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Large-scale transcriptome-wide association study
identifies new prostate cancer risk regions
Nicholas Mancuso 1, Simon Gayther2, Alexander Gusev 3, Wei Zheng 4,

Kathryn L. Penney5,6, The PRACTICAL consortium#, Zsofia Kote-Jarai7,8, Rosalind Eeles 7,8,

Matthew Freedman9, Christopher Haiman10 & Bogdan Pasaniuc1,11,12

Although genome-wide association studies (GWAS) for prostate cancer (PrCa) have iden-

tified more than 100 risk regions, most of the risk genes at these regions remain largely

unknown. Here we integrate the largest PrCa GWAS (N= 142,392) with gene expression

measured in 45 tissues (N= 4458), including normal and tumor prostate, to perform a multi-

tissue transcriptome-wide association study (TWAS) for PrCa. We identify 217 genes at 84

independent 1 Mb regions associated with PrCa risk, 9 of which are regions with no genome-

wide significant SNP within 2Mb. 23 genes are significant in TWAS only for alternative

splicing models in prostate tumor thus supporting the hypothesis of splicing driving risk for

continued oncogenesis. Finally, we use a Bayesian probabilistic approach to estimate credible

sets of genes containing the causal gene at a pre-defined level; this reduced the list of 217

associations to 109 genes in the 90% credible set. Overall, our findings highlight the power of

integrating expression with PrCa GWAS to identify novel risk loci and prioritize putative

causal genes at known risk loci.
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Prostate cancer (PrCa) affects ~1 in 7 men during their
lifetime and is one of the most common cancers worldwide,
with up to 58% of risk due to genetic factors1,2. Genome-

wide association studies (GWAS) have identified over 100
genomic regions harboring risk variants for PrCa which explain
roughly one-third of familial risk3–7. With few exceptions8, the
causal variants and target susceptibility genes at most GWAS risk
loci have yet to be identified. Multiple studies have shown that
PrCa- and other disease-associated variants are enriched near
variants that correlate with gene expression levels9–13. In fact,
recent approaches have integrated expression quantitative trait
loci (eQTLs) with GWAS to implicate several plausible genes for
PrCa risk (e.g., IRX4, MSMB, NCOA4, NUDT11, and SLC22A3)
5,14–21. While overlapping eQTLs and GWAS is powerful, the
high prevalence of eQTLs22 coupled with linkage disequilibrium
(LD) renders it difficult to distinguish the true susceptibility gene
from spurious co-localization at the same locus23. Therefore,
disentangling LD is critical for prioritization and causal gene
identification at risk loci.

Gene expression imputation followed by a transcriptome-wide
association study24–26 (TWAS) has been recently proposed as a
powerful approach to prioritize candidate risk genes underlying
complex traits. By taking LD into account across SNPs, the
resulting association statistics reflect the underlying effect of
steady-state gene or alternative splicing expression levels on dis-
ease risk25,27, which can be used to identify new regions or to
rank genes for functional validation at known risk regions24–28.
Here we perform a multi-tissue transcriptome-wide association
study24–26 to identify new risk regions and to prioritize genes at
known risk regions for PrCa. Specifically, we integrate gene
expression data from 48 panels measured in 45 tissues across
4448 individuals with GWAS of prostate cancer from the
OncoArray in 142,392 men29. Notably, we include alternatively
spliced and total gene expression data measured in tumor pros-
tate to identify genes contributing to prostate cancer risk or to
continued oncogenesis. We identify 217 gene-trait associations
for PrCa with 23 (11) genes identified uniquely using models of
alternative spliced (total) expression in tumor. Significant genes
were found in 84 independent 1Mb regions, of which 9 regions
are located more than 2Mb away from any OncoArray GWAS
significant variants, thus identifying new candidate risk regions.
Second, we use TWAS to investigate genes previously reported as
susceptibility genes for prostate cancer identified by eQTL-based
analyses. We find a significant overlap with 56 out of 102 pre-
viously reported genes assayed in our study also significant in
TWAS. Third, we use a novel Bayesian prioritization approach to
compute credible sets of genes and prioritize 109 genes that
explain at least 90% of the posterior density for association signal
at TWAS risk regions. One notable example, IRX4, had 97%
posterior probability to explain the association signal at its region
with the remaining 3% explained by 9 neighboring genes. Overall,
our findings highlight the power of integrating gene expression
data with GWAS and provide testable hypotheses for future
functional validation of prostate cancer risk.

Results
Overview of methods. To identify genes associated with PrCa
risk, we performed a TWAS using 48 gene expression panels
measured in 45 tissues22,30–36 integrated with summary data from
the OncoArray PrCa GWAS of 142,392 individuals of European
ancestry (81,318/61,074 cases/controls; Methods)29. We per-
formed the summary-based TWAS approach as described in
ref. 25 using the FUSION software (Methods). Briefly, this
approach uses reference linkage disequilibrium (LD) and refer-
ence gene expression panels with GWAS summary statistics to

