Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00222860)

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Infrared and Raman spectrum, molecular structure and theoretical calculation of 3,4-dichlorophenylboronic acid

Mustafa Kurt^{a,}*, T. Raci Sertbakan^a, Mustafa Özduran^a, Mehmet Karabacak ^b

^a Department of Physics, Ahi Evran University, TR-40100 Kırşehir, Turkey b Department of Physics, Afyon Kocatepe University, TR-03040 Afyonkarahisar, Turkey

article info

Article history: Received 5 November 2008 Received in revised form 14 December 2008 Accepted 16 December 2008 Available online 30 December 2008

Keywords: IR and Raman spectra DFT Dichlorophenylboronicacid Vibrational frequencies Molecular structure

ABSTRACT

In this work, the experimental and theoretical study on the structures and vibrations of 3,4-dichlorophenylboronic acid (3,4-dcpba, $C_6H_3B(OH)_2Cl_2$) are presented. The Fourier Transform Infrared spectra (4000–400 cm⁻¹) and the Fourier Transform Raman spectra (3500–5 cm⁻¹) of the title molecule in the solid phase have been recorded. There are four conformers for this molecule. The computational results diagnose the most stable conformer of 3,4-dcpba as the ct form. The geometrical parameters and energies have been obtained for all four conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The vibrations of stable and unstable conformers of 3,4-dcpba are researched with the aid of quantum chemical calculations. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The molecular structures, vibrational frequencies, Infrared intensities and Raman scattering activities were calculated. The spectroscopic and theoretical results are compared. The optimized bond lengths, bond angles and calculated frequencies showed the excellent agreement with the experimental results. The theoretical spectrogram for the Infrared and Raman spectrum of the title molecule has been constructed. - 2008 Elsevier B.V. All rights reserved.

1. Introduction

Organic compounds containing boron and boronic acids have been known for over a century. The boronic acid ligands have become an object of recent increasing interest due to their applications in crystal engineering, biology, medicine, analytical chemistry, organic synthesis, catalysis, supramolecular chemistry and materials science. A wide variety of boronic acid derivatives of divergent biologically important compounds have been synthesized as anti-metabolites for a possible two-pronged attack on cancer [\[1–8\]](#page-9-0). In addition to inhibition of tumor growth, the use of boron-10 neutron capture therapy [\[9\]](#page-9-0) would be possible owing to the preferential localization of boron compounds in tumor tissue. Boronic acid analogs have been synthesized as transition state analogs for acyl transfer reactions [\[10\]](#page-9-0) and inhibitors of dihydrotase [\[11\].](#page-9-0) The boronic acid moiety has also been incorporated into amino acids and nucleosides as anti-tumor, anti-viral agents [\[12\].](#page-9-0) Phenylboronic acids are a versatile building block in organic synthesis and an important intermediate in the synthesis of active compounds in the agrochemical and pharmaceutical industries [\[13\]](#page-9-0). The biological application of particular dichlorophenylboronic acids was studied by Stabile et al. and Westmark and Smith [\[4,5\].](#page-9-0)

n-Butylboronic acid were investigated using experimental and theoretical approaches [\[14\]](#page-9-0). Shimpi et al. [\[15\]](#page-9-0) discussed crystal structures of 4-chloro- and 4-bromophenylboronic acids and hydrates of 2- and 4-iodophenylboronic acid in two different forms, which were by single-crystal X-ray diffraction methods. 2-Aminocarbonyl-phenylboronic acid and its corresponding ester, ethanediol (2-aminocarbonyl) phenylboronate has been investigated computationally using both density functional theory and second-order Møller–Plesset perturbation theory [\[16\]](#page-9-0). The experimental and theoretical vibrational spectra of 4-chloro- and 4-bromophenylboronic acids were studied by Kurt [\[17\]](#page-9-0). Horton et al. [\[18\]](#page-9-0) investigated crystal structure of pentafluorophenylboronic acid molecule. Infrared spectra of phenylboronic acid and diphenyl phenylboronate were studied by Faniran [\[19\]](#page-9-0). Kurt [\[20\]](#page-9-0) investigated molecular structure and vibrational spectra of the pentafluorophenylboronic by density functional theory and ab initio Hartree Fock calculations. The molecular structures of phenylboronic acid and phenylboronic acid dimer were investigated experimentally using X-ray structural analysis and spectroscopic methods by Cyrański et al. [\[21\]](#page-9-0).

Up to our knowledge no DFT calculations and detailed vibrational IR and Raman analysis have been performed on 3,4-dcpba molecule. The main aim of the study was the detailed description of 3,4-dcpba molecule using both experimental and computational techniques. Density functional theory calculations are reported to provide excellent vibrational frequencies of organic compounds if

^{0022-2860/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2008.12.048

Fig. 1. The theoretical optimized possible four geometric structures with atoms numbering of 3,4-dcpba.

the calculated frequencies are scaled to compensate for the approximate treatment of electron correlation, for basis set deficiencies and for the anharmonicity [\[22–26\].](#page-9-0)

Table 2a Geometric parameter set of 3,4-dichlorophenylboronic molecule for ct and tc form.

