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Pregnancy is an immunological challenge to the mother. The fetal tissues including the

placenta must be protected from activation of the maternal immune system. On the other

hand, the placental tissue sheds into the maternal circulation and must be adequately

identified and phagocytized by thematernal immune system. During a healthy pregnancy,

numerous immunosuppressive processes take place that allow the allograft fetus to thrive

under exposure to humoral and cellular components of the maternal immune system.

Breakdown of immune tolerance may result in sterile inflammation and cause adverse

pregnancy outcomes such as preeclampsia, a vascular disease of the pregnancy with

unpredictable course and symptoms from several organs. Immunological incompatibility

between mother and fetus is strongly indicated in preeclampsia. Recently, genetic factors

linking immunological pathways to predisposition to preeclampsia have been identified.

In this mini-review genetic variation in immunological factors are discussed in the

context of preeclampsia. Specifically, we explore immunogenetic and immunomodulary

mechanisms contributing to loss of tolerance, inflammation, and autoimmunity in

preeclampsia.

Keywords: preeclampsia, genetics, complement, major histocompatibility complex, FLT1, autoimmunity,

pregnancy

INTRODUCTION

Preeclampsia is a heterogeneous vascular disease of the human pregnancy that presents in a
previously normotensive woman during the second half of the pregnancy with hypertension and
proteinuria, or preeclampsia-associated signs in the absence of proteinuria (1, 2). Preeclampsia
occurs in 3% of pregnancies (3), and it is one of the most important causes of maternal and fetal
morbidity and mortality worldwide. The etiology of preeclampsia is incompletely understood, but
it has its origins in early pregnancy and delivery of the placenta is the only cure (4). Two distinct
subtypes has been frequently used in the literature based on the timing of the disease onset/delivery:
early-onset <34 + 0 and late-onset ≥34 weeks of gestation. However, better understanding of the
etiology and different subtypes is needed for early recognition and preventive measures.

Preeclampsia is considered a two stage-disease in which poorly perfused placenta produces
factor(s) leading to systemic vascular disease and the clinical manifestations of preeclampsia (5).

At 8 weeks of gestation, the trophoblast cells invade from the placenta into the maternal tissue
and into the uterine arteries. These endovascular trophoblast cells facilitate the remodeling of spiral
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uterine arteries, which is essential for a healthy pregnancy.
In order for the placentation process to be sufficient to
support a healthy pregnancy, the extravillous trophoblast cells
must avoid detection by the alternative pathway, subsequent
complement activation, and immune response ((4, 6); Figure 1).
Immunogenetic susceptibility to preeclampsia may have effect
in the early stages of pregnancy whereby through loss of
maternal tolerance toward the fetal components, the process
of placentation is impaired. On the other hand, during the
third trimester, underlying immunogenetic predisposition may
aggravate sterile inflammation, which is exacerbated by systemic
endothelial dysfunction in the mother’s vasculature and result in
progression of preeclampsia ((10) Figure 2A).

Data from epidemiological studies suggest that maternal and
paternal genes through fetus affect the risk of preeclampsia, and
its genetic basis is polygenic. Heritability of preeclampsia has
estimated 55% with greater maternal (35%) than fetal (20%)
contribution (12). Genes coding for components of the immune
system are among the more important candidates in the quest
to pinpoint clinically relevant genetic association. This is also
evidenced by numerous non-genetic studies and observations
involving components of the immune system (13–15). Activation
of alternative pathway of complement activation has been shown
to coincide with the critical weeks of placentation (16, 17).
The role of decidual monocyte populations in healthy and
pathological pregnancies have been reviewed elsewhere (18).

Genetic risk profile for preeclampsia is currently poorly
characterized. The genetic studies have suffered from non-
reproducibility and been lacking functional validation. Recently,
in a large genome wide association study of preeclampsia a first
robust association in the fetal genome was found in the common
variant near Fms related tyrosine kinase gene (FLT1) encoding
anti-angiogenic factor Fms-like tyrosine kinase 1 (FLT1) (19).
Our group has published protective maternal low-frequency
variants in the same gene (20).

