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ABSTRACT 

Continuously growing amount of data has inspired seeking more and more efficient database solutions for storing 

and manipulating data. In big data sets, NoSQL databases have been established as alternatives for traditional 

SQL databases. The effectiveness of these databases has been widely tested, but the tests focused only on key-value 

data that is structurally very simple. Many application domains, such as telecommunication, involve more complex 

data structures. Huge amount of Mobile Network Event (MNE) data is produced by an increasing number of 

mobile and ubiquitous applications. MNE data is structurally predetermined and typically contains a large number 

of columns. Applications that handle MNE data are usually insert intensive, as a huge amount of data are 

generated during rush hours. NoSQL provides high scalability and its column family stores suits MNE data well, 

but NoSQL does not support ACID features of the traditional relational databases. NewSQL is a new kind of 

databases, which provide the high scalability of NoSQL while still maintaining ACID guarantees of the traditional 

DBMS. In the paper, we evaluation NEM data storing and aggregating efficiency of Cassandra and 

ParStream/Kinetic databases and aim to find out whether the new kind of database technology can clearly bring 

performance advantages over legacy database technology and offers an  alternative to existing solutions. Among 

the column family stores of NoSQL, Cassandra is especially a good choice for insert intensive applications due to 

its way to handle data insertions. ParStream is a novel and advanced NewSQL like database and is recently 

integrated into Cisco Kinetic. The results of the evaluation show that ParStream is much faster than Cassandra 

when storing and aggregating MNE data and the NewSQL is a very strong alternative to existing database 

solutions for insert intensive applications. 
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1 INTRODUCTION 

In telecommunication, ever bigger data sets must be 

manipulated because the number of transactions and the 

amount of data associated with the transactions increase 

constantly. International and national laws and standards 

determine what kind of data must be stored about a 

single transaction, and thus they determine the structure 

of data. Due to the increasing amount of Mobile 

Network Event (MNE) data it is essential to investigate 

possible solutions to manipulate MNE data. NoSQL 

[13][14] and NewSQL [14][26] databases are modern 
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solutions to manipulate big data sets. In this present 

study, we evaluate and compare the efficiency of 

NoSQL databases and NewSQL databases in storing and 

querying MNE data. Applications of MNE data are 

insert intensive, and thus the main focus of the 

evaluation is to compare the storing speed of databases. 

More generally, our research question is whether new 

database solutions bring additional value compared to 

existing legacy SQL based solutions. 

The traditional SQL databases are usually designed 

to be operated on one server node. This is the way they 

can offer ACID (Atomicity, Consistency, Isolation, and 

Durability) properties. However, the drawback of this 

feature is the lack of horizontal scalability. Depending 

on the implementation, clustering is possible. For 

example, in Oracle it is possible to divide the database 

tables into different server nodes. However, NoSQL 

databases enable to spread the data around a cluster per 

data row based on the primary key. This is why there has 

been the demand for NoSQL databases as they offer 

more horizontal scalability. They also offer simpler data 

models that may be more efficient than SQL in certain 

use cases. NewSQL is a class of SQL database systems, 

which seek to achieve high performance and scalability 

of NoSQL while still guaranteeing the ACID properties 

of traditional DBMS. By comparing between NoSQL 

databases and NewSQL databases, we aim to find out 

whether it is possible to combine the best sides of the 

SQL and NoSQL databases and still perform well in our 

use case. 

Among NoSQL databases, column family stores and 

document stores are structurally suitable for 

manipulating NME data. We selected column family 

store Cassandra because its insertion speed is efficient 

and its data files take less storage space than JSON based 

document store implementations. Among NewSQL 

databases we selected ParStream [7] because it is 

suitable for managing MNE data. For example, it 

supports the geo-distributed database solution that is 

essential for MNE data. As of the summer 2018, after 

ParStream was acquired by Cisco (www.cisco.com) that 

is a market leader in the areas of IT and network. Cisco 

integrates it into Cisco Kinetic system and does not offer 

ParStream as a stand-alone product any more [10], but 

Cisco still provides all documents on ParStream online 

[8]. The functionality of ParStream is now a part of 

Cisco Kinetic, and hence we also refer to this database 

by ParStream/Kinetic. In the test setting we use original 

databases because during our test periods for MNE data 

we had only the license of ParStream but not Kinetic. 

MNE data consists of different reports that are 

generated by telecommunications traffic. The most 

common report is the RAB (Radio Access Bearer) report 

that is sent when a radio access bearer is created. A radio 

access bearer provides a connection between a user 

equipment and a network service. It is created 

practically every time when a user equipment, for 

example a mobile phone, tries to connect to a mobile 

phone network through a base station.  These reports 

consist of structured data that have values representing 

several metrics from the base station and information 

about the user equipment such as IMEI (International 

Mobile Equipment Identity) and IMSI (International 

Mobile Subscriber Identity). These, in turn, contain 

coded information on the country, networks and the 

route through which a mobile phone plan has been 

connected. For example, IMSI is a 64-bit field typically 

represented as a 15 digit number where first three digits 

determine a country, and a mobile network code and a 

mobile subscription identification number follow.  

For a mobile phone plan, there is information on the 

country, networks and the route through which a mobile 

phone plan has been connected. A connection involves 

information on different kinds of area codes and the 

route through which the connection is formed. A 

network station carries its own information. All this 

information is collected into a RAB report that is stored 

in the context of a MNE event. Depending on a version, 

a RAB report contains about 100 data entries, but one 

entry may contain a value having different kind of coded 

data.   

