

Performance Analysis: A Case study on Network Management System

using Machine Learning

Poonem Kristhombuge Ananda Manoj Kumara

University of Tampere

School of Information Sciences

Computational Big Data Analytics

M.Sc. Thesis

Supervisor: Prof. Martti Juhola

June 2018

 i

University of Tampere

School of Information Sciences

Computational Big Data Analytics

Poonem Kristhombuge Ananda Manoj Kumara: Performance Analysis: A Case study on

Network Management System using Machine Learning

M.Sc. thesis, 66 pages, 35 index and appendix pages

June 2018

Businesses have legacy distributed software systems which are out of traditional data

analysis methods due to their complexities. In addition, the software systems evolve and

become complex to understand even with the knowledge of system architecture. Machine

learning and big data analytic techniques are widely used in many technical domains to get

insight from this large business data due to performance and accuracy. This study was

conducted to investigate the applicability of machine learning techniques on performance

utilization modelling on Nokia’s network management system. The objective was to study

and develop resource utilization models based on system performance data and to study

future business needs on capacity analysis of the software performance to minimize manual

tasks.

The performance data was extracted from network management system software

which contains resource usages on system level and component level measurements based

on input load. In general, the simulated load on a network management system is uniform

with less variance. To overcome this during the research, different load profiles were

simulated on the system to assess its performance. Later the data was processed and

evaluated using set of machine learning techniques (linear regression, MARS, K-NN,

random forest, SVR and feed forward neural networks) to construct resource utilization

models. Further, the goodness of developed models was evaluated on simulated test and

customer data.

Overall, no single algorithm performed best on all resource entities, but neural

networks performed well on most response variables as a multivariable output model.

However, when comparing performance across customer and test datasets, there were some

differences which were also studied. Overall, the results show the feasibility on modeling

system resource that can be used in capacity analysis. In future iterations, further analysis

on remaining system nodes and suggestions have been made in the report.

Keywords and terms: Statistical modeling, machine learning, performance analysis,

network management system.

 ii

Acknowledgement

I would like to specially thank Prof. Martti Juhola for his continuous support and

providing positive feedback to improve my thesis during this period. Furthermore, I

would like to thank Dr. Henry Joutsijoki and Prof. Jaakko Peltonen for reviewing their

comments to improve the study.

I am also grateful to the members of Performance Estimation Team at Nokia,

Tampere for their guidance and support in numerous occasions to improve this study.

Specially to Markus Nenonen for providing me this opportunity and constant interest

towards the study. Further, I would like to thank Petri Puustinen, Jyri Heinonen, Mikko

Lahdensivu, Osku Hamalainen, Kari Lahdensuo, Lauri Makela, Jouni Kokkila, Kati

Raunio, Carita Jarvinen and Panu Kortelainen for assisting me in numerous occasions.

I would like to thank all the lectures and fellow students at University of Tampere

for their cooperation and of course friendship. Last but not the least, I would like to

thank my wife and parents for supporting me throughout my studies and my life in

general.

 iii

Contents

1. Introduction ... 1

2. Machine Learning Applications in Performance Analysis .. 4

3. Background and Overview .. 8

3.1. Mobile Network Evolution .. 9

3.2. Network Management .. 9

3.3. Configuration Management (CM) ... 10

3.4. Fault Management (FM) .. 10

3.5. Performance Management (PM) .. 11

3.6. Security Management .. 11

3.7. Accounting Management ... 12

3.8. System Architecture ... 12

3.9. System Hardware ... 13

3.10. System Performance .. 13

3.11. Software Metric / Parameter .. 14

3.12. Performance Metric.. 15

3.13. Data Types in Network Management System ... 15

3.14. Workload Data in Network Management System ... 17

4. Overview on Machine Learning .. 19

4.1. Feature Selection and Extraction ... 19

4.2. Data Mining Tasks ... 21

 iv

4.3. Machine Learning Algorithms ... 23

5. Methodology ... 33

5.1. Workload Characterization and Load Modelling .. 35

5.2. Data Preparation ... 38

5.3. Model Cross Validation ... 44

5.4. Data Mining Tools Selection ... 46

5.5. Model Selection Criteria .. 47

6. Case Study Findings and Discussion ... 50

7. Conclusion ... 57

References .. 62

Appendix .. 67

 v

Table of Figures

Figure 1 : Summary Representation of Earlier Study ... 7

Figure 2 : Network Management System Architecture Diagram [33] 12

Figure 3 : Steps in Explanatory Statistical Modeling vs Predictive Analytics [38] 18

Figure 4 : Sample Model Representation using MARS Model .. 25

Figure 5 : One Dimensional Linear Regression with Epsilon Intensive Band [55] 28

Figure 6 : Non-linear SVR Representation [55] ... 28

Figure 7 : Feedforward Neural Network ... 29

Figure 8 : The Effect of Slope Parameter in Sigmoid Function .. 30

Figure 9 : One Unit Recurrent Neural Network (RNN) .. 32

Figure 10 : Data Preparation Steps .. 39

Figure 11: Modeling Approach of the Study .. 43

Figure 12 : Diagram on Underfit vs Overfit [59] .. 45

Figure 13: RMSE Comparison of CPU Average .. 54

Figure 14 : RMSE Comparison of Memory Consumed Average 54

Figure 15: RMSE Comparison of Disk Write Average .. 54

Figure 16: RMSE Comparison of Network Received Average .. 55

Figure 17: RMSE Comparison of Network Transmitted Average 55

Figure 18: RMSE Comparison of PM Insertion Time .. 55

1

1. Introduction

The development of mobile and radio networks has heightened the need for

evolution on network management industry. During past two decades, mobile network

technology has changed dramatically. The change is ongoing and expected to increase

exponentially. In recent years, network traffic volumes have increased in the order of

several magnitudes in a short period of time due to technologies and concepts such as

5G, IoT and smart devices. The compound annual growth rate for the period 2012–2016

was 78 percent. Based on the technology forecast, the industries are now preparing for

an astounding data traffic increase by 2020 and beyond [1]. Therefore, network

management companies need to facilitate the growth in underlying mobile and radio

networks.

In general, designing an enterprise software system with overestimated capacity

can cause extra unused resources with early purchase costs [2]. Furthermore, an

overestimated capacity will bring extra associated costs such as energy, network, labor,

and maintenance all of which are proportional to the scale of the infrastructure [3].

Conversely, underestimated capacity can cause high failure rates, performance issues

and Service Level Agreement (SLA) penalties for the operators [2].

In every organization software applications cannot be fully independent from

underlying legacy systems which are developed over their lifetimes using traditional or

sometimes obsolete technologies [3]. Depending on the complexity and number of

subsystems interacting with each other, system migration needs to be carefully

addressed and it takes time. Further, on complex software system with its lifetime there

can be problems on understanding the source code, increases on system deployment

times, scalability issues with intensive data loads long-term commitment to selected

technologies would initiate eventually as the number of subsystems and system size

starts to grow [4].

Above facts presents the importance of performance modelling to efficient

resource allocation, performance analysis and scalability. Further designing

performance models should consider system hardware, software, system architecture,

network connectivity and workloads in such a way that these models could be used to

2

analyze system performance as well as to predict performance on system which could

variate based on workload and architectural changes. Another important aspect when

modeling large systems is its scalability when including additional users, hardware or

software to existing system [5].

System performance can be defined as a system’s capability to handle effectively

the tasks that it has been assigned to do in a timely manner [6]. Further, performance

metrics can be categorized into three main categories: time taken to perform a service,

the rate by which the service is performed and resource consumption of the service. In a

short form, this can be defined as responsiveness, productivity (throughput) and

utilization metrics [6]. Primarily the aim of this study is to investigate system

performance with respect to resource utilization of network management system’s

computer nodes and responsiveness in certain computer nodes depending on the

availability.

This study is conducted according to research requirements defined by Nokia

Solutions and Networks, which provides network management solutions to mobile and

radio networks. Current dimensioning tool used for software dimensioning and testing is

mainly based on system expert’s knowledge and initial set of performance models. As

discussed earlier, incorrect estimates can cause situations where network management

system is tested with over or underestimated dimensioning values which could

eventually lead to problems in customer environments. By developing performance

models based on system performance data, more accurate results can be obtained to

understand the performance and scalability of the software system. The goodness of

performance models can be validated with real business customer operated data.

This study investigates application of machine learning techniques in performance

engineering to analyze, model and predict system capacity for future business

requirements. The scope of the study does not include business application of the result

models using performance models in real-life business scenario. The performance

utilization data was extracted from the system, pre-processed and applied different

machine learning methods based on selected set of base predictors (Multiple Linear

Regression, Multivariate Adaptive Regression Splines (MARS), K-nearest neighbor (K-

NN), Random Forest, Support Vector Machine) to implement univariable-output

3

performance models. Later this data was evaluated using Neural Networks to create

multivariable performance models and finally the performance was compared against

each method. This study expects to present performance models representing system

utilization i.e. CPU utilization, memory consumption, disk I/O operation averages and

Network I/O operation averages based on software related measurements to correspond

to a selected subset of computer nodes in the network management system.

The objectives of this study are to: (1) evaluate the goodness of modelling

performance utilization and responsiveness of the software, (2) understand performance

bottlenecks of system and (3) understand any limitations of current performance metrics

used on system modelling. The findings of the study are presented as univariable and

multivariable-output models across distributed nodes in network management system,

given by different machine learning techniques. The performance models in this study

will facilitate the organization to determine the software and system performance in

their current business process to,

• Determine the optimum sizing of the software system based on customer

requirements

• Compare different software versions and environments

• Performance anomaly detection compared to baseline models

• Understand available capacity of system for scaling

This thesis report proceeds as follows. Next, chapter 2 provides background

information and overview of network management domain and network management

software system in question. Chapter 3 summarizes the literature review of data mining

and performance analysis in distributed computer systems. Chapter 4 discusses data

mining tasks, machine learning algorithms used in data modelling, and data mining

tools used. Chapter 5 presents application of data mining and modelling on performance

data. Chapter 6 and 7 discusses the methodology, which includes data preparation,

modelling, evaluation and evaluation of the results. Finally, chapter 7 presents the

summarized results with conclusions, recommended approaches and future works.

4

2. Machine Learning Applications in Performance Analysis

Many studies on performance analysis on cloud software systems have been

presented in literature on the areas of cloud monitoring, failure recovery, auto-scaling,

cloud capacity planning, response time and throughput analysis and load prediction

using time series analysis.

Bai et al. [7] have evaluating performance of heterogeneous data centers using an

analytical model. Based on the proposed model, several performance measures

including mean response time, mean waiting time and the probability of immediate

execution were analyzed. Moreover, to confirm the validity of the proposed model the

experiment was followed by a simulation and authors claim that the proposed model can

effectively estimate performance of heterogeneous data centers. Kafhali and Salah [8]

report in their study about an analytical queuing model that can determine minimum

resources required for hosting cloud application based on given workload conditions. In

addition, these models are based on a defined set of key performance indicators (KPI)

such as response time, waiting time, probability of immediate execution, CPU

utilization, and throughput and finally cross validated by simulation on Java Modeling

Tools. The study also used these analytical models to estimate overall system cost. Qiu

et al. [9] presented hierarchical three phase recovery mechanism with rapid repair,

diagnostic repair and complete repair actions based on the phenomenon of failure for

distributed cloud systems.

In cloud computing, failure recovery is considered as one requirement which

determines the performance of its systems. Qiu et al. [10] presented a theoretical model

based on Markov chain to recovery process of the failed server as an efficient failure

recovery mechanism. In another case, Bai et al. [11] presented a cloud service

evaluation method for failures in virtual machines and servers based on complex

networks according to their functional complexity. To support the required demand

while maintaining service availability at minimum deployment cost, Azeez [12]

presented a web service solution on Amazon EC2 to automatically scale web service

applications to ensure required scalability requirements under optimum cost. In

addition, Azeez addresses the limitations on cluster deployments of servers with the

5

concept of a few membership schemes to handle failures and dynamic load balancing on

Amazon EC2 clusters.

Resource allocation and optimal workload allocation studies based on

performance metrics such as response time, cluster consumption and workload packet

loss rates are studies on [13-15] considering the importance of service level agreement

(SLA) fulfilments. Furthermore, Xiong and Perros [16] discusses different approaches

on minimizing the total cost of resources used by its applications in a cluster of

computers while satisfying the quality of service. In their study, Kundu et al. [17]

presented performance models that can predict system performance with a sufficient

accuracy level. During modeling, they have selected a set of key system parameters

which facilitate detailed reasoning for data center administrators that influence

performance in virtualized environments. Further, they evaluated several techniques for

modeling application performance and selected artificial neural network (ANN) as final

approach for performance comparison which includes performance parameters such as

CPU, memory, disk and network I/O [17].

In literature, there are many studies on performance modeling based on correlation

between application performance and peak or average CPU utilization of the system.

Dinda et al. [18] presented their models for application placement and predicting run

time performance. Stewart et al. in [19] and [20] presented their models for capacity

planning based on CPU utilization prediction under different workload conditions.

Wood et al. [21] presented system profiling and modeling virtualized resource usage in

cloud applications. A pattern matching prediction to identify similar past occurrences

based on short-term workload history was presented by Caron et al. [22]. However, the

method can be inefficient and time consuming for larger data sets as this requires

searching similar patterns on the dataset. Further, Kim et al. [23] presented prediction

technique using segment of most recent requests which define a boundary of data points

to be analyzed. This can again not perform well in a generalized system due to scoping

only to recent user request patterns.