In this mini-review we explore the immunogenetic role of
FLT1 in preeclampsia and selected genetic studies implicating
loss of immune tolerance in early pregnancy or late pregnancy
inflammation in preeclampsia. Dysregulation of complement
system and autoimmunity are discussed in detail as potential
causes of loss of maternal tolerance, while obesity is considered
a possible cause of inflammation.

IMMUNOGENIC FLT1? AN EVOLUTIONARY
PERSPECTIVE

The anti-angiogenic factor, soluble FLT1 is also known to
have an anti-inflammatory function (21). FLT1 is expressed on
inflammatory cells in addition to endothelial and trophoblast
cells (22). In areas of Africa, where Plasmodium falciparum
malaria is endemic, first pregnancies share a particular risk
of not only preeclampsia but also of placental malaria (23).
In placental malaria, the fetal tissue will express an excess
of sFLT1 apparently in an attempt to regulate the maternal
inflammatory response thereby reducing the rate of spontaneous
abortions (24). Consequently, positive selection on a genetic

variant with capacity to resist placental malaria by increasing
sFLT concentration may have influenced FLT1 allele frequencies
within the general population enough to introduce a novel risk to
preeclampsia (25).

Soluble FLT1 is conserved across vertebrates. The human
FLT1 protein contains two tyrosine kinase catalytic (TyrKc)
domains, three domains from the immunoglobulin (Ig) cell
adhesion molecule (cam) subfamily (Igcam), one Ig-like domain,
and one true Ig domain (26). In a detailedmolecular evolutionary
analysis, in contrast to other related proteins, in FLT1, only the
TyrKc domains located at amino acids 819-933 and 991-1157
were found to be conserved across vertebrates (26). Large degree
of variance between related proteins may be a reflection of recent
evolutionary selection pressure on the FLT1. Malaria is known
to be a potent source of immunological selection. Together this
evidence is in support of possible thus far poorly understood
immunological roles of the FLT1.

The major contributor to sFLT1 load in human pregnancy is
the recently evolved isoform sFLT1-e15 (27). Overexpression of
the primate specific isoform sFLT1-e15a is also associated with
preeclampsia suggesting, that this novel isoform harbors thus far
unexplained fitness advantages (27, 28). Assuming that sFLT1 is
pathogenic, it is thereby possible that in non-primate mammals’
conditions that lead to pregnancy-associated pathological rise in
sFLT1 do not exist. On the other hand, it is also possible that
the sFLT1 in humans has evolved specific functions, patterns
of expression, or regulatory mechanisms that are essential for
development of preeclampsia (25).

Further evidence of the immunological interactions of FLT1
is derived from a murine model, where increase in complement
activation resulted in increased levels of FLT1 (29). Monocytes
can be stimulated to express an excess of FLT1 when exposed
to complement activation products C3a and C5a in vitro
(29). Additionally, nuclear factor of activated T-cells (NFAT)
transcription factors are involved in expression of mRNA of
inflammatory cytokines, sFLT1-e15, and FLT1, as well as, and
secretion of sFLT1 from primary human cytotrophoblasts (30).
NFAT transcription factors may in further studies prove to be
another link between FLT1 and immune response. Furthermore,
angiogenic dysregulation may play a role in activation of
the classical pathway in the kidney in a murine model of
preeclampsia as evidenced by C4 deposition in the tissue in
presence of excess sFLT1 (31).

FLT1 3’UTR dinucleotide repeat polymorphism have
been shown to influence the expression of FLT1 and fetal
outcome in the context of placental malaria with possible
immunomodulatory effect (23). As far as we know, the
distribution of these repeat polymorphisms in preeclampsia has
not been explored.

