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    Abstract

Many adipose tissue related diseases, such as obesity and type 2 diabetes, are worldwide  

epidemics. For studying these diseases relevant human cell models are needed.  

In this study, we developed a vascularized adipose tissue model where human adipose  

stromal cells (hASC) and human umbilical cord vein endothelial cells (HUVEC) were  

co-cultured with natural adipogenic and defined serum-free angiogenic media for 14 days.  

Several different protocols were compared to each other. The protocols varied in cell  

numbers and plating sequences. Lipid accumulation was studied with Adipored reagent,  

relative cell number with WST-1 reagent, gene expression of glut4, leptin, adipocyte  

protein 2 (aP2), adiponectin, PPARγ and PPARγ2 with RT-qPCR. Secretion of 

adiponectin, leptin and aP2 was analyzed with ELISA. The immunostained vascular  

network was imaged with Cell-IQ and area quantified using ImageJ.  

In this study, both angiogenesis and adipogenesis were successfully induced. Protocols  

produced strong lipid accumulation, good vascular network formation and induced  

adipocyte specific protein secretion and expression of studied adipocyte genes. Results  

showed that cell numbers and cell plating sequences are important factors when aiming  

at in vitro standardized tissue model. Presence of mature vasculature appeared lead to  

faster maturation of adipocytes judged by the lipid accumulation and gene expression  

results.  

The developed vascularized adipose tissue model is simple to use, easily modifiable to  

suit various applications and as such, a promising new tool for adipose tissue research  

when e.g. studying the effect of different cell types on adipose tissue function or for  

mechanistic studies.  
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   Introduction 

Interest in studying adipose tissue and its functions is growing along with the growing  

prevalence of obesity and the many adipose tissue related diseases, such as type 2 diabetes  

mellitus, which is already a worldwide epidemics [1]. Many experimental animal models  

have been developed to study diabetes [2] but due to species-specific differences the  

results from the animal models although they increase the understanding of the  

mechanisms behind diseases and adverse effects, are weakly transferable to human  

situations [2-4]. Also, due to new regulations which promote and demand replacement of  

animal experiments, more human biology mimicking in vitro experiment models are  

needed. Examples of such as are Directive 2010/63/EU [5], the cosmetics regulations [6]  

and the EU chemicals legislation REACH [7].  

More than being the energy storage, adipose tissue is an active endocrine organ, which is  

particular closely associated with vascular system. Enlargement of the adipose tissue can  

be supported by new blood vessel formation, neovascularization, or by dilating and  

remodeling of the already existing capillaries [8]. Mouse studies have shown that  

induction of vessel expansion in obese mice counteract obesity and related metabolic  

complications [9] but also contrary results have been obtained as inhibition of vessel  

formation by an anti-angiogenic drug decreased fat pad weights of normal mice by 12 -  

22 % and decrease their body weights in a dose-dependent and reversible manner [10].  

Two different angiogenesis triggers in in vivo adipose tissue expansion have been  

proposed: 1) angiogenesis is a response to hypoxia, which is caused by the enlargement  

of adipocytes and/or proliferation of adipocytes or 2) angiogenesis is a result of  

developmental and/or metabolic signals in adipose tissue, i.e. blood vessels develop in  
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parallel or before the adipose tissue expansion [11]. There are several studies supporting  

the role of hypoxia [11-13]. However, in fetal development, angiogenesis/vasculogenesis  

precedes adipogenesis and blood vessel extracellular matrix (ECM) develops before  

adipose tissue ECM development [14]. The reciprocal interaction between ECM stroma  

and vascular network has also been shown to be important in directing vessel growth [15- 

17].  

Current human cell in vitro vascularized adipose tissue models are based on 1) culturing  

human stromal cells (hASC) and human umbilical cord vein endothelial cells (HUVEC)  

on a scaffold such as porous silk protein scaffold [18] or 2) culturing human preadipocytes  

with human endothelial cells in a fibrin glue matrix on a chick chorioallantoic membrane  

[19,20] or 3) by adding multiple different cell types into the culture [21]. While these  

models are mimicking vascularized adipose tissue, they are complex, require long culture  

times and are laborious to be transferred into routine use. In addition, the additional  

components such as biomaterial scaffolds may interfere with the cell-cell interactions or  

cause unwanted and unknown interactions between material and the studied cells or  

chemicals [22-24].  