estimate the association between the cis-genetic component of
gene expression, or alternative splicing events, and PrCa risk25.
First, for each panel, FUSION estimated the heritability of steady-
state gene and alternative splicing expression levels explained by
SNPs local to each gene (i.e., 1 Mb flanking window) using the
mixed-linear model (see Methods). Genes with nominally sig-
nificant (P < 0.05) estimates of SNP-heritability (cis-h2g), are then
put forward for training predictive models. Genes with non-
significant estimates of heritability are pruned, as they are unli-
kely to be accurately predicted. Next, FUSION fits predictive
linear models (e.g., Elastic Net, LASSO, GBLUP37, and
BSLMM38) for every gene using local SNPs. The model with the
best cross-validation prediction accuracy (significant out-of-
sample R2; nominal P < 0.05) was used for prediction into the
GWAS cohort. This was repeated for all expression datasets,
resulting in 109,170 tissue-specific models spanning 15,383
unique genes using total expression and 4990 using alternatively
spliced introns for a combined 16,389 unique genes. The average
number of models per expression panel was 2228 (Supplementary
Data 1). Gene expression measured in normal prostate tissue
from GTEx22 resulted in only 710 gene models, which can be
explained due to smaller sample size (N= 87) compared with the
average (N= 234; Supplementary Data 1). Indeed, the number of
gene models per panel was highly correlated with sample size,
which implies that statistical power to detect genes with cis-
regulatory control is limited by sample size (Supplementary
Figure 1). Focusing only on models capturing total gene expres-
sion, genes on average had heritable levels of expression in 6.1
different panels (median 3) with 10,628/15,383 genes having
heritable expression in at least two panels (Fig. 1). We found R2

for predictive models was largely consistent across genomic
locations, and predominantly affected by the number of non-zero
weights used for prediction (Supplementary Figure 2). Predictive
power of linear gene expression models is upper-bounded by
heritability; thus, we use a normalized R2 to measure in-sample
prediction accuracy (R2/ cis-h2g). We found the average R2/ cis-h2g
across all tissue-specific models was 65%, which indicates that
most of the signal in cis-regulated total expression and alternative
splicing levels is captured by the fitted models (Fig. 1). To assess
the predictive stability for models of normal prostate gene
expression, we compared measured and predicted gene expres-
sion for TCGA36,39 normal prostate samples using models fitted
in GTEx22 normal prostate. We found a highly significant
replication (mean R2= 0.07; P= 1.5 × 10−29), explaining 41% of
in-sample cross-validation R2 (Supplementary Figure 3), which is
consistent with previous out-of-sample estimates24,25. We per-
formed a cross-tissue analysis within TCGA and found tumor
prostate gene expression models replicated in normal prostate
(total expression R2= 0.06; splicing R2= 0.05; Supplementary
Table 1). Given the large number of genes having evidence of
genetic control across multiple tissues, we next aimed to measure
the similarity of different tissue models (Methods). Across all
reference panels for each gene we observed an average R2= 0.64
(Supplementary Figure 4). Similarly, when averaging across
genes, reference panels displayed an average cross-tissue R2=
0.52 (Supplementary Figure 5). Together, these results suggest
that trained models predict similar levels of cis-regulated
expression on average, despite reference panels measuring
expression in different tissues, with varying QC, and differ-
ing capture technologies. Next, we performed simulations to
measure the statistical power of TWAS under a variety of trait
architectures (Supplementary Note 1). Consistent with previous
work, we found TWAS to be well-powered at various effect-sizes
and heritability levels for gene expression. Importantly, we found
no inflation under the null when cis-regulated gene expression
has no effect on downstream trait (Supplementary Figure 6).
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TWAS identifies 217 genes associated with PrCa status. In total,
we tested 109,170 tissue-specific gene models of expression for
association with PrCa status and observed 892 reaching
transcriptome-wide significance (PTWAS < 4.58 × 10−7; two-tailed
Z-test), resulting in 217 unique genes, of which 114 were sig-
nificant in more than one panel (Supplementary Data 2; Fig. 2).
On average, we found 18.2 tissue-specific models associated with
PrCa per reference expression panel (Supplementary Data 1). In
1Mb regions with at least 1 transcriptome-wide significant gene,
we observed 10.6 tissue-specific associated models on average,
and 2.6 associated genes on average, indicating that further
refinement of association signal at TWAS risk loci is necessary.
To quantify the overlap between non-HLA, autosomal risk loci in
the OncoArray PrCa GWAS and our TWAS results, we parti-
tioned GWAS summary data into 1Mb regions and observed 131
harboring at least one genome-wide significant SNP. Of these,
127/131 overlapped at least one gene model in our data and 68/
131 overlapped at least one transcriptome-wide significant gene
(Supplementary Figure 7). Associated genes were the closest gene
to the top GWAS SNP 20% of the time when using 26,292 RefSeq
genes. This result is consistent with previous reports9,25,26 and
suggests that prioritizing genes based on distance to index SNPs is
suboptimal. We found gene model associations were largely
consistent, further supporting the predictive stability of models
using cis-SNPs (Supplementary Figure 8; Supplementary Note 1).
We observed little evidence of prediction accuracy introducing
biased results (Supplementary Figure 9; Supplementary Note 1).
As a partial control, we compared TWAS results with S-Pre-
diXcan, a related method for predicting gene expression into
GWAS summary statistics, using independently trained models
and observed a strong correlation (R= 0.90; see Supplementary
Figure 10; Supplementary Note 1), further supporting the validity
of the TWAS approach.

