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Norovirus (NoV) is the main cause of acute gastroenteritis worldwide across all age groups. Current NoV
vaccine candidates are based on non-infectious highly immunogenic virus-like particles (VLPs) produced
in cell cultures in vitro. As NoVs infecting human population are highly divergent, it is proposed that the
vaccine should contain at least two different NoV genotypes, potentially affecting the immunogenicity of
each other. We investigated the immunogenicity of NoV GII.4 VLPs administered by intramuscular (IM) or
intradermal (ID) injections to BALB/c mice either alone or co-delivered with genogroup I (GI) and other
genogroup GII VLPs. Serum NoV-specific IgG binding antibody titers and antibody functionality in terms
of avidity and blocking potential were assessed. Furthermore, the specificity and functional avidity of
CD4+ and CD8+ T cell responses were analyzed using synthetic peptides previously identified to contain
NoV VP1 P2 domain-specific H-2d epitopes. The results showed that IM and ID immunization induced
comparable GII.4-specific antibodies and T cell responses. Similar magnitude and functionality of anti-
bodies and interferon-gamma producing T cells were developed using monovalent GII.4 VLPs or different
genotype combinations. For the first time, degranulation assay using multicolor flow cytometry showed
that NoV GII.4-specific CD8+ T cells had cytotoxic T lymphocyte phenotype. To conclude, our results
demonstrate that there is no immunological interference even if up to five different NoV VLP genotypes
were co-administered at the same time. Furthermore, no inhibition of NoV-specific antibody functional-
ity or the magnitude, specificity and affinity of T cell responses was observed in any of the immunized
animals, observations relevant for the development of a multivalent NoV VLP vaccine.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Acute gastroenteritis (GE) caused by noroviruses (NoVs) affects
people of all ages worldwide with severe outcomes especially in
young children and the elderly [1,2]. Highly contagious NoVs are
genetically diverse with continuously emerging new variants that
leads to fast spreading in human population through immune
escape. NoVs are members of the Caliciviridae family with more
than 30 recognized genotypes infecting humans that belong to
genogroups (G) I, II, and IV [3]. The icosahedral viral particle of
NoV, with �38 nm diameter, is composed of 180 copies of major
capsid protein, viral protein 1 (VP1). NoV virus-like particles
(VLPs), formed by spontaneous self-assembly of VP1 in vitro, are
morphologically and antigenically identical to the virus. VLPs has
contributed significantly to the NoV research, as they are success-
fully used for structural and immunogenicity studies, and as
promising NoV vaccine candidates. Due to the high genetic vari-
ability of NoVs and a lack of cross-protective immunity between
GI and GII NoVs, it is believed that a vaccine should contain a min-
imum of one VLP from each genogroup. Our group has recently
proposed a NoV candidate vaccine consisting of GI.3 and GII.4 VLPs
in a combination with rotavirus (RV) VP6, to prevent two major
causes of childhood viral GE worldwide [4,5].

Although cell culture systems for growth of NoV in vitro have
recently been established, a traditional neutralization assay is still
not in use [6,7]. Instead, a subset of NoV-specific antibodies that
block binding of NoV VLPs to their cellular carbohydrate ligands,
histo-blood group antigens (HBGA), are regarded as correlates of
protection from infection [8–11]. The role of NoV-specific T cell
responses in protection from NoV infection [12–16] has not yet
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Table 1
Experimental and control groups of immunized mice. Mice were immunized
intramuscularly (IM) or intradermally (ID) at day 0 and 21 with the indicated dose
and terminated at day 35.

Group Immunogen Dose (mg) Route

I GII.4-1999 VLP 10 IM
II GII.4-1999 VLP 10 ID
III GII.4-1999 VLP 50 IM
IV GII.4-1999 VLP 50 ID
V GII-mix VLPs (GII.4-1999, GII.4 NO, GII.12) 60 (20

each)
IM

VI GII-mix VLPs (GII.4-1999, GII.4 NO, GII.12)+
GI-mix VLPs (GI.1 and GI.3)

60 + 40
(20 each)

IM ID

VII PBS – IM
VIII PBS – ID
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been established and requires further research. Using matrix pep-
tide pools, we have recently identified seven immunodominant H-
2d restricted NoV-specific T cell epitopes, including a highly con-
served universal GII NoV-specific CD8+ epitope (peptide 99-45,
NNYDPTEEIPAPLGTPDF) and GII.4-1999 variant-specific CD4+ T cell
epitope (peptide 99-50, TRAHKATVSTGSVHFTPK) [17].