Table 1

Calculated energies and energy difference for four conformers of 3,4-dcpba by DFT (B3LYP6-311++G(d,p)).

Conformers	Energy (Hartree)	Energy differences ^a (kcal/mol)
Cis -trans (ct)	-1327.45061616	0.000
Trans-cis (tc)	-1327.45060760	0.005
Trans-trans (tt)	-1327.44753271	1.935
$Cis-cis$ (cc)	-1327.44463024	3.756

^a Energies of the other three conformers relative to the most stable ct conformer.

3,4-dcpba is substituted benzene with two different functional groups; two Cl atoms and $B(OH)_{2}$ group. As model system boronic acid and two chloro atoms are chosen. The possible conformers of 3,4-dcpba molecule were searched. There are four conformers for 3,4-dcpba. As a continuation of the interest in boronic acid containing compounds, experimental and theoretical analyses were made in the present study. The energies of different conformation of the title molecule were optimized at B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) level of calculations. Cis–trans form is the more stable conformer than the other conformers. Vibrational frequencies of the four different conformers were also calculated at DFT-B3LYP level and vibrational assignments were made based on total energy distributions (TED) and experimental data. The results of this work are presented herein.

Table 2b

Geometric parameter set of 3,4-dichlorophenylboronic molecule for cc and tt form.

2. Experimental

The compound 3,4-dcpba sample was purchased from Acros Chemical Company with a stated purity of greater than 98% and it was used as such without further purification. The sample is in solid form at room temperature. Therefore, the FT-IR spectrum (4000–400 cm $^{-1}$) of KBr disc of the sample was recorded on a Perkin Elmer FT-IR System Spectrum BX spectrometer calibrated using polystyrene bands. The spectrum was recorded with a scanning speed of 10 cm⁻¹ min⁻¹ and the spectral resolution of 4.0 cm⁻¹ . FT-Raman spectra of the samples were recorded on a Bruker RFS 100/S FT-Raman spectra of the sample was recorded using 1064 nm line of Nd:YAG laser as excitation wave length in the region 5–3500 cm $^{-1}$ on a Bruker RFS 100/S FT-Raman. The detector is a liquid nitrogen cooled Ge detector. Five hundred scans were accumulated at 4 cm $^{-1}$ resolution using a laser power of 100 mW.

3. Calculations

In order to obtain stable structures, the geometrical parameters including for four forms of 3,4-dcpba in the ground state (in vacuo) were optimized at DFT by the B3LYP level of theory using the 6- $311++G(d,p)$ basis set. There are no significant difference geometric and vibrational frequencies by the selection of the different basis sets. By using B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) methods, it was seen that all the vibrational frequencies for each form of the title molecule were positive. The calculated vibrational frequencies scaled by using one global scaling factor of 0.963 for B3LYP/6- 31G(d) and by using two scaling factors of 0.958 in the 1700–4000 cm⁻¹ region and 0.983 for B3LYP/6-311++G(d,p) in the 0-1700 cm^{-1} region [\[27\].](#page-9-0) The theoretical results have enabled us to make the detailed assignments of the experimental IR and Raman spectra of title molecule. The total energy distribution (TED) was calculated by using the SQM [\[28,29\]](#page-9-0) program and the fundamental vibrational modes were characterized by their TED.

Molecular geometry calculations are performed by using Gaussview molecular visualisation program [\[30\]](#page-9-0) and Gaussian 03 program package on the personal computer [\[31\].](#page-9-0) The Becke's three-parameter hybrid density functional, B3LYP, was used to calculate harmonic vibrational wavenumbers with the 6-31G(d) and $6-311++G(d,p)$ basis sets. It is well known in the quantum chemical literature that among available functionals the B3LYP functional yields a good description of harmonic vibrational wavenumbers for small and medium sized molecules.

4. Results and discussion

The molecular structure of 3,4-dcpba has not been studied by Xray diffraction. As the experimental values for 3,4-dcpba are not known so, theoretically calculated values may give an idea about the geometry of this molecule. There are four possible conformers for 3,4-dcpba, illustrated in [Fig. 1](#page-1-0), dependent on the positions of

m: middle, s: strong, vs: very strong, w: weak, vw: very weak, sh: shoulder, v: stretching, δ : bending, Γ : torsion, TED: total energy distribution. Frequency (cm⁻¹), IR intensities: I^{Infrared} (K mmol⁻¹), Raman scattering activities: S^{Raman} (Å amu⁻¹).

the hydrogen atoms bonded to oxygen, whether they are directed away from or toward the ring. Our calculations show that the four conformations for title molecule, do not differ greatly in energy, but demonstrate that conformation cis–trans (abbreviated as ct) has the lowest energy.

