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Abstract 21 

 22 

Aim: We hypothesized that field asymmetric waveform ion mobility spectrometry (FAIMS) as a 23 

novel artificial olfactory technology could differentiate urine of women with malignant ovarian 24 

tumors from controls and women with benign tumors, based on previous findings on the ability of 25 

canine olfactory system to “smell” cancer. 26 

Patients and methods: Preoperative urine samples from 51 women with ovarian tumors, both benign 27 

and malignant, and from 18 women with genital prolapse, as controls, were collected. The samples 28 

were analyzed by FAIMS device. Data analysis was processed by quadratic data analysis (QDA) and 29 

linear discriminant analysis (LDA), and cross-validated using 10-fold cross-validation.  30 

Results: Thirty-three women had malignant ovarian tumors, of which 18 were high-grade cancers. 31 

FAIMS distinguished controls from malignancies with the accuracy of 81.3 % (sensitivity 91.2 % 32 

and specificity 63.1 %), and benign tumors from malignancies with the accuracy of 77.3 % 33 

(sensitivity 91.5 % and specificity 51.4 %). Moreover, low grade tumors were also separated from 34 

high grade cancers and benign ovarian tumors with accuracies of 88.7 % (sensitivity 87.8 % and 35 

specificity 89.6 %) and 83.9 % (sensitivity 73.1 % and specificity 92.9 %), respectively.  36 

Conclusions: This proof of concept-study indicates that the FAIMS from urine has potential to 37 

discriminate malignant ovarian tumors from no tumor-bearing controls and benign tumors.  38 

 39 

Key words: FAIMS; ovarian neoplasm; ovarian cancer; VOC; Owlstone Lonestar; urine 40 

 41 
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 43 
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Introduction 45 

Annually 22,000 new ovarian cancer (OC) cases are diagnosed in the United States, and the survival 46 

rates are poor due to the majority of OCs being detected at advanced stages [1]. While early diagnosis 47 

and adequate cytoreductive surgery improve prognosis, there is a need for better preoperative 48 

diagnostic methods for ovarian tumors.  49 

 50 

Various ultrasound-based models have been developed for preoperative evaluation of ovarian masses. 51 

These include e.g. Risk of Malignancy Index (RMI) [2] and logistic regression analyses and 52 

ultrasound-based rules from the International Ovarian Tumor Analysis (IOTA)-study. Although they 53 

have relatively high sensitivity and specificity, they are non-applicable for about 20 % of tumors [3]. 54 

 55 

Studies on urinary biomarkers for OC are relatively sparse. Urinary protein biomarkers, human 56 

epididymis protein 4 (HE4) and mesothelin, have shown to improve the early detection of serous OC 57 

compared to serum biomarkers [4]. Metabolite changes related to OC have been discovered as 58 

potential biomarkers [5,6], like N1,N12-diacetylspermine in polyamine analyses [7]. In addition, 59 

circulating microRNAs have been shown to be abundant in urine of OC patients [8]. 60 

 61 

Many diseases are linked to distinct odors caused by volatile organic compounds (VOCs) released 62 

into exhaled air, urine, blood and stool [9]. Horvath et al. trained dogs to discriminate OC patients 63 

and healthy controls from tissue samples [10] and blood samples from cancer patients [11] with high 64 

accuracy. The costly training, limited working capacity and cultural factors have prevented the use 65 

of “sniffer dogs” in the clinic. Artificial olfaction with electronic devices could be easier to validate 66 

and adopt into clinical practice [9].  67 

   68 
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Gas chromatography-mass spectrometry (GC-MS) has been used extensively in analysis of VOCs 69 

but it involves complex technology and has high costs. Electronic nose (eNose) technology provides 70 

a more economical and simpler way to qualitatively analyze VOCs. The technology mimics the 71 

working principle of mammalian olfactory system (Figure 1). Ion mobility spectrometry (IMS) works 72 

according to the same principles, providing a qualitative VOC spectrum from the sample. Field 73 

asymmetric waveform IMS (FAIMS) is a modern and sensitive variant of IMS providing a high 74 

sensitivity and stability [12]. The working principle of FAIMS is illustrated in Figure 2. 75 