In a typical scenario, a huge amount of RAB reports 

must be stored during a short period of time. This 

happens especially during rush hours when many user 

equipment requests RAB. Therefore, the storing speed 

plays the most essential role in manipulating RAB 

reports. Most of the data will not be utilized, but the 

storing is necessary for tracing possible problems or 

tracking calls in serious criminal cases. The RAB reports 

can also be used analyzing the load of a network in a 

specific area. Therefore, aggregation queries are 

essential when analyzing the reports. Furthermore, 

pattern matching queries such as ‘like’ are needed to 

isolate parts of the codes (e.g. the country code of IMSI). 

In the evaluation, we simulate real world multi-

columned data from the area of telecommunication, the 

data storing and aggregation performance of the 

NewSQL-like ParStream database and the NoSQL 

Cassandra database are evaluated over different amount 

of MNE data using different number of threads. The 

results of the evaluation show that ParStream is 

dramatically faster than Cassandra in storing data and it 

benefits from increasing the number of threads. 

ParStream also outperforms the traditional SQL solution 

in the insertion speed of data.  The efficiency of 

aggregation queries depends on the column on which the 

query is focused. If aggregation queries do not focus on 

any specific columns, ParStream is notable faster than 

Cassandra. We also conclude that Cassandra does not 

support pattern matching queries that are essential for 

manipulating NME data. 

In this study work, we compare NoSQL and 

NewSQL-like databases whereas existing studies focus 

mainly on NoSQL databases. To our best knowledge, no 
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research results have been published on efficiency 

evaluation of either ParStream or Kinetic and on the 

performance comparison between NoSQL databases 

and NewSQL databases. 

The rest of the paper is organized as follows. In 

Section 2, we perform a literature review on efficiency 

studies of NoSQL databases. Section 3 investigates 

different database models in order to find suitable 

databases, which will be used in this study to evaluate 

the performance of databases for MNE applications. In 

Section 4, we introduce the content of the Radio Access 

Bearer (RAB) reports. RAB reports are the Mobile 

Network Event (MNE) data and are be used in the 

evaluation. Section 5 describes the generation of RAB 

data and the evaluation setting. The results of evaluation 

are presented in Section 6. Section 7 discusses the 

evaluation results and investigates further research 

questions. Finally, conclusions are given in Section 8. 

 

2 RELATED WORK 
 

There has been a large amount of research on the 

performance of the NoSQL databases [1][2][4][9][11] 

[17][18][19][20][25]. Yahoo! Cloud Serving Bench-

mark [9][27] is the most popular testing environment for 

key-value data. More complex data are used in 

benchmarking document stores with SQL databases in 

[23] and 0. Oliveira and Bernardino [21] have compared 

NewSQL databases MemSQL and VoltDB using the 

TPC-H test set that is also a more complex data set 

containing several tables and their mutual relationships. 

We focus on the studies where column family stores are 

compared with other databases. In the following, we 

present the latest performance tests where Cassandra is 

compared with column family stores HBase, 

Hypertable, document stores MongoDB, Couchbase, 

RavenDB, CouchDB, key-value databases Aerospike, 

Redis, multimodel database OrientDB and relational 

database MS SQL Express.  

In the Datastax study [11], Cassandra version 1.1.6, 

HBase version 1.1.1 and MongoDB version 2.2.2 have 

been compared. Yahoo! Cloud Serving Benchmark was 

used as a test tool. Load, read, write and scan tests were 

made with different stress levels and different amounts 

of cluster nodes. Read, insert, update and scan latency 

were also tested. Cassandra had clearly the best 

performance among the databases. Especially, when the 

amount of cluster nodes was increased Cassandra was 

much ahead leaving HBase second and MongoDB third. 

Nelubin and Engber [20] compared Cassandra, 

MongoDB, Couchbase and Aerospike. In their study, 

the performance of the databases was compared using 

Yahoo! Cloud Service Benchmarking Tool. Databases 

were compared for insertion throughput, maximum 

throughput and latencies in balanced workload (50% 

write and 50% read) and read heavy workload (95% read 

and 5% update) in SSD (Solid State Drive)-backed and 

in-memory datasets. The tests measured raw key-value 

performance of the databases. In these tests, Aerospike 

and Couchbase had clearly better performance 

compared with Cassandra and MongoDB. Aerospike 

outperformed Couchbase in read-heavy workloads and 

Couchbase outperformed Aerospike in balanced read-

write workloads. One of the reasons for the good 

performance of Aerospike was that it had been well 

optimized for SSD disks that were used in this test. Both 

Aerospike and Couchbase are designed for key-value 

based queries and these databases were expected to 

perform better than more complex Cassandra and 

MongoDB. However, pure key-value performance is not 

what we are looking for as MNE applications usually 

require more complex queries. 

