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Abstract We deal with the generalized Orlicz–Morrey space Mφ,Φ(Rn) of the third kind
and consider the decomposition method. Also we characterize its predual space. Some max-
imal estimates for generalized Orlicz–Morrey spaces of the third kind are also obtained by
using the weighted Hardy operators. As an application, we consider the Olsen inequality,
which is a bilinear estimate on the fractional integral operator. As an appendix, we consider
a general form of the vector-valued boundedness of the Hardy–Littlewood maximal oper-
ator, where φ in the definition of Mφ,Φ(Rn) depends on x as well. This paper contains a
remedy for the mistake in the proof of the Olsen inequality of the 2014 paper by the second
author (Iida et al. in Z. Anal. Anwend. 33(2):149–170, 2014).
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1 Introduction

In this paper, we are oriented to the decomposition of generalized Orlicz–Morrey spaces
of the third kind and its applications. Generalized Orlicz–Morrey spaces of the third kind
are equipped with two functions Φ and φ; Φ : [0,∞) → [0,∞) is a convex bijection and
φ : (0,∞) → (0,∞) belongs to a class of GΦ , which consists of all decreasing functions
φ : (0,∞) → (0,∞) such that μ : (0,∞) � t �→ Φ−1(t−n)φ(t)−1 ∈ (0,∞) is almost de-
creasing, that is, there exists a constant C > 0 such that μ(t) ≤ Cμ(s) for all 0 < s < t < ∞.
Denote by �2 the set of all convex bijections Φ : [0,∞) → [0,∞) such that the doubling
condition:

Φ(2t) ≤ CΦ(t) (t ≥ 0) (1.1)

holds for some constant C ≥ 2, which is called the doubling constant, and by ∇2 the set of
all convex functions Φ : [0,∞) → [0,∞] such that the ∇2-condition:

2C ′Φ(t) ≤ Φ(2t) (t ≥ 0) (1.2)

holds for some C ′ > 1. Note that C in (1.1) exceeds 2 when Φ ∈ �2 ∩∇2 due to (1.2). Recall
also that the conjugate function Ψ of Φ is defined by:

Ψ (t) ≡ sup
{
st − Φ(s) : s ≥ 0

}
(t ≥ 0). (1.3)

Let Φ be a Young function. Recall that the Orlicz norm ‖f ‖LΦ(E) over a measurable set
E in R

n is defined by:

‖f ‖LΦ(E) ≡ inf

{
λ > 0 :

∫

E

Φ

( |f (x)|
λ

)
dx ≤ 1

}
. (1.4)

Define LΦ
loc(R

n) as the set of all measurable functions f for which f ∈ LΦ(K) for all com-
pact sets K in R

n.
We now define generalized Orlicz–Morrey spaces of the third kind. All the “cubes” in

R
n are assumed to have their sides parallel to the coordinate axes. Denote by Q the set of

all cubes. For a cube Q ∈ Q, the symbol �(Q) stands for the side-length of the cube Q;
�(Q) ≡ |Q| 1

n , where | · | stands for the Lebesgue measure. The generalized Orlicz–Morrey
space Mφ,Φ(Rn) of the third kind is defined as the set of all measurable functions f for
which the norm

‖f ‖Mφ,Φ
≡ sup

Q∈Q
1

φ(�(Q))
Φ−1

(
1

|Q|
)

‖f ‖LΦ(Q)

is finite. Write Gp ≡ GΦ when Φ(t) = tp with 1 ≤ p < ∞. For κ ∈ (1,∞), the harmonic
conjugate is defined by: κ ′ ≡ κ(κ − 1)−1. We use the powered Hardy–Littlewood maximal
operator M(κ) given by: for a measurable function g :Rn →C

M(κ)g(x) ≡ sup
Q∈Q

(
χQ(x)

|Q|
∫

Q

∣∣g(y)
∣∣κ dy

) 1
κ

. (1.5)

The following result is one of the fundamental theorems in this paper:
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Theorem 1.1 Let κ ∈ (1,∞) and Φ ∈ �2 ∩ ∇2. Define Ψ by (1.3). Assume in addition that
the quotient φ/η of φ ∈ GΦ and η ∈ Gκ ′ satisfies the integral condition:

∫ ∞

r

φ(s)

η(s)s
ds ≤ C

φ(r)

η(r)
(r > 0) (1.6)

and that M(κ) is bounded on LΨ (Rn): for all g ∈ LΨ (Rn)

∥∥M(κ)g
∥∥

LΨ ≤ C‖g‖LΨ . (1.7)

Assume that {Qj }∞
j=1 ⊂ Q, {aj }∞

j=1 ⊂ Lκ ′
(Rn) and {λj }∞

j=1 ⊂ [0,∞) fulfill the following
three conditions:

1. The support condition on aj :

supp(aj ) ⊂ Qj, (1.8)

2. The size condition on aj :

‖aj‖Mη

κ′ := sup
Q∈Q

1

η(�(Q))

(
1

|Q|
∫

Q

∣∣aj (y)
∣∣κ ′

dy

) 1
κ′

≤ 1

η(�(Qj ))
. (1.9)

3. The coefficient condition on {λj }∞
j=1:

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

< ∞. (1.10)

Then

f ≡
∞∑

j=1

λjaj (1.11)

converges in S ′(Rn) ∩ LΦ
loc(R

n) and satisfies

‖f ‖Mφ,Φ
≤ C

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

. (1.12)

A tacit understanding is that we use the convention that the meaning of C can change
from line to line.

Now we state the next theorem. To this end we fix some notation. We denote by Pd(R
n)

the set of all polynomials in variables x1, x2, . . . , xn with degree less than or equal to d . Let
N0 ≡ {0,1, . . .}. The space P⊥

L (Rn) is the set of all measurable functions f such that

∫

Rn

∣∣f (x)
∣∣(1 + |x|)L

dx < ∞,

∫

Rn

f (x)xα dx = 0

for all α ∈ N
n
0 with |α| ≤ L. Denote by L∞

comp(R
n) the set of all compactly supported func-

tions which are essentially bounded.
In the present paper we also seek to prove the following decomposition result for the

functions in generalized Orlicz–Morrey spaces of the third kind:
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Theorem 1.2 Let L ∈ N0, Φ ∈ �2 ∩ ∇2 and φ ∈ GΦ . Assume that φ satisfies the integral
condition:

∫ ∞

r

φ(s)
ds

s
≤ Cφ(r) (r > 0). (1.13)

Let f ∈ Mφ,Φ(Rn). Then there exist {Qj }∞
j=1 ⊂ Q, {aj }∞

j=1 ⊂ L∞
comp(R

n) ∩ P⊥
L (Rn) and

{λj }∞
j=1 ⊂ [0,∞) such that f = ∑∞

j=1 λjaj in S ′(Rn) and that, for all v > 0

|aj | ≤ χQj
(j = 1,2, . . .),

∥∥∥∥∥

( ∞∑

j=1

(λjχQj
)v

) 1
v
∥∥∥∥∥
Mφ,Φ

≤ Cv‖f ‖Mφ,Φ
. (1.14)

Here the constant Cv > 0 is independent of f .

In view of Theorems 1.1 and 1.2 and the results in [40, Sect. 4], the decomposition of
the functions requires us the vector-valued inequality for the Hardy–Littlewood maximal
operator and the synthesis of the functions requires us the duality. As we did in [40, 41], if
we combine these theorems, we can prove that the singular integral operators are bounded
in Mφ,Φ(Rn).

As is mentioned in [57, p. 185], these theorems date back to the papers by Uchiyama and
Jones. Note that Mφ,Φ(Rn) covers many classical function spaces.

Example 1.3 Let 1 ≤ q ≤ p < ∞ and Φ ∈ �2 ∩ ∇2. From the following special cases,
we see that our results will cover the Lebesgue space Lp(Rn), the classical Morrey space
Mp

q (Rn), the generalized Morrey space Mφ
p(Rn) and the Orlicz space LΦ(Rn) with norm

coincidence:

1. If Φ(t) = tp and φ(t) = t
− n

p , then Mφ,Φ(Rn) = Lp(Rn) with norm equivalence.

2. If Φ(t) = tq and φ(t) = t
− n

p , then Mφ,Φ(Rn), which is denoted by Mp
q (Rn), is the

classical Morrey space.
3. If Φ(t) = tp , then Mφ,Φ(Rn) = Mφ

p(Rn) is the generalized Morrey space which were
discussed in [16–18, 35, 54]. See [1–3] for local Morrey spaces.

4. If φ(t) = Φ−1(t−n), then Mφ,Φ(Rn) = LΦ(Rn), which is beyond the reach of general-
ized Orlicz–Morrey spaces of the second kind defined in [54] according to an example
constructed in [14]; see Definition 9.1 for its definition.

5. As a particular case, by letting Φ(t) = tp1 + tp2 for some 1 < p1,p2 < ∞, we can recover
the intersection space Lp1(Rn) ∩ Lp2(Rn).

6. Another example is Φ(t) = tp(log(3 + t))q with p > 1 and q ∈ R. In general Φ is not
convex but we can replace Φ with a convex function equivalent to Ψ .

Other definitions of generalized Orlicz–Morrey spaces can be found in [36, 38, 39, 54];
see Definition 9.1 in the present paper. Therefore, our definition of generalized Orlicz–
Morrey spaces here is named “third kind”.

By combining the idea of Theorem 1.1 with Example 1.3, we have the following estimate
for Orlicz spaces, whose proof is similar to Theorem 1.1:

Corollary 1.4 Let κ ∈ (1,∞) and Φ ∈ �2 ∩ ∇2 satisfy (1.7). Assume that {Qj }∞
j=1 ⊂ Q,

{aj }∞
j=1 ⊂ Lκ ′

(Rn) and {λj }∞
j=1 ⊂ [0,∞) fulfill the following three conditions:
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1. The support condition on aj :

supp(aj ) ⊂ Qj . (1.15)

2. The size condition on aj :

‖aj‖Lκ′ ≤ |Qj |1/κ ′
. (1.16)

3. The coefficient condition on {λj }∞
j=1:
∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
LΦ

< ∞. (1.17)

Then f ≡ ∑∞
j=1 λjaj converges in LΦ(Rn) and satisfies

‖f ‖LΦ ≤ C

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
LΦ

. (1.18)

Our strategy of the proof of Theorems 1.1 and 1.2 is as follows: The proof of Theorem 1.1
hinges upon the duality. Meanwhile, to prove Theorem 1.2 we shall convert the generalized
Orlicz–Morrey space Mφ,Φ(Rn) of the third kind to the generalized Hardy–Orlicz–Morrey
space HMφ,Φ(Rn) of the third kind as we do in (5.1). In fact, our experience shows that the
Hardy space Hp(Rn) with 0 < p < ∞ can be more informative than the Lebesgue space
Lp(Rn) with 0 < p < ∞ when we discuss the boundedness of some operators. See [57] and
references therein for more information on the Hardy space Hp(Rn).

We adopt the following notation, although some of them duplicate:

1. Let A,B ≥ 0. Then A � B means that there exists a constant C > 0 such that A ≤
CB and A ∼ B stands for A � B � A, where C depends only on the parameters of
importance.

2. The symbol B(x, r) stands for the open ball centered at x or radius r > 0.
3. By a “cube” we mean a compact cube whose edges are parallel to the coordinate axes,

namely, the metric ball defined by �∞ is called a cube. If a cube has center x and radius r ,
we denote it by Q(x, r). From the definition of Q(x, r), its volume is (2r)n. We write
Q(r) instead of Q(0, r), where 0 denotes the origin. Given a cube Q, we denote by c(Q)

the center of Q and by �(Q) the sidelength of Q: �(Q) = |Q| 1
n . Given a cube Q and

k > 0, its k-times expansion kQ means the cube concentric to Q with sidelength k�(Q).
4. By a dyadic cube, we mean a set of the form 2−jm + [0,2−j )n for some m ∈ Z

n and
j ∈ Z. Note that dyadic cubes are not open nor closed but that cubes are closed.

5. In the whole paper, we adopt the following definition of the Hardy–Littlewood maxi-
mal operator to estimate some integrals: The Hardy–Littlewood maximal operator M is
defined by:

Mf (x) ≡ sup
Q∈Q

χQ(x)

|Q|
∫

Q

∣∣f (y)
∣∣dy

(
x ∈R

n
)
, (1.19)

for a locally integrable function f on R
n.

6. Let 0 < α < n. We define the fractional integral operator Iα by:

Iαf (x) ≡
∫

Rn

f (y)

|x − y|n−α
dy

(
x ∈R

n
)

for all suitable functions f on R
n.
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7. Let M(0,∞) be the set of all measurable functions on (0,∞) and M+(0,∞) its subset
consisting of all non-negative functions on (0,∞). We denote by M+(0,∞;↑) the cone
of all non-decreasing functions in M+(0,∞). The subset A of M+(0,∞;↑) is define by:

A≡ {
φ ∈ M

+(0,∞;↑) : infφ = 0
}
. (1.20)

Other definitions are given when needed.
To conclude this section, we describe how we organize the remaining part of this paper.