TOLERATING OFFSPRING: DUAL ROLE OF
COMPLEMENT SYSTEM IN RECOGNIZING
AND CLEARING OF FETAL MATERIAL

Complement system is an ancient part of innate immunity,
which consists of cell surface-bound and freely circulating
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FIGURE 1 | Schematic representation of the maternal-fetal interface and its immunologicalplayers. Trophoblast cells (fetal) and endothelial cells (maternal) express

sFlt1. The placental villi are shown in the right side of the image and decidua on the left. Invading trophoblast cells will encounter maternal complement system (C) in

the decidua and in the intervillous space. Invading extravillous trophoblasts express HLA-C and HLA-G receptors (in yellow and orange, respectively), expression of

HLA-G by villous trophoblast cells in the placenta decreases during the course of the pregnancy (7). Successful trophoblast invasion will extend to the vascular layers

of myometrium and invade the uterine spiral arteries, where endovascular trophoblast cells (EvTC) will replace endothelial cells (E) causing remodulation and relaxation

of the spiral artery to allow for non-turbulent high volume low pressure circulation into the intervillous space. Interstitial trophoblast cells (ITC) will remain in the maternal

tissue creating tolerance of the fetal tissue in the maternal immune system. Hofbauer cells (HC) are the predominant immune cell population in the villi throughout

placental development. The decidual immune cell population consists of macrophages (M), natural killer cells (NK), and populations of T-cells (T). Tolerance inducing

Treg and Breg cells in particular are essential for a healthy pregnancy (8). Figure adapted from Lokki 2017 PhD thesis (9).

proteins that interact in a cascade of activation and regulation.
Complement system has the capacity to discriminate between
self- and non-self-cells and particles, and thereby maintain
tolerance, or activate adaptive immunity. Complement activation
can lead to inflammation, cell death, and tissue destruction.
However, complement system also has a crucial role as a
facilitator of phagocytosis thereby clearing debris and altered
cells, in addition to removing pathogens. To protect own tissues
from complement-mediated destruction and death, pathways of
complement activation must be carefully regulated. Complement
system has been studied extensively in preeclampsia, but genetic
association studies linking components of the complement
system to preeclampsia are not as plentiful.

Preeclampsia has previously been likened to thrombotic
microangiopathies (TMA), which are caused by inadequate
regulation of the complement system. In TMA, complement
attacks against endogenous tissue structures such as endothelial
cells and blood cells causing vascular damage and kidney failure.
Pregnancy can act as a trigger of TMA syndromes. Atypical
hemolytic uremic syndrome (aHUS) is a complement disease
of the kidney with a TMA mechanism (32). Dysregulation of
alternative pathway of complement system is indicated in aHUS

(33). Similarly, most preeclampsia associations in complement
system are found in the alternative pathway (34, 35).

The component C3 is in the core of the complement system.
It can be activated by three different pathways. C3 can also
become spontaneously activated in the human serum (32).
Via the alternative pathway of complement activation, C3 is
spontaneously activated and cleaved into activation products C3a
and C3b in the absence of complement regulators. According to
the sequence context, a haplotype spanning the active domains
of C3 may predispose or protect from severe preeclampsia
in a Finnish population (36, 37). We found a haplotype of
16 SNPs spanning the functionally critical sections in the
middle of the gene. In this haplotype, three SNPs have most
robust independent associations to severe preeclampsia further
supporting its functional significance (36).

The results of this and other studies indicate that parallel
to mice, C3 also plays a central role in the healthy human
pregnancy (38, 39). The mechanism of haplotype association
to severe preeclampsia is unclear but the effect may be due to
functional or regulatory attributes of this region. For example,
functional effect may affect the extravillous trophoblasts’
capacity to evade complement activation by C3 binding, thereby
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FIGURE 2 | (A) The proposed mechanisms of immune response in the etiology of preeclampsia. Immune mechanisms contribute to preeclampsia in early and late

stages of the pregnancy. Specifically, if alternative pathway (AP) of complement system fails to recognize the invading trophoblast cells at the placental bed or in the

uterine arteries, placentation may remain superficial and maternal uterine spiral artery remodeling may be compromised. In later stages of the pregnancy, complement

activation aiming to facilitate phagosytosis of excess syncytiotrophoblast debris may induce sterile inflammation of the placenta locally. Concurrently, systemic

endothelial dysfunction including disturbed coagulation function may be aggravated by immune activation and result in inflammation and shifting of Th2 to Th1 helper

