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Businesses have legacy distributed software systems which are out of traditional data 

analysis methods due to their complexities. In addition, the software systems evolve and 

become complex to understand even with the knowledge of system architecture. Machine 

learning and big data analytic techniques are widely used in many technical domains to get 

insight from this large business data due to performance and accuracy. This study was 

conducted to investigate the applicability of machine learning techniques on performance 

utilization modelling on Nokia’s network management system. The objective was to study 

and develop resource utilization models based on system performance data and to study 

future business needs on capacity analysis of the software performance to minimize manual 

tasks. 

The performance data was extracted from network management system software 

which contains resource usages on system level and component level measurements based 

on input load. In general, the simulated load on a network management system is uniform 

with less variance. To overcome this during the research, different load profiles were 

simulated on the system to assess its performance. Later the data was processed and 

evaluated using set of machine learning techniques (linear regression, MARS, K-NN, 

random forest, SVR and feed forward neural networks) to construct resource utilization 

models. Further, the goodness of developed models was evaluated on simulated test and 

customer data. 

Overall, no single algorithm performed best on all resource entities, but neural 

networks performed well on most response variables as a multivariable output model. 

However, when comparing performance across customer and test datasets, there were some 

differences which were also studied. Overall, the results show the feasibility on modeling 

system resource that can be used in capacity analysis. In future iterations, further analysis 

on remaining system nodes and suggestions have been made in the report.  

Keywords and terms: Statistical modeling, machine learning, performance analysis, 

network management system. 
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1. Introduction 

The development of mobile and radio networks has heightened the need for 

evolution on network management industry. During past two decades, mobile network 

technology has changed dramatically. The change is ongoing and expected to increase 

exponentially. In recent years, network traffic volumes have increased in the order of 

several magnitudes in a short period of time due to technologies and concepts such as 

5G, IoT and smart devices. The compound annual growth rate for the period 2012–2016 

was 78 percent. Based on the technology forecast, the industries are now preparing for 

an astounding data traffic increase by 2020 and beyond [1]. Therefore, network 

management companies need to facilitate the growth in underlying mobile and radio 

networks. 

In general, designing an enterprise software system with overestimated capacity 

can cause extra unused resources with early purchase costs [2]. Furthermore, an 

overestimated capacity will bring extra associated costs such as energy, network, labor, 

and maintenance all of which are proportional to the scale of the infrastructure [3]. 

Conversely, underestimated capacity can cause high failure rates, performance issues 

and Service Level Agreement (SLA) penalties for the operators [2]. 

In every organization software applications cannot be fully independent from 

underlying legacy systems which are developed over their lifetimes using traditional or 

sometimes obsolete technologies [3]. Depending on the complexity and number of 

subsystems interacting with each other, system migration needs to be carefully 

addressed and it takes time. Further, on complex software system with its lifetime there 

can be problems on understanding the source code, increases on system deployment 

times, scalability issues with intensive data loads long-term commitment to selected 

technologies would initiate eventually as the number of subsystems and system size 

starts to grow [4]. 

Above facts presents the importance of performance modelling to efficient 

resource allocation, performance analysis and scalability. Further designing 

performance models should consider system hardware, software, system architecture, 

network connectivity and workloads in such a way that these models could be used to 
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analyze system performance as well as to predict performance on system which could 

variate based on workload and architectural changes. Another important aspect when 

modeling large systems is its scalability when including additional users, hardware or 

software to existing system [5]. 

System performance can be defined as a system’s capability to handle effectively 

the tasks that it has been assigned to do in a timely manner [6]. Further, performance 

metrics can be categorized into three main categories: time taken to perform a service, 

the rate by which the service is performed and resource consumption of the service. In a 

short form, this can be defined as responsiveness, productivity (throughput) and 

utilization metrics [6]. Primarily the aim of this study is to investigate system 

performance with respect to resource utilization of network management system’s 

computer nodes and responsiveness in certain computer nodes depending on the 

availability. 

This study is conducted according to research requirements defined by Nokia 

Solutions and Networks, which provides network management solutions to mobile and 

radio networks. Current dimensioning tool used for software dimensioning and testing is 

mainly based on system expert’s knowledge and initial set of performance models. As 

discussed earlier, incorrect estimates can cause situations where network management 

system is tested with over or underestimated dimensioning values which could 

eventually lead to problems in customer environments. By developing performance 

models based on system performance data, more accurate results can be obtained to 

understand the performance and scalability of the software system. The goodness of 

performance models can be validated with real business customer operated data.  

This study investigates application of machine learning techniques in performance 

engineering to analyze, model and predict system capacity for future business 

requirements. The scope of the study does not include business application of the result 

models using performance models in real-life business scenario. The performance 

utilization data was extracted from the system, pre-processed and applied different 

machine learning methods based on selected set of base predictors (Multiple Linear 

Regression, Multivariate Adaptive Regression Splines (MARS), K-nearest neighbor (K-

NN), Random Forest, Support Vector Machine) to implement univariable-output 
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performance models. Later this data was evaluated using Neural Networks to create 

multivariable performance models and finally the performance was compared against 

each method. This study expects to present performance models representing system 

utilization i.e. CPU utilization, memory consumption, disk I/O operation averages and 

Network I/O operation averages based on software related measurements to correspond 

to a selected subset of computer nodes in the network management system. 

The objectives of this study are to: (1) evaluate the goodness of modelling 

performance utilization and responsiveness of the software, (2) understand performance 

bottlenecks of system and (3) understand any limitations of current performance metrics 

used on system modelling. The findings of the study are presented as univariable and 

multivariable-output models across distributed nodes in network management system, 

given by different machine learning techniques. The performance models in this study 

will facilitate the organization to determine the software and system performance in 

their current business process to, 

• Determine the optimum sizing of the software system based on customer 

requirements 

• Compare different software versions and environments 

• Performance anomaly detection compared to baseline models 

• Understand available capacity of system for scaling 

This thesis report proceeds as follows. Next, chapter 2 provides background 

information and overview of network management domain and network management 

software system in question. Chapter 3 summarizes the literature review of data mining 

and performance analysis in distributed computer systems. Chapter 4 discusses data 

mining tasks, machine learning algorithms used in data modelling, and data mining 

tools used. Chapter 5 presents application of data mining and modelling on performance 

data. Chapter 6 and 7 discusses the methodology, which includes data preparation, 

modelling, evaluation and evaluation of the results. Finally, chapter 7 presents the 

summarized results with conclusions, recommended approaches and future works. 
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2. Machine Learning Applications in Performance Analysis 

Many studies on performance analysis on cloud software systems have been 

presented in literature on the areas of cloud monitoring, failure recovery, auto-scaling, 

cloud capacity planning, response time and throughput analysis and load prediction 

using time series analysis. 

Bai et al. [7] have evaluating performance of heterogeneous data centers using an 

analytical model. Based on the proposed model, several performance measures 

including mean response time, mean waiting time and the probability of immediate 

execution were analyzed. Moreover, to confirm the validity of the proposed model the 

experiment was followed by a simulation and authors claim that the proposed model can 

effectively estimate performance of heterogeneous data centers. Kafhali and Salah [8] 

report in their study about an analytical queuing model that can determine minimum 

resources required for hosting cloud application based on given workload conditions. In 

addition, these models are based on a defined set of key performance indicators (KPI) 

such as response time, waiting time, probability of immediate execution, CPU 

utilization, and throughput and finally cross validated by simulation on Java Modeling 

Tools. The study also used these analytical models to estimate overall system cost. Qiu 

et al. [9] presented hierarchical three phase recovery mechanism with rapid repair, 

diagnostic repair and complete repair actions based on the phenomenon of failure for 

distributed cloud systems. 

In cloud computing, failure recovery is considered as one requirement which 

determines the performance of its systems. Qiu et al. [10] presented a theoretical model 

based on Markov chain to recovery process of the failed server as an efficient failure 

recovery mechanism. In another case, Bai et al. [11] presented a cloud service 

evaluation method for failures in virtual machines and servers based on complex 

networks according to their functional complexity. To support the required demand 

while maintaining service availability at minimum deployment cost, Azeez [12] 

presented a web service solution on Amazon EC2 to automatically scale web service 

applications to ensure required scalability requirements under optimum cost. In 

addition, Azeez addresses the limitations on cluster deployments of servers with the 
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concept of a few membership schemes to handle failures and dynamic load balancing on 

Amazon EC2 clusters. 

Resource allocation and optimal workload allocation studies based on 

performance metrics such as response time, cluster consumption and workload packet 

loss rates are studies on [13-15] considering the importance of service level agreement 

(SLA) fulfilments. Furthermore, Xiong and Perros [16] discusses different approaches 

on minimizing the total cost of resources used by its applications in a cluster of 

computers while satisfying the quality of service. In their study, Kundu et al. [17] 

presented performance models that can predict system performance with a sufficient 

accuracy level. During modeling, they have selected a set of key system parameters 

which facilitate detailed reasoning for data center administrators that influence 

performance in virtualized environments. Further, they evaluated several techniques for 

modeling application performance and selected artificial neural network (ANN) as final 

approach for performance comparison which includes performance parameters such as 

CPU, memory, disk and network I/O [17]. 

In literature, there are many studies on performance modeling based on correlation 

between application performance and peak or average CPU utilization of the system. 

Dinda et al. [18] presented their models for application placement and predicting run 

time performance. Stewart et al. in [19] and [20] presented their models for capacity 

planning based on CPU utilization prediction under different workload conditions. 

Wood et al. [21] presented system profiling and modeling virtualized resource usage in 

cloud applications. A pattern matching prediction to identify similar past occurrences 

based on short-term workload history was presented by Caron et al. [22]. However, the 

method can be inefficient and time consuming for larger data sets as this requires 

searching similar patterns on the dataset. Further, Kim et al. [23] presented prediction 

technique using segment of most recent requests which define a boundary of data points 

to be analyzed. This can again not perform well in a generalized system due to scoping 

only to recent user request patterns. 

An application of time series analysis techniques on performance and load 

prediction has broadly been used by many researchers in literature. As traditional 

techniques such as curve-fitting, moving averages and auto-regression methods 
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sometimes might not be effective compared to modern techniques due to drastic 

fluctuations in host load patterns in cloud environments, researchers try to create more 

effective methods on performance prediction. In their study, Di et al. [24] presented a 

Bayes method for cloud load prediction to achieve a better accuracy with a lower mean 

squared error. The suggested method predicts CPU and memory load on a host machine 

up to period of 16 hours. Cao et al. [25] suggests an ensemble model with the ability to 

update its base predictors dynamically so it can adapt the time series pattern changes. 

The base predictors include Auto-regression model, Exponential smoothing model, 

Weighted nearest neighbors (WNN) model and Most similar pattern model. Kourentzes 

et al. [26] propose a model ensemble operator based on kernel density estimation for 

one-step ahead forecast. Jheng et al. [27] presents a model which is capable on 

predicting future trends from the workload and shifts low priority tasks outside peak 

operating intervals to efficiently utilize the available resources. Wolski et al. [28] 

presents the effect of autocorrelation between successive CPU measurements in their 

study and developed one step ahead CPU prediction model to forecast CPU on a 

dynamic system. 

Finally, this study was to explore performance modeling of network management 

system which deployed and operated on top of cloud native infrastructure. Focusing this 

aspect, the literature review was conducted to investigate the research on performance 

engineering and capacity analysis of distributed systems. Furthermore, the expectation 

was to shed light on the study by incorporating relevant concepts, practices and existing 

research findings. Overall, this review helped to brainstorm and shortlist study areas 

which suitable for the study. 

