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Integrative proteomics in prostate cancer uncovers
robustness against genomic and transcriptomic
aberrations during disease progression
Leena Latonen1,2, Ebrahim Afyounian 1, Antti Jylhä3, Janika Nättinen3, Ulla Aapola3, Matti Annala 1,

Kati K. Kivinummi1, Teuvo T.L. Tammela4, Roger W. Beuerman3,5,6,7,8, Hannu Uusitalo3,9,

Matti Nykter1,10 & Tapio Visakorpi1,2

To understand functional consequences of genetic and transcriptional aberrations in prostate

cancer, the proteomic changes during disease formation and progression need to be revealed.

Here we report high-throughput mass spectrometry on clinical tissue samples of benign

prostatic hyperplasia (BPH), untreated primary prostate cancer (PC) and castration resistant

prostate cancer (CRPC). Each sample group shows a distinct protein profile. By integrative

analysis we show that, especially in CRPC, gene copy number, DNA methylation, and RNA

expression levels do not reliably predict proteomic changes. Instead, we uncover previously

unrecognized molecular and pathway events, for example, several miRNA target correlations

present at protein but not at mRNA level. Notably, we identify two metabolic shifts in the

citric acid cycle (TCA cycle) during prostate cancer development and progression. Our

proteogenomic analysis uncovers robustness against genomic and transcriptomic aberrations

during prostate cancer progression, and significantly extends understanding of prostate

cancer disease mechanisms.
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Prostate cancer is the most common male malignancy in
Western countries, and the second most common cancer
among men overall1. Currently, no curative treatment exists

for castration resistant prostate cancer (CRPC)2. To understand
the etiology of the disease and to find more specific drug targets,
the driver mutations and expressional changes in prostate cancer
have been examined through extensive genomic and tran-
scriptomic characterization3–7. Although significant insight has
been gained through these efforts, it is clear that not all molecular
alterations influencing the tumor outcome can be captured
through these approaches.

Proteins are regulated at multiple levels, and their expression is
not always reflecting the levels of mRNA8,9. Thus, a compre-
hensive understanding of the molecular events in cancer require
thorough investigation of the proteome10. Recent developments
in mass spectrometric methods11–13 have enabled high
throughput analysis of clinical patient samples, and the first

integrative studies involving large scale, mass spectrometry-based
proteomics of human cancer have recently been published14–16.
For prostate cancer, recent proteomic advancements have inclu-
ded high scale, mass spectrometry-based studies performed in
diagnostic body fluids17,18, as well as primary tumors19 and the
tumor microenvironment20. So far, the only integrative proteo-
genomic analysis of clinical prostate cancer involved genomic and
transcriptomic data of CRPC combined with phosphoproteomic
analysis21. Despite the merits of this study in interrogating the
active signaling pathways in CRPC, the large-scale proteomic
view of PC and CRPC, and reflections of them to the disease
progression are still lacking.

Here, we provide the first integrative view on human prostate
cancer with the proteome of clinical patient samples of benign
prostatic hyperplasia (BPH), untreated primary prostate cancer
(PC) and locally recurrent CRPC. Our analysis adds a new level to
the current knowledge of prostate cancer development and
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Fig. 1 Proteomic analysis reveals distinct protein expression patterns in PC and CRPC. a Heat map of all protein expressions identified and quantified by
mass spectrometry in the proteomic analysis of BPH and prostate cancer samples (PC and CRPC). Each column of heat map represents a patient sample
and each row represents a specific protein (n= 3394). b Venn diagram showing the numbers of differentially expressed proteins in PC vs BPH and CRPC
vs PC comparisons. Only a minority of the differentially expressed proteins overlap between the comparisons. c, d Heat maps of the differentially expressed
proteins in b show clearly distinctive patterns of protein expression between disease groups. PC compared to BPH samples (n= 728) is shown in c, and
CRPC compared to PC samples (n= 382) is shown in d. Color key of relative expression in a applies also to c and d
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progression by identifying several molecular and pathway events
not previously described based on transcriptomic data.

Results
Mass spectrometric analysis of proteomic profiles. Samples of
10 BPH, 17 untreated PC (Supplementary Table 1), and 11 CRPC
(Supplementary Table 2) were analyzed. The CRPC samples came
from patients that had been treated either by castration and/or
antiandrogens and experienced urethral obstruction (ie. local
recurrence) during the treatment. With sequential window
acquisition of all theoretical fragment ion spectra mass spectro-
metry (SWATH-MS), we identified a total of 213,979 peptides,
corresponding to 1,753,161 identified spectra in an assembly of
4601 protein groups using false discovery rate of 1%. Protein and
peptide quantification data can be found from Supplementary
Data 1. From this library, 3394 proteins had distinct peptides
sequences with matching spectras to SWATH-MS analysis and
were quantified in all samples (Supplementary Data 2). The
SWATH-MS data was reproducible with mean intraclass corre-
lation (ICC) coefficient of 0.98 between technical replicate MS
analyses. Permutation tests (Spearman correlation) showed that
98.6% of the technical replicate MS analyses had a p-value < 0.05,
demonstrating excellent quality. The represented protein classes
(PANTHER protein class) and gene ontology groups (GO;
molecular functions, cellular components, and biological pro-
cesses) are shown in Supplementary Fig. 1a. The distribution of
the proteins into different protein classes was largely according to
expected as compared to Homo sapiens reference list (Supple-
mentary Fig. 1a,b). The major overrepresented groups included
the highly abundant nucleic acid binding (mainly RNA binding)
and ribosomal proteins, oxidoreductases, and hydrolases. The
major underrepresented groups were transcription factors and
receptors, including immunoglobulins, consistent with the cell
type-dependent expression of especially the latter group.

Expression profiles of the identified proteins in the prostate
tissue samples are shown in Fig. 1a. We wanted to assess changes
occurring at the protein level during prostate cancer development
and progression. As a model for benign tissue, we used BPH
samples, against which primary PC samples were compared to

identify early cancerous events. To identify events related to
cancer progression and castration resistance, CRPC samples were
compared to PC samples. We identified 728 proteins in PC vs
BPH and 382 proteins in CRPC vs PC to be differentially
expressed (Wilcoxon rank sum test with Benjamini & Hochberg
adjustment p-value < 0.05 and median ratio (fold change) >1.5)
between the comparison groups (Fig. 1b). While the overall
protein classes of the differentially expressed proteins and their
distribution to groups of molecular function, cellular component,
and biological process were similar between PC vs BPH and
CRPC vs PC comparisons (assessed by Panther analysis; data not
shown), only a subset (n= 153) of the differentially expressed
proteins were common between the comparison groups (Fig. 1b).
The expression profiles of the differentially expressed proteins
clearly distinguished between the patient sample groups, as
shown in Fig. 1c (PC compared to BPH) and Fig. 1d (CRPC
compared to PC). These results show that the proteomic profile of
prostate cancer is significantly altered during the course of the
disease.