An application of time series analysis techniques on performance and load

prediction has broadly been used by many researchers in literature. As traditional

techniques such as curve-fitting, moving averages and auto-regression methods

6

sometimes might not be effective compared to modern techniques due to drastic

fluctuations in host load patterns in cloud environments, researchers try to create more

effective methods on performance prediction. In their study, Di et al. [24] presented a

Bayes method for cloud load prediction to achieve a better accuracy with a lower mean

squared error. The suggested method predicts CPU and memory load on a host machine

up to period of 16 hours. Cao et al. [25] suggests an ensemble model with the ability to

update its base predictors dynamically so it can adapt the time series pattern changes.

The base predictors include Auto-regression model, Exponential smoothing model,

Weighted nearest neighbors (WNN) model and Most similar pattern model. Kourentzes

et al. [26] propose a model ensemble operator based on kernel density estimation for

one-step ahead forecast. Jheng et al. [27] presents a model which is capable on

predicting future trends from the workload and shifts low priority tasks outside peak

operating intervals to efficiently utilize the available resources. Wolski et al. [28]

presents the effect of autocorrelation between successive CPU measurements in their

study and developed one step ahead CPU prediction model to forecast CPU on a

dynamic system.

Finally, this study was to explore performance modeling of network management

system which deployed and operated on top of cloud native infrastructure. Focusing this

aspect, the literature review was conducted to investigate the research on performance

engineering and capacity analysis of distributed systems. Furthermore, the expectation

was to shed light on the study by incorporating relevant concepts, practices and existing

research findings. Overall, this review helped to brainstorm and shortlist study areas

which suitable for the study.

Earlier System Modeling Study on Network Management System

In the previous study done by Tuisku [29] suggest the feasibility of modelling

CPU performance of a single virtual machine in network management system.

However, currently limited studies have being done on the subject network management

system performance and amount of knowledge is known mainly based on system

experts understanding the system. Considering the recent studies found in literature the

expectation was to further evaluate machine learning approaches on software

performance of network management system.

7

Figure 1 : Summary Representation of Earlier Study

Figure 1 shows the summary of the earlier study. This study was conducted on

performance management service nodes to predict CPU consumption based defined

performance management metrics. Further, the created models were evaluated using a

real-world network management system, and as a result fairly accurate prediction on

CPU utilization could be made.

Based on the background information there was some limitations in this early

study. Firstly, the earlier study evaluated performance of CPU consumption only using

multivariate regression technique. Secondly, during that stage there was limitations in

collecting performance data from the software system which limited the scope of that

study where only few load profiles could be tested. Thirdly, no customer data was

available to compare performance levels between different environments of a created

model.

8

3. Background and Overview

Nokia released its initial network management tool in the early 1990s and with the

evolution in network management industry it has undergone tremendous changes to date

in its lifecycle. In addition, telecommunication and radio network environments became

more complex in the past decades and customers are interested in accurate resource

usage predictions and indicators. In some scenarios as customers only have few network

element types they are interested in a minimal software setup which can fulfil their

requirements without overhead nodes. Based on these facts it is essential for the

business to understand the performance of each network type and management software

itself.

As discussed earlier, in practice, software systems evolve with time and become

complex to analyze and troubleshoot. Even though it is recommended to understand and

test the performance during product development stage, in practice it is difficult as

developers prioritize functionality first. In many cases product performance is only

evaluated at final stages of its release lifecycle. When considering the layout of

enterprise systems, they consist of complex configurations, heterogeneous

communication protocols, heterogeneous and geographically distributed servers with

several network interconnections, proprietary middleware, large distributed database

systems, load balancers and so on which make it difficult to understand its operation on

runtime. During modeling understanding its system interactions is the most difficult and

important stage during the process [5].

As defined by National Institute of Standards and Technology (NIST), cloud

computing enables convenient, on-demand network access to a shared pool of

configurable computing resources which includes servers, network, storage, applications

and services [30]. Further, these resources should be efficiently provisioned and

released with minimum effort based on vendor requirements which makes every

organization to step into cloud infrastructure with the growth of their businesses.

In the meantime, by leveraging cloud services, organizations can deploy their

software systems to address some of their scalability and performance issues with a

minimum set of changes to their systems. To achieve this application scalability, one

should use scalable architecture in the first place. Microservices technology is one of the

9

most famous cloud native architecture which enables availability and scalability in its

design by facilitating the migration of on-premise architectures to cloud environments.

In addition to this, microservices can simplify business processes by including them in

collection of small services which could be deployed and scaled independently, as well

as different technology stacks and are easily understood [31].

3.1. Mobile Network Evolution

During the past two decades, mobile network technology has evolved drastically.

This technology hype is still ongoing and expected to increase exponentially with the

upcoming technologies. In recent years, big traffic volume increased in the order of

several magnitudes in a short period of time due to technologies such as 5G, IoT and

smart devices. During the period of 2012–2016, the yearly growth rate of the market

was 78 and now, based on their marker research telecom industry expects astonishing

network traffic increases after 2020 [1].

When considering these future trends, network management aspects also need to

evolve with the advancements in technology. During this, accurate load models will be a

handy tool in the process of designing and dimensioning software systems.

3.2. Network Management

In general, mechanisms for monitoring, control and coordination of its resources

is defined by system management standards. In a telecommunications management

network, its resources are viewed as independent managed objects with well-defined

properties to clearly define its managed operations. This is defined by Open Systems

Interconnection (OSI) - Systems management overview published by International

Telecommunication Union [32]. This defines the primary requirements for

understanding the key functions of network management system as a model.

For convenience, requirements and specifications related to system management is

categorized into five groups by OSI Management Framework and network management

model which defines these major functions of network management systems. These

groups are fault management, configuration management, accounting management,

performance management and security management. This is sometimes defined by the

10

acronym FCAPS model. The accounting management category is sometimes replaced

with administration on non-billing organizations [34].

3.3. Configuration Management (CM)

This module is responsible on managing, monitoring and tracking changes on

system configurations of network hardware and software elements on the system. Some

possible examples are updating OS version of a network device, adding a new device to

the network and modifying running configuration of a device. It is important to keep

track about updated configuration changes, software versions and system changes

during troubleshooting network issues, and configuration management software

facilitate this. In general, configuration management facilitates [32]:

• initialize and close managed objects

• collecting, storing and change the configuration of open system

• simplifying managing configurations of the devices, associate names with

managed objects

• set the parameters that control the routine operation of the open system

• assisting future expansion and network scale planning

3.4. Fault Management (FM)

To distinguish different fault scenarios, elements in the managed network consist

of monitoring and diagnostic tools. Each fault in an element is represented as an event

and sent to the software system. The main requirement of this module is to recognize,

isolate, correct and log faults that occur in the network. In addition, FM module

facilitates trend analysis on error prediction, to detect abnormalities in network

operations and to configure notifications to keep the network administrator informed

about problems. These notifications can be set to trigger activities that can gather more

information on recognizing the nature of the fault. Fault management function facilitates

[32],

• maintain and examine error logs

• accept and act upon error detection notifications

• trance and identify faults

• carry out sequences of diagnostic tests

• correct faults

11

3.5. Performance Management (PM)

To ensure acceptable level of network performance, this module should facilitate

continuous monitoring of network and guarantee optimum service to mobile

subscribers. The module performance addresses the throughput, network response

times, packet loss rates, link utilization, percentage utilization, error rates and so on.

Based on these information network managers can evaluate the current network

efficiency and prepare for future network demands.

Actively monitoring current network performance is an important step to identify

existing and future issues to ensure reliability during operation. In business it is

important to recognize system reliability and capacity issues before they affect any

services in the system. This can be done based by network health monitoring and trend

analysis using system performance data. This information in management system, can

be monitored in real-time, or passively by configuring to alert based on predefined

thresholds when performance deviates from the expected range. Furthermore,

performance thresholds can be defined to trigger alarms depending on the severity level

of the events which can be handled by the FM module. Performance management

function facilitates [32],

• gather statistical information

• maintain and examine logs of system state histories

• determine system performance under natural and artificial conditions

• alter system modes of operation for the purpose of conducting performance

management activities

3.6. Security Management

This module guarantees the basic security requirements of confidentiality,

integrity and availability of its elements considering its users, data, software and

network. This includes managing network authentication, authorization, and auditing to

set correct permissions to access permitted network resources based on pre-defined

security policies. Security management module is responsible to ensure network

environment security and gathering security-related information to be analyzed.

Security management function facilitates [32],

• creation, deletion and control of security services and mechanism

• distribution of security relevant information

12

• reporting of security relevant events

3.7. Accounting Management

This module enables charging capability to be established for the use of resources

in open system interconnection environment, and for costs to be identified for the use of

those resources. Accounting management function facilitates [32],

• inform users of costs incurred or resources consumed

• enable accounting limits to be set and tariff schedules to be associated with the

use of resources

• enable costs to be combined where multiple resources are invoked to achieve a

given communication objective

3.8. System Architecture

Figure 2 : Network Management System Architecture Diagram [33]

By its architecture, network management system has a modular based software

system, which enables customers to customize required software features based on their

13

business requirements. These software modules are categorized into four main

components based on the system management specifications as configuration, fault,

performance and security management. Even though initial versions of a network

management system were running on a dedicated hardware on physical servers,

currently the system is running on the top of a virtualized environment aligning its way

towards a fully automated cloud environment. This enables efficient resource allocation,

scalability, reduced downtime, disaster recovery and ability for automation.

Through its southbound interfaces, communication happens between network

elements and lower level systems of the managed network. This is mainly to obtain and

provision data from the network. Further, the interfaces used to communication between

software system and network elements are typically proprietary. Like in any other

Infrastructure as a Service (IaaS) system, the hardware resources perform by means of

pooled resources for the virtualized environment. The bridge between hardware and

virtualized machines achieved by the virtualized layer. The northbound interfaces

facilitate integrating software system with high level systems used for service

management.

3.9. System Hardware

The software system can function independently from the underlying hardware

resources due to its virtualized architecture. the division of hardware resources to virtual

machines (VM) with a designated amount of hardware resources is handled by the

platform virtualization software. Each virtual machine is allocated as per the configured

amount of hardware resources to perform the intended task and these configurations can

be defined as required based on the role of the individual VM.

3.10. System Performance

Performance is an indicator of how well the software meets its requirements for

timeliness. System performance can be defined as a system’s capability to handle

effectively the tasks that it has been assigned to do in a timely manner. Response time

and throughput is used to measure the timely manner of the performance, and utilization

metrics are used to measure the resource consumption. Moreover, the response time is

defined as the time required to respond to an incoming request whereas throughput is

the measure on how many requests can be processed in each time interval. Performance

14

parameters can be selected based on characteristics which influences system

performance. In short, performance metrics are categorized based on above criteria’s

[6].

In software systems, there can be many parameters which affect system

performance. Because there can be dozens of parameters, it is important to precisely

select important parameters and their effect on performance. Furthermore, based on

domain knowledge and earlier studies, certain parameters can be omitted or combined to

create new features. During feature extraction process, statistical methods such as

Principal Component Analysis (PCA) or Canonical Correlation Analysis (CCA) can be

used. Based on an initial study, selected set of important parameters are shortlisted to

examine during the analysis process as this will provide more simplified and

generalized performance models.

3.11. Software Metric / Parameter

Standard measure of some characteristic or properties in a software system/

process can be defined as a software metric [35]. By defining metrics, different

reproducible and measurable entities are expected to be obtained which could be used to

have several applications in business analysis including software performance

optimization.

In any business analysis process, it is really critical to understand and select

important metrics to the business process. The ‘HBR Guide to Data Analytics Basics for

Managers’ written by Harvard Business Review states “You can’t pick your data, but

you must pick your metrics.” which implies the importance of defining proper metrics in

any analytical study. In his presentation, Haff has presented some important rules when

defining metrics [36].

• what’s important to business/success criteria

• tied to business outcomes

• traceable to root cause(s)

• not too many metrics

15

3.12. Performance Metric

Performance metrics can be split into three main categories as time consumed on a

given task, service performance rate and resource consumption of the service. In a short

form, this can be defined as responsiveness, productivity (throughput) and utilization

metrics [6].

When considering performance of a distributed computer system, the important

operations to developer and system administrators are mainly corresponding to cluster

health, resource utilization, performance and outages. Further when analyzing the

system, following principles are important to consider:

• Define what you need to measure

• Selecting relevant metrics

• Quantity may not lead to quality of the process

• Understanding about what different measurements serve on different purposes

• Understanding how measurements drive behaviors

Performance parameters are measured mainly as utilization metrics corresponding

to hardware performance and productivity metrics corresponding to workload. These

performance parameters are later taken into account when deciding system capabilities

and capacity analysis which will eventually decide on software dimensioning process.

In Unix based systems, SAR (System Activity Report) system monitor command is

widely used to collect and report system activity information. To record utilization

metrics, SAR command is actively being used in computing as it not only has a wide

range of measurements consisting of system load, CPU activity, memory, network I/O,

disk I/O etc., but also it is easily integrated using sysstat package. To measure

productivity metrics, software tools are used and these metrics are corresponding to

performance management (PM) data (measurements and counters) and fault

management (FM) data (events) discussed earlier.