In the present study we investigated NoV GII.4-specific anti-
body functionality (avidity and blocking activity) and T cell
responses in mice immunized with GII.4-1999 VLPs alone or co-
delivered with different VLPs belonging to GI and GII NoVs, with
the primary focus on mutual inhibition or immunological interfer-
ence. In addition, NoV-specific cytotoxic T lymphocyte (CTL)
responses were investigated for the first time.
PBS, phosphate-buffered saline.

2. Material and methods

2.1. Recombinant proteins and synthetic peptides

Five different NoV capsid VLPs derived from GII.4-1999 (refer-
ence strain accession no: AF080551), GII.4-2009 New Orleans
(NO; reference strain accession no: GU445325), GII.12 (reference
strain accession no:AJ277618), GI.1 (accession no: AY502016.1),
and GI.3 (reference strain accession no: AF414403) VLPs were pro-
duced in baculovirus-insect cell system and purified by sucrose
gradient ultracentrifugation as described in details earlier [4,18].
The purity, identity and morphology of VLPs were determined by
SDS-PAGE, immunoblotting, and electron microscopy using previ-
ously described procedures [19].

Seventy-four synthetic peptides representing the entire 539
amino acid (aa) sequence of GII.4-1999 NoV VP1 were synthesized
by Synpeptide Co., Ltd (Shanghai, China) as 18-mers overlapping
by 11 aa. The purity was >70% as determined by high-pressure liq-
uid chromatography. Each lyophilized peptide was dissolved in
DMSO and further diluted in sterile PBS for use in the assays. In
addition, all individual peptides were pooled (GII.4-99 pool) as
recently described [15]. The GII.4-99 pool was used at a pre-
determined concentration of 2 lg/ml in all assays. Individual
GII.4 peptides, 99-45 (309NNYDPTEEIPAPLGTPDF326) and 99-50
(344TRAHKATVSTGSVHFTPK361), a predicted [17] mouse H-2d 9-
mer epitope (318PAPLGTPDF326, included in the 99-45 sequence),
and two negative control peptides, 10-mer (139TMFPHIIVDV148)
and 17-mer (ovalbumin, OVA 323ISQAVHAAHAEINEAGR339), were
synthetized as described above and used at a final concentration
of 4 lg/ml.
2.2. Immunizations

BALB/c (H-2d) mice were obtained from Envigo RMS BV (for-
merly Harlan Laboratories, Horst, Netherlands) and immunized at
7 weeks of age after a week of acclimatization. Forty mice were
divided into 8 groups (5 mice/group) and mice were immunized
either intramuscularly (IM) at the right caudal thigh muscle or
intradermally (ID) at the base of the tail (Table 1). The dose of
10 mg or 50 lg of GII.4-1999 VLPs was administrated in a 50 ll vol-
ume/dose at week 0 and week 3, a standard procedure used by our
laboratory [4,5]. A group of mice received a mixture of GII VLPs
(GII.4-1999, GII.4 NO and GII.12, 20 mg each) by IM delivery accord-
ing to the same schedule. Additional group of mice received a mix-
ture of GII.4 VLPs (as above) and a mixture of GI VLPs (GI.1 and
GI.3) simultaneously at the different sites. Two negative control
groups of mice received a carrier only (phosphate-buffered saline,
PBS) either IM or ID. No external adjuvants were used. Two weeks
after the second immunization mice were sacrificed and serum and
spleen cells were collected and prepared as previously described
[4,5] for the analysis of NoV-specific antibodies and T cell
responses. Mice welfare was monitored throughout the study
and experiments were performed in accordance with the guideli-
nes of the Finnish National Animal Experiment Board.

2.3. Serum IgG antibody titer and avidity

Serum GII.4-specific IgG antibodies were detected by enzyme-
linked immunosorbent assay (ELISA) as described elsewhere in
detail [4,5]. In brief, twofold diluted serum samples were analyzed
on NoV VLP-coated plates. IgG antibodies were detected with HRP-
conjugated anti-mouse IgG (Sigma Aldrich, Saint Louis, MO) fol-
lowed by o-Phenylenediamine dihydrochloride (OPD)-substrate
(Sigma-Aldrich). The optical density (OD) was measured at 490
nm in a microplate reader (Victor2 1420, Perkin Elmer, Waltham,
MA). The mean end-point titers of the individual serum were
determined as the reciprocal of the highest serum dilution giving
an OD above the set cut-off value (mean OD of negative control
mice serum wells + 3 � SD) and at least 0.100 OD.