Table 3a

The molecule of 3,4-dcpba consists of 16 atoms, so it has 42 normal vibrational modes. On the basis of a C_s symmetry the 42 fundamental vibrations of 3,4-dcpba can be distributed as 28A'+13A" for the trans–trans (tt) form. The vibrations of the A' species are in plane and those of the A" species are out of plane. In this form boronic acid and benzene ring are in the same plane. In the cis–cis (cc), cis–trans (ct) and trans–cis (tc) forms of molecule are non-planar structure and have the C_1 symmetry and the vibrational modes span the irreducible representations: 42A. The molecular structure and numbering of the atoms of 3,4-dcpba are shown in [Fig. 1](#page-1-0). We reported some geometric parameters (bond lengths and bond angles) and vibrational frequencies for 3,4-dcpba by using DFT (B3LYP) by comparing experimental results. The vibrational assignments of most of the fundamental vibration of the molecule were straightforward on the basis of their calculated TED values. The calculated wavenumbers of the molecule for the cc, tt, tc and tc forms were compared to the corresponding observed Infrared and Raman spectra of the molecule as shown in Tables 3a–d.

5. Geometrical structures

The phenylboronic acid molecule was studied by X-ray diffraction [\[32\]](#page-9-0). Since the crystal structure of 3,4-dcpba is not available in the literature till now, the geometric parameters compared with the phenylboronic acid [\[32\]](#page-9-0), bond lengths and bond angles. Total energies and geometry parameters of the molecule are given in [Ta](#page-1-0)[bles 1, 2a and b](#page-1-0), in accordance with the atom numbering scheme given in [Fig. 1](#page-1-0). The 3,4-dcpba molecule can be trans–trans, cis–cis, mixed trans–cis relative to the B–C bond. According to theoretical results, the cis–trans (ct) conformation is the most stable. Both hydrogens are in the O-B-O plane. Most probably, the oxygen lone pairs have a resonance interaction with the empty p orbital of boron, which forces the hydrogen to be in the $O-B-O$ plane. But, in the lowest-energy form of 3,4-dcpba, the $-B(OH)$ ₂ group is planar and at the whole of computational levels, do not lie in the plane of the benzene ring the OBO plane was twisted by ca. 1° for 6-311++G(d,p) basis set and by ca. 13° for 6-31G(d) basis set.

In general, typical B-O distances are 1.359 Å [\[18\]](#page-9-0) consistent with relatively strong π -interactions. Chen et al. [\[12\]](#page-9-0) found approximately same value of this bond length by using HF/6- 31G(d) levels of theory, for the few boronic acids including phenylboronic acid molecule. For the title molecule B-O distances

Table 3b

Experimental and calculated fundamental harmonic frequencies, Infrared intensities and Raman scattering activities for 3,4-dclpa molecule(tc form).