Correlations of copy number and methylation with pro-
teomics. We have previously performed whole genome sequen-
cing for copy number analysis, DNA methylation sequencing, and
whole transcriptome sequencing to majority of the samples used
in the proteomic analysis described here (Supplementary Table 3)
7,22. We compared the correlation between gene copy number,
and mRNA or protein expression levels between the common
samples. While at the transcriptome level, the mRNA expression
and copy number have an increased overall correlation in the
CRPC samples compared to PC samples (Fig. 2a, Supplementary
Fig. 2a), a similar global correlation change with gene copy
number is not present at the proteomic level. Next, we compared
the correlation between DNA methylation at differentially
methylated regions (DMRs), and mRNA or protein expression
levels in the same samples. Similarly as with the copy number
data, the increased negative correlation between DNA methyla-
tion and mRNA expression at a global level in the CRPC samples
compared to PC samples is not detected at the level of the pro-
teome (Fig. 2b, Supplementary Fig. 2b). These results suggest that,
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Fig. 2 Global expression changes associated with gene copy number and DNA methylation are visible at the transcriptomic but not at proteomic level. a
Correlation distributions of mRNA and protein expression with gene copy number. Lines represent effects in all analyzed genes in all samples, and show
that gene dosage has higher positive correlation with mRNA expression than protein expression in prostate cancer on a global scale. Symbols on the
bottom of the graph represent individual samples, and show how most of the CRPC samples have a higher positive correlation compared to PC samples at
the mRNA level, as at the protein level no such difference between the disease groups is observed. b Correlation distributions of mRNA and protein
expression with DNA methylation. Lines represent effects in all analyzed genes in all samples, and show that DNA methylation has higher negative
correlation with mRNA expression than protein expression in prostate cancer on a global scale. Symbols on the bottom of the graph represent individual
samples, and show how most of the CRPC samples have a decreased correlation compared to PC samples at the mRNA level, as at the protein level no
such difference between the disease groups is observed
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on a global level, the genomic and epigenomic events that
influence mRNA levels are not directly translated to protein
expression in prostate cancer.

The effect of altered methylation in prostate cancer on selected
genes is, on the other hand, evident also at the proteomics data.
There were 140 genes, which were differentially expressed either
at mRNA or protein level, with a DMR close by (<10 kb). Within
this group, there were several examples of methylation correlating
with, and thus likely affecting, mRNA and protein expression. For
example, the previously described increased DMR methylation in
prostate cancer on genes ALDH1A2, GSTP1, GPX3, and CYB5R2
correlate with decreased expression of their mRNA and protein
according to our data (Supplementary Fig. 3). We further

identified increased promoter DMR methylation in prostate
cancer correlating with decreased expression of mRNA and
protein expression also on FBXO2, TGFB1I1, and TNS1
(Supplementary Fig. 4). Increased gene body methylation in
prostate cancer correlating with decreased expression of mRNA
and protein expression was identified on GNAO1, LGALS1, TNS1,
and PPAP2B (Supplementary Fig. 5). Decreased methylation
significantly correlating with increased expression was identified
for ENO1, SOAT1, RPS2, and TACSTD2 (Supplementary Fig. 6).
Altered DMR methylation found in prostate cancer samples
identifies also genes that are less likely to affect directly the
outcome of the cancer cells. This is due to either their expression
primarily in stromal cells (e.g., CSRP1, CA3) or the fact that,
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despite mRNA expression being affected, the expression level of
the protein is not being affected by the differential methylation of
the gene (e.g., CLU, CNTN1) (Supplementary Fig. 7). Interest-
ingly, we also identified genes whose differentially increased
methylation significantly correlated with increased expression in
mRNA and/or protein level (GMDS, MCCC2, MIA3, and PYCR1)
(Supplementary Fig. 8).

Impact of mutations on protein expression. We identified
amino acid altering mutations in expressed genes from the RNA-
sequencing data of the samples used in this study, and validated

these from the DNA using targeted sequencing (Supplementary
Table 4). For all somatic and germline variants, we evaluated the
impact of the variant to mRNA and protein expression as
described earlier14. While somatic mutations had a statistically
significant impact to mRNA levels in relation to germline variants
(Fisher’s exact test, p-value= 0.0055, Supplementary Fig. 9), we
observed no impact on protein expression levels between somatic
and germline mutations or in relation to null distribution esti-
mated from unmutated genes (Supplementary Fig. 9).

To screen for proteins with potential involvement in mutation
accrual during prostate cancer development and progression, we
assessed correlations of protein expression in relation to mutation
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burden of the samples, including the somatic point mutations,
copy number alterations, and genomic rearrangements. The two
proteins, expression of which correlated best with point mutation
burden, were mitochondrial antioxidant regulator PRDX3
(peroxiredoxin 3) and CAD (carbamoyl-phosphate synthetase
2) functioning in de novo synthesis of pyrimidine nucleotides
(Supplementary Table 5). For copy number alterations and
genomic rearrangements, the best correlating proteins had
functions mostly in mitochondria and cytoskeleton. Notably,
the strongest negative correlations with the number of rearrange-
ments were with expression of two Talin proteins (TLN2 and
TLN1)(Supplementary Table 5).

Comparison of expression profiles at RNA and protein levels.
The expression levels of most of the proteins identified in our
dataset were positively correlated with the expression level of
their mRNA, as expected (Fig. 3a). However, when comparing the
sample groups, we found that in CRPC, the correlation between
individual mRNA-protein pairs was lower in general than in BPH
or PC samples (Fig. 3b). We next tested whether similar genes are
identified as differentially expressed based on both mRNA and
protein expression data. In both PC vs BPH and CRPC vs PC
comparisons, only a fraction of the differentially expressed genes
were common between the identifications based on tran-
scriptomic and proteomic data, the difference being larger in
CRPC vs PC comparison (Fig. 3c). Of the commonly identified
genes, 97 and 95% of the differential expressions detected were
oriented to the same direction (up or downregulated) in both PC
vs BPH and CRPC vs PC comparisons based on mRNA and
protein expression data, respectively. According to these results,
proteomic and transcriptional data help identify largely different
events during prostate cancer development and progression.

Next, we integrated small RNA sequencing data for PC and
CRPC samples common between the proteomics and mRNA
expression data. MicroRNAs regulate gene expression by binding
to mRNA molecules and preventing translation, which leads to
decreased target protein expression. miRNA binding to the target
can induce degradation of the mRNA, however, also stabilization
of the target mRNA has been reported23. To study how much of
the observed gene expression in prostate cancer is potentially
connected to regulation by miRNAs, we studied the pool of
differentially expressed genes and their correlating miRNAs. As
one miRNA can have several target mRNAs, and one mRNA can
be targeted by several miRNAs, we considered individual
miRNA-target pairs based on both transcriptome and proteome
data, and the predicted or verified miRNA target annotations.
Negative correlations between miRNA and differentially
expressed targeted mRNAs in CRPC vs PC samples revealed 30
miRNAs and 205 individual miRNA-target pairs (Supplementary

Table 6). Of these, 9 miRNAs were also differentially expressed
(Supplementary Table 6). For 34 of the miRNA-target pairs,
negative correlation was also found between miRNA and protein
expression of the target, indicating a functional impact of miRNA
regulation for these particular targets (Supplementary Table 6).
To look for the miRNA targets for which the miRNA does not
induce mRNA degradation, but effect primarily through inhibi-
tion of translation, we searched for negative correlations between
miRNA and differentially expressed targeted proteins in the
proteome of CRPC vs PC samples. This analysis identified
additional 49 miRNAs and 268 individual miRNA-target pairs
(Supplementary Table 7). Of these, 8 miRNAs were also
differentially expressed (Supplementary Table 7). This pool of
miRNA-target pairs represents a resource of novel associations in
prostate cancer that have not been visible through previous
transcriptome analyses.