Avidity assay was conducted as the IgG ELISA assay described
above using 1:200 serum dilution, but additional two 8 M urea
incubation steps were included to remove low avidity antibodies
according to previously published method [20]. Avidity index
was calculated as (OD with urea/OD without urea) � 100%.

2.4. Blocking assay

Blocking assay was used to detect antibodies preventing NoV
GII.4-1999 VLP binding to the synthetic HBGAs as previously
described in detail [11]. Briefly, synthetic biotinylated Led (H type
1)-PAA-Biotin (Glycotech, Gaithersburg, MD) was coated on
NeutrAvidin plates (Pierce, Rockford, IL). After 1 h pre-incubation
at 37 �C, a mixture of NoV VLPs (0.4 mg/ml) and serially twofold
diluted serum samples were plated and incubated for 2 h at 4 �C.
The bound VLPs were detected using NoV VLP type-specific human
serum, followed by goat anti-human IgG (H + L)-HRP (Invitrogen,
Carlsbad, CA) and OPD-substrate (Sigma-Aldrich). The OD was
measured as described above. Maximum binding was determined
by VLP lacking mouse sera. The results are expressed as the mean
blocking index (%) calculated as 100% � [(OD wells with VLP � se
rum mix/OD maximum binding OD) � 100%]. Blocking titer 50
(BT50) was expressed as the reciprocal of the highest serum dilu-
tion blocking 50% of the maximum VLP binding.

2.5. IFN-c ELISPOT assay

NoV-specific T cell responses were determined by the ability of
short synthetic peptides to induce ex vivo IFN-c production by
splenocytes of immunized mice using interferon-gamma (IFN-c)
enzyme-linked immunospot (ELISPOT) assay [5]. Liquid nitrogen
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frozen splenocytes were thawed and added to the anti-mouse IFN-
c antibody coated Multiscreen HTS-IP filter plates at 0.1 � 106

cells/well in culture medium (CM) containing 5% FBS (Sigma-
Aldrich). The following peptides were used for stimulation: GII.4-
1999 peptide pool, the two single peptides 99-45 and 99-50, a pre-
dicted 9-mer H-2d epitope, and a negative 10-mer control peptide.
Additionally, dose titrations (0.05–2 mg/ml) of the peptides 99-45
and 99-50 were performed to determine the functional avidity of
T cells to the epitopes. CM was used as a background control and
Concanavalin A (10 mg/ml, Sigma-Aldrich) as a cell viability control.
After 20 h incubation at 37 �C in a humidified 5% CO2 atmosphere,
the spots were detected by biotinylated anti-mouse IFN-c mono-
clonal antibody, followed by streptavidin-ALP and BCIP/NBT sub-
strate (all from Mabtech Ab, Nacka Strand, Sweden) according to
a previously described protocol [5]. The plates were analyzed by
CTL-Europe GmbH (Bonn, Germany) and the results were
expressed as mean spot forming cells (SFC) per 106 splenocytes.
The experiments were performed in duplicates and each experi-
ment was repeated at least twice.

2.6. Degranulation assay

Degranulation assay was performed to determine cytotoxic
potential of the 99-45 peptide-specific CD8+ T mouse splenocytes.
The cells (1 � 106) were stimulated with 4 mg/ml 99-45 peptide in
the presence of 3 mg/ml CD107a (clone 1D4B, BD Biosciences, San
Jose, CA) FITC-conjugated antibody. As controls, unstimulated cells
(spontaneous degranulation), negative control peptide (OVA) and
PMA/ionomycin (Sigma-Aldrich) stimulated cells were included.
After 1 h pre-incubation at 37 �C and 5% CO2, the protein transport
inhibitors brefeldin A and monensin (GolgiPlug and GolgiStop, BD
Biosciences) were added and incubation was continued overnight.
Treated cells were washed, blocked with rat anti-mouse CD16/
CD32 (Fc Block, Clone 2.4G2, BD Biosciences) and stained with
BD Horizon Fixable viability stain 780 for live cells gating. Cells
were surface stained with PerCP-Cy5.5 fluorochrome-conjugated
CD8-specific antibody, followed by treatment with BD Cytofix/
Cytoperm Plus kit (BD Biosciences) and intracellular staining with
PE-Cy7 conjugated CD3-specific antibody. The cells were acquired
on BD FACSCanto II flow cytometer and analyzed using FlowJo v.10
software (ThreeStar Inc., San Carlos, CA). CD3+ cells were gated
from live lymphocyte gate and analyzed for CD8 and CD107a
expression.

