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ABSTRACT 
Advances in prostate cancer biology and diagnostics are dependent upon high fidelity 

integration of clinical, histomorphologic, and molecular phenotypic findings. In this study we 

compared fresh frozen (FF), formalin-fixed paraffin-embedded (FFPE), and PAXgene-fixed 

paraffin-embedded (PFPE) tissue preparation methods in radical prostatectomy prostate 

tissue from 36 patients and did a preliminary test of feasibility of using PFPE tissue in routine 

prostate surgical pathology diagnostic assessment. In addition to comparing histology, 

immunohistochemistry, and general measures of DNA and RNA integrity in each fixation 

method, we performed functional tests of DNA and RNA quality including targeted Miseq 

RNA and DNA sequencing, and implemented methods to relate DNA and RNA yield and 

quality to quantified DNA and RNA picogram nuclear content in each tissue volume studied. 

Our results suggest that it is feasible to use PFPE tissue for routine robot-assisted 

laparoscopic prostatectomy (RALP) surgical pathology diagnostics and 

immunohistochemistry, with the benefit of significantly improved DNA and RNA quality and 

RNA picogram yield per nucleus as compared to FFPE tissue. For FF, FFPE, and PFPE 

tissues respectively, average Genomic Quality Numbers (GQNs) were 7.9, 3.2, and 6.2, 

average RNA Quality Number (RQNs) were 8.7, 2.6, and 6.3, average DNA picogram yields 

per nucleus were 0.41, 0.69, and 0.78, and average RNA picogram yields per nucleus were 

1.40, 0.94, and 2.24. These findings suggest that where DNA and/or RNA analysis of tissue 

is required, and when tissue size is small, PFPE may provide important advantages over 

FFPE. The results also suggest several interesting nuances including potential avenues to 

improve RNA quality in FFPE tissues, and confirm recent suggestions that some DNA 

sequence artifacts associated with FFPE can be avoided.  

 

INTRODUCTION 
Advances in prostate cancer biology and diagnostics are dependent upon high fidelity 

integration of clinical, histomorphologic, and molecular phenotypic findings. While frozen 

tissue can provide excellent molecular preservation, it is not suitable for routine surgical 

pathology as histologic detail is often insufficient, and frozen tissue handling is too 

cumbersome for routine analysis of entire prostates. Formalin-fixed, paraffin-embedded 

(FFPE) tissue processing, the current standard in surgical pathology, provides good 

histomorphology, but RNA and DNA isolated from FFPE tissue is significantly reduced both 

in overall yield and quality relative to frozen tissue.  
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PAXgene™ fixative (Preanalytix GmbH, Switzerland) is a non-crosslinking fixation reagent 

containing methanol and acetic acid (PAXgene Tissue Fix Container Circular). Studies have 

found PAXgene-fixed, paraffin-embedded (PFPE) tissue histology generally comparable to 

FFPE tissue in various tissue types1–4. However, depending on the epitope studied, 

immunohistochemistry (IHC) in PFPE tissue sections may require modification of IHC 

protocols originally optimized for FFPE3,5. Published comparative analysis of FFPE and 

PFPE prostate tissue is limited to a total of 13 cases from autopsy or surgery1,3,6. Prostate 

PFPE tissue histology has been reported to contain artifacts such as pyknosis of nuclei, cell 

shrinkage and lower contrast of the prostate epithelium compared to FFPE tissue in H&E 

stained specimens obtained at surgery6. Gillard et al reported RIN scores <2 in PFPE and 

FFPE material from apparently both autopsy and prostatectomy specimens, but no 

preanalytical tissue handling data was provided1. No study yet reported has directly compared 

fresh frozen (FF), FFPE, and PFPE molecular integrity and assessed general histologic 

quality in a blinded fashion in a substantial number of cases. 

 

In this study we compared FF, FFPE, and PFPE tissue preservation methods for prostate 

tissue and did a preliminary test of feasibility of using PFPE tissue in routine prostate surgical 

pathology diagnostic assessment. We attempted to optimize every step of sample handling 

from robot-assisted laparoscopic prostatectomy surgery through processing, embedding, and 

storage of tissue blocks, with the intent of obtaining the best combination of histology and 

macromolecule quality for all three types of tissue studied (FF, FFPE, and PFPE). In addition 

to comparing histology, IHC, and general measures of DNA and RNA integrity in each 

fixation method, we performed functional tests of DNA and RNA quality, and implemented 

methods to relate DNA and RNA yield and quality to quantified nuclear content in each 

tissue volume studied.   

MATERIALS AND METHODS 
 
Study Design 
We compared FF, FFPE and PFPE tissue quality in two phases (Fig. 1). In the first phase 

comprising tissue samples from 20 robot-assisted laparoscopic prostatectomy (RALP) cases 

herein referred to as the 4-core study, we compared FF, FFPE and PFPE results using two 

different tissue processors for PAXgene-fixed prostate tissue; a Shandon Citadel 2000 
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research histoprocessor and a Pathos Delta processor in use in surgical pathology (Fig. 1A). 

The RNA quality results in the 4-core study were less than desired (Supplemental Figure 1), 

compelling us to continue the study in a second phase using adjusted methods. The second 

phase (3-core study) comprised an additional 16 RALP cases where PAXgene fixed material 

was processed using a Leica TP1020 processor dedicated solely to PAXgene-fixed samples, 

and included use of reduced melting point paraffin (Fig. 1B).  Methods and results for both 

phases of the study are reported here and summarized in Supplemental Table 1. 

Tissue Collection and Sampling  
Prostate tissue from robot-assisted laparoscopic prostatectomy (RALP) was used for the 

study. Consecutive cases from all surgeons performing RALP where tissue accrual 

coordinators (G.H., K.K., T.T.) were available were included in the study. Tissue used for the 

study remained available for routine diagnostic use. 

RALP specimens were delivered from the operating room to surgical pathology (Fimlab, 

Laboratories, Tampere, Finland) by pneumatic tube in internally sterile specimen bags. Upon 

arrival, the prostate was immediately weighed in its bag and the prostate core temperature 

was measured with a sterile digital meat thermometer probe inserted to the midpoint of the 

prostatic urethra. Approximately 30 mL of Sterile 4°C saline solution was poured into the 

plastic bag containing the tissue to enhance heat transfer, the bag was covered with ice, and 

the prostate was cooled over 7-10 minutes to 15°C or below. The prostate was then inked for 

routine surgical pathology margin analysis (Supplemental Methods) and a 6 mm thick 

transverse tissue slice was cut midway between apex and base with a sterile custom-made 

tissue slicer. This tissue slice was placed on a sterile dissection plate with its apical side 

facing up. In the four-core study, four tissue core punches (A, B, C, and D) were taken with a 

sterile 8 mm diameter tissue biopsy punch (33-37-10, Miltex) clockwise along the anterior 

side of the prostate, each 3-4 mm away from the inked outer surface of the prostate as shown 

in Figure 1A to avoid risk of interfering with microscopic assessment of capsular margins. In 

the three-core study, three tissue core punches (A, B and C) were taken with a sterile 6 mm 

diameter tissue biopsy punch (33-36-10, Miltex), each 3-4 mm away from the inked outer 

surface of the posterolateral surface of the prostate as shown in Fig. 1B. In the 3-core study, 

the cores were taken from the left or right posterolateral position depending on the side most 

likely to contain cancer based on pre-operative biopsy results and pathologist’s gross 

assessment of the tissue after slicing. Before removing the cores for fixation, the upward 

facing apical sides of each core were blue-inked to allow for correct orientation on 
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embedding. Core A was placed directly onto a cryomold and refrigerated OCT (Optimal 

Cutting Temperature; Sakura Finetek Europe B.V.) compound was placed around it. Core A 

was then snap frozen in -90°C isopentane for 15 seconds before storing it in -80ºC. Core B 

was placed in a labelled nylon mesh tissue bag (6774017, Thermo Scientific), fixed in 10% 

buffered Formalin (122256, Reagena International Oy Ltd) at least 24 hours, and processed in 

the next routine surgical pathology tissue processing run. Core C and D were placed in a 

labelled nylon mesh bag and fixed in 50 ml PAXgene fixative (Qiagen/PreAnalytix Cat No. 

765312) for 4 hours at room temperature with gentle rocking (oscillating approximately once 

per minute). After fixation the C and D cores were transferred to 150 ml PAXgene Stabilizer 

diluted according to manufacturer instructions (Qiagen/PreAnalytix Cat. No. 765512) and 

stored at 4ºC until processing. After core sampling, the transverse prostate donor tissue slice 

was put into a Supa Mega Slim white cassette (CellPath, EAN 0102-02A) to reduce warping 

of the tissue during fixation and was placed in 10% buffered formalin.  

Tissue Processing and Embedding 
In both the 3-core and 4-core studies, the formalin-fixed B cores in nylon mesh bags were 

processed together with the whole mount prostate slice from which the cores were taken in a 

Pathos Delta processor as part of routine surgical pathology tissue processing at Fimlab 

(Supplemental Table 2). B cores were embedded in regular tissue cassettes in Histowax 

paraffin (melting point 56C-58C, Histolab), with the inked apical side as the initial cutting 

surface. In the 4-core study, the C and D cores were stored in Stabilizer solution at 4ºC 

between 16 hours to 20 days before processing, which was completed in three batches. The C 

cores were processed using newly replenished processing liquids in a fully cleaned Shandon 

Citadel 2000 research histoprocessor, and D cores were processed using replenished liquids 

in a fully cleaned Pathos Delta processor. C and D cores were embedded in Histowax in 

regular cassettes immediately upon processor run completion. In the 3-core study, the C cores 

were stored from 3 to 14 days in Stabilizer at 4ºC and were all processed in labeled nylon-

mesh bags in one batch in a Leica TP1020 processor using Paraplast Xtra (melting point 50C-

54C, P3808 Sigma-Aldrich) as embedding medium. Immediately upon processor run 

completion, C core tissues were removed from the wax chamber and embedded in Paraplast 

Xtra paraffin in regular cassettes. Detailed processing steps for the C and D cores in the two 

phases of the study are contained in Supplemental Tables 3-5. All study B, C, and D-core 

tissue blocks were stored at 4ºC when not being sectioned.   
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Tracking of Blocks, Slides, Tissue Reagents, Methods, and Results 
All study blocks, slides, tissue reagents, images, methods, and results are tracked using 

unique identifiers and barcodes in a laboratory Integrated Life Science Research (ILSR) 

database. 

