
Incremental Data Partitioning of RDF Data in SPARK

Giannis Agathangelos1, Georgia Troullinou1, Haridimos Kondylakis1, Kostas
Stefanidis2, and Dimitris Plexousakis1

1 FORTH-ICS, Heraklion, GR, {jagathan,troulin,kondylak,dp}@ics.forth.gr
2 University of Tampere, Tampere, FI, kostas.stefanidis@uta.fi

Abstract. Significant efforts have been dedicated recently to the development
of architectures for storing and querying RDF data in distributed environments.
Several approaches focus on data partitioning, which are able to answer queries
efficiently, by using a small number of computational nodes. However, such ap-
proaches provide static data partitions. Given the increase on the continuous and
rapid flow of data, nowadays there is a clear need to deal with streaming data. In
this work, we propose a framework for incremental data partitioning by exploiting
machine learning techniques. Specifically, we present a method to learn the struc-
ture of a partitioned database, and we employ two machine learning algorithms,
namely Logistic Regression and Random Forest, to classify new streaming data.

1 Introduction

The recent explosion of the Data Web and the associated Linked Open Data (LOD)
initiative have led to an enormous amount of widely available RDF datasets [2, 4, 5] . To
efficiently store, manage and query these ever increasing RDF data, new clustered RDF
database systems are constantly developed and produced [1], whereas when focusing
on streaming data, incremental partitioning approaches are of crucial importance. A
common way of incremental partitioning is to follow hash partitioning. For example,
[8] adopts hash partitioning on triples subjects using MapReduce. [9] applies a graph
partitioning approach for streaming RDF data. Query driven partitioning [3] leverages
query knowledge to partition data so as to answer queries by single node computations.

Our approach combines the classical predicate and subject based partitioning along
with the query workload knowledge. With this combination, we maximize the intra
node execution when it comes to the chosen queries, but also other similar queries that
contain combinations of predicate and subject categories we have seen so far. We man-
age and partition the incoming data incrementally, using machine learning techniques.
Specifically, we demonstrate a method to learn the structure of a partitioned knowledge
base eliciting its properties, and then classify the new streaming data to the appropriate
computational nodes. We performed preliminary experiments using Logistic Regression
and Random Forest for classification, and show the effectiveness of these algorithms in
the incremental partition procedure.

2 Incremental Partitioning

Data partitioning is thorny issue in distributed RDF data storage. A step further, the
classification of new incoming data to a distributed database should also follow the same

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-98192-5_10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250154173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

policy in order to maintain the efficiency of the computational environment. Our goal
is to extract the properties of partitioned data and learn from this structure in order to
classify effectively streaming data respecting the existing distribution. The architecture
of our incremental partitioning framework consists of two major components:

Data Manager: This component manages the distributed environment that consists
of a set of computational nodes that interact to issue queries on existing data. As an
RDF dataset is a collection of triples, usually in distributed environments, triples are
partitioned across a cluster of machines and at querying, graph patterns are queried
in parallel. Existing approaches try to minimize inter-machine communication during
querying processing e.g. via vertical partitioning , partitioning triples based on their sub-
ject , or by combining different parts of the triples [6]. These techniques guarantee that
all triples sharing a common property, i.e. a predicate, are stored on the same machine.
We assume in our environment, the partitioning is performed using a combination of
subject and predicate. Thus, the triples that contain the same combination of predicate
and the corresponding instances of the domain classes can be accessed locally.

Incremental Partitioner: This component deals with incremental incoming data, se-
lecting the appropriate computational node to store the corresponding triples. The func-
tionality offered, is based on a machine learning classifier that assimilates the structure
of the distributed database and assigns effectively the new triples to partitions.

Dataset Creation. A basic goal of a distributed database is to answer queries us-
ing a small number of computational nodes. Thus, triples found in same queries should
be stored in the same machine. Based on this idea, we construct the dataset for train-
ing a classifier. The interesting part of this procedure is how to transform data and
queries to samples, features and categories. Since efficient and effective query answer-
ing is the main goal of the partitioning process, queries should guide data distribution
as well. As such, we select the user queries to represent the features of our dataset. In
turn, the triples of our knowledge base will be the samples. Specifically, each sample
is represented by a vector of binary values that corresponds to the existence of the spe-
cific sample/triple in each particular feature/query. Figure 1 depicts the stages for the
construction of the final dataset for the classifier. Parsing each user query, we collect
subjects and predicates that appear in each triple pattern and create the corresponding
matrix. Each entry represents a pair (of a predicate and the corresponding domain class)
that its instances are identified within the queries. In case that one subject or a predi-
cate uses a variable, we generalize to every possible combination of the corresponding
subject class with all predicates that have this class as a domain and vice versa. Thus,
we use the produced pairs (of query predicates/domains) to create the first form of our
dataset. However, we are interesting in creating a set of samples derived from the (in-
stance) triples and the associated label/category for each triple. So, in a second step, all
triples that have the predicate and the instances of its domain classes are represented by
the corresponding feature vector of their domain-predicate pair. Then, each sample is
assigned to the computational node to which the corresponding triple belongs.