Li and Manoharan [19] compared MongoDB version 

1.8.5, RavenDB version 960, CouchDB version 1.2.0, 

Cassandra version 1.1.2, Hypertable version 0.9.6, 

Couchbase version 1.8.0 and MS SQL Express version 

10.50.1600.1. The study tested instantiating a bucket of 

key-value pairs, reading values behind keys, creating 

and updating key-value pairs, deleting key-value pairs 

and fetching all the keys. RavenDB, Hypertable and 

MongoDB were the fastest whereas CouchDB, 

Couchbase and SQL Express were the slowest in 

creating the bucket. The read performance list of 

databases from the fastest to the slowest was as follows: 

Couchbase, MongoDB, SQL Express, Hypertable, 

CouchDB, Cassandra and RavenDB. With write 

performance, the corresponding list was Couchbase, 

MongoDB, Cassandra, Hypertable, SQL Express, 

RavenDB and CouchDB, and with delete performance 

Couchbase, MongoDB, SQL Express, Cassandra, 

Hypertable, CouchDB and RavenDB. In fetching all the 

keys, the test observation was that all the databases fetch 

keys quickly except CouchDB. SQL Express was the 

fastest for doing this operation.  

One of the interesting findings of this study was that 

traditional database MS SQL Express performed better 

than some of the NoSQL databases. Thus, although 

NoSQL databases should perform better in key-value 

based queries compared with traditional databases, they 

do not always perform better than traditional SQL 

databases. There was only a small correlation between 

performance and data models. RavenDB and CouchDB 

were not good in read, write and delete operations. 

Couchbase and MongoDB were overall the fastest for 

read, write and delete operations. Cassandra was slow in 

read operations but good in write and delete operations. 

Anyway, Cassandra had the best performance among 

column family stores. 

Abramova and others [2] compared Cassandra 

version 1.2.1, HBase version 0.94.10, MongoDB 

version 2.4.6, OrientDB version 1.5 and Redis version 

2.6.14. Among these databases OrientDB can be used as 
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Table 1: Top four ranking of NoSQL database performance tests  

Test 1. 2. 3. 4. 

Klein et al. [17] Cassandra Riak MongoDB - 

Datastax [11] Cassandra HBase MongoDB - 

Nelubin & Engber [20] Couchbase Aerospike MongoDB Cassandra 

Li & Manoharan [19] Couchbase MongoDB Cassandra Hypertable 

Abramova et al. [2] Redis Cassandra HBase MongoDB 

a document store and a graph database. Databases were 

tested with Yahoo! Cloud Serving Benchmark program. 

Read and write operations were tested with 600,000 

records. Tests focused on comparing the execution 

speed of get and put operations with different workloads 

of read and update operations. Redis was clearly the 

fastest of the tested databases, Cassandra the second 

fastest, HBase third, MongoDB fourth. The slowest was 

OrientDB when comparing the overall execution time of 

workloads. One of the reasons for the poor performance 

of the OrientDB was that it keeps records in the disk 

rather than loading them into memory. Other reason 

mentioned was that OrientDB took more resources than 

what was available in the test environment. Abramova 

and others [2] divide NoSQL databases into two 

categories: those that are good in read operations and 

those that are good in update operations. MongoDB, 

Redis, and OrientDB belong to the first category, 

whereas Cassandra and HBase belong to second 

category. Cassandra again possessed the best 

performance among column family stores and it 

performed well especially in write operations. 

Therefore, Cassandra is a strong alternative for insert 

intensive applications. 

Klein and others [17] have compared MongoDB 

version 2.2, Cassandra version 2.0 and Riak version 1.4. 

A modified version of the Yahoo! Cloud Serving 

Benchmark framework was used for testing. Tests 

measured the throughput of read-only, write-only and 

read/write workloads, and read and write latencies. Each 

test was run three times with different number of 

threads. The performance of Cassandra was clearly best 

in the read and write tests when the number of threads 

was increased. Riak had the second best performance 

and third was MongoDB. On the one hand, Cassandra 

had the biggest delay in read and write operations 

whereas Riak was 5 times faster and MongoDB was 4 

times faster. The reason for the better performance of 

Cassandra was that its hash based sharding was much 

more efficient than the sharding of MongoDB. On the 

other hand, the indexing features of Cassandra enabled 

fast queries. Furthermore, the peer to peer based 

architecture facilitated efficient coordination of read and 

write operations between different nodes. From the 

perspective of the present study, the results are 

interesting because we also run tests using the different 

number of threads. 

All the mentioned tests, where Cassandra 

participated, were key-value oriented. Yahoo! Cloud 

Service Benchmarking tool was used in many of the 

tests and this tool measures get and put performance 

with different loads. As key-value stores are well 

optimized for these kinds of queries, they had the best 

performance. However, among column family stores 

Cassandra performed best and therefore we selected 

Cassandra for testing multicolumn MNE data. Table 1 

summarizes the results of the performance tests. Our test 

setting differs from above-mentioned evaluation in two 

ways. First, we use real words multi-columned data and 

second, we evaluate not only NoSQL databases but also 

compare NoSQL with NewSQL databases. 

 
3 REVIEWING DATABASES FOR TESTING 
 

In many of the current MNE applications, the solutions 

are based on traditional SQL databases. As MNE data 

has a heavy demand for insertion performance, we are 

interested in NoSQL and NewSQL solutions for MNE 

data. In this part, we reviewed different NoSQL data 

models and aimed to find suitable databases in order to 

investigate if traditional SQL database could be replaced 

with the NoSQL and NewSQL solutions for the needs of 

MNE data applications.   

NoSQL databases are intended for big data sets and 

their organization is not based on the relational model. 