In Sect. 2 we collect some preliminary facts such as the Hölder inequality for our function
spaces as well as preduality. As an auxiliary step, in Sect. 3 we shall prove the boundedness
of the Hardy–Littlewood maximal operator on generalized Orlicz–Morrey spaces of the third
kind. We prove Theorems 1.1 and 1.2 in Sects. 4 and 5, respectively. A counterpart of The-
orems 1.1 and 1.2 to Hardy spaces with variable exponents and to Hardy–Orlicz spaces are
proved in [40] and [41], respectively. However, as is the case with classical Morrey spaces
[25], we need to be careful when we prove Theorem 1.2. In fact, for a sequence F = {fj }∞

j=1
of measurable functions satisfying 0 ≤ f1 ≤ f2 ≤ · · · → f and f ∈ Mφ,Φ(Rn) does not im-
ply ‖f − fj‖Mφ,Φ

→ 0 as is seen from the example of fj (x) ≡ |x|−n/p(1 − χB(0,j−1))(x) in
Mp

q (Rn) with 1 < q < p < ∞. This difficulty will be overcome by the use of Lemma 5.6.
Applications are taken up in Sects. 6 and 7. We apply Theorems 1.1 and 1.2 to prove that the
singular integral operators are bounded on generalized Orlicz–Morrey spaces of the third
kind in Sect. 6. As another application of Theorems 1.1 and 1.2, we consider a bilinear
operator (f, g) �→ g · Iαf in Sect. 7. In Sect. 8 we refine what we obtained in Sect. 3;
we reconsider the case when φ depends on x. Finally, in Sect. 9 we first compare three
generalized-Orlicz–Morrey spaces and then we discuss the assumptions in Theorems 1.1
and 1.2.

2 Preliminaries

2.1 Fundamental Structure of Generalized Orlicz–Morrey Spaces of the Third
Kind

Here and below, by a Young function we mean a convex bijection on [0,∞). The main
structure of the generalized Morrey space Mφ,Φ(Rn) of the third kind is as follows:

Proposition 2.1 Let φ ∈M+(0,∞) be a decreasing function and Φ a Young function. Write

μ(t) = 1

φ(t)
Φ−1

(
t−n

)
(t > 0).

Then for all a > 0, we have

‖χQ(a)‖Mφ,Φ
= sup

r≥2a

μ(r)

Φ−1((2a)−n)
.

In particular, the following are equivalent;

1. φ ∈ GΦ ;
2. for all a > 0, we have χQ(a) ∈ Mφ,Φ(Rn) and

1

φ(2a)
≤ ‖χQ(a)‖Mφ,Φ

� 1

φ(2a)
. (2.1)



Non-smooth Atomic Decompositions for Generalized. . . 139

Proof We calculate that

‖χQ(a)‖Mφ,Φ
= sup

r>0
μ(2r)‖χQ(a)‖LΦ(Q(r))

= sup
r>0

μ(2r)‖1‖LΦ(Q(min(a,r)))

= max
(

sup
0<r≤a

μ(2r)‖1‖LΦ(Q(r)), sup
r>a

μ(2r)‖1‖LΦ(Q(a))

)

= max

(
sup

0<r≤a

1

φ(2r)
, sup

r>a

μ(2r)

Φ−1((2a)−n)

)
.

Since we are assuming that φ is decreasing, we have

‖χQ(a)‖Mφ,Φ
= max

(
1

φ(2a)
, sup

r>a

Φ−1(r−n)

φ(r)Φ−1((2a)−n)

)
= sup

r≥a

Φ−1(r−n)

φ(r)Φ−1((2a)−n)
,

as was to be shown. �

We also need the following scaling law for later consideration:

Lemma 2.2 Let 0 < b < 1 and Φ be a Young function. Define Φ̃(t) = Φ(t
1
b ) for t ≥ 0.

Then for all cubes Q and all measurable functions f on Q, we have

∥∥|f | 1
b

∥∥
LΦ(Q)

= (‖f ‖
LΦ̃ (Q)

) 1
b .

Proof The proof is straightforward; just use the definition (1.4). We omit the detail. �

2.2 The Conjugate of Φ and Related Hölder’s Inequality

Let Φ be a function satisfying the doubling condition (1.1) and the ∇2-condition (1.2). Then
define the conjugate function Ψ of Φ by (1.3). Note that Ψ satisfies the same condition
as Φ; Ψ ∈ �2 ∩ ∇2. Observe also that

st ≤ Φ(s) + Ψ (t) (2.2)

for all s, t ≥ 0 from the definition of Ψ .
We recall the following Hölder inequality for Orlicz spaces:

Lemma 2.3 Let Φ,Ψ : [0,∞) → [0,∞) be Young function that are conjugate each other.
Let f be a measurable function defined on a measurable set E.

1. For all measurable functions g : E →C,

‖f · g‖L1(E) ≤ 2‖f ‖LΦ(E)‖g‖LΨ (E). (2.3)

2. We can find a measurable function g : E → C with norm 1 such that
∫

E

f (x)g(x) dx ≥ 0, C−1‖f ‖LΦ(E) ≤
∫

E

f (x)g(x) dx ≤ 2‖f ‖LΦ(E), (2.4)

where C > 1 is a constant depending on Φ .
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3. For any a > 0,

a ≤ Φ−1(a)Ψ −1(a) ≤ 2a. (2.5)

Proof For the sake of convenience we recall the proof of (2.5). We refer to [44] for (2.3)
and to [55, Lemma 2.4] for an estimate similar to (2.4).

From inequality (2.2) if we take s = Φ−1(a) and t = Ψ −1(a) we have

Φ−1(a)Ψ −1(a) ≤ Φ
(
Φ−1(a)

) + Ψ
(
Ψ −1(a)

) = a + a = 2a. (2.6)

On the other hand for every t > 0

Ψ

(
Φ(t)

t

)
= sup

s>0

(
s
Φ(t)

t
− Φ(s)

)

= sup
s∈(0,t)

(
s
Φ(t)

t
− Φ(s)

)

≤ sup
s∈(0,t)

s
Φ(t)

t

= Φ(t).

Replacing Φ(t) by t in this inequality, we obtain the following equivalent inequalities:

Ψ

(
a

Φ−1(a)

)
≤ a ⇐⇒ a

Φ−1(a)
≤ Ψ −1(a)

⇐⇒ a ≤ Φ−1(a)Ψ −1(a). (2.7)

From (2.6) and (2.7), we obtain (2.5). Thus, the proof is complete. �

We also use the following absolute continuity of the Orlicz-norm:

Lemma 2.4 Let Φ :Rn → [0,∞) be a Young function and let f :Rn →C be a measurable
function such that Φ(|f |) ∈ L1(Rn). Define f j ≡ f χ{|f |≤j }. Then we have

lim
j→∞

∥∥f − f j
∥∥

LΦ(Q)
= 0 (2.8)

for any cube Q.

Proof The proof is similar to [55, Proposition 2.7]. We omit the detail. �

The following embedding relation is useful when we want to consider the functions in
Mη,Φ(Rn):

Proposition 2.5 Let κ ∈ (1,∞), Φ ∈ �2 ∩∇2 and η ∈ GΦ ∩Gκ ′ . Define Ψ by (1.3). Assume
in addition that Ψ satisfies (1.7). Then

‖f ‖Mη,Φ
� ‖f ‖Mη

κ′ (2.9)

for all f ∈ Mη

κ ′(Rn).
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Proof By (2.4), we can find g ∈ LΨ (Rn) with norm 1 such that

1

η(�(Q))
Φ−1

(
1

|Q|
)

‖f ‖LΦ(Q) �
1

η(�(Q))
Φ−1

(
1

|Q|
)∫

Q

f (x)g(x) dx.

Hölder’s inequality yields

1

η(�(Q))
Φ−1

(
1

|Q|
)

‖f ‖LΦ(Q) �
1

η(�(Q))
Φ−1

(
1

|Q|
)

‖f ‖
Lκ′

(Q)
‖g‖Lκ (Q).

By the definition of the norm, we obtain

1

η(�(Q))
Φ−1

(
1

|Q|
)

‖f ‖LΦ(Q) � ‖f ‖Mη

κ′ Φ
−1

(
1

|Q|
)

|Q|1/κ ′ ‖g‖Lκ (Q).

Thanks to (1.7) and (2.5), we have

1

η(�(Q))
Φ−1

(
1

|Q|
)

‖f ‖LΦ(Q) � ‖f ‖Mη

κ′ Φ
−1

(
1

|Q|
)

Ψ −1

(
1

|Q|
)

|Q| · ∥∥M(κ)g
∥∥

LΨ

� ‖f ‖Mη

κ′ Φ
−1

(
1

|Q|
)

Ψ −1

(
1

|Q|
)

|Q|

� ‖f ‖Mη

κ′ .

Thus, the proof is complete. �

For later consideration, we formulate and prove the following Hölder inequality for
Mφ,Φ(Rn):

Theorem 2.6 Suppose that we are given functions Φi ∈ �2 ∩∇2 and φi ∈ GΦi
for i = 1,2,3.

If these functions satisfy

Φ−1
1 (t)Φ−1

2 (t) ≤ Φ−1
3 (t) (t ≥ 0)

and

φ3(t) ≤ φ1(t)φ2(t) (t > 0),

then for every f ∈ Mφ1,Φ1(R
n) and g ∈ Mφ2,Φ2(R

n), we have

‖f · g‖Mφ3,Φ3
≤ 2‖f ‖Mφ1,Φ1

‖g‖Mφ2,Φ2
. (2.10)

Proof Since ‖f · g‖LΦ3 ≤ 2‖f ‖LΦ1 ‖g‖LΦ2 ; see (2.3), we have

φ3

(
�(Q)

)‖f · g‖LΦ3 ≤ 2φ1

(
�(Q)

)‖f ‖LΦ1 φ2

(
�(Q)

)‖g‖LΦ2 ≤ 2‖f ‖Mφ1,Φ1
‖g‖Mφ2,Φ2

.

Hence (2.10) follows. �

See [58, Lemma 2.4] for the classical case of generalized Morrey spaces.
We conclude this section with the following estimate:
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Lemma 2.7 Let Ψ be a doubling Young function. Write p := log2 CΨ , where CΨ ≥ 2 is the
doubling constant for Ψ , so that Ψ (2t) ≤ CΨ Ψ (t) for t ≥ 0. Then we have

‖g‖LΨ (Q) ≤ CQ,p‖g‖Lp(Q) (2.11)

for any cube Q and any measurable function g on Q, where CQ,p depends on Q.

Proof Observe that Ψ (t) ≤ 2pΨ (1)tp, t ≥ 1 and that Ψ (0) = 0. As a consequence we may
suppose

Ψ (t) ≤ 1

2|Q| + C ′
Qtp (2.12)

for all t ≥ 0 by replacing constant C ′
Q with a large one. Hence we have

‖g‖LΨ (Q) = inf

{
λ > 0 :

∫

Q

Ψ

( |g(x)|
λ

)
dx ≤ 1

}

≤ inf

{
λ > 0 :

∫

Q

(
1

2|Q| + C ′
Q

( |g(x)|
λ

)p)
dx ≤ 1

}

= inf

{
λ > 0 : C ′

Q

∫

Q

( |g(x)|
λ

)p

dx ≤ 1

2

}

= (
2C ′

Q

) 1
p ‖g‖Lp(Q),

as was to be shown. �

2.3 Predual Space

In this section, we characterize the predual space of Mφ,Φ(Rn) by the method of Zorko [72].