3.13. Data Types in Network Management System

Even though the network traffic on mobile networks is caused as a result of its

subscribers, in network management system it is different from this. The traffic on

software system is based on its managed network elements such as network

16

performance, network failure or configuration change operations. This traffic enters the

software system through its southbound interface. In this experiment PM data and FM

data are mainly focused and these metrics are considered as the predictor variables

during the modeling process.

Performance Management Data (PM Data)

Performance management data represents metric measurements composed by

different network elements as counters. These metrics comprise of events, success rate,

reset events, resource usage, signaling, etc. This measurement information can be pre-

processed or post-processed in the network element based on the configuration and the

type of network element. Measurement can be directly uploaded to the network

management system’s database as well. In addition, monitoring subscriber operations

using PM data can be done by observing usage values of available services. When

making management decisions based on service usage and when identifying current or

future problems and opportunities, this information can be taken into consideration.

Fault Management Data (FM Data)

Fault Management data or shortly FM data mainly consist of events which can be

categorized into several types for example, cancel, acknowledge, un-acknowledge and

as a result FM events and alarms will be created in network management system. These

alarms, when triggered represent a problem or error in a network element. In analytical

perspective every FM event types are equally valued. In real life networks there could

be correlations between FM and PM data as performance of the managed network can

be affected by the number of fault events and the fault situation.

System Performance Data

In addition to network performance data types (PM and FM data), one can

measure the data metrics related to system level performance of individual subsystems

of the network management system. In practice this can be done based on individual

virtual machine level considering its performance. The response variable data used in

the study i.e. CPU utilization, memory consumption, disk I/O operation averages,

Network I/O operation averages and response times are considered in this category.

17

3.14. Workload Data in Network Management System

Performance data in network management system can be divided into two

categories, namely simulated workload data and actual workload data. The simulated

workload can be synthetic and generated in a controlled and repeated fashion. The

actual workload data consist of performance data corresponding to customer

environments under real life operating environments. On capacity analysis process and

modeling, data sets consisting of high variance will be useful since it will help to

understand system boundaries. However, since in customer environments most cases

run on given boundary levels, there can be less variance in the data. Due to this reason

simulated workload data can be collected and used during analysis under controlled

environment conditions. As it is flexible to variate incoming data rates to the system

with well-defined simulated loads, the system can be analyzed iteratively to understand

its overall behavior in a detailed manner.

When simulating workloads, an instruction mix is a specification of various

instructions and their relative frequency defined based on the requirement. This can be

constructed for the comparison of different processors on a given hardware

environment. This approach can be utilized in a distributed computer system. [6]

Exploratory Statistical Modeling and Predictive Analytics

Based on the expected functionalities and operating conditions of the data models,

model building procedure leads to numerous variances in explanatory modeling and

predictive analytics methods. Depending on the context, models will contrast based on

explanatory power of the models vs. predictive power of the models. There are two key

differences between explanatory versus predictive analysis. The first difference is the

properties lie in the data used in analysis where exploratory power is being assessed by

means of in-sample goodness of fit procedures. In predictive analysis prediction

accuracy measures are evaluated based on out-of-sample prediction procedures.

18

The second difference is in the metrics used in two techniques. Even though

statistical significance is an important property when assessing exploratory power, it is

not so important when assessing predictive performance. In addition, Wu et al. [37]

theoretically justify that sometimes removing statistically significant predictors with

small coefficients could result in improved prediction accuracy. Figure 3 1 shows some

differences between two techniques with respect to different states of the analysis.

Figure 3 : Steps in Explanatory Statistical Modeling vs Predictive Analytics [38]

19

4. Overview on Machine Learning

In the next few sections, machine learning algorithms used in data modeling task

in the research work and software tools used for data mining are discussed shortly.

Machine learning applications in business

In any organization, a large amount of data is produced and accumulated over

time in their system. This gives businesses an opportunity and competitive advantage to

extract business knowledge from underlying data. Even though it is demanding to

process this data, analyzing them in a timely manner is beyond the capabilities of

traditional analysis methods used by many organizations. Advancements in modern

machine learning and big data techniques have enabled processing databases with large

volumes in efficient fashion, leading businesses to invest on knowledge discovery

applications in business.

Data mining analytic techniques are evolving with time to meet new requirements

and better accuracies for different use case. This enables ability to automate decision

support systems in business processes with the help of integrated analytics and

optimization algorithms. It is essential to process exponentially growing data volumes in

real time as IBM forecasts the growth of next decade to increase from 800,000 petabytes

to 35 zettabytes [39]. This motivates businesses to invest on processing data to acquire

business intelligence which could help their business with modern advancements in

technology. In addition, domain knowledge contributes the business analysis process to

a success as it plays an important role during the process. In his study, Weiss [40] has

discussed the importance of including domain experts in data mining study to improve

effectiveness of the process.

4.1. Feature Selection and Extraction

In empirical modeling and machine learning, feature (variables, predictors) subset

selection is done to select a subset of most relevant features during the model creation

process. This will help to improve the interpretability of the constructed model. The idea

of the process is to remove any redundant or irrelevant features without suffering much

information loss from the original data frame, as it could consist of many features.

20

Redundant features are distinct from irrelevant features as, the redundancy could be due

to presence of another strongly correlated feature [41]. Feature selection techniques can

help when there are many features compared to the available sample data points in the

data set. Feature selection stage is important as it will:

• simplify the constructed model

• reduce training time

• address curse of dimensionality

• To make models more generalized by reducing overfitting

During feature extraction, new informative and non-redundant features are derived

based on of original features. One popular example for feature extraction is ‘principal

component analysis’ which is inspired by statistics. There exist a few algorithms and

variations that can be used for feature selection and extraction. Further, the result feature

subset can be different based on the algorithm and properties of the data. In the next

section some well-known feature selection techniques are discussed.

Exhaustive Feature Selection

The brute force technique is used on subset selection to generate every possible

combination of feature subsets. This process guarantees to find the best fitting subset

but as a drawback the cost of the process is high. The computation cost approximately

doubles by adding one additional variable as for k number of features there will be 2k- 1

possible subsets [42].

To reduce the computation cost without any information loss, there are few

options available in exhaustive feature selection. Firstly, as it’s less probable that a

single response variable has many statistically significant predictor variables which

equally improve the models, domain experts can help to assess on limiting maximum

subset size. Secondly, effectiveness of the branch-and-bound search algorithm can be

improved. These two steps can be helpful to improve the efficiency of the feature

selection algorithm up to large datasets [42]. The branch-and-bound algorithm will

evaluate best fitting subsets up to number of feature count. The computation cost is

significantly reduced in cases where only few features are dominant compared to others.

21

Forward Selection and Backward Elimination

In wrapper methods a feature subset is used to train a model using input features.

Iteratively by inferencing the created model, the feature selection algorithm will add or

remove input features form its initial feature set. Even tough, the problem can be

simplified to a search problem it can be computationally expensive. These wrapper

methods can be categorized as forward feature selection and backward feature

elimination which will be discussed next.

• Forward Feature Selection

The algorithm starts with empty features set and iteratively adds most significant

feature to the model to improve its performance. This step will be repeated until

no improvements made to the model by adding of a new feature and final feature

set will be selected at this stage.

• Backward Feature Elimination

The algorithm starts with all the variables in its feature set and iteratively

remove least significant feature from the model to improve its performance. This

step will be repeated until no improvements made to the model by removing of

an existing feature and final feature set will be selected at this stage.

Efficiency of these two methods is sometimes argued in comparison to each other.

Some claim that forward selection is more efficient as opposed to defenders of

backward elimination who claim that weaker subsets can be found by forward feature

selection as the significance of variables are not assessed compared to variables not

included yet [41].

4.2. Data Mining Tasks

The main categories in data analysis tasks are descriptive, predictive and

prescriptive analysis [43]. In descriptive analysis task the purpose is to provide insight

to business and its stakeholders based on the past data to understand any patterns which

describe the phenomena related to the data [44]. In the case of predictive data analysis,

the objective is to discover any patterns that can predict the unobserved future patterns.

The predictive models can be utilized by organizations to make knowledge-driven

proactive decision making to the questions that were complex or time consuming in

general [45]. Further, by prescriptive data analysis, steps can be utilized to optimize

22

current procedures and to decide next steps when decision making is executed. Several

data mining techniques can be presented as follows:

• Classification – The classification algorithm will map (classifies) the input data

items into a pre-defined set of categories or classes. Some sample application

would be identification of hand written digits from a large set of digit images.

Once the model is developed it can be used in future inputs to recognize the digit

in input image.

• Clustering – Clustering is a descriptive task where algorithm tries to identify a

finite number of categories or clusters which could describe the data. This

process is an unsupervised learning algorithm and output category is not known

initially. In practice it is widely used in marketing to identify similarities

between customers based on their purchase history and in many medical

research studies.

• Prediction – Predictive models can be used to predict future trends or unknown

conditions based on its past data or as a correlation of depending factors. For

example, by using an effective predictive model to predict performance,

business turnover or sales can help business to prepare for unseen future

challenges.

• Anomaly detection – This technique can be used to detect significant differences

compared to previously recorded data or reference levels on a given

phenomenon. This technique is widely used in financial industry for fraud

detection

• Summarization – This technique can be used to generalize or abstract the data

into a simplified overview and comprises on providing compact description for a

of dataset. This can be as simple as determining the mean and standard deviation

for a feature in a table, to more sophisticated methods involving multivariate

visualization methods.

• Dependency modeling – This technique can be used to find models that has

significant dependencies among their variables. Dependency models can be

23

defined based on structural level or quantitative level of the models it specifies.

The features that are locally dependent on each other and variable strengths of

the dependencies will be evaluated in these two cases [44].

4.3. Machine Learning Algorithms

In this section, brief introduction on data mining and machine learning techniques

which were evaluated during the modelling process are discussed. As the initial base

predictors for modeling task, six machine learning algorithms were used. These

algorithms are multiple linear regression, MARS, k-nearest neighbor, random forest,

support vector regression and feedforward neural networks. To train the data models,

supervised learning techniques were used. In supervised learning, every entry in the data

set consists of precise output values which are used to train the models accordingly [46].

Introduction about selected machine learning techniques is presented below.

Multiple Linear Regression

In practice, descriptive modeling as well as predictive modeling is done using

Multiple linear regression [48]. The model is constructed against response variable from

a sample of data points, corresponding to its input variables. Most simple technique

used in linear regression is the ordinary least squares method, which aims to minimize

sum of squared error on model creating. Descriptive modeling uses available set of data

to model existing features from the data. During predictive modeling, response variable

values for new cases are predicted based on model constructed by existing predictor

variables. The sample equation of multiple linear regression represents its response

variable as a linear combination of its predictor variables. Below is a sample equation

with p predictor variables:

Y = β0 + β1X1 + β2X2 + ……. + βpXp + ε (1)

Equation 1 : Equation of Multiple Linear Regression

In the above equation, response variable is denoted by Y and the predictor

variables are denoted by X’s. Further, β0 denotes intercept and remaining β values

represent the coefficients of each predictor variable. The error of the model is

represented by ε. The process of predicting more than one response variables at once is

24

known as multivariate linear regression analysis. Multiple linear regression and

multivariate linear regression modeling are two distinct techniques and should be used

appropriately [49].

In multiple linear regression, to make reliable predictions with two or more

predictor variables, the input data set should satisfy additional qualities compared to

modeling using simple linear regression. The efficiency of the method depends on the

ability of presenting the response variable as a linear combination of the predictor

variables. The statistical significance of the model test can be disturbed by lack of

linearity which causes model fit, errors and residuals. Further, to prevent

multicollinearity, the predictor variables should not be correlated among each other and

this can be detected through the variance inflation factor [50]. In addition, there can be

situations where outlier data points get recorded due to measurement errors or

unmeasured metrics [51].

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) technique introduced by Jerome

H. Friedman is a non-parametric regression technique. It’s capable of modeling non-

linearities and relations among features represented by the input data. MARS method

builds models of the form as below,

f̂(x) = ∑ 𝒄𝒊 𝑩𝒊(𝒙)𝒏
𝒊=𝟏 (2)

Equation 2 : Sample Equation of MARS Method

The model is represented as a weighted sum of basis functions Bi(x) where ci is a

constant coefficient multiplied by its basis function. Each basis function can take one of

the following three forms:

1. a constant

2. a hinge function. A hinge function has the form max (0, x-const) or max

(0, const-x)

3. a product of two or more hinge functions

25

Figure 4 : Sample Model Representation using MARS Model

The term "MARS" is trademarked and in order to avoid trademark infringements,

many open source implementations of MARS are called "Earth".

K-Nearest Neighbors (K-NN)

K-Nearest Neighbor algorithm is an instance based learning (IBL) technique,

which is considered as one of the simplest methods. From the available data set all the

known cases are stored by the algorithm to solve new cases. To determine the result for

an unknown case, the algorithm will compare it with the similar instances in the training

data. Further, this algorithm will assume that data points with similar attributes exist in

close proximity compared to others and these nearby data points are called neighbors

[46]. When predicting the class label for a new instance, the algorithm searches for K

nearest training samples that are close to the new instance, and most frequent class value

is assigned. Further, Euclidian distance or Cosine similarity can be used as similarity

measure [52]. In practice different variations of distance functions being used are based

on domain knowledge and properties of the data. Evaluating continuous variables

should be done using Euclidean, Manhattan, Minkowski distance measurements and

evaluation of categorical variables should be done using Hamming distance, which

measures the number of instances of corresponding symbol or category. The K value

used in the algorithm is a small positive, usually an odd number. The simplest way to

select a suitable K value is to iteratively run the algorithm on different K values and

select the one with the highest performance [48].