Classification. Next, we train the classifier and estimate its expected performance.
Since the train procedure is crucial for the performance of the predictor, we have to se-
lect the qualified parameters of the classifier that maximize its accuracy. This selection
was done with the procedure of k-Fold Cross-Validation [7].

Fig. 1: Dataset construction.

3 Preliminary Evaluation & Conclusion

To evaluate our approach, we used a part of the 3.8 version of DBpedia. To create our
vector space, we exploited the query logs from the corresponding DBpedia endpoints
and got access to more than 50K user queries (features) for a specific period of time.
Specifically, our dataset consists of 1.9M triples derived from the triples contained in
the corresponding DBpedia user queries. We initially distributed data to computational
nodes, using k-means, the most widely adopted clustering algorithm. Euclidean distance
was used as a distance metric for k-means to assign each triple to one of 16 computa-
tional nodes based on the existing features. In this part we do not intend to evaluate
the performance of the partitioning algorithm, but the correct categorization of the new
incoming triples. Thus our approach can be adapted to any partitioning algorithm.

We implemented our system in Apache Spark. Spark has been set up in a clustered
environment of 4 computational nodes, each of them equipped with 230GB of memory
and a 38 core processor. For evaluation, we consider accuracy, precision and recall.

Algorithms: To model our problem as a classification task, we used two well-
established classifiers, Random Forest and Logistic Regression. Both algorithms can
handle the large number of features that we are dealing with. To find the best parame-
ters for our algorithms, we implemented a 5-Fold Cross Validation3.

Preliminary Results: Our dataset, by its nature, contains large number of dupli-
cates, since large number of triples are instantiated under the same predicate-domain
combination. This condition offers an efficient categorization of triples in different ma-
chines; correlated triples are placed in the same node. Nevertheless, due to the many
duplicates, a classifier may not be able to classify efficiently new data. In our evalua-
tion, we used as test samples data that in their majority has already been seen in the
training procedure (Case I), while in a different scenario, we dealt with data unknown
for the classifier (Case II). The dataset used in Case I contains the 20% of the original
dataset, while in Case II we have a much smaller subset since we need samples that do

3 The best selected parameters for the final training are, for Random Forest, Max Depth: 10 and
Number of Trees: 60, and for Logistic Regression, Regularization: 0.01, Max Iterations: 30
and Elastic Net Parameter: L2.

not overlap with the train part. In Case I (Table 1), clearly both classifiers predict accu-
rately, as they give an accuracy of 0.99. Due to the fact that a model classifies accurately
the data instantiated to the majority of predicate-domain pairs, the classifier succeeds
in categorizing data commonly queried by users. This is a crucial component of data
partitioning. In Case II, we examine triples unknown to the classifier and we observe
that the resulting metrics are as good as the first case for both classifiers. Thus, new
incoming triples can be partitioned effectively in the distributed environment. Examin-
ing further Logistic Regression results, we observe that in Case I there is a small False
Positive Rate since we can find samples that do not belong in their actual class. In the
second case we do not observe the same result since the smaller sample size, results in
statistically less plausible False Positives.

Table 1: Algorithms evaluation.
Case I Case II
Random Forest Logistic Regression Random Forest Logistic Regression

Precision 0.937 0.999 0.897 1.0
Recall 0.932 0.999 0.90 1.0
Accuracy 0.998 0.999 0.985 1.0

To conclude, in this paper, we propose an approach that combines machine learning
algorithms and data partitioning techniques to classify data incrementally, and show
the feasibility of our solution. As future work, we plan to deploy our work in a real
clustered environment and measure the actual improvement on query execution times,
comparing our solution with other competitive approaches.

References

1. G. Agathangelos, G. Troullinou, H. Kondylakis, K. Stefanidis, and D. Plexousakis. RDF query
answering using apache Spark: Review and assessment. In IEEE ICDE, 2018.

2. V. Christophides, V. Efthymiou, and K. Stefanidis. Entity Resolution in the Web of Data.
Synthesis Lectures on the Sem. Web: Theory and Technology. Morgan & Claypool, 2015.

3. K. Hose and R. Schenkel. WARP: workload-aware replication and partitioning for RDF. In
IEEE ICDE, 2013.

4. H. Kondylakis and D. Plexousakis. Ontology evolution in data integration: Query rewriting to
the rescue. In ER, 2011.

5. H. Kondylakis and D. Plexousakis. Ontology evolution: Assisting query migration. In ER,
2012.

6. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF data.
VLDB J., 19(1):91–113, 2010.

7. P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation. In L. Liu and M. T. Özsu, editors,
Encyclopedia of Database Systems, pages 532–538. Springer US, 2009.

8. K. Rohloff and R. E. Schantz. High-performance, massively scalable distributed systems
using the mapreduce software framework: the SHARD triple-store. In SPLASH, 2010.

9. R. Wang and K. Chiu. A stream partitioning approach to processing large scale distributed
graph datasets. In IEEE Big Data, 2013.