Definition 2.8 Let (Φ,Ψ ) be a complementary pair of Young functions; Φ and Ψ are re-
lated by (1.3). Let also φ ∈ GΦ . A (φ,Ψ )-block of the third kind is a measurable function A

supported on a cube Q satisfying

‖A‖LΨ (Q) ≤ 1

φ(�(Q))
Φ−1

(
1

|Q|
)

. (2.13)

A function f is said to belong to Bφ,Ψ (Rn) if there exist a sequence λ = {λj }∞
j=1 ∈ �1(N)

and a sequence {Aj }∞
j=1 of (φ,Ψ )-blocks of the third kind such that

f (x) =
∞∑

j=1

λjAj (x) (2.14)

for almost every x ∈ R
n, where the convergence takes place absolutely. The norm of f is

given by;

‖f ‖Bφ,Ψ
≡ inf‖λ‖�1 ,

where the infimum is taken over all admissible expressions (2.14).
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Example 2.9 When Q is a cube and g ∈ LΨ (Rn) \ {0}, gQ is a (φ,Ψ )-block of the third
kind, where

gQ ≡ 1

‖g‖LΨ φ(�(Q))
Φ−1

(
1

|Q|
)

χQg. (2.15)

In fact, we check that supp(gQ) ⊂ Q and that

∥∥gQ
∥∥

LΨ (Q)
= 1

‖g‖LΨ φ(�(Q))
Φ−1

(
1

|Q|
)

‖g‖LΨ (Q) ≤ 1

φ(�(Q))
Φ−1

(
1

|Q|
)

,

which implies that gQ is a (φ,Ψ )-block of the third kind. Thus, in particular it follows that
∥∥gQ

∥∥
Bφ,Ψ

≤ 1. (2.16)

Lemma 2.10 Let λ = {λj }∞
j=1 ∈ �1(N) and let {Aj }∞

j=1 be a sequence of (φ,Ψ )-blocks of
the third kind. Then for all f ∈ Mφ,Φ(Rn), we have

∥∥∥∥∥
f ·

∞∑

j=1

|λjAj |
∥∥∥∥∥

L1

≤ 2‖f ‖Mφ,Φ
‖λ‖�1 . (2.17)

Proof Let Qj ∈ Q satisfy supp(Aj ) ⊂ Qj and that ‖Aj‖LΨ (Q) ≤ 1
φ(�(Qj ))

Φ−1( 1
|Qj | ). Then

we have

‖f · Aj‖L1 ≤ 2‖f ‖LΦ(Qj )‖Aj‖LΨ (Qj ) ≤ 2
‖f ‖LΦ(Qj )

φ(�(Qj ))
Φ−1

(
1

|Qj |
)

≤ 2‖f ‖Mφ,Φ

from (2.13). As a result,

|λj | · ‖f · Aj‖L1 ≤ 2|λj | · ‖f ‖Mφ,Φ
. (2.18)

If we add (2.18) over j ∈N then we obtain (2.17). �

Corollary 2.11 Let (Φ,Ψ ) be a complementary Young pair and φ ∈ GΦ .

1. Let λ = {λj }∞
j=1 ∈ �1(N) and {Aj }∞

j=1 be a sequence of (φ,Ψ )-blocks of the third kind.
Then the series

f (x) =
∞∑

j=1

λjAj (x) (2.19)

converges absolutely for almost all x ∈R
n.

2. Let f ∈ Mφ,Φ(Rn). Then the mapping

Lf : Bφ,Ψ

(
R

n
) � g �→

∫

Rn

f (x)g(x) dx ∈C (2.20)

defines a bounded linear functional on Bφ,Ψ (Rn).
3. Let g ∈ Bφ,Ψ (Rn). Then the mapping

Mg : Mφ,Φ

(
R

n
) � f �→

∫

Rn

f (x)g(x) dx ∈C

defines a bounded linear functional on Mφ,Φ(Rn).
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Proof The convergence of the right-hand side of (2.19) is trivial from (2.17). Let g ∈
Bφ,Ψ (Rn). Then we have an expression;

g =
∞∑

j=1

λjaj , ‖λ‖�1 ≤ 2‖g‖Bφ,Ψ
,

where each aj is a (φ,Ψ )-block of the third kind, λ = {λj }∞
j=1 ∈ �1(N) and the convergence

of the sum takes place in the sense of almost everywhere. Then we have

‖f · g‖L1 ≤
∞∑

j=1

|λj | · ‖f · aj‖L1 ≤ 2‖f ‖Mφ,Φ
‖λ‖�1 ≤ 4‖f ‖Mφ,Φ

‖g‖Bφ,Ψ

from (2.18). Thus, we conclude ‖f · g‖L1 ≤ 4‖f ‖Mφ,Φ
‖g‖Bφ,Ψ

. Note that (2.11) implies
that f · g ∈ L1(Rn) and that

∣∣∣∣

∫

Rn

f (x)g(x) dx

∣∣∣∣ ≤ 4‖f ‖Mφ,Φ
‖g‖Bφ,Ψ

.

Thus, we see that Lf and Mg define bounded linear functionals. �

Proposition 2.12 Let (Φ,Ψ ) be a complementary Young pair and φ ∈ GΦ . Then L∞
comp(R

n)

is dense in Bφ,Ψ (Rn).

Proof Let f ∈ Bφ,Ψ (Rn). Then f has an expression:

f =
∞∑

j=1

λjaj ,

where each aj is a (φ,Ψ )-block of the third kind and {λj }∞
j=1 ∈ �1(N). Set fk ≡ ∑k

j=1 λjaj

for k ∈N. Then

‖f − fk‖Bφ,Ψ
≤

∞∑

j=k+1

|λj | → 0

as k → ∞. This means that we can suppose that f is expressed as a finite linear combination
of (φ,Ψ )-blocks of the third kind or even that f itself is a (φ,Ψ )-block of the third kind.

Let f be a (φ,Ψ )-block of the third kind; for some Q ∈ Q,

supp(f ) ⊂ Q, ‖f ‖LΨ (Q) ≤ 1

φ(�(Q))
Φ−1

(
1

|Q|
)

.

Let us set f j ≡ f χ{|f |≤j }. Then by virtue of Lemma 2.4

lim sup
j→∞

∥∥f − f j
∥∥
Bφ,Ψ

≤ φ(�(Q))

Φ−1( 1
|Q| )

lim sup
j→∞

∥∥f − f j
∥∥

LΨ (Q)
= 0.

Since f j ∈ L∞
comp(R

n), we conclude that L∞
comp(R

n) is dense in Bφ,Ψ (Rn). �
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Theorem 2.13 Let (Φ,Ψ ) be complementary Young pair and Φ ∈ �2. Let Lf be a linear
mapping defined by (2.20) for f ∈ Mφ,Φ(Rn). Then any bounded linear functional L on
Bφ,Ψ (Rn) is realized as L = Lf with some f ∈ Mφ,Φ(Rn).

Proof We fix a cube Q ∈ Q for the time being. Let p := log2 CΨ be the constant in (2.11),
so that p > 1 due to the assumption Φ ∈ �2.

From (2.11), for each cube Q, we can define a bounded linear functional

Lp
(
R

n
) � g �→ L

Q(g) ≡ L(χQg) ∈ C.

In fact, when g ∈ Lp(Rn) \ {0}, χQg ∈ Lp(Rn) and gQ, defined by (2.15), is a (φ,Ψ )-block
of the third kind from Example 2.9. Since L is bounded on Bφ,Ψ (Rn), we see that

∣∣∣∣L
(

1

φ(�(Q))‖g‖LΨ

Φ−1

(
1

|Q|
)

χQg

)∣∣∣∣ ≤ ‖L‖Bφ,Ψ →C

from (2.16), which together with (2.11) implies

∣∣L(χQ · g)
∣∣ ≤ φ(�(Q))

Φ−1( 1
|Q| )

‖L‖Bφ,Ψ →C‖g‖LΨ ≤ CQ,p

φ(�(Q))

Φ−1( 1
|Q| )

‖L‖Bφ,Ψ →C‖g‖Lp , (2.21)

whenever g ∈ Lp(Rn) \ {0}. Note that (2.21) is trivially valid for g = 0. By the duality
Lp(Rn)-Lp′

(Rn), we can find fQ ∈ Lp′
(Rn) such that

supp(fQ) ⊂ Q, L
Q(g) =

∫

Rn

g(x)fQ(x)dx (2.22)

for all g ∈ Lp(Rn) and that

‖fQ‖
Lp′ ≤ CQ,p

φ(�(Q))

Φ−1( 1
|Q| )

‖L‖Bφ,Ψ →C.

Let Q be a cube and R a cube that engulfs Q. The left-hand side of the second expression
in (2.22) vanishes if g is supported outside Q. In addition, we have

L
Q(g) = L(χQg) = L(χQχRg) =

∫

Rn

χQ(x)fR(x)g(x) dx.

Thus, χQ(x)fR(x) = fQ(x) for almost every x ∈ R
n. This implies that the limit f (x) ≡

limj→∞ fQ(j)(x) exists for almost every x ∈R
n.

Let us check that the function f belongs to Mφ,Φ(Rn). To this end, we fix a cube Q once
again. Then we have

C−1‖f ‖LΦ(Q) ≤
∫

Q

f (x)g(x) dx, supp(g) ⊂ Q

for some measurable function g ∈ LΨ (Rn) with norm 1, where C is a constant from
Lemma 2.3.

Note that 1
φ(�(Q))

Φ−1( 1
|Q| )χQg is a (φ,Ψ )-block of the third kind from Example 2.9.

Thus, keeping in mind
∫

Q

f (x)g(x) dx = L
Q(g),



146 V.S. Guliyev et al.

we obtain

‖f ‖LΦ(Q) � L
Q(g) ≤ ‖χQg‖Bφ,Ψ

‖L‖Bφ,Ψ →C ≤ φ(�(Q))‖L‖Bφ,Ψ →C

Φ−1( 1
|Q| )

.

Hence we have f ∈ Mφ,Φ(Rn).
Finally, let us check L = Lf . To this end, we need to prove L(g) = Lf (g) for all g ∈

Bφ,Ψ (Rn) but by Proposition 2.12, we can suppose that g ∈ L∞
comp(R

n). Since g is compactly
supported, we can take j0 ∈N so that supp(g) ⊂ Q(j0). Then

L(g) =
∫

Rn

fQ(j0)(x)g(x) dx =
∫

Rn

f (x)g(x) dx = Lf (g).

As a consequence we have L = Lf . �

Remark 2.14 See [15, 28] for other constructions of predual spaces of classical Morrey
spaces.

3 Boundedness of the Maximal Operator

In this section we aim to recall a boundedness criteria of the Hardy–Littlewood opera-
tor M defined in (1.19) and to extend the Fefferman–Stein vector-valued inequality from
Lp(�q,Rn) to Mφ,Φ(�q,Rn). Recall that

‖Mf ‖Lp � ‖f ‖Lp , (3.1)

for 1 < p ≤ ∞ and

∣∣{x ∈R
n : Mf (x) > λ

}∣∣ � ‖f ‖L1

λ
(3.2)

for all λ > 0, which is obtained in [22]. We define Lp(�q,Rn) to the set of all sequences of
measurable functions F = {fj }∞

j=1 such that

‖F‖Lp(�q ) ≡
∥∥∥∥∥

( ∞∑

j=1

|fj |q
) 1

q
∥∥∥∥∥

Lp

is finite. Here a natural modification is made when q = ∞. We write MF ≡ {Mfj }∞
j=1

when F = {fj }∞
j=1. Recall that for 1 < p < ∞, 1 < q ≤ ∞ and a sequence F = {fj }∞

j=1 of
measurable functions,

‖MF‖Lp(�q ) � ‖F‖Lp(�q ), (3.3)

which is obtained in [10].

3.1 LΦ(Rn)-Boundedness

Recall that the Orlicz space LΦ(Rn) is defined by the norm (1.4). The weak Orlicz space
WLΦ(Rn) is the set of all measurable functions f for which the quasi-norm

‖f ‖WLΦ := sup
λ>0

λ‖χ{|f |>λ}‖LΦ
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is finite. We invoke the following theorem:

Theorem 3.1 [29, 30] Let Φ ∈ �2 be a Young function. Then;

1. the maximal operator M is bounded from LΦ(Rn) to WLΦ(Rn);
2. the maximal operator M is bounded on LΦ(Rn) provided Φ ∈ ∇2;

‖Mf ‖LΦ � ‖f ‖LΦ (3.4)

for all f ∈ LΦ(Rn).

Corollary 3.2 Let Φ ∈ ∇2 and φ ∈ GΦ . Then for all τ ∈ S(Rn) and f ∈ Mφ,Φ(Rn),

‖τ · f ‖L1 � ‖f ‖Mφ,Φ
sup
x∈Rn

(
1 + |x|)2n+1∣∣τ(x)

∣∣. (3.5)

Proof We proceed as in [55, Lemma 2.5] by using (3.4). We omit the detail. �

We define the space LΦ(�q,Rn) to be the set of all sequences F = {fj }∞
j=1 of measurable

functions for which

‖F‖LΦ(�q ) ≡
∥∥∥∥∥

( ∞∑

j=1

|fj |q
) 1

q
∥∥∥∥∥

LΦ

is finite.
The proof of estimate (3.6) can be found in [5].

Lemma 3.3 If Φ ∈ �2 ∩ ∇2 and 1 < q ≤ ∞, then we have

‖MF‖LΦ(�q ) ≤ Cq,Φ‖F‖LΦ(�q ) (3.6)

for all F = {fj }∞
j=1 ∈ LΦ(�q,Rn). Here Cq,Φ depends only on q and Φ .

See [36, 41] as well for related estimates.

3.2 Mφ,Φ(Rn)-Boundedness

The vector-valued generalized Orlicz–Morrey space Mφ,Φ(�q,Rn) of the third kind is the
set of all sequences F = {fj }∞

j=1 of measurable functions for which

‖F‖Mφ,Φ (�q ) ≡
∥∥∥∥∥

( ∞∑

j=1

|fj |q
) 1

q
∥∥
∥∥∥
Mφ,Φ

< ∞.