The query capabilities of NoSQL solutions are different 

in comparison with traditional SQL solutions, and this 

must be taken into account when selecting a suitable 

NoSQL database solution for MNE data that is multi-

column, structurally predetermined and contains a low 

number of relationships. The graph-based, column 

family stores, document stores and key-value stores are 

different types of NoSQL databases [12].  

Key-value store model is very simple and does not 

support as diverse queries as SQL does. In multicolumn 

data, SQL based solutions are difficult to replace with 

simple key-value store solutions because the keys to 

query must be known beforehand. Graph databases are 

neither a suitable choice for MNE data because they are 

designed for data that has a great number of 

relationships. Instead, document stores and column 

family stores are suitable for MNE data because both of  
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Figure 1: Radio Access Bearer in UMTS system 

 
them contain structured data under key and support 

queries to different attributes of data. Document stores 

are based on JSON format. However, one of the 

drawbacks of JSON is that it consumes space because of 

the structure definition of the JSON standard.  Column 

family stores, like Cassandra and Hypertable, support 

SQL-like query language CQL (Cassandra Query 

Language) [6] and HQL (Hibernate Query Language) 

[16]. However, the expression power of these languages 

is limited in comparison with the standard SQL. For 

example, join operations are not supported.  

In column families, data also take less space 

compared with document stores. This is due the fact that 

column definitions take less space on disc than JSON 

structure definitions. Thus, among NoSQL databases, 

the column family store model suits best for the needs 

of MNE data. We tested space consumption of 

1,000,000 RAB reports in one of the most popular 

document stores, MongoDB and one of the most popular 

column family stores, Cassandra. The size of RAB 

reports as a MongoDB collection was 4.53 GiB and as a 

Cassandra column family was 1.18 GiB. As the system 

might have to store billons of these reports, we 

considered Cassandra more space efficient.  

Among column family stores, Cassandra has clearly 

the highest ranking in DB-Engines [12]. In Cassandra 

previously mentioned amount of reports consume 

around as much space as in a SQL database. As 

reviewed in Section 2, Cassandra has the best 

performance among the column family stores. The way 

Cassandra stores the data should suit insertions well. 

When inserting data, Cassandra just appends the data 

into commitlog and memtable. The operation is simple 

and thus insertion operations should be efficient. 

Therefore, we select Cassandra as a representative of 

column family stores in our testing.  

NewSQL solutions are a new group of databases that 

aim to provide the best sides of the two kinds of 

databases: the high scalability of NoSQL and the ACID 

features of traditional relational databases. There are 

three main categories of NewSQL databases: 1. New 

database solutions that have been written from scratch; 

2. MySQL based storage engines; 3. Pluggable solutions 

for existing databases that aim to provide more 

scalability [26]. We chose ParStream to represent a 

NewSQL database with properties from both SQL and 

NoSQL databases. Apart from supporting traditional 

SQL queries, ParStream also provides horizontal 

scalability that is not offered by traditional SQL 

solutions. The ParStream database handles data in 

partitions, i.e. a table can be partitioned based on chosen 

partitioning columns. This way ParStream enables very 

fast querying as it can exclude irrelevant partitions by 

using bitmap indexing [24].  

Furthermore, ParStream is one of the newest 

NewSQL like database with possibility to install a geo-

distributed analytics server. This is an essential feature 

for geo-distributed telecommunication architecture. 

Although we do not investigate geo-distributed analytics 

in the present study, this was still one reason for 

selecting ParStream out of other NewSQL solutions. To 

our best knowledge, no previous research on ParStream 

exists, so we aim to show in the present research how 

this kind of database performs against Cassandra. 

 

4 TEST DATA – RAB REPORTS 
 

In a performance evaluation, it is essential that the test 

data corresponds to real data [3]. Our test data 

structurally and in content corresponds to Radio Access 

Bearer (RAB) reports. Radio Access Bearers are used 

when a user equipment, for example a mobile telephone, 

connects to a mobile network. RAB guarantees 

bandwidth for different kinds of communication that a 
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mobile equipment does in the network. Different sorts 

of RABs are used for different types of communication. 

For example, conversational speech RABs are used for 

normal telephone calls. These RABs guarantee 12.2 

kbps bandwidth for speech. Web browsing and email 

sending activities use interactive packet switched RABs 

that guarantee 384 kbps downlink and 64 kbps uplink. 

Many other kinds of RABs also exist for different kinds 

of connection. 

Figure 1 illustrates the components of RAB in 

UMTS system. As can be seen from the picture, Radio 

Access Bearer consists of Radio Bearer and Iu Bearer. 

Radio Bearer is created between a user equipment and 

Radio Network Controller (RNC). Radio Network 

Controller is an element that is responsible for managing 

resources between a radio network and a core network. 

Iu Bearer is created between RNC and Mobile Switching 

Centre (MSC) in a circuit switched core network and 

Serving GPRS Support Node (SGSN) in a packet 

switched core network. MSC routes voice calls and SMS 

messages to the circuit switched network. SGSN works 

similarly for packet switched data. 