Freq. $\boldsymbol{\nu}$		6-31G(d) θ = 167°			6-311++G(d,p) θ = 178°				
		Scaled	<i>d</i> Infrared	S ^{Raman}	Freq.	Scaled	<i>I</i> Infrared	S ^{Raman}	TED (\geqslant 10%)
$\mathbf{1}$	3811	3659	28.09	41.14	3889	3725	41.65	43.14	$v_{OH}(100)$
$\overline{2}$	3769	3619	66.47	217.64	3846	3684	98.90	192.73	$v_{OH} (100)$
3	3228	3100	3.69	143.75	3204	3069	1.77	151.68	$v_{CH}(99)$
$\overline{\mathbf{4}}$	3214	3086	0.91	50.25	3190	3056	0.16	45.17	v_{CH} (100)
5	3185	3059	11.61	66.29	3165	3032	9.02	67.59	v_{CH} (100)
$\,$ 6	1642	1577	59.74	88.02	1622	1553	65.39	94.27	$v_{\text{CC}}(63) + \delta_{\text{HCC}}(16)$
$\overline{}$	1597	1534	0.69	3.41	1580	1513	1.54	4.21	$v_{cc}(74)$
8	1521	1460	13.03	1.15	1504	1440	12.15	1.77	$\delta_{HCC}(46) + v_{CC}(35)$
9	1445	1388	293.06	3.31	1414	1354	262.02	1.69	$v_{OB}(63)$
10	1395	1340	3.20	2.42	1370	1312	95.75	5.35	$v_{\rm CC}(34) + \delta_{\rm HCC}(29) + v_{\rm OB}(19)$
11	1384	1329	3.71	32.86	1363	1305	531.71	37.16	$v_{OB}(28) + v_{BC}(25) + \delta_{HOB}(17)$
12	1317	1265	10.86	5.24	1295	1240	4.38	5.05	$v_{\rm CC}(94)$
13	1301	1249	9.67	2.58	1288	1233	16.26	4.63	$\delta_{HCC}(68) + v_{CC}(22)$
14	1186	1139	9.84	2.47	1174	1124	7.18	1.84	$\delta_{HCC}(54) + v_{CC}(29)$
15	1160	1114	58.43	17.62	1149	1100	60.07	22.00	$v_{\text{CC}}(48) + \delta_{\text{HCC}}(24) + v_{\text{CC}}(20)$
16	1141	1095	83.21	11.29	1129	1081	87.75	13.34	$v_{\text{CC}}(37) + \delta_{\text{HOB}}(16) + \delta_{\text{CCH}}(11)$
17	1046	1004	49.14	6.56	1042	998	39.65	10.81	$\delta_{\rm HOB}(29) + \delta_{\rm CCC}(22) + v_{\rm CC}(10)$
18	1037	996	178.73	5.07	1023	980	177.69	3.49	$\delta_{HOB}(49) + \delta_{CCC}(15) + v_{OB}(12)$
19	996	957	95.31	2.19	994	952	0.09	0.07	$\delta_{HOB}(63) + v_{OB}(28)$
20	986	947	0.96	0.53	982	940	90.06	2.49	$\Gamma_{\text{HCCH}}(42) + \Gamma_{\text{HCCC}}(26) + \Gamma_{\text{HCCB}}(15)$
21	901	865	7.73	1.70	886	848	6.43	0.32	$\Gamma_{\text{HCCC}}(35) + \Gamma_{\text{BICH}}(26) + \Gamma_{\text{HCCC}}(25)$
22	850	816	17.62	2.01	849	813	16.47	0.11	$\Gamma_{\text{HCCC}}(57) + \Gamma_{\text{HCCC}}(22) + \Gamma_{\text{HCCB}}(13)$
23	828	795	14.34	4.36	825	790	15.79	6.97	$v_{\text{CCI}}(30) + \delta_{\text{CCC}}(19) + v_{\text{BC}}(13) + v_{\text{OB}}(10)$
24	725	696	15.67	0.09	733	702	35.29	0.10	$\Gamma_{\text{c}\text{c}\text{c}\text{c}}(44) + \Gamma_{\text{H}\text{c}\text{c}\text{c}}(22) + \Gamma_{\text{O}\text{B}\text{c}\text{c}}(16)$
25	691	664	23.27	10.24	689	660	23.05	12.27	$\delta_{\text{CCC}}(34)$ + $v_{\text{CC}}(17)$ + $v_{\text{CC}}(11)$ + $\delta_{\text{CCH}}(11)$
26	665	638	61.39	0.57	671	642	48.01	0.23	$\Gamma_{\text{HOBO}}(30) + \Gamma_{\text{OBCC}}(27) + \Gamma_{\text{CCCC}}(14)$
27	602	579	15.24	0.47	601	575	14.97	0.30	$v_{\text{ccl}}(30) + v_{\text{BC}}(17) + \delta_{\text{ccc}}(10)$
28	600	576	29.64	3.04	582	557	30.69	1.26	$\Gamma_{\text{HOBC}}(34) + \Gamma_{\text{HOBO}}(34)$
29	514	494	5.93	2.13	500	479	5.73	0.91	$\Gamma_{\rm HOBC}(19) + \Gamma_{\rm CCCC}(14)$
30	490	471	58.39	5.50	495	474	43.18	5.29	$\delta_{\rm OBO}(17)$ + $v_{\rm CCl}(15)$
31	483	464	146.74	2.57	468	448	135.20	0.52	$\Gamma_{\text{HOBO}}(38) + \Gamma_{\text{HOBC}}(33)$
32	464	446	6.95	4.66	466	446	10.47	5.69	$\delta_{\text{CCCl}}(137) + v_{\text{CCI}}(15) + \delta_{\text{BCC}}(11)$
33	440	422	5.52	0.25	424	406	1.12	2.68	Γ cccc(39) + Γ ccccl(18) + Γ _{HCCC} (17)
34	424	407	2.77	2.19	420	402	29.54	0.68	$v_{\text{CC}}(25) + \delta_{\text{OBC}}(20) + \delta_{\text{Ccc}}(12) + \delta_{\text{CCC}}(10)$
35	311	299	3.15	1.03	308	295	4.29	1.10	$\delta_{\text{C} \text{c} \text{c} \text{l}}(31) + \delta_{\text{O} \text{B} \text{c}}(27)$
36	282	271	2.15	4.19	283	271	1.93	5.20	$v_{BC}(22) + \delta_{OBO}(16) + \delta_{CCC}(14) + v_{CCI}(10)$
37	266	256	0.65	0.80	270	258	0.44	0.48	$\Gamma_{\text{c}\text{c}\text{c}\text{c}\text{l}}(48)$ + $\Gamma_{\text{H}\text{c}\text{c}\text{c}\text{l}}(14)$
38	199	191	0.11	1.93	200	191	0.18	1.88	$\delta_{\text{CCCl}}(90)$
39	159	153	0.64	2.65	155	148	1.13	1.39	$\Gamma_{\text{c}\text{c}\text{c}\text{c}}(38) + \Gamma_{\text{c}\text{c}\text{c}\text{c}}(117)$
40	127	122	2.32	0.12	130	124	2.55	0.10	$\delta_{BCC}(61) + \delta_{OBC}(20)$
41	80	77	0.29	0.92	80	76	0.18	0.83	$\Gamma_{\text{BCCC}}(30) + \Gamma_{\text{CCCC}}(20) + \Gamma_{\text{BICH}}(11) + \Gamma_{\text{CCCC}}(10)$
42	27	26	3.36	0.24	12	11	3.85	0.01	$\Gamma_{\text{OBCC}}(94)$