26

Determining an optimum K value is based on few criteria. Firstly, a suitable value

for K can be selected by inspecting the data itself. In many practical scenarios cross-

validation of performance for each K value will be evaluated iteratively based on

independent input data set and suitable K value will be selected. In general, a large K

value will be more precise as it can reduce the overall noise depending of the

distribution of data. However, distinction between boundaries within the feature space

also needs to be considered [53]. A rule of thumb to select a maximum for K is to use

√n if nothing about a suitable value is known in advance where ‘n’ is equal to data

items.

Distance Techniques for Continuous Variable’s

Continuous Variable’s Categorical Variables

Euclidean Distance = √∑ (xi-yi)2k
i=1

Hamming Distance,

DH = ∑ |𝐾
𝑖=0 xi = yi| = ∑ 𝐷𝐾

𝑖=0 i

xi = yi → Di = 0

xi ≠ yi → Di = 1

Manhattan Distance = ∑ |xi-yi|
k
i=1

Minkowski Distance = {∑ (|xi-yi|)
qk

i=1 }
1

q

xi, yi = Coordinates or values of data points

k = Number of cases

Table 1: Distance Techniques

Random Forest

A random forest model is an ensemble learning technique that can be used on both

classification and regression tasks. During learning stage, the algorithm constructs

several decision trees and produces the output class which is the most occurring class

for classification and mean prediction for regression tasks. A Random Forest with few

trees is quite prone to overfit to noise and once more trees are added, the tendency to

overfit generally decreases [54]. Random forest models make use of random selection of

features in splitting the decision trees, hence the classifier built from this model is made

up of a set of tree-structured classifiers.

27

When constructing a model using the algorithm, random k data points from the

training set are taken and a decision tree is built associated with these k data points.

Next, by selecting the number of trees (ntrees) desired to be built and the earlier steps

are repeated. When classifying a new data point, a prediction is made on category to

which the data point belongs using earlier ‘ntrees’ and will be assigned to the winning

class. This process will start by one tree and then proceed to build more trees based on

the subsets of data. The random forest has a major advantage that it can be used to judge

variable importance by ranking the performance of each variable. The model achieves

this by estimating the predictive value of variables and then scrambling the variables to

examine how much the performance of the model drops.

Support Vector Machine

Support vector machine is a supervised learning method. There are two flavors of

this technique which can be used to analyze both classification and regression problems.

Firstly, support vector machine (SVM) can be used during classification problems.

Secondly, support vector regression (SVR) can be used during regression problems with

minor differences in the concept containing of all main features which are based on

maximum margin algorithm. The algorithm will construct a nonlinear function based on

linear mapping into a high dimensional kernel inspired from the input feature space. The

parameters will control the capacity of the system. In addition, these parameters do not

depend on the dimensionality of the input feature space.

During the training process of SVR classifier, algorithm will iteratively improve

the support vector function. The optimization can be controlled using

a tolerance parameter (↋) to set an approximation to the SVR. If the gradient of the

optimized function is less or equal to the tolerance parameter value, the training is

terminated. If the tolerance value is large the training algorithm can terminate before

support vector function is sufficiently optimized, and for lower tolerance value,

algorithm could try to attain high optimization levels which will be computationally

expensive and time consuming.

28

Figure 5 : One Dimensional Linear Regression with Epsilon Intensive Band [55]

In models created by support vector, models only depend on a subset of the

training data. During classification task, the cost function on building the model ignores

training data points lying beyond the margin. Analogously, during regression analysis,

the cost function on building the model ignores training data points adjacent to the

model prediction.

Figure 6 : Non-linear SVR Representation [55]

The estimation accuracy and performance of support vector depends on its input

setting of parameters such as C, ↋ and the kernel parameters. As support vector model is

29

a complex algorithm, the selection of optimal parameters is further complicated. In

software implementations of support vector regression, these meta-parameters are given

as user defined input parameters. In addition, selection of the kernel type and kernel

function parameters are typically derived to reflect the distribution of the input training

data and based on application domain experts [55]. Two non-linear kernel functions

used during the study are presented below.

Polynomial Kernel Function = 𝒌(𝒙𝒊, 𝒙𝒋) = (𝒙𝒊. 𝒙𝒋)
𝒅
 (3)

Gaussian Radial Basis Function = 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (
||𝑥𝑖− 𝑥𝑗||𝑑

2𝜎
) (4)

xi, xj = Coordinates or values of data points

Equation 3 : Polynomial Kernel and Gaussian Radial Basis Function

Artificial Neural Networks

Artificial Neural Network (ANN) technique and its configurations are inspired by

functioning concepts of human brain, as human brain can be observed as a connecting

mesh of neurons and synapses. Neurons are considered as computational units where

synapses operate as the signal transferring unit. In general, every neuron is connected to

several other neurons by these synapses. Even though, neurons and synaptic

connections inside human brain are connected in an unorganized fashion, in ANN

neurons and synapses are structured in organized way to design computationally

manageable system. Sample configuration diagram of an ANN is shown in Figure 7.

Figure 7 : Feedforward Neural Network

30

As the presented diagram neurons are organized in layers. The structure of neural

network consists of one input layer followed by one or more hidden layers and finally

an output layer. The simplest network would consist of two layers and once the network

become more complex number of hidden layers will be increased to two or three (more

are not necessary). The network in Figure 7 has four layers which consist of two hidden

layers.

When connecting input nodes or neurons of a neural network, they typical way is

to connect all nodes of the previous layer to the next layer where each connection is

assigned a weight. These types of networks are known as fully connected network and

Figure 7 demonstrate such network. A neuron or node computes the sum of the outputs

from neurons in the previous layer multiplied by the weights assigned by the

connections, and then passes it to an activation function. Activation functions enable

ANNs to learn non-linear functions. There are different activation functions, e.g.

sigmoid function. The effect of a sigmoid function is demonstrated in Figure 8 where

activation function outputs value between 0 and 1.

Figure 8 : The Effect of Slope Parameter in Sigmoid Function

A neural network supports both supervised learning (for networks such as one in

Figure 7) and unsupervised learning techniques. Self-Organizing Maps (SOM) is the

most well-known application in unsupervised neural networks. The available neural

network types can be mainly categorized into feedforward and feedback networks.

31

Feedforward neural network is a non-recurrent network which consists of input,

output and hidden layers where input signals only travel in one direction. First, inputs

are assigned to input nodes and then they are passed into first processing layer of nodes.

When designing a network, the number of input and output neurons is equal to the

number of input and output variables in the network. The computations inside a neuron

is done based on the weighted sum of its input data and this output value become the

input values which fed into the preceding layer. This procedure will be followed

iteratively through all layers and finally determines the output values. In practice,

threshold transfer functions are used to quantify the values of output layer. In data

mining problems, feed-forward networks are generally used. In addition, feed-forward

networks (FFN) also include Perceptron and Radial Basis Function networks.

Feedback networks consist of loop like paths which can transmit the signals in

both directions between layers allowing all possible connections among neurons. Due to

these characteristics the network becomes a non-linear dynamic system with continuous

changes until the network reaches a state of equilibrium. These feedback networks are

generally used in optimization problems and associative memories [56].

Recurrent Neural Network (RNN)

Recurrent neural networks can process sequences of inputs as the networks use

their internal state (memory) by feeding back the output signal of the neurons to the

neurons in the same layer. This enables the network to exhibit dynamic temporal

behaviors on a given time sequence. RNN’s are generally applicable in unsegmented,

connected handwriting recognition or speech recognition problems. There exist many

possibilities of connecting feedback between neurons and some common ways are:

• Self-feedback: Along with the next input data sample, the output signal is fed

back into the same neuron.

• No self-feedback: Along with the next input data sample, the output signal is fed

back to all other neurons of the same layer except the neuron itself. This case is

illustrated in Figure 9.

• Full feedback: Along with the next input data sample, the output signal is fed

back to all other neurons of the same layer.

32

Figure 9 : One Unit Recurrent Neural Network (RNN)

33

5. Methodology

In this chapter, the methodology used during the study is presented. The main

objective of the study was to create descriptive performance models of a software

system to understand its behavior based on business usage and requirements. In theory,

not only ‘Analytical Performance Modelling’ concepts can be used to model system

operation, but also to performance testing as a faster and economical option. Once we

have the required understanding about the hardware utilization based on our models this

can further be used on evaluating design options and system sizing [57].

As discussed earlier, currently system dimensioning and performance is being

predicted mainly based on an expert’s knowledge and it would require manual work and

methods can be biased and many practicalities were reported which encouraged Nokia

to research more data intensive approaches. Even though the current dimensioning tool

supports complex network design, it not only requires continuous maintenance but also

testing to adopt changes which makes the process tedious. Further, over or under

estimations in system capacity can create business impact not only on revenue but also

on customer loyalty. As the ultimate result of the study, in addition to system level

behavioral knowledge, stakeholders can estimate system scalability based on workloads.

Based on the market research and domain knowledge by the experts, Nokia

expects that in the future customer environments can be substantially different from one

another. With the advancements in cloud computing systems can evolve to fine granted

tailor-made customer environments (e.g. microservices) which are more economical for

their business needs. Developing accurate performance models can contribute on precise

dimensioning needs where customers can efficiently use available system resources in

their business which customers will definitely appreciate. It is expected to iteratively

improve system understanding by continuous studies that can ultimately result new

dimensioning technique which can overcome limitations in current dimensioning

solutions and perform well with future business needs. This study is only one iteration

for that process and the study is mainly focused on evaluating the goodness of different

data mining and machine learning techniques on performance modelling of Nokia’s

network management system. Further, during modelling the system performance

34

unitization in computer nodes many univariable and multivariable-output techniques are

evaluated.

As original metric data files contain substantial number of attributes depending on

the scope of our study, a subset of input output features needs to be chosen. The initial

set of required predictor variables were selected with the assistance of software domain

experts. This further reduced using attributes subset selection algorithms to select the

best set of predictor attributes for the modelling purpose. Response variables attributes

representing system level utilization were selected including CPU utilization, memory

consumption, disk I/O operation averages and Network I/O operation averages as per

the defined scope.

The research was intended to evaluate the goodness of modelling system

performance using machine learning. To ensure the set of predictor algorithms was

chosen and evaluated the goodness of each method. In addition, the results are presented

as univariable and multivariable-output models representing system level resource

utilizations. By univariable-output model’s single resource utilization metric will be

represented as its output against the software measured predictor variables. In

multivariate models, each resource utilization metric will be represented as a multi-

output model against its predictor variables.

In addition, for analytical performance modelling goodness of result models is

evaluated first using k-fold cross validation method and then against available customer

datasets. Testing with customer datasets were mainly done to test the generality of the

created models and applicability on cross environments.

As the requirements of the study have been defined based on the business

requirement of the target company, the data definition and relevance of an initial feature

list are clearly defined and during the study this initial list is further processed based on

feature selection algorithms. Furthermore, if there is any inconsistency in the final

models, it is also expected to investigate possible new feature areas to be included in

future studies. The collected raw data files consist of different system utilization

measurements and software related measurements on software systems IaaS, PaaS and

SaaS layers. As there are many more attributes available compared to ones interested in

the study depending on the scope of this thesis, subsets of predictor and response

35

variables were defined. Data was mainly collected from a set of software counters

available in the target software system.

In the study, the response variables consist of a selected set of resource utilization

metrics and predictor variables include a selected set of software related performance

measurements that represent incoming workload (even rates, file rates, counter rates) in

the system. Further, resource utilization metrics are measured in more granular basis (5

min) intervals compared to management software performance measurements (1 hour)

by design as this requires accessing a database system and to avoid any performance

decrease of normal operation of the software.

In addition, in the scope of this study we are only analyzing performance

management computer nodes as the initial subset during system modeling. Depending

on the metric type they could have different collection intervals; as an example, system

level metrics are collected in 1-minute intervals and software related metrics are

collected in 1-hour intervals. Due to this reason data frame needs to be generalized

before analyzing them. Data sets are sampled depending on the environment (test labs,

customer environments) and then depending on the computer node assigned with

specific service (job) during processing. Further as defined in Section 3.13 the datasets

could have different variations based on the operating procedure of the environment

mainly with simulated data and customer data.

5.1. Workload Characterization and Load Modelling

During workload testing, it’s essential that workloads are repeatable and easily

reproducible to simulate multiple alternative scenarios with identical settings. Even

though it is necessary and important to study customer environments with real data they

are not repeatable. This process is known as workload characterization and it’s

necessary to observe the key characteristics when developing repeatable workload

models. Once the workload models are defined, their effect based on its characteristic

features can be defined and the system can be studied in a controlled manner by

considering parameters of the model.

36

Performance Data for Analysis

Considering the network management system, performance data can be

categorized to:

• Actual workload data - Performance data collected on customer environments

containing real operating data

• Simulated workload data - Performance data which are synthetic and

generated under controlled conditions in lab factory environments.

As in most customer environments will be run on pre-defined load boundaries

there can be less variance in the data except sudden peaks in a managed network due to

some failure condition or high demand situation. Further access to customer

environment data is also very limited due to accessibility. During performance testing it

is essential to map the collected data related to a workload in terms of business process,

which then can be defined as the service demand of the system. In production systems,

the possibility of controlling the environment is minimal or restricted [5].