Earlier System Modeling Study on Network Management System 

In the previous study done by Tuisku [29] suggest the feasibility of modelling 

CPU performance of a single virtual machine in network management system. 

However, currently limited studies have being done on the subject network management 

system performance and amount of knowledge is known mainly based on system 

experts understanding the system. Considering the recent studies found in literature the 

expectation was to further evaluate machine learning approaches on software 

performance of network management system. 
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Figure 1 : Summary Representation of Earlier Study 

Figure 1 shows the summary of the earlier study. This study was conducted on 

performance management service nodes to predict CPU consumption based defined 

performance management metrics. Further, the created models were evaluated using a 

real-world network management system, and as a result fairly accurate prediction on 

CPU utilization could be made. 

Based on the background information there was some limitations in this early 

study. Firstly, the earlier study evaluated performance of CPU consumption only using 

multivariate regression technique. Secondly, during that stage there was limitations in 

collecting performance data from the software system which limited the scope of that 

study where only few load profiles could be tested. Thirdly, no customer data was 

available to compare performance levels between different environments of a created 

model. 
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3. Background and Overview 

Nokia released its initial network management tool in the early 1990s and with the 

evolution in network management industry it has undergone tremendous changes to date 

in its lifecycle. In addition, telecommunication and radio network environments became 

more complex in the past decades and customers are interested in accurate resource 

usage predictions and indicators. In some scenarios as customers only have few network 

element types they are interested in a minimal software setup which can fulfil their 

requirements without overhead nodes. Based on these facts it is essential for the 

business to understand the performance of each network type and management software 

itself. 

As discussed earlier, in practice, software systems evolve with time and become 

complex to analyze and troubleshoot. Even though it is recommended to understand and 

test the performance during product development stage, in practice it is difficult as 

developers prioritize functionality first. In many cases product performance is only 

evaluated at final stages of its release lifecycle. When considering the layout of 

enterprise systems, they consist of complex configurations, heterogeneous 

communication protocols, heterogeneous and geographically distributed servers with 

several network interconnections, proprietary middleware, large distributed database 

systems, load balancers and so on which make it difficult to understand its operation on 

runtime. During modeling understanding its system interactions is the most difficult and 

important stage during the process [5]. 

As defined by National Institute of Standards and Technology (NIST), cloud 

computing enables convenient, on-demand network access to a shared pool of 

configurable computing resources which includes servers, network, storage, applications 

and services [30]. Further, these resources should be efficiently provisioned and 

released with minimum effort based on vendor requirements which makes every 

organization to step into cloud infrastructure with the growth of their businesses. 

In the meantime, by leveraging cloud services, organizations can deploy their 

software systems to address some of their scalability and performance issues with a 

minimum set of changes to their systems. To achieve this application scalability, one 

should use scalable architecture in the first place. Microservices technology is one of the 
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most famous cloud native architecture which enables availability and scalability in its 

design by facilitating the migration of on-premise architectures to cloud environments. 

In addition to this, microservices can simplify business processes by including them in 

collection of small services which could be deployed and scaled independently, as well 

as different technology stacks and are easily understood [31]. 

3.1. Mobile Network Evolution 

During the past two decades, mobile network technology has evolved drastically. 

This technology hype is still ongoing and expected to increase exponentially with the 

upcoming technologies. In recent years, big traffic volume increased in the order of 

several magnitudes in a short period of time due to technologies such as 5G, IoT and 

smart devices. During the period of 2012–2016, the yearly growth rate of the market 

was 78 and now, based on their marker research telecom industry expects astonishing 

network traffic increases after 2020 [1]. 

When considering these future trends, network management aspects also need to 

evolve with the advancements in technology. During this, accurate load models will be a 

handy tool in the process of designing and dimensioning software systems. 

3.2. Network Management 

In general, mechanisms for monitoring, control and coordination of its resources 

is defined by system management standards. In a telecommunications management 

network, its resources are viewed as independent managed objects with well-defined 

properties to clearly define its managed operations. This is defined by Open Systems 

Interconnection (OSI) - Systems management overview published by International 

Telecommunication Union [32]. This defines the primary requirements for 

understanding the key functions of network management system as a model. 

For convenience, requirements and specifications related to system management is 

categorized into five groups by OSI Management Framework and network management 

model which defines these major functions of network management systems.  These 

groups are fault management, configuration management, accounting management, 

performance management and security management. This is sometimes defined by the 
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acronym FCAPS model. The accounting management category is sometimes replaced 

with administration on non-billing organizations [34]. 

3.3. Configuration Management (CM) 

This module is responsible on managing, monitoring and tracking changes on 

system configurations of network hardware and software elements on the system. Some 

possible examples are updating OS version of a network device, adding a new device to 

the network and modifying running configuration of a device. It is important to keep 

track about updated configuration changes, software versions and system changes 

during troubleshooting network issues, and configuration management software 

facilitate this. In general, configuration management facilitates [32]: 

• initialize and close managed objects 

• collecting, storing and change the configuration of open system 

• simplifying managing configurations of the devices, associate names with 

managed objects 

• set the parameters that control the routine operation of the open system 

• assisting future expansion and network scale planning 

3.4. Fault Management (FM) 

To distinguish different fault scenarios, elements in the managed network consist 

of monitoring and diagnostic tools. Each fault in an element is represented as an event 

and sent to the software system. The main requirement of this module is to recognize, 

isolate, correct and log faults that occur in the network. In addition, FM module 

facilitates trend analysis on error prediction, to detect abnormalities in network 

operations and to configure notifications to keep the network administrator informed 

about problems. These notifications can be set to trigger activities that can gather more 

information on recognizing the nature of the fault. Fault management function facilitates 

[32],  

• maintain and examine error logs 

• accept and act upon error detection notifications 

• trance and identify faults 

• carry out sequences of diagnostic tests 

• correct faults 
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3.5. Performance Management (PM) 

To ensure acceptable level of network performance, this module should facilitate 

continuous monitoring of network and guarantee optimum service to mobile 

subscribers. The module performance addresses the throughput, network response 

times, packet loss rates, link utilization, percentage utilization, error rates and so on. 

Based on these information network managers can evaluate the current network 

efficiency and prepare for future network demands.  

Actively monitoring current network performance is an important step to identify 

existing and future issues to ensure reliability during operation. In business it is 

important to recognize system reliability and capacity issues before they affect any 

services in the system. This can be done based by network health monitoring and trend 

analysis using system performance data. This information in management system, can 

be monitored in real-time, or passively by configuring to alert based on predefined 

thresholds when performance deviates from the expected range. Furthermore, 

performance thresholds can be defined to trigger alarms depending on the severity level 

of the events which can be handled by the FM module. Performance management 

function facilitates [32],  

• gather statistical information 

• maintain and examine logs of system state histories 

• determine system performance under natural and artificial conditions 

• alter system modes of operation for the purpose of conducting performance 

management activities 

3.6. Security Management 

This module guarantees the basic security requirements of confidentiality, 

integrity and availability of its elements considering its users, data, software and 

network. This includes managing network authentication, authorization, and auditing to 

set correct permissions to access permitted network resources based on pre-defined 

security policies. Security management module is responsible to ensure network 

environment security and gathering security-related information to be analyzed. 

Security management function facilitates [32],  

• creation, deletion and control of security services and mechanism 

• distribution of security relevant information 



12 

 

• reporting of security relevant events 

3.7. Accounting Management 

This module enables charging capability to be established for the use of resources 

in open system interconnection environment, and for costs to be identified for the use of 

those resources. Accounting management function facilitates [32],  

• inform users of costs incurred or resources consumed 

• enable accounting limits to be set and tariff schedules to be associated with the 

use of resources 

• enable costs to be combined where multiple resources are invoked to achieve a 

given communication objective 

3.8. System Architecture 

 

Figure 2 : Network Management System Architecture Diagram [33] 

By its architecture, network management system has a modular based software 

system, which enables customers to customize required software features based on their 
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business requirements. These software modules are categorized into four main 

components based on the system management specifications as configuration, fault, 

performance and security management. Even though initial versions of a network 

management system were running on a dedicated hardware on physical servers,  

currently the system is running on the top of a virtualized environment aligning its way 

towards a fully automated cloud environment. This enables efficient resource allocation, 

scalability, reduced downtime, disaster recovery and ability for automation.  

Through its southbound interfaces, communication happens between network 

elements and lower level systems of the managed network. This is mainly to obtain and 

provision data from the network. Further, the interfaces used to communication between 

software system and network elements are typically proprietary. Like in any other 

Infrastructure as a Service (IaaS) system, the hardware resources perform by means of 

pooled resources for the virtualized environment. The bridge between hardware and 

virtualized machines achieved by the virtualized layer. The northbound interfaces 

facilitate integrating software system with high level systems used for service 

management. 

3.9. System Hardware 

The software system can function independently from the underlying hardware 

resources due to its virtualized architecture. the division of hardware resources to virtual 

machines (VM) with a designated amount of hardware resources is handled by the 

platform virtualization software. Each virtual machine is allocated as per the configured 

amount of hardware resources to perform the intended task and these configurations can 

be defined as required based on the role of the individual VM. 

3.10. System Performance 

Performance is an indicator of how well the software meets its requirements for 

timeliness. System performance can be defined as a system’s capability to handle 

effectively the tasks that it has been assigned to do in a timely manner. Response time 

and throughput is used to measure the timely manner of the performance, and utilization 

metrics are used to measure the resource consumption. Moreover, the response time is 

defined as the time required to respond to an incoming request whereas throughput is 

the measure on how many requests can be processed in each time interval. Performance 
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parameters can be selected based on characteristics which influences system 

performance. In short, performance metrics are categorized based on above criteria’s 

[6]. 

In software systems, there can be many parameters which affect system 

performance. Because there can be dozens of parameters, it is important to precisely 

select important parameters and their effect on performance. Furthermore, based on 

domain knowledge and earlier studies, certain parameters can be omitted or combined to 

create new features. During feature extraction process, statistical methods such as 

Principal Component Analysis (PCA) or Canonical Correlation Analysis (CCA) can be 

used. Based on an initial study, selected set of important parameters are shortlisted to 

examine during the analysis process as this will provide more simplified and 

generalized performance models. 

3.11. Software Metric / Parameter 

Standard measure of some characteristic or properties in a software system/ 

process can be defined as a software metric [35]. By defining metrics, different 

reproducible and measurable entities are expected to be obtained which could be used to 

have several applications in business analysis including software performance 

optimization. 

In any business analysis process, it is really critical to understand and select 

important metrics to the business process. The ‘HBR Guide to Data Analytics Basics for 

Managers’ written by Harvard Business Review states “You can’t pick your data, but 

you must pick your metrics.” which implies the importance of defining proper metrics in 

any analytical study. In his presentation, Haff has presented some important rules when 

defining metrics [36]. 

• what’s important to business/success criteria 

• tied to business outcomes 

• traceable to root cause(s) 

• not too many metrics 
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3.12. Performance Metric 

Performance metrics can be split into three main categories as time consumed on a 

given task, service performance rate and resource consumption of the service. In a short 

form, this can be defined as responsiveness, productivity (throughput) and utilization 

metrics [6]. 

When considering performance of a distributed computer system, the important 

operations to developer and system administrators are mainly corresponding to cluster 

health, resource utilization, performance and outages. Further when analyzing the 

system, following principles are important to consider: 

• Define what you need to measure 

• Selecting relevant metrics  

• Quantity may not lead to quality of the process 

• Understanding about what different measurements serve on different purposes 

• Understanding how measurements drive behaviors 

Performance parameters are measured mainly as utilization metrics corresponding 

to hardware performance and productivity metrics corresponding to workload. These 

performance parameters are later taken into account when deciding system capabilities 

and capacity analysis which will eventually decide on software dimensioning process. 

