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Abstract 

Rotavirus (RV) inner capsid VP6 protein is a potential non-live vaccine candidate due to high degree of 

conservation and immunogenicity, and ability to self-assemble into oligomeric structures, including 

nanotubes. These VP6 structures induce strong humoral and T cell immunity and protect mice against 

RV challenge. It has been suggested that intracellular neutralization by IgA antibody and VP6-specific 

CD4+ T cells mediate protection. We investigated generation of diverse CD4+ T cell subsets by 

intradermal and intranasal delivery of recombinant VP6 (rVP6) nanotubes in BALB/c mice. Production 

of antiviral cytokine interferon-γ (IFN-γ), interleukin-4 (IL-4) and pro-inflammatory cytokine IL-17 was 

analyzed following in vitro stimulation of immune cells. Cell surface CD107a expression was measured 

to determine VP6-specific cytotoxic T cells. Both parenteral and mucosal immunization with oligomeric 

rVP6 induced VP6-specific Th1, Th2 and Th17 cells. For the first time, cytotoxicity-related 

degranulation (CD107a surface expression) indicated that RV VP6-specific CD4+ T cells had cytotoxic 

T lymphocyte (CTL) phenotype. These findings demonstrate an ability of rVP6 nanostructures to induce 

heterogeneous CD4+ T cells with different effector functions, including CTLs with potential to lyse RV-

infected cells, suggesting an additional mechanism of RV VP6-induced protection.  

Keywords: rotavirus; VP6; CD4; cytotoxic T lymphocyte; interferon-γ; interleukin-17 



3 

1. Introduction

Live attenuated oral rotavirus (RV) vaccines containing species A RVs have been successfully introduced 

in routine childhood immunization in many parts of the world (1), but RV is still a common cause of 

acute gastroenteritis in infants and young children worldwide with high mortality in the developing world 

(2). Alternative second-generation non-live RV vaccine candidates are being considered to alleviate 

safety concerns and to improve efficacy (1). One of the candidates is RV VP6 protein, which is highly 

conserved and immunogenic RV protein; it forms the middle layer of the triple-layered RV particle (3, 

4). Antibodies directed to this inner capsid protein are the most abundant responses following RV 

infection (5, 6) or vaccination (7). We have recently developed a combination subunit vaccine against 

frequent viral causes of childhood gastroenteritis, consisting of RV recombinant VP6 (rVP6) protein and 

norovirus (NoV) virus-like particles (VLPs) (8, 9). Since protein assemblies with repetitive multivalent 

expression of antigen are powerful immunogens (10), the ability of VP6 to self-assemble into various 

oligomeric structures, including nanotubes, (11-13) makes it an attractive new generation RV vaccine 

candidate. rVP6 subunit vaccine could offer benefits over live attenuated vaccines being safe to 

administer to immunocompromised people, minimizing the risk of intussusception, preventing shedding 

of the vaccine virus to the environment and reemergence of new recombinant viruses. As VP6 

immunization elicits non-neutralizing antibodies, VP6-induced protection is due to mechanisms different 

from those of classical neutralization. 

We have previously demonstrated that both parenteral and mucosal delivery of the candidate RV – NoV 

combination vaccine induced broad heterologous and long-lasting immune responses to RV and NoV in 

mice (8, 9, 14, 15) and protected against live murine RV challenge (14, 16). Furthermore, anti-VP6 

mucosal IgA antibodies interfered with RV infection in vitro (14, 17), probably by impairing RV 

replication via intracellular inhibition of viral transcription (18, 19) during transcytosis of the polymeric 



4 

IgA (pIgA) antibodies (20, 21). The in vivo protective activity of VP6-specific IgA antibodies has been 

demonstrated by Burns and colleagues (22). rVP6 nanostructures can also induce activation and 

maturation of antigen presenting cells (APCs) (23), facilitate the APC uptake of co-delivered NoV VLPs, 

and act as a potent adjuvant for NoV-specific immune responses (24, 25). Others have shown that 

immunization with rVP6 induces CD8+ cells, which mediate clearance of chronic RV infection in mice 