Most of the gene models captured total expression levels in
normal tissues, however as a positive control we included models
for total expression in tumor prostate tissue (Methods). Predicted
expression using tumor prostate models accounted only for 43/
217 significant genes compared with 6/217 in normal prostate
which is likely due to the large difference in sample size between
the original reference panels (Supplementary Data 1). Given this,
we found no significant increase in proportion of tumor prostate
associated models compared with normal prostate (Fisher’s exact
P= 0.22). Of the 309 genes with models trained in both reference
panels a single shared gene, MLPH (OMIM: 606526, a gene

whose function is related to melanosome transport40), was
associated with PrCa risk. In all, 11/43 genes were significant only
in tumor prostate models of total expression. We found, 7/11
genes were modeled in other panels but did not reach
transcriptome-wide significance while the other 4/11 were not
significantly heritable, and thus not testable, in other panels. We
also tested models of alternatively spliced introns for association
to PrCa risk. We identified predicted expression of alternatively
spliced introns in tumor prostate accounted for 68/217 genes,
with an average of 2.5 (median 1) alternatively spliced intron
associations per significant gene. We next quantified the amount
of overlap between results driven from models of alternative
splicing events versus models of total gene expression. In all, 23/
68 genes were found only in alternatively spliced introns, and 14/
23 genes had models of total gene expression but did not reach
transcriptome-wide significance. The remaining 9/23 were tested
solely in alternatively spliced introns, due to heritability of total
gene expression not reaching significance. Together these results
emphasize earlier work demonstrating that sQTLs for a gene
commonly capture signal independent of eQTLs41.

TWAS analysis increases power to find PrCa associations. Most
of the power in the TWAS approach can be attributed to large
GWAS sample size. However, two other factors can increase
power over GWAS. First, TWAS carries a reduced testing burden
compared with that of GWAS, due to TWAS having many fewer
genes compared with SNPs. In all, 9/217 genes were located at
nine novel independent 1Mb regions (i.e., no overlapping GWAS
SNP), all of which remained significant under a summary-based
permutation test (P < 0.05/9; Table 1; Supplementary Data 2;
Methods). We found this result was stable to increasing region
sizes (Supplementary Data 3) and unlikely to be the result of
long-range tagging with known GWAS risk (Supplementary
Data 4; Supplementary Note 1). We observed increased associa-
tion signal for SNPs at these regions compared to the genome-
wide background after accounting for similar MAF and LD pat-
terns (Supplementary Figure 11), which, together with observed
TWAS associations, suggests that GWAS sample size is still a
limiting factor in identifying PrCa risk SNPs. As a partially
independent check, we performed a multi-tissue TWAS using
summary data from an earlier PrCa GWAS (N= 49,346)7 and
found 2 novel regions. We found both regions to overlap a
genome-wide significant SNP within 1Mb in this data further
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supporting the robustness of TWAS (Supplementary Table 2).
Second, we expect to observe increased association signal when
expression of a risk gene is regulated by multiple local SNPs25.
We observed 88/892 instances across 28 genes where TWAS
association statistics were stronger than the respective top over-
lapping GWAS SNP statistics (one-sided Fisher’s exact P < 2.2 ×
10−16; 6.5% higher χ2 statistics on average). For example, GRHL3
(OMIM:608317; a gene associated with suppression of squamous
cell carcinoma tumors42) exhibited stronger signal in TWAS
using expression in prostate tumor (PTWAS= 9.38 × 10−10)
compared with the lead SNP signal (PGWAS= 1.49 × 10−5).
Similarly, POLI (OMIM:605252, a DNA repair gene associated
with mutagenesis of cancer cells43,44) resulted in larger TWAS
associations (PTWAS= 2.29 × 10−8) compared with the best
proximal SNP (PGWAS= 5.44 × 10−7).

TWAS replicates previously reported genes. We next sought to
quantify the extent of overlapping results between TWAS and
previous studies that integrated eQTL data measured in normal
and tumor prostate tissues at PrCa risk regions (Methods; Sup-
plementary Table 3)5,14–20. We considered only autosomal, non-
HLA genes which resulted in 130 previously reported genes. We
found a significant overlap between reported genes, with 102/130
assayed in our study and 56/102 reaching transcriptome-wide
significance in at least one of our panels (Fisher’s exact P < 2.2 ×
10−16; Supplementary Table 3, Supplementary Data 5). For
example,MLPH was reported in 4/8 studies. We found significant
associations suggesting that decreased expression of MLPH in
normal and tumor prostate tissue increases risk for PrCa (e.g.,
GTEx prostate MLPH ZTWAS=−5.80; PTWAS= 6.69 × 10−9;
TCGA prostate ZTWAS=−6.77; PTWAS= 1.25 × 10−11). Pre-
dicted MLPH in tumor prostate remained significant under per-
mutation, which suggests that chance co-localization with GWAS
risk is unlikely (Supplementary Data 2). To assess the amount of
residual association signal due to genetic variation in the GWAS
risk region after accounting for predicted expression of
MLPH, we performed a summary-based conditional analysis
(Methods). We found MLPH to explain most of the signal at its
region (lead SNP PGWAS= 4.03 × 10−11; conditioned on MLPH
lead SNP PGWAS= 1.13 × 10−3; Fig. 3). Our findings are con-
sistent with recent work that found decreased expression levels of

MLPH to be associated with increased PrCa risk45. Despite pre-
vious eQTL data focusing on normal and tumor prostate tissue,
we observed associations in 45 expression panels overlapping the
56 observed genes in total, underscoring earlier works demon-
strating the consistency of cross-tissue cis-regulatory effects46.