Core Sectioning for H&E, IHC, and DNA/RNA Isolation 
Consecutive tissue sections were cut from each core block for H&E (Hematoxylin and Eosin) 

staining, IHC and DNA/RNA extraction. For the paraffin-embedded B, C and D cores a 4 μm 

thick section was first cut with a microtome for H&E, followed by six 4 μm sections to be 

used for IHC staining. The slides were baked for 2 hours at 62.5ºC. After this, excess paraffin 

was trimmed away from the face of each block and 12 ten μm sections, comprising a tissue 

volume of 6.0 mm3, or 22 ten μm sections, comprising a tissue volume of 6.2 mm3, were cut 

from the 4-core study and 3-core study blocks, respectively. The tissue sections were placed 

into 1.5.ml Eppendorf tubes for DNA and RNA extraction (Fig. 2). For the A (frozen) cores, 

a 6 μm section was first cut with a cryotome for H&E staining, then excess OCT compound 

was removed before cutting 12 (4-core study) or 22 (3-core study) ten μm sections for nucleic 

acid extraction (Fig. 2).   

Hematoxylin and Eosin Staining 
In the 4-core study, four micron sections from B, C and D cores were stained by hand with 

the same H&E protocol optimized to give reasonably good quality staining in both FFPE and 

PFPE tissues (Supplemental Table 6). H&E staining of A core sections was done with a 

standard protocol for frozen sections (Supplemental Table 7). In the 3-core study, four 

micron sections from B cores were H&E stained at Fimlab pathology laboratory with an 

automated staining machine using their standard H&E protocol (Supplemental Table 8). To 

match the eosin staining intensity of the B cores as closely as possible, the PAXgene-fixed C 

cores were stained by hand using a modified protocol with diluted eosin and shorter eosin 

exposure time (Supplemental Table 9). Eosin concentration and time in eosin was reduced 

from 100% to 50% and 1 minute to 5 seconds respectively for PAXgene sections as 

compared to sections from formalin-fixed cores. The H&E staining protocol for frozen 

sections from A cores were similarly optimized to match staining intensities of formalin and 

PAXgene fixed sections (Supplemental Table 10). 
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Immunohistochemistry 
Four micron sections from B, C and D cores for IHC were placed on either SuperFrost plus 

slides (PSA, ERG, Vimentin stains) or TOMO slides (Matsunami glass Ind., Ltd) (2IHC 

stain) using automated Bond III technology (PSA, ERG and Vimentin) or Ventana 

Benchmark GX technology (“2IHC” CK5/6, p63 and AMACR cocktail) (Fimlab) (detailed 

protocol in Supplemental Methods). The IHC sections were counterstained with hematoxylin. 

Overall immunohistochemistry results were compared for each trio of BCD IHC sections (4-

core study) or BC IHC sections (3-core study) by two pathologists (T.T. and G.S.B.). 

Whole Slide Imaging 
H&E and IHC whole slide images in the 4-core study were obtained at 40x magnification 

with an Olympus BX51, Olympus UplanSApo 40x objective and Surveyor Software, 

Objective Imaging Ltd., and in the 3-core study with a Hamamatsu Photonics Nano Zoomer 

XR C12000 automated scanner.  QC on whole slide images was done by visual inspection of 

the slides to make sure all images were in focus.  

Surgical Pathologist Web-Based Survey 

Five surgical pathologists (T.T., T.M., P.H., M.L., and P.K.) participated in a web-based 

survey including histologic images from study PFPE and FFPE tissue cores, from sections 

adjacent to those used for DNA and RNA isolation and analysis. Survey instructions and the 

specific questions used are contained in Supplemental Methods. For each of 14 FFPE and 19 

PFPE blocks from the 3-core and 4-core studies containing cancer, paired H&E and 2IHC 

(AMACR, p63 and CK 5/6) stained section zoomable whole slide images were presented in 

randomized order to the pathologists at a computer of their choice. Pathologists were blinded 

to the case number, core identity, and fixative for each pair of images presented. For each 

pair of images, the pathologist was required to make a best estimate of what fixative was used 

(PAXgene or Formalin) and was required to choose whether or not the quality appeared 

adequate for routine radical prostatectomy surgical pathology analysis.    

Nucleic Acid Extraction and Quality Assessment 
Genomic DNA and total RNA, including miRNA, was extracted from all cores. Different 

column based extraction kits from Qiagen (Hilden, Germany) were used to isolate nucleic 

acids from the different tissue preparations as recommended by the manufacturer. AllPrep 

DNA/RNA/miRNA Universal kit (Qiagen, cat no 80224) was used for simultaneous 

extraction of DNA and RNA from the fresh frozen A cores and the Allprep DNA/RNA FFPE 
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kit (Qiagen, cat no 80234) was used for the formalin-fixed B cores. For the PAXgene-fixed C 

and D cores DNA and RNA was extracted with the PAXgene Tissue Allprep 

DNA/RNA/miRNA method (Qiagen’s PX10 Supplemental protocol) where material from the 

PAXgene Tissue DNA Kit (Qiagen/PreAnalytix cat no 767134) and PAXgene Tissue 

miRNA Kit (Qiagen/PreAnalytix, cat no 766134) were used. The extractions were performed 

according to the manufacturer’s instructions apart from modification of the deparaffinization 

protocols (details in Supplemental Methods). In brief, deparaffinization of 3-core study B 

core sections and 4-core study B, C and D core sections was performed by incubating the 

samples for 20 min at 37ºC with 1400 µl heptane, and deparaffinization of 3-core study C 

core sections was performed by incubating the samples for 10 minutes at room temperature 

with 650 µl xylene. The cut sections were stored in -80ºC and extractions were performed 

within two weeks after cutting. 60 μl of DNA and 40 μl of RNA was isolated and the eluted 

samples were stored at -20ºC and -80ºC, respectively.  

 

DNA concentration was measured with the Qubit 2.0 Fluorometer (Invitrogen Life 

Technologies, Carlsbad, CA). Genomic DNA was run on a 0.6% agarose gel stained with 

0.5x SYBR Safe DNA dye (Invitrogen) at 80V for 70 minutes and DNA band size examined 

under UV-light. DNA quality and RNA concentration and quality was measured with 

Fragment Analyzer (FA) (Advanced Analytical Technologies, Ankeny, IA) using the DNF-

467 Genomic DNA 50kb Analysis kit and the DNF-489 Standard Sensitivity RNA Analysis 

kit. The results were analyzed with Fragment Analyzer PROsize 2.0 version 2.0.0.51 

software. PROsize determines a Genomic Quality Number (GQN) based on relative quantity 

of genomic DNA above a user-defined 10 kb size threshold. When analyzing RNA, PROsize 

determines the percentage of RNA over 200 nucleotides in size (DV200) and an RNA Quality 

Number (RQN) value based on the area and ratios of the 18S and 28S ribosomal RNA peaks. 

DV200 >70% is considered high quality and 30-50% low quality RNA for Illumina’s 

(Illumina, San Diego, CA) RNA Seq library preparation7. According to Advanced Analytical 

Technologies, Fragment Analyzer RQN number and Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA) RIN number measured in comparison RNA samples are 

highly correlated (R2= 0.9635)8.   

 

For the 3-core study samples, DNA quality of FF, FFPE and PFPE DNA was also analyzed 

with a qPCR (real time quantitative Polymerase Chain Reaction)-based FFPE QC kit 

(Illumina Kit WG-321-1001). This method compares the Ct (threshold cycle) of amplification 
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for control template and experimental DNA samples; a ΔCt value (Sample DNA Ct minus 

QC Template DNA Ct) of ≤ 2 is considered good quality DNA. Extracted DNA was diluted 

to 1 ng/µl and run in triplicate according to manufacturer’s instructions.  

Manual and Automated Nucleus Counts 
Nucleus counts were obtained from the H&E stained face section whole slide images of A, B 

and C cores in the 3-core study using an automated nucleus counting method. All 

hematoxylin stained nuclei were manually counted from one 550 µm x 550 µm image 

randomly selected from every A, B and C core whole slide image, resulting to a total of 

71239 manually annotated nuclei. Manual counting was done using the Cell Counter plugin 

in Image J software (v. 1.48, National Institutes of Health, Bethesda, MD), and coordinates 

with the position of each manually counted nucleus was saved for optimization of the 

automated counting method. Nucleus segmentation was done for color adjusted images. We 

used a histogram matching method for color adjustment, using a composite image histogram 

as a reference for the matching of red, green and blue channels. Nucleus segmentation was 

done in two passes. First, a smoothened pixelwise ratio image between red and blue channels 

was binarized using an experimentally defined threshold value. Second, any undersegmented 

connected components (larger than twice of the area of a typical nucleus) were thresholded 

using another threshold and the remaining large objects were further split using marker 

controlled watershed segmentation. Detected areas smaller than 4 µm2 were cleaned from the 

results by applying area constraints. Finally, small bleed-through areas of blue ink used for 

external marking of correct orientation of the core were excluded by applying hue and 

saturation based thresholding as criteria. All parameters were tuned by using the manually 

counted cells as a validation set. The accuracy of segmentation was determined for the 71239 

annotated cells as an F1-score, weighting both false positive and false negative errors equally. 