   76 

There is mounting evidence of the potential of eNose devices in detection of cancer from various 77 

sample media [12]. FAIMS specifically has previously been shown to detect colorectal and pancreatic 78 

cancers from urine [13,14]. Detection of OC has been only attempted from cancer tissue [15]. Urine 79 

is a promising sampling method since it can be obtained non-invasively.  80 

  81 

We hypothesized that FAIMS would be capable of differentiating the urine of women with OC from 82 

benign ovarian tumors and controls.  83 

  84 
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Materials and methods  85 

Subjects and study design 86 

Between May 2013 and March 2016, 60 women with an adnexal tumor scheduled for surgery gave a 87 

morning urine sample in the operation day at the Department of Obstetrics and Gynecology of 88 

Tampere University Hospital. They were all postmenopausal, and none of them had an ongoing 89 

treatment for cancer. After operation nine tumors were excluded due to their non-ovarian origin or a 90 

concurrent malignant tumor. The final sample size after exclusions was 51. Eighteen women 91 

scheduled for urinary incontinence or genital prolapse surgery were recruited as controls. The samples 92 

were stored at -70°C until analysis. Because of the proof-of-concept nature of the study, no power 93 

calculations could be done. The size of the study population was based on the experience from 94 

previous studies with similar technology [16]. 95 

 96 

The samples were defrosted and analyzed using Owlstone Lonestar (Owlstone Inc, Cambridge, 97 

United Kingdom) device which uses FAIMS technique. The sensor was coupled with ATLAS 98 

sampling unit (Owlstone Inc, Cambridge, United Kingdom) that standardizes the analytical 99 

conditions by controlling the temperature and dilution of the VOCs evaporated from the sample. 100 

 101 

Protocol of FAIMS 102 

For FAIMS analysis, we used settings previously described by Arasaradnam et al [13]. The step-by-103 

step analysis protocol was as follows:  104 

1) Urine samples were first thawed at room temperature and analyzed in random order. 105 

2)  A 5 ml urine sample was aliquoted to a 30 ml glass vial and warmed to 40°C.  106 

3) Once the sample achieved the target temperature, three consecutive scans were conducted to 107 

minimize the effect of scan-to-scan variation. 108 
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4) After the analysis, the sample vial was removed from the sampling unit and a vial of 5 ml of 109 

purified water was placed in to the chamber. 110 

5) The vapour released from the purified water acts as a cleaning agent that removes the carry-over 111 

effect of trace VOCs from the urine sample that are retained in the sensor. Five consecutive scans 112 

with purified water were conducted.  113 

The next urine sample was placed to the sampling chamber and the process was repeated. To ensure 114 

stable and clean carrier gas for the system, we utilized standard pressurized clean air that was cleaned 115 

from residual humidity with a silica gel filter and from residual VOCs with activated charcoal filter 116 

before entering the system. We used the flow settings recommended by the manufacturer for urine 117 

samples: The flow rate over the sample was 500 ml/min, which was mixed to 2000 ml/min stream of 118 

clean air for a total flow of 2500 ml/min for the sensor. The FAIMS scanning settings used were also 119 

ones provided by the manufacturer: Dispersion field from 0 to 90 % was scanned in 51 steps and 120 

compensation voltage from -6 to +6 V was scanned in 512 steps. Each scan contains two ion windows, 121 

one for negative and one for positive ions. One window is produced by the negative ions that collide 122 

the positive detector and the other is produced by the positive ions that collide the negative detector, 123 

respectively. The detectors are illustrated in Figure 2.  124 

The ion window is a spectrum that has compensation voltage on the X axis and dispersion field on 125 

the Y axis as seen in Figure 3. The compensation voltage is the base voltage between the electric 126 

plates in the separation part of the FAIMS sensor. This biases the ion flow either towards negative or 127 

positive plate. The dispersion field strength represents the strength of the electrical field between the 128 

plates as a percentage of the maximum field that can be created by the system. The ion window is 129 

compiled by adjusting the dispersion field strength stepwise and on each step scanning the selected 130 

compensation voltage range at each step. The scans were saved on the hard drive of the Lonestar 131 

system from which they were transferred to an USB drive for statistical analysis. 132 

 133 
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Statistical methods  134 