To understand the capacity that miRNAs have in regulating
prostate cancer progression, we assessed the number of
differentially expressed miRNAs and the fraction of the proteome
they are collectively able to regulate. There were 95 miRNAs that
were differentially expressed between CRPC and PC samples.
Assuming negative correlation between a miRNA and its
database-predicted or verified target either at the mRNA or
protein expression level, the differentially expressed miRNAs in
our dataset had the potential to target 16% of the genes in the
study. There were 474 and 482 genes according to mRNA and
protein expression, respectively, targeted by and negatively
correlating with at least one regulating miRNA (Fig. 3d,
Supplementary Data 3-4). Of these, only 122 genes were
commonly identified (Supplementary Table 8). To look for the
miRNA targets which most likely affect prostate cancer progres-
sion, we assessed the fraction of the miRNA-regulated genes that
were differentially expressed. Of the above miRNA-regulated
targets identified based on mRNA expression, 24% (n= 115)
were differentially expressed between CRPC and PC samples at
the mRNA level (Supplementary Fig. 10a, Supplementary
Table 9). Similarly, of the regulatory targets identified based on
the proteomics data, 45% (n= 218) were differentially expressed
at the protein level (Supplementary Fig. 10b, Supplementary
Table 10). There were 24 genes common between these groups
(21% or 11% of the genes identified based on mRNA and protein
expression, respectively). A genomic map of the differentially
expressed miRNAs and their differentially expressed targets in
CRPC vs PC samples based on transcriptomics and proteomics is
shown in Fig. 3e. Collectively, these data indicate that by studying
the miRNA-target correlations at the protein expression level we
were able to identify a significant number of potential regulatory
events, which were not identified based on mRNA expression
data of clinical prostate cancer samples.

Fig. 4 Proteomic analysis identifies novel pathways as regulated in PC and CRPC. a Venn diagram showing numbers of differentially regulated pathways
according to Ingenuity Pathway Analysis in PC vs BPH and CRPC vs PC comparisons. Despite partial overlap, the different disease states have a significant
number of pathways specifically regulated. b Differentially regulated pathways in a according to pathway types. Metabolism is the largest group in both
comparisons, with roughly a similar number of pathways differentially regulated. Numbers of most of the other pathway types that are differentially
regulated between the disease states vary. c–e Examples of signaling pathways found to be differentially regulated according to proteomics (protein) or
transcriptomics (mRNA) data in PC vs BPH and CRPC vs PC comparisons. c Examples of signaling pathways groups identified as regulated according to
proteomic data. Especially translation activating, growth promoting pathways are identified as regulated solely based on proteomic data. RXR-related
pathways are identified better by proteomics than transcriptomics to be regulated in PC. Pathways related to cytoskeleton, migration, and invasion, as well
as GTPase signaling pathways are identified to be regulated in PC solely by proteomics, although in CRPC they are better identified as regulated by
transcriptomics. d Metabolic pathways differentially identified as regulated based on proteomic and transcriptomic data include pathways identified as
regulated in both PC and CRPC solely based on proteomics (TCA cycle, mitochondrial dysfunction, ketogenesis, acetyl-CoA biosynthesis), and pathways
that are equally identified by proteomics and transcriptomics, but are specific for PC (fatty acid oxidation, glycolysis) or CRPC (glycogen degradation,
oxidative ethanol degradation). e While DNA repair pathways regulated in PC and CRPC were identified based on proteomics only, the regulated cell cycle
pathways were altered in CRPC and identified based on either proteomic or transcriptomic data. The color key below panel c applies to panels c, d, and e
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To validate our analysis for miRNA targets detectable both at
the mRNA or the protein level, we transfected PC-3 prostate
cancer cells with pre-miRNA constructs and assessed the mRNA
and protein levels of predicted targets. We selected two
representative miRNAs that were differentially expressed to
opposite directions during prostate cancer progression, namely
miR-22 as downregulated and miR-493 as upregulated in CRPC
compared to PC, and verified their successful transfection by
TaqMan RT-qPCR (Supplementary Fig. 11a). As positive controls
for miRNA targeting at the mRNA level, we performed RT-pPCR
on two predicted targets of miR-493 that were identified as
negatively correlated based on our analysis at the target transcript
level (Supplementary Data 3). Supplementary Fig. 11b shows that,
as expected, the mRNA levels of ENDOD1 and GOLM1 are
significantly decreased by miR-493 expression. Further, the
negatively correlating miRNA-target pairs identified only in the
proteomic analysis show decreased protein expression in MS/MS
quantification, but no decrease in mRNA levels in RT-qPCR
assay, as shown for miRNA-target pairs miR-22—KHRSP1 and
miR-493—DNML1 (Supplementary Fig. 11c and d, respectively).
These results confirm that our miRNA-target analyses based on
the proteomics data have identified miRNA targets that are not
identified at the mRNA level.

Proteomic analysis reveals novel regulated pathways. To test
whether proteomics reveal pathway alterations in prostate cancer
that have not previously been found by interrogation of mRNA
expression changes, we next performed pathway analysis com-
parison between mRNA and protein expression data from the
same samples. Supplementary Fig. 12a shows that roughly similar
numbers of pathways were found significantly regulated based on
proteomics and RNA expression data when comparing PC to
BPH, and slightly more based on proteomics in CRPC to PC
comparison. However, only a minority (16–26%) of the pathways
found in each comparison category were common between RNA
and proteomics data. These results show that proteomic data is
able to reveal pathway regulations not visible at the RNA
expression level, especially when comparing CRPC to PC.

We further analyzed which signaling pathways were deregu-
lated during prostate cancer development and progression at the
proteomic level. Comparing PC samples to BPH, 99 pathways
were found regulated according to Ingenuity Pathway Analysis,
while 90 pathways were regulated in CRPC vs PC (Fig. 4a,
Supplementary Table 11). Fifty pathways were common between
these comparisons. The pathway categories were similar in both
comparisons, with metabolic pathways being the most prominent
(Fig. 4b). In PC vs BPH, cytoskeleton, attachment, and motility-

related pathways were the second largest group, while in CRPC vs
PC it was the signaling pathways. Exclusively in PC vs BPH, there
were protein degradation pathways found significantly regulated,
while in CRPC vs PC, certain cell cycle pathways were
significantly regulated. The pathways common between the PC
vs BPH and CRPC vs PC comparisons (Supplementary Table 11)
included mostly metabolic pathways, as well as cytoskeleton,
attachment and motility-related pathways (62% of the common
pathways). It is noteworthy that all significantly regulated DNA
metabolism and repair pathways, and most of the vesicle
transport pathways, were common between the comparison
groups. In contrast, only a few of the regulated signaling pathways
were common between the comparison groups, all of which
represented Rho GTPase signaling pathways (Supplementary
Table 11).

In PC vs BPH, the top significantly regulated pathways
included EIF2, eIF4 and p70S6K signaling, as well as FXR/RXR
and LXR/RXR activation (Supplementary Table 11, Fig. 4c).
While the former pathways promote growth- and survival
through alterations in levels of several translation initiation
factors and ribosomal proteins, the latter signal to metabolic
pathways regulated by farnesoid X receptor (FXR), liver X
receptor (LXR), and retinoid X receptor (RXR). When comparing
CRPC to PC samples, the most significantly altered pathways
during progression of prostate cancer include ILK signaling and
glucose metabolism-related pathways (Fig. 4c, d, Supplementary
Table 11).