In Unix based systems, SAR (System Activity Report) system monitor command is 

widely used to collect and report system activity information. To record utilization 

metrics, SAR command is actively being used in computing as it not only has a wide 

range of measurements consisting of system load, CPU activity, memory, network I/O, 

disk I/O etc., but also it is easily integrated using sysstat package. To measure 

productivity metrics, software tools are used and these metrics are corresponding to 

performance management (PM) data (measurements and counters) and fault 

management (FM) data (events) discussed earlier. 

3.13. Data Types in Network Management System 

Even though the network traffic on mobile networks is caused as a result of its 

subscribers, in network management system it is different from this. The traffic on 

software system is based on its managed network elements such as network 
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performance, network failure or configuration change operations. This traffic enters the 

software system through its southbound interface. In this experiment PM data and FM 

data are mainly focused and these metrics are considered as the predictor variables 

during the modeling process. 

Performance Management Data (PM Data) 

Performance management data represents metric measurements composed by 

different network elements as counters. These metrics comprise of events, success rate, 

reset events, resource usage, signaling, etc. This measurement information can be pre-

processed or post-processed in the network element based on the configuration and the 

type of network element. Measurement can be directly uploaded to the network 

management system’s database as well. In addition, monitoring subscriber operations 

using PM data can be done by observing usage values of available services. When 

making management decisions based on service usage and when identifying current or 

future problems and opportunities, this information can be taken into consideration. 

Fault Management Data (FM Data) 

Fault Management data or shortly FM data mainly consist of events which can be 

categorized into several types for example, cancel, acknowledge, un-acknowledge and 

as a result FM events and alarms will be created in network management system. These 

alarms, when triggered represent a problem or error in a network element. In analytical 

perspective every FM event types are equally valued. In real life networks there could 

be correlations between FM and PM data as performance of the managed network can 

be affected by the number of fault events and the fault situation. 

System Performance Data  

In addition to network performance data types (PM and FM data), one can 

measure the data metrics related to system level performance of individual subsystems 

of the network management system. In practice this can be done based on individual 

virtual machine level considering its performance. The response variable data used in 

the study i.e. CPU utilization, memory consumption, disk I/O operation averages, 

Network I/O operation averages and response times are considered in this category. 
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3.14. Workload Data in Network Management System  

Performance data in network management system can be divided into two 

categories, namely simulated workload data and actual workload data. The simulated 

workload can be synthetic and generated in a controlled and repeated fashion. The 

actual workload data consist of performance data corresponding to customer 

environments under real life operating environments. On capacity analysis process and 

modeling, data sets consisting of high variance will be useful since it will help to 

understand system boundaries. However, since in customer environments most cases 

run on given boundary levels, there can be less variance in the data. Due to this reason 

simulated workload data can be collected and used during analysis under controlled 

environment conditions. As it is flexible to variate incoming data rates to the system 

with well-defined simulated loads, the system can be analyzed iteratively to understand 

its overall behavior in a detailed manner. 

When simulating workloads, an instruction mix is a specification of various 

instructions and their relative frequency defined based on the requirement. This can be 

constructed for the comparison of different processors on a given hardware 

environment. This approach can be utilized in a distributed computer system. [6] 

Exploratory Statistical Modeling and Predictive Analytics 

Based on the expected functionalities and operating conditions of the data models, 

model building procedure leads to numerous variances in explanatory modeling and 

predictive analytics methods. Depending on the context, models will contrast based on 

explanatory power of the models vs. predictive power of the models. There are two key 

differences between explanatory versus predictive analysis. The first difference is the 

properties lie in the data used in analysis where exploratory power is being assessed by 

means of in-sample goodness of fit procedures. In predictive analysis prediction 

accuracy measures are evaluated based on out-of-sample prediction procedures.  
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The second difference is in the metrics used in two techniques. Even though 

statistical significance is an important property when assessing exploratory power, it is 

not so important when assessing predictive performance. In addition, Wu et al. [37] 

theoretically justify that sometimes removing statistically significant predictors with 

small coefficients could result in improved prediction accuracy. Figure 3 1 shows some 

differences between two techniques with respect to different states of the analysis. 

Figure 3 : Steps in Explanatory Statistical Modeling vs Predictive Analytics [38] 

 

 

 

 

 

 

 

 



19 

 

4. Overview on Machine Learning 

In the next few sections, machine learning algorithms used in data modeling task 

in the research work and software tools used for data mining are discussed shortly. 

Machine learning applications in business 

In any organization, a large amount of data is produced and accumulated over 

time in their system. This gives businesses an opportunity and competitive advantage to 

extract business knowledge from underlying data. Even though it is demanding to 

process this data, analyzing them in a timely manner is beyond the capabilities of 

traditional analysis methods used by many organizations. Advancements in modern 

machine learning and big data techniques have enabled processing databases with large 

volumes in efficient fashion, leading businesses to invest on knowledge discovery 

applications in business. 

Data mining analytic techniques are evolving with time to meet new requirements 

and better accuracies for different use case. This enables ability to automate decision 

support systems in business processes with the help of integrated analytics and 

optimization algorithms. It is essential to process exponentially growing data volumes in 

real time as IBM forecasts the growth of next decade to increase from 800,000 petabytes 

to 35 zettabytes [39]. This motivates businesses to invest on processing data to acquire 

business intelligence which could help their business with modern advancements in 

technology. In addition, domain knowledge contributes the business analysis process to 

a success as it plays an important role during the process. In his study, Weiss [40] has 

discussed the importance of including domain experts in data mining study to improve 

effectiveness of the process. 

4.1. Feature Selection and Extraction 

In empirical modeling and machine learning, feature (variables, predictors) subset 

selection is done to select a subset of most relevant features during the model creation 

process. This will help to improve the interpretability of the constructed model. The idea 

of the process is to remove any redundant or irrelevant features without suffering much 

information loss from the original data frame, as it could consist of many features. 
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Redundant features are distinct from irrelevant features as, the redundancy could be due 

to presence of another strongly correlated feature [41]. Feature selection techniques can 

help when there are many features compared to the available sample data points in the 

data set. Feature selection stage is important as it will: 

• simplify the constructed model 

• reduce training time 

• address curse of dimensionality 

• To make models more generalized by reducing overfitting 

During feature extraction, new informative and non-redundant features are derived 

based on of original features. One popular example for feature extraction is ‘principal 

component analysis’ which is inspired by statistics. There exist a few algorithms and 

variations that can be used for feature selection and extraction. Further, the result feature 

subset can be different based on the algorithm and properties of the data. In the next 

section some well-known feature selection techniques are discussed. 

Exhaustive Feature Selection 

The brute force technique is used on subset selection to generate every possible 

combination of feature subsets. This process guarantees to find the best fitting subset 

but as a drawback the cost of the process is high. The computation cost approximately 

doubles by adding one additional variable as for k number of features there will be 2k- 1 

possible subsets [42].  

To reduce the computation cost without any information loss, there are few 

options available in exhaustive feature selection. Firstly, as it’s less probable that a 

single response variable has many statistically significant predictor variables which 

equally improve the models, domain experts can help to assess on limiting maximum 

subset size. Secondly, effectiveness of the branch-and-bound search algorithm can be 

improved. These two steps can be helpful to improve the efficiency of the feature 

selection algorithm up to large datasets [42]. The branch-and-bound algorithm will 

evaluate best fitting subsets up to number of feature count. The computation cost is 

significantly reduced in cases where only few features are dominant compared to others. 
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Forward Selection and Backward Elimination 

In wrapper methods a feature subset is used to train a model using input features. 

Iteratively by inferencing the created model, the feature selection algorithm will add or 

remove input features form its initial feature set. Even tough, the problem can be 

simplified to a search problem it can be computationally expensive. These wrapper 

methods can be categorized as forward feature selection and backward feature 

elimination which will be discussed next. 

• Forward Feature Selection 

The algorithm starts with empty features set and iteratively adds most significant 

feature to the model to improve its performance. This step will be repeated until 

no improvements made to the model by adding of a new feature and final feature 

set will be selected at this stage. 

• Backward Feature Elimination 

The algorithm starts with all the variables in its feature set and iteratively 

remove least significant feature from the model to improve its performance. This 

step will be repeated until no improvements made to the model by removing of 

an existing feature and final feature set will be selected at this stage. 

Efficiency of these two methods is sometimes argued in comparison to each other. 

Some claim that forward selection is more efficient as opposed to defenders of 

backward elimination who claim that weaker subsets can be found by forward feature 

selection as the significance of variables are not assessed compared to variables not 

included yet [41]. 

4.2. Data Mining Tasks 

The main categories in data analysis tasks are descriptive, predictive and 

prescriptive analysis [43]. In descriptive analysis task the purpose is to provide insight 

to business and its stakeholders based on the past data to understand any patterns which 

describe the phenomena related to the data [44]. In the case of predictive data analysis, 

the objective is to discover any patterns that can predict the unobserved future patterns. 

The predictive models can be utilized by organizations to make knowledge-driven 

proactive decision making to the questions that were complex or time consuming in 

general [45]. Further, by prescriptive data analysis, steps can be utilized to optimize 
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current procedures and to decide next steps when decision making is executed. Several 

data mining techniques can be presented as follows:  

• Classification – The classification algorithm will map (classifies) the input data 

items into a pre-defined set of categories or classes. Some sample application 

would be identification of hand written digits from a large set of digit images. 

Once the model is developed it can be used in future inputs to recognize the digit 

in input image. 

• Clustering – Clustering is a descriptive task where algorithm tries to identify a 

finite number of categories or clusters which could describe the data. This 

process is an unsupervised learning algorithm and output category is not known 

initially. In practice it is widely used in marketing to identify similarities 

between customers based on their purchase history and in many medical 

research studies. 

• Prediction –  Predictive models can be used to predict future trends or unknown 

conditions based on its past data or as a correlation of depending factors. For 

example, by using an effective predictive model to predict performance, 

business turnover or sales can help business to prepare for unseen future 

challenges.  

• Anomaly detection – This technique can be used to detect significant differences 

compared to previously recorded data or reference levels on a given 

phenomenon. This technique is widely used in financial industry for fraud 

detection 

• Summarization – This technique can be used to generalize or abstract the data 

into a simplified overview and comprises on providing compact description for a 

of dataset. This can be as simple as determining the mean and standard deviation 

for a feature in a table, to more sophisticated methods involving multivariate 

visualization methods. 

• Dependency modeling – This technique can be used to find models that has 

significant dependencies among their variables. Dependency models can be 
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defined based on structural level or quantitative level of the models it specifies. 

The features that are locally dependent on each other and variable strengths of 

the dependencies will be evaluated in these two cases [44]. 

4.3. Machine Learning Algorithms 

In this section, brief introduction on data mining and machine learning techniques 

which were evaluated during the modelling process are discussed. As the initial base 

predictors for modeling task, six machine learning algorithms were used. These 

algorithms are multiple linear regression, MARS, k-nearest neighbor, random forest, 

support vector regression and feedforward neural networks. To train the data models, 

supervised learning techniques were used. In supervised learning, every entry in the data 

set consists of precise output values which are used to train the models accordingly [46]. 

Introduction about selected machine learning techniques is presented below.  