The aim of this study was to develop a robust human vascularized adipose tissue model  

without artificial scaffold. Such model could be utilized in basic adipose tissue research,  

for drug discovery and safety studies, and it could also be modified to disease model,  

which could be used in studies of disease pathogenesis, development of intervention  

therapeutics and screening of personalized therapeutics. In the model we used hASC and  

HUVEC to form co-culture in which  adipogenesis was induced by the novel natural  

adipogenesis inducer ATE [25] and angiogenesis by our previously developed defined  

serum-free angiogenesis medium [26]. The defined serum-free angiogenesis medium  
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produces mature vascular structures in vitro [26] and this medium together with ATE  

differentiates hASC to insulin-sensitive adipocytes [27]. In this work we compared  

several protocols to find the most optimal for formation of vascularized adipose tissue  

bearing in mind the use of the model as a routine standard model. The formed  

vascularized adipose tissue was characterized for morphology, lipid accumulation,  

secretion of adiponectin, leptin and adipocyte protein 2 (aP2, also known as fatty acid- 

binding protein 4) and the mRNA expression of glut4, leptin, aP2, adiponectin, PPARγ and 

PPARγ2. The findings of this article present two protocols, which are both easy-to-use,  

adjustable for different applications and relevant for culturing a vascularized adipose  

tissue cell model.  

   Materials and Methods 

    Development strategy 

Six different protocols (Table 1) were compared to each other for their capability to create  

vascularized adipose tissue. The studied protocols had following variables: cell number,  

cell plating time point (on day 1 or on two separated days, i.e. on days 1 and 7) and the  

differentiation process (adipogenesis induced prior to angiogenesis or vice versa).  

Adipogenesis was induced with the ATE and angiogenesis with the defined serum-free  

angiogenesis medium. Adipogenesis is induced with ATE medium and angiogenesis with  

Angiogenesis medium. Three types of controls were used (Table 1) negative control with  

no induction, vasculature control in which only angiogenesis was induced and adipocyte  

control in which only adipogenesis was induced.  
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Isolation and culture of human adipose stromal cells and  

    umbilical cord vein endothelial cells 

The human adipose tissue samples and umbilical cords were obtained from Tampere  

University Hospital, Tampere, Finland, with individual written informed consent. The use  

of ATE, hASC and HUVEC were approved by the Ethics Committee of the Pirkanmaa  

Hospital District, Tampere, Finland with permit numbers R03058 and R08028,  

respectively.  

hASC were isolated using collagenase I (Gibco) as described previously [26,28]. HUVEC  

were isolated by cannulating the umbilical cord vein and infusing the vein with  

collagenase I (Gibco) and cultured in Endothelial Cell Growth Medium (EGM-2, Lonza)  

as described earlier  [26,28]. Possible mycoplasma contamination was tested with  

MycoAlert® Detection Kit (Lonza) from both cells before cryopreservation.  

    hASC-HUVEC co-culture plating and differentiation protocols 

    to form vascularized adipose tissue 

In order to find out the optimal plating time for hASC and HUVEC with respect to the  

differentiation of the cells into adipocytes and blood vessels, six different protocols were  

compared to each other (Table 1).  On day 0, hASC (p1) were seeded in Endothelial Cell  

Growth Medium (Lonza) at 20 000 cells/cm2 or 40 000 cm2 on 48-well Nunclon™ Δ- 

Surface (Sigma Aldrich) plates. In some protocols there was addition of hASC on day 7  

(Table 1) in 50µl of medium without changing the medium in the well. HUVEC (p3) were  

seeded on top of hASC in 50µl at 4000 cells/cm2 either on day 0 or on day 7 depending  

on the plating strategy (Table 1). Three different hASC-HUVEC combinations were used  

and all strategies were tested with all of the hASC-HUVEC combinations.  
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hASC-HUVEC co-cultures were exposed to adipogenic ATE medium [25] or  

angiogenesis medium [26] on day 1. ATE was prepared as described earlier [27]. 

Composition of all media used in the study are listed in Table 2. Vasculature control was  

exposed only to angiogenesis medium, adipocyte control only to ATE medium and  

negative control (undifferentiated cells) to serum-free medium (Table 1). Differentiation  

media were changed on days 4, 8 and 11.  

    Analysis of the co-culture 

All analyses of the cultures were performed on day 14.  

Analysis of secreted proteins  

Media samples were analyzed for their concentration of Adiponectin, Leptin and aP2 with  

Quantikine ELISA (R&D Systems) according to manufacturer’s instructions. Absorbance  

was measured at 450nm and 540nm.  