(26) and can lyse RV-infected cells in vitro (27). In addition, VP6-specific CD4+ T cells have been shown 

to mediate protection against RV infection in mice (28, 29), either by direct cell-mediated cytotoxic 

mechanism in mucosa or by antiviral cytokine production. Interferon-γ (IFN-γ) has been identified as the 

only anti-RV cytokine in stimulated CD4+ T cells from mice immunized with a chimeric VP6 protein 

(30, 31). Another cytokine suggested to have function in VP6-induced protection is interleukin-17 (IL-

17) (32, 33) involved in inflammatory response (34). Although IL-17 possesses no direct antiviral effects

on RV replication in vitro (30), this pro-inflammatory cytokine, secreted mainly by Th17 cells, plays an 

important role in recruitment of immune cells to infection sites, especially at the mucosa (34).  

CD4+ T cells have been revealed as the principal mediator of protection after mucosal immunization with 

soluble monomeric VP6 (28, 29, 33). The purpose of this study was to investigate CD4+ T cell effector 

functions after parenteral immunization with oligomeric rVP6. In the course of this work, VP6-specific 

CD4+ T cells potentially able to lyse RV–infected cells were identified. 
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2. Materials and Methods

2.1. Recombinant VP6 production 

An oligomeric human-derived RV rVP6 (Subgroup (SG) II; GenBank reference strain accession no. 

GQ477131) was produced in Bac-to-Bac baculovirus expression system (Invitrogen, Carlsbad, CA) in 

Sf9 insect cells and purified by ultracentrifugation in sucrose gradients according to the previously 

published procedures (8, 17). The assembly of rVP6 (resuspended in PBS pH 7.3-7.5) into nanotubes 

was confirmed by electron microscopy (8, 9). 

2.2. Viruses and synthetic peptides 

RV cell culture antigens were prepared from RV strains Wa (G1P1A[8], SGII), BrB (G4P2[6], SGII) 

and WC3 (G6P7[6], SGI) by propagation in a fetal rhesus monkey kidney (MA104) cell line as described 

elsewhere (14). The amount of VP6 protein in the cultures was quantified by the Ridascreen® Rotavirus 

test (R-Biopharm AG, Darmstadt, Germany) with rVP6 as an internal standard (17). An 18-mer VP6-

derived R6-2 peptide (242DGATTWYFNPVILRPNNV259, AA242-259), originally identified as an VP6-

specific H-2d CD4+ T cell epitope (35), was synthesized by Proimmune LtD. (Oxford, UK). A 17-mer 

peptide (323ISQAVHAAHAEINEAGR339, AA323-339, InvivoGen, San Diego, CA) derived from chicken 

ovalbumin (OVA) was used as an irrelevant negative control in the assays. 

2.3. Mouse immunization and sample preparation 

Female 6-week-old BALB/c OlaHsd mice were purchased from Envigo (Horst, the Netherlands) and 

acclimatized prior to the start of the experiment. Five mice/experimental group were immunized twice 

(at study weeks 0 and 3) with a combination vaccine formulation containing rVP6 nanotubes (8, 9), via 

ID or IN delivery at a dose of 10 µg rVP6/immunization point. No external adjuvants were included in 
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the vaccine formulation. Mice administered with a carrier (sterile PBS only) served as control groups. 

Immunizations were conducted under general anesthesia induced with a formulation of Hypnorm® 

(VetaPharma Limited, Leeds, UK) and Dormicum® (Roche Pharma AG, Grenzach-Wyhlen, Germany). 

Whole blood and spleens were collected at the time of sacrifice (week 5) and prepared according to the 

previously published procedures (36).  All of the experimental procedures were conducted according to 

the regulations and guidelines of the Finnish National Experiment Board. 