2.7. Statistics

The statistical differences between the experimental groups
were determined by the Kruskal-Wallis test, Fisher’s exact test or
the Mann-Whitney U test, as applicable. Statistical analyses were
performed using IBM SPSS Statistics for Windows (IBM Corp.,
Armonk, NY) version 23. Statistical significance was defined as a
p value of <.05.
3. Results

3.1. Similar levels of NoV GII.4-1999 specific serum IgG antibodies
induced by IM and ID delivery of GII.4 VLPs alone or co-delivered with
other VLP genotypes

Immunization of the mice with GII.4 VLPs induced robust
genotype-specific IgG antibodies irrespective of the dose, delivery
route or co-administration of other genotype VLPs at the same
time (Fig. 1A). The GII.4-specific serum IgG titers were similar in
all experimental groups (p > .05), with end-point titers 102,400
or 204,800 for all VLP immunized mice (Fig. 1B).
3.2. NoV GII.4-1999-specific antibody blocking and avidity are not
dependent on delivery route or immunogen composition

Sera of mice immunized with GII.4 VLP (10 mg groups only), GII
VLP-mix, or GI VLP + GII VLP mix via IM or ID route were further
analyzed for antibody avidity and blocking activity. All groups
had developed high avidity antibodies (>50%) with no significant
difference between the groups (p = .161) (Fig. 1C). Furthermore,
similar blocking activity was observed for all deliveries (Fig. 1D).
Sera of each experimental group reached BT50 of 800. Therefore,
no immunological interference due to the competition between
different genotypes was found in avidity or blocking activity of
GII.4-specific antibodies.

3.3. Magnitude and specificity of NoV GII.4-specific T cell responses

Synthetic peptide pools and single peptides were used to com-
pare T cell responses of mice immunized with 10 lg VLPs alone or
co-administered with different VLP genotypes. Splenocytes of
immunized and control mice were assayed for IFN-c production
against different peptide antigens (Fig. 2A). Each experimental
group but not the control mice responded to a similar level (p >
.05) to all GII.4-1999 derived peptides tested, while no response
was induced by the negative 10-mer control peptide. The GII.4-
99 peptide pool induced the highest IFN-c response compared to
other GII.4-specific peptides (p < .05) in all immunized groups.
All tested NoV-specific peptides, the 18-mer peptides 99-45 and
99-50, previously identified to contain NoV GII.4-specific CD8+

and CD4+ T cell-specific epitopes [17], and the 9-mer predicted T
cell epitope [17], induced specific SFC in immunized mice,
although a response to 99-45 was somewhat higher (p < .05).

3.4. Functional avidity of CD8+ and CD4+ T cells

As we did not observe any differences in the magnitude or
specificity of T cell responses of different experimental groups
(Fig. 2A), we further tested epitope functional avidity of CD4+

and CD8+ T cells of mice immunized with different formulations,
to detect possible difference. The cells were stimulated with a dose
range (0.01–2 lg/ml, app. 10�5–10�3 lM) of the single peptides
99-45 and 99-50 in the IFN-c ELISPOT assays (Fig. 2B and C). No
significant differences in the responses were observed between
the groups (p > .05).