Prioritization pinpoints a single gene for most risk regions.
TWAS genes are indicative of association and do not necessarily
reflect causality (e.g., due to co-regulation at the same region). To
prioritize genes at regions with multiple TWAS signals (Fig. 2),
we used a Bayesian formulation to estimate 90%-credible gene
sets (Methods). We found 109 unique genes across 84 non-
overlapping 1Mb regions comprising our 90% credible sets
(Supplementary Data 6, 7). In all, 68/84 credible sets contained
either a single gene or the same gene in multiple tissues. The
average number of unique genes per credible set was 1.29
(median 1). We observed that 28/109 prioritized genes were
previously reported in eQTL analyses5,14–20, which supports the
hypothesis that TWAS followed by Bayesian prioritization refines
associations to relevant disease genes. For example, MLPH was
the sole gene defining its region’s 90% credible set with a pos-
terior probability of 94%. Similarly, SLC22A3 (OMIM: 604842; a
gene involved in poly-specific organic cation transporters47 and
previously implicated in PrCa risk18) exhibited >94% posterior
probability to be causal.

Prostate tissue genes have largest average effect. Given the large
number of significant associations observed for non-prostate
tissues in our data, we wanted to quantify which tissue is most
relevant for PrCa risk. We first grouped TWAS PrCa associations
into prostate/non-prostate and tested for enrichment in normal
and tumor prostate expression models. Predicted expression and
splicing events in normal and tumor prostate made up 221/892
associations with PrCa (Supplementary Data 2) which was highly
significant compared to the grouping of all other tissues (Fisher’s
exact P= 7.3 × 10−9). This measure only quantifies the total
amount of observed associations and neglects average association
strength. Next, we computed the mean TWAS association statistic
using all genes predicted from each expression reference panel
(Fig. 4). We observed the largest average TWAS associations in
genes predicted from normal and tumor prostate tissue, which
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reaffirms our intuition of expression and splice events in prostate
being the most relevant for PrCa risk. We re-ranked mean
associations using only genes found to be transcriptome-wide
significant and observed a similar ordering with total expression
in normal prostate ranked highest (average χ2= 176.2; Supple-
mentary Figure 12).

Discussion
Prostate cancer is a common male cancer that is expected to affect
more than 180,000 men in the United States in 2017 alone48.
While GWAS has been successful in localizing risk for PrCa due
to genetic variation, the underlying susceptibility genes remain
elusive. Here we have presented results of a transcriptome-wide

association study using the OncoArray PrCa GWAS summary
statistics for over 142,000 case/control samples. This approach
utilizes imputed expression levels and splicing events in the
GWAS samples to identify and prioritize putative susceptibility
genes. We identified 217 genes whose expression is associated
with PrCa risk. These genes localized at 84 genomic regions, of
which nine regions do not overlap with a genome-wide significant
SNP in the OncoArray GWAS. We found 23 genes using pre-
dictive models for alternatively spliced introns in tumor prostate,
which supports the its role in continued risk for tumor onco-
genesis. A large fraction of identified genes was confirmed in
earlier work, with 56 genes previously reported in eQTL/PrCa
GWAS overlap studies. We used a novel Bayesian prioritization

Table 1 Novel risk loci

Gene Chr Tx start Tx end Exon/exon junction Expression reference Best GWAS SNP Best GWAS P TWAS P

GRHL3 1 24645811 24690970 — TCGA.PRAD.TUMOR rs11589294 1.49E−05 9.38E−10*
GRHL3 24668763:24669184 TCGA.PRAD_SP.TUMOR 3.08E−07

FAM83H 8 49396578 49449526 — CMC.BRAIN.RNASEQ rs7831467 3.32E−06 1.66E−07*

TLE4 9 82186687 82341796 82189851:82191048 TCGA.PRAD_SP.TUMOR rs10117770 2.47E−07 2.94E−07*
TLE4 — TCGA.PRAD.TUMOR 1.46E−07*
TLE4 82268990:82319698 TCGA.PRAD_SP.TUMOR 1.25E−07*
TLE4 82319817:82320804 TCGA.PRAD_SP.TUMOR 2.43E−07*
TLE4 82320857:82321662 TCGA.PRAD_SP.TUMOR 2.57E−07*
TLE4 82321814:82323033 TCGA.PRAD_SP.TUMOR 2.43E−07*
TLE4 82323165:82323508 TCGA.PRAD_SP.TUMOR 2.88E−07*
TLE4 82323701:82324538 TCGA.PRAD_SP.TUMOR 2.43E−07*
TLE4 82324614:82333637 TCGA.PRAD_SP.TUMOR 2.77E−07*
TLE4 82333886:82334961 TCGA.PRAD_SP.TUMOR 8.77E−08*
TLE4 82335208:82336656 TCGA.PRAD_SP.TUMOR 3.06E−07*
TLE4 82336803:82337366 TCGA.PRAD_SP.TUMOR 1.29E−07*
TLE4 82337516:82337874 TCGA.PRAD_SP.TUMOR 2.42E−07*
TLE4 82337950:82339952 TCGA.PRAD_SP.TUMOR 2.43E−07*