2.4. RV VP6-specific ELISA 

Two-fold serial dilutions from 1:200 diluted sera of individual mice were tested in ELISA for the 

presence of RV VP6-specific IgG and IgG subtype antibodies as described elsewhere (8, 17). Shortly, 

96-well half-area polystyrene plates (Corning Inc, Corning, NY) were coated with 50 ng of rVP6 per 

well. Serum anti-VP6 antibodies were detected with horseradish peroxidase (HRP)-conjugated anti-

mouse IgG (Sigma-Aldrich, St. Louis, MO), IgG1 (Invitrogen), or IgG2a (Invitrogen) and SIGMA FAST 

OPD substrate (Sigma-Aldrich). Optical density values at 490 nm (OD490) were measured by Victor2 

1420 microplate reader (PerkinElmer, Waltham, MA). A result was interpreted as a positive when the 

OD490 was above the cut-off value (mean OD490 + 3 × SD of the control mice and OD490 >0.1). The end-

point titer was expressed as Log10 of the reciprocal of the highest dilution with an OD490 above the cut-

off value.  

2.5. ELISPOT IFN-γ, IL-4 and IL-17 

Quantification of IFN-γ, IL-4 and IL-17 production from liquid nitrogen frozen splenocytes of 

immunized and control mice was performed according to the previously published ELISPOT IFN-γ and 

IL-4 assays (9, 17, 37). Briefly, Multiscreen 96-well HTS-IP filter plates (Millipore, Billerica, MA) were 

coated with 5 µg/mL of anti-mouse monoclonal IFN-γ antibody AN18 or IL-4 antibody 11B11 or 10 



7 
 

µg/mL of anti-mouse monoclonal IL-17A antibody IL17-I (all from Mabtech AB, Nacka Strand, 

Sweden). Group-wise pooled splenocytes (0.2×106 cells/well for IFN-γ; 0.4×106 cells/well for IL-4 and 

IL-17) from experimental or control mice were stimulated in duplicates with rVP6 protein (5 µg/mL), 

R6-2 peptide (5 µg/mL) or RV (Wa, BrB or WC3) cell culture antigens (0.5 µg VP6/mL). OVA-peptide 

and MA104 mock cell culture were used as negative controls. Background (culture medium (CM) only) 

and cell viability controls (10 µg/mL of T cell mitogen Concanavalin A; Sigma-Aldrich) were included 

in each assay. Following incubation of 20h (for IFN-γ) or 45h (for IL-4 and IL-17) at 37oC, cytokine 

secretion was detected with 0.5 µg/mL of biotinylated anti-mouse IFN-γ (R4-6A2), IL-4 (BVD6-24G2)  

or IL-17A (MT2270) monoclonal antibody and 1:1000 diluted streptavidin-alkaline phosphatase 

conjugate (all from Mabtech AB). The spots developed with BCIP/NBT substrate (Mabtech AB) were 

counted by ImmunoSpot® automatic CTL analyzer (CTL-Europe GmbH, Bonn, Germany). The results 

were expressed as mean spot forming cells (SFC)/106 splenocytes of duplicate wells. 

 2.5.1. Blocking of T cell activation 

In order to define cell type responsible for the IFN-γ production, splenocytes were pre-incubated prior to 

in vitro stimulation with the antigens for 1 h at 37oC with 30 µg/mL of functional blocking antibodies rat 

anti-mouse CD4, rat anti-mouse CD8a or rat IgG2a isotype control (all from eBioscience) (17). The 

blocking efficiency of the anti-CD4 and anti-CD8 antibodies to block IFN-γ production in the ELISPOT 

assay has been previously confirmed (38). 

2.6. Degranulation assay 

The cytotoxic phenotype of RV VP6-specific mouse T cells was tested by degranulation assay 

determining the percentages of T cells expressing CD107a on the surface, according to previously 
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published method with few modifications (39). In brief, splenocytes (1×106 cells/mL) were pre-incubated 

for an hour at 37oC in complete CM with fluorescein isothiocyanate (FITC)-conjugated anti-CD107a 

antibody (clone 1D4B) (40) in the presence of the VP6-specific R6-2 peptide (4 µg/mL) or RV Wa cell 

culture antigens (0.5 µg VP6/mL), and incubated overnight in the presence of brefeldin A and monensin. 