Next, we wanted to further understand the differences in
pathway regulation at mRNA and protein levels. Despite being
largely different pathways, the biological functions of the
pathways most often found by either RNA expression or
proteomics were similar, with metabolic, signaling, and cytoske-
leton and cell movement-related pathways being the most
common (Fig. 4c, d, Supplementary Fig. 12b, Supplementary
Fig. 13a,b). Examples of differentially identified signaling path-
ways are shown in Fig. 4c. Most prominently, the translation-
activating and growth-promoting EIF, p70S6, and mTOR
signaling, and cytoskeleton-related signaling in PC vs BPH were
found solely based on proteomics data. RXR-related signaling in
PC vs BPH, as well as several cytoskeleton-related signaling
pathways in CRPC vs PC, were found by both transcriptomics
and proteomics similarly. Interestingly, GTPase signaling was
significantly regulated in PC vs BPH by proteomics and in CRPC
vs PC by transcriptomics.

The group of metabolic pathways that was regulated in both
PC vs BPH and CRPC vs PC comparisons was extensive
(Supplementary Fig. 12b). Despite the relatively low overlap in
individual pathways between the comparisons (between disease
groups, and between proteomic and transcriptomic data), all the
analyses identified pathways from the major groups of energy,
amino acid, and lipid metabolism (Supplementary Table 11;
examples shown in Fig. 4d, Supplementary Fig. 13b). It is
noteworthy that the mitochondria-related metabolic pathways
and ketogenesis were identified as differentially regulated only
by proteomics, while e.g., glycolytic and glycogen degradation-
related pathways were identified by both transcriptomics and
proteomics (Fig. 4d). One of the most prominent group of
metabolic pathways in prostate cancer were amino acid
metabolic pathways (Supplementary Fig. 13b). Interestingly,
while different cell cycle regulatory pathways were found
regulated by transcriptomic and proteomic data, DNA repair
pathways were found solely by proteomics analysis (Fig. 4e).
Other interesting groups of differentially identified pathways
based on RNA and protein expression were vesicular traffic-
related and protein degradation pathways (Supplementary
Fig. 13c,d).

Table 1 TCA cycle proteins with altered expression levels in
prostate cancer

Symbol Entrez gene name PC vs
BPH

CRPC vs
PC

ACO2 aconitase 2 3.141 0.472
CS citrate synthase 1.705 n.s.
FH fumarate hydratase 1.598 n.s.
IDH3A isocitrate dehydrogenase 3 (NAD

(+)) alpha
n.s. 0.653

MDH2 malate dehydrogenase 2 2.167 1.912
OGDH oxoglutarate dehydrogenase 1.653 0.608
SUCLA2 succinate-CoA ligase ADP-forming

beta subunit
1.909 n.s.

SUCLG1 succinate-CoA ligase alpha subunit 2.091 0.469

Fold changes in protein expression are shown. n.s., not significantly altered
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Changes in TCA during prostate cancer evolution. Based on
our analysis, metabolic changes are prominent during both
development and progression of prostate cancer. One of the most
interesting pathways identified by our proteomic data was the
tricarboxylic acid cycle (TCA; also referred to as the citric acid
cycle, or the Krebs cycle), which was altered in both PC vs BPH
and CRPC vs PC comparisons. This pathway was not found

regulated by RNA expression data, suggesting changes taking
place primarily at the protein level. Furthermore, although
alterations in certain enzyme activities in TCA have previously
been shown to occur during prostate cancer development24, our
proteomics results indicated a previously undescribed, two-step
modulation of the TCA cycle. The TCA pathway proteins that
were considered regulated by the pathway analysis were mostly
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altered to opposite directions in PC vs BPH and CRPC vs PC
comparisons: upregulated in PC vs BPH, and downregulated in
CRPC vs PC (Table 1, Fig. 5a). An exception was malate dehy-
drogenase 2 (MDH2), levels of which continued to increase in
CRPC (Table 1, Fig. 5a). Comparison of protein and RNA
expression of TCA genes8,23 in all three groups of samples
revealed that the TCA proteins are divided into three classes: (1)
proteins whose mRNA and protein expression go hand in hand
indicating primary regulation by gene expression (CS, FH,
IDH3A, IDH2, and SUCLG2), (2) proteins, whose protein levels
are not changed (IDH3B, IDH3G), and (3) proteins, that exhibit
regulation at the protein level not correlating with mRNA
(ACO2, MDH2, OGDH, SUCLA2, and SUCLG1) (Supplemen-
tary Fig. 14). From the latter group of proteins, ACO2, OGDH,
SUCLA2, and SUCLG1 were all upregulated at the protein level,
but not at the mRNA level, in PC vs BPH, while being down-
regulated in CRPC vs PC either at the mRNA or protein level.
Increase in MDH2 protein expression in PC vs BPH did correlate
with an increase in mRNA levels, but the increase in CRPC vs PC
did not, suggesting posttranslational regulation (Supplementary
Fig. 14).

To study more closely the events identified in the TCA cycle,
and to validate the results of the proteomics data, we selected two
TCA proteins showing significant but different alterations at their
protein expression between the prostate cancer sample groups to
study further. As a representative of the most common alteration
pattern we chose aconitase 2 (ACO2) which showed statistically
highly significant (p < 0.001, Mann–Whitney test) upregulation of
the protein in PC vs BPH, as well as statistically highly significant
(p < 0.001, Mann–Whitney test) downregulation in CRPC vs PC
(Fig. 5b). As a second protein we chose MDH2 exhibiting the
deviant behavior amongst the TCA proteins, as it was upregulated
statistically significantly both in PC vs BPH (p < 0.001;
Mann–Whitney test) and further upregulated in CRPC vs PC
(p < 0.05; Mann–Whitney test) (Fig. 5b). We performed western
blotting on these proteins with representative samples of BPH,
PC, and CRPC used in the proteomic analysis, and found similar
changes than by mass spectrometry (Fig. 5c, Supplementary
Fig. 15 and 16), validating the mass spectrometry detection and
analysis results.

We performed further validation on the differential regulation
of these proteins during prostate cancer progression by
immunohistochemical stainings on larger sample sets of clinical
PC and CRPC. Grading of the immunohistochemical staining
intensity (example staining intensities of grades 0–3 displayed in
Supplementary Fig. 17) showed that relative percentage of
samples with no or low staining intensities (0–1) of ACO2
increased in CRPC vs PC (Fig. 5d), indicating that the relative
levels of ACO2 decreased in CRPC. On the other hand, the
relative percentage of samples with higher staining intensities
(2–3) of MDH2 increased in CRPC vs PC (Fig. 5d), indicating
that the relative levels of MDH2 increased in CRPC. These results

confirm the mass spectrometry results and show that the TCA
cycle proteins ACO2 and MDH2 are differentially regulated at the
protein level during prostate cancer progression.