Multiple Linear Regression 

In practice, descriptive modeling as well as predictive modeling is done using 

Multiple linear regression [48]. The model is constructed against response variable from 

a sample of data points, corresponding to its input variables. Most simple technique 

used in linear regression is the ordinary least squares method, which aims to minimize 

sum of squared error on model creating. Descriptive modeling uses available set of data 

to model existing features from the data. During predictive modeling, response variable 

values for new cases are predicted based on model constructed by existing predictor 

variables. The sample equation of multiple linear regression represents its response 

variable as a linear combination of its predictor variables. Below is a sample equation 

with p predictor variables: 

Y = β0 + β1X1 + β2X2 + ……. + βpXp + ε     (1) 

Equation 1 : Equation of Multiple Linear Regression 

In the above equation, response variable is denoted by Y and the predictor 

variables are denoted by X’s. Further, β0 denotes intercept and remaining β values 

represent the coefficients of each predictor variable. The error of the model is 

represented by ε. The process of predicting more than one response variables at once is 
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known as multivariate linear regression analysis. Multiple linear regression and 

multivariate linear regression modeling are two distinct techniques and should be used 

appropriately [49]. 

In multiple linear regression, to make reliable predictions with two or more 

predictor variables, the input data set should satisfy additional qualities compared to 

modeling using simple linear regression. The efficiency of the method depends on the 

ability of presenting the response variable as a linear combination of the predictor 

variables. The statistical significance of the model test can be disturbed by lack of 

linearity which causes model fit, errors and residuals. Further, to prevent 

multicollinearity, the predictor variables should not be correlated among each other and 

this can be detected through the variance inflation factor [50]. In addition, there can be 

situations where outlier data points get recorded due to measurement errors or 

unmeasured metrics [51].  

Multivariate Adaptive Regression Splines 

Multivariate adaptive regression splines (MARS) technique introduced by Jerome 

H. Friedman is a non-parametric regression technique. It’s capable of modeling non-

linearities and relations among features represented by the input data. MARS method 

builds models of the form as below, 

f̂(x) = ∑ 𝒄𝒊 𝑩𝒊(𝒙)𝒏
𝒊=𝟏       (2) 

Equation 2 : Sample Equation of MARS Method 

The model is represented as a weighted sum of basis functions Bi(x) where ci is a 

constant coefficient multiplied by its basis function. Each basis function can take one of 

the following three forms: 

1. a constant 

2. a hinge function. A hinge function has the form max (0, x-const) or max 

(0, const-x) 

3. a product of two or more hinge functions 
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Figure 4 : Sample Model Representation using MARS Model 

The term "MARS" is trademarked and in order to avoid trademark infringements, 

many open source implementations of MARS are called "Earth". 

K-Nearest Neighbors (K-NN)  

K-Nearest Neighbor algorithm is an instance based learning (IBL) technique, 

which is considered as one of the simplest methods. From the available data set all the 

known cases are stored by the algorithm to solve new cases. To determine the result for 

an unknown case, the algorithm will compare it with the similar instances in the training 

data. Further, this algorithm will assume that data points with similar attributes exist in 

close proximity compared to others and these nearby data points are called neighbors 

[46]. When predicting the class label for a new instance, the algorithm searches for K 

nearest training samples that are close to the new instance, and most frequent class value 

is assigned. Further, Euclidian distance or Cosine similarity can be used as similarity 

measure [52]. In practice different variations of distance functions being used are based 

on domain knowledge and properties of the data. Evaluating continuous variables 

should be done using Euclidean, Manhattan, Minkowski distance measurements and 

evaluation of categorical variables should be done using Hamming distance, which 

measures the number of instances of corresponding symbol or category. The K value 

used in the algorithm is a small positive, usually an odd number. The simplest way to 

select a suitable K value is to iteratively run the algorithm on different K values and 

select the one with the highest performance [48].  
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Determining an optimum K value is based on few criteria. Firstly, a suitable value 

for K can be selected by inspecting the data itself. In many practical scenarios cross-

validation of performance for each K value will be evaluated iteratively based on 

independent input data set and suitable K value will be selected. In general, a large K 

value will be more precise as it can reduce the overall noise depending of the 

distribution of data. However, distinction between boundaries within the feature space 

also needs to be considered [53]. A rule of thumb to select a maximum for K is to use 

√n if nothing about a suitable value is known in advance where ‘n’ is equal to data 

items. 

Distance Techniques for Continuous Variable’s 

Continuous Variable’s Categorical Variables 

Euclidean Distance =   √∑ (xi-yi)2k
i=1  

Hamming Distance, 

DH = ∑ |𝐾
𝑖=0 xi = yi| = ∑ 𝐷𝐾

𝑖=0 i 

xi = yi → Di = 0 

xi ≠ yi → Di = 1 

Manhattan Distance =   ∑ |xi-yi|
k
i=1  

Minkowski Distance =  {∑ (|xi-yi|)
qk

i=1 }
1

q 

xi, yi = Coordinates or values of data points 

k = Number of cases 

Table 1: Distance Techniques 

Random Forest 

A random forest model is an ensemble learning technique that can be used on both 

classification and regression tasks. During learning stage, the algorithm constructs 

several decision trees and produces the output class which is the most occurring class 

for classification and mean prediction for regression tasks. A Random Forest with few 

trees is quite prone to overfit to noise and once more trees are added, the tendency to 

overfit generally decreases [54]. Random forest models make use of random selection of 

features in splitting the decision trees, hence the classifier built from this model is made 

up of a set of tree-structured classifiers.  
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When constructing a model using the algorithm, random k data points from the 

training set are taken and a decision tree is built associated with these k data points. 

Next, by selecting the number of trees (ntrees) desired to be built and the earlier steps 

are repeated. When classifying a new data point, a prediction is made on category to 

which the data point belongs using earlier ‘ntrees’ and will be assigned to the winning 

class. This process will start by one tree and then proceed to build more trees based on 

the subsets of data. The random forest has a major advantage that it can be used to judge 

variable importance by ranking the performance of each variable. The model achieves 

this by estimating the predictive value of variables and then scrambling the variables to 

examine how much the performance of the model drops. 

Support Vector Machine 

Support vector machine is a supervised learning method. There are two flavors of 

this technique which can be used to analyze both classification and regression problems. 

Firstly, support vector machine (SVM) can be used during classification problems. 

Secondly, support vector regression (SVR) can be used during regression problems with 

minor differences in the concept containing of all main features which are based on 

maximum margin algorithm. The algorithm will construct a nonlinear function based on 

linear mapping into a high dimensional kernel inspired from the input feature space. The 

parameters will control the capacity of the system. In addition, these parameters do not 

depend on the dimensionality of the input feature space. 

During the training process of SVR classifier, algorithm will iteratively improve 

the support vector function. The optimization can be controlled using 

a tolerance parameter (↋) to set an approximation to the SVR. If the gradient of the 

optimized function is less or equal to the tolerance parameter value, the training is 

terminated. If the tolerance value is large the training algorithm can terminate before 

support vector function is sufficiently optimized, and for lower tolerance value, 

algorithm could try to attain high optimization levels which will be computationally 

expensive and time consuming. 
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Figure 5 : One Dimensional Linear Regression with Epsilon Intensive Band [55] 

In models created by support vector, models only depend on a subset of the 

training data. During classification task, the cost function on building the model ignores 

training data points lying beyond the margin. Analogously, during regression analysis, 

the cost function on building the model ignores training data points adjacent to the 

model prediction. 

 

Figure 6 : Non-linear SVR Representation [55] 

The estimation accuracy and performance of support vector depends on its input 

setting of parameters such as C, ↋ and the kernel parameters. As support vector model is 
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a complex algorithm, the selection of optimal parameters is further complicated. In 

software implementations of support vector regression, these meta-parameters are given 

as user defined input parameters. In addition, selection of the kernel type and kernel 

function parameters are typically derived to reflect the distribution of the input training 

data and based on application domain experts [55]. Two non-linear kernel functions 

used during the study are presented below. 

Polynomial Kernel Function = 𝒌(𝒙𝒊, 𝒙𝒋)  =  (𝒙𝒊. 𝒙𝒋)
𝒅
      (3) 

Gaussian Radial Basis Function = 𝑘(𝑥𝑖 , 𝑥𝑗)  =  𝑒𝑥𝑝 (
||𝑥𝑖− 𝑥𝑗||𝑑

2𝜎
)      (4) 

xi, xj = Coordinates or values of data points 

Equation 3 : Polynomial Kernel and Gaussian Radial Basis Function 

Artificial Neural Networks 

Artificial Neural Network (ANN) technique and its configurations are inspired by 

functioning concepts of human brain, as human brain can be observed as a connecting 

mesh of neurons and synapses. Neurons are considered as computational units where 

synapses operate as the signal transferring unit. In general, every neuron is connected to 

several other neurons by these synapses. Even though, neurons and synaptic 

connections inside human brain are connected in an unorganized fashion, in ANN 

neurons and synapses are structured in organized way to design computationally 

manageable system. Sample configuration diagram of an ANN is shown in Figure 7. 

 

Figure 7 : Feedforward Neural Network 
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As the presented diagram neurons are organized in layers. The structure of neural 

network consists of one input layer followed by one or more hidden layers and finally 

an output layer. The simplest network would consist of two layers and once the network 

become more complex number of hidden layers will be increased to two or three (more 

are not necessary). The network in Figure 7 has four layers which consist of two hidden 

layers. 

When connecting input nodes or neurons of a neural network, they typical way is 

to connect all nodes of the previous layer to the next layer where each connection is 

assigned a weight. These types of networks are known as fully connected network and 

Figure 7 demonstrate such network. A neuron or node computes the sum of the outputs 

from neurons in the previous layer multiplied by the weights assigned by the 

connections, and then passes it to an activation function. Activation functions enable 

ANNs to learn non-linear functions. There are different activation functions, e.g. 

sigmoid function. The effect of a sigmoid function is demonstrated in Figure 8 where 

activation function outputs value between 0 and 1. 

 

Figure 8 : The Effect of Slope Parameter in Sigmoid Function 

A neural network supports both supervised learning (for networks such as one in 

Figure 7) and unsupervised learning techniques. Self-Organizing Maps (SOM) is the 

most well-known application in unsupervised neural networks. The available neural 

network types can be mainly categorized into feedforward and feedback networks. 
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Feedforward neural network is a non-recurrent network which consists of input, 

output and hidden layers where input signals only travel in one direction. First, inputs 

are assigned to input nodes and then they are passed into first processing layer of nodes. 

When designing a network, the number of input and output neurons is equal to the 

number of input and output variables in the network. The computations inside a neuron 

is done based on the weighted sum of its input data and this output value become the 

input values which fed into the preceding layer. This procedure will be followed 

iteratively through all layers and finally determines the output values. In practice, 

threshold transfer functions are used to quantify the values of output layer. In data 

mining problems, feed-forward networks are generally used. In addition, feed-forward 

networks (FFN) also include Perceptron and Radial Basis Function networks.  

Feedback networks consist of loop like paths which can transmit the signals in 

both directions between layers allowing all possible connections among neurons. Due to 

these characteristics the network becomes a non-linear dynamic system with continuous 

changes until the network reaches a state of equilibrium. These feedback networks are 

generally used in optimization problems and associative memories [56]. 

Recurrent Neural Network (RNN) 

Recurrent neural networks can process sequences of inputs as the networks use 

their internal state (memory) by feeding back the output signal of the neurons to the 

neurons in the same layer. This enables the network to exhibit dynamic temporal 

behaviors on a given time sequence. RNN’s are generally applicable in unsegmented, 

connected handwriting recognition or speech recognition problems. There exist many 

possibilities of connecting feedback between neurons and some common ways are: 

• Self-feedback: Along with the next input data sample, the output signal is fed 

back into the same neuron. 