We start with the following well-known estimate; for example, see [26] for the proof.

Lemma 3.4 For any cube Q and a measurable function f , we have

M[χRn\3Qf ](x) �
∞∑

k=1

1

|2kQ|
∫

2kQ

∣∣f (y)
∣∣dy (x ∈ Q).
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The next theorem is the Fefferman–Stein vector-valued inequality for generalized Orlicz–
Morrey spaces of the third kind.

Theorem 3.5 Let Φ ∈ �2 ∩ ∇2 and 1 < q ≤ ∞. Assume that φ satisfies the integral condi-
tion (1.13). Then

‖MF‖Mφ,Φ (�q ) � ‖F‖Mφ,Φ (�q )

for all F = {fj }∞
j=1 ∈ Mφ,Φ(�q,Rn).

Proof Let Q be a fixed cube. We need to establish:

1

φ(�(Q))
Φ−1

(
1

|Q|
)∥∥{χQMfj }∞

j=1

∥∥
LΦ(�q )

� ‖F‖Mφ,Φ (�q ) (3.7)

with the implicit constant independent of Q and dependent on the ∇2 and �2 constants, the
implicit constant in (1.13) and q .

To simplify, we normalize the right-hand side; ‖F‖Mφ,Φ (�q ) = 1.
We decompose (3.7) into (3.8) and (3.9), where

I ≡ 1

φ(�(Q))
Φ−1

(
1

|Q|
)∥∥{

χQM[χ3Qfj ]
}∞

j=1

∥∥
LΦ(�q )

� 1 (3.8)

and

II ≡ 1

φ(�(Q))
Φ−1

(
1

|Q|
)∥∥{

χQM[χRn\3Qfj ]
}∞

j=1

∥∥
LΦ(�q )

� 1. (3.9)

As for (3.8), we use the vector-valued maximal inequality (see Lemma 3.3) and proceed as
in [49, 61]. We omit the detail.

As for (3.9), we use Lemma 3.4. We can find {aj }∞
j=1 ∈ �q ′

(N) such that

II � 1

φ(�(Q))

∞∑

j,k=1

aj

|2kQ|
∫

2kQ

∣∣fj (y)
∣∣dy

= 1

φ(�(Q))

∞∑

k=1

1

|2kQ|
∫

2kQ

∞∑

j=1

aj

∣∣fj (y)
∣∣dy,

and that
∞∑

j=1

a
q ′
j = 1. (3.10)

Meanwhile,
∞∑

k=1

φ
(
�
(
2kQ

))
�

∫ ∞

�(Q)

φ(t)
dt

t

from the doubling property of φ. Thus, by (1.13) and (3.10),

II �
∞∑

k=1

1

φ(�(Q))|2kQ|
∫

2kQ

( ∞∑

j=1

∣∣fj (y)
∣∣q

) 1
q

dy �
∞∑

k=1

φ(�(2kQ))

φ(�(Q))
� 1,

implying (3.9). Thus, the proof is complete. �
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4 A Norm Estimate

As a model case, we prove Corollary 1.4 before Theorem 1.1.

4.1 Proof of Corollary 1.4

Let Ψ be a function conjugate to Φ . Then we have (2.4) for some g ∈ LΨ (Rn) with norm 1.
If we use the definition of f and use the Hölder inequality for the couples (Lκ ′

(Rn),Lκ(Rn))

and (LΦ(Rn),LΨ (Rn)), then we have

‖f · g‖L1 ≤
∫

Rn

∞∑

j=1

λjχQj
(x)M(κ)g(x) dx ≤ 2

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
LΦ

∥∥M(κ)g
∥∥

LΨ . (4.1)

Putting together (1.7), (2.4) and (4.1), we obtain the desired result.

4.2 Proof of Theorem 1.1

By decomposing Qj into cubes of equivalent length, we may suppose each Qj is dyadic. In
fact, we know that Qj is covered by 3n dyadic cubes of equivalent length.

To prove (1.12), we resort to the duality. For the time being, we assume that there exists
N ∈ N such that λj = 0 whenever j ≥ N . Let us assume in addition that the aj ’s are non-
negative without loss of generality. Fix a non-negative (φ,Ψ )-block g ∈ Bφ,Ψ (Rn) of the
third kind with the associated cube Q, namely, g is supported on the cube Q and g satisfies
the size condition:

‖g‖LΨ (Q) ≤ 1

φ(�(Q))
Φ−1

(
1

|Q|
)

. (4.2)

We claim;

‖f · g‖L1 �
∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

. (4.3)

Let us admit (4.3) and complete the proof of Theorem 1.1. Let h ∈ Bφ,Ψ (Rn). Then
h = ∑∞

j=1 λ̃j gj , where each gj is a (φ,Ψ )-block of the third kind and λ̃ = {λ̃j }∞
j=1 ∈ �1(N)

satisfies ‖λ̃‖�1(N) ≤ 2‖h‖Bφ,Ψ
. Thus, from (4.3), we obtain

‖f · h‖L1 ≤
∞∑

j=1

|λ̃j | · ‖f · gj‖L1 � ‖h‖Bφ,Ψ

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

,

or equivalently,

‖Lf ‖Bφ,Ψ →C �
∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

.

Since ‖f ‖Mφ,Φ
� ‖Lf ‖Bφ,Ψ →C due to Theorem 2.13, we have the desired result. So, let us

prove (4.3).
By decomposing Q, we can assume that Q is a dyadic cube as well. We need to distin-

guish three cases;
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1. each Qj contains Q as a proper subset;
2. Q contains each Qj as a proper subset;
3. none of the above happens.

We can handle the third case by mixing the remaining cases. So, we do not consider the
third case. Assume first that each Qj contains Q as a proper subset. If we group the j ’s such
that Qj are identical, we can assume that Qj is a dyadic cube containing Q and satisfying
|Qj | = 2jn|Q| for each j ∈N. Then we have

‖f · g‖L1 =
∞∑

j=1

λj‖aj · g‖L1(Q) ≤ 2
∞∑

j=1

λj‖aj‖LΦ(Q)‖g‖LΨ (Q). (4.4)

By the size conditions (1.9) and (4.2) of aj and g, we obtain

‖aj‖LΦ(Q)‖g‖LΨ (Q) = η(�(Q))

Φ−1( 1
|Q| )

(
1

η(�(Q))
‖aj‖LΦ(Q)Φ

−1

(
1

|Q|
)

‖g‖LΨ (Q)

)

≤ η(�(Q))

Φ−1( 1
|Q| )

‖aj‖Mη,Φ (Q)‖g‖LΨ (Q)

≤ η(�(Q))

η(�(Qj ))φ(�(Q))
.

If we insert this estimate into (4.4), then we obtain

‖f · g‖L1 ≤ 2
∞∑

j=1

λjη(�(Q))

η(�(Qj ))φ(�(Q))
. (4.5)

Meanwhile, Proposition 2.1 yields

∥∥∥∥∥

∞∑

k=1

λkχQk

∥∥∥∥∥
Mφ,Φ

≥ ‖λjχQj
‖Mφ,Φ

≥ 1

φ(�(Qj ))
λj (4.6)

for each j ∈N. Consequently, it follows from (1.6), (4.5) and (4.6) that

‖f · g‖L1 ≤ 2
∞∑

j=1

φ(�(Qj ))η(�(Q))

η(�(Qj ))φ(�(Q))

∥∥∥∥∥

∞∑

k=1

λkχQk

∥∥∥∥∥
Mφ,Φ

≤ 2

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

.

Conversely, assume that Q contains each Qj . Then we have

‖f · g‖L1 =
∞∑

j=1

λj‖aj · g‖L1(Qj ) ≤ 2
∞∑

j=1

λj‖aj‖Lκ′
(Qj )

‖g‖Lκ (Qj ). (4.7)

By the size condition (1.9) of aj , we obtain

‖f · g‖L1 =
∞∑

j=1

λj‖aj · g‖L1(Qj ) ≤ 2
∞∑

j=1

λj

η(�(Q))

η(�(Qj ))

(‖g‖Lκ (Qj )

|Qj | 1
κ

)
|Qj |.
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Thus, assuming Q ⊃ Qj , we obtain

‖f · g‖L1 ≤ 2
∞∑

j=1

λj |Qj |
(

inf
y∈Qj

M(κ)g(y)
)

= 2
∫

Q

( ∞∑

j=1

λjχQj
(y)

)

inf
z∈Qj

M(κ)g(z) dy

≤ 2

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
LΦ(Q)

∥∥M(κ)g
∥∥

LΨ (Q)
.

Using (1.7) and (4.2), we obtain

‖f · g‖L1 �
∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
LΦ(Q)

‖g‖LΨ (Q)

≤
∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
LΦ(Q)

1

φ(�(Q))
Φ−1

(
1

|Q|
)

≤
∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

.

Thus, (4.3) is proved.
A (weak) variant of Theorem 1.1 is as follows;

Corollary 4.1 Let Φ be a Young function and φ ∈ GΦ . Assume also that {Qj }∞
j=1 ⊂ Q,

{aj }∞
j=1 ⊂ L∞(Rn) and {λj }∞

j=1 ⊂ [0,∞) fulfill

|aj | ≤ χQj
(j = 1,2, . . .) (4.8)

and
∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mφ,Φ

< ∞.

Then f ≡ ∑∞
j=1 λjaj converges in S ′(Rn) ∩ LΦ

loc(R
n) and satisfies

‖f ‖Mφ,Φ
≤

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥
∥∥∥
Mφ,Φ

. (4.9)

Proof Observe

∣∣f (x)
∣∣ ≤

∞∑

j=1

λjχQj
(x)

for almost every x ∈ R
n. �
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Remark 4.2 In comparison with the condition (4.8) in Corollary 4.1, the conditions (1.9)
and (1.16) on aj in Theorem 1.1 are very weak. One can relax the assumption on aj to (1.9)
and (1.16) starting from (4.8) by the use of the duality as was done in (4.7).

5 Non-smooth Decomposition of Functions

In Sect. 4, we considered a synthesis result. Here we obtain an analysis result by proving
Theorem 1.2.

Let t > 0 and f ∈ S ′(Rn). Then define the heat extension of f by:

et�f (x) ≡
〈

1√
(4πt)n

exp

(
−|x − ·|2

4t

)
, f

〉 (
x ∈ R

n
)
.

We say that f ∈ HMφ,Φ(Rn), the generalized Hardy–Orlicz–Morrey space of the third kind
if and only if f ∈ S ′(Rn) and it satisfies sup

t>0
|et�f | ∈ Mφ,Φ(Rn). We define

‖f ‖HMφ,Φ
≡

∥∥∥sup
t>0

∣∣et�f
∣∣
∥∥∥
Mφ,Φ

. (5.1)

The next proposition characterizes the space Mφ,Φ(Rn).

Proposition 5.1 Let Φ ∈ �2 ∩ ∇2 and suppose that φ ∈ GΦ satisfies inequality (1.13).

1. If f ∈ Mφ,Φ(Rn), then f ∈ HMφ,Φ(Rn).
2. If f ∈ HMφ,Φ(Rn), then f is represented by a measurable function g which belongs to

Mφ,Φ(Rn), namely,

〈f, ζ 〉 =
∫

Rn

g(x)ζ(x) dx
(
ζ ∈ S

(
R

n
))

.

Furthermore, f ∈ Mφ,Φ(Rn), then

‖f ‖HMφ,Φ
∼ ‖f ‖Mφ,Φ

. (5.2)

Proof

1. We can easily verify that Mφ,Φ(Rn) ↪→ S ′(Rn). Also, we have

sup
t>0

2
∣∣et�f

∣∣ �Mf

by virtue of [7, Proposition 2.7]. Again thanks to Theorem 3.1, we see that f ∈
HMφ,Φ(Rn) with the estimate ‖f ‖HMφ,Φ

� ‖f ‖Mφ,Φ
.

2. Recall that the dual of Bφ,Ψ (Rn) is isomorphic to Mφ,Φ(Rn) as we have established
in Theorem 2.13. Let L : Mφ,Φ(Rn) � f �→ Lf ∈ (Bφ,Ψ (Rn))∗ be the isomorphism in
Theorem 2.13. By assumption {et�f }t>0 forms a bounded set in Mφ,Φ(Rn). Consider
any sequence {tj }∞

j=1 which decreases to 0. Then {L
e
tj �

f
}∞
j=1 forms a bounded set in

(Bφ,Ψ (Rn))∗. Thus, by the Banach–Alaoglu theorem, there exists a positive sequence
{tj }∞

j=1 which decreases to 0 such that L
e
tj �

f
is convergent to G = Lg ∈ (Bφ,Ψ (Rn))∗ for

some g ∈ Mφ,Φ(Rn) in the weak-* sense. Meanwhile etj �f is convergent to f ∈ S ′(Rn).
Thus, we conclude S ′(Rn) � f = g ∈ Mφ,Φ(Rn).
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Finally we have ‖f ‖HMφ,Φ
� ‖f ‖Mφ,Φ

for f ∈ Mφ,Φ(Rn) which is a direct consequence
of

∣∣f (x)
∣∣ ≤ sup

t>0

∣∣et�f (x)
∣∣

for almost all x ∈ R
n thanks to the Lebesgue differentiation theorem. Thus, the proof is

complete. �

Definition 5.2 Define the topology on S(Rn) with the norm {ρN }N∈N which is given by the
following formula:

ρN(ϕ) ≡
∑

|α|≤N

sup
x∈Rn

(
1 + |x|)N ∣∣∂αϕ(x)

∣∣ (
ϕ ∈ S

(
R

n
))

.