Network operators are interested in monitoring the 

activities that occur in the network. This is why a 

network element, such as RNC, sends reports when 

RAB is created.  The RAB report is a part of commonly 

accepted 3GPP (3rd Generation Partnership Project) 

specifications [28]. Network event monitoring systems 

are used to analyze the reports. All the created RAB 

reports are usually collected into a system database. In 

Figure 1, data are collected from the RNC, MSC and 

SGSN elements into a database. During rush hours, 

when a lot of RABs are established, a huge number of 

reports might be sent, so it is very important for the 

database to perform fast enough to handle all these 

reports.  

The content of the RAB reports varies in some extent 

and depends on the network element that sends them. A 

RAB report typically contains information on the user 

equipment that requests RAB and technical information 

related to a base station and connection. In our case, a 

RAB report contains information about user equipment 

such as International Mobile Subscriber Identity (IMSI), 

International Mobile Station Identity (IMEI), Mobile 

Station International Subscriber Directory Number 

(MSISDN) and an IP address. There is also much 

information related to base stations and connections. 

This information includes start and stop base stations 

and their Cell ID (CID), UTRAN Cell ID  (LCID), 

Mobile Country Code (MCC), Mobile Network Code 

(MNC), Special Area Code (SAC) and Location Area 

Code (LAC). Further, RAB reports contain information 

about many other kinds of connection and possible 

failure. The RAB reports that we used in our test contain 

96 columns. 

 

5 EVALUATION SETUP 
 

A Java program was implemented to generate the test 

data that structurally correspond to real RAB reports 

used in the UTRAN network elements. More concretely, 

the program creates an array object with 96 columns for 

a RAB report, which contains 88 columns of 32-bit 

integer types, one timestamp and seven string types. The 

integers are generated using the random class of Java 

with the ranges of real values what are used in the actual 

reports. Some string types, such as IMSI (International 

Mobile Subscriber Identity) and URL (Uniform 

Recourse Locator), are selected from the real data and 

other data (e.g. IPv4 -Internet Protocol version 4) are 

generated at random. The timestamp is the time when 

the array is inserted into the database. All data are stored 

into a table called networkdata. In Appendix A, the code 

for generating the test data is given. Three columns were 

indexed that correspond to real indexing needs for 

typical use cases of MNE data.    

The computers used in the tests were HP ProLiant 

DL380 Gen9 Server. The used operating system is Red 

Hat Enterprise Linux version 6.5. Datastax Cassandra 

version 2.2 and ParStream version 3.3.4 were installed. 

Cassandra driver version 2.1.5 was used to insert data 

into Cassandra and Java Streaming Import API version 

3.3.4 was used to insert data into ParStream. We used 

only one node installation of the both databases.  The HP 

ProLiant DL380 Gen9 Server had following hardware 

setting: 

 2 x Intel Xeon E5-2667 v3 CPU @ 3.20GHz 

 8 cores, 16 threads 

 64-bit memory technology 

 L1 cache 512 KB 

 L2 cache 2048 KB 

 L3 cache 20480 KB 

 32 GB memory for each processor @ 2133 MHz. 

In the test setting, the servers contain only necessary 

programs and no unnecessary external load existed. For 

inserting data into databases, the Java program utilizes a 

for-loop that iterates through a list of array objects. The 

values of objects are randomly generated following the 

database structure presented in Appendix A. In our tests, 

the initial size of data was 10,000 rows. The for loops 

either keep looping trough the list until certain amount 

of time has passed or certain amount of rows are 

inserted. So as the same pre-generated list of rows is 

looped trough many times, some of the values can be 

duplicates.  In our tests, this is not important as we only 

are interested in the insertion and query performance. 

The Java program can also insert values in multiple 

threads and the amount of threads can be selected. 

 The tests were run in a single node for achieving 

comparability with the existing architecture that is 

designed for a single node database.  
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Table 2: Average insertion rate in rows per second 

for twelve five-minute runs 

Number  

of Threads 
ParStream Cassandra 

1 30459 1132 

2 56393 5454 

3 79114 4918 

4 101108 4491 

5 117278 4032 

6 130448 3619 

7 151606 3161 

8 167868 2885 

9 197233 2492 

10 220393 2187 

11 242622 2063 

12 241366 2029 

 

6 EVALUATION 
 

In this study, we evaluate the performance of a NoSQL 

database (Cassandra) and a NewSQL database 

(ParStream), and aim at answering the question whether 

new database solutions bring additional value compared 

to existing legacy SQL based solutions. Since 

applications of MNE data are insert intensive, this 

evaluation focuses on the efficiency of storing and 

aggregation query processing. 

 

6.1  Storing Speed 
 

The efficiency of storing data is essential in 

telecommunication because during a short time period a 

large amount of data may be inserted into a database. 

The number of threads is a typical way to increase 

storing speed.  

We first compare ParStream and Cassandra using a 

single thread. The average storing speed in Cassandra 

was about 12,500 rows per second and in ParStream 

about 40,000 rows per second. In other words, the 

storing speed was over three times faster in ParStream 

than in Cassandra. During the two-hour period of testing 

the difference stayed linearly the same. 

In order to test the impact of the number of threads 

in storing data, we made twelve five-minute runs using 

different number of threads with both databases. The 

results are given in Table 2 and illustrated in Figure 2. 

In ParStream, increasing the number of threads also 

increased the storing speed. Cassandra, instead, did not 

benefit notably from increasing the number of threads. 