• No self-feedback: Along with the next input data sample, the output signal is fed 

back to all other neurons of the same layer except the neuron itself. This case is 

illustrated in Figure 9. 

• Full feedback: Along with the next input data sample, the output signal is fed 

back to all other neurons of the same layer. 
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Figure 9 : One Unit Recurrent Neural Network (RNN) 
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5. Methodology 

In this chapter, the methodology used during the study is presented. The main 

objective of the study was to create descriptive performance models of a software 

system to understand its behavior based on business usage and requirements. In theory, 

not only ‘Analytical Performance Modelling’ concepts can be used to model system 

operation, but also to performance testing as a faster and economical option. Once we 

have the required understanding about the hardware utilization based on our models this 

can further be used on evaluating design options and system sizing [57]. 

As discussed earlier, currently system dimensioning and performance is being 

predicted mainly based on an expert’s knowledge and it would require manual work and 

methods can be biased and many practicalities were reported which encouraged Nokia 

to research more data intensive approaches. Even though the current dimensioning tool 

supports complex network design, it not only requires continuous maintenance but also 

testing to adopt changes which makes the process tedious. Further, over or under 

estimations in system capacity can create business impact not only on revenue but also 

on customer loyalty. As the ultimate result of the study, in addition to system level 

behavioral knowledge, stakeholders can estimate system scalability based on workloads. 

Based on the market research and domain knowledge by the experts, Nokia 

expects that in the future customer environments can be substantially different from one 

another. With the advancements in cloud computing systems can evolve to fine granted 

tailor-made customer environments (e.g. microservices) which are more economical for 

their business needs. Developing accurate performance models can contribute on precise 

dimensioning needs where customers can efficiently use available system resources in 

their business which customers will definitely appreciate. It is expected to iteratively 

improve system understanding by continuous studies that can ultimately result new 

dimensioning technique which can overcome limitations in current dimensioning 

solutions and perform well with future business needs. This study is only one iteration 

for that process and the study is mainly focused on evaluating the goodness of different 

data mining and machine learning techniques on performance modelling of Nokia’s 

network management system. Further, during modelling the system performance 
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unitization in computer nodes many univariable and multivariable-output techniques are 

evaluated. 

As original metric data files contain substantial number of attributes depending on 

the scope of our study, a subset of input output features needs to be chosen. The initial 

set of required predictor variables were selected with the assistance of software domain 

experts. This further reduced using attributes subset selection algorithms to select the 

best set of predictor attributes for the modelling purpose. Response variables attributes 

representing system level utilization were selected including CPU utilization, memory 

consumption, disk I/O operation averages and Network I/O operation averages as per 

the defined scope. 

The research was intended to evaluate the goodness of modelling system 

performance using machine learning. To ensure the set of predictor algorithms was 

chosen and evaluated the goodness of each method. In addition, the results are presented 

as univariable and multivariable-output models representing system level resource 

utilizations. By univariable-output model’s single resource utilization metric will be 

represented as its output against the software measured predictor variables. In 

multivariate models, each resource utilization metric will be represented as a multi-

output model against its predictor variables. 

In addition, for analytical performance modelling goodness of result models is 

evaluated first using k-fold cross validation method and then against available customer 

datasets. Testing with customer datasets were mainly done to test the generality of the 

created models and applicability on cross environments.  

As the requirements of the study have been defined based on the business 

requirement of the target company, the data definition and relevance of an initial feature 

list are clearly defined and during the study this initial list is further processed based on 

feature selection algorithms. Furthermore, if there is any inconsistency in the final 

models, it is also expected to investigate possible new feature areas to be included in 

future studies. The collected raw data files consist of different system utilization 

measurements and software related measurements on software systems IaaS, PaaS and 

SaaS layers. As there are many more attributes available compared to ones interested in 

the study depending on the scope of this thesis, subsets of predictor and response 
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variables were defined. Data was mainly collected from a set of software counters 

available in the target software system. 

In the study, the response variables consist of a selected set of resource utilization 

metrics and predictor variables include a selected set of software related performance 

measurements that represent incoming workload (even rates, file rates, counter rates) in 

the system. Further, resource utilization metrics are measured in more granular basis (5 

min) intervals compared to management software performance measurements (1 hour) 

by design as this requires accessing a database system and to avoid any performance 

decrease of normal operation of the software. 

In addition, in the scope of this study we are only analyzing performance 

management computer nodes as the initial subset during system modeling. Depending 

on the metric type they could have different collection intervals; as an example, system 

level metrics are collected in 1-minute intervals and software related metrics are 

collected in 1-hour intervals. Due to this reason data frame needs to be generalized 

before analyzing them. Data sets are sampled depending on the environment (test labs, 

customer environments) and then depending on the computer node assigned with 

specific service (job) during processing. Further as defined in Section 3.13 the datasets 

could have different variations based on the operating procedure of the environment 

mainly with simulated data and customer data. 

5.1. Workload Characterization and Load Modelling 

During workload testing, it’s essential that workloads are repeatable and easily 

reproducible to simulate multiple alternative scenarios with identical settings. Even 

though it is necessary and important to study customer environments with real data they 

are not repeatable. This process is known as workload characterization and it’s 

necessary to observe the key characteristics when developing repeatable workload 

models. Once the workload models are defined, their effect based on its characteristic 

features can be defined and the system can be studied in a controlled manner by 

considering parameters of the model. 
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Performance Data for Analysis 

Considering the network management system, performance data can be 

categorized to: 

• Actual workload data - Performance data collected on customer environments 

containing real operating data 

• Simulated workload data - Performance data which are synthetic and 

generated under controlled conditions in lab factory environments. 

As in most customer environments will be run on pre-defined load boundaries 

there can be less variance in the data except sudden peaks in a managed network due to 

some failure condition or high demand situation. Further access to customer 

environment data is also very limited due to accessibility. During performance testing it 

is essential to map the collected data related to a workload in terms of business process, 

which then can be defined as the service demand of the system. In production systems, 

the possibility of controlling the environment is minimal or restricted [5]. 

If in capacity analysis process and modelling data consist of high variance, this 

will be useful since it will help to understand system boundaries. Due to above factors, 

it is expected to collect data by simulating input data under controlled environment 

conditions. As it is flexible to variate incoming data rates to the system with well-

defined simulated loads, the system can be analyzed iteratively to understand overall 

behavior in detailed manner based on input features. In addition, to collect input data for 

performance models, load tests can help to evaluate both performance and scalability 

aspects of the system as well [5]. These models are expected to be used in the capacity 

analysis of the software system. 

Before simulating the data, system performance architects will define the bounds 

to be tested based on maximum expected throughput based on PM counter rate and FM 

event rates from the software system and the input load will be variated according to 

this boundary condition. 
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Workload Description - Training Data 

During this study, fault management and performance management functionalities 

were mainly considered when workloads for three categories were defined based on the 

requirement: 

• Fault Management workloads 

• Performance Management workloads 

• Fault and Performance Management workloads 

Each workload plan consists of combinations of different load scenarios related to 

different network element types. The intention by variating loads related to different 

network element types is to understand generality of the process and the test executed 

for several hours in each case where minimum duration is 2 hours. The variation in 

resource utilization is small corresponding to a single load profile due to a constant 

predetermined load and measurements during this time frame appeared to be as a cluster 

of data points. In the test environment, settings of predictor variables are determined by 

the system tester or architect who defines the predetermined characteristics of a load 

profile. In reality, predictor variables naturally correlate with the response variables. 

Finally, once the workloads are defined, a test was executed for one lab environment 

using a set of test simulators to generate the input data. When test rounds corresponding 

to different load profiles are run, we could observe small data clusters aggregated along 

the test data frame. This study is designed to simulate as many test rounds as possible 

within the time frame to collect a comprehensive training data set during a 30-day 

period between December and January. 

Workload Type Number of different load profiles 

Fault Management 14 

Performance Management 16 

Fault and Performance Management 55 

Table 2 : Simulated Load Profile Summary 

As the number of network elements and associated system resources are fixed on a 

customer environment, the response and predictor variable measurements has less 
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variation with time. Therefore, single test round on workload test acts similar to a data 

from a single customer due to this reason. Further, Nokia as the sponsoring company 

has given the access to data and its environment details for the study purpose, but any 

business or confidential information will not be presented in the report. 

5.2. Data Preparation  

The first step was identifying the necessary data and accessing it. The main source 

of the performance data is the performance monitors installed in each computer node of 

the network management system. These collected data will be in raw format and all 

metric measurements corresponding to one resource (virtual machine) will be stored in a 

single file which will roll over daily. Each record will mainly consist of a timestamp, 

metric name, the measurement and a hash value per record.  

For each virtual machine (VM), the records that contain the necessary data were 

joined to a single data frame, which enabled to create a dataset for each virtual machine. 

Even though the data set of each virtual machine is different, the number and type of 

attributes are the same for all the data sets. The number of attributes extracted was 

around 30. The names of predictor variables are not listed in this report based on 

confidentiality requirements by the company sponsoring the study. The dataset for each 

VM was exported to a comma separated value (CSV) file. Finally, the CSV file was 

imported to RStudio to analyze them. 

Preprocessing  

As data collected from system monitoring framework is not only in raw data 

format but also contains lots of unrelated metrics to the scope of this study, a pre-

processing step needs to be followed before analyzing the data. As per the design of the 

monitoring framework, raw data files in each virtual machine collect metric information 

related to services run on that node. Due to this reason before analyzing correct raw 

datafiles from required service nodes need to be processed. As predictor variables are 

measured in hourly intervals, resource utilization metrics (response variables) are also 

averaged to hourly intervals before analysis. This was one reason to simulate constant 

hourly input loads when collecting performance data to be able to map the actions 

together and to find correlations between predictor and response features. Then the data 



39 

 

frames corresponding to predictor and response variables can be merged to construct the 

final data frame. Finally, the feature attributes were normalized as the final set of 

preprocessing. Even though the idea behind the pre-processing procedure is quite 

simple, in practice it requires lot of time consuming effort. Therefore, once the pre-

processing steps and the requirements are defined, the procedure can be automated. 

 

 

Figure 10 : Data Preparation Steps 
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In
d
ex

 CPU 

MHz 

Average 

Memory 

Consumed 

Average 

Disk 

Read 

Average 

Disk 

Write 

Average 

Network 

Received 

Average 

Network 

Transmitted 

Average 

PM 

Insertion 

Time 

Software 

Metric 1 

Software 

Metric 2 

Software 

Metric 3 

Software 

Metric 4 

Software 

Metric 5 

Software 

Metric 6 

Software 

Metric 7 

1 2424.36 12257843 0.00 115.54 2116.63 1716.09 166 2152712 90844 36 3.81 85938579 944 41.39 

2 2543.08 12257784 0.00 114.50 2257.83 1729.75 173 2664021 97675 39 3.58 81949077 851 40.55 

3 2661.50 12257271 0.00 115.91 2310.33 1747.00 184 2708758 96715 34 3.89 87624156 905 41.35 

4 2468.08 12258015 0.00 113.83 2194.58 1708.83 138 2925857 97402 34 3.93 70421815 712 40.88 

5 2803.58 12258683 0.25 174.75 2311.83 1798.33 275 3333732 119945 42 3.90 78443863 659 17.40 

6 2857.66 12257130 0.00 118.16 2534.83 1801.66 220 3190747 98198 35 4.19 100751303 1016 45.82 

7 2561.08 12259054 0.08 114.08 2266.75 1748.00 146 2973978 97492 31 4.03 72923812 748 29.27 

8 2358.00 12260766 0.00 111.91 2162.25 1688.66 132 3382847 99634 34 3.82 56891267 571 26.65 

… …  … … … … … … … … … … … … 

… 3175.25 12028907 0.41 123.08 2676.33 1846.41 285 2726081 93318 33 4.55 126446279 1355 41.02 

Table 3 : Sample section of data consisting system level metrics (response variables) and software metrics (predictor variables) 
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Handling Missing Values  

The raw data set sometimes could have missing measurements due to issues in 

data collection framework or service unavailability. These data rows were eliminated 

due to unavailability of predictor variables. As these missing measurements were 

recorded only in few occurrences during the entire test period, the effect to the dataset 

by these eliminations are assumed to be insignificant. The other option was to replace 

missing values using average values or most frequently occurring values. Replacing 

missing values using averaged values will result in a realistic way as data were 

simulated with predefined constant input loads which run a few hours based on the test 

plan.  