Relative cell number  

The relative cell number was defined using Cell proliferation reagent WST-1 (Roche  

Diagnostics, Basel, Switzerland) according to manufacturer’s instruction by incubating  

the reagent for 1 hour and measured at 450 nm by multipoint measurement.  

Lipid accumulation  

The lipid accumulation was determined using Adipored assay reagent (Lonza) according  

to manufacturer’s instructions from the same wells from which the WST-1 staining was  

performed. The fluorescence was measured by multipoint measurement with Varioskan  

flash multimode reader (Thermo Fischer Scientific) with excitation at 485 nm and  

emission at 572 nm.  
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Immunocytochemical stainings  

To visualize and analyze the formed vasculature, immunocytochemical stainings were  

performed. For this, the same cell cultures, which were used for Adipored and WST-1  

measurements, were stained.  

Cells were fixed with 4 % formaldehyde (Thermo Fisher Scientific) at RT for 20 min and  

treated with 0.5 % Triton-X100 (MP Biochemicals, Santa Ana, CA, USA) at RT for 15  

min and with 10 % bovine serum albumin (BSA, Roche Diagnostics) at RT for 30  

minutes. Primary antibodies; von Willebrandt factor IgG (anti-vWf IgG produced in  

Rabbit, #F3520, Sigma Aldrich;  1:100), and Anti-Collagen IV IgG (anti-ColIV IgG  

produced in mouse, #C1926, Sigma Aldrich, 1:500), diluted in 1 % BSA in DPBS were  

and incubated for 1h at RT or overnight at +4ºC. Cells were then incubated for 40 minutes  

at RT with secondary antibodies diluted in 1% BSA in DPBS; FITC-labeled goat  

polyclonal antibody anti-mouse IgG (Sigma Aldrich, 1:100), and TRITC-labeled goat  

polyclonal antibody anti-rabbit IgG (Sigma Aldrich, 1:50).  

Microscopic analyses  

Vasculature and lipid accumulation were imaged with Nikon Eclipse Ti-S inverted  

fluorescence microscope (Nikon, Tokyo, Japan) and Nikon digital sight DS - U2 camera  

(Nikon). Images were processed with NIS Elements (Nikon) and Adobe Photoshop CS3  

software (Adobe Systems Incorporated, San Jose, CA, USA).  

Quantification of vasculature  

To determine the area of vasculature, immunostained cells were imaged with Cell-IQ  

(CM Technologies Oy, Tampere, Finland) with 10x objective with grid of 5x5. Images  

were stitched together with Cell-IQ Analyzer (CM Technologies Oy) and further  
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analyzed with ImageJ software (The National Institutes of Health, Maryland, USA).  

Images were converted to 8-bit gray scale and the background was subtracted. Then,  

binary threshold function was adjusted to separate the tubules from background staining.  

The total tubule area was calculated as the total number of pixels in images with a set  

threshold. Results were plotted in GraphPad Prism (GraphPad Software Inc). n was 12  

for negative control, adipocyte control, vasculature control and P1 and P5. For protocols  

2 and 6, n was 5. Results are depicted as mean± standard deviations.  

Gene expression  

The cells were lysed with the lysis buffer from Purelink RNA Minikit (Life Technologies)  

so that parallel sample cells from five to eight wells were lysed into 600 μl of the lysis  

buffer and combined as one sample. Isolation was continued according to the instructions  

of the Purelink RNA Minikit (Life Technologies). The 260/280 purity ratios were  

measured with μPlate (Thermo Fischer) and Varioskan flash multimode reader (Thermo  

Fischer). Genomic DNA contaminations were eliminated with Purelink DNAse treatment  

(Life Technologies). The quality of RNA samples was checked using QIAxcel RNA QC  

kit v2.0 (Qiagen, Venlo, Netherlands) and QIAxcel Advanced (Qiagen). cDNA was  

synthetized with iScript cDNA synthesis kit (Biorad, CA, USA) according to the protocol  

of the manufacture. cDNAs were then preserved at -80ºC until RT-qPCR.  

qPCR to study mRNA expression of PPARγ, PPARγ2, Adiponectin, Leptin, aP2 and  

Glut4, was performed with CFX96 Real-Time System (Biorad) and with iQ™ SYBR®  

Green supermix (Biorad). These gene markers were chosen according to our previous  

study [27] and to represent markers of different stages of adipocyte differentiation. The  

specificity of the primer sequences was tested with NCBI/ Primer-BLAST. Primer  

concentration was 300nM and amount of template was 30 ng. Thermal cycling conditions  
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were as follows: 95 ºC 3 min, 95 ºC 10 sec, 51 - 65 ºC (gradient) 15 sec, 72ºC 30 sec,  

repeated 40 times. Melt Curve analysis was performed at 55 - 95 ºC (0.5 ºC increment/10  

sec). Used housekeeping genes and adipocyte marker genes are listed in Table 3. The  

quality of amplified DNA was studied with gel electrophoresis using High Sensitivity  

DNA analysis kit (Agilent Technologies, Santa Clara, California, USA) and Agilent 2100  

Bioanalyzer (Agilent Technologies) according to manufacturer’s instructions.  