The difference of the maximum storing speeds was 44 

times bigger in ParStream than in Cassandra. Based on 

 

 
 

Figure 2. Average insertion rate in rows per second 

with different number of threads 

 

 the performance of relational database solutions, we 

choose the insertion speed of 210,000 rows per second 

as the performance baseline. Cassandra did not exceed 

the performance baseline even with the maximal number 

of threads, whereas ParStream exceeded the 

performance baseline when using ten or more threads. 

 

6.2  Querying Speed 
 

In MNE applications, it is often needed to find the 

amount of certain reports. Thus, we chose a count query 

for testing the aggregation efficiency of databases and 

the count query is currently used by existing SQL based 

applications. The count function is heavy for databases 

to process. It is supported by both ParStream and 

Cassandra and we were thus able to compare them and 

see the differences in performance. In Cassandra, the use 

of a column counter is recommended to keep track of the 

amount of records. Counter columns with multiple 

nodes may involve consistency issues.  

The first query is a basic aggregation query where 

the number of all the rows is calculated. 

Query 1: SELECT COUNT(∗) FROM 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎 

We tested the speed of the query over different 

amount of data. The tested data sets consist of half 

million, one million, ten million and hundred million 

rows. The results are given in Table 3. In all the cases, 

ParStream was dramatically faster than Cassandra. For 

example, in case of the half million rows, Cassandra 

performed the query in 36 seconds whereas ParStream 

used only four milliseconds. In the case of hundred 

million rows, Cassandra could not finish the execution 

of the query during 30 minutes whereas ParStream used 

only 16 seconds.  

It is also worth noting that running the same query 

twice improved the execution time in ParStream. In the 
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Table 3: Execution time of Query 1 

Number of Rows Cassandra ParStream 

500,000 36 seconds 
0.004 seconds (1st run) 

0.002 seconds (2nd run) 

1,000,000 1 min 24 seconds 
0.007 seconds (1st run) 

0.0035 seconds (2nd run) 

10,000,000 11 min 12 seconds 
0.067 seconds (1st run) 

0.031 seconds (2nd run) 

100,000,000 Timeout (30 minutes) 
16 seconds (1st run) 

0.35 seconds (2nd run) 

 

 

 cases of half, one and 10 million rows, the time halved. 

In the case of hundred million rows, the processing time 

decreased from 16 seconds to less than half seconds. 

This is due to the fact that in the first querying the bitmap 

is loaded into the central memory, and thus it is 

immediate in use in the second query processing. 

Cassandra does not benefit from repetitively querying. 

The above results do not mean that Cassandra is 

inefficient in general. If a query is focused on the 

column that is part of the primary key, Cassandra is 

efficient. Query 2 represents the query type where an 

attribute is exactly valuated. We consider the querying 

efficiency related to the role of a valuated attribute. The 

test data contain a hundred million rows. 

Query 2: SELECT COUNT(∗) FROM 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎 

WHERE 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 44755149 

When the attribute belongs to a column that is a part 

of the primary key in Cassandra, and the attribute is 

partitioned and bitmap indexed in ParStream, there is no 

significant difference between the query performances 

of the two databases. Execution times of two databases 

were less than 0.01 seconds. If the attribute is indexed 

but not partitioned in ParSrteam, then the query was 

performed in 18 seconds. If the attribute is neither 

indexed nor partitioned in ParSrteam, the query required 

more than 40 seconds. We cannot run the query with 

these settings in Cassandra, because non-indexed 

attributes cannot be queried by Cassandra. 

The last query is string matching, which is supported 

by ParStream but not by Cassandra. In Query 3, ‘515’ is 

an area code that is the initial code of IMSI (the 

International Mobile Subscriber Identity).  

Query 3: SELECT COUNT(∗) FROM 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑑𝑎𝑡𝑎 

WHERE imsi LIKE ′515%′ 

In testing Query 3, the database contained ten 

million rows. ParStream performed the string matching 

query in 10 seconds when the bitmap was not used, 

whereas when using the index, the query required 28 

seconds. This means that bitmap indexing does not 

increase performance for every type of queries.  

7 DISCUSSION 
 

We evaluated the insertion performance and the 

aggregation capability of ParStream and Cassandra 

databases over MNE data in the previous section. The 

results of the evaluation show that ParStream was much 

more efficient in insertion speed compared with 

Cassandra. 

In order to find out why Cassandra had an inferior 

insertion speed, we performed more investigations on its 

performance by changing the test setting. We changed 

durable writes feature to off-state that bypasses 

commitlog of Cassandra. Cassandra appends the data 

first into commitlog-file and then takes it into in-

memory memtable. If memtable is full, data are stored 

into data files. However, setting durable writes to off-

state did not have any impact on insertion speed. We 

also tested the effect of different sizes of the memtable, 

but this did not improve insertion performance either. 

ParStream seems to be better optimized for parallel 

insertions than Cassandra. There are differences of how 

the data is stored and the databases are implemented. 

Cassandra is programmed in Java and cannot be 

optimized as efficiently as C/C++ program. Cassandra 

stores data as key-value pairs. All the values are stored 

with their corresponding key. When more columns were 

indexed, insertion speed seemed decreasing. Thus, 

writing data as key-value pairs seems to be one of the 

factors that decrease performance. 