The average F1-score among the annotated images, defined as 2*precision*recall/(precision 

+ recall)9 was 0.78. Average precision (TP/(TP+ FP) was 0.85 and recall (TP/TP+FN) 0.73, 

where TP, FP are true and false positive detections, respectively, and FN denotes false 

negatives.  

Per-Nucleus DNA and RNA Yield Estimation 
Total nuclear count from all sections used for nucleic acid isolation was estimated based on 

the number of nuclei present in the adjacent H&E section from each core (see Fig 2), the 

thickness of tissue taken for DNA/RNA extraction and the median nuclear diameter. Median 

diameter was calculated for all segmented nuclei in A, B and C core images by assuming 
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spheroid shape with diameters estimated from segmented nuclei as axes of ellipsoid with 

equivalent normalized second order moments as the segmented nucleus area. The quotient of 

the total tissue thickness divided by the major axis of the cell nuclei was calculated for each 

core tissue section group used for DNA and RNA extraction. The nuclear count from the 

H&E section was then multiplied by this number to obtain the estimated total nuclear count 

in the tissue taken for extraction. For A cores this multiplication factor was 38.6 (220 µm/5.7 

µm), for B and C cores it was 40.7 (220 µm/5.4 µm).  

Cases Selected for DNA and RNA sequencing assay 
DNA and RNA isolated from A, B, and C cores from four 3-core study cases were selected 

for Miseq-based sequence analysis based on C Core (PAXgene) RQN values in an attempt to 

get a picture of the range of sequencing performance to be expected from PAXgene fixed 

prostate tissues. We studied two cases with the lowest recorded average RQN (PAX 84 and 

85, average RQNs 6 and 5.5 in two separate FA runs), and two cases with the highest 

recorded RQNs (PAX 91 and 96, average RQNs 6.7 and 6.9 respectively).  

36-gene targeted Miseq DNA sequencing assay 
AR and 35 other genes were targeted for capture and DNA sequencing (Supplemental Table 

11) in DNA isolated from A, B, and C cores in the 3-core study. Targeted sequence 

enrichment was performed using the SureSelectXT Target Enrichment System (Agilent 

Technologies, Santa Clara, CA) according to manufacturer’s instructions. Briefly, 200 ng of 

genomic DNA was sheared using a Covaris instrument (Covaris, Woburn, MA) to yield a 

fragment size of 150-200 bp. End repair, addition of the 3’-dA overhang, ligation of 

indexing-specific adaptors, hybridization to custom RNA baits, hybrid capture selection and 

index tagging were performed according to the Illumina paired-end sequencing library 

protocol. All recommended quality control steps were performed between steps. The 

multiplexed samples were sequenced on the Illumina Miseq platform using 150 bp paired-end 

reads. 

22-transcript targeted RNA sequencing assay   
A custom RNA sequencing panel was designed to cover all AR exons and introns to enable 

investigation of most common AR splice variants; 21 other gene transcripts were also 

included (Supplemental Table 12). Targeted sequence enrichment was performed using the 

SureSelectXT RNA Target Enrichment System (Agilent Technologies) according to 

manufacturer’s instructions. Briefly, poly(A) RNA was purified from 1 µg of total RNA and 
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fragmented chemically. In the following steps, samples were prepared using SureSelect 

Strand-Specific RNA Library Prep Kit to obtain adaptor-ligated cDNA library amplicons. 

Finally, hybridization to custom RNA baits, hybrid capture selection and index tagging were 

performed. All the AMPure XP bead purification steps were conducted as instructed. The 

multiplexed samples were sequenced on the Illumina Miseq platform using 150 bp paired-end 

reads. In five samples with RQN <6, (one C core with RQN 5.5, and four B core samples) 

modifications were made to the protocol as recommended by Agilent Technologies: 1) 

Instead of poly(A) RNA purification from 1 µg total RNA, Ribo-Zero Gold Magnetic Kit 

(Illumina, San Diego, CA) was used to remove rRNA from 2 µg of total RNA. 2) Instead of 

fragmenting the purified RNA at 94ºC for 8 min, RNA was denatured at 65ºC for 5 min. 3) 

All AMPure XP bead purification steps were performed using 1.8:1 bead volume to sample 

volume ratio. 4) Instead of 13 cycles in the pre-capture PCR, the number of cycles was 

increased to 14.  

DNA and RNA Sequence Analysis  
RNA-seq reads were aligned to human genome assembly GRCh37.2 (hg19) using Tophat2, 

version 2.0.1310. RNA sequencing coverage was computed using BedTools, version 2.26.011. 

For DNA damage analysis, DNA-seq reads were aligned to human genome assembly 

GRCh37.2 (hg19) using bowtie2, version 2.2.412. Duplicates were removed from DNA-seq 

alignments using samblaster tool, version 0.1.2213. SAMTools mpileup, version 1.3.114 was 

used for generating a pileup output of the alignments. Discrepancies used for the calculation 

of the single nucleotide changes (SNCs) were determined by parsing the number and identity 

of the bases corresponding to a particular position from the output using custom R scripts. 

Only high quality alignments with mapping quality score > 20 were used for the analysis. To 

identify   sequence artifacts, positions with variant allele frequency > 10% were excluded to 

minimize the number of true variants detected. In addition, positions with variant allele 

frequency < 1% were excluded as they were assumed to be sequencing errors. The frequency 

of each type of SNC was calculated by dividing the count of a given SNC by the total amount 

of the corresponding reference base calls and multiplying the result by 106. 

Statistics 
Quantitative differences between FF, FFPE and PFPE sample groups in the 3-core study were 

calculated using GraphPad software and groups were compared for statistical significance 

(P<0.05) using the unpaired t-test with Welch’s correction (GraphPad PRISM, version 5.02, 

GraphPad Software). The comparisons of PFPE RQN values in 4-core and 3-core study 
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groups (Supplemental Figure 1) were tested for significance using the two-tailed Wilcoxon 

rank-sum test with Gaussian approximation for p-value calculation to break ties in the data.  

RESULTS 

Clinical Data 
A standard set of intravenous drugs were used for anesthesia during RALP surgery 

(Supplemental Table 1). RALP pathology including Gleason grade and stage are contained in 

Supplemental Table 1. 

Tissue Quality Related Times and Temperatures 
Interval times and temperatures are compared for the 4-core and 3-core studies in Table 1. 

There are significant differences between the two studies in total prostate cooling time, total 

time from removal of the tissue from body to time in fixative, total time from patient under 

anesthesia to time in fixative and total time from first artery ligation to time in fixative (Table 

1).  

Tissue Cancer Cell Fraction 
Cancer cell fraction (CCF) was visually estimated based on a H&E face section whole slide 

image from each core by one pathologist (G.S.B.). In FF, FFPE, and PFPE cores, average 

(range in parentheses) CCF was 11 (0-50), 19 (0-80), and 8 (0-62) respectively. Welch test 

showed no significant difference in average CCF in the three types of tissue studied. 

Immunohistochemistry Overview 
Comparison of B, C and D (4-core study only) core PSA, ERG, Vimentin and 2IHC stains 

from the 3-core and 4-core studies were performed by two pathologists (T.T. and G.S.B). The 

staining protocols used for B, C, and D core sections were identical, no changes were made in 

the standard Fimlab clinical staining methods (Supplemental Methods). For these four IHC 

stains, no systematic difference in quality was detected, and all stain results appeared 

adequate for routine use. 

Surgical Pathologist Survey of H&E and 2IHC Histomorphology  
Overall, among the 5 surgical pathologists, the rate of correct identification of the fixative 

used based on the paired H&E and 2IHC image survey averaged 64% and 45% for tissue 

sections from FFPE and PFPE material respectively. The four pathologists with little or no 

previous experience comparing histology from FFPE and PFPE prostate material were 

essentially not able to reliably discern the fixative purely from the side by side H&E and 
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2IHC whole-slide images. The one surgical pathologist in the group with extensive prior 

experience comparing PAXgene and formalin-fixed prostate tissue histology side by side 

(T.T.) was significantly better at identifying fixative from histology, identifying 13/14 of the 

formalin fixed blocks correctly and 15/16 of the PAXgene fixed blocks correctly. In the 

survey, this pathologist noted that identification was mainly by red blood cell morphology 

(Supplemental Figure 2) and by a tendency to excess hematoxylin staining in cases he 

identified as PAXgene-fixed.  

Among the 5 pathologists, rated adequacy of the material for routine surgical pathology 

analysis was 100% and 96% for the FFPE and PFPE material respectively. One pathologist 

considered three of 16 PAXgene paired images inadequate for routine surgical pathology 

analysis, based on the carcinoma being partially AMACR negative in one case, and 

hyperchromasia being so intense in two cases that nucleoli were not visible.  The other 4 

pathologists considered all PAXgene H&E and 2IHC images adequate for routine surgical 

pathology. Representative examples of H&E and 2IHC staining in two cases where both 

FFPE and PFPE cores contained cancer are shown (Fig. 3, Supplemental Figure 3).  

No differences were detected in the overall quality of the H&E and 2IHC data in the 4-core 

and 3-core study material included in the survey.  