We further assessed potential mechanisms that could explain
the distinct regulation of MDH2. We found that two miRNAs
predicted to target MDH2, namely miR-22 and miR-205, were
identified as differentially expressed in our analysis and were
negatively correlating with MDH2 protein (Supplementary
Data 4) but not mRNA (Supplementary Data 3) levels in the
large scale datasets. We transfected PC-3 prostate cancer cells
with these miRNAs, and verified the transfection efficiency with
TaqMan RT-qPCR analysis (Supplementary Fig. 18a). We
detected no significant alterations at MDH2 mRNA levels in
RT-qPCR analysis upon elevated expression of the miRNAs
(Supplementary Fig. 18b). In contrast, luciferase assay showed
statistically significant decrease in reporter production from a
MDH2 3′-UTR construct by both miR-22 and miR-205 over-
expression (Supplementary Fig. 18c), indicating that these
miRNAs are able to directly target MDH2 mRNA. Furthermore,
MS/MS quantification showed a substantial decrease in MDH2
protein levels by both miR-22 and miR-205 expression (Supple-
mentary Fig. 18c). These results validated the predictions of miR-
22 and miR-205 to directly target MDH2, and identified these
miRNAs as prostate cancer-relevant, differentially expressed
regulators of the TCA.

Discussion
We have provided the first extensive proteomic view of prostate
cancer development and progression. With over 3000 individual
proteins quantified in each of the BPH, PC and CRPC samples
analyzed, we described the protein level alterations occurring in
clinical prostate cancer, and found several previously undescribed
biological events with important implications and potential for
future studies. In addition, we provided novel views on the
relationship of proteomic, genomic, and transcriptomic changes
occurring during castration resistance. The comprehensive view
obtained by our integrative analysis underlines the importance of
protein level dissection of the molecular mechanisms supporting
cancer growth and progression.

Our results showed that neither the altered gene dosages, nor
the global methylation changes were translated to the level of the
proteome to the same extent as they influence the global RNA
expression in CRPC. This suggests that, in the progressed stage, a
large proportion of changes in gene copy number and differential
DMR methylation are side products of the catastrophic state of
cancer cell regulatory systems which are untranslated and thus,
subsequently, left without a functional effect at the protein level.
Yet, our data confirmed several previously identified regulatory
DNA methylation events with associated expression changes
occurring in prostate cancer. We also identified several previously

Fig. 5 TCA cycle is differentially regulated during prostate cancer progression. a A schematic view of the TCA cycle protein expression changes in PC vs
BPH and CRPC vs PC comparisons according to the Ingenuity Pathway Analysis. Differential expression of TCA enzymes (diamonds) are highlighted in
green (downregulation) and red (upregulation). As mostly the same enzymes are involved in both PC and CRPC, the primary mode of expression change is
upregulation in PC and downregulation in CRPC. b Examples of a typical (ACO2) and a unique (MDH2) TCA protein expression patterns as identified by
mass spectrometry proteomics. ACO2 is upregulated in PC compared to BPH, and gets downregulated in CRPC compared to PC. MDH2 protein expression
levels increase in PC compared to BPH, and continue to increase in CRPC. Boxplots show interquartiles with mean values, whiskers represent minimum and
maximum values. ***p-value < 0.001 (Mann–Whitney test). c ACO2 and MDH2 protein expression patterns verified in a subset of BPH, PC, and CRPC
samples by western blotting. ACO2 and MDH2 protein expression according to the proteomic mass spectrometry analysis (upper panel bar graph) and in
corresponding samples according to western blotting (WB; lower panels). Pan-actin is used as a loading control. d Change in ACO2 and MDH2 protein
expression patterns during progression of prostate cancer verified by immunohistochemistry. Immunohistochemical analysis in clinical tumor samples of
PC and CRPC show statistically significantly decreased ACO2 and increased MDH2 staining intensity in CRPC compared to PC and (Chi squared test; 0=
no staining, 1=weak staining, 2= intermediate staining, 3= strong staining)
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undescribed protein expression alterations in PC and CRPC
associated with differential methylation of DMRs.

We showed that the proteomic profile of prostate cancer is
significantly altered during the course of the disease. We identi-
fied differentially expressed proteins, potential miRNA regulatory
effects, and significantly altered pathway events. The key notion is
that these have not been identified through transcriptomic ana-
lyses. This supports the view that not all proteins apply to changes
at the mRNA level, and underlines the importance of mechanistic
studies at the protein level.

Especially intriguing is the group of predicted miRNA-target
pairs that we found to have negative correlations between miRNA
expression and target protein expression without alterations
detected at the target mRNA level. These target mRNAs may be
bound by the miRNAs without induced degradation of the target.
For each miRNA-target pair, the targeting and relevance for
prostate cancer needs to be verified by follow-up experiments.
Here, we verified several targets for three example miRNAs that
are differentially expressed in CRPC vs PC, and thus may play
regulatory roles during prostate cancer progression. Our pro-
teomic pathway analysis identified especially translation-related
growth pathways as significantly altered in primary PC compared
to BPH samples. In addition, changes in protein degradation
pathways were better detected by proteomics than tran-
scriptomics. Thus, protein homeostasis in prostate cancer seems
to be regulated primarily at the protein level. In CRPC, the
proteome-specific pathway alterations were concentrated on
mitochondria-related metabolism and DNA repair. While the
glycolytic and long-term energy storage utilization pathways were
significantly regulated in prostate cancer at both proteomic and
transcriptomic levels, the changes in the core TCA and mito-
chondrial pathways are evident solely based on the proteomic
data. This indicates that posttranscriptional events are taking
place in the mitochondria during castration resistance, in order
for the cancer cells to ensure survival and propagation under the
altered conditions.

As a key finding, we detected two metabolic shifts involving the
TCA during prostate cancer development and progression. The
changes in TCA enzyme activities during prostate cancer devel-
opment have been studied earlier, but the second shift occurring
during progression to CRPC is previously undescribed. In pri-
mary prostate cancer, it is well-established that the normally high
tissue citrate levels decrease24,25. Costello and Franklin24 sug-
gested that normal citrate-producing prostate epithelial cells
become citrate-oxidizing when they turn malignant. Under this
bioenergetic hypothesis, mitochondrial aconitase ACO2 is a key
enzyme for the bioenergy transformation26. Subsequently,
Juang27 showed that downregulation of mitochondrial aconitase
in cultured prostate cancer cells decreases cell proliferation rate.
Mitochondrial aconitase gene expression was earlier shown to be
regulated by testosterone in prostate epithelial cells in vitro28,
suggesting that in high AR activity tumors ACO2 gene expression
could be upregulated. In our gene expression data, ACO2 mRNA
levels increase in PC compared to the levels in BPH. However, in
CRPC compared to PC, reflecting events during formation of
castration resistance and involving increased AR expression,
ACO2 mRNA levels are not increased further, and the protein
levels decrease. Thus, while our results support previous evidence
of upregulation of mitochondrial aconitase levels during devel-
opment of prostate cancer, progression to CRPC seems to involve
primarily posttranslational regulation of the enzyme, reflecting
the differences between the first and the second metabolic shift
during the course of prostate cancer evolution.

Most of the TCA enzymes are upregulated during the first
metabolic shift in prostate cancer, and then either stay upregulated
(CS, FH) or are downregulated (e.g. ACO2, OGDH, and SUCLG1)

during the second shift. The exception is MDH2, protein levels of
which continue to increase in the second shift during prostate
cancer progression. As a mechanism explaining the continued
increase in MDH2 protein levels in CRPC, we identified decreased
expression of miR-22 and miR-205, miRNAs which were both
confirmed to decrease MDH2 protein levels without decreasing the
MDH2 mRNA expression. MDH2 is mitochondrial malate dehy-
drogenase, which is an enzyme that catalyzes the NAD/NADH-
dependent, reversible oxidation of malate to oxaloacetate. It has
been reported previously that patients with MDH2 overexpression
have a significantly shorter period of relapse-free survival after
undergoing neoadjuvant combination chemotherapy followed by
surgery29. Further, stable knockdown of MDH2 via shRNA in
prostate cancer cell lines decreased cell proliferation and increased
docetaxel sensitivity29. Together with our data, these results col-
lectively suggest MDH2 inhibition as a mechanism to target cas-
tration resistant tumors. MDH2 druggability has been studied in
the context of doxorubicin-induced cardiomyopathy, where the
non-specific MDH2 inhibitors mebendazole, thyroxine, and iodine
have been found promising30. Thus, development of MDH2-
specific chemical inhibitors could be of great benefit against pro-
gressed prostate cancer, as well as for prevention of cardiotoxicity
during chemotherapy.