STXBP1 9 130374485 130454995 — TCGA.PRAD.TUMOR rs1318074 1.79E−07 2.92E−07*
STXBP1 130374719:130413882 TCGA.PRAD_SP.TUMOR 1.88E−07*
STXBP1 130413931:130415994 TCGA.PRAD_SP.TUMOR 2.56E−07*
STXBP1 130416075:130420654 TCGA.PRAD_SP.TUMOR 2.16E−07*
STXBP1 130420730:130422309 TCGA.PRAD_SP.TUMOR 1.39E−07*
STXBP1 130422387:130423381 TCGA.PRAD_SP.TUMOR 4.10E−07*
STXBP1 130423484:130425484 TCGA.PRAD_SP.TUMOR 2.22E−07*
STXBP1 130425632:130427526 TCGA.PRAD_SP.TUMOR 2.75E−07*
STXBP1 130428575:130430359 TCGA.PRAD_SP.TUMOR 2.51E−07*
STXBP1 130430466:130432177 TCGA.PRAD_SP.TUMOR 2.51E−07*
STXBP1 130432237:130434330 TCGA.PRAD_SP.TUMOR 2.06E−07*
STXBP1 130434395:130435460 TCGA.PRAD_SP.TUMOR 1.47E−07*
STXBP1 130435540:130438083 TCGA.PRAD_SP.TUMOR 2.60E−07*
STXBP1 130438221:130438923 TCGA.PRAD_SP.TUMOR 3.15E−07*
STXBP1 130439032:130440710 TCGA.PRAD_SP.TUMOR 1.98E−07*

RP11-57H14.2 10 114710405 114711634 — GTEx.Esophagus_Muscularis rs11196152 1.61E−07 1.40E−07*
RP11-57H14.2 — GTEx.Lung 9.81E−08*
RP11-57H14.2 — GTEx.Nerve_Tibial 3.29E−08*
RP11-57H14.2 — GTEx.Pituitary 1.11E−07*
RP11-57H14.2 — GTEx.Thyroid 3.40E−07*
RP11-57H14.2 — GTEx.Whole_Blood 1.97E−08*

TM7SF3 12 27124505 27167339 27129290:27132717 TCGA.PRAD_SP.TUMOR rs16931510 3.06E−07 2.27E−07*

POLI 18 51795773 51824604 — NTR.BLOOD.RNAARR rs11083046 5.44E−07 2.29E−08*
POLI — GTEx.Adipose_Subcutaneous 1.92E−07*
POLI — GTEx.Artery_Aorta 2.25E−07*
POLI — GTEx.Artery_Tibial 1.54E−07*
POLI — GTEx.Brain_Cerebellar_Hemisphere 1.63E−07*
POLI — GTEx.Brain_Cerebellum 1.56E−07*
POLI — GTEx.Brain_Putamen_basal_ganglia 3.54E−07*
POLI — GTEx.Breast_Mammary_Tissue 3.20E−07*
POLI — GTEx.Cells_EBV-transformed_lymphocytes 1.63E−07*
POLI — GTEx.Colon_Sigmoid 4.86E−08*
POLI — GTEx.Esophagus_Gastroesophageal_Junction 1.99E−07*
POLI — GTEx.Esophagus_Mucosa 2.15E−07*
POLI — GTEx.Esophagus_Muscularis 2.08E−07*
POLI — GTEx.Heart_Atrial_Appendage 1.36E−07*
POLI — GTEx.Lung 4.39E−07*
POLI — GTEx.Nerve_Tibial 9.62E−08*
POLI — GTEx.Spleen 2.74E−07*
POLI — GTEx.Testis 1.43E−07*
POLI — GTEx.Thyroid 2.34E−08*
POLI — GTEx.Whole_Blood 4.11E−07*
POLI — METSIM.ADIPOSE.RNASEQ 3.89E−07*
POLI — YFS.BLOOD.RNAARR 2.94E−07*
POLI 51807273:51809207 TCGA.PRAD_SP.TUMOR 4.47E−07*

KDSR 18 60994959 61034743 — GTEx.Adipose_Subcutaneous rs1541296 3.98E−07 4.20E−07*

UQCC1 20 33935075 33954360 33935075:33954360 TCGA.PRAD_SP.TUMOR rs7280 3.98E−07 4.40E−07*

TWAS associations that did not overlap a genome-wide significant SNP (i.e., ±1 Mb transcription start site). Study denotes the original expression panel used to fit weights. P-value for TWAS computed
under the null of no association between gene expression levels and PrCa risk under a Normal (0, 1) distribution. An asterisk (*) indicates associations that are significant (P < 0.05/9) under a
permutation test
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approach to refine our associations to credible sets of 109 genes
with statistical evidence of causality under standard assumptions.
Our results provide a functional map for PrCa risk which can be
explored for follow-up and validation.

In this study, we compared our reported TWAS results with
genes identified in previous works focusing on expression mea-
sured in normal and tumor prostate tissue. Several of these stu-
dies considered an eQTL and GWAS risk SNP to overlap if they
are in linkage at a specified threshold. While these approaches are
sound, they may be limited in statistical power for several reasons.
First, if multiple local SNPs independently contribute to risk,
overlap studies relying only on the top risk SNP will lose power.
Second, earlier overlap studies used thresholds for association
signal (i.e., GWAS P < 5 × 10−8) and linkage strength (i.e., LD >
0.5) to consider pairs of SNPs for evidence of expression influ-
encing risk of PrCa. TWAS is largely agnostic to both issues as it
jointly considers all SNPs in the region, regardless of reported
GWAS association strength. However, when expression of a risk
gene is regulated by a single causal SNP, we expect TWAS and
earlier overlap approaches to have similar levels in power25.