Nucleus Counts 
In the 3-core study, average nucleus counts per standard slide for each type of tissue were 

79839, 98609 and 86892 for FF (A), FFPE (B) and PFPE (C) cores, respectively. The counts 

were obtained by applying area and red/blue intensity based scaling to the counts given by 

nucleus detection. The correction factors used in scaling removed differences in average 

tissue areas and staining intensities between FF, FFPE,and PFPE cores. The total estimated 

nucleus count per 6.2 mm3 tissue volume was 3.1 x 106, 4.0 x 106 and 3.5 x 106 for FF (A), 

FFPE (B) and PFPE (C) cores, respectively (Supplemental Table 13).  

DNA Quality and Yield 
DNA isolated from FF, FFPE, and PFPE varied significantly in quality. In the 3-core study, 

average GQN for FF (A Core), FFPE (B Core), and PFPE (C Core) material was 7.9, 3.2, and 

6.2 respectively (all differences significant by Welch test p<0.0001, Fig. 4A). Average DNA 

fragment sizes for 3-core study A, B and C cores were 59, 20 and 41 kb respectively (Table 

2, Supplemental Figures 4A and 5A). The overall pattern of DNA quality differences 

between FF, FFPE, and PFPE material is illustrated in Figure 4B, where representative 
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Fragment Analyzer electropherogram tracings are superimposed on the same axis, and by 

comparing the results of running aliquots of the DNA from all 3-core cases on an agarose gel 

(Supplemental Figure 4A). Both FF and PFPE DNA populations are largely contained in bell-

shaped curves centered around the average, whereas FFPE DNA is notable for two peaks, one 

low 300 bp peak (about the length of DNA around two nucleosomes), and a larger peak at 20 

kb. DNA quality results were similar in the 4-core study material (Supplemental Table 1, 

Supplemental Figure 4B).  

 

Functional DNA quality of the 3-core study material was analyzed by Illumina FFPE QC 

assay. This method compares the qPCR Ct (threshold cycle) values between the analyzed 

samples and a reference DNA template. Average delta Ct values for FF (A Core), FFPE (B 

Core), and PFPE (C Core) material were -0.7, 1.9, and -0.6 respectively (Fig. 4C). FF and 

PFPE DNA performed similarly in this assay, while FFPE DNA performed significantly 

worse than either FF or PFPE DNA (Welch test, p< 0.0001).    

 

In the Miseq DNA assay, similar read counts were obtained for 3-core study FF, FFPE, and 

PFPE DNA. We compared rates of sequence artifact in FF, FFPE, and PFPE DNA. With the 

exception of a disproportional increase of C>A changes in two of the four FFPE-derived 

samples, the rate of various other artifacts is similar among the three sample types 

(Supplemental Figure 5B). 

 

Total DNA yield from unit volumes of FF, FFPE, and PFPE also varied significantly. In the 

3-core study, average DNA yield from our standard 6.2 mm3 tissue volume from FF (A 

Core), FFPE (B Core), and PFPE (C Core) material averaged 1.3 µg, 2.8 µg and 2.7 µg 

respectively. DNA yield from FF material was significantly lower than FFPE and PFPE 

(Welch test, p<0.001 and p<0.01, respectively), and total DNA yields for FFPE and PFPE 

material were nearly identical (Supplemental Figure 5C).   

 

Using the estimated total nuclear count derived from image analysis of face sections from 

each core sample 6.2 mm3 tissue volume, FF (A Core), FFPE (B Core), and PFPE (C Core) 

average DNA yield per nucleus was 0.41 pg (picogram), 0.69 pg and 0.78 pg respectively 

(Fig 4D). Variation in yield per nucleus within each of the three (FF, FFPE, and PFPE) 

sample types was low for FF samples, and higher for FFPE and PFPE samples.  
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RNA Quality and Yield 
Total RNA isolated from FF, FFPE, and PFPE varied significantly in quality. Overall RNA 

quality features from A, B and C core tissues in the 3-core study are summarized in Table 2. 

In the 4-core study, average RQN for A, B, C core (PFPE processed in Citadel research 

processor) and D core (PFPE processed in Fimlab Pathos processor), were 9.1, 2.8, 4.6 and 

5.1 respectively (Supplemental Table 1). In the 3-core study, average RQN for FF (A Core), 

FFPE (B Core), and PFPE (C Core) material was 8.7, 2.6, and 6.3 respectively (all 

differences significant by Welch test p<0.0001, Fig. 5A). RQN values from the PAXgene-

fixed C cores inversely correlated with the time the cores sat in Stabilizer before processing 

(R= -0.75, p<0.001). There was no correlation between the 3-core study RQN or GQN values 

from matched FF, FFPE and PFPE cores (Supplemental Figure 6A). In addition, the RNA 

DV200 values (the percentage of RNA over 200 nucleotides in size) for FF, FFPE and PFPE 

cores were 81%, 50% and 76%, respectively (Table 2). The overall pattern of RNA quality 

differences between FF, FFPE, and PFPE material is illustrated in Figure 5B, where 

representative Fragment Analyzer electropherogram tracings are superimposed on the same 

axis. FF RNA contains sharp 18S (2 kb) and 28S (5 kb) ribosomal RNA peaks, PFPE RNA 

also shows a similar 18S peak and a 28S peak lower in amplitude.  FFPE RNA 18S and 28S 

peaks are not discernible in this tracing. 

 

Targeted sequencing of RNA transcripts showed decreased performance of FFPE RNA. 

While the mean total number of reads was similar in the three fixation groups (>2.5x106), the 

FFPE (B core) samples had a lower distribution of raw coverage at each position of target 

transcripts compared to both FF (A core) and PFPE (C core) samples (Fig. 5C). Comparing 

all 3-core study RNA samples, we found strong correlation between RQN values and median 

coverage (R= 0.87, p<0.001, Pearson correlation test).   

 

Total RNA yield from unit volumes of FF, FFPE, and PFPE varied significantly. In the 3-

core study, average RNA yield from our standard 6.2 mm3 tissue volume from FF (A Core), 

FFPE (B Core), and PFPE (C Core) material averaged 4.3 µg, 3.7 µg and 7.8 µg respectively. 

RNA yield from PFPE material is significantly higher than for FFPE or FF material (Welch 

test, p=0.0002, p=0.0005, respectively), and total RNA yields for FF and FFPE material are 

not significantly different (Welch test, p=0.39, Supplemental Figure 6B).    
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In the 3-core study, using the estimated total nuclear count derived from image analysis of 

face sections from each core sample 6.2 mm3 tissue volume, FF (A Core), FFPE (B Core), 

and PFPE (C Core) average RNA yield per nucleus was 1.40 pg, 0.94 pg and 2.24 pg 

respectively (Fig 5D).   

Materials and Storage Costs 
The average prostate weight in the combined 4-core and 3-core studies was 55.6 g. Qiagen 

recommends a ratio of tissue volume to PAXgene fixative volume of “at least 1:10” (Qiagen 

PAXgene Tissue Fix Product Circular). Most recent costs in our locality for 600 mL 

PAXgene fixative (170 €/190 USD) and 600 mL diluted PAXgene stabilizer (27 €/30 USD) 

are 18x higher than our local cost for 600 mL of Formalin (11 €/12 USD). Our local cost for 

equal 3kg of Paraplast Xtra paraffin (120 €/134 USD) is more than 6x higher than cost for the 

same amount of Histowax (18 €/20 USD), the standard paraffin used in Fimlab.  In addition 

to materials costs, storage costs for PFPE tissues are higher, since they must be stored at 4°C 

or below to reduce degradation of biomolecule quality (Qiagen PAXgene Tissue Fix Product 

Circular).   

DISCUSSION 
Comparative analysis of Fresh Frozen, FFPE, and PFPE tissue sample histology, IHC, DNA 

and RNA quality from 36 prostatectomy specimens suggests that it is feasible to use 

PAXgene fixation and processing of prostate tissue for combined molecular research and 

diagnostic surgical pathology. PFPE tissues collected and processed under conditions similar 

to those in the second (3-core) phase of the study reported here will provide significantly 

better DNA and RNA quality and yield as compared to FFPE tissues, therefore providing 

support for tighter linkage between histomorphology and molecular genetic analysis of 

prostate cancer phenotypes, while providing sufficient quality histology for standard surgical 

pathology radical prostatectomy diagnostics.  

 

The PFPE RNA quality obtained in the 3-core study (16 patients, average RQN 6.3) was 

significantly better than what was obtained in the initial 4-core study (20 patients, average 

RQN 5.1). In the 3-core study, a new dedicated tissue processor (Leica TP1020), lower 

melting point paraffin (ParaplastXtra) and a different deparaffinization method (Xylene at 

Room Temp) was used. Further study is needed to determine which of these three changes 

are most important to obtaining improved RNA quality. Another factor could be the 
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significantly reduced time to fixative, surgical time, and post-arterial ligation times (Table 1) 

in the 3-core cohort (improvements that were detected after the study and not specifically 

attempted). However, RNA quality in the FF tissues from the 4-core (average RQN 9.1) and 

3-core cohort (average RQN 8.7) were not statistically significantly different, and therefore 

the RNA quality upon arrival in surgical pathology was already at a similar maximum in the 

4-core study. Improvements in downstream RNA quality in the 3-core study are more likely 

due to some or all of the downstream changes specific to the 3-core study.  

 

To our knowledge, this is the first study to compare DNA and RNA yield per nucleus using 

different processing methods. Surprisingly, we found that DNA yield per nucleus in FFPE 

(0.69 pg) and PFPE (0.78 pg) is similar (although FFPE DNA is markedly degraded 

compared to PFPE DNA), and DNA yield per nucleus from FF tissue using similar column-

based extraction methods is significantly lower (0.41 pg) than both PFPE and FFPE. Why 

DNA yield per nucleus is lower in FF tissue is not clear. Differences in the column-based 

extraction protocols could account for some of these differences, but they are similar in their 

basic components and unfortunately are not open to scientific analysis since the content of the 

various solutions is not provided by Qiagen. A normal diploid human male cell is calculated 

to contain 6.1 pg of nuclear DNA15. Mitochondrial DNA is an important component of 

cellular DNA content, but contributes less than 1% of the total weight of DNA per cell16,17. 