Write FN ≡ {ϕ ∈ S(Rn) : ρN(ϕ) ≤ 1}.

Definition 5.3 Let N � 1. The grand maximal operator M is defined by:

Mf (x) ≡ sup
{∣∣t−nϕ

(
t−1·) ∗ f (x)

∣∣ : t > 0, ϕ ∈ FN

}

for all f ∈ S ′(Rn) and x ∈ R
n.

The next proposition characterizes the space Mφ,Φ(Rn) analogously to Proposition 5.1.

Proposition 5.4 Let Φ ∈ �2 ∩∇2 and suppose φ ∈ GΦ satisfies inequality (1.13). Let N ∈N

in Definition 5.3 be sufficiently large.

1. If f ∈ Mφ,Φ(Rn), then Mf ∈ Mφ,Φ(Rn).
2. If f ∈ S ′(Rn) is such that Mf ∈ Mφ,Φ(Rn), then f is represented by a measurable

function g which belongs to Mφ,Φ(Rn).

Furthermore, if f ∈ Mφ,Φ(Rn), then

‖Mf ‖Mφ,Φ
∼ ‖f ‖Mφ,Φ

. (5.3)

Proof If f ∈ Mφ,Φ(Rn), again by virtue of [7, Proposition 2.7] we have

Mf (x)� Mf (x). (5.4)

So, if we go through the same argument as Proposition 5.1, then we learn Mf ∈ Mφ,Φ(Rn).
If f ∈ S ′(Rn) and Mf ∈ Mφ,Φ(Rn), then a pointwise estimate

sup
t>0

∣∣et�f (x)
∣∣�Mf (x)

(
x ∈R

n
)

(5.5)

allows us to invoke Proposition 5.1; we first obtain

sup
t>0

∣∣et�f
∣∣ ∈ Mφ,Φ

(
R

n
)

and then Proposition 5.1 yields f ∈ Mφ,Φ(Rn). Note also that (5.3) is a consequence of
Theorem 3.5, (5.2), (5.4) and (5.5). �

Define C∞
comp(R

n) ≡ C∞(Rn) ∩ L∞
comp(R

n). We invoke the following lemma; see [57] for
the proof.
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Lemma 5.5 Let f ∈ S ′(Rn) ∩ L1
loc(R

n), d ∈ N0 and j ∈ Z. Then there exist collections of
cubes {Qj,k}k∈Kj

and functions {ηj,k}k∈Kj
⊂ C∞

comp(R
n), which are all indexed by a set Kj ,

and a decomposition

f = gj + bj , bj =
∑

k∈Kj

bj,k,

such that:

(0) gj , bj , bj,k ∈ S ′(Rn).
(i) Define

Oj ≡ {
x ∈R

n : Mf (x) > 2j
}

(5.6)

and consider its Whitney decomposition:

Oj =
⋃

k∈Kj

Qj,k, (5.7)

where the cubes {Qj,k}k∈Kj
have the bounded intersection property.

(ii) Consider the partition of unity {ηj,k}k∈Kj
with respect to {Qj,k}k∈Kj

. Then each function
ηj,k is supported in Qj,k and

∑

k∈Kj

ηj,k = χOj
, 0 ≤ ηj,k ≤ 1.

(iii) The function gj belongs to L∞(Rn) and it satisfies the inequality:

‖gj‖L∞ � 2−j . (5.8)

(iv) Let xj,k ≡ c(Qj,k) and �j,k ≡ �(Qj,k). Then each distribution bj,k is given by: bj,k =
(f − cj,k)ηj,k with a certain polynomial cj,k ∈ Pd(R

n) satisfying

〈f − cj,k, q · ηj,k〉 = 0

for all q ∈ Pd(R
n), and

Mbj,k(x) �Mf (x)χQj,k
(x) + 2j · �j,k

n+d+1

|x − xj,k|n+d+1
χRn\Qj,k

(x) (5.9)

for all x ∈ R
n.

In the above the implicit constants are dependent only on n.

For each j ∈ Z, consider the level set Oj given by (5.6). Then it follows immediately
from the definition that

Oj ⊃ Oj+1 ⊃ Oj+2 ⊃ · · · → ∅. (5.10)

To handle generalized Orlicz–Morrey spaces of the third kind, we need the following lemma:

Lemma 5.6 Let ϕ ∈ S(Rn). Keep to the same notation as Lemma 5.5. Then we have

∣∣〈bj ,ϕ〉∣∣ ≤ Cϕ

{ ∞∑

l=0

(
1

2ln
‖Mf · χOj

‖L1(Q(2l ))

) n+d+1
n

} n
n+d+1

, (5.11)

where the constant Cϕ in (5.11) depends on ϕ but not on j or k.
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Proof Similar to [25, Lemma 3.3]. We omit the detail. �

The key observation for the proof of Theorem 1.2 is the following, which is based on
Lemma 5.6:

Lemma 5.7 Assume (1.13). In Lemma 5.5, in the topology of S ′(Rn), we have gj → 0 as
j → −∞ and bj → 0 as j → ∞. In particular,

f =
∞∑

j=−∞
(gj+1 − gj ) (5.12)

in the topology of S ′(Rn).

Proof Let us show that bj → 0 as j → ∞ in S ′(Rn). Once this is proved, we have f =
limj→∞ gj in S ′(Rn). Let us choose a test function ϕ ∈ S(Rn). Let j ≥ 0. Observe that

{ ∞∑

l=0

(
1

2ln

∥∥(Mf ) · χOj

∥∥
L1(Q(2l ))

) n+d+1
n

} n
n+d+1

�
{ ∞∑

l=0

(
1

2ln

∥∥(Mf ) · χO0

∥∥
L1(Q(2l ))

) n+d+1
n

} n
n+d+1

�
( ∞∑

l=0

1

φ(2l )
n+d+1

n

) n
n+d+1

‖f ‖HMφ,Φ

≤
( ∞∑

l=0

1

φ(2l )

)

‖f ‖HMφ,Φ

∼ ‖Mf ‖Mφ,Φ

∼ ‖f ‖Mφ,Φ
.

Hence it follows from (5.11) that 〈bj ,ϕ〉 → 0 as j → ∞. Likewise by using (5.8), we obtain
gj → 0 as j → −∞. Consequently, (5.4) follows. �

Proof of Theorem 1.2 If we invoke Lemma 5.5, then f can be decomposed;

f = gj + bj , bj =
∑

k∈Kj

bj,k, bj,k = (f − cj,k)ηj,k

where each bj,k is supported in a cube Qj,k as is described in Lemma 5.5.
We have (5.4) from Lemma 5.7. Here, going through the same argument as the one in

[57, pp. 108–109], we have an expression;

f =
∞∑

j=−∞

∑

k∈Kj

Aj,k, gj+1 − gj =
∑

k∈Kj

Aj,k (j ∈ Z) (5.13)
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in the sense of distributions, where each Aj,k belongs to L∞
comp(R

n) ∩ P⊥
L (Rn), supported

in Qj,k , satisfies the pointwise estimate

‖Aj,k‖L∞ ≤ C02j (5.14)

for some universal constant C0. With these observations in mind, let us set

aj,k ≡ Aj,k

C02j
∈ L∞

comp(R
n) ∩P⊥

L (Rn), κj,k ≡ C02j ∈ [0,∞),

where C0 is from (5.14). Then we automatically obtain that each aj,k satisfies |aj,k| ≤ χQj,k

and that f = ∑
j,k κj,kaj,k in the topology of HMφ,Φ(Rn) thanks to Corollary 4.1, once we

prove the estimate on the coefficients. Rearrange {aj,k} and so on to obtain {aj } and so on.
To establish (1.14) we need to estimate ‖{λjχQj

}∞
j=−∞‖Mφ,Φ (�v). It follows from

the definition of the sequences that {(κj,k;Qj,k)}j,k = {(λj ;Qj)}∞
j=−∞. Thus we have

‖{λjχQj
}∞
j=−∞‖Mφ,Φ (�v) = ‖{κj,kχQj,k

}j∈Z,k∈Kj
‖Mφ,Φ

. If we insert the definition of κj,k into
this expression, then we have

∥∥{λjχQj
}∞
j=−∞

∥∥
Mφ,Φ (�v)

= C0

∥∥{
2jχQj,k

}
j∈Z,k∈Kj

∥∥
Mφ,Φ (�v)

= C0

∥∥∥∥∥

( ∞∑

j=−∞
2jv

∑

k∈Kj

χQj,k

) 1
v
∥∥∥∥∥
Mφ,Φ

.

We deduce
∑

k∈Kj
χQj,k

∼ χOj
from (5.7) and the bounded intersection property of

{Qj,k}k∈Kj
. Thus, we have ‖{λjχQj

}∞
j=−∞‖Mφ,Φ (�v) � ‖{2jχOj

}∞
j=−∞‖Mφ,Φ (�v). Recall that

Oj ⊃ Oj+1 for each j ∈ Z. Consequently we have

∞∑

j=−∞

(
2jχOj

)v ∼
( ∞∑

j=−∞
2jχOj

)v

∼
( ∞∑

j=−∞
2jχOj \Oj+1

)v

from (5.10). Thus, we obtain

∥∥{λjχQj
}∞
j=−∞

∥∥
Mφ,Φ (�v)

�
∥∥∥∥∥

∞∑

j=−∞
2jχOj \Oj+1

∥∥∥∥∥
Mφ,Φ

.

It follows from the definition of Oj that 2j < Mf (x) for all x ∈ Oj . Hence we have

∥∥{λjχQj
}∞
j=−∞

∥∥
Mφ,Φ (�v)

�
∥∥∥∥∥

∞∑

j=−∞
χOj \Oj+1Mf

∥∥∥∥∥
Mφ,Φ

= ‖Mf ‖Mφ,Φ
.

This is the desired result. �

Before we conclude this section, a helpful remark may be in order.

Remark 5.8 If f ∈ Lv(Rn) for some 1 < v < ∞, then the convergence in (1.11) takes place
in the topology of Lv(Rn).
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6 Applications to Singular Integral Operators

Going through the same argument as [40, Theorem 5.5] and [41, Theorem 5.5], we can prove
the following theorem:

Theorem 6.1 Let Φ be a Young function and let φ ∈ GΦ . Let also k ∈ S(Rn). Write

Am ≡ sup
x∈Rn

|x|n+m
∣∣∇mk(x)

∣∣ (m ∈N0).

Define a convolution operator T by:

Tf (x) ≡ k ∗ f (x)
(
f ∈ S ′(

R
n
))

.

Then T , restricted to Mφ,Φ(Rn), is an Mφ,Φ(Rn)-bounded operator and the norm depends
only on ‖Fk‖L∞ and a finite number of collections A1,A2, . . . ,AN with N depending only
on Φ .

Once Theorem 6.1 is proved, we can obtain the Littlewood–Paley decomposition in the
same way as [40, Theorem 5.7] and [41, Theorem 5.10].

Theorem 6.2 Let Φ be a Young function and let φ ∈ GΦ . Let ϕ ∈ S(Rn) be a function which
is supported on Q(4) \ Q(1/4) and satisfies

∞∑

j=−∞

∣∣ϕ
(
2−j ξ

)∣∣2
> 0

for ξ ∈ R
n \ {0}. Then the following norm is an equivalent norm of Mφ,Φ(Rn):

‖f ‖Ė0
φ,Φ,2

≡
∥∥∥∥∥

( ∞∑

j=−∞

∣∣F−1
[
ϕ
(
2−j ·)Ff

]∣∣2

) 1
2
∥∥∥∥∥
Mφ,Φ

(
f ∈ Mφ,Φ

(
R

n
))

. (6.1)

Once we obtain Theorem 6.2, we can establish the wavelet decomposition and the smooth
atomic decomposition as in [46, 50]. Further details are omitted.

