved Licentiate

Degree in 2002 and PhD in 2007

in computer science. His

research activities cover

conceptual structures, graph-

based methods, development

and integration of data models,

query languages, and XML

information retrieval. He has been a reviewer in several

international journals and a member of several program

committees. Since 2006, he has had a position as an

Assistant Professor of Data Management in the

University of Tampere. His teaching activities include

database programming, XML, conceptual modeling,

and special topics on data management.