If in capacity analysis process and modelling data consist of high variance, this

will be useful since it will help to understand system boundaries. Due to above factors,

it is expected to collect data by simulating input data under controlled environment

conditions. As it is flexible to variate incoming data rates to the system with well-

defined simulated loads, the system can be analyzed iteratively to understand overall

behavior in detailed manner based on input features. In addition, to collect input data for

performance models, load tests can help to evaluate both performance and scalability

aspects of the system as well [5]. These models are expected to be used in the capacity

analysis of the software system.

Before simulating the data, system performance architects will define the bounds

to be tested based on maximum expected throughput based on PM counter rate and FM

event rates from the software system and the input load will be variated according to

this boundary condition.

37

Workload Description - Training Data

During this study, fault management and performance management functionalities

were mainly considered when workloads for three categories were defined based on the

requirement:

• Fault Management workloads

• Performance Management workloads

• Fault and Performance Management workloads

Each workload plan consists of combinations of different load scenarios related to

different network element types. The intention by variating loads related to different

network element types is to understand generality of the process and the test executed

for several hours in each case where minimum duration is 2 hours. The variation in

resource utilization is small corresponding to a single load profile due to a constant

predetermined load and measurements during this time frame appeared to be as a cluster

of data points. In the test environment, settings of predictor variables are determined by

the system tester or architect who defines the predetermined characteristics of a load

profile. In reality, predictor variables naturally correlate with the response variables.

Finally, once the workloads are defined, a test was executed for one lab environment

using a set of test simulators to generate the input data. When test rounds corresponding

to different load profiles are run, we could observe small data clusters aggregated along

the test data frame. This study is designed to simulate as many test rounds as possible

within the time frame to collect a comprehensive training data set during a 30-day

period between December and January.

Workload Type Number of different load profiles

Fault Management 14

Performance Management 16

Fault and Performance Management 55

Table 2 : Simulated Load Profile Summary

As the number of network elements and associated system resources are fixed on a

customer environment, the response and predictor variable measurements has less

38

variation with time. Therefore, single test round on workload test acts similar to a data

from a single customer due to this reason. Further, Nokia as the sponsoring company

has given the access to data and its environment details for the study purpose, but any

business or confidential information will not be presented in the report.

5.2. Data Preparation

The first step was identifying the necessary data and accessing it. The main source

of the performance data is the performance monitors installed in each computer node of

the network management system. These collected data will be in raw format and all

metric measurements corresponding to one resource (virtual machine) will be stored in a

single file which will roll over daily. Each record will mainly consist of a timestamp,

metric name, the measurement and a hash value per record.

For each virtual machine (VM), the records that contain the necessary data were

joined to a single data frame, which enabled to create a dataset for each virtual machine.

Even though the data set of each virtual machine is different, the number and type of

attributes are the same for all the data sets. The number of attributes extracted was

around 30. The names of predictor variables are not listed in this report based on

confidentiality requirements by the company sponsoring the study. The dataset for each

VM was exported to a comma separated value (CSV) file. Finally, the CSV file was

imported to RStudio to analyze them.

Preprocessing

As data collected from system monitoring framework is not only in raw data

format but also contains lots of unrelated metrics to the scope of this study, a pre-

processing step needs to be followed before analyzing the data. As per the design of the

monitoring framework, raw data files in each virtual machine collect metric information

related to services run on that node. Due to this reason before analyzing correct raw

datafiles from required service nodes need to be processed. As predictor variables are

measured in hourly intervals, resource utilization metrics (response variables) are also

averaged to hourly intervals before analysis. This was one reason to simulate constant

hourly input loads when collecting performance data to be able to map the actions

together and to find correlations between predictor and response features. Then the data

39

frames corresponding to predictor and response variables can be merged to construct the

final data frame. Finally, the feature attributes were normalized as the final set of

preprocessing. Even though the idea behind the pre-processing procedure is quite

simple, in practice it requires lot of time consuming effort. Therefore, once the pre-

processing steps and the requirements are defined, the procedure can be automated.

Figure 10 : Data Preparation Steps

40

In
d
ex

 CPU

MHz

Average

Memory

Consumed

Average

Disk

Read

Average

Disk

Write

Average

Network

Received

Average

Network

Transmitted

Average

PM

Insertion

Time

Software

Metric 1

Software

Metric 2

Software

Metric 3

Software

Metric 4

Software

Metric 5

Software

Metric 6

Software

Metric 7

1 2424.36 12257843 0.00 115.54 2116.63 1716.09 166 2152712 90844 36 3.81 85938579 944 41.39

2 2543.08 12257784 0.00 114.50 2257.83 1729.75 173 2664021 97675 39 3.58 81949077 851 40.55

3 2661.50 12257271 0.00 115.91 2310.33 1747.00 184 2708758 96715 34 3.89 87624156 905 41.35

4 2468.08 12258015 0.00 113.83 2194.58 1708.83 138 2925857 97402 34 3.93 70421815 712 40.88

5 2803.58 12258683 0.25 174.75 2311.83 1798.33 275 3333732 119945 42 3.90 78443863 659 17.40

6 2857.66 12257130 0.00 118.16 2534.83 1801.66 220 3190747 98198 35 4.19 100751303 1016 45.82

7 2561.08 12259054 0.08 114.08 2266.75 1748.00 146 2973978 97492 31 4.03 72923812 748 29.27

8 2358.00 12260766 0.00 111.91 2162.25 1688.66 132 3382847 99634 34 3.82 56891267 571 26.65

… … … … … … … … … … … … … …

… 3175.25 12028907 0.41 123.08 2676.33 1846.41 285 2726081 93318 33 4.55 126446279 1355 41.02

Table 3 : Sample section of data consisting system level metrics (response variables) and software metrics (predictor variables)

41

Handling Missing Values

The raw data set sometimes could have missing measurements due to issues in

data collection framework or service unavailability. These data rows were eliminated

due to unavailability of predictor variables. As these missing measurements were

recorded only in few occurrences during the entire test period, the effect to the dataset

by these eliminations are assumed to be insignificant. The other option was to replace

missing values using average values or most frequently occurring values. Replacing

missing values using averaged values will result in a realistic way as data were

simulated with predefined constant input loads which run a few hours based on the test

plan.

In addition to this there can be cases where only some features are related to

network element types within missing measurements. This scenario occurs when the

given network related load is missing the simulated load and in this case, we would

consider attribute values as zero for the given measurement interval.

Attribute Reduction

Limiting the number of predictor variables is necessary. As original data extracted

contains many attributes related to different network element types and input load

attributes, it is necessary to reduce the number of features to those attributes that are

relevant for modelling purpose. Initially a pre-study was done considering all the

predictor variables and the results was discussed with the domain experts. Based on this

discussion it was suggested to define few composite features by aggregating metrics for

similar network element types to construct models with more generalized features. In

addition to this, some unrelated features were also ruled out based on domain

knowledge. Finally, to select the best feature subset forward selection and backward

elimination was evaluated on the selected feature set.

Performance Data for Modelling

During the initial modelling of the performance variables a few base predictor

algorithms were selected as discussed earlier. As response variables, system level

measurements available by VMware cloud framework were considered due to

42

simplicity and availability of measurements. During the modeling process each

individual response variable (system level metrics) will be modeled against

corresponding predictor variables (software level metrics). As the result for a single

virtual machine, multiple models will be available representing each system level

resource in descriptive way.

System Area Metric name (VMware) Description Unit

CPU cpu_usagemhz_average CPU usage in megahertz during

the interval

MHz

Memory mem_consumed_average Memory Consumed Average KB

Disk read_average Average number of kilobytes

read from the disk during the

interval

KB/s

write_average Average number of kilobytes

written to disk during the

interval

KB/s

Network I/O net_received_average Average rate at which data was

received during the interval

KB/s

net_transmitted_average Average rate at which data was

transmitted during the interval

KB/s

Software

Performance

Management

PM insertion_time Insertion Time Per Hour total seconds

Table 4 : Resource Utilization Metrics List for Modeling (Response Variables) [47]

When constructing performance models, it is important to consider about different

aspects such as physical hardware, software architecture, software system,

interconnections and workload model. These models can be used to analyze the current

and future system performance along with changeable workload and architecture

changes [5]. When determining the response variables, system areas which can

represent all aspects of the computer system were considered as listed in the above

table. These models can be used during the capacity analysis process to determine how

the system will operate under different load conditions.

This research mainly focuses on performance analysis on Network Management

Software system used in the study using machine learning methods. As defined in

43

Section 4 several univariable and multivariable-output techniques were evaluated to

model system performance and reliability of each method was evaluated as supervised

learning problem. These algorithms consist of a set of base predictors popular in data

science and then to evaluate with some more advanced algorithms and comparison of

performance on each method. All these methods claimed to be reliable options in

supervised learning problems with the support of many practical applications in the

literature. To model single performance utilization metric, below univariable-output

algorithms were evaluated:

• Multiple Linear Regression

• Multivariate Adaptive Regression Splines (MARS)

• K-nearest Neighbor (K-NN)

• Random Forest

• Support Vector Regression

In addition to represent all performance utilization metrics using a single

performance model Feedforward Neural Networks (FNN) were evaluated. Further

validity of the models can be evaluated using separate datasets of customer

environments.

Figure 11: Modeling Approach of the Study

44

As per the defined scope of the study, it is intended to study only a subset of the

computation nodes in the Network Management Software system depending on the

business importance (performance management nodes, fault management nodes,

database node). These nodes are selected based on business criticality as modelling all

the nodes will be infeasible during the study period. As a limitation in the current

performance data sets is the software system related measurements (predictor variables)

that are only available in hourly intervals even though resource utilization

measurements (response variables) are available in more granular way (1 min intervals).

As to system analytical performance modelling point of view this might overfit the

models as when averaging the metrics for hourly intervals certain properties of the data

will be lost. By having more fine-grained data intervals more sensitive modelling could

be possible.

5.3. Model Cross Validation

Once the performance models are created the next important stage is to validate

the goodness of the models. Overfitting of models related to its training data is

discussed by [48], [58] when using the same data for both training and subset selection.

In his paper Miller states overfitting is a common problem in every model building

process [42]. Overfitting also could happen when model building process uses the same

dataset for selecting predictor variables and estimating regression coefficients as an

example in a regression model. As a result of overfitted models could explain the

current data more accurately but less performance on other datasets as for a given

customer based on their integrated network elements, work load properties can be

different from test data.

45

Figure 12 : Diagram on Underfit vs Overfit [59]

Sample cases of overfitting and underfitting problem is illustrated in Figure 12

and usage of linear regression with polynomial features to approximate the fit of

nonlinear functions. The plot in green color represent the original function which needs

to be approximated by the model equation and sample data points are displayed in dots.

The models have polynomial features of different degrees. The first plot presents

‘underfitting’ scenario where approximation using linear function (polynomial with

degree 1) which is not sufficient to fit the training samples. The polynomial function

with degree 4 in the second plot approximates the true function almost perfectly.

However, once the degree of the model increases it will overfit the training data and

learns the noise of the training data as well.

To overcome this issue cross validation approaches can be applied by distributing

the training set into multiple randomly selected subsets which follow the distribution of

the data and select separate sample sets for training and validation. In holdout validation

method a dataset is distributed into two separate training and validation samples, usually

70% for training and 30% for validation set. Even though this method is

computationally simple, results could be more biased to data points in the training data

set. More advance version k-fold cross validation method can be used where the dataset

is distributed into k subsets and training and evaluation is repeated k times. Finally,

statistics are calculated using average score function [60]. This method will address the

46

partitioning issue but require more computation processing. To further improve the

results few repetitions of k-fold cross validation method can be used which is supported

by many machine learning library implementations.

In addition to cross validation, during the study the created models were validated

using external environment datasets to check generality of the models against customer

environment data. By validation using multiple datasets the intention was to compare

validation results in different software environments.

5.4. Data Mining Tools Selection

When considering software tools to be used several factors need to be considered

including availability of different algorithms (machine learning libraries), ease of use

and cost. At present many developers and companies are interested in available

opensource software solutions over vendor specific software. One advantage over

choosing opensource tool is flexibility to use and high availability of software libraries

to be used for data analysis. Two famous such technologies are Python programing

framework and R software which are rich in various data analysis tools. Few other

available commercial data mining tools are RapidMiner, MATLAB, SPSS, and SAS.

Based on the above selection criteria, RStudio was chosen as it has a rich user interface

and simplicity to use. Different licenses and prices of RStudio editions are available and

the open source edition of the software was chosen as it is freely available with required

tooling support.

The RStudio integrated development environment (IDE) provides comprehensive

facilities to develop required data mining scripts and to execute them. In addition, R

software is rich with many opensource libraries which already implemented most

machine learning algorithms and techniques. Furthermore, there are plenty of

documentations and samples about using the tools and available libraries which makes it

popular among data scientists,

47

5.5. Model Selection Criteria

R-Squared (R2)

R2 indicates the percentage of the response variable variation that is described by a

linear model and also known as the coefficient of determination. In multiple regression,

this is known as the coefficient of multiple determination. This statistical measure

evaluates the closeness of the data to the fitted regression line.

R2 = (Explained variation / Total variation) x 100 %

Equation 4: Definition of R2

The value of R2 is presented as a percentage value between 0 and 100%. R2 value close

to 0% indicates that the created model does not explain the variability of the response

data around its mean value. On the other hand, value close to 100% indicates that the

created model well explains the variability of the response data around its mean. In

addition, when comparing different data models, higher R2 would be preferred as they

better fit the data.