    Data handling and statistical analyzes 

 Quantification of lipid accumulation  

To achieve a lipids/cell value, normalized Adipored assay absorbance values were  

divided with mean WST-1 assay absorbance values for the protocol in question.  

Normalization and Adipored/WST-1 ratio calculations were made with Microsoft Excel  

2013 (Microsoft Corporation, Redmond, Washington, USA). n was 12.  

Quantification of secreted leptin, aP2 and adiponectin  

From the ELISA analysis, protein concentration results were obtained by subtracting the  

540nm reading from the 450nm absorbance values, creating the standard curve and  

calculating the concentrations of the studied proteins. These results were then divided by  

the relative cell number i.e. WST-1 results. In ELISA samples, adipocyte control and P2  

and P6 contain cytokine rich ATE and hence the protein concentrations are compared to  

each other. Similarly, negative control, P1 and P5 were compared to each other. n was 3.  

RT-qPCR result quantification  

qPCR data was analyzed using CFX96 Real-Time System software (Biorad). The relative  

quantification of mRNA expression data was calculated using ΔCt –method with  

Microsoft Excel 2013 (Microsoft Corporation) with the following equation:  
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2(Ct(mean of housekeeping genes SDHA and 36B4, studied protocol)-Ct(Gene of interest, studied protocol))/  

 2(Ct(mean of housekeeping genes SDHA and 36B4, control)-Ct(Gene of interest, control))  

For the expression analysis, Adipocyte control was used as control. Four biological  

replicates of each strategy were analyzed (n=4).  

Statistics  

All results were plotted and statistical analyzes were performed with GraphPadPrism  

(GraphPad Software Inc., California, USA). Results are depicted as mean± standard  

deviation. Results from lipid accumulation, Cell-IQ image analysis and RT-qPCR were  

subjected to one-way analysis of variance (ANOVA), followed by Tukey’s multiple  

comparison test. Results for protein secretion were subjected to one-way analysis of  

variance (ANOVA), followed by Sidak’s multiple comparison test. Differences were  

considered significant when *p<0.05, **p<0.01 and ***p<0.001.  

    Results 

    Practical considerations 

Cell detachment occurred when high number of cells was plated at once on the same day,  

i.e. in protocols P3 and P4 (Table 1). Due to this issue, those protocols were omitted from  

further analyses even though both produced dense tubule network and evenly distributed  

adipored staining. All other protocols (P1, P2, P5 and P6) were analyzed further. When  

the same number of cells was plated on two separate days (P1 and P2), i.e. half on day  

one and other half on day 7, no detachment was observed from the culture vessel during  

the 14 day culture. However, P2 and P6, in which angiogenesis was induced prior to  

adipogenesis, were found to detach from the culture vessel easier than P1 and P5 during  

handling the cultures. 
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    Lipid accumulation 

Cultures were stained with Adipored lipid dye on day 14. The lipid accumulation was  

strong and evenly distributed throughout the culture in all studied protocols (P1, P2, P5  

and P6), including the adipocyte control (Fig 1). Negative control and vasculature control  

showed only slight staining with Adipored (Fig 1).  

Lipid accumulation was quantified by calculating the ratio between the normalized  

Adipored values and WST-1 values giving relative lipids/cell value (Fig 2). Adipocyte  

control (p=0.0021) and protocol P6 (p=0.0008) accumulated significantly more lipids  

than negative control. P5 accumulated significantly less lipids than adipocyte control  

(p=0.0253). P6 accumulated significantly more lipids than P2 (p=0.0455) and P5  

(p=0.0091).  