cell as well as disturbance of Treg and Th17 cell balances thereby further contributing to activation of the maternal immune response including erroneous antigen

presenting in patients with applicable HLA alleles (11). (B) The triad of immune mechanisms in preeclampsia. The placement of contributing factors represents their

suggested role in contributing to loss of tolerance, inflammation, and autoimmunity. Environmental risk factors outside in boxes, and the immunogenetic factors

discussed in this review are inside the triangle. α-PL, anti-phospholipid antibodies; HLA, human leukocyte antigen; FLT1, Fms-like tyrosine kinase 1; T1D, type 1

diabetes.

compromising deep placentation and spiral artery remodeling
in early pregnancy. Inflammation caused by excess complement
activation may also be involved in a later stage of preeclampsia
influencing severity of symptoms such as hypertension
(40).

Immune complexes or opsonisation of the target surface by
C1 complex triggers the activation of the classical pathway of
complement system. Clearance of placenta-derived particles is
crucial when preeclampsia symptoms develop in later pregnancy.
Classical pathway activation results in cleavage of C4, which is
a homolog of C3. C4 is present in two proteins, C4A and C4B,
which are coded by usually two copies of each gene. While copy
number variation of both C4 is common, zero copies of both
resulting in complete C4 deficiency are very rare (41). Results of
a pilot study conducted on mother-infant pairs with early-onset
(delivery < 34 weeks of gestation) or late-onset (delivery ≥ 34
weeks of gestation) preeclampsia and non-preeclamptic controls
suggest that deficiencies in C4 may predispose to preeclampsia
(14). C4A or C4B deficiencies were found almost twice as often in
women with early-onset preeclampsia than in healthy controls.
C4A deficiencies are observed in 16% of general population
in Finland (42). In preeclampsia, C4A deficiencies were found
in 40% (2/5) of women with late-onset preeclampsia and in
43% (3/7) of women with early-onset preeclampsia. None were
observed in controls (n = 7). The copy number of C4 seems to
decrease with the severity of preeclamptic symptoms (14). C4A
deficiencies have previously been linked to autoimmune diseases
(43). The patients in the preeclampsia study did not suffer from
autoimmune diseases. The high incidence of C4A deficiency in
preeclampsia supports the importance of classical pathway of
complement system in preeclampsia.

Membrane co-factor protein (MCP, CD46) has the capacity to
regulate both alternative and classical pathways of complement
activation by binding to C3b or C4b and acting as a co-factor to
the inactivator enzyme Factor I. MCP is a widely expressed type 1
membrane bound protein. aHUS, can be caused by mutations in
MCP (44–47). Proteinuria is one of the cornerstone symptoms
of preeclampsia, but its degree varies between patients. Renal
dysfunction due to uncontrolled complement activation has
been suspected to be the underlying link between preeclampsia
and kidney diseases. To investigate whether sequence variants
in the CD46 might predispose to preeclampsia, we sequenced
the MCP gene in preeclamptic women with severe proteinuria
and in non-preeclamptic controls (37, 48). The results of this
study do not corroborate the previously reported association
of A304V to severe preeclampsia in a cohort of autoimmune
pregnancies (49). We observed similar minor allele frequency
(MAF) of ∼6% in cases and controls. We also found one control
woman, whowas homozygous to 304∗V allele. Heterozygosity for
another functional single nucleotide polymorphism (SNP) K32N
(rs150429980) was found in one preeclamptic woman and one
control. Thereby results are inconclusive. It is possible, however,
thatMCP plays a part in a particular subtype of preeclampsia, due
to the heterogenous nature of the disease.

The complement co-factor I (coded by CFI) is a serine
protease that inactivates C3b and C4b in the presence of a
co-factor protein, such as complement factor H (FH) and
MCP. In the PROMISSE cohort consisting of patients with
anti-phospholipid antibodies or systemic lupus erythematosus
(SLE), two severe preeclamptic patients with a history of
complicated pregnancies were found to carry the loss-
of-function mutation I398L in CFI (49). Furthermore, a
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mutation in the CFH the gene coding for FH with unknown
functional consequence was found in another patient (49).
While FH is mainly effective in inhibition of the alternative
pathway, MCP and factor I have the capacity to regulate
both alternative and classical pathways of complement
activation.