Root Mean Squared Error (RMSE)

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡̃ − 𝑦𝑡)𝑛

𝑡=1
2

𝑛

𝑦𝑡̃ - Predicted value

𝑦𝑡 - Actual value of response variable

𝑛 - Number of cases

Equation 5: Definition of RMSE

This measurement criterion is frequently used in any modeling processes due to

simplicity. The measurement represented by root mean squared error is the sample

standard deviation of the differences between predicted values by a model and the actual

data observed. If the calculation is based over data sample which is used for estimation,

the difference between predicted and observed data are called residuals. In addition, if

the calculations are computed using out-of-sample, they are called as prediction errors.

48

By aggregating the magnitudes of the RMSE’s, a single measurement which represents

the prediction power can be derived. Further, RMSE is a scale-dependent measurement

and can only be used to compare forecasting errors of different data models

corresponding to a given data set, but not between multiple datasets.

Mean Accuracy Percentage Error (MAPE)

MAPE measures the prediction accuracy of a model and presents it as a

percentage value. This approach is commonly used in trend estimation in statistics.

Based on the definition of this measurement, the measured absolute values are

aggregated and divided by the number of data points. Finally, to make it a percentage

error, the result is multiplied by 100. Although the concept is simple and convincing,

this technique has some weaknesses in practice [62]:

• MAPE cannot be calculated if response variable has zero values

• For high forecast values the percentage error can exceed 100% which sometimes

confuses the results.

• When comparing the accuracy of prediction models, the method tends to select a

method whose forecasts are too low

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=0

𝐴𝑡- Actual value

𝐹𝑡- Predicted value

n - Number of cases

Equation 6: Definition of MAPE

To analyze the output results Table 5 can be used to assist the evaluation based on

estimated values.

49

Measurement Description Good Average Poor

R2 The percentage of explained variance in

data by the model.

≥ 0.8 ≥ 0.6 < 0.6

Residual Mean

Standard Error

An estimator for the standard deviation

of the model, thus representing the

variance left unexplained. Only

comparable between the models

explaining the same response variable.

The

smallest

 ≥

Mean Accuracy

Percentage

Error

Prediction accuracy of the forecasting

method expressed as a percentage

The

smallest

 ≥

Table 5 : Model Evaluation Criteria Using Initial Estimates

50

6. Case Study Findings and Discussion

This study was conducted empirically on network management system software

based on machine learning applications. During this task our focus is to improve the

study compared to earlier feasibility studies and perform more concrete performance

analysis on the software system. This section presents the findings of the research study

based on the evaluated performance models. As discussed in the earlier chapter after

pre-processing the data multiple univariable and multivariable-output algorithms were

used to evaluate the performance by goodness of the resulted models on describing the

data. The result is presented as a set of resource models based on the response variables

against each individual machine learning algorithm. Table 6 shows the summary of the

model results based on evaluated criteria. Even though this study involved modeling

selected set of computer nodes in the network management system, for simplicity

results are only presented on ‘Performance Management’ computer cluster nodes. When

validating created models, a few approaches were evaluated based on the suggestions by

domain experts at Nokia and stated below is a list of these different approaches:

• cross validation by splitting the training set

• separate validation dataset

• 3 customer environment datasets

The result graphs corresponding to validation dataset are presented in Appendix

section of the report based on each response variable.

51

 CPU MHz Average Memory Consumed

Average

Disk I/O Read

Average

Disk I/O Write

Average

Network I/O

Received Average

Network I/O

Transmitted Average

PM Insertion Time

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Multiple Linear

Regression

165.15 0.9014 651907.8 0.1840 5.5270 0.0036 86.266 0.6755 249.44 0.7473 256.38 0.7990 153.06 0.8292

Multivariate

Adaptive

Regression Spline

131.56 0.9362 541079.3 0.4301 6.0647 0.0070 77.935 0.7408 138.59 0.9217 180.47 0.8985 131.84 0.8759

K-Nearest

Neighbors

128.37 0.9401 541122.2 0.4381 6.1446 0.0022 75.803 0.7573 112.58 0.9483 178.91 0.9022 126.61 0.8846

Random Forest 114.90 0.9520 518124.5 0.4874 6.0525 0.0011 74.279 0.7654 100.84 0.9581 171.75 0.9089 120.92 0.8936

SVR Polynomial

Kernel

129.30 0.9396 674781.0 0.2649 5.6386 0.0006 77.877 0.7457 137.91 0.9234 179.80 0.8990 138.93 0.8610

SVR Radial Basis

Function Kernel

122.96 0.9458 650996.7 0.2950 5.1167 0.0014 73.580 0.7667 125.72 0.9368 192.78 0.8883 117.49 0.9036

FFN (6) 223.76 N/A 982117.9 N/A 6.4371 N/A 135.07 N/A 192.17 N/A 357.27 N/A 940.83 N/A

FFN (10) 202.45 N/A 876971.7 N/A 6.3225 N/A 129.65 N/A 160.34 N/A 321.33 N/A 948.71 N/A

FFN (10, 6) 189.53 N/A 814381.1 N/A 6.3202 N/A 122.45 N/A 125.89 N/A 304.81 N/A 949.58 N/A

FFN (10, 6, 6) 181.77 N/A 777504.3 N/A 6.2851 N/A 123.05 N/A 121.32 N/A 306.98 N/A 950.98 N/A

Table 6 : Model Result Summary

52

As opposed to the previous study conducted on network management system, this

experiment was done to overcome some limitations of the earlier research. As discussed

in earlier chapter there was limitations on number of evaluated methods, ability to

collect software related metrics and availability of customer datasets to compare

performance. To overcome the earlier limitations, total of 85 different load profiles were

run against the software system to collect a good enough training dataset and several

machine learning algorithms were used to construct performance models which

represent different system resource utilization metrics. Further validation of models was

conducted in addition using a separate test dataset to evaluate the models using three

customer datasets from separate system environments.

Results of the disk I/O read average (R2 ~ 0.7%) is not be presented in the report

as the model is weak and will not explain the data properly due to less variation in the

measurement values. In memory consumption there also can be less variation on

measurements due to its cached and buffered components. Technically this due to Linux

operating system borrowing unused memory for disk caching to improve its

performance and makes the system faster and more responsive [62]. Due to this reason

measured memory consumption will represent higher measurement value irrespective of

its actual operational use by the software application. The model representing memory

consumed average shows moderate R2 (~ 48.7%) value compared to other models.

Conclusions made from each result set will be presented based on univariable-

output models and multivariable-output models for convenience. Table 7 represents the

evaluation result summary of the regression models based on their performance against

test data set. The models are related to regression analysis of performance utilization

metrics when evaluating the created models RMSE were used. In addition to this MAPE

is also listed in the table due to simplicity to understand, even though it is a biased

measurement based on measurement values.

53

Algorithm Name

CPU Average

(MHz)

RMSE (MAPE)

Memory

Consumed

Average (MB)

RMSE (MAPE)

Disk I/O Write

Average (KB/s)

RMSE (MAPE)

Network I/O

Received Average

(KB/s)

RMSE (MAPE)

Network I/O

Transmitted Average

(KB/s)

RMSE (MAPE)

PM Insertion

Time (s)

RMSE (MAPE)

Linear Regression 205.51 (7.06%) 804.748 (6.11%) 106.07 (34.63%) 300.38 (16.82%) 436.85 (18.29%) 143.77 (184.8%)

MARS 194.27 (5.92%) 696.701 (5.10%) 87.21 (27.91%) 327.75 (14.44%) 285.60 (14.23%) 168.36 (219.9%)

K-NN 251.40 (7.31%) 715.199 (4.56%) 88.85 (24.6%) 237.20 (11.02%) 442.01 (13.47%) 216.20 (27.45%)

Random Forest 281.29 (8.13%) 699.140 (4.66%) 100.04 (28.56%) 231.05 (10.90%) 431.59 (12.51%) 208.74 (26.33%)

SVR (Polynomial

Kernel)

183.21 (5.20%) 894.511 (5.76%) 66.89 (21.22%) 245.58 (11.21%) 421.14 (14.54%) 166.63 (237.8%)

SVR (Radial Basis

Function Kernel)

214.88 (6.32%) 956.556 (6.28%) 74.12 (23.36%) 255.09 (13.21%) 414.92 (14.06%) 197.71 (339.4%)

FFN (6) 173.68 (4.68%) 695.119 (4.64%) 85.25 (25.88%) 100.20 (4.26%) 496.30 (16.06%) 148.27 (159.4%)

FFN (10) 179.73 (4.54%) 777.832 (4.90%) 89.75 (25.76%) 97.49 (4.19%) 502.12 (15.52%) 166.98 (85.65%)

FFN (10, 6) 226.76 (5.95%) 702.149 (4.27%) 73.01 (20.14%) 116.84 (4.66%) 454.50 (12.11%) 156.01 (182.1%)

FFN (10, 6, 6) 174.99 (4.56%) 741.571 (4.59%) 69.28 (19.56%) 101.02 (3.15%) 422.16 (12.71%) 179.11 (241.1%)

Table 7 : Summary of Machine Learning Methods Against Test Dataset (Method with the lowest RMSE is highlighted in bold)

54

Figure 13: RMSE Comparison of CPU Average

Figure 14 : RMSE Comparison of Memory Consumed Average

Figure 15: RMSE Comparison of Disk Write Average

0

50

100

150

200

250

300

CPU MHz Average

RMSE COMPARISON

Linear Regression MARS K-NN Random Forest SVR (Polynomial)

SVR (Radial Basis) FFN (6) FFN (10) FFN (10,6) FFN (10,6,6)

0

200

400

600

800

1000

1200

Memory Consumed Average

RMSE COMPARISON

Linear Regression MARS K-NN Random Forest SVR (Polynomial)

SVR (Radial Basis) FFN (6) FFN (10) FFN (10,6) FFN (10,6,6)

0

20

40

60

80

100

120

Disk I/O Write Average

RMSE COMPARISON

Linear Regression MARS K-NN Random Forest SVR (Polynomial)

SVR (Radial Basis) FFN (6) FFN (10) FFN (10,6) FFN (10,6,6)

55

Figure 16: RMSE Comparison of Network Received Average

Figure 17: RMSE Comparison of Network Transmitted Average

Figure 18: RMSE Comparison of PM Insertion Time

0

50

100

150

200

250

300

350

Network I/O Received Average

RMSE COMPARISON

Linear Regression MARS K-NN Random Forest SVR (Polynomial)

SVR (Radial Basis) FFN (6) FFN (10) FFN (10,6) FFN (10,6,6)

0

100

200

300

400

500

600

Network I/O Transmitted Average

RMSE COMPARISON

Linear Regression MARS K-NN Random Forest SVR (Polynomial)

SVR (Radial Basis) FFN (6) FFN (10) FFN (10,6) FFN (10,6,6)

0

50

100

150

200

250

PM Insertion Time

RMSE COMPARISON

Linear Regression MARS K-NN Random Forest SVR (Polynomial)

SVR (Radial Basis) FFN (6) FFN (10) FFN (10,6) FFN (10,6,6)

56

Figure 13 to 18 shows RMSE comparison among different machine learning

algorithms. When evaluating performance of system along with the goodness of

performance simplicity and applicability of the models is also important in real

operations. Considering the results of univariable-output models, it is implicated that no

single algorithm performs best for all resource models. In addition, compared to all

other response variables ‘PM Insertion Time’ does not perform well with respect to

percentage accuracy values and this is due to the biasness of the MAPE measurement

where it causes high percentage error values with small insertion time measurements.

Apart from this all models performed well based on the performance criteria’s.

On the other hand, not only feed forward neural networks perform well with low

RMSE and MAPE values, since they are multivariable output methods there is

advantage of having single model to represent all output metrics. Based on the results

the feedforward network with 1 hidden layer with 6 neurons performs well overall as

RMSE and MAPE are comparatively low on many resource utilization models. Also, it

can be seen that performance of the networks slightly decreases when number of nodes

increase but possibly due to limited training data points to train the network completely.

Since current training dataset includes limited number of data points, there are

limitations when training larger networks which could not properly learn all its weights.

57

7. Conclusion

The aim of the study was to assess machine learning applicability on capacity

estimation of network management system software by modelling its performance

utilizations. To accomplish this, following research objectives were set which laid the

foundation for the study:

Objective 1: Modelling resource utilization and responsiveness of the system

Performance prediction using the created models for lab environments performed

well with percentage error on CPU MHz average ~ 4.68%, Memory Consumption

Average ~ 4.64%, Disk Write Average ~ 4.19% Network Received Average ~ 4.19%

and Network Transmitted Average ~ 14%. Modeling on ‘Disk I/O Read Average’ was

not considered as it cannot be modeled due to low variation in measured values and low

R2 values on models corresponding to these predictor variables. Also, the models based

on artificial neural networks are well fitting with the lab data samples creating

multivariable-output models with better performance values compared to univariable-

output utilization models.

The overall evaluation results show that application of machine learning

techniques have the potential of modeling system resource utilizations. To evaluate

performance of these exploratory models, RMSE and MAPE were considered.

Performance of system level resource models were evaluated across test environment

and customer data. Finally, the results were evaluated based on R2, RMSE and

percentage accuracy levels against the learning method.