    Formation of vasculature 

Vasculature was visualized with immunocytochemical stainings, imaged, and the area  

covered by tubules was quantified. Figure 1 presents the morphology of vasculature for  

protocols P1, P2, P5 and P6. Branched vascular networks were obtained in vasculature  

control as well as in all protocols but were not observed in the negative control or in the  

adipocyte control. The networks were more dense and more branched when they had 14  

days to mature (in vasculature control, as well as in P2 and P6) compared to those in P1  

and P5, which had 7 days to differentiate (Table 1). The stainings showed intact outer  

basement membrane (collagen IV) and inner endothelial layer (vWf) in all of the samples  

(Fig 1). The width of the formed vascular structures in tubule control and in different  

strategies did not differ markedly from each other as observed with microscope.  
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The area of the vascular networks was quantified from Cell-IQ images with ImageJ (Fig  

2). Out of the studied protocols (P1, P2, P5 and P6; Table 1), P1 was the only studied  

protocol which produced significantly less tubules than vasculature control (p=0.0012).  

However, P1 also contained adequate vascular network as seen in Fig 1, although not as  

extensive as in other protocols.  

    Secretion of adipocyte specific proteins 

ELISA was performed for quantification of adipocyte specific proteins in the samples  

collected from the culture media on day 14 (Fig 3). Medium of adipocyte control, P2 and  

P6 contained cytokine rich ATE, and hence these medium samples were compared to  

each other. Samples from P1 and P5 did not contain ATE and they were compared to the  

negative control, which contained the same basal medium as the protocols did.  

Secretion of adiponectin was significantly increased in P6 compared to adipocyte control  

and P2 (p=0.0062 and p=0.0011, respectively). Also aP2 secretion was significantly  

increased in protocol P6 compared to adipocyte control and P2 (p=0.0024 and p=0.0002,  

respectively). Significantly more leptin was secreted in P1 (p=0.0001) and P5 (p<0.0001)  

than in the negative control. Leptin secretion was also significantly higher in protocol P6  

than in P2 (p=0.0150).  

    The adipocyte specific mRNA expression in the formed adipose 

    tissue 

Expression of marker genes PPARγ, PPARγ2, aP2, adiponectin, leptin and Glut4 was  

investigated on day 14. PPARγ, PPARγ2, leptin, aP2 and glut4 were shown to be  

expressed in P1, P2, P5 and P6 and there was no significant difference in the expression  

between the studied protocols and adipocyte control (Fig 4). Adiponectin expression was  
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significantly higher in P1 adipocytes when compared to adipocyte control (p=0.0115) or  

P5 (p=0.0357). The expression of PPARγ and PPARγ2 showed a trend that when general  

PPARγ was expressed at high level, PPARγ2 was expressed at low level and vice versa.  

The gene expression results (Fig 4) are given as relative expression using adipocyte  

control as control.  

    Discussion 

In this study, we developed a human relevant vascularized adipose tissue model aiming  

at standardized artificial scaffold free test for routine use.  The used human adipose tissue  

derived extract (ATE) induce adipogenesis in hASC culture [25] and the vascular network  

was constructed as published earlier by Huttala et al. [26]. ATE   has been found to be a  

superior inducer of adipogenesis over the commonly used chemical induction cocktail  

[25]. The vascular network, induced by serum-free angiogenesis medium, has also been  

characterized earlier and found to produce optimal, in vivo like vascular structures [26].  

Six different protocols were studied and characterized in this study. They were evaluated  

by their reproducibility and their ability to induce adipocyte specific marker expression  

in the cultures. Simultaneously the effect of the vasculature on the adipogenesis was  

assessed.  

Adipogenesis and angiogenesis were both successfully induced, although differences  

were seen between the protocols in triglyceride accumulation and in density of vascular  

networks. The results showed that dense vasculature which existed before start of  

adipogenesis induction, helped the preadipocytes mature faster. Different cell plating and  

differentiation protocols had a notable effect on the resulting cell model and its technical  

repeatability. The most optimal protocols based on triglyceride accumulated, sufficient  
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vascular network formation and relevant adipocyte specific genes and protein expression  

for building the vascularized adipose tissue model were P1 and P6 (Table 1). These  

protocols are scaffold-free and they are simpler and demand shorter culture time than  

other existing vascularized adipose tissue models [18-21]. Due to the simplicity of these  

two protocols; two cells and two induction medias, they can also be easily modified to  

suit the various applications e.g. effect of third cell type on adipose tissue metabolism.  

    Vasculature formation in different protocols 

Dense vascular networks were induced with all protocols and the vasculature has been  

shown to be mature in 7 days [26]. Apart from the angiogenesis induced with the  

stimulation medium, the adipogenesis inductor, ATE, has also been shown to induce  

angiogenesis [25]. Thus, the ATE treatment allows further maturation of blood vessels  

while inducing adipogenesis in the model. In other published vascularized adipose tissue  

models, adipogenic cocktail treatments, e.g. insulin, IBMX, biotin, pantothenate, DEX  

and thiazolidinediones, have been proposed to have a negative effect on endothelial cells  

and delay the growth of HUVEC [18,29].  