3.5. CD8+ T cells specific for the 99-45 peptide epitope undergo
degranulation

CD8+ T cells specific for the peptide 99-45 were further tested
for potential to lyse the NoV infected cells. Flow cytometry was
used to measure surface expression of the degranulation molecule
CD107a on CD3+CD8+ T cells, a marker of an effector cytotoxic pop-
ulation [21]. Approximately 0.8% of 99–45 peptide–specific CD8 +
T cells of mice immunized with the GII VLP mix (Fig. 3A) and 0.6%
of the cells of mice immunized with the GI + GII VLP mix (Fig. 3B)
expressed CD107a at the surface. No 99-45 peptide-specific
degranulation was seen with negative control mice cells (Fig. 3C)
or when 14-mer OVA control peptide was used (data not shown).
4. Discussion

A broadly protective NoV VLP-based vaccine should contain at
least a single representative of GI and GII viruses, as there is very
little cross-protective immunity between the genogroups
[5,14,16,22–24]. Concomitantly, we have recently proposed a
trivalent combination of GII.4 VLPs, GI.3 VLPs and RV VP6 as a can-



Fig. 1. Norovirus GII.4-1999-specific serum IgG responses. Individual termination serum antibodies shown as the group mean OD values with the standard errors of the mean
(A) and end-point titers analyzed from the group-wise pooled sera (B). Mice were immunized IM or ID with GII.4-1999 VLPs alone (groups I to IV), GII VLP mix (group V), or GI
+ GII VLP mix (group VI). Mice receiving carrier (PBS) only were used as negative controls (Ctrl, groups VII and VIII). Horizontal dashed line (A and B) indicates a positivity cut-
off (OD > 0.100). GII.4-specific IgG mean avidity indices (%) with standard error of the means (C) and pooled serum blocking antibody titers (D) in groups immunized with
GII.4 VLPs alone (10 mg), GII mix, or GI + GII-mix. Horizontal dashed line indicates 50% avidity (C) or blocking (D) index. n.s., statistically not significant (p > .05).
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didate vaccine against childhood GE [4,25]. In the present study,
we determined antibodies and T cell immune responses to GII.4-
1999 VLPs administered either alone or co-administered with dif-
ferent VLP genotypes in mice, to determine possible immunologi-
cal interference or inhibition of both humoral and cellular
immune responses. As the representatives of GII NoVs, three differ-
ent VLPs were used, an ancestor GII.4-1999, the more recent GII.4
NO (2009) genotype and antigenically distant GII.12 genotype.
GII.4 NoVs have been dominant in causing sporadic cases and GE
outbreaks for more than 20 years, with newly emerging variants
every 2–4 years [26]. NoV GI.1 and GI.3 VLPs were chosen as the
representatives of GI NoVs.

High serum IgG antibody titers generated against NoV GII.4
were detected in mice immunized with GII.4-1999 VLPs either
alone or in any combination. Furthermore, the functionality of
these antibodies, in terms of virus neutralizing potential and avid-
ity, determining the strength of molecular interaction between
polyclonal serum antibodies and antigens, was very good. This is
important as blocking antibodies are considered the most signifi-
cant correlate of protection from NoV infection and disease identi-
fied so far [8,22,24,27]. High avidity antibodies, produced as a
result of B cell avidity maturation, better tolerate variations within
the target epitopes [17,23,28,29] and are important for protection
from viral infections [30–32].

NoV-specific blocking antibodies in humans andmice are highly
type-specific [23,28,33] and therefore the biological significance of
other arms of protective immunity, such as cross-reactive T cell
responses, should be considered besides blocking of ligand interac-
tion. It has been suggested that protective immunity to NoV might
be partially dependent on the activation of T cell immunity,
[14,34–37], however, very little is known about the role of NoV-
specific T cells in natural infection [14] and even less on the vac-
cine induced T cell responses in humans or experimental animal
models [35,36]. T cell immunity has a significant role in protection
from other viruses such as influenza [38], measles [39], and human
immunodeficiency virus [40,41]. To the best of our knowledge, our
group is the only one who has identified NoV-specific T cell epi-
topes in naturally exposed humans [15] and BALB/c mice immu-
nized with the NoV VLPs [17]. Limited number of GII.4-specific T
cell epitopes was detected in a heterogeneous human population,
in contrast to seven cross-reactive T cell epitopes identified in a
single inbred mouse strain, suggesting that T cell immunity might
significantly improve after NoV VLP vaccination [15,17].