The last of the three scans from the urine sample was found to be equal in performance when 135 

compared to the average of three scans, and was taken for analysis. One scan consists of a matrix of 136 

52,200 measurement values, including both positive and negative ion window. The areas with no 137 

response were removed and the remaining signal was downsampled, selecting every other line and 138 

column of the scan, leaving 1,536 points for each measurement.  139 

 140 

Forward feature selection with linear discriminant analysis (LDA) and quadratic discriminant 141 

analysis (QDA) were utilized to find discriminating features from each group. Both LDA and QDA 142 

seek a classifier that is optimal for discrimination of the groups. LDA is a special case of QDA where 143 

the covariance of each group is assumed to be equal which results in a linear discriminator whereas 144 

QDA allows the covariances to differ which also enables quadratic, parable-shaped discriminators. 145 

Because LDA is a simpler method, it is preferred as the first option to test. The results were cross-146 

validated by 10-fold cross-validation to avoid overfitting. In this method, the dataset is divided into 147 

10 groups. One group is then excluded from the dataset and the remaining nine groups are used to 148 

create the classification parameters as the training set. The excluded group is then classified using 149 

these parameters. Since, due to random division for the cross validation, the classification parameters 150 

change to a certain extend in every run, the process was repeated 100 times to reduce the effect of 151 

variation and to calculate averages and standard deviations for classification results. The analysis was 152 

conducted with MATLAB R2017b (MathWorks Inc, Natick, MA, USA). 153 

 154 

Results  155 

Characteristics of the final study population are presented in Table 1. The averages and standard 156 

deviations of the 100 runs of QDA and LDA analysis are given in Table 2. The performances of QDA 157 

and LDA seem to be mostly equal yet there is a notable difference in comparisons of benign tumors 158 
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with low grade vs. high grade malignant tumors, respectively. The data produced by FAIMS is 159 

nonlinear by nature [17], and it is likely that nonlinear methods such as QDA yield better results in 160 

most cases, especially when the differences between groups are less distinct. By QDA analysis, 161 

benign ovarian tumors were distinguished from malignant tumors with sensitivity and specificity of 162 

91.5 % and 51.4 %, respectively. However, the specificity improved to 79.7 % when they were 163 

compared only to high-grade ovarian cancers. Even low grade ovarian malignancies were 164 

discriminated from high grade ovarian cancers with sensitivity of 87.8 % and specificity of 89.6 %, 165 

and from benign ovarian tumors with sensitivity of 73.1 % and specificity of 92.9 %, respectively.  166 

Figure 3 shows average FAIMS outputs from urine sample of a control and of a woman with ovarian 167 

cancer. 168 

 169 

Discussion 170 

This study provides preliminary evidence that FAIMS analysis of VOCs can discriminate urine 171 

samples from OC patients, patients with non-malignant tumors and healthy controls. High grade 172 

ovarian cancers seem to be separated from low grade ovarian cancers, benign ovarian tumors and 173 

controls.  174 

 175 

The study further demonstrates that OC is associated with distinct odor [18-20]. The fact that this 176 

phenomenon is apparent in urine suggests that a systemic process is involved. It is apparent that 177 

metastatic, systemic cancer may elicit profound changes in urine composition that may be an 178 

indication of decreasing renal function. However, in the case of colorectal cancer, even early stage 179 

cancers could be detected [13]. There is in fact mounting body of evidence that cancer releases VOCs 180 

to systemic circulation that consequently are released through alveoli to breath and via glomerular 181 

filtration to urine [21]. This suggests that breath and urine can be considered alternative sampling 182 

methods for same VOCs. The feasibility of FAIMS/IMS has been demonstrated in both sampling 183 
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sources [13,22]. Reliable sampling from exhaled breath is challenging [23] and the performance of 184 

breath VOC analysis in OC seems to be inferior to our results obtained from urine [18,24]. Since 185 

urine can be obtained non-invasively, we consider it as a more promising sampling source for VOC 186 

analysis in OC.  187 

 188 

VOCs in different sample mediums and cancers seem to have common features, which are related to 189 

oxidation such as benzene derivates [13,18,21]. The metabolic origin and function of most of these 190 