Cancer nuclei are often aneuploid (with >6.1 pg of DNA per nucleus), but average cancer cell 

fraction among the three core types was similar. Our study therefore shows that the typical 

column-based extraction methods used here yield no more than 15% of the DNA available in 

the tissue. There is substantial room for DNA yield improvement, and we advocate using 

yield per nucleus in future DNA and RNA extraction studies to identify improvements.   

 

The RNA yield (quantity) per nucleus was 1.40 pg with FF, 0.94 pg with FFPE, and 2.24 pg 

with PFPE. Surprisingly, PFPE provided better yield per nucleus than either FF or FFPE 

tissues. We detected no significant difference in cancer or other cell content in the A, B, and 

C cores, and therefore we do not think these differences are due to different cellular makeup 

among FF, FFPE, and PFPE cores. Why PFPE provided significantly greater RNA yield per 

nucleus than FF or FFPE tissue is not clear and if this is confirmed in future studies, could 

provide a rationale for preferred use of PAXgene processing of prostate biopsy material 

where cancer cell nuclei for molecular analysis are often relatively low in number. 
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In terms of quality, we found that PFPE DNA and RNA quality is significantly better than 

FFPE DNA and RNA quality, but also worse than DNA and RNA quality from FF tissue. 

Further tweaking of PFPE processing methods could yield even more intact DNA and RNA. 

A first step could be to isolate DNA from tissue fixed in PAXgene but not paraffin 

embedded. This could isolate whether PAXgene acetic acid causes strand breaks, or whether 

strand breaks occur during the heating and paraffin diffusion during processing and 

embedding or during paraffin extraction, or both.  

 

Our results unexpectedly suggest how RNA quality routinely obtained from FFPE tissue 

could theoretically be markedly improved. Average FFPE RQN obtained in the 3-core study 

was only 2.6, but it ranged widely, from 1.1 to 5.4 (Supplemental Figure 6A), while RQN in 

FF and PFPE tissue from the same prostates were relatively stable. The FFPE tissues 

processed in the 3-core study were part of the regular surgical pathology workflow, meaning 

that while the tissues all contained RNA of high quality to start with and processing 

chemicals and times were similar among all FFPE blocks, the time the blocks sat in formalin 

prior to processing and in the processor at elevated temperature at the end of processing but 

before embedding, and the time maintained at elevated temperature during embedding likely 

varied substantially from case to case since this is currently not standardized. A controlled 

study comparing prostate RNA quality in tissues exposed to variable time in formalin and 

variable time in molten paraffin during embedding would test this hypothesis, and if true, 

average RNA quality in FFPE could be elevated to the RQN 4-5 range if surgical pathology 

routines can be modified to obtain the identified optimal times.  

 

Reports of DNA sequence artifacts associated with formalin fixation18 prompted us to 

compare sequence artifacts in matched FF, FFPE, and PFPE samples from four cases. 

Sequence from FF and PFPE shared a similar low rate of artifacts (Supplemental Figure 5B), 

another positive point for PFPE. Surprisingly, FFPE material from this study did not contain 

an excess of C>T transitions as found in 42-100% of samples in several prior studies18 but 

two of the four FFPE samples did show an excess of C>A transversion artifacts of unknown 

origin. C>A artifacts were reported by Costello et al19 to be associated with oxidation of 

DNA by acoustic shearing, a standard step prior to high throughput sequencing. In our study 

acoustic shearing was performed using standard settings for all DNA samples sequenced 

(from FF, FFPE, and PFPE tissues), so this is not likely the source of this artifact in our 

study.  Moreover the C>A artifacts observed in the current study did not occur in the 
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CCG>CAG context reported by Costello et al19.  The lack of excess of C>T base transitions 

detected in FFPE DNA in the current study, consistent with previous reports where such 

artifacts are less commonly found in tissues fixed in buffered formalin less than 72 hours and 

in younger tissue blocks20,21, also supports the idea that such artifacts could be routinely 

minimized with better standardization of FFPE processing. However, we should add that 

excess C>T artifacts may have been present in the FFPE DNA, but not detected by our assay. 

FFPE DNA C>T base transitions are often caused by deamination of cytosine, leading to 

formation of uracil and the subsequent incorporation of an adenine base in the opposite 

strand. Some DNA polymerases recognize deaminated cytosine residues and stall 

amplification until the correct base is incorporated, thus preventing amplification of strands 

containing this artifact22. The ability of the Herculase II polymerase used in our sequencing 

assay to recognize deaminated bases is thus an additional possible reason for the low number 

of C>T artifacts detected in these FFPE samples23. 

 

There are nuances and limitations of the study worth mentioning. This study compared 

histology and IHC between matched FFPE and PFPE tissues only at a general level, it did not 

compare ability to do Gleason grading or surgical margin status determination. Five surgical 

pathologists reviewing paired H&E and 2IHC stained whole slide images in a blinded fashion 

rated 100% of FFPE material and 96% of PFPE material adequate for diagnostic surgical 

pathology. Comparison of Gleason grading and nuclear morphology was not performed in the 

current study because the comparison tissues were not sufficiently close to each other. Future 

studies could include “kissing” sections (one FFPE, one PFPE) to allow reasonably sound 

Gleason grading comparisons. Analysis of surgical margin status in surgical pathology 

laboratories where whole prostates are initially fixed overnight in formalin is quite different 

from analysis of surgical margins in prostates that are fully sectioned fresh, just after inking, 

as they must be to obtain high quality RNA with PAXgene fixation. This could also 

potentially be addressed in future studies by comparing margin status in “kissing” sections 

only microns apart.  

 

In order to scientifically compare histologic adequacy of paired FFPE and PFPE material in 

future studies, H&E staining for PFPE sections should be adjusted to match standard H&E 

staining in FFPE tissue sections. In the current study, in PFPE tissue sections, a reduction of 

eosin concentration of 50% and a reduction in eosin exposure time from 60 seconds to 5 

seconds achieved similar eosin intensity between PFPE and FFPE sections. Hematoxylin 
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concentration and exposure time was not decreased in the current study, but one of the 

pathologists noted excess hematoxylin intensity and relative reduction of hematoxylin 

concentration or exposure time for PFPE sections should be considered in future studies.  

 

The IHC comparison results are consistent with previously reported findings that staining 

PFPE tissue using IHC protocols developed with FFPE tissue often, but do not always give 

similar results. Further research is needed to determine which IHC protocols require 

adjustment for routine diagnostic use in PFPE tissue. 

 

In summary, we found that preservation of prostate histomorphology in hematoxylin and 

eosin (H&E) stained PFPE tissue is comparable to that of FFPE and appears sufficient to 

support routine diagnostic surgical pathology. IHC-based detection of prostate cancer 

markers PSA, p63 + Ck5/6 and ERG is possible in PFPE prostate tissue without modification 

of protocols optimized for FFPE tissue. RNA and DNA isolated from PFPE tissue is 

substantially more intact compared to FFPE, RNA yield is greater from PFPE than FFPE 

tissue, and PFPE DNA and RNA is amenable to next generation sequencing (NGS) based 

methods of analysis. We propose the use of per-nucleus yields of DNA and RNA as 

benchmarks for future studies aiming to advance the basic science of tissue DNA and RNA 

preservation, extraction and analysis.    
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FIGURE LEGENDS   

 

 FIGURE 1. Study design. Overview of the methods used in the 4-core study (A) and 

subsequent 3-core study (B). Results from both phases of the study are reported, with 

emphasis on the 3-core study, where improved RNA quality was obtained. FF: Fresh frozen; 

FFPE: Formalin-fixed paraffin embedded; PFPE: PAXgene-fixed paraffin embedded. 

 

FIGURE 2. Overview of core sectioning. Consecutive sections were cut from each of the 

cores for H&E, IHC and nucleic acid extraction as indicated in the figure and in Materials 

and Methods.  FF: Fresh frozen; FFPE: Formalin-fixed paraffin embedded; PFPE: PAXgene-

fixed paraffin embedded. 

 

FIGURE 3. Representative histomorphology of formalin-fixed paraffin-embedded (FFPE) 

and Paxgene-fixed paraffin-embedded (PFPE) tissue containing cancer. Representative 

examples of H&E (left) and 2IHC (CK5/6, p63 and AMACR, right) stained FFPE (A, B) or 

PFPE (C, D) cores from case PAX 89. 100 micron width reference bar shown. See 

Supplemental Figure 3 for a second set of representative images from PAX 69. 

 

FIGURE 4. Genomic DNA yield and quality. A) Genomic Quality Number GQN measured 

with Fragment Analyzer are shown for A, B and C cores in the 16 cases in the 3-core study. 

B, Fragment Analyzer DNA tracings from representative samples from A (blue), B (red) and 

C (green) cores (RFU, Relative Fluorescence Units). C, qPCR-based quality control (FFPE 

QC Kit, Illumina) ΔCt values (Core DNA Ct-QC kit template DNA Ct) for amplified DNA. 

A ΔCt value of ≤ 2 is considered good quality DNA. D, Estimated picogram DNA yield per 

nucleus based on nucleus counts performed as described in Materials and Methods. Mean and 

SD shown for each group (n=16), ** p<0.01, *** p<0.001. FF: Fresh frozen; FFPE: 

Formalin-fixed paraffin embedded; PFPE: PAXgene-fixed paraffin embedded. GQN values 

in the 20-case 4-core study were similar. 