In addition to this there can be cases where only some features are related to 

network element types within missing measurements. This scenario occurs when the 

given network related load is missing the simulated load and in this case, we would 

consider attribute values as zero for the given measurement interval.  

Attribute Reduction  

Limiting the number of predictor variables is necessary. As original data extracted 

contains many attributes related to different network element types and input load 

attributes, it is necessary to reduce the number of features to those attributes that are 

relevant for modelling purpose. Initially a pre-study was done considering all the 

predictor variables and the results was discussed with the domain experts. Based on this 

discussion it was suggested to define few composite features by aggregating metrics for 

similar network element types to construct models with more generalized features. In 

addition to this, some unrelated features were also ruled out based on domain 

knowledge. Finally, to select the best feature subset forward selection and backward 

elimination was evaluated on the selected feature set. 

Performance Data for Modelling 

During the initial modelling of the performance variables a few base predictor 

algorithms were selected as discussed earlier. As response variables, system level 

measurements available by VMware cloud framework were considered due to 
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simplicity and availability of measurements. During the modeling process each 

individual response variable (system level metrics) will be modeled against 

corresponding predictor variables (software level metrics). As the result for a single 

virtual machine, multiple models will be available representing each system level 

resource in descriptive way.  

System Area Metric name (VMware) Description Unit 

CPU cpu_usagemhz_average CPU usage in megahertz during 

the interval 

MHz 

Memory mem_consumed_average Memory Consumed Average KB 

Disk read_average Average number of kilobytes 

read from the disk during the 

interval 

KB/s 

write_average Average number of kilobytes 

written to disk during the 

interval 

KB/s 

Network I/O net_received_average Average rate at which data was 

received during the interval 

KB/s 

net_transmitted_average Average rate at which data was 

transmitted during the interval 

KB/s 

Software 

Performance 

Management 

PM insertion_time Insertion Time Per Hour total seconds 

Table 4 : Resource Utilization Metrics List for Modeling (Response Variables) [47] 

When constructing performance models, it is important to consider about different 

aspects such as physical hardware, software architecture, software system, 

interconnections and workload model. These models can be used to analyze the current 

and future system performance along with changeable workload and architecture 

changes [5]. When determining the response variables, system areas which can 

represent all aspects of the computer system were considered as listed in the above 

table. These models can be used during the capacity analysis process to determine how 

the system will operate under different load conditions. 

This research mainly focuses on performance analysis on Network Management 

Software system used in the study using machine learning methods. As defined in 
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Section 4 several univariable and multivariable-output techniques were evaluated to 

model system performance and reliability of each method was evaluated as supervised 

learning problem. These algorithms consist of a set of base predictors popular in data 

science and then to evaluate with some more advanced algorithms and comparison of 

performance on each method. All these methods claimed to be reliable options in 

supervised learning problems with the support of many practical applications in the 

literature. To model single performance utilization metric, below univariable-output 

algorithms were evaluated: 

• Multiple Linear Regression 

• Multivariate Adaptive Regression Splines (MARS) 

• K-nearest Neighbor (K-NN) 

• Random Forest 

• Support Vector Regression 

In addition to represent all performance utilization metrics using a single 

performance model Feedforward Neural Networks (FNN) were evaluated. Further 

validity of the models can be evaluated using separate datasets of customer 

environments. 

 

Figure 11: Modeling Approach of the Study 
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As per the defined scope of the study, it is intended to study only a subset of the 

computation nodes in the Network Management Software system depending on the 

business importance (performance management nodes, fault management nodes, 

database node). These nodes are selected based on business criticality as modelling all 

the nodes will be infeasible during the study period. As a limitation in the current 

performance data sets is the software system related measurements (predictor variables) 

that are only available in hourly intervals even though resource utilization 

measurements (response variables) are available in more granular way (1 min intervals). 

As to system analytical performance modelling point of view this might overfit the 

models as when averaging the metrics for hourly intervals certain properties of the data 

will be lost. By having more fine-grained data intervals more sensitive modelling could 

be possible. 

5.3. Model Cross Validation  

Once the performance models are created the next important stage is to validate 

the goodness of the models. Overfitting of models related to its training data is 

discussed by [48], [58] when using the same data for both training and subset selection. 

In his paper Miller states overfitting is a common problem in every model building 

process [42]. Overfitting also could happen when model building process uses the same 

dataset for selecting predictor variables and estimating regression coefficients as an 

example in a regression model. As a result of overfitted models could explain the 

current data more accurately but less performance on other datasets as for a given 

customer based on their integrated network elements, work load properties can be 

different from test data. 
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Figure 12 : Diagram on Underfit vs Overfit [59]  

Sample cases of overfitting and underfitting problem is illustrated in Figure 12 

and usage of linear regression with polynomial features to approximate the fit of 

nonlinear functions. The plot in green color represent the original function which needs 

to be approximated by the model equation and sample data points are displayed in dots. 

The models have polynomial features of different degrees. The first plot presents 

‘underfitting’ scenario where approximation using linear function (polynomial with 

degree 1) which is not sufficient to fit the training samples. The polynomial function 

with degree 4 in the second plot approximates the true function almost perfectly. 

However, once the degree of the model increases it will overfit the training data and 

learns the noise of the training data as well. 

To overcome this issue cross validation approaches can be applied by distributing 

the training set into multiple randomly selected subsets which follow the distribution of 

the data and select separate sample sets for training and validation. In holdout validation 

method a dataset is distributed into two separate training and validation samples, usually 

70% for training and 30% for validation set. Even though this method is 

computationally simple, results could be more biased to data points in the training data 

set. More advance version k-fold cross validation method can be used where the dataset 

is distributed into k subsets and training and evaluation is repeated k times. Finally, 

statistics are calculated using average score function [60]. This method will address the 
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partitioning issue but require more computation processing. To further improve the 

results few repetitions of k-fold cross validation method can be used which is supported 

by many machine learning library implementations.  

In addition to cross validation, during the study the created models were validated 

using external environment datasets to check generality of the models against customer 

environment data. By validation using multiple datasets the intention was to compare 

validation results in different software environments. 

5.4. Data Mining Tools Selection  

When considering software tools to be used several factors need to be considered 

including availability of different algorithms (machine learning libraries), ease of use 

and cost. At present many developers and companies are interested in available 

opensource software solutions over vendor specific software. One advantage over 

choosing opensource tool is flexibility to use and high availability of software libraries 

to be used for data analysis. Two famous such technologies are Python programing 

framework and R software which are rich in various data analysis tools. Few other 

available commercial data mining tools are RapidMiner, MATLAB, SPSS, and SAS. 

Based on the above selection criteria, RStudio was chosen as it has a rich user interface 

and simplicity to use. Different licenses and prices of RStudio editions are available and 

the open source edition of the software was chosen as it is freely available with required 

tooling support. 

The RStudio integrated development environment (IDE) provides comprehensive 

facilities to develop required data mining scripts and to execute them. In addition, R 

software is rich with many opensource libraries which already implemented most 

machine learning algorithms and techniques. Furthermore, there are plenty of 

documentations and samples about using the tools and available libraries which makes it 

popular among data scientists, 
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5.5. Model Selection Criteria 

R-Squared (R2) 

R2 indicates the percentage of the response variable variation that is described by a 

linear model and also known as the coefficient of determination. In multiple regression, 

this is known as the coefficient of multiple determination. This statistical measure 

evaluates the closeness of the data to the fitted regression line.  

R2 = (Explained variation / Total variation) x 100 % 

Equation 4: Definition of R2 

The value of R2 is presented as a percentage value between 0 and 100%. R2 value close 

to 0% indicates that the created model does not explain the variability of the response 

data around its mean value. On the other hand, value close to 100% indicates that the 

created model well explains the variability of the response data around its mean. In 

addition, when comparing different data models, higher R2 would be preferred as they 

better fit the data. 

Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡̃ − 𝑦𝑡)𝑛

𝑡=1
2

𝑛
 

𝑦𝑡̃  - Predicted value 

𝑦𝑡 - Actual value of response variable 

𝑛 - Number of cases 

Equation 5: Definition of RMSE 

This measurement criterion is frequently used in any modeling processes due to 

simplicity. The measurement represented by root mean squared error is the sample 

standard deviation of the differences between predicted values by a model and the actual 

data observed. If the calculation is based over data sample which is used for estimation, 

the difference between predicted and observed data are called residuals. In addition, if 

the calculations are computed using out-of-sample, they are called as prediction errors. 
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By aggregating the magnitudes of the RMSE’s, a single measurement which represents 

the prediction power can be derived. Further, RMSE is a scale-dependent measurement 

and can only be used to compare forecasting errors of different data models 

corresponding to a given data set, but not between multiple datasets. 

Mean Accuracy Percentage Error (MAPE) 

MAPE measures the prediction accuracy of a model and presents it as a 

percentage value. This approach is commonly used in trend estimation in statistics. 

Based on the definition of this measurement, the measured absolute values are 

aggregated and divided by the number of data points. Finally, to make it a percentage 

error, the result is multiplied by 100. Although the concept is simple and convincing, 

this technique has some weaknesses in practice [62]: 

• MAPE cannot be calculated if response variable has zero values 

• For high forecast values the percentage error can exceed 100% which sometimes 

confuses the results. 

• When comparing the accuracy of prediction models, the method tends to select a 

method whose forecasts are too low 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=0

 

𝐴𝑡- Actual value 

𝐹𝑡- Predicted value 

n - Number of cases 

Equation 6: Definition of MAPE 

To analyze the output results Table 5 can be used to assist the evaluation based on 

estimated values. 
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Measurement Description Good Average Poor 

R2 The percentage of explained variance in 

data by the model. 

≥ 0.8 ≥ 0.6 < 0.6 

Residual Mean 

Standard Error 

An estimator for the standard deviation 

of the model, thus representing the 

variance left unexplained. Only 

comparable between the models 

explaining the same response variable. 