MA104 mock cell culture was used as negative control. Background control (CM only) was included in 

each assay for determining spontaneous expression of CD107a. The cells were treated with mouse Fc 

Block (Clone 2.4G2) and Horizon Fixable Viability stain 780 (live/dead discrimination) before staining 

the cell surface antigens CD3 (PE-Cy7 Rat Anti-Mouse CD3) and CD8 (PerCP-Cy5.5 Rat Anti-Mouse 

CD8a, Clone 53-6.7). All reagents were purchased from BD Biosciences. The cells were acquired on BD 

FACSCanto II flow cytometer and analyzed using FlowJo v.10 software (ThreeStar Inc., San Carlos, 

CA). Live CD3+ lymphocytes were gated and analyzed for CD8a and CD107a expression. 

2.8. Statistical analyses 

Fisher's exact test was employed to assess the intergroup differences in the IgG endpoint titers. The 

Mann-Whitney U-test and Kruskal-Wallis test were used to compare differences between the non-

parametric observations of two or more independent groups. Analyses were conducted by IBM SPSS 

Statistics for Windows (IBM Corp., Armonk, NY), Version 23.0. The statistically significant difference 

was defined as p ≤ 0.05. 

 

3. Results  

3.1. VP6-specific serum IgG antibodies and Th1/Th2 dichotomy 
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Immunization of the mice with a vaccine formulation containing 10 µg of rVP6 nanotubes elicited robust 

VP6-specific IgG antibody levels (geometric mean titers, GMTs >4.9 log10) irrespective of the delivery 

route (Figs. 1A and B). Although ID immunization resulted in slightly lower antibody response, no 

statistically significant difference (p=0.143, Fisher's exact test) was observed in the magnitude of the 

responses induced by rVP6 via ID or IN route (Fig. 1B). No VP6-specific antibodies were detected in 

the sera of control mice (Figs. 1A and B). 

Determination of IgG subtype IgG1 and IgG2a titers, representing Th2- and Th1-type responses, revealed 

induction of strong Th2-type (GMTs >5.1 log10) and Th1-type (GMTs >5.5 log10) responses by both 

administration routes (Figs. 1C and D). Similar to IgG responses, no significant difference was observed 

in the magnitude of the IgG1 (p=0.143, Fisher's exact test) or IgG2a (p=1.0, Fisher's exact test) responses 

generated by 10 μg dose of rVP6 via ID or IN route. No anti-VP6 IgG or IgG subtype antibodies were 

detected in sera of control mice (Figs. 1A–D). 

3.3. Both ID and IN route induce VP6-specific IFN-γ secreting CD4+ T cells 

Induction of T cell responses via ID and IN routes was characterized by analyzing Th1-type cytokine 

IFN-γ production from the splenocytes of immunized and control mice. Regardless of the administration 

route, cells from the mice receiving 10 µg dose of oligomeric rVP6 responded with considerable IFN-γ 

release to stimulation ex vivo with Wa, BrB, and WC3 RV cell cultures (Figs. 2A and B). T cells were 

highly reactive to Wa and BrB RV strains belonging to SGII, homologous to the rVP6 used for 

immunizations, and somewhat lower cross-reactive responses to heterologous WC3 RV belonging to 

SGI were detected. Moreover, both experimental groups developed significant T cell responses to rVP6 

protein as well as the R6-2 peptide (Figs. 2A and B), a previously identified VP6-specific CD4+ T cell 

epitope (35). Similar quantities of IFN-γ secreting cells were detected in both experimental groups 
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(p=0.841, Mann-Whitney U-test). No VP6-specific IFN-γ response was detected by the cells of negative 

control mice (Fig. 2C). MA104 mock cell culture, CM alone or negative control OVA peptide stimulated 

no IFN-γ production by the cells from any of the groups (Figs. 2A–C). 