In conclusion, we identified here several key aspects of prostate
cancer biology with the most comprehensive proteomics on pri-
mary and progressed prostate cancer samples so far. In addition
to increasing our understanding of prostate cancer biology, our
study identified several important aspects of prostate cancer sig-
naling and metabolism for future studies.

Methods
Samples. Fresh-frozen tissue specimens from 10 BPH, 17 untreated PC, and 11
CRPC samples were acquired from Tampere University Hospital (Tampere, Fin-
land). PC samples (Supplementary Table 1) were obtained by radical prosta-
tectomy. Mean age at diagnosis was 62.0 years (range: 47.4–71.8) and mean PSA at
diagnosis was 9.8 ng/ml (range: 3.5–19.8). Locally recurrent CRPC samples
(Supplementary Table 2) were obtained by transurethral resection of the prostate.
Samples were snap-frozen and stored in liquid nitrogen. Histological evaluation
and Gleason grading were performed by a pathologist based on hematoxylin/eosin-
stained slides. All samples contained a minimum of 70% cancerous or hyperplastic
cells. The use of clinical material was approved by the ethical committee of the
Tampere University Hospital and the National Authority for Medicolegal Affairs.
Written informed consent was obtained from the subjects.

Chemicals and materials. Acetonitrile (ACN), formic acid (FA), water (UHPLC-
MS grade), triethyl ammonium bicarbonate buffer (TEAB), sodium dodecyl sulfate
(SDS), iodoacetamide (IAA), trifluoro acetic acid (TFA), ammonium bicarbonate
(ABC), tris-(2-carboxyethyl)phosphine (TCEP), urea and pellet pestles were all
purchased from Sigma Aldrich (St. Louis, MO, USA). RIPA lysis buffer, protease
inhibitor cocktail (Halt™) and sample clean up tips (C18) were from Thermo Fisher
Scientific (San Jose, CA, USA). Bio-Rad DC™ protein assay kit and bovine serum
albumin standard were purchased from Bio-Rad (Hercules, CA, USA) and 30 kDa
MWCO centrifugal devices from PALL (Port Washington, NY, USA). TPCK-
treated trypsin was from AB Sciex (Framingham, MA, USA). HRM Calibration Kit
was purchased from Biognosys AG (Zurich, Switzerland).

Protein extraction from tissue samples and enzymatic digestion. Five 5 µm
slices were cut from fresh-frozen tissue samples. Tissues were homogenized with
polypropylene pellet pestle in ice-cold RIPA lysis buffer containing Halt protease
inhibitor. The disrupted tissues were subjected to sonication for 5 min followed by
a 30 min incubation on ice. After incubation, lysates were centrifuged to remove
any remaining cell debris (16,000 xg, 20 min, +4 °C). Total protein concentration
of the samples was measured with Bio-Rad DC protein assay. Mean amount of
protein recovered from frozen tissues was 91.5 ± 67.3 µg (SD). From 9 to 50 µg of
protein was precipitated with acetone (−20 °C) overnight. The protein amounts
were selected based on our previous testing of suitable injection volume of 5 µg
total protein in 2 µl volume in SWATH. Precipitated proteins were centrifuged,
supernatant was decanted, and samples were allowed to dry for 5 min. Proteins
were dissolved in 0.05 M ABC with 2% SDS and reduced by 0.05 M TCEP. After 60
min of incubation at+ 60 °C, samples were transferred into 30 kDa molecular
weight cut-off centrifugal filters and flushed twice with 8M urea in 0.05 M Tris-
HCl. Cysteine residue blocking was carried out by 0.05M IAA in 0.5 M Tris-HCl at
room temperature in the dark. Samples were repeatedly flushed with 8 M urea and
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0.05M ABC to remove urea prior to digestion with trypsin for 16 h at+ 37 °C at a
trypsin-to-protein ratio of 1:25. Digests were collected by rinsing the centrifugal
devices with 0.1 M TEAB followed by 0.5 M NaCl and dried in a speed vacuum
concentrator. Samples were dissolved in 0.1% TFA and desalted with C18 tips.
Sample clean-up and desalting was performed with Pierce C18 tips according to
manufacturer’s instructions. Samples were dried in speed vacuum concentrator and
stored at −20 °C until reconstituted in loading solution (5% ACN, 0.1% FA) at
equal concentrations. HRM peptide mix was added to each sample before
NanoRPLC-MSTOF SWATH analysis.

NanoRPLC-MSTOF for discovery proteomics. Digested peptides were analyzed
by Nano-RPLC-MSTOF instrumentation using Eksigent 425 NanoLC coupled to
high speed TripleTOF™ 5600+mass spectrometer (Ab Sciex, Concord, Canada). A
capillary RP-LC column (cHiPLC® ChromXP C18-CL, 3 µm particle size, 120 Å,
75 µm i.d × 15 cm, Eksigent Concord, Canada) was used for LC separation of
peptides. Samples were first loaded into trap column (cHiPLC® ChromXP C18-CL,
3 µm particle size, 120 Å, 75 µm i.d × 5 mm) from autosampler and flushed for 10
min at 2 µl/min (2% ACN, 0.1% FA). The flush system was then switched to line
with analytical column and gradient alution. All samples were analyzed with 120
min 6 step gradient using eluent A: 0.1% FA in 1% ACN and eluent B: 0.1% FA in
ACN (eluent B from 5 to 7% over 2 min, 7 to 24% over 55 min, 24 to 40% over 29
min, 40 to 60% over 6 min, 60 to 90% over 2 min and kept at 90% for 15 min, 90 to
5% over 0.1 min and kept at 5% for 13 min) at 300 nl/min.

In order to perform SWATH-MS quantification, we first generated a spectral
identification library with 57 different samples (prostate tissue and cancer cell line
samples). Key parameters for MSTOF mass spectrometer in SWATH ID library
analysis were: ion spray voltage floating (ISVF) 2300 V, curtain gas (CUR) 30,
interface heater temperature (IHT)+125 °C, ion source gas 1 13, declustering
potential (DP) 100 V. All methods were run by Analyst TF 1.5 software (Ab Sciex,
USA). For IDA parameters, 0.25 s MS survey scan in the mass range 350–1250 mz
were followed by 60 MS/MS scans in the mass range of 100–1500 Da (total cycle
time 3.302 s). Switching criteria were set to ions greater than mass to charge ratio
(m/z) 350 and smaller than 1250 (m/z) with charge state 2–5 and an abundance
threshold of more than 120 counts. Former target ions were excluded for 12 s.
Information dependent acquisition (IDA) rolling collision energy (CE) parameters
script was used for automatically controlling CE. SWATH quantification analysis
parameters were the same as for spectral identification library analyses, with the
following exceptions: cycle time 3.332 s and MS parameters set to 15 Da windows
with 1 Da overlap between mass range 350–1250 Da followed by 40 MS/MS scans
in the mass range of 350–1250 Da.