Previous works have strongly implicated expression of certain
genes in PrCa risk that were not assayed in our study (e.g.,
MSMB18,49) due to non-significant heritability estimates. TWAS
operates by fitting predictive linear models of gene expression
based on local genotype data, followed by prediction into large
cohorts and subsequent association testing. Expression of genes
that are not significantly heritable at current sample sizes are not
included in the pipeline. This is the consequence of heritability
providing an upper bound on the predictive accuracy under a
linear model for genotype; therefore, if a gene has undetectable
heritability at a given sample size, it will be difficult to predict
using linear combinations of SNPs. To compute TWAS weights
for normal prostate tissue, we used samples collected in the GTEx
v6 panel (n= 87). Thus, our inability to detect heritable levels of
gene expression can be explained due to the relatively small
number of samples compared with other tissues. Indeed, previous
work has shown a strong correlation between sample size in
expression panels and the number of identified eGenes27; there-
fore, as sample size increases for relevant tissues, we expect the
number of genes included in the TWAS framework to increase.

TWAS will lose power in situations where gene expression is a
nonlinear function of local SNPs, or when trans (or distal) reg-
ulation is a major component in modulating expression levels.

We conclude with several caveats and possible future direc-
tions. First, while TWAS associations are consistent with models
of steady-state gene expression levels altering risk for PrCa, they
may be the result of confounding25,26. Imputed gene expression
levels are the result of weighted linear combinations of SNPs,
many of which may tag non-regulatory mechanisms driving risk
and result in inflated association statistics. Second, our results
relied on validating prediction models using multiple approaches:
within-reference methods (i.e., cross-validation), cross-reference
methods (e.g., GTEx into TCGA), and external-reference meth-
ods (i.e., 1000 Genomes predictive stability). While results from
these approaches support our models generalizing out-of-sample,
we still lack within-GWAS replication of predictive models.
Third, since genes with eQTLs are common, associations may be
the result of chance co-localization between eQTLs and PrCa risk.
Finally, we note recent work has extended TWAS-like methods to
expose regulatory mechanisms for susceptibility genes by incor-
porating chromatin information50. An extension to our work
would be to pinpoint chromatin variation regulating expression
levels at identified risk genes, thus describing a richer landscape of
the molecular cascade where SNP → chromatin → expression →
PrCa risk.

Methods
OncoArray GWAS summary statistics. Genome-wide association summary
statistics for the OncoArray PrCa study were obtained from ref. 29. Summary
statistics were computed using a fixed-effect meta-analysis for 142,392 total sam-
ples of European ancestry from the OncoArray (81,318/61,074 cases/controls), UK
stage 1 (1854/1894) and UK stage 2 (3706/3884), CaPS 1 (474/482) and CaPS 2
(1458/512), BPC3 (2068/3011), NCI PEGASUS (4600/2941) and iCOGS (20,219/
20,440). The initial summary data contained association statistics for 19,726,430
variants. We filtered out summary statistics for SNPs with MAF <0.01 and any
SNPs with ambiguous alternative alleles (e.g., A → T; C →G; or vice-versa). Finally,
we kept only SNPs with rsIDs defined by dbSNP144. Our QC pipeline resulted in
association statistics at 10,516,237 SNPs for downstream TWAS analyses.

Previous prostate-tissue eQTL studies. We collected previous studies that
investigated the overlap of eQTLs in normal and tumor prostate tissue at known
PrCa risk loci5,14–20. We compared TWAS statistics versus reported eQTL overlap
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results as aggregated in refs. 14,15. Across these studies, overlap of eQTLs and PrCa
risk loci are computed by one of two possible methods. The first method tests
known PrCa risk SNPs for association with expression levels of nearby genes/
transcripts. The second method takes a two-step approach. First, genes nearby
PrCa risk loci are tested for harboring eQTLs at some significance level. Next, genes
with identified eQTL SNPs are tested to be in LD with known PrCa risk variants at
some level (e.g., r2 > 0.5).

Reference gene expression data and predictive models of expression. We
downloaded the FUSION software (see URLs) along with its prepackaged weights
for gene expression data. FUSION is an R package that implements the TWAS
scheme described in ref. 25. Weights for gene expression measured using RNA
sequencing data were obtained from the CommonMind Consortium30 (dorsolateral
prefrontal cortex, n= 452), the Genotype-Tissue Expression Project22 (GTEx; 44

tissues; n= 449), the Metabolic Syndrome in Men study32,33 (adipose, n= 563), and
The Cancer Genome Atlas (TCGA; prostate adenocarcinoma, n= 483)39. Expres-
sion microarray data were obtained from the Netherlands Twins Registry35 (NTR;
blood, n= 1247), and the Young Finns Study31,34 (YFS; blood, n= 1264). All non-
TCGA expression panel individuals were PrCa controls. Detailed description of
quality control procedures on measured gene expression and genotype information
for all non-TCGA reference panels are described in refs. 25,27. TCGA genotype, gene
expression, and exon-junction data for 525 samples were downloaded using the
Broad GDAC FireHose version 2016_1_28 (see URLs). Genotypes were imputed to
the Haplotype Reference Consortium51 and restricted to well-imputed (INFO > 0.9)
HapMap352 sites. Genes (exon junctions) missing in more than half of samples were
removed. RPKM and log-adjusted gene expression levels were estimated in a gen-
eralized linear model controlling for three gene expression PCs. The estimated log-
abundances were quantile-normalized and inverse-normal rank-normalized. We
estimated alternatively spliced introns using the software MapSplice version 2 (see
URLs). A total of 482 samples passed quality control procedures in both genotype
and gene expression data. We note that batch effects from measurement biases (e.g.,
RNA-degradation) should be uncorrelated with SNPs local to a gene body defini-
tion, and therefore not impact prediction accuracy. By maximizing the sample size,
predictive power when using cis-SNPs should increase and be largely unbiased. This
is evidenced by the fact that models are largely stable across and within TCGA
PRAD datasets (Supplementary Table 1).