 

FIGURE 5. Total RNA yield and quality. A, RNA Quality Number (RQN) measured with 

Fragment Analyzer are shown for A, B and C cores in the 16 cases in the 3-core study. B, 

Fragment Analyzer RNA tracings from representative samples from A (blue), B (red) and C 

(green) cores. C, RNA sequencing of RNA isolated from A, B and C core tissue from four 
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representative cases (PAX 84, 85, 91 and 96). Boxplot displaying the distributions of 

coverage at each position of 22 target transcripts in MiSeq (Illumina) RNA. The values are 

log2-transformed for better visualization. The boxes span the interquartile range (IQR) of the 

values, with the lines inside the boxes showing the medians, and whiskers above and below 

the boxes showing the locations of the minimum and maximum data points within 1.5 times 

the IQR. D, Estimated picogram RNA yield per nucleus. Mean and SD are shown for each 

group (n=16).* p<0.05, ** p<0.01, *** p<0.001. FF: Fresh frozen; FFPE: Formalin-fixed 

paraffin embedded; PFPE: PAXgene-fixed paraffin embedded. 

 



  
 

TABLES 
 

Table 1. Key tissue collection time, weight, and temperature data means (standard deviations) from the 4-core and 3-core studies.  

Phase of Study 

Time between 
leaving body and 

arriving in 
pathology 

(h:mm)  

Prostate 
weight 
(grams) 

Prostate core 
temperature on 

arrival in 
pathology 
laboratory 
(Celsius) 

Prostate core 
temperature low 

point after cooling   
(Celsius) 

Total cooling 
time (h:mm) 

Total time from 
removal from 

body to time in 
fixative (h:mm) 

Total time from 
patient start 
anesthesia to 

time in fixative 
(h:mm) 

Total time from 
first artery 

ligation to time in 
fixative (h:mm) 

Total operating 
time from first 
trocar to time 
prostate out of 
body (h:mm) 

 
4-core (initial 

phase, 20 
cases over 6 

weeks in 2015  
 

0:15 (0:13) 56.7 (16.6) 27.7 (3) 13.8 (2.3) 0:11 (0:06) 0:52 (0:13) 3:35 (0:57) 1:44 (0:29) 2:21 (0:49) 

 
3-core (second 

phase, 16 
cases over 2 

weeks in  2015  
 

0:14 (0:11) 54.2 (17) 27.6 (2.1) 14.6 (0.9) 0:07 (0:03) 0:40 (0:13) 2:52 (0:46) 1:23 (0:20) 1:55 (0:40) 

p-value n.s. n.s. n.s. n.s. p<0.05 p<0.05 p<0.05 p<0.05 n.s. 

 

 

 

 

 

 



  
 

Table 2. Summary of genomic DNA and total RNA quality for A, B and C core groups in the 
3-core study. 

Core 
group 

Fixation 
method 

Extraction 
method 
(Qiagen) 

DNA yield  
(ng)/ 6.2 

mm3 

DNA 
GQN 

Average 
DNA  

fragment 
length (bp) 

RNA yield 
(ng)/6.2 

mm3 

RNA 
RQN 

RNA 
DV200 

A Fresh 
Frozen (FF) 

Allprep 
Universal 1261 ± 470 7.9 + 

0.4 58939 ± 2989 4341  ± 
1683 

8.7 ± 
0.9 

80.8 
±3.8 

B 

Formalin-
fixed 

paraffin 
embedded 

(FFPE) 

Allprep 
FFPE 2786 ±1383 3.2 + 

0.5 19680 ± 2418 3726 ± 2242 2.6 ± 
1.2 

49.8 
±13.4 

C 

PAXgene-
fixed 

paraffin 
embedded 

(PFPE) 

Paxgene 
Allprep 

2718 ± 
1562 

6.2 + 
0.9 41274 ± 9216 7806 ± 2970 6.3 ± 

0.3 
75.5 
±3.4 

GQN: Genomic Quality Number; RQN: RNA Quality Number; DV200: percentage of RNA over 200 nucleotides 
in size 
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SUPPLEMENTAL METHODS 
 

Processing Chemicals 

Chemicals used in tissue processing and staining listed in the tables below used in the 4-core study Pathos 

DELTA and Citadel processors were the same products from the same manufacturers but not the same lot 

numbers due to different ordering logistics in each location. Processing and staining chemicals used in the 3-

core study Pathos DELTA and Leica TP1020 processors were from the same manufacturers and lot 

numbers.  

 

Standard Fimlab Prostate External Inking for Surgical Margin Analysis 

Using correct inking technique (complete coverage using  cotton applicator (Ref 120783, Selefa OneMed) 

then dried with paper towels) black ink (CAT# WAK-HM-B-3, WAK-Chemie Medical GmbH) was placed 

on the surface of the left side and on the whole posterior surface, blue ink (CAT# WAK-HM-BL-5, WAK-

Chemie Medical GmbH) on the surface of the right side and green ink (CAT# WAK-HM-G-1, WAK-

Chemie Medical GmbH) on the anterior apex and anterior base. Inking was performed with “clean” 

technique, wearing non-sterile gloves, non-sterile cotton applicators, and non-sterile ink as supplied by the 

manufacturer.  

 

Web-Based Blinded, Randomized Survey of FFPE vs PAXgene fixed tissue histology 

All cores containing cancer from the 3-core and 4-core study were included in the survey.  Cores containing 

no cancer were excluded since adenocarcinoma is the main focus of surgical pathology evaluation of radical 

prostatectomy specimens. Provided onscreen to each pathologist with the survey: 

 

Title of Survey:  Surgical Pathology Adequacy Survey 

Instructions:  8mm and 6mm punches taken from 6mm thick radical prostatectomy transverse sections were 

fixed in either PAXgene or Formalin using standard procedures, and sections were cut for H&E and 2IHC 

(AMACR, p63 and cytokeratin 5/6) staining. With each question you will be presented with the H&E and 

2IHC stain from the same core. The images of the H&E and 2IHC sections are from the same block but may 

not be in the same orientation. Questions refer to each HE/2IHC pair. 

 

Questions with each zoomable image pair from the same tissue block, with no identifier provided (H&E on 

left, 2IHC stain on right): 

1 - What is your best estimate of how the source tissue block was prepared? (required dropdown selection:  

Formalin-Fixed Paraffin-Embedded or PAXgene-fixed Paraffin-Embedded) 

2 - What visual clues are you using to identify the tissue as processed in this way? (optional free text field) 
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3 - Taking into account the H&E and 2IHC staining, does the quality appear adequate for routine radical 

prostatectomy surgical pathology analysis, such as identification of cancer cells, and Gleason scoring? 

(required dropdown selection: yes/no) 

4 - Please state what is not adequate (optional free text field) 

 

Qiagen Kit Extraction modifications 

Isolation of 3-core study FFPE (B Core) and 4-core study FFPE (B core) and PFPE (C and D core RNA and 

DNA was done using Qiagen’s Allprep DNA/RNA FFPE kit (cat no 80234) or the PAXgene Tissue Allprep 

DNA/RNA/miRNA method (Qiagen’s PX10 Supplemental protocol) according to manufacturer’s 

instructions, apart from the deparaffinization steps. 1400 µl heptane was added to the cut paraffin sections, 

the tubes were vortexed vigorously for 10s and incubated 20 min at 37°C. 70 µl methanol was added, the 

samples vortexed and centrifuged for 2 min at 9000 x g. The supernatant was carefully removed using a 

pipet, 1.4 ml ethanol added to the pellet followed by vortexing and centrifugation for 2 min at full speed. 

The supernatant was removed and the ethanol wash repeated.  

 

3-core PFPE (C core) DNA and RNA were isolated with the PAXgene Tissue Allprep DNA/RNA/miRNA 

method (PX10 supplementary protocol) according to manufacturer’s instructions, apart from a small 

modification in the deparaffinization step. 650 ul xylene was added to cut paraffin sections, the tubes were 

vortexed vigorously for 20s and incubated 10 min on the benchtop before continuing with ethanol washing 

according to protocol. 

 

Immunohistochemistry staining protocols:  

All immuno stains (2IHC, PSA, ERG and Vimentin) were done at Fimlab according to their standard 

staining protocols for their own diagnostic purposes and counterstained with hematoxylin.  

 

PSA-stain:  

• Automated Bond III technology  

• Leica Bond™ Polymer Refine Detection-kit  

• Pretreated 30min with Bond Epitope Retrieval Solution 1  

• Hybridized with Dako (A0562 Clone, 1:15000 dilution) against PSA  

 

ERG-stain:  

• Automated Bond III technology  

• Leica Bond™ Polymer Refine Detection-kit  

• Pretreated 30min with Bond Epitope Retrieval Solution 2  

• Hybridized with Biocare Medical antibody (CM421C Clone: 9FY, 1:500) against ERG.   
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LeicaVimentin-stain:  

• Automated Bond III technology  

• Leica Bond™ Polymer Refine Detection-kit  

• Pretreated 20min with Bond Epitope Retrieval Solution 1  

• Hybridized with Leica RTU PA0033 (Clone: SRL33) against Vimentin.  

 

2IHC-stain (AMACR, p63 and cytokeratin 5/6):  

• Automated Ventana Benchmark GX technology  

• Optiview-kit (brown for p63 and KRT5/6) and Ultraview Alkaline Phosphatase Red (for AMACR) 

• AMACR-anitibody: Sigma Aldrich HPA019527-100UL (Polyclonal, 1:2000)  

• p63-antibody: Bio SB (BSB5853, Clone: 4A4, 1:100) 

• cytokeratin 5/6 antibody: Zymed 18-0267 (Clone: D5/16 B4, 1:100) 

 

SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1. 3- and 4-core study PFPE RNA quality. Mean and SD are shown, n=16 for 3-core 
and n=20 for 4-core study samples. **p<0.01,*** p<0.001.  