Mass spectrometric data analysis. SWATH library analysis were performed with
Protein pilot software version 4.7 (Ab Sciex, Canada) which was used to analyze
MS/MS data and searched against the UniprotKB/Swiss-prot database for protein
identification. Settings in the Paragon search algorithm in Protein pilot were
configured as follows. Sample type: identification, Cys-alkylation: MMTS, Diges-
tion: Trypsin, Instrument: TripleTOF 5600+ , Search effort: thorough ID. False
discovery rate (FDR) analysis was performed in the Protein pilot and FDR < 1%
was set for protein identification. The data from all the identification runs were
combined as a batch and used for library creation for SWATH relative
quantification.

For quantification we used PeakView® software 2.0 with SWATH-plug in to
assign the correct peaks to correct peptides in the library. Two replicate MS
analyses were done from each sample. iRT peptides (Biognosys, Switzerland) was
used for retention time calibration with PeakView. 1–15 specified peptides per
protein were selected to be used in SWATH quantification. Peptide peak areas were
extracted and filtered to remove all peptides, which do not have a single
measurement with an FDR <1% across all measurements. The SWATH-MS data
exhibited excellent quality and reliability with p-value < 0.05 in 98.6% of replicate
MS analyses (permutation tests, Spearman’s rank correlation) and mean interclass
correlation (ICC) coefficient of 0.98.

Statistical analysis of proteomics data. Data processing included log2-trans-
formation and quantile normalization. The quality of the replicate MS analyses was
analyzed by calculating the intraclass correlation (ICC) and Spearman’s rank
correlation was used to generate p-values in permutation tests (n= 1000 permu-
tations/replicate MS analyses). Further analysis was performed on the mean values
of the replicate MS analyses. Wilcoxon rank sum test was implemented to analyze
the differences between sample types. Benjamini and Hochberg adjustment were
applied to all initial p-values, where applicable, to account for the multiple testing
issues. R software version 3.2.3 (R Core Team. Foundation for Statistical Com-
puting, Vienna, Austria) was used to analyze data. Ingenuity Pathway Analysis
(IPA, QIAGEN Redwood City, USA) was used to conduct pathway analysis and
identify proteins connected to pathways of interest. Protein grouping and classi-
fication was performed by using PANTHER Classification System31.

Analysis of differentially expressed mRNA and protein. Common samples
(Supplementary Table 3) between the proteomic analysis performed here and
previously described mRNA expression (RNA sequencing) data7 were used to

extract common genes (n= 3310) between the protein and mRNA data. mRNAs
and proteins were considered differentially expressed across different comparisons
(BPH vs PC, PC vs CRPC) if absolute median ratio of two conditions was greater
than 1.5 with a p-value < 0.05 (Benjamini–Hochberg adjusted p-value of a non-
parametric Wilcoxon test).

Association between protein expression and gene copy number. The Spear-
man’s rank correlation was calculated for each sample between gene level DNA
copy numbers7 and mRNA expressions, or copy numbers and protein expressions
(Supplementary Table 3). Using the correlation values probability density functions
(PDFs) for each correlation value sets were estimated using kernel density esti-
mation with Gaussian kernels and Scott’s rule for bandwidth determination. The
estimated PDFs were then plotted and supplemented by rug plots of the exact
correlation values. To estimate background distributions, the Spearman’s rank
correlations of each sample with all other samples were calculated between copy
numbers and mRNA expressions or copy numbers and protein expressions. Using
the correlation values PDFs for each correlation value set were estimated as detailed
above.

Association between protein expression and DNA methylation. Based on
MeDIP-sequencing data7 we identified 751 differentially methylated regions
(DMRs) within 10 kb from TSS of 557 unique genes with available expression
values for RNA expression and protein expression (Supplementary Table 3).
Subsequently, the Spearman’s rank correlations were calculated for each sample
between DMR normalized fragment counts and mRNA expressions or DMR
normalized fragment counts and protein expressions. Kernel density estimation
was used for visualization of the correlation values as described above. Background
distributions were calculated in the same manner as explained earlier. Furthermore,
we identified 2773 genes common between mRNA and protein expression datasets
where their absolute distance to a nearby DMR was <250 kb. Of these, 745 genes
were showing absolute correlation >0.3 between their gene expression and nearby
DMRs. 140 out of 745 genes were differentially expressed both at mRNA and
protein level. Finally only 79 of these genes had absolute distance ≤10 kb from 117
DMRs (these were used for scatter plots).

Structural variation analysis. To identify rearrangements whole genome
sequencing reads were aligned against the GRCh37 reference genome using
Bowtie-2.0.0-beta732. An in-house structural variant calling software called
Breakfast (https://github.com/annalam/pypette) was then used to identify paired
end reads where the mates aligned discordantly. A paired alignment was con-
sidered discordant if both mates aligned to the genome but aligned to separate
chromosomes or >100 kb apart. Mates with an alignment quality phred value < 20
were discarded from analysis. Next, individual mates that did not initially align to
the reference genome were split into 25 bp anchors. The 25 bp anchor pairs were
then realigned and searched for discordant alignments using the same criteria as
with paired end reads. The full 90 bp sequences corresponding to discordant
anchor pairs were compared against the reference genome to identify exact
breakpoints and to analyze for sequence homologies. A discordant anchor pair was
discarded if the sequence homology between the read and one of the breakpoint
flanking sequences was above 70% for the nucleotides matching with the dis-
cordant anchor. The exact breakpoint was determined by selecting the breakpoint
associated with the lowest amount of nucleotide mismatches. After identifying
discordant pairs from paired end and split reads, the discordant pairs were reor-
iented so as to always have the pair with the lower chromosome or coordinate first.
Discordant pairs were then clustered using a sliding window approach. A cluster of
discordant pairs was accepted as a putative structural variant if it contained at least
one paired end read and one split read indicating the structural variant. To filter
out false positives, structural variants were also called in BPH samples, and all
genomic regions within 1 kb of a breakpoint identified in a BPH sample were
blacklisted.

Point mutation impact analysis. Somatic and germline point mutations22 in each
sample were used to find their impact on the expression level of the genes har-
boring the mutations as described earlier14. Null distribution was generated by
comparing expression of randomly selected unmutated sample to other unmutated
samples.

Association between protein expression and mutation burden. Number of
somatic point mutations22, rearrangements (as described above), and chromosomal
instability (CIN) in each sample across common samples between protein and
mRNA expression data (Supplementary Table 3) were used to find their association
(Spearman’s rank correlation) with individual genes in the protein dataset. CIN
was calculated as the mean of integer copy numbers assigned to non-overlapping
blocks of size 500 bp spanning across the entire genome.

Association between protein and miRNA expression. miRNA expression data
(small RNA sequencing)7 were used to extract miRNAs with negative correlation
with their targets using the common samples (Supplementary Table 3). Predicted
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targets of miRNAs were downloaded from miRWalk 2.0 database33 using the
following parameter values: Input parameters Promoter 2 kb, 3′ UTR, minimum
seed length 7 and/or p-value 0.05. We considered mRNA to be a target for miRNA
if targeting was predicted by 2/3 of the databases miRanda, PICTAR2, and Tar-
getscan34–36. Differentially expressed miRNAs were defined as having an absolute
median ratio between two conditions >1.5, and the Benjamini-Hochberg adjusted
p-value of a non-parametric Wilcoxon test <0.05. miRNAs were considered
unexpressed if all samples had read count below 8 and they were excluded from
differential expression analysis. Spearman’s rank correlations were calculated
between the miRNA expression and the expression of its predicted targets with a
threshold for negative correlation <=−0.50. For enrichment analysis, hypergeo-
metric test was used to test statistical significance (p-value < 0.05) of the number of
negatively correlating predicted targets of a miRNA. miRNA—target associations
were visualized as circos plot using POMO37.