The 

smallest 

 ≥ 

Mean Accuracy 

Percentage 

Error 

Prediction accuracy of the forecasting 

method expressed as a percentage 

The 

smallest 

 ≥ 

Table 5 : Model Evaluation Criteria Using Initial Estimates 
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6. Case Study Findings and Discussion 

This study was conducted empirically on network management system software 

based on machine learning applications. During this task our focus is to improve the 

study compared to earlier feasibility studies and perform more concrete performance 

analysis on the software system. This section presents the findings of the research study 

based on the evaluated performance models. As discussed in the earlier chapter after 

pre-processing the data multiple univariable and multivariable-output algorithms were 

used to evaluate the performance by goodness of the resulted models on describing the 

data. The result is presented as a set of resource models based on the response variables 

against each individual machine learning algorithm. Table 6 shows the summary of the 

model results based on evaluated criteria. Even though this study involved modeling 

selected set of computer nodes in the network management system, for simplicity 

results are only presented on ‘Performance Management’ computer cluster nodes. When 

validating created models, a few approaches were evaluated based on the suggestions by 

domain experts at Nokia and stated below is a list of these different approaches: 

• cross validation by splitting the training set 

• separate validation dataset 

• 3 customer environment datasets 

 

The result graphs corresponding to validation dataset are presented in Appendix 

section of the report based on each response variable. 
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 CPU MHz Average Memory Consumed 

Average 

Disk I/O Read 

Average 

Disk I/O Write 

Average 

Network I/O 

Received Average 

Network I/O 

Transmitted Average 

PM Insertion Time 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

Multiple Linear 

Regression 

165.15 0.9014 651907.8 0.1840 5.5270 0.0036 86.266 0.6755 249.44 0.7473 256.38 0.7990 153.06 0.8292 

Multivariate 

Adaptive 

Regression Spline  

131.56 0.9362 541079.3 0.4301 6.0647 0.0070 77.935 0.7408 138.59 0.9217 180.47 0.8985 131.84 0.8759 

K-Nearest 

Neighbors 

128.37 0.9401 541122.2 0.4381 6.1446 0.0022 75.803 0.7573 112.58 0.9483 178.91 0.9022 126.61 0.8846 

Random Forest 114.90 0.9520 518124.5 0.4874 6.0525 0.0011 74.279 0.7654 100.84 0.9581 171.75 0.9089 120.92 0.8936 

SVR Polynomial 

Kernel 

129.30 0.9396 674781.0 0.2649 5.6386 0.0006 77.877 0.7457 137.91 0.9234 179.80 0.8990 138.93 0.8610 

SVR Radial Basis 

Function Kernel 

122.96 0.9458 650996.7 0.2950 5.1167 0.0014 73.580 0.7667 125.72 0.9368 192.78 0.8883 117.49 0.9036 

FFN (6) 223.76 N/A 982117.9 N/A 6.4371 N/A 135.07 N/A 192.17 N/A 357.27 N/A 940.83 N/A 

FFN (10) 202.45 N/A 876971.7 N/A 6.3225 N/A 129.65 N/A 160.34 N/A 321.33 N/A 948.71 N/A 

FFN (10, 6) 189.53 N/A 814381.1 N/A 6.3202 N/A 122.45 N/A 125.89 N/A 304.81 N/A 949.58 N/A 

FFN (10, 6, 6) 181.77 N/A 777504.3 N/A 6.2851 N/A 123.05 N/A 121.32 N/A 306.98 N/A 950.98 N/A 

Table 6 : Model Result Summary 
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As opposed to the previous study conducted on network management system, this 

experiment was done to overcome some limitations of the earlier research. As discussed 

in earlier chapter there was limitations on number of evaluated methods, ability to 

collect software related metrics and availability of customer datasets to compare 

performance. To overcome the earlier limitations, total of 85 different load profiles were 

run against the software system to collect a good enough training dataset and several 

machine learning algorithms were used to construct performance models which 

represent different system resource utilization metrics. Further validation of models was 

conducted in addition using a separate test dataset to evaluate the models using three 

customer datasets from separate system environments. 

Results of the disk I/O read average (R2 ~ 0.7%) is not be presented in the report 

as the model is weak and will not explain the data properly due to less variation in the 

measurement values. In memory consumption there also can be less variation on 

measurements due to its cached and buffered components. Technically this due to Linux 

operating system borrowing unused memory for disk caching to improve its 

performance and makes the system faster and more responsive [62]. Due to this reason 

measured memory consumption will represent higher measurement value irrespective of 

its actual operational use by the software application. The model representing memory 

consumed average shows moderate R2 (~ 48.7%) value compared to other models. 

Conclusions made from each result set will be presented based on univariable-

output models and multivariable-output models for convenience. Table 7 represents the 

evaluation result summary of the regression models based on their performance against 

test data set. The models are related to regression analysis of performance utilization 

metrics when evaluating the created models RMSE were used. In addition to this MAPE 

is also listed in the table due to simplicity to understand, even though it is a biased 

measurement based on measurement values. 
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Algorithm Name 

CPU Average 

(MHz) 

RMSE (MAPE) 

Memory 

Consumed 

Average (MB) 

RMSE (MAPE) 

Disk I/O Write 

Average (KB/s) 

RMSE (MAPE) 

Network I/O 

Received Average 

(KB/s) 

RMSE (MAPE) 

Network I/O 

Transmitted Average 

(KB/s) 

RMSE (MAPE) 

PM Insertion 

Time (s) 

RMSE (MAPE) 

Linear Regression  205.51 (7.06%) 804.748 (6.11%) 106.07 (34.63%) 300.38 (16.82%) 436.85 (18.29%) 143.77 (184.8%) 

MARS 194.27 (5.92%) 696.701 (5.10%) 87.21 (27.91%) 327.75 (14.44%) 285.60 (14.23%) 168.36 (219.9%) 

K-NN 251.40 (7.31%) 715.199 (4.56%) 88.85 (24.6%) 237.20 (11.02%) 442.01 (13.47%) 216.20 (27.45%) 

Random Forest 281.29 (8.13%) 699.140 (4.66%) 100.04 (28.56%) 231.05 (10.90%) 431.59 (12.51%) 208.74 (26.33%) 

SVR (Polynomial 

Kernel) 

183.21 (5.20%) 894.511 (5.76%) 66.89 (21.22%) 245.58 (11.21%) 421.14 (14.54%) 166.63 (237.8%) 

SVR (Radial Basis 

Function Kernel) 

214.88 (6.32%) 956.556 (6.28%) 74.12 (23.36%) 255.09 (13.21%) 414.92 (14.06%) 197.71 (339.4%) 

FFN (6) 173.68 (4.68%) 695.119 (4.64%) 85.25 (25.88%) 100.20 (4.26%) 496.30 (16.06%) 148.27 (159.4%) 

 

FFN (10) 179.73 (4.54%) 777.832 (4.90%) 89.75 (25.76%) 97.49 (4.19%) 502.12 (15.52%) 166.98 (85.65%) 

FFN (10, 6) 226.76 (5.95%) 702.149 (4.27%) 73.01 (20.14%) 116.84 (4.66%) 454.50 (12.11%) 156.01 (182.1%) 

FFN (10, 6, 6) 174.99 (4.56%) 741.571 (4.59%) 69.28 (19.56%) 101.02 (3.15%) 422.16 (12.71%) 179.11 (241.1%) 

Table 7 : Summary of Machine Learning Methods Against Test Dataset (Method with the lowest RMSE is highlighted in bold) 
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Figure 13: RMSE Comparison of CPU Average 

 

Figure 14 : RMSE Comparison of Memory Consumed Average 

 

Figure 15: RMSE Comparison of Disk Write Average 
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Figure 16: RMSE Comparison of Network Received Average 

 

Figure 17: RMSE Comparison of Network Transmitted Average 

 

Figure 18: RMSE Comparison of PM Insertion Time 
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Figure 13 to 18 shows RMSE comparison among different machine learning 

algorithms. When evaluating performance of system along with the goodness of 

performance simplicity and applicability of the models is also important in real 

operations. Considering the results of univariable-output models, it is implicated that no 

single algorithm performs best for all resource models. In addition, compared to all 

other response variables ‘PM Insertion Time’ does not perform well with respect to 

percentage accuracy values and this is due to the biasness of the MAPE measurement 

where it causes high percentage error values with small insertion time measurements. 

Apart from this all models performed well based on the performance criteria’s. 

On the other hand, not only feed forward neural networks perform well with low 

RMSE and MAPE values, since they are multivariable output methods there is 

advantage of having single model to represent all output metrics. Based on the results 

the feedforward network with 1 hidden layer with 6 neurons performs well overall as 

RMSE and MAPE are comparatively low on many resource utilization models. Also, it 

can be seen that performance of the networks slightly decreases when number of nodes 

increase but possibly due to limited training data points to train the network completely. 

Since current training dataset includes limited number of data points, there are 

limitations when training larger networks which could not properly learn all its weights. 
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7. Conclusion 

The aim of the study was to assess machine learning applicability on capacity 

estimation of network management system software by modelling its performance 

utilizations. To accomplish this, following research objectives were set which laid the 

foundation for the study: 

Objective 1: Modelling resource utilization and responsiveness of the system 

Performance prediction using the created models for lab environments performed 

well with percentage error on CPU MHz average ~ 4.68%, Memory Consumption 

Average ~ 4.64%, Disk Write Average ~ 4.19% Network Received Average ~ 4.19% 

and Network Transmitted Average ~ 14%. Modeling on ‘Disk I/O Read Average’ was 

not considered as it cannot be modeled due to low variation in measured values and low 

R2 values on models corresponding to these predictor variables. Also, the models based 

on artificial neural networks are well fitting with the lab data samples creating 

multivariable-output models with better performance values compared to univariable-

output utilization models. 

The overall evaluation results show that application of machine learning 

techniques have the potential of modeling system resource utilizations. To evaluate 

performance of these exploratory models, RMSE and MAPE were considered. 

Performance of system level resource models were evaluated across test environment 

and customer data. Finally, the results were evaluated based on R2, RMSE and 

percentage accuracy levels against the learning method. 

The comparison of results on test environment shows, that no single learning 

technique performed best on modeling all given metrics in univariable-output utilization 

models. Support Vector Machines with Polynomial Kernel seems to perform 

comparatively well on univariable-output models. As there wasn’t any single best 

method to have highest performance, an ensemble method could be evaluated for further 

improvements. Furthermore, feedforward neural networks with multivariable output 

models seems to perform well compared to all other techniques with low RMSE and 

MAPE values. 
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Objective 2: Understand performance bottlenecks of the system 

Firstly, we noticed some inconsistency among load balancing on PM nodes where first 

node in the cluster always processes more counters when increasing the system load. 

This can be identifiable when observing the resource utilization graphs over time. 

Secondly, even though the system load on customer environments are less variating 

again initial cluster nodes indicate more resource utilizations compared to remaining 

nodes under uniform input load. When comparing lab vs customer environments, 

response time on PM data flow (insertion time) is comparatively high on lab 

environments compared to customer datasets. These points highlight some performance 

inconsistencies in the current software system which needs insight analysis on system 

architecture and layout. 

Objective 3: Understand limitations of current metrics used for system modelling 

In the process of validating the models against performance data on customer 

environments, more deviations were observed on predicted results compared to actual 

resource utilization measurements. One reason for this being properties of the current 

training data set generated using test simulators are sometimes different from customer 

data as the test simulators are designed for capacity test of the software system. When 

comparing the simulated data against customer data we could see that file sizes, byte 

sizes in measurements and counter rates are different among the environments.  

On the other hand, predictive results were deviated in customer datasets compared 

to the lab environment in which training samples were collected. The models perform 

variably on different customer datasets as properties of the input data vary depending on 

the environment. Furthermore, as we used the training data set to feature selection and 

train the models it is inevitable that the created utilization models will be overfit to the 

training data set. This implies the requirement of further study on finding the 

explanations for variation in performance of different data sets. In addition, constructing 

a training dataset with more feature variations could lead to better performance results 

to the problem. 