In this study, the co-cultures where angiogenesis structure was induced first (P2 and P6),  

tended to detach easier than the ones where adipogenesis was induced first (P1 and P5).  

This could problem could be addressed by coating the culture vessels. However, addition  

of external materials can cause unwanted and unknown interactions between the studied  

cells or chemicals assembly [23].  

    Effect of vasculature on adipocyte differentiation 

Based on the commonly used adipogenesis markers PPARγ, PPARγ2, leptin, adiponectin,  

Glut4 and aP2 [27,30,31] adipogenic differentiation of hASC occurred in all protocols.  
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In addition, the gene expression results suggested that vasculature has a positive effect in  

adipocyte differentiation.  There was a clear trend of higher expression of all the studied  

gene markers in the vascularized adipose model compared to the adipocyte control even  

though statistically significant difference was found only in adiponectin expression in  

protocol P1. The role of ECM produced by the hASC and the formed vascular structures  

in the culture is one important part of the model as it offers attachment places and support  

for differentiation of adipocytes [21]. The hASC and HUVEC vascular network has 

already been shown to produce ECM and Collagen IV containing basement membrane  

[26] and it and its role in adipogenesis should be studied further.  

PPARγ expression is considered a general marker for ongoing adipogenesis and thus  

should be found in the adipocyte models [29,32]. PPARγ2 is more adipocyte specific  

isoform of PPARγ [33,34] and it is transcriptionally regulated by nutrition [33,35].  

PPARγ2 has been found to be important for the storage of lipids in adipocytes in adipose  

tissue instead of other organs and hence its proper expression is highly important in  

obesity [36]. Our results support this and finding of Robciuc et al. [9] because the  

adipocytes in P6, which had extensive vasculature prior to adipogenesis induction, had  

strong expression of PPARγ2 (Fig 4), and also the size of the lipid storage per cell was  

largest of the studied protocols (Fig 2). This is an interesting finding and should be studied  

further.  

Leptin and adiponectin, the most abundant secretory products of adipose tissue [37], are  

typically investigated when studying the secretory properties of the formed adipose tissue  

[30]. In our models, the expression of leptin was elevated implying that functional adipose  

tissue was formed. P1 adipocytes, which showed strong lipid accumulation, were also  

secreting leptin, indicating the saturated state of the adipocytes.  
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aP2 (also known as fatty acid-binding protein 4) regulates the lipid trafficking and 

response in cells [38].  Along with aP2, the glucose transporter Glut4 has been connected  

to the terminal stage of differentiation in 3T3-L1 cells [32]. As angiogenesis medium  

includes insulin, which increases glucose influx through Glut4 and represses lipolysis in  

adipocytes [39,40], it is possible that the combination of ATE and angiogenesis media  

treatments enhances adipose tissue maturation more than just ATE treatment in adipocyte  

control. Activated endothelial cells in angiogenic vessels are known to produce various  

cytokines and growth factors that promote adipose tissue growth and expansion [41].  

According to our findings, one week of adipogenesis induction was enough to produce  

mature adipocytes if there was a dense and mature blood vessel network present prior to  

induction of adipogenesis, i.e., vasculature was enabling a faster differentiation of  

adipocytes. This was seen from the gene expression results, which did not differ  

significantly regardless of whether the adipocytes had two weeks (P1 and P5) or one week  

(P2 and P6) to mature in the culture. The positive effect of vasculature on adipose tissue  

has also been shown in mouse models by others [9,10], and hence it should be studied  

further to reveal the underlying mechanisms of the interaction of vasculature and  

adipocytes. This model provides a useful tool for studying these mechanisms and the role  

of vasculature on the adipocyte differentiation.  

    Technical aspects in model development 

When developing a multicellular tissue model with relatively thick structures, gaining  

adequate and reproducible cell adherence might be difficult. This essential feature largely  

defines the applicability and repeatability of the otherwise functional model. According  

to our results, plating density had the strongest impact on the adherence of the cell model.  
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Fetal calf serum is the standard component of the present test models although it might  

have unpredicted effects during the culture. In addition to the lot-to-lot variation, proteins  

in fetal serum may bind studied compounds and affect the results obtained [42].  