In contrast to naïve mice, in humans the vaccination is influ-
enced by the complex prior NoV exposure history, however, the
effect is yet unknown [10,42]. Vaccination may improve the pre-
existing immunity in humans by eliciting strong recall immune
responses towards conserved epitopes, despite the wide genetic
inter- and intragenogroup variability of NoVs [10]. Clinical trials
in adults have suggested that vaccination induces cross-
protective memory immune responses, such as cross-blocking
antibodies, directed towards strains encountered in the past, in



Fig. 2. NoV GII.4-specific T cell responses. Splenocytes of mice immunized IM or ID with 10 mg GII.4 VLP alone, GII VLP mix or GI + GII VLP mix were analyzed for IFN-c
production by ELISPOT assay. The control mice (Ctrl) received PBS only. Complete GII.4-99 peptide pool, 18-mer single peptides 99-45 and 99-50, and a predicted 9-mer T cell
epitope were used to stimulate the cells. An irrelevant 10-mer peptide served as a negative control and culture media (CM) as a background control (A). Stimulation of the
cells with increasing concentrations of the peptides 99-45 (B) and 99-50 (C) was used to determine the functional avidity of T cells. Mean IFN-c spot-forming cells per 106

splenocytes of repeated experiments with standard errors of the mean are shown. P value < .05 was considered statistically significant. n.s., statistically not significant (p >
.05).

Fig. 3. Expression of CD107a in NoV-specific CD8 T cells. The group-wise pooled splenocytes of mice immunized with GII VLP mix (A) or GI + GII VLP mix (B), or splenocytes of
the control mice (C), were stimulated with the single peptide 99-45, in the presence of CD107a FITC and protein transport inhibitors, before flow cytometry analysis on FACS
Canto II. Events (%) shown are gated for live CD3+ CD8+ T cells and circled are CD8+CD107a+ cells.
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addition to eliciting immune responses against strains included in
the vaccine [10,43].

In this study, the T cell responses were comparable in all exper-
imental groups tested to the CD4+ T cell epitope 99-50 (344-
TRAHKATVSTGSVHFTPK361), CD8+ T cell epitope 99-45
(309NNYDPTEEIPAPLGTPDF326), and, for the first time, to a minimal
epitope (318PAPLGTPDF326) conforming the predicted H-2d binding
motif [17]. The functional avidity is the activation threshold of the
T cells, describing how well the cells respond to a given concentra-
tion of an antigen, as reviewed extensively by Vigano et al. [44].
Considering the major role of the high functional avidity of T cell
receptor to a given peptide epitope in driving T cell antiviral activ-
ity [45–48], it is of importance that T cell magnitude, specificity
and avidity were similar in all GII.4 VLP immunized mice, regard-
less of the administered formulation.

Importantly, the results of this study are the first to suggest the
true CTL potential of the CD8+ T cells specific for the peptide 99-45,
which contains the highly conserved epitope across GII NoV geno-
types. Increased cell surface CD107a expression in immunized
mice cells is associated with loss of intracellular perforin, and indi-
cates the ability of these cells to lyse NoV infected cells [21]. CTLs
are considered as the main effectors against intracellular patho-
gens, conferring protection from the illness in the case that not
all free virus is neutralized at the port of entry, owing to their abil-
ity to lyse the infected cells prior virus replication and release of
new virions [49]. Unlike in NoV VLP immunized inbred mice as
described above, highly conserved CD8+ T cell epitopes in humans
remain yet to be identified. Although human population is hetero-
geneous, it is possible that some protein domains in NoV VLPs are
immunoprevalent, i.e. contain epitopes restricted by multiple MHC
alleles [50,51].

IM delivery is the most commonly used for vaccinating adults,
infants and small children. Even though ID immunization, with
the abundance of antigen presenting cells in the close proximity,
might be the most optimal route for delivering VLPs [52–54], the
results of this study showed that IM and ID deliveries induced sim-
ilar quantities and qualities of NoV GII.4-specific antibodies and
CD4+ and CD8+ T cells. This finding is of a significant importance
considering the easiness of IM delivery to small children, compared
to ID delivery. Even though the importance of IgA and mucosal
immunity in protection from NoV infection and disease has not
been definitely established, they are likely to play protective role
in NoV infection transmitted via mucosal route [55–57]. In GII.4
challenge studies, pre-existing NoV-specific serum IgA and muco-
sal IgA were associated with decreased frequency of infection
and severe illness [58]. However, in the present study using par-
enteral routes of immunization, no IgA responses were evaluated.

We believe that protection against NoV reflects the sum of var-
ious immune responses, including antibody and cell-mediated,
especially T cell, immunity. Our results show the potential for a
multivalent NoV VLP vaccine to induce humoral and cell-
mediated immune responses without immunological interference.
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