v: stretching, δ : bending, Γ : torsion, TED: total energy distribution.

Frequency (cm $^{-1}$), IR intensities: I^{Infrared} (K mmol $^{-1}$), Raman scattering activities: S^{Raman} (Å amu $^{-1}$).

including for different forms were found from 1.366 Å to 1.373 Å ranges. Bhat et al. [\[16\]](#page-9-0) calculated B-C bond length 1.566 Å and 1.567 Å in the lowest form for phenylboronic acid using B3LYP and MP2 methods, respectively. The $B-C$ bond length is calculated in the range of 1.563–1.581 Å for different forms. The calculated B-O and B-C bond lengths in 3,4-dcpba molecule are in good agreement with those found in the X-ray structure [\[32\].](#page-9-0)

The C–X (F, Cl, Br...) bond length indicates a considerable increase when substituted in place of C-H. This has been observed even in benzene derivatives [\[33\]](#page-9-0). Chloro atoms are in the plane of the benzene ring. The C-Cl bond length is found ca. 1.75 Å . These bond lengths were also calculated in the range of 1.73– 1.75 Å for similar molecules [\[34–36\].](#page-9-0)

Bond angles at B and C are consistent $sp²$ hybridization but with significant deviations from the expected 120° angles occurring in close proximity the the $-B(OH)_2$ substituent on C_4 . The theoretical results show that, the $-B(OH)_2$ group is twisted by 13 \degree and 1 \degree relative to the ring part for ct form, by using 6-31G(d) and 6- $311++G(d,p)$ basis sets. Potential energy scan with the whole levels of theoretical approximation were performed along $C-C-B-O$ torsional angle of 3,4-dcpba molecule in order to localize the structures that correspond to the energy minima. All the geometrical parameters were simultaneously relaxed during the calculations while the C-C-B-O torsional angle was varied in steps of 10° . The resulted potential energy curve depicted in [Fig. 2](#page-7-0) shows ct form for minimum energies. The B-C rotational barrier in tt and cc form was calculated to be about 2–3 kcal/mol ([Fig. 2](#page-7-0)), which is significantly high as compared the $B-C$ barrier ct and tc forms of molecule. From the calculations, optimized structure of 3,4-dcpba was calculated to exist in a planar structure for the tt form, while the other forms of molecule were calculated to exist as a near planar structure with C-C-B-O torsional angle of about 13 \degree and 1 \degree for the ct form, 167° and 177° for tc form, and 33° and 34° for cc form by using $6-31G(d)$ and $6-311++G(d,p)$ basis sets, respectively. All forms of the title molecule were predicted to have positive frequency by both basis sets [\(Tables 3a–d\)](#page-3-0).

6. Vibrational spectra

We performed a frequency calculation analysis, in order to obtain the spectroscopic signature of the title molecule. Calculations were made for a free molecule in vacuum, while experiments were performed for solid samples, so there are disagreements between

v: stretching, δ : bending, Γ : torsion, TED: total energy distribution.

Table 3c

Frequency (cm⁻¹), IR intensities: I^{Infrared} (K mmol⁻¹), Raman scattering activities: S^{Raman} (Å amu⁻¹).

calculated and observed vibrational wavenumbers. Experimental and calculated IR and Raman spectra are shown in [Figs. 3 and 4.](#page-7-0) The calculated IR and Raman spectra are shown in [Figs. 3 and 4](#page-7-0) for comparative purposes, where the calculated intensity and activity is plotted against the harmonic vibrational frequencies. A comparison of [Tables 3a–d](#page-3-0) shows that the vibrational frequencies of the cc conformer lie very close and their TED assignments are also mostly unchanged.

The ct form of structure was the lowest in energy at all levels. The experimental wavenumbers are tabulated in [Table 3a](#page-3-0) together with the calculated wavenumbers of ct form of studied molecule. All of the calculated modes are numbered from the largest to the smallest frequency within each fundamental wave numbers. On the basis on our calculations, and experimental Infrared and Raman spectra, we made a reliable one-to-one correspondence between our fundamentals and any of our frequencies calculated by the DFT (B3LYP) method. Comparison of the frequencies calculated at B3LYP with the experimental values reveals the over estimation of the calculated vibrational modes due to neglect of anharmonicity in real system.