Therefore, the ultimate goal is to use serum-free medium whenever possible. In our  

model, the defined serum-free medium is present for 7 days in the culture. This makes  

the model less vulnerable to batch variation and other unknown protein interactions.  

Cells of human origin should be used when studying human effects especially when  

metabolism of test substances might play a role [43-45]. However, only a few human cell  

based adipose tissue models have been developed so far [46]. Primary human cells  

utilized in this model might contain lot-to-lot variation and thus cause difficulties in  

standardization. However, the variation can be minimized by preset quality control  

procedures which includes verification of sufficient expression of prominent markers for  

each cell type used, e.g. CD73, CD90 and CD105 for hASC [26] and morphological  

monitoring of the cells.  

    Conclusions 

As obesity is a severe and growing global problem, there is an urgent need for well- 

characterized, functional and relevant human in vitro models, which could be used in  

safety testing of chemicals, in drug development as well as in biomedical research of  

healthy and disease modelling tissue. Also new legislations, such as REACH are  

increasing the demand of in vitro models. This study provides new information on  

combining two components; vasculature and adipocytes, in culture and led to  

development of novel in vitro model for adipose tissue studies. Both angiogenesis and  

adipogenesis were successfully induced in the co-culture with the protocols used in this  
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study. Presence of mature vasculature showed to be beneficial; it appears to lead to further  

maturation of preadipocytes and adipocytes. The underlying mechanisms of this  

interaction should be studied further as they might provide a target for therapeutic  

strategies.  

The next step is to show with a set of reference chemicals the applicability of the model  

for chemical testing on adipogenesis but even now, the model is ready to be used for  

adipose tissue research when e.g. studying the effect of different cell types on adipose  

tissue function or for mechanistic studies.  
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    TABLES and FIGURES 

Table 1. Plating and differentiation details of different protocols tested on hASC- 

HUVEC co-cultures.  

Protocol 

name 

hASC 

plating 

day(s) 

Number of 

hASC/well 

HUVEC 

plating day 

Number of 

HUVEC 

/well 

Medium on 

days 1-7 

Medium on 

days 8-14 

P1 Day 0 

Day 7 

22 000 cells 

22 000 cells 

Day 7 4400 cells ATE 

medium 

Angiogenesis 

medium 

P2 Day 0 

Day 7 

22 000 cells 

22 000 cells 

Day 0 4400 cells Angiogenesis 

medium 

ATE 

medium 

P3 Day 0 44 000 cells Day 0 4400 cells ATE 

medium 

Angiogenesis 

medium 

P4 Day 0 44 000 cells Day 0 4400 cells Angiogenesis 

medium 

ATE 

medium 

P5 Day 0 22 000 cells Day 0 4400 cells ATE 

medium 

Angiogenesis 

medium 

P6 Day 0 22 000 cells Day 0 4400 cells Angiogenesis 

medium 

ATE 

medium 

Negative  

control 

Day 0 44 000 cells Day 0 4400 cells Serum-free 

Basic 

medium 

Serum-free 

Basic 

medium 

Vasculature 

control 

Day 0 22 000 cells Day 0 4400 cells Angiogenesis 

medium 

Angiogenesis 

medium 

Adipocyte 

control 

Day 0 22 000 cells - - ATE 

medium 

ATE 

medium 

 

Table 2. Composition of differentiation media used in the study.  

Medium Components Manufacturer 

ATE medium DMEM/F-12  

1800µg/ml ATE 

10 % Human Serum  

2 mM L-Glutamine  

50 units/μl Penicillin-50 μg/μl 

Streptomycin  

Gibco 

PAA Laboratories 

Gibco  

Gibco  

Serum-free Basic 

medium  

DMEM/F-12  

1 % Bovine Serum Albumin 

(BSA)  

2.8 mM Sodium Puryvate  

2.56 mM L-Glutamine  

ITS-supplement:  

6.65 μg/ml Insulin  

6.65 μg/ml Transferrin  

6.65 ng/ml Selenious  

Gibco  

Biosera (Boussens, France) 

Gibco  

Gibco  

BD Biosciences (NJ, USA) 
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0.1 nM 3,3,5-Triiodo-L-

thyronine sodium salt 

Sigma Aldrich (MO, USA) 

Angiogenesis medium Serum-free medium  

200 μg/ml Ascorbic Acid 

2 μg/ml Hydrocortisone:  

1 ng/ml FGF-β  

10 ng/ml VEGF  

0.5 μg/ml Heparin 

Sigma Aldrich  

Sigma Aldrich  

R&D Systems (Abingdon, UK) 

R&D Systems  

Sigma-Aldrich  

 

Table 3 Studied genes and the primer sequences used.  