We filtered genes that did not exhibit cis-genetic regulation at current samples
sizes by keeping only genes with nominally significant (P < 0.05) estimates of cis-
SNP heritability (cis-h2g ), which resulted in 117,459 total tissue-gene pairs from
17,023 unique genes. We refrain from reporting genes from the HLA region due to
complicated LD patterns.

To train predictive models, FUSION defines gene expression for n samples
(yGE) as a linear function of p SNPs (X) in a 1Mb region flaking the gene as

yGE ¼ Cβþ XwGE þ ϵ;

where wGE are the p SNP weights, Cβ are covariates (e.g., sex, age, genotype
principal components, genotyping platform, and PEER factors) and their effects,
and ϵ is random environmental noise. FUSION estimated weights for expression of
a gene in a tissue using multiple penalized linear models. Generally, FUSION
optimizes for

ŵGE

β̂

" #
¼ arg min

wGE ;β
kyGE � XwGE � Cβk22 þ f wGEð Þ;

where f(wGE) is a parameterized penalty function specific to each model (e.g.,
GBLUP37, LASSO, the Elastic Net). The exception to this optimization criterion is
the Bayesian sparse linear mixed model (i.e., BSLMM)38 which fits the posterior
mean for wGE using MCMC in the GEMMA v 0.94 software (see URLs) to obtain
weights. To determine which model has the best prediction accuracy for a given
gene-tissue pair, FUSION computes out-of-sample R2 by performing fivefold cross-
validation for each model. We compute the normalized prediction accuracy for a

gene as min R2

h2g
; 1

� �
. Weights from the model with the largest R2 that was also

nominally non-zero (P < 0.05) were used to compute TWAS association statistics.
This resulted in a final tally of 109,170 tissue-specific models at 16,389 unique
genes.

Cis-heritability of gene expression. FUSION reports the estimated SNP-
heritability (i.e., h2g ) for measured gene expression levels explained by SNPs in the
cis-region (1Mb region surrounding the TSS). This is modeled under a mixed-
linear model as

var y′GEð Þ ¼ Aσ2g þ Iσ2e ;

where y′GE is the residual gene expression after regressing out fixed-effect cov-
ariates C, A is the estimated kinship matrix from SNPs in the cis-region and σ2g (σ

2
e )

is the variance explained by the cis-SNPs (environment). SNP-heritability is then

defined to be ratio of genotypic variance and total trait variance as, h2g ¼
σ2g

σ2gþσ2e
.

Variance parameters are estimated using the AI-REML algorithm implemented in
GCTA v1.26 (see URLs) with the top 3 genotypic principal components, sex, age,
genotyping platform, and PEER factors as covariates.

Measuring cross-tissue similarity in predicted expression. We took an
unbiased approach to identify susceptibility genes for PrCa by using gene
expression panels measured in various tissues. To quantify how similar predicted
expression levels are for the same gene across different tissues, we measured the
squared Pearson correlation (R2). This value represents how well predicted
expression from one tissue predicts expression in another tissue. To dissect simi-
larities and differences of tissue-specific models, the ideal scenario would be to
inspect effects at individual SNPs defining the models. In practice this is not
possible due to predictive models not including the same set of SNPs due to QC
and technological differences in the original studies. Therefore, as a proxy we
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Fig. 4 Average TWAS association statistics for genes predicted in each
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median absolute deviation under normality assumptions. Normal and tumor
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predict gene expression into the 489 samples of European ancestry from 1000
Genomes53 and compute R2 across shared genes for pairs of tissues (Supplemen-
tary Note 1).

Transcriptome-wide association study using GWAS summary statistics.
FUSION estimates the strength of association between predicted expression of a
gene and PrCa (zTWAS) as function of the vector of GWAS summary Z-scores at a
given cis locus zGWAS (i.e., vector of SNP association Wald statistics) and the LD-
adjusted weights vector learned from the gene expression data wGE as

zTWAS ¼
w′

GEzGWASffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðw′

GEzGWASÞ
p ¼ w′

GEzGWASffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w′

GEVwGE

p ;

where V is a correlation matrix across SNPs at the locus (i.e., LD) and “‘” indicates
transpose. A P-value for zTWAS is obtained using a two-tailed test under N(0,1). In
this work, we estimated V using 489 samples of European ancestry in 1000 Gen-
omes53. To account for the large number of hypotheses tested, we perform Bon-
ferroni correction at α= 0.05/M, where M= 109,170 is the number of predictive
models, which is conservative as many gene models are correlated. As reported by
ref. 25, there may be inflation at GWAS risk loci, due to chance co-varying of SNP
effects between expression and PrCa. The same work described a permutation
procedure that assesses likelihood of observing association by chance conditioned
on GWAS signal. The algorithm works by permuting the eQTL weights wGE while
keeping zGWAS fixed and computing zTWAS,perm. FUSION implements an adaptive
procedure that stops once enough scores (i.e. |zTWAS,perm|≥|zTWAS|) have been
observed such that the empirical null cannot be rejected at a specified level. We
define novel risk regions as a flanking region around a transcriptome-wide sig-
nificant gene (splicing event; PTWAS < 4.58 × 10−7; two-tailed Z-test) that does not
harbor a genome-wide significant SNP (PGWAS < 5 × 10−8; two-tailed Z-test). We
consider 2 Mb windows by default (i.e. TSS ± 1Mb) and show that the results are
robust to the choice of window size (Supplementary Data 3).