Transfections of pre-miRNA. PC-3 cells (ATCC, Rockville, MD, USA) were
cultured under the recommended conditions and reverse transfected with 10 nM
non-targeting control (miR-control) or pre-micro-RNA constructs (Applied Bio-
systems/Ambion, Austin, TX, USA) using INTERFERin transfection reagent
(Polyplus Transfection SA, Illkirch, France) according to manufacturer’s instruc-
tions. Cells were incubated for 48 or 72 h before collection for RNA or protein
samples, respectively.

RNA extraction and RT-qPCR. RNA was extracted using TriReagent® (Sigma-
Aldrich) according to manufacturer’s instructions. Quantitative RT-PCR for
miRNAs was performed using TaqMan microRNA Assay (Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s recommendations. RNU6B
was used as a reference gene. Quantitative RT-PCR for mRNAs was performed
using Maxima SYBR Green (Fermentas Inc., Burlington, Ontario, Canada) from
cDNA made using Maxima RT reverse transcriptase (ThermoFischer Scientific
Inc.). TBP was used as a reference gene. qPCR reactions were performed with the
CFX96 q-RT-PCR detection system (Bio-Rad Laboratories Inc., Hercules, CA,
USA).

Luciferase reporter assay. PC-3 cells were reverse transfected with 10 nM non-
targeting control (miR-control) or pre-micro-RNA constructs (Applied Biosys-
tems/Ambion, Austin, TX, U.S.A.), and MDH2–3′-UTR in pEZX-MT05-GLuc-
SEAP luciferase reporter plasmid (GeneCopoeia, Rockville, MD, USA; 10 ng/well)
in 96 well plates using jetPRIME transfection reagent (Polyplus Transfection SA,
Illkirch, France) according to manufacturer’s instructions. Cells were incubated for
24 h before the medium was collected for analysis of secreted Gaussia luciferase
(GLuc) and secreted alkaline phosphatase (SEAP) activities with Secrete-Pair™ Dual
Luminescence Assay Kit (GeneCopoeia) according to manufacturer’s instructions.

MicroLC-MSTRAP for targeted protein validation analysis. Proteins for tar-
geted MS/MS analysis were selected based on their expression in discovery analysis.
Peptides for each protein were selected based on their specificity, intensity (based
on SWATH-MS analysis), amino acid composition, and water solubility in the
tissue samples. All peptides with methionine or modifications or missing cleavage
sites were disqualified. For each selected peptide, an isotopically labeled standard
peptide (AQUA-peptides, Sigma-Aldrich) was used to confirm the identification.
For each protein in the analysis, two peptides for targeted MS analysis were
selected, and each peptide analysis was confirmed using 3 fragment ions. The
peptides, fragment ions, and corresponding isotopical standards for each protein
are represented in Supplementary Table 12.

Cell lysis, protein measurements, and tryptic digestion were performed as
before. TEAB-solution supplemented with 20 fg of each targeted peptide isotope
per 1 µg of total protein in the sample was used to flush the digested peptides of the
membrane. Sample cleanup was performed as before. 1 µg of cleaned samplewas
used for MicroLC-MSTrap analysis. Analysis was performed with Sciex 6500+
MSTrap coupled with Eksigent NanoLC 425 with 1–10 µl/min microLC flow cell.
MicroLC utilized a 42 min 6 step gradient using eluent A: 0.1% FA in MQ and
eluent B: 0.1% FA in ACN (eluent B from 10 to 30% over 22 min, 30–50% over 8
min, 50–80% over 2 min, kept at 80% for 5 min, 80–10% over 0.2 min and kept at
10% for 5 min, at 5 µl/min. MSTrap settings were as follows; Curtain gas: 30, Spray
voltage: 5300, Collision gas: medium, Temperature: 150 °C, Ion source gas 1: 20,
Ion source gas 2: 20, were set the same for all peptides. Collision energy was
specifically set to 40 for OLA1 peptide IPAFLNVVDIAGLVK and to its respective
isotope standard and to 30 for all others. Results were normalized against their
representative isotopically labeled standard peptide and then compared between
samples. Standard deviation for each peptide in the analysis method was calculated
using isotope labeled peptide standards. Relative standard deviation for all the
peptides was under 10%.

Western blotting. LNCaP cells (ATCC) were cultured under the recommended
conditions. Cells and sections of frozen tissue were lysed in Triton-X lysis buffer
containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0,5% Triton x-100, 1 mM
PMSF, 1 mM DTT and 1× complete protease inhibitor cocktail (Roche Inc.,
Mannheim, Germany), after which the lysates were sonicated four times for 30 s at

medium power with Bioruptor equipment (Diagenode Inc., Liège, Belgium), and
cellular debris was removed by centrifugation. Proteins were separated by poly-
acrylamide gel electrophoresis (SDS-PAGE) and transferred to PVDF membrane
(Immobilon-P; Millipore Inc., Billerica, Massachusetts, USA). Primary antibodies
against ACO2 (HPA001097; Sigma-Aldrich, St. Louis, MO, U.S.A.; dilution
1:1000), MDH2 (HPA019714; Sigma-Aldrich; 1:1000), and pan-actin (ACTN05;
NeoMarkers, Portsmouth, NH, USA; 1:1000) were used and detected using anti-
rabbit HRP-conjugated antibody produced in swine (1:5000, DAKO Inc., Den-
mark) or by anti-mouse HRP-conjugated antibody produced in rabbit (1:5000,
DAKO Inc., Denmark) and Western blotting luminol reagent (Santa Cruz Inc.,
Santa Cruz, California, USA) with autoradiography. Original scans including
molecular weight information for the western blots are presented in Supplementary
Fig. 19.

Immunohistochemistry. Formalin-fixed, paraffin-embedded tumor microarrays of
PC and CRPC samples38 were used. Sections were deparaffinized and antigen
retrieval was performed by using Tris-EDTA buffer 0.05% Tween-20 (pH 9) at+
98 °C for 15 min. The staining was performed by Lab Vision Autostainer (Ther-
moFischer Scientific Inc., Waltham, MA, USA). Primary antibodies (as above) and
secondary antibody (N-Histofine® Simple Stain MAX PO; Nichirei, Tokyo, Japan)
were used. ImmPACT DAB (Vector Laboratories, Burlingame, CA, USA) was used
as a chromogen. The sections were counterstained with hematoxylin and mounted
with DPX mounting medium (Sigma-Aldrich). Scoring of staining intensity on
tumor areas was performed on a 0–3 scale (Supplementary Fig. 17), and the dif-
ference in score distributions between PC and CRPC groups was statistically
assessed with Chi squared test.

Data availability. Mass Spectrometry data has been deposited to Peptide Atlas
repository under dataset identifier PASS01126. Deep sequencing data has been
deposited to European Genome-Phenome Archive under accession number
EGAS00001000526.
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