Gene name Abbreviation  Primer sequence (5’3’) Function 

Succinate 

dehydrogenase 

complex, subunit 

A  

SDHA F: CATGCTGCCGTGTTCCGTGTGGG 

R: GGACAGGGTGTGCTTCCTCCAGTGCTCC 
Used as a 

housekeeping gene 

in this study  

Acidic ribosomal 

phosphoprotein 

P0  

36B4 F: ATGCTCAACATCTCCCCCTTCTCC 

R: GGGAAGGTGTAATCCGTCTCCACAG 
Used as a 

housekeeping gene 

in this study 

Leptin - F: GCCCTATCTTTTCTATGTCC 

R: TCTGTGGAGTAGCCTGAAG 
Adipose tissue 

secretory product 

[37] 

Adiponectin - F: GGCCGTGATGGCAGAGAT 

R: CCTTCAGCCCGGGTACT 
Adipose tissue 

secretory product 

[37] 

Adipocyte 

protein 2 (fatty 

acid-binding 

protein 4) 

AP2 F: GCTTTTGTAGGTACCTGGAAACTT 

R: ACACTGATGATCATGTTAGGTTTGG 
Carrier protein for 

fatty acids [38] 

Glucose 

transporter type 4 

Glut4 F: TGGGCGGCATGATTTCCTC 

R: GCCAGGACATTGTTGACCAC 
Insulin responsive 

glucose transporter 

[47] 

Peroxisome 

proliferator-

activated receptor 

γ  

PPARγ F: GATCCAGTGGTTGCAGATTACAA 

R: GAGGGAGTTGGAAGGCTCTTC 
Transcription factor 

in adipogenesis [48] 

Peroxisome 

proliferator-

activated receptor 

γ variant 2 

PPARγ2 F: CAGTGTGAATTACAGCAAACC 

R: ACAGTGTATCAGTGAAGGAAT 
Transcription factor 

in adipogenesis, 

adipocyte-specific 

variant [49] 
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Fig 1. Morphology of the vascularized adipose tissue models on day 14. Lipids are seen in  

orange/red, tubules are stained with anti-vWF-TRITC (red) and anti-ColIV- FITC (green). (A)  

Negative control (B) Adipocyte control with strong adipored staining (C) Vasculature control  

with strong tubule network (D) P1 produced tubules but only few branches. Adipored staining  

showed strong lipid staining within the cells. (E) P2 produced well branched tubule network and  

evenly spread adipored staining. (F) P5 produced dense tubule network but it was less dense than  

with (G) the protocol 6. Both P5 and P6 show good adipored staining. Images are obtained with  

Nikon Eclipse Ti-S inverted fluorescence microscope and with 10x objective, scale bar is 100  

μm.  
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Fig 2. Lipid accumulation and area of vasculature in the vascularized adipose tissue models  

on day 14. (A) Adipocyte control and all protocols show lipid accumulation, P5 was the only one,  

which accumulated significantly less lipids than the adipocyte control. (B) All protocols produced  

dense tubular network except P1, which formed significantly less tubules compared to the  

vasculature control, P2 and P6. The bars represent mean±SD. n was 12 except for P5 and P6 for  

which the n was 5 due to detachment. *p<0.05, **p<0.01and ***p<0.001.  

 

Fig 3. Protein secretion of adipocytes in the studied protocols. Adipocyte control and P2 and  

P6 contain cytokine rich ATE and hence their results were compared to each another whereas  

negative control, P1 and P5 were compared to each other. (A) Secretion of adiponectin was  

significantly increased in P6 compared to adipocyte control and P2. (B) aP2 was secreted  

significantly more in P6 than in the adipocyte control and P2. (C) Secretion of leptin was  
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significantly higher in P1 and P5 than in the negative control, and also higher in P6 than P2. The  

bars represent mean±SD. For lipid accumulation n was 15 and for ELISA n was 3. *p<0.05,  

**p<0.01and ***p<0.001.  

 

Fig 4. The expression of adipose tissue specific gene markers in the studied protocols. (A)  

PPARγ (B) Leptin (C) Adiponectin (D) aP2 (E) PPARγ2 (F) Glut4. P1 showed significantly  

increased expression of adiponectin compared to adipocyte control and P5. The bars represent  

mean with SD. n was 4, *p<0.05.  