VOCs are unclear. They can originate from endogenous and exogenous sources and may thus be a 191 

result also from environmental exposure instead of the cancer [21]. In this study we achieved a good 192 

discrimination of high grade and low grade cancers. It has been suggested that KRAS and TP3 193 

mutations play a role as a watershed in development of high or low grade serous OC, i.e. type I and 194 

II OCs [25]. These single mutations have resulted in VOC changes in cellular model [26] that reflect 195 

those found in urine in other cancers [13]. We speculate that the VOC alterations concerning various 196 

mutations should be studied in future also in ovarian cancer. 197 

 198 

This study must be considered as preliminary, and the results should be verified in larger patient 199 

cohorts with this repeatable method. However, there is urgent need for early detection of especially 200 

aggressive type II OCs, with an ultimate goal to improve the prognosis of this devastating disease 201 

[25]. An important topic in future FAIMS research is to examine if cytoreductive surgery and 202 

immunosuppressive therapy have influences on VOC emissions of urine samples. FAIMS technology 203 

itself has advantages compared to GC-MS- and eNose implications; the technology by nature is 204 

sensitive to trace concentrations of molecules, is considerably more economical than MS-based 205 

methods, and does not suffer stability problems of other eNose technologies [27]. In contrast to canine 206 

studies, FAIMS is standardized and repeatable, whereas it is almost impossible to replicate research 207 

settings of canine studies because of variation in dogs. 208 
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 209 

Our study has also limitations. First, the present results cannot as such be generalized to unselected 210 

populations, but rather should be considered valid in the setting of tertiary hospitals, as part of the 211 

diagnostic work-up of adnexal tumors. Second, the number of analyzed urine samples was quite 212 

small. However, the proportions of three patient groups (controls, benign and malignant tumors) were 213 

balanced. Third, the considerable number of low malignant potential and borderline ovarian tumors 214 

in our study certainly has an influence on our results comparing benign and malignant ovarian tumors, 215 

and may have contributed to the rather great deviation seen between comparisons of benign tumors 216 

and all or low-grade malignant tumors. However, the comparisons between benign ovarian tumors or 217 

controls and high grade ovarian tumors are more accurate and specific. Fourth, the storage time of 218 

our samples was several years, which may have reduced the VOC emissions and thus differences 219 

between groups, as has been shown in a recent study examining the effect of storage on VOC profiles 220 

of urine [28]. In addition, the effects of the diet and possible medications may have had influence on 221 

the concentration and composition of urine although the samples were collected in the morning after 222 

at least four hours fasting. The fact that the highest discrimination rate was achieved for benign tumors 223 

and controls suggests that there is a degree of bias between patient groups. This may also result from 224 

the larger and more heterogenous nature of cancer group.  225 

 226 

Conclusion 227 

According to our results, we propose that the VOC signature of urine of ovarian cancer patients can 228 

be recognized by FAIMS and that it has potential for being a non-invasive method in the detection of 229 

ovarian malignancy. Our novel study encourages us to examine further possibilities of FAIMS for 230 

diagnostics and follow-up of gynecological malignancies.  231 

 232 
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Table 1. Demographic data of study population 325 

 Malignant tumors 

 

Benign tumors Controls 

n 33 

 

18 18 

Age (years) 

Median 

(range) 

 

64  

(51-82) 

 

 

64 

(51-73) 

 

71  

(55-83) 

Diagnosis (n) Low grade cancers (15) 

- mucinous adenocarcinoma 

Stage IA and IC (1+1) 

- endometrioid 

adenocarcinoma Stage IA 

(1) 

- mucinous borderline Stage 

IA (5) 

- serous borderline Stage IA 

(4) 

- Sertoli-Leydig cell tumor 

Stage IIIC (1) 

- Granulosa cell tumor 

Stage IA (2) 

 

High grade cancers (18) 

 

- carcinosarcoma  

Stage IIIC (1) 

- high grade serous 

adenocarcinoma 

• Stage IC (1) 

• Stage IIC (1) 

• Stage III/IV (15) 

 

Serous cystadenoma (9) 

Mucinous cystadenoma 

(1) 

Fibroma (2) 

Simple cyst (3) 

Endometriotic cyst (2) 

Necrotized cyst (1) 

Genital prolapse or 

urinary incontinence (18) 