To determine the T cell type responsible for IFN-γ production, anti-CD4, anti-CD8, and control IgG 

antibodies were used to block the interaction of the antigen and T cell receptor and thereby T cell 

activation. When the splenocytes of mice immunized IN with rVP6 were stimulated with Wa RV cell 

culture, rVP6 or R6-2 peptide in the presence or absence of the functional blocking antibodies, 68-90% 

of IFN-γ production was significantly blocked only with anti-CD4 antibodies (p=0.005, Kruskal-Wallis 

test), indicating CD4+ but not CD8+ T cells as the main effectors producing IFN-γ (Fig. 2D). Some 

unspecific blocking of RV Wa with IgG control antibody was detected, similarly to our previously 

published observation (17). 

3.4 Both ID and IN route induce VP6-specific IL-4 producing T cells 

Production of IL-4 by the splenocytes of experimental mice was analyzed as a marker of a true Th2-type 

response. Cells of mice immunized ID or IN with oligomeric rVP6 produced significant levels of IL-4 

when stimulated ex vivo with Wa RV cell culture antigen, R6-2 peptide and rVP6 (Figs. 3A and B). 

Similar quantities of IL-4 secreting cells were induced via both delivery routes (p=1.0, Mann-Whitney 

U-test). No VP6-specific IL-4 response was observed in control mice (Fig. 3C). MA104 mock cell 

culture, CM alone or negative control OVA peptide did not stimulate IL-4 secretion by the splenocytes 

from any of the groups (Figs. 3A–C). 

3.5 Both ID and IN route induce VP6-specific IL-17 producing T cells 
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Both ID and IN administration routes resulted in considerable quantities of VP6-specific IL-17 secreting 

cells in response to ex vivo stimulation with Wa and BrB RV cell cultures (Figs. 4A and B). 

Immunization of mice via either delivery routes elicited an IL-17 response, when splenocytes were 

stimulated with WC3 RV culture, the 18-mer R6-2 peptide or with rVP6 (Figs. 4A and B). However, 

substantially lower levels of IL-17 were induced via ID delivery compared with the responses induced 

via IN route (p=0.002, Mann-Whitney U-test). MA104 mock cell culture, CM alone or negative control 

OVA-peptide stimulated no IL-17 production by the cells of the experimental groups (Figs. 4A and B). 

Cells of the control mice did not produce IL-17 in response to any of the stimulants (Fig. 4C).  

3.6. Cell surface expression of degranulation marker on CD4+ T cells 

VP6-specific T cells generated by rVP6 immunization were further analyzed for cytotoxic effector 

phenotype (CD107a+) and therefore the ability to potentially lyse RV infected cells (41). CD107a cell 

surface expression was detected on CD3+CD8- T cells of mice immunized with the rVP6 (Fig. 5). 

Following VP6 derived R6-2 peptide (a VP6-specific H-2d CD4+ T cell restricted epitope (35)) 

stimulation, up to 2.0% of CD4+ T cells expressed CD107a (Figs. 5A and C), while 3.5% of RV Wa 

stimulated T cells were positive for CD107a expression (Fig. 5A). No VP6-specific degranulation was 

observed in the cells of negative control mice stimulated with R6-2 peptide (0.2% CD107a+) or RV Wa 

(0.3% CD107a+) (Fig. 5B).  
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4. Discussion 

We have proposed that polymeric forms of RV VP6 are potentially useful for a combined RV – NoV 

vaccine candidate to combat many cases of acute gastroenteritis in children (8, 9). rVP6 oligomers, 

including nanotubes and nanospheres, are potent inducers of antibodies and T cell responses and protect 

immunized mice against RV challenge (14, 16, 17, 25). The mechanisms by which subunit RV VP6 

vaccines exert protection are distinct from mechanisms suggested for replicating live RV vaccines, 

protection being independent from traditional neutralizing antibodies or CD8+ T cells (29, 42, 43). VP6-

specific secretory IgA, but not IgG, was shown to mediate intracellular neutralization of RV (20, 21). 