Limitations in the current study 

Network management system is a large distributed software which consists of 

many dataflows and over 50 virtual machine instances. Due to this complexity, 
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modelling each entity would require a huge effort in practice. As the initial study the 

PM data flow was selected depending on its importance to the business. Further studies 

about other system components are expected to be conducted in next iterations, which is 

out of the scope of this study. When defining the scope of the study it was agreed to 

only consider system level (IaaS) resource metrics by selecting CPU utilization, 

memory consumption, disk I/O operation averages and Network I/O operation averages 

at this stage. In addition, PM insertion time was considered as a measure of 

responsiveness of the dataflow. 

As the training data mainly consist of simulated workloads, temporal relationships 

among data points cannot be studies. Due to this reason, recurrent neural networks 

(RNN) were not evaluated in this experiment. Further during the timeframe of the study 

only few sets of customer data was available to analyze exploratory analyze the data and 

to validate the models against them. In future it is expected to collect more datasets by 

collaborating with the customers and to improve performance analysis of the software in 

general.   

Future work and recommendations 

Data mining is a continuous learning process where results need to be improved 

iteratively depending on the research objectives. Further, in an iterative study we can 

recognize important facts that have been left out during the initial planning, once 

additional data and domain knowledge is collected. To improve the results further, more 

advanced data preparation steps, modeling techniques and more involvement from 

domain experts are required. In addition, continuous improvements can lead to results 

with high accuracy. In this section possible future study areas are discussed which were 

identified during the study: 

• The results show that apart from the data collected from the lab environment, 

predicted performance varies across customer datasets which represent different 

company’s data. Since different mobile technologies are used in operator 

companies depending on their business, the properties of input data processed in 

network management system can be different in nature. This nature of system 

data produces dissimilar resource utilization measurements which needs further 

study. 
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• During the testing of created models against customer datasets more deviations 

were noticed on the predictive results compared to lab environments. Some 

reasons were that models are overfitting to training data where in customer 

datasets certain properties of data (file sizes, file rates, size per counter etc.) are 

different between compared to lab environment. To overcome this further 

generalized training dataset should be created, which aligns with customer data 

cases to model generalized results to improve accuracy.  

• In future, with the availability of continuous customer datasets which spreads 

through longer time periods, additional studies to understand trends, cycles, busy 

hours for a given customer can be done using time series analysis and load 

prediction techniques. 

• Based on its design network management system software is heavily dependent 

on underlying database operations and further analysis of its effect on system 

performance can be studied.  Along with this study certain system 

responsiveness metrics can also be studied using dataflow response times and 

insertion times. 

• This study was mainly based on system level resource measurements (IaaS 

layer) as defined in the scope. Next, the scope can be further extended to 

incorporate platform level (PaaS) and software level (SaaS) resource utilizations 

metrics and attributes. 

• Based on the current data models, baseline performance levels can be defined for 

a given software version. This information can be used in future performance 

comparisons against different software versions to evaluate any capacity 

deviations against different versions. 

• The results can be used by domain experts to define dimensioning properties or 

requirements based on system level resource usages to ensure required amount 

of system performance. 

Overall, the current methods and the results of the study help to define the 

foundation for future studies. In conclusion, from the results and the findings of the 
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study, one could find insight and information about the network management system 

and about its resource usages to understand system’s capacity analysis in data intensive 

way. This was the main objective of the study and the solution provides the necessary 

information to the company. 
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Appendix 

Modeling Results 

The results from Table 8 to Table 13 presents the actual and predicted results 

corresponding to different modeling algorithm on validation dataset. Additionally, 

RMSE, MAE and MAPE values are also presented for each case. In the validation result 

graphs, color blue represents actual resource usage values and color red represents 

predicted usages by the models. These results helped during the experiment to decide 

the suitable modeling technique against each response variable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

CPU MHz Average 

Linear Regression with Stepwise Selection 

RMSE 205.51  MAE 178.87  MAPE 7.06%  

 

Multivariate Adaptive Regression Spline 

RMSE 194.27  MAE 194.27  MAPE 5.92%  
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K-Nearest Neighbors 

RMSE 251.40  MAE 199.26  MAPE 7.31%  

 

Random Forest 

RMSE 281.29  MAE 222.49  MAPE 8.13%  
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Support Vector Machines with Polynomial Kernel  

RMSE 183.21  MAE 131.83  MAPE 5.20%  

 

Support Vector Machines with Radial Basis Function Kernel  

RMSE 214.88  MAE 162.48  MAPE 6.32%  
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Feed Forward Network - 1 Hidden Layer with (6) Nodes  

RMSE 173.68 MAE 127.62 MAPE 4.68% 

 

Feed Forward Network - 1 Hidden Layer with (8) Nodes 

RMSE 179.72 MAE 124.05 MAPE 4.53% 
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Feed Forward Network - 2 Hidden Layers with (10,6) Nodes  

RMSE 226.76 MAE 163.02 MAPE 5.95% 

 

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes 

RMSE 174.99 MAE 122.89 MAPE 4.56% 

 

Table 8 - Validation Results of CPU Utilization Average 
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Memory Consumed Average 

Linear Regression with Stepwise Selection 

RMSE 804748.3 MAE 677964.2 MAPE 6.11% 

 

Multivariate Adaptive Regression Spline 

RMSE 696701.8 MAE 567727.9 MAPE 5.10% 
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K-Nearest Neighbors 

RMSE 715199.3 MAE 495504.1 MAPE 4.56% 

 

Random Forest 

RMSE 699140.2 MAE 507653.1 MAPE 4.66% 
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Support Vector Machines with Polynomial Kernel  

RMSE 894511.3 MAE 611632.3 MAPE 5.76% 

 

Support Vector Machines with Radial Basis Function Kernel  

RMSE 956556.6 MAE 671179.8 MAPE 6.28% 
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Feed Forward Network - 1 Hidden Layer with (6) Nodes  

RMSE 695119.37 MAE 504097.62 MAPE 4.64% 

 

Feed Forward Network - 1 Hidden Layer with (8) Nodes 

RMSE 777832.43 MAE 530865.22 MAPE 4.89% 
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Feed Forward Network - 2 Hidden Layers with (10,6) Nodes  

RMSE 702149.94 MAE 459227.58 MAPE 4.26% 

 

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes 

RMSE 741571.30 MAE 498002.61 MAPE 4.58% 

 

Table 9 - Validation Results of Memory Consumed Average 
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Disk I/O Write Average 

Linear Regression with Stepwise Selection 

RMSE 106.07  MAE 76.32  MAPE 34.63%  

 

Multivariate Adaptive Regression Spline 

RMSE 87.21  MAE 63.35  MAPE 27.91%  
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K-Nearest Neighbors 

RMSE 88.85  MAE 59.91  MAPE 24.6%  

 

Random Forest 

RMSE 100.04  MAE 69.29  MAPE 28.56%  
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Support Vector Machines with Polynomial Kernel  

RMSE 66.89  MAE 47.70  MAPE 21.22%  

 

Support Vector Machines with Radial Basis Function Kernel  

RMSE 74.12  MAE 52.44  MAPE 23.36%  
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Feed Forward Network - 1 Hidden Layer with (6) Nodes  

RMSE 85.25 MAE 59.21 MAPE 25.88% 

 

Feed Forward Network - 1 Hidden Layer with (10) Nodes 

RMSE 89.74 MAE 61.62 MAPE 25.75% 
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Feed Forward Network - 2 Hidden Layers with (10,6) Nodes  

RMSE 73.00 MAE 47.00 MAPE 4.26% 

 

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes 

RMSE 69.27 MAE 45.16 MAPE 19.58% 

 

Table 10 - Validation Results of Disk I/O Write Average 
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Network I/O Received Average 

Linear Regression with Stepwise Selection 

RMSE 300.38  MAE 199.56  MAPE 16.82%  

 

Multivariate Adaptive Regression Spline 

RMSE 327.75  MAE 237.57  MAPE 14.44%  
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K-Nearest Neighbors 

RMSE 237.20  MAE 166.89  MAPE 11.02%  

 

Random Forest 

RMSE 231.05  MAE 159.40  MAPE 12.21%  
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Support Vector Machines with Polynomial Kernel  

RMSE 245.58  MAE 157.68  MAPE 11.21%  

 

Support Vector Machines with Radial Basis Function Kernel  

RMSE 255.09  MAE 199.56  MAPE 13.21%  
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Feed Forward Network - 1 Hidden Layer with (6) Nodes  

RMSE 100.20 MAE 65.22 MAPE 4.26% 

 

Feed Forward Network - 1 Hidden Layer with (10) Nodes 

RMSE 97.48 MAE 67.35 MAPE 4.18% 
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Feed Forward Network - 2 Hidden Layers with (10,6) Nodes  

RMSE 116.84 MAE 80.98 MAPE 4.66% 

 

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes 

RMSE 101.02 MAE 54.78 MAPE 3.14% 

 

Table 11 : Validation Results of Network I/O Received Average 
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Network I/O Transmitted Average 

Linear Regression with Stepwise Selection 

RMSE 436.85  MAE 333.58  MAPE 18.29% 

 

Multivariate Adaptive Regression Spline 

RMSE 285.60  MAE 436.60  MAPE 14.23% 
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K-Nearest Neighbors 

RMSE 442.01 MAE 281.17 MAPE 13.47% 

 

Random Forest 

RMSE 431.59  MAE 281.66 MAPE 12.51% 
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Support Vector Machines with Polynomial Kernel  

RMSE 421.14 MAE 284.41  MAPE 14.54%  

 

Support Vector Machines with Radial Basis Function Kernel  

RMSE 414.92  MAE 279.37  MAPE 14.06% 
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Feed Forward Network - 1 Hidden Layer with (6) Nodes  

RMSE 496.30 MAE 333.34 MAPE 16.06% 

 

Feed Forward Network - 1 Hidden Layer with (10) Nodes 

RMSE 502.12 MAE 330.78 MAPE 15.51% 
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Feed Forward Network - 2 Hidden Layers with (10,6) Nodes  

RMSE 454.49 MAE 274.28 MAPE 12.11% 

 

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes 

RMSE 422.16 MAE 269.92 MAPE 12.70% 

 

Table 12 : Validation Results of Network I/O Transmitted Average 
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Insertion Time Average 

Linear Regression with Stepwise Selection 

RMSE 143.77  MAE 104.45  MAPE 184.8%  

 

Multivariate Adaptive Regression Spline 

RMSE 168.36  MAE 115.13  MAPE 219.9%  
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K-Nearest Neighbors 

RMSE 216.20  MAE 152.01  MAPE 27.45%  

 

Random Forest 

RMSE 208.74  MAE 148.45  MAPE 26.33%  
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Support Vector Machines with Polynomial Kernel  

RMSE 166.63  MAE 118.27  MAPE 237.8%  

 

Support Vector Machines with Radial Basis Function Kernel  

RMSE 197.71  MAE 142.82  MAPE 339.4%  
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Feed Forward Network - 1 Hidden Layer with (6) Nodes  

RMSE 148.27 MAE 103.97 MAPE 159.4% 

 

Feed Forward Network - 1 Hidden Layer with (10) Nodes 

RMSE 166.98 MAE 112.44 MAPE 85.65% 
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Feed Forward Network - 2 Hidden Layers with (10,6) Nodes  

RMSE 156.01 MAE 104.72 MAPE 182.1% 

 

Feed Forward Network – 3 Hidden Layers with (10,6,6) Nodes 

RMSE 179.11 MAE 125.67 MAPE 241.1% 

 

Table 13 : Validation Results of PM Insertion Time Average 