IMMUNOGENETIC PREDISPOSITION FOR
COMPROMISED TOLERANCE

Major histocompatibility (MHC) in chromosome 6 (6p21.3), is
the most polymorphic region of the human genome as a result
of diverse and shifting immunological selection pressures. Many
of the genes in the MHC code for proteins with immunological
function. Genes coding for C4A and C4B are located in the MHC
as are the genes coding for human leukocyte antigen (HLA)
receptors.

At least two autoimmune diseases exist that harbor an
increased susceptibility to preeclampsia. Among other
immunological defects, aberrant NK cell biology has also
been implicated in both, SLE and Type 1 Diabetes. Together
these observations might shed light to the disease mechanisms in
pregnancy complications.

The proportion of natural killer (NK) cells increases markedly
in the uterus/endometrium during implantation and they likely
have an important function during early stages of placentation
(50, 51). Accordingly, genotypes of KIR receptors on the NK cells
in combination with genotypes of their ligands, HLA-C on fetal
trophoblast cells have been under investigation in preeclampsia
(52–54).

SLE is characterized by a diminished number of NK cells
with variety of functional abnormalities (55). SLE shares
many symptoms with preeclampsia, including hypertension,
proteinuria, and thrombocytopenia. SLE carries a 2- to 4-fold
increase in risk of preeclampsia during pregnancy. In a Swedish
population-based registry study, the risk for severe preeclampsia
in SLE patients was 4.3% (56). Among the MHC loci, the HLA-
DRB1∗15:01, one of the strongest susceptibility loci for SLE in
European-descent populations, is also associated to reproductive
failure, i.e., recurrent pregnancy loss and secondary recurrent
pregnancy loss (57, 58).

Among pregnant women with Type 1 diabetes (T1D), 15–20%
develop preeclampsia (59), and nephropathy further increases
the risk of preeclampsia to up to 42–52% (60), which raises
questions of shared pathologies. NK cells have a crucial role in
trophoblast invasion and spiral artery remodeling in the early
stages of pregnancy, as well as in the recognition of the allograft
fetal cells. Diverse aberrations of NK cell function are widely
evidenced in T1D [reviewed in (61)]. It has been shown, that
during the diabetic pregnancy, NK cells adhering to normal
decidual endothelium are diminished in comparison to the
non-diabetic control pregnancies suggested reduced number of
NK cells homing to decidua in the diabetic pregnancy (62).
Furthermore, the peripheral blood CD56bright NK cells from
pregnant T1D patients expressed very low levels of selectin L
(SELL) and alpha 4 integrin (ITGA4), which are important

receptors for homing to the uterus (63). CXCL10 and CXCL12
chemokines are produced by the decidua. Their receptors CXCR3
and CXCR4, respectively, were expressed in lower levels on NK
cells from T1D patients (63). Furthermore, the expression of
activating receptor CD335 in the NK cell is increased during
pregnancy in T1D patients. Aberrant NK cell function may
result in the increased Th1/Th2 ratio and enhanced activation
of intermediate and non-classical monocytes (64), both of which
have been observed in preeclampsia, as well as T1D. This may
contribute to the underlying mechanism of higher incidence of
preeclampsia in T1D patients.

While the villous trophoblasts in the placenta are HLA
null, the invasive extravillous trophoblasts (EVT) express genes
belonging to the MHC, namely HLA-E, -F, -G, and -C genes
(Figure 1). Trophoblast cells do not express HLA class II on the
placental surface but syncytiotrophoblast, the outer most layer of
placental villi, contains intracellular HLA class II antigens (65).
Therefore, compatibility of maternal and fetal HLA genotypes
may also influence the immune response in late pregnancy when
fetal components are released from the disintegrating placenta. In
this context, HLA-A, -B, -DR, and -DQ gene groups may also be
relevant in preeclampsia, but thus far, this hypothesis has received
little attention.