Others have shown that CD4+ T cells are the only effector cells required for VP6-triggered protection 

after mucosal immunization with a monomeric soluble VP6 formulated with the adjuvant LT (R192G) 

(29). Subsequently, protection has been associated with the production of the Th1 and Th17 cytokines, 

IFN-γ and IL-17 by intestinal CD4+ T cells (28, 32). In order to elucidate possible mechanisms of 

protection mediated by oligomeric VP6, the present study investigated induction of different CD4+ T cell 

subsets by rVP6 nanotubes via parenteral and mucosal delivery, primarily Th1-type, Th2-type and Th17-

type responses, but most importantly, previously unexplored VP6-specific CD4+ cytotoxic T cells. 

High levels of anti-VP6 serum IgG antibodies were induced by ID and IN delivery routes, demonstrating 

the immunogenicity of rVP6 nanotubes and successful immunizations. Despite the robust serum IgG 

levels, VP6-specific IgG response has not directly been indicted in protection from RV infection in mice 

(28, 33, 44, 45). Both deliveries also induced considerable levels of IgG2a and IFN-γ (markers of a Th1-

type response), as well as IgG1 and IL-4 (markers of a Th2-type response). Although BALB/c mice 

preferentially develop Th2-type responses to certain antigens (46, 47), our results show that rVP6 induces 

balanced Th1/Th2-type responses by both deliveries. IFN-γ and IL-4 are the key cytokines of Th1 and 
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Th2 cells, which drive B cell switching to IgG2a and IgG1, respectively. Further, the IgG2a isotype 

antibodies have been shown to be particularly potent in viral clearance due to their capacity to activate 

the complement (48, 49) and induce antibody-dependent cell-mediated cytotoxicity (50). 

rVP6 induced Th1 response based on IFN-γ production when stimulated with rVP6, different RV cell 

culture antigens and a VP6-derived immunodominant CD4+ T cell epitope (35). These cells reacted with 

RVs belonging to SGI and SGII, indicating broad reactivity due to the highly conserved nature of VP6 

among all group A RVs (3). This cross-reactive immunity shows potential of rVP6 to induce protection 

against different circulating RV strains. Blocking experiments confirmed CD4+ T cells as the main 

effectors producing IFN-γ after IN immunization, which is in concordance with our previous results 

observed after parenteral immunization (17). Although the protective role of CD4+ T cells is generally 

restricted to their traditional helper functions, these cells can also act through other mechanisms to 

prevent and resolve viral infections, including antiviral activity of the cytokines they produce and direct 

cytotoxicity. According to a previous report, IFN-γ can block RV replication in vitro (51). Association 

of IFN-γ with VP6-induced protection against murine RV infection (28, 32) support antiviral activity of 

IFN-γ as a possible mechanism by which VP6 mediates protection. Instead, induction of VP6-specific 

Th2 cells may stimulate humoral immunity by promoting proliferation and differentiation of antigen-

primed B lymphocytes into antibody secreting cells as well as memory B cells through secretion of IL-

4. 

Recent studies have revealed the role of Th17 cells and IL-17 production in infection and vaccine-

induced immunity against some pathogens, including S. pneumoniae, M. tuberculosis, and influenza (52, 

53). Increased expression levels of IL-17 have also been detected in the peripheral blood cells of children 

with RV infection (54). Chimeric VP6 monomer administered mucosally in combination with an 

adjuvant generates both IL-17 and IFN-γ producing CD4+ T cells, reduces fecal shedding, and protects 
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against live RV challenge (28, 30, 32, 33). In the present study, we observed that immunization with 

oligomeric rVP6 induces IL-17 secreting T cells, not only by using the mucosal (IN) but also by the 

parenteral (ID) route. Although we did not directly show a T cell subset responsible for IL-17 production, 

Smiley and co-workers (32) have demonstrated that IL-17 induced after VP6 immunization is solely 

produced by CD4+ T cells and not by CD8+ T cells. In contrast to direct antiviral function of IFN-γ, IL-

17 is a pro-inflammatory cytokine that may act more indirectly, probably by affecting immune cell 

recruitment via upregulation of chemokines (52, 53). In addition, IL-17 is critical in generating mucosal 