GWAS analyses conditional on predicted expression. To assess the extent of
residual association of SNP with PrCa risk after accounting for predicted gene
expression levels, FUSION estimates conditional SNP association scores using
GWAS summary statistics. Namely, define V as LD for SNPs in the region, VGE as
the correlation between predicted expression levels, and C as the correlation
between SNPs and predicted expression. The least-squares estimates of zGWAS|
zTWAS are determined by,

zGWASjzTWAS ¼ zGWAS � CV�1
GEzTWAS:

The variance of the residual association strength is given by,

var zGWASjzTWAS½ � ¼ var zGWAS½ � � var CV�1
GEzTWAS

� � ¼ V� CV�1
GEC

′:

This results in the final conditional association score for the ith SNP as,

zi ¼ zGWAS � CV�1
GEzTWAS

� �
i=
pdiag V� CV�1

GEC
′� �
ii:

Bayes factors and posterior inference of causal genes. Complex correlations
between predicted expression levels at a given region can yield multiple associated
genes in TWAS (Fig. 2). Thus, for the vast majority of risk regions it remains
unclear which gene is causally influencing PrCa risk. Here, modeling under the
assumption of a single causal gene per risk region and relying on the central limit
theorem for normality, we can compute the Bayes Factor that the ith gene in a
region is causal as,

BFi ¼
N zTWAS;ij0; 1þ nσ2α

� �
N zTWAS;ij0; 1
� � ¼ 1þ nσ2α

� ��1=2
exp

z2TWAS;i

2
nσ2α

1þ nσ2α

	 

;

where z2TWAS;i is the squared TWAS association statistic for the ith gene, n is the
GWAS sample size, and σ2α is prior effect-size variance for gene expression on PrCa
risk (Supplementary Note 1). This model is structurally similar in form to earlier
works54–56 describing Bayes Factors for fine mapping SNPs at GWAS risk regions.
The important distinction is that here, we formulate a Bayes Factor for genes at
TWAS risk regions. The Bayes Factor for each gene quantifies the amount of
evidence in favor of the causal model (ith gene drives risk) versus the null (ith gene
has no causal effect). We extend individual Bayes Factors for k genes at a PrCa risk
region to compute the posterior probability that a gene is causal as,

Pr gene i is causaljzTWAS; nσ
2
α

� � ¼ BFiP
k BFk

:

Equipped with our definition of posterior probability for each gene being causal,
we define ρ-credible gene sets for a PrCa risk region. Formally, a set of indices i 2 I
defines a ρ-credible gene set if

ρ ¼ P
i2I

Pr gene i is causaljzTWAS; nσ
2
α

� �
:

For a fixed ρ we optimize over k genes at a region by greedily adding genes until
the total density is at least ρ.

To ensure that our ρ-credible sets are well-calibrated we performed simulations
by predicting expression levels into 489 samples of European ancestry from 1000
Genomes53 and estimating the local correlation structure to sample TWAS Z-
scores directly (Supplementary Note 1). Under the assumption of a single causal
gene at a risk region, we sampled TWAS Z-scores for 1000 independent regions.
We then performed Bayesian prioritization at each region and computed ρ-credible
sets for various levels of ρ while counting the proportion of causal genes identified
across all simulations.

Pathway analyses. To determine which pathways may be enriched with genes
identified from our Bayesian prioritization approach, we used the R package
GOseq57 which internally links gene identifiers to GO terms (GO db: 2017-09-02).
We categorized all 16,389 genes into prioritized/not-prioritized and ran the ana-
lysis using custom R scripts linking GOseq. GOseq obtains P-values for over-
represented genes using the Wallenius approximation to the non-central
hypergeometric distribution. We limited analysis to Gene Ontology Biological
Pathways (GO:BP). GOSeq drops genes without GO annotations from analysis. We
observed 4711 genes dropped from analyses resulting in 11,678 genes put forward
for enrichment tests (Supplementary Data 8; Supplementary Note 1).

URLs. 1000 Genomes Phase3: http://www.internationalgenome.org/
Fire Hose v2016_1_28: http://gdac.broadinstitute.org/
FUSION: http://gusevlab.org/projects/fusion/
GCTA v1.26: http://cnsgenomics.com/software/gcta/
GEMMA v0.94: http://www.xzlab.org/software.html
GOseq v1.26: http://bioinf.wehi.edu.au/software/goseq/
MapSplice v2: http://www.netlab.uky.edu/p/bioinfo/MapSplice2
PLINK v1.9: https://www.cog-genomics.org/plink2/
OncoArray: https://epi.grants.cancer.gov/oncoarray/

Data availability
Complete TWAS and fine-mapping results are available at http://github.com/bogdanlab/
prca_twas/. OncoArray PrCa GWAS summary data used in this study are available at
http://practical.icr.ac.uk/blog/. Relevant TCGA data are available from Broad Firehouse
at http://gdac.broadinstitute.org. FUSION software, weights/models, and reference LD
are available at http://gusevlab.org/projects/fusion/.
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