HLA-G is considered to be protective and tolerogenic during
pregnancy. HLA-G is present in semen, which suggests that
immune tolerance induction starts already before conception.
There are several studies suggesting low or reduced levels of
sHLA-G in preeclampsia patients and reduced levels of HLA-G
mRNA has been observed in placentas of preeclamptic women
(66–69). In a study of genetic polymorphisms, a 14-bp ins/del
polymorphism in the 3’UTR of exon 8 of the HLA-G gene was
associated with mRNA stability and overall HLA-G production
(70). The role of HLA-G polymorphism in preeclampsia is still
unresolved.

ANTIANGIOGENIC SFLT1 AND INCREASED
INFLAMMATORY RESPONSE IN
ESTABLISHED PREECLAMPSIA

Inappropriate maternal immune responses to trophoblast in
early pregnancy may lead to abnormal placentation and set the
stage for clinical preeclampsia later in pregnancy. Established
preeclampsia is characterized by endothelial dysfunction and
systemic inflammatory response to placental oxidative stress
[Figure 2A; (71)].

It has been suggested that antiangiogenic sFLT1 sensitizes
endothelial cells to pro-inflammatory factors (72). The first
genome wide association study of offspring from preeclamptic
pregnancies reported that common variants near FLT1 on
chromosome 13 were associated with preeclampsia (19).
Incidence of preeclampsia is known to be increased in
pregnancies with fetal Trisomy 13 (73) suggesting that increased
placental production of sFLT1 has a role in preeclampsia
susceptibility. Furthermore, the importance of the FLT1 in the
disease is evidenced by the recently discovered protective variants
in the gene (20).
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Normal third-trimester pregnancy is characterized
by activation of peripheral blood leukocytes, which is
further increased in preeclampsia (74). Increase in the
maternal circulating levels of proinflammatory cytokines
tumor necrosis factor alpha (TNF α), interleukin (IL)-
6, and also the anti-inflammatory cytokine IL-10 in
the third trimester of pregnancy in women affected by
preeclampsia have been demonstrated in a meta-analysis
(75).

Obesity increases the risk of preeclampsia 2- to 3-fold (76–
78), but the underlying mechanisms are not fully understood.
Obesity is a state of uncontrolled inflammatory responses
leading to systemic low-grade inflammation and increased
insulin resistance (79). Even modestly overweight women
have vascular endothelial dysfunction assessed by brachial
artery ultrasound flow-mediated vasodilation (80). The
secretion of pro-inflammatory cytokines including TNFα
and IL-6 is increased in hypertrophic adipocytes (79). Herse
and coworkers have also shown that TNFα decreased sFLT1
expression in mature adipocytes (81). We and others have
found lower concentration of sFLT1 in obese compared to
normal-weight preeclamptic women, but not in respective
normotensive pregnant women (82, 83). Associations
between maternal body mass index and proinflammatory
cytokines TNFα and MCP-1 in maternal plasma have been
demonstrated (84). Thus, the production of sFLT1 and
proinflammatory cytokines by placenta and extraplacental
sources may be different in obese and normal-weight
women during pregnancy and in normal and complicated
pregnancies.

CONCLUSION

The mechanisms regulating the immune response are central
in normal pregnancy and the development of preeclampsia
(Figure 2A). Mechanisms of autoimmunity, loss of tolerance,
and inflammation in preeclampsia are evidenced in this mini-
review (Figure 2B). Angiogenic proteins, continuous subclinical
inflammation, and insulin resistance in preeclamptic women
have been suggested to result in increased cardiovascular risk that
with additional risk factors may result in cardiovascular disease
(85–87). Thus far, investigation into the genetic background
of the immunological pathogenesis of preeclampsia has mostly
concentrated on the genes coding complement components
and MHC. While both pathways are relevant to the early
pregnancy and later clinical manifestations of preeclampsia,
studies addressing other immunological mechanisms will be
a welcome contribution to increase our understanding of the
complex immunological interactions in the disease.
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