IgA responses (55) and therefore plays protective role in immunity against infectious disease at the 

mucosa. Although we showed that both administration routes induced IL-17 production, IN delivery of 

rVP6 generated a better Th17 response. Concordantly, we have previously shown that mucosal 

immunization with rVP6 induces higher level of mucosal IgA antibodies compared with parenteral 

immunization (14, 17). These VP6-specific secretory pIgA antibodies confer protection from RV 

infection via pIgR-mediated intracellular neutralization (20, 21). Since pIgR is considered a key factor 

in mucosal immunity, mediating the delivery of pIgA and pIgM to the apical surface of epithelial cells 

via transcytosis, IL-17 may have a role in VP6-induced protective immunity by up-regulating pIgR 

expression in mucosal epithelia and thus enhancing secretory IgA levels (55). 

Although earlier studies have indicated that VP6-specific CD4+ T cells may protect from RV infection, 

probably by direct cytotoxic effect (29, 30), to the best of our knowledge, this is the first study showing 

the cytotoxic phenotype of VP6-specific CD4+ T cells. Even if CD8+ CTLs are the classical effectors of 

protection against intracellular pathogens, CD4+ CTLs have been identified in humans with chronic viral 

infections, such as with human cytomegalovirus, HIV-1 and different hepatitis viruses (56-58), as well 

as in the lungs of mice infected with influenza virus A (59). CTLs mediate killing of target cells in an 

antigen-specific fashion via secretion of cytotoxic granules containing perforin and granzymes (60). In 
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order to identify CTLs induced by rVP6, we employed degranulation assay detecting cell surface CD107a 

expression. As CD107a/b is not normally found on the surface of T cells, an increased cell surface 

expression of degranulation molecule CD107a on T cells of rVP6-immunized mice can be associated 

with the loss of intracellular perforin (41), indicating the ability of these cells to lyse RV-infected cells. 

In the degranulation assay, we used R6-2 peptide (a VP6-specific H-2d CD4+ T cell restricted epitope) 

as the stimulating antigen, as immunization with this peptide (AA242–259) alone has been sufficient for 

protection against RV challenge, but the mechanism was not investigated (35). Our results suggest that 

CD4+ CTLs are able to recognize the epitope on the cell surface and lyse the infected cells. In addition, 

RV Wa was selected as the stimulating antigen due to the importance of demonstrating cytotoxic 

potential of VP6-specific T cells to viable virus. However, further studies to prove the CD4+ T cell 

cytotoxicity, either by in vivo depletion or ex vivo cell killing assay, are warranted.  

Most of the studies exploring effectors or mechanisms of VP6-induced protection have been 

accomplished by mucosal immunizations with soluble E.coli-expressed chimeric VP6 monomers in 

combination with a strong adjuvant, where generation of strong immune responses and protection has 

depended strictly on co-administration of an adjuvant (30, 32, 33, 44). Although protective immunity 

generated by VP6 may vary with the type of immunogen, immunization route, and use of adjuvants (28, 

42, 44), oligomeric rVP6 used in here induced T cell immunity similar to that induced by a chimeric VP6 

with the external adjuvant. This is probably due to superior immunogenicity of protein assemblies over 

soluble proteins, which is strongly associated with the multivalent antigen expression (10, 61). In 

addition, due to the size range (0.2—1.5µm) and morphology (17, 62, 63), rVP6 nanotubes are efficiently 

internalized by macrophages and dendritic cells (23), resulting in activation and maturation of these 

APCs and efficient presentation of the antigen to T cells in the lymphoid organs (61). 
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In conclusion, the current study demonstrated that oligomeric rVP6 induces IFN-γ, IL-4 and IL-17 

producing CD4+ T lymphocytes, independently from the delivery route and in the absence of an adjuvant. 