In the O-H region very strong and broad bands in the spectra of some boronic acid molecules occur at ca. 3300 cm^{-1} . The assignment of these bands to O-H stretching vibrations is straightforward. In the spectra of phenylboronic acid [\[19\],](#page-9-0) pentafluorophenylboronic acid [\[20\],](#page-9-0) 3 and 4-pyridineboronic acid [\[37\]](#page-9-0), *n*-butylboronic acid [\[14\]](#page-9-0) absorption bands at 3280 cm⁻¹, 3467 cm⁻¹ and 3410 cm⁻¹, 3320 cm⁻¹ and 3306 cm⁻¹ have been assigned, which is typical for OH bonded hydroxyl groups. The strength, broadening frequencies of these bands suggest that intramolecular hydrogen bonding occur in different environment of boronic acids [\[19\].](#page-9-0) The IR spectra of phenylboronic acid contains broad O—H stretching bands at 3279 and 3350 $\rm cm^{-1}$, which transform to one sharp band at 3467 cm^{-1} and one broad band at 3410 cm^{-1} on formation of pfpba. As discussed in our previous papers [\[20,37\]](#page-9-0), with the halogen (F, Cl, Br...) substitution, OH stretching vibrations shifted to higher wavenumbers region [\[38\].](#page-9-0) This means that in the boronic acid part, OH vibrations are sensitive due to halogen coordination. These bands calculated 3659 and 3619 cm $^{-1}$ which modes (v1, v2) of O11–H15 and O12–H16 units, respectively. As expected these two modes are pure stretching modes as it is evident from TED column, they are almost contributing 100%.

The heteroaromatic structure shows the presence of $C-H$ stretching vibrations above 3000 cm^{-1} which is the characteristic

Table 3d

v: stretching, δ : bending, Γ : torsion, TED: total energy distribution.

Frequency (cm $^{-1}$), IR intensities: I^{Infrared} (K mmol $^{-1}$), Raman scattering activities: S^{Raman} (Å amu $^{-1}$).

region for ready identification of this structure [\[39\]](#page-9-0). In this region, the bands are not affected appreciably by the nature of the substituents. 3,4-dcpba has two adjacent and one isolated C-H moieties. The expected three $C-H$ stretching vibrations correspond to 3, 4 and 5. The scaled vibration, lines of 3, 4 and 5 ([Table 3a\)](#page-3-0) corresponds to stretching modes of C5-H8, C6-H9 and C3-H7 units. As seen in [Table 3a,](#page-3-0) three peaks (modes 3, 4 and 5) observed for the title molecule in the 2800–3500 cm^{-1} range experimentally in the high frequency region which are 2853, 2923 and 2953 cm $^{-1}$ (FT-IR), 3056, 3064 and 3387 cm $^{-1}$ (FT-Raman). As expected, these three modes are pure stretching modes as it is evident from TED column, they are almost contributing 100%. The C-H in-plane bending frequencies appear in the range of 1000-1300 cm^{-1} and C-H out-of-plane bending vibration in the range 750–1000 cm^{-1} [\[40\].](#page-9-0) The CH in-plane bends are assigned to the FT-IR bands in the range from 1245 to 1105 cm^{-1} . The CH out-ofplane bends are assigned to the FT-IR bands at 951, 883 and 830 cm^{-1} . Both the in-plane and out-of-plane bending vibrations are described as mixed modes. The above conclusions are in very good agreement with literature values [\[39,41\]](#page-9-0).

The experimental sharp and strong bands at ca. 1600 cm $^{-1}$ may come from the absorption due to the stretching vibration of the $C-C$ bond, and bending vibration of the $C-C-C$ in the ring part. These bands observed at 1649 cm⁻¹ (IR), 1657 cm⁻¹ (IR), 1634 (IR)–1633 (Ra), for the pentafluorobenzene, alfa-bromo-pentafluoro-toluene $[42]$ and C_6F_5I $[43]$ molecules, respectively. With the $B(OH)_2$ coordination these mode are not changing significantly. Therefore the modes at ca. 1600 cm^{-1} are insensitive with the $B(OH)_2$ coordination. If we consider phenylboronic acid case, the band at 1607 cm^{-1} shifted to 1657 cm^{-1} for pentafluorophenylboronic acid. For the title molecule, this band was observed at 1591 cm⁻¹ (IR) and 1590 cm⁻¹ (Ra) in experimental spectrum. These means that, with the coordination two chlorine atoms to the phenylboronic acid molecule, the band at 1607 cm^{-1} shifted to 1591 cm⁻¹ negatively (see [Table 3a\)](#page-3-0). However, the TED values in [Ta](#page-3-0)[ble 3a](#page-3-0) reveal that this mode is not characteristic and is coupled with HCC bending vibration. But this may be almost pure mode is evidenced from 63% of TED [\(Table 3a\)](#page-3-0).