In the aggregation test, Cassandra was clearly 

inferior to ParStream as well. When executing the count 

function of CQL (Cassandra Query Language) [6], 

Cassandra reads through all the rows in the database and 

the operation is very slow. If an aggregation query is 

modified such that a condition for an indexed key is 

inserted, both of Cassandra and ParStream show equally 

good performance when the queried value belongs to an 

indexed column. This was to be expected. Cassandra 

fetches the columns quickly with a right row key and 

ParStream takes advantage of partitioning and bitmap 

indexing. If the column is not partitioned, ParStream 

cannot exclude irrelevant partitions from the query. This 
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is why the query takes a longer time to finish. When 

using bitmaps the querying time will be halved.  

Query 3 was executed just for ParStream as 

Cassandra does not support bitmap indexing and CQL 

does not support LIKE-operation. The query 

demonstrates that bitmap indexing does not always 

provide better performance. This query was faster when 

bitmap indexing was not used. Seeking the values that 

match a like pattern seems to be the weakness of the 

bitmap indexing in ParStream. Query 3 expresses also a 

general problem in comparing different databases by 

complex queries. Namely, if a database or a query 

language does not support a query type, the comparison 

cannot be executed. This is one reason for developing 

SQL++ [22] that gives a similar interface to relational 

databases and NoSQL databases. On the other hand, the 

development of the query languages of NoSQL 

databases is in progress and, thus, the SQL++ interfaces 

will be developed.  

Although ParStream seems to be overwhelming in 

data insertion and aggregation over NME data, an open 

question is the efficiency of ParStream in general. For 

that, ParStream should be tested in different data sets 

and compared with other NoSQL and NewSQL 

databases. Yahoo! Cloud Service Benchmarking tool 

would get results that will be in line with the results 

released in NoSQL databases. TCP-H and TCP-BB [5] 

are public data environments with structurally more 

complex data. The ParStream has been acquired by 

Cisco and integrated into Cisco Kinetic distribute 

system in the summer 2018, and thus further tests should 

be focused on Kinetic. During our test periods we had 

only the license of ParStream but not Kinetic. In general, 

a similar test setting can be repeated with Kinetic, and 

similar results could be expected with Kinetic.  

 

8 CONCLUSIONS 
 

In this work, we investigate the applicability of NoSQL 

and NewSQL databases for storing and querying Mobile 

Network Event (MNE) data. Structurally, column 

family stores and document stores are suitable for MNE 

data, but the storage format used by document stores 

consumes space. Therefore, among NoSQL databases 

we selected the column family store databases for 

performance evaluation. We tested the performance of 

two databases over MNE data: Cassandra and 

ParStream. Cassandra is a column family store database 

and it is known as a very efficient solution for big data 

sets. ParStream is a NewSQL like database for which no 

test results have so far been published.  

MNE applications are insert intensive and therefore 

the efficiency of storing data is essential in MNE 

applications. In terms of a single thread, ParStream was 

three times faster than Cassandra. When increasing the 

number of threads, both databases enhanced their 

storing performance, but ParStream increased obviously 

more. The difference of the maximum storing speed was 

44 times bigger in ParStream than in Cassandra. In the 

test setting tree columns were indexed. This seems to be 

the essential reason for the huge difference in the 

performance. In an additional test, we found that if only 

one column is indexed, ParStream was six times faster 

than Cassandra. 

 In aggregation querying, ParStream was 

dramatically faster than Cassandra. When a query is 

focused on a key attribute, no difference between the 

databases was found. So far Cassandra is known as one 

of the column family stores with best performance 

especially for write operations. However, with insert-

intensive MNE applications, ParStream is very efficient 

compared to Cassandra. The functionality of ParStream 

is now a part of Cisco Kinetic and similar results could 

be expected with Cisco Kinetic 

The study presented in this paper clearly indicates 

that the new kinds of database technology can clearly 

bring performance advantages over legacy database 

technology and offer a very strong alternative to existing 

solutions. 
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APPENDIX A: CODE FOR GENERATING RAB REPORTS  
 

The function generateValues generates a RAB report with 96 columns and stores it in a table. The simulated RAB 

reports corresponds to real RAB reports structurally and in content. 

 
public void generateValues() { 

 

Random r = new Random(); 

 

for(int i=0; i<ROWS; i++) { 

 

Object[] valueArray = new Object[COLUMNS]; 

 

valueArray[0] = inserter_id; //UINT8 

valueArray[1]=ReportID[r.nextInt(ReportID.length)]; //UINT16 

valueArray[2] = r.nextInt(700 - 650) + 650; //UINT32  

valueArray[3] = r.nextInt(); //UINT32 

valueArray[5] = r.nextInt(999 - 100) + 100; //UINT16 

valueArray[6] = r.nextInt(999999 - 10000) + 10000; //UINT32 

valueArray[7] = 15; //UINT8  

valueArray[8] = Long.toString(generateRandomLong(15)); //VARSTRING(16) (IMSI) 

valueArray[9] = r.nextInt(31356 - 29784) + 29784; //UINT16        

valueArray[10] = r.nextInt(9999); //UINT16 

valueArray[11] = r.nextInt(49); //UINT32                 

valueArray[12] = r.nextInt(255); //UINT32               

valueArray[13] = r.nextInt(91); //UINT32 

valueArray[14] = Long.toString(generateRandomLong(15)); //VARSTRING(16)  

valueArray[15] = Long.toString(generateRandomLong(15));  //VARSTRING(16) (IMEI)  