 



6 
 

 

Supplemental Figure 2. Red blood cell morphology. Representative examples of H&E stained red blood 
cells from FFPE (A) and PFPE (B) cores from case PAX69. 10 micron width reference bar shown. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Supplemental Figure 3. Histomorphology of formalin-fixed paraffin-embedded (FFPE) and Paxgene-fixed 

paraffin-embedded (PFPE) tissue containing cancer. Representative examples of H&E (left) and 2IHC 

(CK5/6, p63 and AMACR, right) stained FFPE (A, B) or PFPE (C, D) sections from case PAX 69. 100 

micron width reference bar shown. 
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Supplemental Figure 4. Genomic DNA agarose gel electrophoresis. A, 3.0 µL of each undiluted, original 3-

core study DNA sample (PAX 82-97 A, B and C cores) were loaded with 6x DNA loading buffer into a 

0.6% agarose gel with 0.5x SYBR Safe DNA dye (Thermo Scientific). Electrophoresis was performed in 0.5 

X TBE buffer at 80 V for 70 min, after which the gel was visualized under UV-light (800 ms). The sample 

labels for all PAX cores are shown above each well and DNA size markers are illustrated on the left and 

right sides of the figure. 2 µL of MassRuler™ High Range DNA Ladder (Thermo Scientific) is used as 

marker. B, 3.0 µL of each undiluted, original 4-core study DNA sample was loaded with DNA loading 

buffer into 0.6% Agarose gel. Electrophoresis was performed in 0.5 X TE buffer, EtBr 165 µg/mL, at 120 V 
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for 50 min after which the gel was visualized under UV-light (720 ms). M1: 2 µL of MassRuler™ High 

Range DNA Ladder (Thermo Scientific), M2: 2 µL of 1 kb DNA Ladder (NEB), M3: 2 µL of GeneRuler™ 

100 bp DNA Ladder (Thermo Scientific).  

 

 

 

Supplemental Figure 5. Genomic DNA yield and quality. A, Average DNA fragment length (bp) of two 

Fragment Analyzer measurements is shown for each individual core sample for the A, B and C cores. B, 

Sequencing artefacts in DNA MiSeq. The bars show the frequencies of the indicated base  

changes per million corresponding correct base calls (the count of A>A, C>C, G>G, or T>T base calls) in 

the 1-10% variant allele frequency range. C, Genomic DNA yield per 6.2 mm3 tissue volume measured with 

Qubit 2.0. Mean and SD are shown for each group (n=16). **p<0.01, *** p<0.001. FF: Fresh frozen; FFPE: 

Formalin-fixed paraffin embedded; PFPE: PAXgene-fixed paraffin embedded. 
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Supplemental Figure 6. Nucleic acid quality and yield. A, RQN and GQN values from matched A, B and C 

samples ordered in decreasing RQN values of A cores from the 3-core study. B, Total RNA yield per 6.2 

mm3 tissue volume measured with Fragment Analyzer. Mean and SD are shown for each group (n=16). *** 

p<0.001. FF: Fresh frozen; FFPE: Formalin-fixed paraffin embedded; PFPE: PAXgene-fixed paraffin 

embedded. 
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SUPPLEMENTAL TABLES 
 

Supplemental Table 1. Summary of 4-core and 3-core methods and results. 
  

4-core study (first phase) 3-core study (final phase) 

RALP Patient Cohort 20 men  16 men  

Fixation method of 
whole mount donor 
tissue section 

Tissue section placed  between two pieces of 
nylon and polyester sheets inside a 200ml 
container, keeping the tissue flat during fixation. 

Tissue section placed in a Supa Mega Slim 
white cassette (CellPath, EAN 0102-02A)  

Core punches 4 cores, 8 mm diameter, taken as depicted in 
Fig. 1A 

3 cores, 6 mm diameter taken as depicted 
in Fig. 1B. Coring was shifted to the 
posterior side to increase likelihood of 
having cancer in the core, since prostate 
cancer is more often found posteriorly. 
Core diameter was decreased since the 8 
mm cores suggested smaller cores would 
provide sufficient area for histologic 
assessment while allowing the three cores 
to sample more closely related areas of 
each prostate. 

Tissue processing B cores: Fimlab pathology laboratory standard 
Pathos DELTA  protocol for formalin tissue; C: 
Citadel 2000 processor, optimized for PAXgene 
tissue; D: Pathos DELTA processor, optimized for 
PAXgene tissue 

B cores: Fimlab pathology laboratory 
standard Pathos DELTA  protocol for 
formalin tissue ; C: Dedicated Leica TP1020 
optimized for PAXgene tissue  

Embedding Paraffin B, C, and D cores: Histowax, Histolab B cores: Histowax, C Cores: Paraplast Xtra, 
P3808 Sigma-Aldrich 

Deparaffinization B, C, and D cores: Heptane  (see Supplemental 
Methods above) 

B cores: Heptane, C cores: Xylene (see 
Supplemental methods above) 

H&E staining Standard staining protocol for FF sections (Supp 
Table 7). The same protocol for B, C and D cores 
(Supp Table 6). 

C  (Supp Table 9) and A core (Supp Table 
10) protocols optimized to match Fimlab 
standard B core staining (Supp Table 8) 
protocol intensities. 

Scanning Olympus BX51 with Olympus UplanSApo 40x 
objective and Surveyor Software, Objective 
Imaging Ltd. 

Hamamatsu Photonics Nano Zoomer XR 
C12000 automated scanner with 
0.23µm/pixel resolution.    

Anesthesia agents and 
other drugs during 
surgery 

Cefuroxine 1,5 g, Propofol 2%,  
Remifentalil 50mg, Rocuron 30-50 mg 
 

Cefuroxine 1,5 g, Propofol 2%, Remifentalil 
50mg, Rocuron 30-50 mg 

Surgical Pathology 
Report Gleason grades (# 
patients) 

3+3 (2), 3+4 (11), 4+3 (5), 4+4 (1), 4+5 (1)  
 

3+4 (9), 4+3 (4), 4+4 (1), 4+5 (1), 5+3 (1)  

pTNM staging (# 
patients) 

pT2a (1), pT2c (11), pT3a (7), pT3b (1) pT2a (1), pT2b (3), pT2c (2), pT3a (7), pT3b 
(3) 

DNA Quality Average GQN:  FF (A cores) 8.2, FFPE (B cores) 
4.0  PFPE (C cores) 6.8 and PFPE (D cores) 7.0 

Average GQN:  FF (A cores) 7.9, FFPE (B 
cores) 3.2 and PFPE (C cores) 6.2.  

RNA Quality Average RQN:  FF (A cores) 9.1, FFPE (B cores) 
2.8  PFPE (C cores) 4.6 and PFPE (D cores) 5.1 

Average RQN:  FF (A cores) 8.7, FFPE (B 
cores) 2.6 and PFPE (C cores) 6.3.  

DNA Quantity FF (A cores) 0.6 µg, FFPE (B cores) 0.8 µg, PFPE 
(C cores) 1.1 µg and PFPE (D cores) 1.4 µg per 
6.0 mm3 tissue volume  
Per nucleus (not done) 

FF (A cores) 1.3 µg, FFPE (B cores) 2.8 µg 
and PFPE (C cores) 2.7 µg per 6.2 mm3 

tissue volume  
FF 0.41 pg, FFPE 0.69 pg and PFPE 0.78 pg  
per nucleus 
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RNA Quantity FF (A cores) 5.2 µg, FFPE (B cores) 2.7 µg, PFPE 
(C cores) 4.9 µg and PFPE (D cores) 5.4 µg per 
6.0 mm3 tissue volume 
Per nucleus (not done) 

FF (A cores) 4.3 µg, FFPE (B cores) 3.7 µg 
and PFPE (C cores) 7.8 µg per 6.2 mm3 
tissue volume  
FF 1.40 pg, FFPE 0.94 pg and PFPE 2.24 pg 
per nucleus 

 

Supplemental Table 2. Pathos DELTA tissue processing protocol for formalin-fixed B cores in the 3-core 
and 4-core studies. 
Phase Phase Name Reagent Phase type Heating Vacuum Step Time 

h:min Temp Pressure 

1 Fixation Formalin Fixation MW and 
resistance no 1 0:30 40C - 

            2 0:45 40C - 
            3 0:30 50C - 
            4 0:45 50C - 

2 Flushing 
Flushing Mix 

(~70% 
Ethanol) 

Flushing no no 1 0:05 - - 

3 Rinsing1 Ethanol Rinsing MW and 
resistance no 1 0:10 40C - 

4 Rinsing2 Ethanol Rinsing MW and 
resistance no 1 0:10 40C - 

            2 0:05 40C - 

5 Ethanol Ethanol 
Dehydration, 

clearing, 
other 

MW and 
resistance no 1 0:20 55C - 

            2 1:50 55C - 

6 Isopropanol Isopropanol 
Dehydration, 

clearing, 
other 

MW and 
resistance no 1 0:20 65C - 

            2 3:40 65C - 

7 Isopropanol2 Isopropanol2 
Dehydration, 

clearing, 
other 

MW and 
resistance no 1 0:20 65C - 

            2 0:40 65C - 
            3 0:20 68C   
            4 3:10 68C - 

8 Vaporization - Vaporization no yes 1 0:03 - 600 
mbar 

9 Wax 
impregnation Wax Wax Only 

resistance yes 1 0:30 70C 500 
mbar 

            2 0:20 70C 400 
mbar 

            3 0:20 70C 300 
mbar 

            4 0:20 70C 200 
mbar 

            5 0:20 70C 150 
mbar 
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            6 4:00 65C 100 
mbar 

            7 3:00 65C 800 
mbar 

 

Supplemental Table 3. Citadel 2000 (69810051 Issue 18) tissue processing protocol for PAXgene-fixed C 
cores in the 4-core study. 