7 Olsen Inequality

We shall prove the Olsen inequality on generalized Orlicz–Morrey spaces of the third kind.
This is a bilinear estimate of Iα , which is nowadays called the Olsen inequality [43]. Recall
that we define the fractional integral operator Iα with 0 < α < n by;

Iαf (x) =
∫

Rn

f (y)

|x − y|n−α
dy

for all suitable functions f on R
n. Olsen’s inequality is the inequality of the form

‖g · Iαf ‖Z � ‖f ‖X‖g‖Y ,

where X,Y,Z are suitable Banach spaces. There is a vast amount of literatures on the Olsen
inequalities; see [8, 52–54, 56, 58–60, 63] for theoretical aspects and [11–13] for applica-
tions to PDEs.
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7.1 Boundedness of the Fractional Integral Operator

We shall prove the boundedness of the fractional integral operator Iα and the Olsen inequal-
ity by using the Hölder inequality on generalized Orlicz–Morrey spaces of the third kind as
follows:

Theorem 7.1 Let 0 < α < n, φ ∈ GΦ and Φ ∈ �2 ∩ ∇2. Assume that φ satisfies

rαφ(r) +
∫ ∞

r

tα−1φ(t) dt � φ(b) (r > 0) (7.1)

for some b ∈ (0,1). Define

φ̃(t) ≡ φ(t)b (t > 0) (7.2)

and

Φ̃(t) ≡ Φ
(
t

1
b

)
(t ≥ 0). (7.3)

Then φ̃ ∈ GΦ̃ , the integral defining Iαf (x) converges for almost every x ∈ R
n and

‖Iαf ‖M
φ̃,Φ̃

� ‖f ‖Mφ,Φ
(7.4)

for every f ∈ Mφ,Φ(Rn).

Proof The proof of the fact that φ̃ ∈ GΦ̃ is direct; we omit the proof.
We may assume that f is non-negative, since the integral kernel of Iα is positive. Let Q

be any cube centered at x ∈R
n. We define

I1(x) ≡
∫

2Q

f (y)

|x − y|n−α
dy and I2(x) ≡

∫

Rn\2Q

f (y)

|x − y|n−α
dy.

Using the definition of the Hardy–Littlewood maximal operator and inequality (7.1), we
have

I1(x) ≤
0∑

k=−∞

∫

2k+1Q\2kQ

f (y)

|x − y|n−α
dy

≤
0∑

k=−∞

1

(2k�(Q))n−α

∣∣2k+1Q
∣∣Mf (x)

= 2n�(Q)αMf (x)

0∑

k=−∞
2kα

� φ
(
�(Q)

)b−1
Mf (x).

In total, we obtain

I1(x)� φ
(
�(Q)

)b−1
Mf (x). (7.5)
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Let Ψ be the conjugate of Φ . We use Lemma 2.3 to obtain

I2(x) ≤
∞∑

k=1

∫

2k+1Q\2kQ

f (y)

|x − y|n−α
dy

≤
∞∑

k=1

1

(2k�(Q))n−α

∫

2k+1Q

f (y)dy

≤ 2
∞∑

k=1

(2k�(Q))α

|2kQ| · ‖f ‖LΦ(2k+1Q)‖1‖LΨ (2k+1Q)

≤ 4‖f ‖Mφ,Φ

∞∑

k=1

(2k+1�(Q))αφ(2k+1�(Q)).

Now we use our assumption on φ;

I2(x) � ‖f ‖Mφ,Φ

∞∑

k=1

∫ 2k+1�(Q)

2k�(Q)

tα−1φ(t) dt

= ‖f ‖Mφ,Φ

∫ ∞

2�(Q)

tα−1φ(t) dt � φ(�(Q))b‖f ‖Mφ,Φ
. (7.6)

By combining (7.5) and (7.6), we have

Iαf (x)� φ(�(Q))b−1Mf (x) + φ(�(Q))b‖f ‖Mφ,Φ
. (7.7)

Note that Mf (x) >
2‖f ‖Mφ,Φ

Ψ −1(1)
inf
r>0

1
φ(r)

= 0 from (7.1). Let Q′ be any cube that contain x, then

1

|Q′|
∫

Q′
f (y)dy ≤ 2

|Q′| ‖f ‖LΦ(Q′)‖1‖LΨ (Q′) ≤ 2φ(�(Q′))‖f ‖Mφ,Φ

Ψ −1(1)

≤ 4‖f ‖Mφ,Φ

Ψ −1(1)
sup
r>0

φ(r).

Hence it follows that

Mf (x) ≤ 4‖f ‖Mφ,Φ

Ψ −1(1)
sup
r>0

φ(r).

Consequently,

0 = sup
r>0

φ(r) ≤ Ψ −1(1)Mf (x)

4‖f ‖Mφ,Φ

≤ 1

4
sup
r>0

φ(r) < sup
r>0

φ(r).

We can choose j0 ∈ Z such that

φ(2j0) ≤ Ψ −1(1)Mf (x)

4‖f ‖Mφ,Φ

≤ C0φ(2j0) (7.8)
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where C0 is the doubling constant of φ; φ(2t) ≤ C0φ(t) for t ≥ 0. Using the inequalities
(7.7) and (7.8), we obtain

Iαf (x)� φ(2j0)φ(2j0)b−1‖f ‖Mφ,Φ
+ ‖f ‖Mφ,Φ

φ(2j0)b
� Mf (x)b

‖f ‖b−1
Mφ,Φ

= Mf (x)b‖f ‖1−b
Mφ,Φ

. (7.9)

Let S ∈ Q. Using (7.9), we have

‖Iαf ‖
LΦ̃ (S)

�
∥∥(Mf )b

∥∥
LΦ̃ (S)

‖f ‖1−b
Mφ,Φ

.

Thanks to (7.3) and Lemma 2.2, we have ‖(Mf )b‖
LΦ̃ (S)

= ‖Mf ‖b

LΦ(S)
. Consequently,

‖Iαf ‖
LΦ̃ (S)

� ‖Mf ‖b

LΦ(S)
‖f ‖1−b

Mφ,Φ
.

Therefore,

φ̃
(
�(S)

)‖Iαf ‖
LΦ̃ (S)

�
(
φ
(
�(S)

)‖Mf ‖LΦ(S)

)b‖f ‖1−b
Mφ,Φ

� ‖Mf ‖b
Mφ,Φ

‖f ‖1−b
Mφ,Φ

.

Using Corollary 8.3 and the boundedness of the maximal operator (see [6]), we obtain

φ̃
(
�(S)

)‖Iαf ‖
LΦ̃ (S)

� ‖f ‖Mφ,Φ
.

By taking the supremum of all cubes S ∈ Q, we obtain inequality (7.4). �

Remark 7.2 Theorem 7.1 is a counterpart to the weak type estimate obtained in [21, Theo-
rem 3.1], which was obtained in a fashion similar to that used for [9].

Theorem 7.3 Let b ∈ (0,1) and 0 < α < n. Suppose that we are given functions Φi ∈ �2 ∩
∇2 and φi ∈ GΦi

for i = 1,2,3. Assume that

rαφ1(r) +
∫ ∞

r

tα−1φ1(t) dt � φ1(r)
b (7.10)

for every r > 0. If these functions satisfy

(
Φ−1

1 (t)
)b

Φ−1
2 (t) ≤ Φ−1

3 (t) (t ≥ 0) (7.11)

and

φ3(t) ≥ φ1(t)
bφ2(t) (t > 0), (7.12)

then

‖g · Iαf ‖Mφ3,Φ3
� ‖f ‖Mφ1,Φ1

‖g‖Mφ2,Φ2
(7.13)

for every f ∈ Mφ1,Φ1(R
n) and g ∈ Mφ2,Φ2(R

n).

Proof Define φ̃1(t) = φ1(t)
b for t > 0 and Φ̃1(t) = Φ1(t

1
b ) for t ≥ 0. Assumption (7.12)

reads;

φ3(t) ≥ φ̃1(t)φ2(t) (t > 0).



Non-smooth Atomic Decompositions for Generalized. . . 161

Let Θ(t) = (Φ−1
1 (t))b for t ≥ 0. Then

Φ̃1 ◦ Θ(t) = Φ̃1

((
Φ−1

1 (t)
)b) = Φ1

(
Φ−1

1 (t)
) = t

and

Θ ◦ Φ̃1(t) = Θ
(
Φ1

(
t

1
b

)) = (
Φ−1

1

(
Φ1

(
t

1
b

)))b = (
t1/b

)b = t,

which implies Θ and Φ̃1 are inverse to each other. Thus, Φ̃−1
1 = Θ = (Φ−1

1 )b . By virtue of
(7.11), we have Φ−1

2 (t)Φ̃−1
1 (t) ≤ Φ−1

3 (t). Using Theorem 2.6, we obtain ‖g · Iαf ‖Mφ3,Φ3
≤

2‖g‖Mφ2,Φ2
‖Iαf ‖M

φ̃1,Φ̃1
. Finally, using Theorem 7.1, we obtain (7.13). �

7.2 Olsen’s Inequality Revisited

As an application of Theorems 1.1 and 1.2 we can prove the following theorem:

Theorem 7.4 Let α ∈ (0, n), κ ∈ (1,∞) be such that κ ′ ≤ n/α. Let Φ ∈ �2 ∩∇2 and φ ∈ GΦ

satisfy (7.1). Define the conjugate function Ψ of Φ by (1.3). Assume that

∫ ∞

r

sα−1φ(s) ds � rαφ(r) (r > 0) (7.14)

and that Ψ satisfies (1.7). Then we have

‖g · Iαf ‖Mφ,Φ
� ‖g‖Mn/α

κ′
‖f ‖Mφ,Φ

(7.15)

for all f ∈ Mφ,Φ(Rn) and g ∈ Mn/α

κ ′ (Rn).

Before the proof of Theorem 7.4, a couple of remarks on its assumptions may be in order.

Remark 7.5 Let η(t) = t−α for t > 0 and 1 < θ,q < ∞. Set

φ̃(t) = φ(t)θ (t > 0), Φ̃(t) = Φ
(
t θ

)
(t ≥ 0).

1. The assumptions (1.7), (7.1) and (7.14) are stronger than those of Theorems 1.1 and 1.2
and justify the definition of Iαf , since;
(a) the condition (7.1) together with Theorem 7.1 guarantees that Iαf makes sense;
(b) the condition (7.14) corresponds to (1.6) and covers the integral condition (1.13).

2. The function Φ̃ belongs to ∇2. The function φ̃ satisfies the integral condition as is seen
from [42, Proposition 2.7]. As a result, due to Theorem 3.5, the vector-valued inequality

‖MF‖
Mφ̃

Φ̃
(�q )

� ‖F‖
Mφ̃

Φ̃
(�q )

holds for all F = {fj }∞
j=1 ∈ Mφ̃

Φ̃
(�q).

Proof The proof is analogous to that of [25, Theorem 1.7], however, the proof of [25, The-
orem 1.7] was not correct; it contains a small mistake. To indicate what it is, we will give a
detailed proof together with a remedy of the proof of [25, Theorem 1.7] in the last paragraph
of this proof.
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Let us modify the proof of [25, Theorem 1.7] to our setting.
We decompose f according to Theorem 1.2 with L � 1;

f =
∞∑

j=1

λjaj , (7.16)

where {Qj }∞
j=1 ⊂ Q(Rn), {aj }∞

j=1 ⊂ L∞
comp(R

n) ∩ P⊥
L (Rn) and {λj }∞

j=1 ⊂ [0,∞) fulfill
(1.15)–(1.18).

We concluded in [25] the wrong conclusion;

∣∣g(x)Iαf (x)
∣∣ ≤

∞∑

j=1

∞∑

k=1

λj

21+L+n−α

(
�(Qj )

α
∣∣g(x)

∣∣χ2kQj
(x)

) (
x ∈R

n
)

(7.17)

by using [25, Lemma 4.2];

∣∣Iαf (x)
∣∣ ≤

∞∑

j=1

∞∑

k=1

λj

21+L+n−α

(
�(Qj )

α
∣∣g(x)

∣∣χ2kQj
(x)

) (
x ∈R

n
)
. (7.18)

It seems that we can justify (7.18) to a large extent. However, in [25], we are led to
thinking that

Iαf =
∞∑

j=1

λj Iαaj (7.19)

almost everywhere or in Mφ̃,Φ̃ (Rn) but this is not the case because (7.16) does not take
place in Mφ,Φ(Rn).

We can justify (7.18) in the last paragraph of the proof. For the time being, let us suppose
that (7.18) is justified and conclude the proof.

From (7.17), we deduce

‖g · Iαf ‖Mφ,Φ
�

∥∥∥∥∥

∞∑

j,k=1

λj

2k(1+L+n)

(
�
(
2kQj

)α|g|χ2kQj

)
∥∥∥∥∥
Mφ,Φ

.

Write bjk ≡ �(2kQj )
α|g|χ2kQj

. Then we have

‖bjk‖Mn/α

κ′
≤ �

(
2kQj

)α‖g‖Mn/α

κ′
.

Thus, it follows that

‖g · Iαf ‖Mφ,Φ
� ‖g‖Mn/α

κ′

∥∥∥∥∥

∞∑

j,k=1

λj

2k(1+L+n)
χ2kQj

∥∥∥∥∥
Mφ,Φ

.