The other strong band in the spectrum of 3,4-dcpba occurs at 1379 cm⁻¹. This band is very intense and should include also the $v(B-A)$ asymmetric stretching vibration, which for phenylboronic and pentafluorophenyl boronic acid are located at 1349 cm^{-1} and 1350 cm⁻¹, respectively [\[19,20\]](#page-9-0). Kurt [\[17\]](#page-9-0) observed the B- \sim D stretching vibration at 1373 and 1361 cm^{-1} for 4-chlorophenylboronic acid and 4-bromophemylboronic acid, respectively. Vargas et al. [\[44\]](#page-9-0) assigned the band around at 1370 cm^{-1} as the $v(B-0)$

Fig. 2. Torsion profile of C-C-B-O (abbreviated as θ) in title molecule ct-tc form and cc-tt form by B3LYP/6-31G(d) basis set.

Fig. 3. Experimental FT-IR and calculated IR spectrum of 3,4-dcpba.

Fig. 4. Experimental FT-Raman and calculated Raman spectrum of 3,4-dcpba.

stretching vibrations for the homo-and heterotrinuclear boron complexes. The broad band peaking at 1390 cm $^{-1}$ is observed the B-O asymmetric stretch for *n*-butylboronic acid by Cyrański et al. [\[14\].](#page-9-0)

Stretching vibrations of double bonds usually give rise to very strong absorbtion bands. Therefore, it is possible, that the high intensity of the B-O asymmetric stretching vibration could indicate some double bond character for the studied and phenylboronic acid molecules [\[19\].](#page-9-0) The observed frequency for the asymmetric B —O stretching vibrations in 3,4-dcpba are approximately similar than those reported by Faniran et al. [\[19\]](#page-9-0) and our previous papers for this vibration in the spectra of similar molecules [\[17,20,37\].](#page-9-0)

Santucci and Gilman [\[45\]](#page-9-0) associated an absorption band between 1080 and 1110 $\rm cm^{-1}$ with a B—C stretching mode v (B—C) in arylboronic acids. Faniran et al. [\[19\]](#page-9-0) also assigned the band at 1089 and 1085 cm^{-1} in the spectra of the normal and deuterated phenylboronic acids, respectively, and at 1084 $\rm cm^{-1}$ in diphenyl phenylboronate to the B-C stretching vibration. For n -butylboronic acid, these vibrations are assigned at 1147 and 1109 $\rm cm^{-1}$ by Cy-rański et al. [\[14\]](#page-9-0). In the range of 1090–1140 cm $^{-1}$, we could not assign B-C stretching mode by using theoretical TED value due to lack of B-C modes.

Similar comparative analysis has been made for the other selected strong or medium bands. As seen in [Tables 3a](#page-3-0) and [b](#page-4-0) for TED values, calculated modes mixed with, $C-H$, pyridine $C-CI$, C-C and boronic acid group modes in different proportions. Empirical assignments of vibrational modes for peaks in the fingerprint region are difficult. In the wavenumber region of $600-1660$ cm⁻¹, the spectrum observed in the experiments closely resembles the calculated spectrum, except for differences in details. These wavenumbers in the same region are in reasonable agreement with experimental results (see [Tables 3a–d\)](#page-3-0).

7. Conclusion

Attempts have been made in the present work for the molecular parameters and frequency assignments for the compound 3,4 dcpba from the FT-IR and FT-Raman spectra. The equilibrium geometry, harmonic frequencies of 3,4-dcpba were determined and analyzed at DFT level of theory utilizing 6-31G(d) and 6- $311++G(d,p)$ basis sets. The difference between the observed and scaled wave number values of most of the fundamentals is very small. Any discrepancy noted between the observed and the calculated frequencies may be due to the fact that the calculations have been actually done on single molecule in the gaseous state contrary to the experimental values recorded in the presence of intermolecular interactions. Therefore, the assignments made at DFT levels of theory with only reasonable deviations from the experimental values seem to be correct.

Acknowledgements

The Financial support by Gazi University Scientific Research Projects Unit (BAP, Project No. 30-2005/3) is also politely acknowledged.