The comparison of results on test environment shows, that no single learning

technique performed best on modeling all given metrics in univariable-output utilization

models. Support Vector Machines with Polynomial Kernel seems to perform

comparatively well on univariable-output models. As there wasn’t any single best

method to have highest performance, an ensemble method could be evaluated for further

improvements. Furthermore, feedforward neural networks with multivariable output

models seems to perform well compared to all other techniques with low RMSE and

MAPE values.

58

Objective 2: Understand performance bottlenecks of the system

Firstly, we noticed some inconsistency among load balancing on PM nodes where first

node in the cluster always processes more counters when increasing the system load.

This can be identifiable when observing the resource utilization graphs over time.

Secondly, even though the system load on customer environments are less variating

again initial cluster nodes indicate more resource utilizations compared to remaining

nodes under uniform input load. When comparing lab vs customer environments,

response time on PM data flow (insertion time) is comparatively high on lab

environments compared to customer datasets. These points highlight some performance

inconsistencies in the current software system which needs insight analysis on system

architecture and layout.

Objective 3: Understand limitations of current metrics used for system modelling

In the process of validating the models against performance data on customer

environments, more deviations were observed on predicted results compared to actual

resource utilization measurements. One reason for this being properties of the current

training data set generated using test simulators are sometimes different from customer

data as the test simulators are designed for capacity test of the software system. When

comparing the simulated data against customer data we could see that file sizes, byte

sizes in measurements and counter rates are different among the environments.

On the other hand, predictive results were deviated in customer datasets compared

to the lab environment in which training samples were collected. The models perform

variably on different customer datasets as properties of the input data vary depending on

the environment. Furthermore, as we used the training data set to feature selection and

train the models it is inevitable that the created utilization models will be overfit to the

training data set. This implies the requirement of further study on finding the

explanations for variation in performance of different data sets. In addition, constructing

a training dataset with more feature variations could lead to better performance results

to the problem.

Limitations in the current study

Network management system is a large distributed software which consists of

many dataflows and over 50 virtual machine instances. Due to this complexity,

59

modelling each entity would require a huge effort in practice. As the initial study the

PM data flow was selected depending on its importance to the business. Further studies

about other system components are expected to be conducted in next iterations, which is

out of the scope of this study. When defining the scope of the study it was agreed to

only consider system level (IaaS) resource metrics by selecting CPU utilization,

memory consumption, disk I/O operation averages and Network I/O operation averages

at this stage. In addition, PM insertion time was considered as a measure of

responsiveness of the dataflow.

As the training data mainly consist of simulated workloads, temporal relationships

among data points cannot be studies. Due to this reason, recurrent neural networks

(RNN) were not evaluated in this experiment. Further during the timeframe of the study

only few sets of customer data was available to analyze exploratory analyze the data and

to validate the models against them. In future it is expected to collect more datasets by

collaborating with the customers and to improve performance analysis of the software in

general.

Future work and recommendations

Data mining is a continuous learning process where results need to be improved

iteratively depending on the research objectives. Further, in an iterative study we can

recognize important facts that have been left out during the initial planning, once

additional data and domain knowledge is collected. To improve the results further, more

advanced data preparation steps, modeling techniques and more involvement from

domain experts are required. In addition, continuous improvements can lead to results

with high accuracy. In this section possible future study areas are discussed which were

identified during the study:

• The results show that apart from the data collected from the lab environment,

predicted performance varies across customer datasets which represent different

company’s data. Since different mobile technologies are used in operator

companies depending on their business, the properties of input data processed in

network management system can be different in nature. This nature of system

data produces dissimilar resource utilization measurements which needs further

study.

60

• During the testing of created models against customer datasets more deviations

were noticed on the predictive results compared to lab environments. Some

reasons were that models are overfitting to training data where in customer

datasets certain properties of data (file sizes, file rates, size per counter etc.) are

different between compared to lab environment. To overcome this further

generalized training dataset should be created, which aligns with customer data

cases to model generalized results to improve accuracy.

• In future, with the availability of continuous customer datasets which spreads

through longer time periods, additional studies to understand trends, cycles, busy

hours for a given customer can be done using time series analysis and load

prediction techniques.

• Based on its design network management system software is heavily dependent

on underlying database operations and further analysis of its effect on system

performance can be studied. Along with this study certain system

responsiveness metrics can also be studied using dataflow response times and

insertion times.

• This study was mainly based on system level resource measurements (IaaS

layer) as defined in the scope. Next, the scope can be further extended to

incorporate platform level (PaaS) and software level (SaaS) resource utilizations

metrics and attributes.

• Based on the current data models, baseline performance levels can be defined for

a given software version. This information can be used in future performance

comparisons against different software versions to evaluate any capacity

deviations against different versions.

• The results can be used by domain experts to define dimensioning properties or

requirements based on system level resource usages to ensure required amount

of system performance.

Overall, the current methods and the results of the study help to define the

foundation for future studies. In conclusion, from the results and the findings of the

61

study, one could find insight and information about the network management system

and about its resource usages to understand system’s capacity analysis in data intensive

way. This was the main objective of the study and the solution provides the necessary

information to the company.

62

References

[1] X. Ge et al, "Vehicular Communications for 5G Cooperative Small-Cell

Networks," IEEE Transactions on Vehicular Technology, vol. 65, No. 10, pp. 7882-

7894, 2016.

[2] J. Hamilton, "Cooperative expendable micro-slice servers (CEMS): Low cost, low

power servers for internet-scale services," in Conference on Innovative Data Systems

Research, 2009. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.479.8900&rep=rep1&type=p

df

[3] A. Greenberg et al, "The cost of a cloud: research problems in data center

networks," ACM SIGCOMM Computer Communication Review, vol. 39, No. 1, pp. 68-

73, 2008. Available: http://dl.acm.org.helios.uta.fi/citation.cfm?id=1496091.1496103.

[4] C. Richardson. “What are microservices?” [Online].

Available: http://microservices.io/index.html. [Accessed: Dec. 12, 2018].

[5] J. A. Aries et al, "Capacity and performance analysis of distributed enterprise

systems," Communications of the ACM, vol. 45, No. 6, pp. 100-105, 2002.

Available: http://dl.acm.org.helios.uta.fi/citation.cfm?id=508448.508455.

[6] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. New York, NY: John

Wiley & Sons, 1990.

[7] Wei-Hua Bai et al, "Performance Analysis of Heterogeneous Data Centers in Cloud

Computing Using a Complex Queuing Model," Mathematical Problems in

Engineering, vol. 2015, pp. 1-15, 2015.

Available: http://dx.doi.org/10.1155/2015/980945.

[8] [2] S. El Kafhali and K. Salah, "Performance analysis of multi-core VMs hosting

cloud SaaS applications," Computer Standards & Interfaces, vol. 55, pp. 126-135, 2018.

Available: https://www.sciencedirect.com/science/article/pii/S092054891730048X.

[9] Xiwei Qiu, Liang Luo and Yanping Xiang, "Performance Evaluation of a Cloud

Service Considering Hierarchical Failure Recovery," International Journal of

Performability Engineering, vol. 12, (2), pp. 197, 2016.

Available: https://search.proquest.com/docview/1786565910.

[10] X. Qiu et al, "Performability analysis of a cloud system," in Computing and

Communications Conference (IPCCC), 2015 IEEE 34th International

Performance, 2015.

[11] Y. Bai, H. Zhang and Y. Fu, "Reliability modeling and analysis of cloud service

based on complex network," in 2016,

Available: https://ieeexplore.ieee.org/document/7819907.

[12] Afkham Azeez, " Autoscaling Web Services on Amazon EC2", M. S. thesis,

University of Moratuwa, Moratuwa, Sri Lanka. 2008.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.479.8900&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.479.8900&rep=rep1&type=pdf
http://dl.acm.org.helios.uta.fi/citation.cfm?id=1496091.1496103
http://microservices.io/index.html
http://dl.acm.org.helios.uta.fi/citation.cfm?id=508448.508455
http://dx.doi.org/10.1155/2015/980945
https://www.sciencedirect.com/science/article/pii/S092054891730048X
https://search.proquest.com/docview/1786565910
https://ieeexplore.ieee.org/document/7819907

63

[13] C. Chassot et al, "Performance analysis for an IP differentiated services network,"

in Communications, 2002. ICC 2002. IEEE International Conference On, 2002.

Available: https://ieeexplore.ieee.org/document/997000.

[14] D. A. Menasce and E. Casalicchio, "A framework for resource allocation in grid

computing." in Mascots, 2004.

Available: https://ieeexplore.ieee.org/document/1348280.

[15] S. Penmatsa and A. T. Chronopoulos, "Price-based user-optimal job allocation

scheme for grid systems," in Parallel and Distributed Processing Symposium, 2006.

IPDPS 2006. 20th International, 2006.

Available: https://ieeexplore.ieee.org/document/1639653.

[16] K. Xiong and H. Perros, "SLA-based resource allocation in cluster computing

systems," in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium On, 2008.

Available: https://ieeexplore.ieee.org/document/4536272.

[17] S. Kundu et al, "Application performance modeling in a virtualized environment,"

in January 2010. Available: https://ieeexplore.ieee.org/document/5463058.

[18] P. A. Dinda and D. R. O'Hallaron, "Host load prediction using linear

models," Cluster Computing, vol. 3, No. 4, pp. 265-280, 2000. Available: https://link-

springer-com.helios.uta.fi/article/10.1023/A:1019048724544.

[19] C. Stewart and K. Shen, "Performance modeling and system management for

multi-component online services," in 2005,

Available: http://dl.acm.org/citation.cfm?id=1251203.1251209.

[20] Christopher Stewart Terence Kelly Alex Zhang Kai Shen and U R HP L, "A Dollar

from 15 Cents: Cross-Platform Management for Internet Services".

[21] T. Wood et al, "Profiling and modeling resource usage of virtualized applications,"

in Proceedings of the 9th ACM/IFIP/USENIX International Conference on

Middleware, pp. 366-387, 2008.

[22] E. Caron, F. Desprez and A. Muresan, "Pattern Matching Based Forecast of Non-

Periodic Repetitive Behavior for Cloud Clients," J Grid Computing, vol. 9, No. 1, pp.

49-64, 2011. Available: https://hal.inria.fr/hal-01426826.

[23] H. Kim, W. Kim and Y. Kim, "A pattern-based prediction model for dynamic

resource provisioning in cloud environment," KSII Transactions on Internet and

Information Systems (TIIS), vol. 5, No. 10, pp. 1712-1732, 2011.

[24] S. Di, D. Kondo and W. Cirne, "Host load prediction in a google compute cloud

with a bayesian model," in High Performance Computing, Networking, Storage and

Analysis (SC), 2012 International Conference For, 2012.

Available: http://dl.acm.org/citation.cfm?id=2389025.

[25] J. Cao et al, "CPU load prediction for cloud environment based on a dynamic

ensemble model," Software: Practice and Experience, vol. 44, No. 7, pp. 793-804,

2014.

https://ieeexplore.ieee.org/document/997000
https://ieeexplore.ieee.org/document/1348280
https://ieeexplore.ieee.org/document/1639653
https://ieeexplore.ieee.org/document/4536272
https://ieeexplore.ieee.org/document/5463058
https://link-springer-com.helios.uta.fi/article/10.1023/A:1019048724544
https://link-springer-com.helios.uta.fi/article/10.1023/A:1019048724544
http://dl.acm.org/citation.cfm?id=1251203.1251209
https://hal.inria.fr/hal-01426826
http://dl.acm.org/citation.cfm?id=2389025

64

[26] N. Kourentzes, D. K. Barrow and S. F. Crone, "Neural network ensemble operators

for time series forecasting," Expert Systems with Applications, vol. 41, No. 9, pp. 4235-

4244, 2014.

[27] J. Jheng et al, "A novel VM workload prediction using grey forecasting model in

cloud data center," in Information Networking (ICOIN), 2014 International Conference

On, 2014. Available: https://ieeexplore.ieee.org/document/6799662.

[28] R. Wolski, N. Spring and J. Hayes, "Predicting the cpu availability of time-shared

unix systems on the computational grid," in High Performance Distributed Computing,

1999. Proceedings. the Eighth International Symposium On, 1999.

Available: https://ieeexplore.ieee.org/document/805288.

[29] K. Tuisku, "Network Management System Dimensioning with Performance Data”,

M. S. thesis, University of Tampere, Tampere, Finland, 2016.

[30] Computer Security Division, Information Technology Laboratory. Cloud

Computing | CSRC. Available: https://csrc.nist.gov/projects/cloud-computing.

[Accessed: Nov. 12, 2017].

[31] A. Balalaie, A. Heydarnoori and P. Jamshidi, "Migrating to cloud-native

architectures using microservices: An experience report," in European Conference on

Service-Oriented and Cloud Computing, pp. 201-215, 2015.

[32] International Organization for Standardization. Information Processing Systems -

Open Systems Interconnection - Basic Reference Model - Part 4: Management

Framework ISO/IEC 7498-4:1989.

[33] Nokia Networks, “NetAct Architecture Description”, [Unpublished intranet

content]. [Accessed: Sep. 12, 2017].

[34] Architectural and Framework Standards: The TMN/FCAPS Model (ITU-T).

[Online].

Available: http://etutorials.org/Networking/network+management/Part+I+Data+Collecti

on+and+Methodology+Standards/Chapter+3.+Accounting+and+Performance+Standard

s+and+Definitions/Architectural+and+Framework+Standards+The+TMN+FCAPS+Mo

del+ITU-T/. [Accessed Oct. 13, 2017].