 326 

Table 2. Results of FAIMS signal data and QDA and LDA classification 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

Classification 

pairs 

 QDA   LDA  

Accuracy 

(%) 

(±2 Std) 

Sensitivity 

(%)  

(±2 Std) 

Specificity 

(%) 

(±2 Std) 

Accuracy 

(%) 

(±2 Std) 

Sensitivity 

(%) 

(±2 Std) 

Specificity 

(%)  

(±2 Std) 

Benign ovarian 

tumors vs. controls 

 

Controls vs. 

malignant ovarian 

tumors   

 

Controls vs. high 

grade ovarian 

cancers 

91.9 

(±9.8) 

 

81.3 

(±8.2) 

 

 

81.9 

(±5.2) 

93.4 

(±11.4) 

 

91.2 

(±7.2) 

 

 

89.1 

(±2.8) 

90.4 

(±14.4) 

 

63.1 

(±16.0) 

 

 

74.6 

(±9.6) 

86.1 

(±9.6) 

 

81.2 

(±5.8) 

 

 

82.1 

(±6.0) 

86.0 

(±11.2) 

 

90.4 

(±5.2) 

 

 

88.7 

(±3.2) 

86.1 

(±12.2) 

 

64.3 

(±12.8) 

 

 

75.6 

(±11.8) 

 

Benign vs. 

malignant ovarian 

tumors 

 

77.3 

(±13.8) 

 

91.5 

(±6.4) 

 

51.4 

(±32.0) 

 

65.9 

(±13.8) 

 

87.1 

(±9.0) 

 

27.1 

(±38.6) 

 

Benign ovarian 

tumors vs. low 

grade ovarian 

cancers 

 

Benign ovarian 

tumors vs. high 

grade ovarian 

cancers 

 

83.9 

(±23.4) 

 

 

 

82.5 

(±10.0) 

 

73.1 

(±41.4) 

 

 

 

85.3 

(±15.0) 

 

92.9 

(±11.4) 

 

 

 

79.7 

(±12.0) 

 

59.3 

(±7.0) 

 

 

 

82.5  

(±9.6) 

 

35.9 

(±14.0) 

 

 

 

85.0 

(±15.0) 

 

78.8 

(±5.8) 

 

 

 

79.9 

(±11.2) 

 

Low grade vs. high 

grade ovarian 

cancers 

 

88.7 

(±11.2) 

 

87.8 

(±12.8) 

 

 

89.6 

(±16.6) 

 

82.0 

(±10.8) 

 

84.3 

(±16.0)    

 

79.7 

(±13.4) 
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Figure 1. The working principle of mammary and eNose compared 342 

A) VOCs enter a sampling unit where the humidity, the temperature and the concentration of the 343 

sample are optimized. 344 

B) Optimized sample enters the sensor unit where different VOCs attach to different areas of the 345 

sensor and produce electrical currents. 346 

C) Electrical currents are referred to a computing system for analysis where they are associated with 347 

previously gathered information. 348 

D) A result of the analysis is produced. 349 

 350 

 351 

 352 
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 354 

 355 

 356 

 357 
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Figure 2. Illustration on the working principle of FAIMS  358 

A) Sample vial is placed in to the sampling chamber where VOCs are released from the sample. 359 

VOCs are then transferred to the analyzer by clean air flow.  360 

B) In the analyzer, VOCs are first ionized by a radioactive isotope and gain electrical charge. 361 

C) Ionized VOCs enter separation area where they are alternately exposed to high and low electric 362 

fields between the electric plates. The plates also have a baseline compensation voltage that is 363 

periodically adjusted. The different properties of VOCs cause them to travel at different speed in the 364 

separation chamber and behave differently in high and low electric fields. This results in separation 365 

of the VOCs according to their charge, shape and mass.  366 

D) At the last stage of the analysis, VOCs collide with detectors, creating electric currents that create 367 

a unique spectrum for each molecular mixture. 368 

 369 
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Figure 3. Average FAIMS spectrum from a patient with ovarian cancer and from a control 376 

Stars indicate the areas of the spectrum that yielded optimum discrimination of the two groups. 377 

Compensation voltage is on X-axis and dispersion field strength is on Y-axis.  378 
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