Observe that χ2kQj
≤ 2knMχQj

. Hence if we choose 1 < θ < ∞ so that

L + n + 1 − θn > 0,

then we have

‖g · Iαf ‖Mφ,Φ
� ‖g‖Mn/α

κ′

∥∥∥∥∥

∞∑

j=1

λj (MχQj
)θ

∥∥∥∥∥
Mφ,Φ

.
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By the Fefferman–Stein inequality for generalized Morrey spaces of the third kind; see
Theorem 3.5, we can remove the maximal operator and we obtain

‖g · Iαf ‖Mφ,Φ
� ‖g‖Mn/α

κ′

∥
∥∥∥
∥

∞∑

j=1

λjχQj

∥
∥∥∥
∥
Mφ,Φ

.

It remains to justify (7.18). Since the kernel of Iα is non-negative, we may assume that
f ∈ Lv(Rn) for some v ∈ (1, n/α) by a suitable truncation of f . Then we are in the position
of applying Remark 5.8 to have (7.19) in Lu(Rn), where u is given by:

1

u
= 1

v
− α

n
.

With this remark, we can use (7.18) and we have (7.15). �

8 More General form of the Boundedness of the Maximal Operator

In this section, we consider the case when φ is dependent of x as well. So we are given
a function φ : Rn × (0,∞) → (0,∞) as well as the Young function Φ : [0,∞) → [0,∞).
Recall that for a cube Q, c(Q) stands for its center and �(Q) stands for its side-length;
�(Q) = |Q| 1

n . In this case the generalized Orlicz–Morrey space Mφ,Φ(Rn) of the third kind
is defined as the set of all measurable functions f for which the norm

‖f ‖Mφ,Φ
≡ sup

Q∈Q
1

φ(c(Q), �(Q))
Φ−1

(
1

|Q|
)

‖f ‖LΦ(Q)

is finite. Likewise the weak generalized Orlicz–Morrey space WMφ,Φ(Rn) of the third kind
is defined as the set of all measurable functions f for which the norm

‖f ‖WMφ,Φ
≡ sup

Q∈Q,γ>0

γ

φ(c(Q), �(Q))
Φ−1

(
1

|Q|
)

‖χ{|f |>γ }‖LΦ(Q)

is finite. Let 1 ≤ q ≤ ∞. Denote by Mφ,Φ(�q,Rn) the set of all sequences F = {fj }∞
j=1 of

measurable functions on R
n such that

‖F‖Mφ,Φ (�q ) ≡ ∥∥∥∥{
fj (·)

}∞
j=1

∥∥
�q

∥∥
Mφ,Φ

< ∞.

Similarly denote by WMφ,Φ(�q,Rn) the set of all sequences F = {fj }∞
j=1 such that

‖F‖WMφ,Φ (�q ) ≡ ∥∥∥∥{
fj (·)

}∞
j=1

∥∥
�q

∥∥
WMφ,Φ

< ∞.

The spaces �q(Mφ,Φ(Rn)) and �q(WMφ,Φ(Rn)) can be also similarly defined by the
(quasi-)norms:

∥∥{fj }∞
j=1

∥∥
�q (Mφ,Φ )

≡ ∥∥{‖fj‖Mφ,Φ

}∞
j=1

∥∥
�q < ∞

and
∥∥{fj }∞

j=1

∥∥
�q (WMφ,Φ )

≡ ∥∥{‖fj‖WMφ,Φ

}∞
j=1

∥∥
�q < ∞,

respectively.
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Denote by GΦ the set of all functions φ : Rn × (0,∞) → (0,∞) such that φ(x, t) ≤
φ(x, s) for all t > s > 0 and that μx : (0,∞) � t �→ Φ−1(x, t−n)φ(t)−1 ∈ (0,∞) is almost
decreasing, that is, there exists a constant C > 0 independent of x such that μx(t) ≤ Cμx(s)

for all 0 < s < t < ∞. Here Φ−1(x, ·) is the inverse of Φ(x, ·).
The following theorem was proved in [6, Theorem 4.6]:

Theorem 8.1 Let Φ be a Young function and φ1, φ2 ∈ GΦ . Suppose that the functions φ1, φ2

and Φ satisfy the condition;

sup
r<t<∞

Φ−1
(
t−n

)
ess inf
t<s<∞

φ1(x, s)

Φ−1(s−n)
� φ2(x, r), (8.1)

where the implicit constant does not depend on x and r . Then;

1. the maximal operator M is bounded from Mφ1,Φ(Rn) to Mφ2,Φ(Rn) if Φ ∈ ∇2;
2. the maximal operator M is bounded from Mφ1,Φ(Rn) to WMφ2,Φ(Rn).

Using the boundedness of M on Mφ,Φ(Rn) (see Theorem 8.1 to follow), we obtain the
following result:

Lemma 8.2 Let Φ ∈ ∇2 and φ ∈ Gφ . Assume that φ,Φ satisfy

sup
r<t<∞

Φ−1
(
t−n

)
ess inf
t<s<∞

φ(x, s)

Φ−1(s−n)
� φ(x, r), (8.2)

for every r > 0. Then for all τ ∈ S(Rn) and f ∈ Mφ,Φ(Rn),

‖τ · f ‖L1 � ‖f ‖Mφ,Φ
sup
x∈Rn

(
1 + |x|)2n+1∣∣τ(x)

∣∣. (8.3)

Proof We proceed as in [55, Lemma 2.5]. We omit the detail. �

Corollary 8.3 Let Φ be a Young function and let φ ∈ GΦ . Then;

1. the maximal operator M is bounded on Mφ,Φ(Rn) if Φ ∈ ∇2;
2. the maximal operator M is bounded from Mφ,Φ(Rn) to WMφ,Φ(Rn).

Corollary 8.4 Let Φ be a Young function, φ1, φ2 ∈ GΦ and 1 ≤ q ≤ ∞. Suppose the func-
tions φ1, φ2 and Φ satisfy condition (8.1). Then;

1. the maximal operator M is bounded on �q(Mφ1,Φ(Rn)) if Φ ∈ ∇2;
2. the maximal operator M is bounded from �q(Mφ1,Φ(Rn)) to �q(WMφ2,Φ(Rn)).

We can use Corollary 8.4 to consider generalized Besov–Orlicz–Morrey spaces of the
third kind, as we did in [23, 33, 45, 62].

Let v ∈ M+(0,∞). We denote by L∞,v(0,∞) the space of all functions g ∈ M(0,∞)

with finite norm;

‖g‖L∞,v (0,∞) ≡ sup
t>0

v(t)
∣∣g(t)

∣∣.

Let u ∈M+(0,∞). We define the supremal operator Su on g ∈ M(0,∞) by:

Sug(t) ≡ ‖ug‖L∞(t,∞), t ∈ (0,∞).
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The following theorem was proved in [4]:

Theorem 8.5 [4] Let v1, v2, u ∈ M+(0,∞) satisfy 0 < ‖v1‖L∞(t,∞) < ∞ for any t > 0.
Then the supremal operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A,
defined by (1.20), if and only if

∥∥∥∥v2Su

(
1

‖v1‖L∞(·,∞)

)∥∥∥∥
L∞(0,∞)

< ∞. (8.4)

Here and below by a “weight” we mean a measurable function which is finite and positive
almost everywhere. We will use the following statement on the boundedness of the weighted
Hardy operator

g �→ H ∗
wg(t) ≡

∫ ∞

t

g(s)w(s) ds, 0 < t < ∞,

where w ∈M+(0,∞).

Theorem 8.6 [19, Theorem 3.1] Let v1, v2 and w ∈M+(0,∞). Assume that v1 : (0,∞) →
(0,∞) is bounded outside a neighborhood of the origin. Then the inequality

‖H ∗
wg‖L∞,v2 (0,∞) ≤ C‖g‖L∞,v1 (0,∞) (8.5)

holds for all g ∈M+(0,∞;↑) if and only if

B ≡ sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ )
< ∞. (8.6)

Moreover, the value C = B is the best constant for (8.5).

Before we go further, a couple of remarks may be in order.

Remark 8.7

1. Theorem 8.6 in the case w = 1 was proved in [4, Theorem 5.3].
2. In (8.6) it will be understood that 1

∞ = 0 · ∞ = 0.
3. See [20, Theorem 1] as well for an application of this result.

The following lemma is true:

Lemma 8.8 Let Φ be a Young function and 1 < q ≤ ∞.

1. If Φ ∈ �2 ∩ ∇2, then

∥∥∥∥MF(·)∥∥
�q

∥∥
LΦ(B(x,r))

�
∥∥∥∥F(·)∥∥

�q

∥∥
LΦ(B(x,3r))

+ 1

Φ−1(r−n)

∫ ∞

r

‖‖F(·)‖�q ‖L1(B(x,t))

tn+1
dt (8.7)

holds for any F = {fj }∞
j=0 ⊂ LΦ

loc(R
n) and for any ball B(x, r).
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2. If Φ ∈ �2, then
∥
∥
∥
∥MF(·)∥∥

�q

∥
∥

WLΦ(B(x,r))

�
∥∥∥∥F(·)∥∥

�q

∥∥
LΦ(B(x,3r))

+ 1

Φ−1(r−n)

∫ ∞

r

‖‖F‖�q ‖L1(B(x,t))

tn+1
dt (8.8)

holds for any F = {fj }∞
j=0 ⊂ LΦ

loc(R
n) and for any ball B(x, r).

Proof We split F = {fj }∞
j=1 with

F = F1 + F2, F1 ≡ {fj,1}∞
j=1, F2 ≡ {fj,2}∞

j=1,

fj,1(y) ≡ fj (y)χB(x,3r)(y), fj,2(y) ≡ fj (y) − fj,1(y).
(8.9)

1. Assume Φ ∈ �2 ∩ ∇2. It is obvious that
∥∥∥∥MF(·)∥∥

�q

∥∥
LΦ(B(x,r))

≤ ∥∥∥∥MF1(·)
∥∥

�q

∥∥
LΦ(B(x,r))

+ ∥∥∥∥MF2(·)
∥∥

�q

∥∥
LΦ(B(x,r))

.

First, we estimate ‖‖MF1(·)‖�q ‖LΦ(B(x,r)). By Lemma 3.6, we have
∥∥∥∥MF1(·)

∥∥
�q

∥∥
LΦ(B(x,r))

≤ ∥∥∥∥MF1(·)
∥∥

�q

∥∥
LΦ

�
∥∥∥∥F1(·)

∥∥
�q

∥∥
LΦ

= ∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,3r))

, (8.10)

where the implicit constant is independent of the vector-valued function F .
On the other hand, the estimate for MF2 is valid from an estimate similar to

Lemma 3.4. Thus we obtain (8.7) from (8.10).
2. Let Φ ∈ �2. It is obvious that

∥∥∥∥MF(·)∥∥
�q

∥∥
WLΦ(B(x,r))

≤ 2
∥∥∥∥MF1(·)

∥∥
�q

∥∥
WLΦ(B(x,r))

+ 2
∥∥∥∥MF2(·)

∥∥
�q

∥∥
WLΦ(B(x,r))

.

By the weak-type vector valued maximal inequality for Orlicz spaces (see [30]) we have
∥∥∥∥MF1(·)

∥∥
�q

∥∥
WLΦ(B(x,r))

≤ ∥∥∥∥MF1(·)
∥∥

�q

∥∥
WLΦ

�
∥∥∥∥F1(·)

∥∥
�q

∥∥
LΦ

= ∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,3r))

, (8.11)

where the implicit constant is independent of the vector-valued function F . On the other
hand, the estimate for MF2 is again valid from an estimate similar to Lemma 3.4. Thus
by (8.11) we obtain inequality (8.8). �

Lemma 8.9 Let Φ be a Young function and 1 < q ≤ ∞.

1. If Φ ∈ �2 ∩ ∇2, then

∥∥∥∥MF(·)∥∥
�q

∥∥
LΦ(B(x,r))

�
∫ ∞

r

Φ−1(t−n)

Φ−1(r−n)

∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t
(8.12)

for any ball B(x, r) and for any F = {fj }∞
j=0 ⊂ LΦ

loc(R
n).
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2. If Φ ∈ �2, then

∥∥∥∥MF(·)∥∥
�q

∥∥
WLΦ(B(x,r))

�
∫ ∞

r

Φ−1(t−n)

Φ−1(r−n)

∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t
(8.13)

for any ball B(x, r) and for any F = {fj }∞
j=0 ⊂ LΦ

loc(R
n).

Proof Let Φ ∈ �2 ∩ ∇2. Write

I ≡
∫ ∞

r

‖‖F(·)‖�q ‖L1(B(x,t))

Φ−1(r−n)tn+1
dt, II ≡ ∥∥∥∥F(·)∥∥

�q

∥∥
LΦ(B(x,2r))

.