[35] Software Metrics. [Online].

Available: http://www.sqa.net/softwarequalitymetrics.html. [Accessed Nov. 14, 2017].

[36] Gordon Haff, "That's not a metric! Data for cloud-native success," 2017. [Online].

Available: https://www.slideshare.net/ghaff/thats-not-a-metric-data-for-cloudnative-

success. [Accessed Nov. 14, 2017].

[37] S. Wu, T. J. Harris and K. B. McAuley, "The use of simplified or misspecified

models: linear case," The Canadian Journal of Chemical Engineering, vol. 85, No.

4, pp. 386-398, 2007.

[38] G. Shmueli and O. R. Koppius, "Predictive analytics in information systems

research," Mis Quarterly, pp. 553-572, 2011.

https://ieeexplore.ieee.org/document/6799662
https://ieeexplore.ieee.org/document/805288
https://csrc.nist.gov/projects/cloud-computing
http://www.sqa.net/softwarequalitymetrics.html
https://www.slideshare.net/ghaff/thats-not-a-metric-data-for-cloudnative-success
https://www.slideshare.net/ghaff/thats-not-a-metric-data-for-cloudnative-success

65

[39] Chid Apte, "The Role of Data Mining in Business Optimization," IBM Research

2008. [Online]. Available: https://www.siam.org/meetings/sdm11/apte.pdf [Accessed

Nov. 20, 2017].

[40] G. M. Weiss, "Data mining in the real world: Experiences, challenges, and

recommendations." in DMIN, 2009, pp. 124-130.

[41] I. Guyon and A. Elisseeff, "An introduction to variable and feature

selection," Journal of Machine Learning Research, vol. 3, (Mar), pp. 1157-1182, 2003.

[42] A. Miller, Subset Selection in Regression. CRC Press, 2002.

[43] M. D. Assunção et al, "Big Data computing and clouds: Trends and future

directions," Journal of Parallel and Distributed Computing, vol. 79, pp. 3-15, 2015.

[44] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, "From data mining to knowledge

discovery in databases," AI Magazine, vol. 17, No. 3, pp. 37, 1996.

[45] Y. Ramamohan et al, "A study of data mining tools in knowledge discovery

process," International Journal of Soft Computing and Engineering (IJSCE) ISSN, pp.

2231-2307, 2012.

[46] S. B. Kotsiantis, I. D. Zaharakis and P. E. Pintelas, "Machine learning: a review of

classification and combining techniques," Artificial Intelligence Review, vol. 26, No.

3, pp. 159-190, 2006.

[47] Managed Object - PerformanceManager [Online]. Available:

https://www.vmware.com/support/developer/converter-

sdk/conv61_apireference/vim.PerformanceManager.html. [Accessed Nov. 10, 2017].

[48] D. J. Hand, "Principles of data mining," Drug Safety, vol. 30, No. 7, pp. 621-622,

2007.

[49] Y. Fujikoshi, V. V. Ulyanov and R. Shimizu, Multivariate Statistics: High-

Dimensional and Large-Sample Approximations. John Wiley & Sons; 2011 Aug 15.

[50] A. S. Goldberger, A Course in Econometrics. Harvard University Press; 1991.

[51] G. S. Maddala and K. Lahiri, Introduction to Econometrics. New York: Macmillan;

1992.

[52] G. Guo et al, "KNN model-based approach in classification," in OTM

Confederated International Conferences" on the Move to Meaningful Internet Systems",

pp. 986-996, 2003.

[53] K Nearest Neighbors - Regression. [Online].

Available: http://www.saedsayad.com/k_nearest_neighbors_reg.htm. [Accessed Nov.

20, 2017].

[54] Random Forest. [Online]. Available: https://en.wikipedia.org/wiki/Random_forest.

[Accessed Nov. 20, 2017].

[55] Support Vector Regression. [Online].

Available: http://www.saedsayad.com/support_vector_machine_reg.htm. [Accessed

Nov. 20, 2017].

https://www.siam.org/meetings/sdm11/apte.pdf
https://www.vmware.com/support/developer/converter-sdk/conv61_apireference/vim.PerformanceManager.html
https://www.vmware.com/support/developer/converter-sdk/conv61_apireference/vim.PerformanceManager.html
http://www.saedsayad.com/k_nearest_neighbors_reg.htm
https://en.wikipedia.org/wiki/Random_forest
http://www.saedsayad.com/support_vector_machine_reg.htm

66

[56] Artificial Neural Network. [Online].

Available: http://www.saedsayad.com/artificial_neural_network.htm. [Accessed Nov.

20, 2017].

[57] B. Wescott, Every Computer Performance Book: How to Avoid and Solve

Performance Problems on the Computers You Work With. (1st ed.) CreateSpace

Independent Publishing Platform; 2013

[58] S. Arlot and A. Celisse, "A survey of cross-validation procedures for model

selection," Statistics Surveys, vol. 4, pp. 40-79, 2010.

[59] Underfitting vs. Overfitting — scikit-learn documentation. [Online].

Available: http://scikit-learn.org/0.15/auto_examples/plot_underfitting_overfitting.html.

[Accessed Dec. 05, 2017].

[60] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and

model selection," International Joint Conference on Artificial Intelligence (Vol. 14, No.

2, pp. 1137-1145, 1995.

[61] C. Tofallis, "A better measure of relative prediction accuracy for model selection

and model estimation," Journal of the Operational Research Society, vol. 66, (8), pp.

1352-1362, 2015.

[62] “Linux Ate My Ram" [Online]. Available: https://www.linuxatemyram.com.

[Accessed Jan. 08, 2018].

http://www.saedsayad.com/artificial_neural_network.htm
http://scikit-learn.org/0.15/auto_examples/plot_underfitting_overfitting.html
https://www.linuxatemyram.com/

67

Appendix

Modeling Results

The results from Table 8 to Table 13 presents the actual and predicted results

corresponding to different modeling algorithm on validation dataset. Additionally,

RMSE, MAE and MAPE values are also presented for each case. In the validation result

graphs, color blue represents actual resource usage values and color red represents

predicted usages by the models. These results helped during the experiment to decide

the suitable modeling technique against each response variable.

68

CPU MHz Average

Linear Regression with Stepwise Selection

RMSE 205.51 MAE 178.87 MAPE 7.06%

Multivariate Adaptive Regression Spline

RMSE 194.27 MAE 194.27 MAPE 5.92%

69

K-Nearest Neighbors

RMSE 251.40 MAE 199.26 MAPE 7.31%

Random Forest

RMSE 281.29 MAE 222.49 MAPE 8.13%

70

Support Vector Machines with Polynomial Kernel

RMSE 183.21 MAE 131.83 MAPE 5.20%

Support Vector Machines with Radial Basis Function Kernel

RMSE 214.88 MAE 162.48 MAPE 6.32%

71

Feed Forward Network - 1 Hidden Layer with (6) Nodes

RMSE 173.68 MAE 127.62 MAPE 4.68%

Feed Forward Network - 1 Hidden Layer with (8) Nodes

RMSE 179.72 MAE 124.05 MAPE 4.53%

72

Feed Forward Network - 2 Hidden Layers with (10,6) Nodes

RMSE 226.76 MAE 163.02 MAPE 5.95%

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes

RMSE 174.99 MAE 122.89 MAPE 4.56%

Table 8 - Validation Results of CPU Utilization Average

73

Memory Consumed Average

Linear Regression with Stepwise Selection

RMSE 804748.3 MAE 677964.2 MAPE 6.11%

Multivariate Adaptive Regression Spline

RMSE 696701.8 MAE 567727.9 MAPE 5.10%

74

K-Nearest Neighbors

RMSE 715199.3 MAE 495504.1 MAPE 4.56%

Random Forest

RMSE 699140.2 MAE 507653.1 MAPE 4.66%

75

Support Vector Machines with Polynomial Kernel

RMSE 894511.3 MAE 611632.3 MAPE 5.76%

Support Vector Machines with Radial Basis Function Kernel

RMSE 956556.6 MAE 671179.8 MAPE 6.28%

76

Feed Forward Network - 1 Hidden Layer with (6) Nodes

RMSE 695119.37 MAE 504097.62 MAPE 4.64%

Feed Forward Network - 1 Hidden Layer with (8) Nodes

RMSE 777832.43 MAE 530865.22 MAPE 4.89%

77

Feed Forward Network - 2 Hidden Layers with (10,6) Nodes

RMSE 702149.94 MAE 459227.58 MAPE 4.26%

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes

RMSE 741571.30 MAE 498002.61 MAPE 4.58%

Table 9 - Validation Results of Memory Consumed Average

78

Disk I/O Write Average

Linear Regression with Stepwise Selection

RMSE 106.07 MAE 76.32 MAPE 34.63%

Multivariate Adaptive Regression Spline

RMSE 87.21 MAE 63.35 MAPE 27.91%

79

K-Nearest Neighbors

RMSE 88.85 MAE 59.91 MAPE 24.6%

Random Forest

RMSE 100.04 MAE 69.29 MAPE 28.56%

80

Support Vector Machines with Polynomial Kernel

RMSE 66.89 MAE 47.70 MAPE 21.22%

Support Vector Machines with Radial Basis Function Kernel

RMSE 74.12 MAE 52.44 MAPE 23.36%

81

Feed Forward Network - 1 Hidden Layer with (6) Nodes

RMSE 85.25 MAE 59.21 MAPE 25.88%

Feed Forward Network - 1 Hidden Layer with (10) Nodes

RMSE 89.74 MAE 61.62 MAPE 25.75%

82

Feed Forward Network - 2 Hidden Layers with (10,6) Nodes

RMSE 73.00 MAE 47.00 MAPE 4.26%

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes

RMSE 69.27 MAE 45.16 MAPE 19.58%

Table 10 - Validation Results of Disk I/O Write Average

83

Network I/O Received Average

Linear Regression with Stepwise Selection

RMSE 300.38 MAE 199.56 MAPE 16.82%

Multivariate Adaptive Regression Spline

RMSE 327.75 MAE 237.57 MAPE 14.44%

84

K-Nearest Neighbors

RMSE 237.20 MAE 166.89 MAPE 11.02%

Random Forest

RMSE 231.05 MAE 159.40 MAPE 12.21%

85

Support Vector Machines with Polynomial Kernel

RMSE 245.58 MAE 157.68 MAPE 11.21%

Support Vector Machines with Radial Basis Function Kernel

RMSE 255.09 MAE 199.56 MAPE 13.21%

86

Feed Forward Network - 1 Hidden Layer with (6) Nodes

RMSE 100.20 MAE 65.22 MAPE 4.26%

Feed Forward Network - 1 Hidden Layer with (10) Nodes

RMSE 97.48 MAE 67.35 MAPE 4.18%

87

Feed Forward Network - 2 Hidden Layers with (10,6) Nodes

RMSE 116.84 MAE 80.98 MAPE 4.66%

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes

RMSE 101.02 MAE 54.78 MAPE 3.14%

Table 11 : Validation Results of Network I/O Received Average

88

Network I/O Transmitted Average

Linear Regression with Stepwise Selection

RMSE 436.85 MAE 333.58 MAPE 18.29%

Multivariate Adaptive Regression Spline

RMSE 285.60 MAE 436.60 MAPE 14.23%

89

K-Nearest Neighbors

RMSE 442.01 MAE 281.17 MAPE 13.47%

Random Forest

RMSE 431.59 MAE 281.66 MAPE 12.51%

90

Support Vector Machines with Polynomial Kernel

RMSE 421.14 MAE 284.41 MAPE 14.54%

Support Vector Machines with Radial Basis Function Kernel

RMSE 414.92 MAE 279.37 MAPE 14.06%

91

Feed Forward Network - 1 Hidden Layer with (6) Nodes

RMSE 496.30 MAE 333.34 MAPE 16.06%

Feed Forward Network - 1 Hidden Layer with (10) Nodes

RMSE 502.12 MAE 330.78 MAPE 15.51%

92

Feed Forward Network - 2 Hidden Layers with (10,6) Nodes

RMSE 454.49 MAE 274.28 MAPE 12.11%

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes

RMSE 422.16 MAE 269.92 MAPE 12.70%

Table 12 : Validation Results of Network I/O Transmitted Average

93

Insertion Time Average

Linear Regression with Stepwise Selection

RMSE 143.77 MAE 104.45 MAPE 184.8%

Multivariate Adaptive Regression Spline

RMSE 168.36 MAE 115.13 MAPE 219.9%

94

K-Nearest Neighbors

RMSE 216.20 MAE 152.01 MAPE 27.45%

Random Forest

RMSE 208.74 MAE 148.45 MAPE 26.33%

95

Support Vector Machines with Polynomial Kernel

RMSE 166.63 MAE 118.27 MAPE 237.8%

Support Vector Machines with Radial Basis Function Kernel

RMSE 197.71 MAE 142.82 MAPE 339.4%

96

Feed Forward Network - 1 Hidden Layer with (6) Nodes

RMSE 148.27 MAE 103.97 MAPE 159.4%

Feed Forward Network - 1 Hidden Layer with (10) Nodes

RMSE 166.98 MAE 112.44 MAPE 85.65%

97

Feed Forward Network - 2 Hidden Layers with (10,6) Nodes

RMSE 156.01 MAE 104.72 MAPE 182.1%

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes

RMSE 179.11 MAE 125.67 MAPE 241.1%

Table 13 : Validation Results of PM Insertion Time Average