Most importantly, rVP6 generated CD4+ CTLs with the potential to lyse infected cells. These findings 

provide new insights into the mechanisms of protective immunity to RV induced by the rVP6 protein 

and support the general notion of using rVP6 nanostructures as a non-live RV vaccine. 
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Figure legends 

Fig. 1.  RV VP6-specific serum IgG (A, B) and IgG subtype (C, D) antibody responses induced by ID 

or IN immunization with 10 µg of RV rVP6 nanotubes. Control (Ctrl) mice receiving carrier only (PBS) 

served as controls. (A) OD490 values of anti-VP6 IgG antibodies in 1:200 diluted sera of individual mice. 

The horizontal lines represent the mean OD490 nm values of the experimental groups. End-point titration 

curves of anti-VP6 IgG (B), IgG1 (C), and IgG2a (D) antibodies in sera of the experimental groups. 

Mean titration curves with standard errors of the mean of the experimental groups (n=5) are shown. The 

dashed lines indicate maximum background level (cut-off limit). 

Fig. 2. RV VP6-specific IFN-γ production by T cells. RV Wa, BrB, and WC3 cell cultures, rVP6 

protein and R6-2 peptide were used to stimulate IFN-γ production from the group-wise pooled 

splenocytes of mice (n=5) immunized ID (A) or IN (B) with rVP6 or carrier only (C). Mean IFN-γ spot-

forming cells (SFC)/106 splenocytes of duplicate wells of 2–4 independent experiments with standard 

errors of the means are shown. Results of negative control mice receiving PBS via ID and IN were 

combined. The dashed line indicates maximum background level (cut-off limit) originating from the cells 

incubated in a culture medium (CM) only (mean SFC + 3×SD). MA104 mock culture and an OVA 

peptide were used as negative control stimulants. (D) Blocking of IFN-γ production by stimulating the 

cells of IN immunized mice in the presence and absence of anti-CD4 and anti-CD8 or control antibodies. 

Results are expressed as the mean % inhibition of two independent experiments. Statistical significance 

was determined using Mann-Whitney U-test or Kruskal-Wallis test. 

Fig. 3. RV VP6-specific IL-4 production by T cells. Group-wise pooled splenocytes of mice (n=5) 

immunized ID (A) or IN (B) with rVP6 nanotubes or carrier only (C) were stimulated with RV Wa cell 

culture antigen, rVP6 protein and R6-2 peptide and analyzed for IL-4 production. Mean IL-4 spot-
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forming cells (SFC)/106 splenocytes of duplicate wells of 2 independent experiments with standard errors 

of the means are shown. Results of negative control mice receiving PBS via ID and IN were combined. 

The dashed line indicates maximum background level (cut-off limit) originating from the cells incubated 

in a culture medium (CM) only (mean SFC + 3×SD).  

Fig. 4. RV VP6-specific IL-17 production by T cells. Group-wise pooled splenocytes of mice (n=5) 

immunized ID (A) or IN (B) with rVP6 nanotubes or carrier only (C) were stimulated with RV Wa, BrB, 

and WC3 cell cultures, rVP6 protein and R6-2 peptide and analyzed for IL-17 production. Mean IL-17 

spot-forming cells (SFC)/106 splenocytes of duplicate wells with standard errors of the means are shown. 

Results of negative control mice receiving PBS via ID and IN were combined. The dashed line indicates 

maximum background level (cut-off limit) originating from the cells incubated in a culture medium (CM) 

only (mean SFC + 3×SD).  

Fig. 5. Expression of CD107a in RV VP6-specific CD4+ T cells. The group-wise pooled splenocytes 

of mice (n=5) immunized with rVP6 nanotubes via ID delivery (A) or the control mice (B) were 

stimulated with R6-2 peptide (a VP6-specific H-2d CD4+ T cell restricted epitope (35)) or RV Wa or 

negative control antigens (culture medium (CM) or mock culture) in the presence of CD107a FITC before 

flow cytometry analysis. Due to the shortage of the cells, the splenocytes of mice immunized with rVP6 

nanotubes via IN delivery (C) were stimulated only with R6-2 peptide or CM. Events (%) shown are 

gated on live CD3+ T lymphocytes. Percentages indicated in the upper left quadrant denote CD3+CD8-

CD107+ T cells. 
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