Step Solution Time h:min Temp 
1 Ethanol 80% 0:30 RT 
2 Ethanol 96%  0:30 RT 
3 Ethanol 96%  0:30 RT 
4 Ethanol 100% 1:00 RT 
5 Ethanol 100% 1:00 RT 
6 Xylene 1:00 RT 
7 Xylene 1:30 RT 
8 Histowax 1:15 60°C 
9 Histowax 1:15 60°C 

 

Supplemental Table 4. Pathos DELTA tissue processing protocol for PAXgene-fixed D cores in the 4-core 
study. 

Phase Phase Name Reagent Phase type Heating Vacuum Step Time 
h:min Temp Pressure 

1 80% EtOH 80% 
Ethanol 

Dehydration, 
clearing other no no 1 0:30 - - 

2 96% EtOH1 96% 
Ethanol1 

Dehydration, 
clearing other no no 1 0:30 - - 

3 96% EtOH2 96% 
Ethanol2 

Dehydration, 
clearing other no no 1 0:30 - - 

4 100% Ethanol1 Ethanol 
(ABS)1 

Dehydration, 
clearing other no no 1 1:00 - - 

5 100% Ethanol2 Ethanol 
(ABS)2 

Dehydration, 
clearing other no no 1 1:00 - - 

6 Xylene1 Xylene1 Dehydration, 
clearing other no no 1 1:00 - - 

7 Xylene2 Xylene2 Dehydration, 
clearing other no no 1 1:30 - - 

8 Wax 
impregnation Wax Wax Only 

resistance no 1 2:30 60C - 

 

 

Supplemental Table 5. Leica TP1020 tissue processing protocol for PAXgene-fixed C cores in the 3-core 
study. 
Station Solution Time h:min Temp Vacuum Volume of liquid 

1 PAXgene Stabilizer 0:05 RT off 1 liter 



13 
 

2 Ethanol 80% 0:30 RT on 1 liter 
3 Ethanol 90% 1:00 RT on 1 liter 
4 Ethanol 99% 1:00 RT on 1 liter 
5 Ethanol 99% 1:00 RT on 1 liter 
6 Isopropanol 1:00 RT on 1 liter 
7 Isopropanol 1:00 RT on 1 liter 
8 Xylene 1:00 RT on 1 liter 
9 Xylene 1:00 RT on 1 liter 

10 Xylene/ParaplastXtra 
50:50 1:00 50°C on 1 liter (500 ml + 500 

ml) 
11 Paraplast Xtra 1:00 56°C on 1 liter 
12 Paraplast Xtra 1:30 56°C on 1 liter 

 

 

Supplemental Table 6. BioMediTech H&E staining protocol for FFPE B and donor macro sections, and 
PFPE C and D cores in 4-core study. 

Step Reagent Producer, Cat no Time 
min:sec 

1 Hexane   3:00 

2 Hexane   3:00 
3 ABS EtOH   2:00 
4 ABS EtOH   1:00 
5 94% EtOH   2:00 
6 70% EtOH   1:00 

7 dH2O  MilliQ-distilled H2O 0:30 

8 Hematoxylin Mayers HTX Histolab, Histolab 
Products AB, Cat No 01820 14:00 

9 H2O   7:00 

10 dH2O MilliQ-distilled H2O 0:40 

11 Eosin  Eosin 0,2% Histolab, Histolab 
Products AB, Cat No 01650 1:30 

12 H2O   1:00 

13 dH2O MilliQ-distilled H2O 0:30 

14 94% EtOH   2:00 
15 ABS EtOH   2:00 
16 ABS EtOH   2:00 
17 ABS EtOH   2:00 
18 Xylene   2:00 

 

Supplemental Table 7. BioMediTech H&E staining protocol for FF A cores in 4-core study.   

Step Reagent Producer, Cat no Time 
min:sec 

1 dH2O  MilliQ-distilled H2O 0:30 
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2 Hematoxylin 
Mayers HTX Histolab, 

Histolab Products AB, Cat No 
01820 

6:00 

3 H2O   7:00 
4 dH2O MilliQ-distilled H2O 0:40 

5 Eosin  Eosin 0,2% Histolab, Histolab 
Products AB, Cat No 01650 2:00 

6 H2O   1:00 
7 dH2O MilliQ-distilled H2O 0:30 
8 94% EtOH   2:00 
9 94% EtOH   2:00 

10 ABS EtOH   1:00 
11 ABS EtOH   2:00 
12 ABS EtOH   2:00 
13 Xylene   2:00 

 

Supplemental Table 8. Fimlab pathology laboratory H&E staining protocol for FFPE B cores in 3-core study 
 

Step Reagent Producer, Cat no Time 
min:sec 

1 HistoClear II 1 National diagnostics, HS-202 3:00 

2 HistoClear II 2 National diagnostics, HS-202 3:00 

3 96% EtOH 1 
 

0:10 

4 96% EtOH 2 
 

2:00 

5 70% EtOH 
 

2:00 

6 Running tap water 
 

1:00 

7 Hematoxylin Dako, CS700 0:45 

8 dH20 MilliQ-distilled H2O 1:00 

9 Bluing Buffer Dako, CS702 1:00 

10 Running tap water 
 

1:00 

11 70% EtOH 2 
 

1:00 

12  Eosin Dako, CS701 1:00 

13 96% EtOH 3 
 

1:00 

14 99,9% EtOH 1 
 

1:00 

15 99,9% EtOH 2 
 

1:00 

16 99,9% EtOH 3 
 

1:00 

17 HistoClear II 
 

1:00 
 

 
Supplemental Table 9. BioMediTech H&E staining protocol for PFPE C cores in 3-core study. 
 

Step Reagent Producer, Cat no Time 
min:sec 

1 HistoClear II 1 National diagnostics, HS-202 3:00 
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2 HistoClear II 2 National diagnostics, HS-202 3:00 

3 96% EtOH 1 
 

0:10 

4 96% EtOH 2 
 

2:00 

5 70% EtOH 
 

2:00 

6 Running tap water 
 

1:00 

7 Hematoxylin Dako, CS700 0:45 

8 dH20 MilliQ-distilled H2O 1:00 

9 Bluing Buffer Dako, CS702 1:00 

10 Running tap water 
 

1:00 

11 70% EtOH 2 
 

1:00 

12 Eosin diluted 1:2 Dako, CS701 0:05 

13 96% EtOH 3 
 

1:00 

14 99,9% EtOH 1 
 

1:00 

15 99,9% EtOH 2 
 

1:00 

16 99,9% EtOH 3 
 

1:00 

17 HistoClear II 
 

1:00 
 

 

Supplemental Table 10. BioMediTech H&E staining protocol for FF A cores in 3-core study.  

Step Reagent Producer, Cat no Time 
min:sec 

1 dH2O  MilliQ-distilled H2O 0:30 

2 Hematoxylin 
Mayers HTX Histolab, 

Histolab Products AB, Cat No 
01820 

10:00 

3 H2O   7:00 
4 dH2O MilliQ-distilled H2O 0:40 

5 Eosin diluted 1:2 Eosin 0,2% Histolab, Histolab 
Products AB, Cat No 01650 0:30 

6 H2O   1:00 
7 dH2O MilliQ-distilled H2O 0:30 
8 94% EtOH   2:00 
9 94% EtOH   2:00 

10 ABS EtOH   1:00 
11 ABS EtOH   2:00 
12 ABS EtOH   2:00 
13 Xylene   2:00 

Supplemental Table 11. DNA MiSeq assay target 
list 

Gene Total size of 
targeted 

region (bp) 
AR 186608 

HES6 755 

TP53 1503 
PTEN 1392 

SMAD4 1879 
MYC 1425 

FOXA1 1459 
KDM5B 5175 
CHD4 6519 
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KMT2C 15916 
CTNNB1 2626 
HOXB13 895 

SPOP 1305 
MED12 7434 
AKT1 1703 
KRAS 787 
EVC 3399 

TMEM33 884 
NPFFR2 1671 
MYOZ2 895 
SPOCK3 1607 
SMPD1 2016 
FSHB 430 

FOLR2 848 
MMP7 924 
CRTAM 1382 
CYFIP1 4743 
EXD1 1745 
LIPC 1680 

ALPK3 6004 
SYNM 4777 
FEM1A 2030 
JUND 1064 

CEBPG 473 
FOSB 1097 
SYT3 1933 

 

 

 

Supplemental Table 12. RNA MiSeq assay Target 
List 

Gene Transcript 
length (bp) 

TBP 2038 
DDX1 2988 

STARD7 3422 
SLC45A3 3702 

HES6 2037 
ACPP 3807 
SKIL 7498 

SPINK1 1478 
FKBP5 10628 
SGK1 6967 
ETV1 8401 

MSMB 1860 
FLI1 4849 

ASCL1 2472 
CHGA 2194 
ETV4 3095 
HPN 2677 
KLK3 2321 
ERG 7498 

TMPRSS2 5418 
SYP 3377 
AR 11810 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 13. Summary of nucleus counts in the 3-core study.  

  FF (A cores) FFPE (B cores) PFPE (C cores) 
Number of nuclei 
per standard slide 

Mean 79839 98609 86892 
SD 15255 19214 19756 

Median 75664 94343 81995 
Estimated number 

of nuclei per 6.2 
mm3 tissue 

Mean 3.08x106 4.01 x106 3.54 x106 
SD 588825 782008 804064 

Median 2.92 x106 3.84 x106 3.34 x106 
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