Let Ψ be the conjugate of Φ . Applying Hölder’s inequality and inequality (2.5) we obtain

I � 1

Φ−1(r−n)

∫ ∞

r

∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

‖1‖LΨ (B(x,t))

dt

tn+1

= 1

Φ−1(r−n)

∫ ∞

r

t−n

Ψ −1( 1
|B(x,t)| )

∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t

� 1

Φ−1(r−n)

∫ ∞

r

Φ−1
(
t−n

)∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t
.

On the other hand, assuming that Φ ∈ �2, we have

II ∼ ∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,2r))

Φ−1((2r)−n)

(2r)−nΦ−1(r−n)

∫ ∞

2r

dt

tn+1

� 1

Φ−1(r−n)Ψ −1((2r)−n)

∫ ∞

2r

∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

tn+1

≤ 1

Φ−1(r−n)

∫ ∞

2r

∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

t−n

Ψ −1(t−n)

dt

t

≤ 1

Φ−1(r−n)

∫ ∞

2r

∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

Φ−1
(
r−n

)dt

t

thanks to inequality (2.5). Since ‖‖MF(·)‖�q ‖LΦ(B(x,r)) ≤ I + II, we arrive at (8.12) by
Lemma 8.8. Finally, when Φ ∈ �2 inequality (8.13) directly follows from (8.8). �

Theorem 8.10 Let Φ ∈ �2 be a Young function and 1 < q ≤ ∞. Suppose that we are given
a Young function Φ and φ1, φ2 ∈ GΦ such that an estimate uniform over x ∈ R

n and r > 0;

∫ ∞

r

Φ−1
(
t−n

)(
ess inf
t<s<∞

φ1(x, s)

Φ−1(s−n)

)
dt

t
� φ2(x, r) (8.14)

holds. Then;

1. if Φ ∈ �2 ∩ ∇2, then the maximal operator M is bounded from Mφ1,Φ(�q,Rn) to
Mφ2,Φ(�q,Rn), that is,

‖MF‖Mφ2,Φ (�q ) � ‖F‖Mφ1,Φ (�q ) (8.15)

holds for all F ∈ Mφ1,Φ(�q,Rn);
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2. if Φ ∈ �, then the maximal operator M is bounded from Mφ1,Φ(�q,Rn) to
WMφ2,Φ(�q,Rn), that is,

‖MF‖WMφ2,Φ (�q ) � ‖F‖Mφ1,Φ (�q ) (8.16)

holds for all F ∈ Mφ1,Φ(�q,Rn).

Proof We use (8.14) as follows: Fix x ∈ R
n. Define

v1(t) ≡ Φ−1(t−n)

φ1(x, t)
, v2(t) ≡ 1

φ2(x, t)
, w(t) ≡ 1

t

and consider the weighted Hardy operator:

H ∗
wg(t) =

∫ ∞

t

g(s)
ds

s
(t > 0)

where g ∈M+(0,∞). Note that we are in the position of applying (8.14).
As a consequence applying Theorem 8.6, we obtain

sup
x∈Rn,r>0

1

φ2(x, r)

∫ ∞

r

Φ−1
(
t−n

)∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t

= sup
x∈Rn

sup
r>0

1

φ2(x, r)

∫ ∞

r

Φ−1
(
t−n

)∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t

= sup
x∈Rn

∥∥H ∗
w

(∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,·))

)∥∥
L∞,v2 (0,∞)

� sup
x∈Rn

∥∥(∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,·))

)∥∥
L∞,v1 (0,∞)

= sup
x∈Rn

sup
r>0

1

φ1(x, r)
Φ−1

(
r−n

)∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,r))

= sup
x∈Rn,r>0

1

φ1(x, r)
Φ−1

(
r−n

)∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,r))

≤ ‖F‖Mφ1,Φ (�q ). (8.17)

If Φ ∈ �2 ∩ ∇2, then Theorem 8.6, Lemma 8.9 and (8.17) yield

‖MF‖Mφ2,Φ (�q ) � sup
x∈Rn,r>0

1

φ2(x, r)

∫ ∞

r

Φ−1
(
t−n

)∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t

� ‖F‖Mφ1,Φ (�q ),

which proves (8.15). Likewise, if Φ ∈ �2, then we have

‖MF‖WMφ2,Φ (�q ) � sup
x∈Rn,r>0

1

φ2(x, r)

∫ ∞

r

Φ−1
(
t−n

)∥∥∥∥F(·)∥∥
�q

∥∥
LΦ(B(x,t))

dt

t

� ‖F‖Mφ1,Φ (�q ),

which proves (8.16). �
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As a corollary of the vector-valued inequality, we have;

Corollary 8.11 Let Φ be a Young function and 1 < q ≤ ∞. Suppose that φ ∈ GΦ satisfies

∫ ∞

r

φ(x, t)
dt

t
� φ(x, r)

(
x ∈ R

n, r > 0
)
,

where the implicit constant does not depend on x and r . Then;

1. whenever Φ ∈ �2 ∩ ∇2 and F ∈ Mφ,Φ(�q,Rn),

‖MF‖Mφ,Φ (�q ) � ‖F‖Mφ,Φ (�q )

with the implicit constant independent of F ;
2. whenever Φ ∈ �2 and F ∈ Mφ,Φ(�q,Rn),

‖MF‖WMφ,Φ (�q ) � ‖F‖Mφ,Φ (�q )

with the implicit constant independent of F .

In [69, Lemma 2.13] one can find also a result parallel to Corollary 8.11. Note that [69,
Lemma 2.13] is called the modular inequality, while Corollary 8.11 is the vector-valued
norm inequality. If we apply these results, then our results carry over to the case when Φ

depends on x.

9 Concluding Remarks

9.1 Comparison of Many Generalized Orlicz–Morrey Spaces

To the best knowledge of the authors, there exist three generalized Orlicz–Morrey spaces.

Definition 9.1 Let Φ : Rn × [0,∞) → [0,∞) and φ : Q → (0,∞) be suitable functions.
Let f be a measurable function.

1. For a cube Q ∈ Q define the (φ,Φ)-average over Q of f by:

‖f ‖(φ,Φ);Q ≡ inf

{
λ > 0 : φ(Q)

|Q|
∫

Q

Φ

(
x,

|f (x)|
λ

)
dx ≤ 1

}
.

Define the generalized Orlicz–Morrey space Lφ,Φ(Rn) of the first kind to be the Banach
space equipped with the norm: ‖f ‖Lφ,Φ

≡ sup{‖f ‖(φ,Φ);Q : Q ∈ Q}.
2. For a cube Q ∈ Q define the Φ-average over Q of f by:

‖f ‖Φ;Q ≡ inf

{
λ > 0 : 1

|Q|
∫

Q

Φ

(
x,

|f (x)|
λ

)
dx ≤ 1

}
.

Define the generalized Orlicz–Morrey space M̃φ,Φ(Rn) of the second kind to be the
Banach space equipped with the norm: ‖f ‖M̃φ,Φ

≡ sup{φ(Q)‖f ‖Φ;Q : Q ∈ Q}.
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The spaces Lφ,Φ(Rn), M̃φ,Φ(Rn) and Mφ,Φ(Rn) are defined by Nakai in [37] (with Φ

independent of x), by Sawano, Sugano and Tanaka in [54] (with Φ independent of x) and by
Deringoz, Guliyev and Samko in [6, Definition 2.3], respectively. According to the examples
in [14], we can say that the scales L and M̃ are different and that M̃ and M are different.
However, it is not known that L and M are different.

Example 9.2 Let n = 1, Φ(t) = t2 + t3 and φ(t) = √
t . Then Lφ,Φ(R) = M4

2(R)∩M6
3(R).

But no matter what function ψ we choose, Lφ,Φ(R) and Mψ,Φ(R) are not isomorphic.
Assume to the contrary that Lφ,Φ(R) and Mψ,Φ(R) are isomorphic. Then

C max
(

4
√

r, 6
√

r
) ≤ ‖χ[0,r]‖Mψ,Φ

= ‖χ[0,r]‖Lφ,Φ
≤ C−1 max

(
4
√

r, 6
√

r
)
.

This implies

‖χ[0,r]‖Mψ,Φ
> ‖χ[0,ar]‖Mψ,Φ

for some constant a independent of r > 0.
When 0 < r < 1, we deduce

C ≤
∫ r

0

(
1

ψ(r) 6
√

r

)3

dt +
∫ r

0

(
1

ψ(r) 6
√

r

)2

dt ≤ C−1

and hence C 6
√

r ≤ ψ(r) ≤ C−1 6
√

r . Likewise C 4
√

r ≤ ψ(r) ≤ C−1 4
√

r when r ≥ 1.
Define a sequence {fj }∞

j=1 of Affine mappings by

fj (x) = (2
√

2)j − (2
√

2)j−1 + x.

We also define

E0 = [0,1], Ej+1 = Ej ∪ fj (Ej ).

Then we see that

1 ≤ ‖χEj
‖M6

2
≤ C

for all j ; see [52, (4.10)]. Meanwhile, keeping in mind, Ej is made up of 2j disjoint intervals
of length 1

‖χEj
‖Mψ,Φ

≤ C‖χEj
‖M6

2
≤ C < ∞.

However,

‖fj‖M6
3
≥ 1

6
√

(2
√

2)j

3
√

2j = 12
√

2j

for any j ∈N. This is a contradiction.

9.2 Comparison of the Assumptions of the Theorems

Here we discuss the meaning of the assumptions of Theorems 1.1 and 1.2. In [25], we have
proved the following theorems:
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Theorem 9.3 [25, Theorem 1] Suppose that the parameters p,q, s, t satisfy

1 < q ≤ p < ∞, 1 < t ≤ s < ∞, q < t, p < s.

Assume that {Qj }∞
j=1 ⊂ Q, {aj }∞

j=1 ⊂ Ms
t (R

n) and {λj }∞
j=1 ⊂ [0,∞) fulfill

‖aj‖Ms
t
≤ |Qj | 1

s , supp(aj ) ⊂ Qj,

∥
∥∥
∥∥

∞∑

j=1

λjχQj

∥
∥∥
∥∥
Mp

q

< ∞. (9.1)

Then f ≡ ∑∞
j=1 λjaj converges in S ′(Rn) ∩ L

q

loc(R
n) and satisfies

‖f ‖Mp
q
�

∥∥∥∥∥

∞∑

j=1

λjχQj

∥∥∥∥∥
Mp

q

. (9.2)

Theorem 9.4 [25, Theorem 2] Suppose that the real parameters p,q,L satisfy

1 < q ≤ p < ∞, L ∈N0.

Let f ∈ Mp
q (Rn). Then there exists a triplet {Qj }∞

j=1 ⊂ Q, {aj }∞
j=1 ⊂ L∞(Rn) ∩ P⊥

L (Rn)

and {λj }∞
j=1 ⊂ [0,∞) such that f = ∑∞

j=1 λjaj in S ′(Rn) ∩ L
q

loc(R
n) and that, for all v > 0

|aj | ≤ χQj
,

∥∥{λjχQj
}∞
j=1

∥∥
Mp

q (�v)
� ‖f ‖Mp

q
. (9.3)

Assumption (1.6) and (1.7) correspond to conditions p < s and q < t in Theorem 9.3,
respectively. Assumption (1.13) corresponds to p < ∞.

According to the counterexample in [52, Proposition 4.1], we know that we can not
relax the assumption q < t ; if this were true for q = t , then this would contradict to the
counterexample in [52, Proposition 4.1].

However, it is not known that we can relax the assumption p < s.

Remark 9.5 According to the best knowledge of the authors, it seems that there are three
decompositions for Morrey spaces.

1. In 2005, Kruglyak and Kuznetsov considered the Calderón–Zygmund decomposition
[31].

2. In 2007, the “so called” smooth decomposition is obtained [50]. The key idea is to de-
velop the idea obtained in [23, 34, 61, 62]. This decomposition is investigated very inten-
sively in [24, 32, 33, 45, 47, 48]. Later, in [51], by using this atomic decomposition, the
above scale turned out to be the one defined by Yang and Yuan [64, 65]. See [66–68, 70]
for more for this new scale. We refer to [71] for an exhaustive account of these function
spaces as well as the results on this decomposition. In particular, remark that Yang, Yuan
and Zhuo obtained the smooth decomposition for Musielak–Orlicz spaces in [69]. Using
Corollary 8.11 and the main results in [33], one can obtain the smooth atomic decompo-
sition for the Orlicz–Morrey spaces of the third kind. However, the cost that must be paid
is the size of the number N of the moment condition in words of [69, Definition 5.4].
With the results in this paper and the ones in [33], N must be large enough. To overcome
this disadvantage, one needs another approach, which is the future work.

3. Probably, [27] is the first work on the non-smooth decomposition of functions Hardy–
Morrey space. The paper [25] complements the case when Mφ,Φ(Rn) is the classical
Morrey space Mp

q (Rn).
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