valueArray[16] = Integer.toString(r.nextInt(255)) + "." +     

   Integer.toString(r.nextInt(255)) + "."+      

   Integer.toString(r.nextInt(255)) + "." +    

   Integer.toString(r.nextInt(255));  //VARSTRING(16) (IP address) 

valueArray[17] = GenerateIPv6();    //VARSTRING(40) 

valueArray[19] = Long.toString(generateRandomLong(15));  //VARSTRING(16)                                    

valueArray[20] = r.nextInt(4); //UINT8 

valueArray[21] = r.nextInt(14); //UINT16 

valueArray[22] = r.nextInt(32);                            

valueArray[23] = r.nextInt(3058); //UINT16                

valueArray[24] = r.nextInt(3058); //UINT16 

valueArray[25] = r.nextInt(4); //UINT8 

valueArray[26] = r.nextInt(14); //UINT16 

valueArray[27] = r.nextInt(32); //UINT8 

valueArray[28] = r.nextInt(3058); //UINT16           

valueArray[29] = r.nextInt(3058);//UINT16        

valueArray[30] = r.nextInt(6); //UINT16  

valueArray[31] = r.nextInt(266 - 1) + 1; //UINT16 

valueArray[32] = r.nextInt(65534); // UINT16 

valueArray[33] = r.nextInt(65534); //UINT16 

valueArray[34] = r.nextInt(9999999); //UINT32 

valueArray[35] = 244; //UINT16 

valueArray[36] = 7; //UINT16 

valueArray[37] = r.nextInt(65534); //UINT16 

valueArray[38] = r.nextInt(65534); //UINT16 

valueArray[39] = r.nextInt(65534); //UINT16 

valueArray[40] = r.nextInt(65534); //UINT16 

valueArray[41] = r.nextInt(9999999); //UINT32 

valueArray[42] = 244; //UINT16 

valueArray[43] = 7; //UINT16 

valueArray[44] = r.nextInt(65534);  //UINT16 

valueArray[45] = r.nextInt(65534); //UINT16 

valueArray[46] = r.nextInt(9999999 - 1000000) + 1000000; //UINT32        

valueArray[47] = r.nextInt();//UINT32 

valueArray[48] = r.nextInt(254); //UINT8 

valueArray[49] = r.nextInt(254); //UINT8 

valueArray[50] = r.nextInt(65534); //UINT16 

valueArray[51] = r.nextInt(65534); //UINT16   

valueArray[52] = r.nextInt(8);  //UINT8 

valueArray[53] = r.nextInt(999 - 100) + 100;  // UINT16 

valueArray[54] = r.nextInt(2049 - 2048) + 2048; //UINT16 

valueArray[55] = r.nextInt(8);  //UINT16 
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valueArray[56] = r.nextInt(8 - 5) + 5;   //UINT8 

valueArray[57] = r.nextInt(14); //UINT16 

valueArray[58] = r.nextInt(32); //UINT8 

valueArray[59] = r.nextInt(3058);  //UINT16 

valueArray[60] = r.nextInt(3058); //UINT16    

valueArray[61] = r.nextInt(8 - 5) + 5; //UINT8 

valueArray[62] = r.nextInt(99 - 10); //UINT16 

valueArray[63] = r.nextInt(32); //UINT8 

valueArray[64] = r.nextInt(3058);  //UINT8 

valueArray[65] = r.nextInt(3058); //UINT16   

valueArray[66] = r.nextInt(266 - 1) + 1;  //UINT16 

valueArray[67] = r.nextInt(65534); //UINT16 

valueArray[68] = r.nextInt(65534); //UINT16     

valueArray[69] = r.nextInt(9999999); //UINT32  

valueArray[70] = 244; //UINT16 

valueArray[71] = 7; //UINT16 

valueArray[72] = r.nextInt(65534); //UINT16 

valueArray[73] = r.nextInt(65534);  //UINT16 

valueArray[74] = r.nextInt(65534); //UINT16 

valueArray[75] = r.nextInt(65534);  //UINT16  

valueArray[76] = r.nextInt(9999999); //UINT32 

valueArray[77] = 244; //UINT16 

valueArray[78] = 7; //UINT16 

valueArray[79] = r.nextInt(65534); //UINT16 

valueArray[80] = r.nextInt(65534); //UINT16 

valueArray[81] = r.nextInt(7 - 1) + 1; //UINT16   

valueArray[82] = r.nextInt(15); //UINT8 

valueArray[83] = r.nextInt(999999999); //UINT32 

valueArray[84] = r.nextInt(999999999); //UINT32 

valueArray[85] = r.nextInt(999999999); //UINT32 

valueArray[86] = r.nextInt(999999999); //UINT16 

valueArray[87] = r.nextInt(999999999); //UINT16 

valueArray[88] = 244; //UINT16 

valueArray[89] = 7; //UINT16 

valueArray[90] = r.nextInt(999 - 100) + 100; //UINT16 

valueArray[91] = r.nextInt(2049 - 2048) + 2048; //UINT16 

valueArray[92] = r.nextInt(); //UINT16 

valueArray[93] = r.nextInt(); //UINT16 

valueArray[94] = r.nextInt(65534); //UINT16 

valueArray[95] = r.nextInt(65534); //UINT16  

 

rowsToInsert.add(valueArray); 

generationCount++; 

  } 

    

  generationReady = true; 

 } 
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