References

- [1] W. Tjarks, A.K.M. Anisuzzaman, L. Liu, S.H. Soloway, R.F. Barth, D.J. Perkins, D.M. Adams, J. Med. Chem. 35 (1992) 16228.
- [2] Y. Yamamoto, Pure Appl. Chem. 63 (1991) 423.
- [3] F. Alam, A.H. Soloway, R.F. Barth, N. Mafune, D.M. Adam, W.H. Knoth, J. Med. Chem. 32 (1989) 2326.
- [4] M.R. Stabile et al., Bioorg. Med. Chem. Lett. 21 (1996) 2501.
- [5] P.R. Westmark, B.D. Smith, J. Pharm. Sci. 85 (1996) 266.
- [6] N.A. Petasis, Aust. J. Chem. 60 (2007) 795.
- [7] E. Cuthbertson, Boronic Acids: Properties and Applications, Alfa Aesar, Heysham, 2006.
- [8] D.G. Hall (Ed.), Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine, Wiley-VCH, Weinheim, 2005.
- [9] A.H. Soloway, R.G. Fairchild, Sci. Am. 262 (1990) 100.
- [10] D.A. Matthews, R.A. Alden, J.J. Birktoft, S.T. Freer, J. Kraut, J. Biol. Chem. 250 (1975) 7120.
- [11] D.H. Kinder, S.K. Frank, M.M. Ames, J. Med. Chem. 33 (1990) 819.
-
- [12] X. Chen, G. Liang, D. Whitmire, J.P. Bowen, J. Phys. Org. Chem. 11 (1988) 378. [13] A. Meud, M. Erbes, K. Forstinker, US Patent No. 2002/0 161, 2002, p. 230.
- $\left[14\right]$ M.K. Cyrański, A. Jezierska, P. Klimentowska, J.J. Panek, G.Z. Żukowska, A.
- Sporzyński, J. Chem. Phys. 128 (2008) 124512.
[15] M.R. Shimpi, N.S. Lekshmi, V.R. Pedireddi, Crystal Growth Des. 7 (10) (2007) 1958.
- [16] K.L. Bhat, N.J. Howard, H. Rostami, J.H. Lai, Charles W. Bock, J. Mol. Struct. (Theochem) 723 (2005) 147.
- [17] M. Kurt, J. Raman Spectrosc., 40 (2009) 29.
- [18] P.N. Horton, M.B. Hursthouse, M.A. Becket, M.P.R. Hankey, Acta Cryst. E Struct. Rep. E60 (2004) o2204.
- [19] J.A. Faniran, H.F. Shurvell, Can. J. Chem. 46 (1968) 2089.
- [20] M. Kurt, J. Mol. Struct. 874 (2008) 159.
- [21] M.K. Cyrański, A. Jezierska, P. Klimentowska, J.J. Panek, A. Sporzyński, J. Phys. Org. Chem. 21 (2008) 472.
- [22] N.C. Handy, C.W. Murray, R.D. Amos, J. Phys. Chem. 97 (1993) 4392.
- [23] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623.
- [24] F.J. Devlin, J.W. Finley, P.J. Stephens, M.J. Frish, J. Phys. Chem. 99 (1995) 16883.
- [25] S.Y. Lee, B.H. Boo, Bull. Korean Chem. Soc. 17 (1996) 760.
- [26] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.
- [27] N. Sundaraganesan, S. Ilakiamani, H. Saleem, P.M. Wojciechowski, D. Michalska, Spectrochim. Acta A 61 (2005) 2995.
- [28] P. Pulay, J. Baker, K. Wolinski, Green Acres Road, Suite A, Fayettevile, AR 72703, USA, p. 2013.
- [29] J. Baker, A.A. Jarzecki, P. Pulay, J. Phys. Chem. A 102 (1998) 1412.
- [30] A. Frisch, A.B. Nielsen, A.J. Holder, Gaussview Users Manual, Gaussian Inc., Pittsburg.
- [31] M.J. Frisch et al., Gaussian 03, Revision B.4, Gaussian Inc., Pittsburgh, PA, 2003.
- [32] S.J. Rettig, J. Trotter, Can. J. Chem. 55 (1977) 3071.
- [33] J.R. Durig, T.S. Little, T.K. Gounev, J.K. Gargner Jr., J.F. Sullivan, J. Mol. Struct. 375 (1996) 83.
- [34] M. Karabacak, M. Çınar, M. Kurt, J. Mol. Struct. 885 (2008) 28.
- [35] A.K. Rai, S. Kumar, A. Rai, Vib. Spectrosc. 42 (2006) 397.
- [36] M. Karabacak, M. Kurt, Spectrochim. Acta A 71 (2008) 876.
- [37] M. Kurt, T.R. Sertbakan, M. Özduran, Spectrochim. Acta A 70 (2008) 664.
- [38] L.J. Bellamy, The Infrared Spectra of Complex molecules, Wiley, New York, 1959.
- [39] M. Silverstein, G. Clayton Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
- [40] N. Sundaraganesan, S. Ilakiamani, B.D. Joshua, Spectrochim. Acta A 67 (2007) 287.
- [41] G. Varsanyi, Assignments of Vibrational Spectra of 700 Benzene Derivatives, Wiley, New York, 1974.
- [42] [http://www.acros.be.](http://www.acros.be)
- [43] Karsten Koppe, Ph.D. Thesis, Duisburg University, 2005. [44] G. Vargas, I. Hernandez, H. Höpfl, M. Ochoa, D. Castillo, N. Farfan, R. Santillan, E.
- Gomez, Inorg. Chem. 43 (2004) 8490. [45] L. Santucci, H. Gilman, J. Am. Chem. Soc. 80 (193) (1958).